]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-live.c
bitmap.c (bitmap_print): Make bitno unsigned.
[thirdparty/gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "diagnostic.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "tree-gimple.h"
34 #include "tree-inline.h"
35 #include "varray.h"
36 #include "timevar.h"
37 #include "hashtab.h"
38 #include "tree-dump.h"
39 #include "tree-ssa-live.h"
40 #include "errors.h"
41
42 static void live_worklist (tree_live_info_p, varray_type, int);
43 static tree_live_info_p new_tree_live_info (var_map);
44 static inline void set_if_valid (var_map, bitmap, tree);
45 static inline void add_livein_if_notdef (tree_live_info_p, bitmap,
46 tree, basic_block);
47 static inline void register_ssa_partition (var_map, tree, bool);
48 static inline void add_conflicts_if_valid (tpa_p, conflict_graph,
49 var_map, bitmap, tree);
50 static partition_pair_p find_partition_pair (coalesce_list_p, int, int, bool);
51
52 /* This is where the mapping from SSA version number to real storage variable
53 is tracked.
54
55 All SSA versions of the same variable may not ultimately be mapped back to
56 the same real variable. In that instance, we need to detect the live
57 range overlap, and give one of the variable new storage. The vector
58 'partition_to_var' tracks which partition maps to which variable.
59
60 Given a VAR, it is sometimes desirable to know which partition that VAR
61 represents. There is an additional field in the variable annotation to
62 track that information. */
63
64 /* Create a variable partition map of SIZE, initialize and return it. */
65
66 var_map
67 init_var_map (int size)
68 {
69 var_map map;
70
71 map = (var_map) xmalloc (sizeof (struct _var_map));
72 map->var_partition = partition_new (size);
73 map->partition_to_var
74 = (tree *)xmalloc (size * sizeof (tree));
75 memset (map->partition_to_var, 0, size * sizeof (tree));
76
77 map->partition_to_compact = NULL;
78 map->compact_to_partition = NULL;
79 map->num_partitions = size;
80 map->partition_size = size;
81 map->ref_count = NULL;
82 return map;
83 }
84
85
86 /* Free memory associated with MAP. */
87
88 void
89 delete_var_map (var_map map)
90 {
91 free (map->partition_to_var);
92 partition_delete (map->var_partition);
93 if (map->partition_to_compact)
94 free (map->partition_to_compact);
95 if (map->compact_to_partition)
96 free (map->compact_to_partition);
97 if (map->ref_count)
98 free (map->ref_count);
99 free (map);
100 }
101
102
103 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
104 Returns the partition which represents the new partition. If the two
105 partitions cannot be combined, NO_PARTITION is returned. */
106
107 int
108 var_union (var_map map, tree var1, tree var2)
109 {
110 int p1, p2, p3;
111 tree root_var = NULL_TREE;
112 tree other_var = NULL_TREE;
113
114 /* This is independent of partition_to_compact. If partition_to_compact is
115 on, then whichever one of these partitions is absorbed will never have a
116 dereference into the partition_to_compact array any more. */
117
118 if (TREE_CODE (var1) == SSA_NAME)
119 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
120 else
121 {
122 p1 = var_to_partition (map, var1);
123 if (map->compact_to_partition)
124 p1 = map->compact_to_partition[p1];
125 root_var = var1;
126 }
127
128 if (TREE_CODE (var2) == SSA_NAME)
129 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
130 else
131 {
132 p2 = var_to_partition (map, var2);
133 if (map->compact_to_partition)
134 p2 = map->compact_to_partition[p2];
135
136 /* If there is no root_var set, or it's not a user variable, set the
137 root_var to this one. */
138 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
139 {
140 other_var = root_var;
141 root_var = var2;
142 }
143 else
144 other_var = var2;
145 }
146
147 gcc_assert (p1 != NO_PARTITION);
148 gcc_assert (p2 != NO_PARTITION);
149
150 if (p1 == p2)
151 p3 = p1;
152 else
153 p3 = partition_union (map->var_partition, p1, p2);
154
155 if (map->partition_to_compact)
156 p3 = map->partition_to_compact[p3];
157
158 if (root_var)
159 change_partition_var (map, root_var, p3);
160 if (other_var)
161 change_partition_var (map, other_var, p3);
162
163 return p3;
164 }
165
166
167 /* Compress the partition numbers in MAP such that they fall in the range
168 0..(num_partitions-1) instead of wherever they turned out during
169 the partitioning exercise. This removes any references to unused
170 partitions, thereby allowing bitmaps and other vectors to be much
171 denser. Compression type is controlled by FLAGS.
