]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ifcombine.c
Remove trailing white spaces.
[thirdparty/gcc.git] / gcc / tree-ssa-ifcombine.c
1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "timevar.h"
28 #include "diagnostic.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32
33 /* This pass combines COND_EXPRs to simplify control flow. It
34 currently recognizes bit tests and comparisons in chains that
35 represent logical and or logical or of two COND_EXPRs.
36
37 It does so by walking basic blocks in a approximate reverse
38 post-dominator order and trying to match CFG patterns that
39 represent logical and or logical or of two COND_EXPRs.
40 Transformations are done if the COND_EXPR conditions match
41 either
42
43 1. two single bit tests X & (1 << Yn) (for logical and)
44
45 2. two bit tests X & Yn (for logical or)
46
47 3. two comparisons X OPn Y (for logical or)
48
49 To simplify this pass, removing basic blocks and dead code
50 is left to CFG cleanup and DCE. */
51
52
53 /* Recognize a if-then-else CFG pattern starting to match with the
54 COND_BB basic-block containing the COND_EXPR. The recognized
55 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
56 *THEN_BB and/or *ELSE_BB are already set, they are required to
57 match the then and else basic-blocks to make the pattern match.
58 Returns true if the pattern matched, false otherwise. */
59
60 static bool
61 recognize_if_then_else (basic_block cond_bb,
62 basic_block *then_bb, basic_block *else_bb)
63 {
64 edge t, e;
65
66 if (EDGE_COUNT (cond_bb->succs) != 2)
67 return false;
68
69 /* Find the then/else edges. */
70 t = EDGE_SUCC (cond_bb, 0);
71 e = EDGE_SUCC (cond_bb, 1);
72 if (!(t->flags & EDGE_TRUE_VALUE))
73 {
74 edge tmp = t;
75 t = e;
76 e = tmp;
77 }
78 if (!(t->flags & EDGE_TRUE_VALUE)
79 || !(e->flags & EDGE_FALSE_VALUE))
80 return false;
81
82 /* Check if the edge destinations point to the required block. */
83 if (*then_bb
84 && t->dest != *then_bb)
85 return false;
86 if (*else_bb
87 && e->dest != *else_bb)
88 return false;
89
90 if (!*then_bb)
91 *then_bb = t->dest;
92 if (!*else_bb)
93 *else_bb = e->dest;
94
95 return true;
96 }
97
98 /* Verify if the basic block BB does not have side-effects. Return
99 true in this case, else false. */
100
101 static bool
102 bb_no_side_effects_p (basic_block bb)
103 {
104 gimple_stmt_iterator gsi;
105
106 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
107 {
108 gimple stmt = gsi_stmt (gsi);
109
110 if (gimple_has_volatile_ops (stmt)
111 || gimple_vuse (stmt))
112 return false;
113 }
114
115 return true;
116 }
117
118 /* Verify if all PHI node arguments in DEST for edges from BB1 or
119 BB2 to DEST are the same. This makes the CFG merge point
120 free from side-effects. Return true in this case, else false. */
121
122 static bool
123 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
124 {
125 edge e1 = find_edge (bb1, dest);
126 edge e2 = find_edge (bb2, dest);
127 gimple_stmt_iterator gsi;
128 gimple phi;
129
130 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
131 {
132 phi = gsi_stmt (gsi);
133 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
134 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
135 return false;
136 }
137
138 return true;
139 }
140
141 /* Return the best representative SSA name for CANDIDATE which is used
142 in a bit test. */
143
144 static tree
145 get_name_for_bit_test (tree candidate)
146 {
147 /* Skip single-use names in favor of using the name from a
148 non-widening conversion definition. */
149 if (TREE_CODE (candidate) == SSA_NAME
150 && has_single_use (candidate))
151 {
152 gimple def_stmt = SSA_NAME_DEF_STMT (candidate);
153 if (is_gimple_assign (def_stmt)
154 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
155 {
156 if (TYPE_PRECISION (TREE_TYPE (candidate))
157 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
158 return gimple_assign_rhs1 (def_stmt);
159 }
160 }
161
162 return candidate;
163 }
164
165 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
166 statements. Store the name being tested in *NAME and the bit
167 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
168 Returns true if the pattern matched, false otherwise. */
169
170 static bool
171 recognize_single_bit_test (gimple cond, tree *name, tree *bit)
172 {
173 gimple stmt;
174
175 /* Get at the definition of the result of the bit test. */
176 if (gimple_cond_code (cond) != NE_EXPR
177 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
178 || !integer_zerop (gimple_cond_rhs (cond)))
179 return false;
180 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
181 if (!is_gimple_assign (stmt))
182 return false;
183
184 /* Look at which bit is tested. One form to recognize is
185 D.1985_5 = state_3(D) >> control1_4(D);
186 D.1986_6 = (int) D.1985_5;
187 D.1987_7 = op0 & 1;
188 if (D.1987_7 != 0) */
189 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
190 && integer_onep (gimple_assign_rhs2 (stmt))
191 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
192 {
193 tree orig_name = gimple_assign_rhs1 (stmt);
194
195 /* Look through copies and conversions to eventually
196 find the stmt that computes the shift. */
197 stmt = SSA_NAME_DEF_STMT (orig_name);
198
199 while (is_gimple_assign (stmt)
200 && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
201 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
202 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))))
203 || gimple_assign_ssa_name_copy_p (stmt)))
204 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
205
206 /* If we found such, decompose it. */
207 if (is_gimple_assign (stmt)
208 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
209 {
210 /* op0 & (1 << op1) */
211 *bit = gimple_assign_rhs2 (stmt);
212 *name = gimple_assign_rhs1 (stmt);
213 }
214 else
215 {
216 /* t & 1 */
217 *bit = integer_zero_node;
218 *name = get_name_for_bit_test (orig_name);
219 }
220
221 return true;
222 }
223
224 /* Another form is
225 D.1987_7 = op0 & (1 << CST)
226 if (D.1987_7 != 0) */
227 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
228 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
229 && integer_pow2p (gimple_assign_rhs2 (stmt)))
230 {
231 *name = gimple_assign_rhs1 (stmt);
232 *bit = build_int_cst (integer_type_node,
233 tree_log2 (gimple_assign_rhs2 (stmt)));
234 return true;
235 }
236
237 /* Another form is
238 D.1986_6 = 1 << control1_4(D)
239 D.1987_7 = op0 & D.1986_6
240 if (D.1987_7 != 0) */
241 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
242 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
243 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
244 {
245 gimple tmp;
246
247 /* Both arguments of the BIT_AND_EXPR can be the single-bit
248 specifying expression. */
249 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
250 if (is_gimple_assign (tmp)
251 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
252 && integer_onep (gimple_assign_rhs1 (tmp)))
253 {
254 *name = gimple_assign_rhs2 (stmt);
255 *bit = gimple_assign_rhs2 (tmp);
256 return true;
257 }
258
259 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
260 if (is_gimple_assign (tmp)
261 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
262 && integer_onep (gimple_assign_rhs1 (tmp)))
263 {
264 *name = gimple_assign_rhs1 (stmt);
265 *bit = gimple_assign_rhs2 (tmp);
266 return true;
267 }
268 }
269
270 return false;
271 }
272
273 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
274 statements. Store the name being tested in *NAME and the bits
275 in *BITS. The COND_EXPR computes *NAME & *BITS.
276 Returns true if the pattern matched, false otherwise. */
277
278 static bool
279 recognize_bits_test (gimple cond, tree *name, tree *bits)
280 {
281 gimple stmt;
282
283 /* Get at the definition of the result of the bit test. */
284 if (gimple_cond_code (cond) != NE_EXPR
285 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
286 || !integer_zerop (gimple_cond_rhs (cond)))
287 return false;
288 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
289 if (!is_gimple_assign (stmt)
290 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
291 return false;
292
293 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
294 *bits = gimple_assign_rhs2 (stmt);
295
296 return true;
297 }
298
299 /* If-convert on a and pattern with a common else block. The inner
300 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
301 Returns true if the edges to the common else basic-block were merged. */
302
303 static bool
304 ifcombine_ifandif (basic_block inner_cond_bb, basic_block outer_cond_bb)
305 {
306 gimple_stmt_iterator gsi;
307 gimple inner_cond, outer_cond;
308 tree name1, name2, bit1, bit2;
309
310 inner_cond = last_stmt (inner_cond_bb);
311 if (!inner_cond
312 || gimple_code (inner_cond) != GIMPLE_COND)
313 return false;
314
315 outer_cond = last_stmt (outer_cond_bb);
316 if (!outer_cond
317 || gimple_code (outer_cond) != GIMPLE_COND)
318 return false;
319
320 /* See if we test a single bit of the same name in both tests. In
321 that case remove the outer test, merging both else edges,
322 and change the inner one to test for
323 name & (bit1 | bit2) == (bit1 | bit2). */
324 if (recognize_single_bit_test (inner_cond, &name1, &bit1)
325 && recognize_single_bit_test (outer_cond, &name2, &bit2)
326 && name1 == name2)
327 {
328 tree t, t2;
329
330 /* Do it. */
331 gsi = gsi_for_stmt (inner_cond);
332 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
333 build_int_cst (TREE_TYPE (name1), 1), bit1);
334 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
335 build_int_cst (TREE_TYPE (name1), 1), bit2);
336 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
337 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
338 true, GSI_SAME_STMT);
339 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
340 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
341 true, GSI_SAME_STMT);
342 t = fold_build2 (EQ_EXPR, boolean_type_node, t2, t);
343 t = canonicalize_cond_expr_cond (t);
344 if (!t)
345 return false;
346 gimple_cond_set_condition_from_tree (inner_cond, t);
347 update_stmt (inner_cond);
348
349 /* Leave CFG optimization to cfg_cleanup. */
350 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
351 update_stmt (outer_cond);
352
353 if (dump_file)
354 {
355 fprintf (dump_file, "optimizing double bit test to ");
356 print_generic_expr (dump_file, name1, 0);
357 fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
358 print_generic_expr (dump_file, bit1, 0);
359 fprintf (dump_file, ") | (1 << ");
360 print_generic_expr (dump_file, bit2, 0);
361 fprintf (dump_file, ")\n");
362 }
363
364 return true;
365 }
366
367 /* See if we have two comparisons that we can merge into one. */
368 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
369 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
370 && operand_equal_p (gimple_cond_lhs (inner_cond),
371 gimple_cond_lhs (outer_cond), 0)
372 && operand_equal_p (gimple_cond_rhs (inner_cond),
373 gimple_cond_rhs (outer_cond), 0))
374 {
375 enum tree_code code1 = gimple_cond_code (inner_cond);
376 enum tree_code code2 = gimple_cond_code (outer_cond);
377 tree t;
378
379 if (!(t = combine_comparisons (UNKNOWN_LOCATION,
380 TRUTH_ANDIF_EXPR, code1, code2,
381 boolean_type_node,
382 gimple_cond_lhs (outer_cond),
383 gimple_cond_rhs (outer_cond))))
384 return false;
385 t = canonicalize_cond_expr_cond (t);
386 if (!t)
387 return false;
388 gimple_cond_set_condition_from_tree (inner_cond, t);
389 update_stmt (inner_cond);
390
391 /* Leave CFG optimization to cfg_cleanup. */
392 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
393 update_stmt (outer_cond);
394
395 if (dump_file)
396 {
397 fprintf (dump_file, "optimizing two comparisons to ");
398 print_generic_expr (dump_file, t, 0);
399 fprintf (dump_file, "\n");
400 }
401
402 return true;
403 }
404
405 return false;
406 }
407
408 /* If-convert on a or pattern with a common then block. The inner
409 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
410 Returns true, if the edges leading to the common then basic-block
411 were merged. */
412
413 static bool
414 ifcombine_iforif (basic_block inner_cond_bb, basic_block outer_cond_bb)
415 {
416 gimple inner_cond, outer_cond;
417 tree name1, name2, bits1, bits2;
418
419 inner_cond = last_stmt (inner_cond_bb);
420 if (!inner_cond
421 || gimple_code (inner_cond) != GIMPLE_COND)
422 return false;
423
424 outer_cond = last_stmt (outer_cond_bb);
425 if (!outer_cond
426 || gimple_code (outer_cond) != GIMPLE_COND)
427 return false;
428
429 /* See if we have two bit tests of the same name in both tests.
430 In that case remove the outer test and change the inner one to
431 test for name & (bits1 | bits2) != 0. */
432 if (recognize_bits_test (inner_cond, &name1, &bits1)
433 && recognize_bits_test (outer_cond, &name2, &bits2))
434 {
435 gimple_stmt_iterator gsi;
436 tree t;
437
438 /* Find the common name which is bit-tested. */
439 if (name1 == name2)
440 ;
441 else if (bits1 == bits2)
442 {
443 t = name2;
444 name2 = bits2;
445 bits2 = t;
446 t = name1;
447 name1 = bits1;
448 bits1 = t;
449 }
450 else if (name1 == bits2)
451 {
452 t = name2;
453 name2 = bits2;
454 bits2 = t;
455 }
456 else if (bits1 == name2)
457 {
458 t = name1;
459 name1 = bits1;
460 bits1 = t;
461 }
462 else
463 return false;
464
465 /* As we strip non-widening conversions in finding a common
466 name that is tested make sure to end up with an integral
467 type for building the bit operations. */
468 if (TYPE_PRECISION (TREE_TYPE (bits1))
469 >= TYPE_PRECISION (TREE_TYPE (bits2)))
470 {
471 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
472 name1 = fold_convert (TREE_TYPE (bits1), name1);
473 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
474 bits2 = fold_convert (TREE_TYPE (bits1), bits2);
475 }
476 else
477 {
478 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
479 name1 = fold_convert (TREE_TYPE (bits2), name1);
480 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
481 bits1 = fold_convert (TREE_TYPE (bits2), bits1);
482 }
483
484 /* Do it. */
485 gsi = gsi_for_stmt (inner_cond);
486 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
487 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
488 true, GSI_SAME_STMT);
489 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
490 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
491 true, GSI_SAME_STMT);
492 t = fold_build2 (NE_EXPR, boolean_type_node, t,
493 build_int_cst (TREE_TYPE (t), 0));
494 t = canonicalize_cond_expr_cond (t);
495 if (!t)
496 return false;
497 gimple_cond_set_condition_from_tree (inner_cond, t);
498 update_stmt (inner_cond);
499
500 /* Leave CFG optimization to cfg_cleanup. */
501 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
502 update_stmt (outer_cond);
503
504 if (dump_file)
505 {
506 fprintf (dump_file, "optimizing bits or bits test to ");
507 print_generic_expr (dump_file, name1, 0);
508 fprintf (dump_file, " & T != 0\nwith temporary T = ");
509 print_generic_expr (dump_file, bits1, 0);
510 fprintf (dump_file, " | ");
511 print_generic_expr (dump_file, bits2, 0);
512 fprintf (dump_file, "\n");
513 }
514
515 return true;
516 }
517
518 /* See if we have two comparisons that we can merge into one.
519 This happens for C++ operator overloading where for example
520 GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
521 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
522 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
523 && operand_equal_p (gimple_cond_lhs (inner_cond),
524 gimple_cond_lhs (outer_cond), 0)
525 && operand_equal_p (gimple_cond_rhs (inner_cond),
526 gimple_cond_rhs (outer_cond), 0))
527 {
528 enum tree_code code1 = gimple_cond_code (inner_cond);
529 enum tree_code code2 = gimple_cond_code (outer_cond);
530 tree t;
531
532 if (!(t = combine_comparisons (UNKNOWN_LOCATION,
533 TRUTH_ORIF_EXPR, code1, code2,
534 boolean_type_node,
535 gimple_cond_lhs (outer_cond),
536 gimple_cond_rhs (outer_cond))))
537 return false;
538 t = canonicalize_cond_expr_cond (t);
539 if (!t)
540 return false;
541 gimple_cond_set_condition_from_tree (inner_cond, t);
542 update_stmt (inner_cond);
543
544 /* Leave CFG optimization to cfg_cleanup. */
545 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
546 update_stmt (outer_cond);
547
548 if (dump_file)
549 {
550 fprintf (dump_file, "optimizing two comparisons to ");
551 print_generic_expr (dump_file, t, 0);
552 fprintf (dump_file, "\n");
553 }
554
555 return true;
556 }
557
558 return false;
559 }
560
561 /* Recognize a CFG pattern and dispatch to the appropriate
562 if-conversion helper. We start with BB as the innermost
563 worker basic-block. Returns true if a transformation was done. */
564
565 static bool
566 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
567 {
568 basic_block then_bb = NULL, else_bb = NULL;
569
570 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
571 return false;
572
573 /* Recognize && and || of two conditions with a common
574 then/else block which entry edges we can merge. That is:
575 if (a || b)
576 ;
577 and
578 if (a && b)
579 ;
580 This requires a single predecessor of the inner cond_bb. */
581 if (single_pred_p (inner_cond_bb))
582 {
583 basic_block outer_cond_bb = single_pred (inner_cond_bb);
584
585 /* The && form is characterized by a common else_bb with
586 the two edges leading to it mergable. The latter is
587 guaranteed by matching PHI arguments in the else_bb and
588 the inner cond_bb having no side-effects. */
589 if (recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
590 && same_phi_args_p (outer_cond_bb, inner_cond_bb, else_bb)
591 && bb_no_side_effects_p (inner_cond_bb))
592 {
593 /* We have
594 <outer_cond_bb>
595 if (q) goto inner_cond_bb; else goto else_bb;
596 <inner_cond_bb>
597 if (p) goto ...; else goto else_bb;
598 ...
599 <else_bb>
600 ...
601 */
602 return ifcombine_ifandif (inner_cond_bb, outer_cond_bb);
603 }
604
605 /* The || form is characterized by a common then_bb with the
606 two edges leading to it mergable. The latter is guaranteed
607 by matching PHI arguments in the then_bb and the inner cond_bb
608 having no side-effects. */
609 if (recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
610 && same_phi_args_p (outer_cond_bb, inner_cond_bb, then_bb)
611 && bb_no_side_effects_p (inner_cond_bb))
612 {
613 /* We have
614 <outer_cond_bb>
615 if (q) goto then_bb; else goto inner_cond_bb;
616 <inner_cond_bb>
617 if (q) goto then_bb; else goto ...;
618 <then_bb>
619 ...
620 */
621 return ifcombine_iforif (inner_cond_bb, outer_cond_bb);
622 }
623 }
624
625 return false;
626 }
627
628 /* Main entry for the tree if-conversion pass. */
629
630 static unsigned int
631 tree_ssa_ifcombine (void)
632 {
633 basic_block *bbs;
634 bool cfg_changed = false;
635 int i;
636
637 bbs = blocks_in_phiopt_order ();
638
639 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; ++i)
640 {
641 basic_block bb = bbs[i];
642 gimple stmt = last_stmt (bb);
643
644 if (stmt
645 && gimple_code (stmt) == GIMPLE_COND)
646 cfg_changed |= tree_ssa_ifcombine_bb (bb);
647 }
648
649 free (bbs);
650
651 return cfg_changed ? TODO_cleanup_cfg : 0;
652 }
653
654 static bool
655 gate_ifcombine (void)
656 {
657 return 1;
658 }
659
660 struct gimple_opt_pass pass_tree_ifcombine =
661 {
662 {
663 GIMPLE_PASS,
664 "ifcombine", /* name */
665 gate_ifcombine, /* gate */
666 tree_ssa_ifcombine, /* execute */
667 NULL, /* sub */
668 NULL, /* next */
669 0, /* static_pass_number */
670 TV_TREE_IFCOMBINE, /* tv_id */
671 PROP_cfg | PROP_ssa, /* properties_required */
672 0, /* properties_provided */
673 0, /* properties_destroyed */
674 0, /* todo_flags_start */
675 TODO_dump_func
676 | TODO_ggc_collect
677 | TODO_update_ssa
678 | TODO_verify_ssa /* todo_flags_finish */
679 }
680 };