172
173 This is implemented such that compaction doesn't affect partitioning.
174 Ie., once partitions are created and possibly merged, running one
175 or more different kind of compaction will not affect the partitions
176 themselves. Their index might change, but all the same variables will
177 still be members of the same partition group. This allows work on reduced
178 sets, and no loss of information when a larger set is later desired.
179
180 In particular, coalescing can work on partitions which have 2 or more
181 definitions, and then 'recompact' later to include all the single
182 definitions for assignment to program variables. */
183
184 void
185 compact_var_map (var_map map, int flags)
186 {
187 sbitmap used;
188 int x, limit, count, tmp, root, root_i;
189 tree var;
190 root_var_p rv = NULL;
191
192 limit = map->partition_size;
193 used = sbitmap_alloc (limit);
194 sbitmap_zero (used);
195
196 /* Already compressed? Abandon the old one. */
197 if (map->partition_to_compact)
198 {
199 free (map->partition_to_compact);
200 map->partition_to_compact = NULL;
201 }
202 if (map->compact_to_partition)
203 {
204 free (map->compact_to_partition);
205 map->compact_to_partition = NULL;
206 }
207
208 map->num_partitions = map->partition_size;
209
210 if (flags & VARMAP_NO_SINGLE_DEFS)
211 rv = root_var_init (map);
212
213 map->partition_to_compact = (int *)xmalloc (limit * sizeof (int));
214 memset (map->partition_to_compact, 0xff, (limit * sizeof (int)));
215
216 /* Find out which partitions are actually referenced. */
217 count = 0;
218 for (x = 0; x < limit; x++)
219 {
220 tmp = partition_find (map->var_partition, x);
221 if (!TEST_BIT (used, tmp) && map->partition_to_var[tmp] != NULL_TREE)
222 {
223 /* It is referenced, check to see if there is more than one version
224 in the root_var table, if one is available. */
225 if (rv)
226 {
227 root = root_var_find (rv, tmp);
228 root_i = root_var_first_partition (rv, root);
229 /* If there is only one, don't include this in the compaction. */
230 if (root_var_next_partition (rv, root_i) == ROOT_VAR_NONE)
231 continue;
232 }
233 SET_BIT (used, tmp);
234 count++;
235 }
236 }
237
238 /* Build a compacted partitioning. */
239 if (count != limit)
240 {
241 map->compact_to_partition = (int *)xmalloc (count * sizeof (int));
242 count = 0;
243 /* SSA renaming begins at 1, so skip 0 when compacting. */
244 EXECUTE_IF_SET_IN_SBITMAP (used, 1, x,
245 {
246 map->partition_to_compact[x] = count;
247 map->compact_to_partition[count] = x;
248 var = map->partition_to_var[x];
249 if (TREE_CODE (var) != SSA_NAME)
250 change_partition_var (map, var, count);
251 count++;
252 });
253 }
254 else
255 {
256 free (map->partition_to_compact);
257 map->partition_to_compact = NULL;
258 }
259
260 map->num_partitions = count;
261
262 if (rv)
263 root_var_delete (rv);
264 sbitmap_free (used);
265 }
266
267
268 /* This function is used to change the representative variable in MAP for VAR's
269 partition from an SSA_NAME variable to a regular variable. This allows
270 partitions to be mapped back to real variables. */
271
272 void
273 change_partition_var (var_map map, tree var, int part)
274 {
275 var_ann_t ann;
276
277 gcc_assert (TREE_CODE (var) != SSA_NAME);
278
279 ann = var_ann (var);
280 ann->out_of_ssa_tag = 1;
281 VAR_ANN_PARTITION (ann) = part;
282 if (map->compact_to_partition)
283 map->partition_to_var[map->compact_to_partition[part]] = var;
284 }
285
286
287 /* Helper function for mark_all_vars_used, called via walk_tree. */
288
289 static tree
290 mark_all_vars_used_1 (tree *tp, int *walk_subtrees,
291 void *data ATTRIBUTE_UNUSED)
292 {
293 tree t = *tp;
294
295 /* Only need to mark VAR_DECLS; parameters and return results are not
296 eliminated as unused. */
297 if (TREE_CODE (t) == VAR_DECL)
298 set_is_used (t);
299
300 if (IS_TYPE_OR_DECL_P (t))
301 *walk_subtrees = 0;
302
303 return NULL;
304 }
305
306 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
307 eliminated during the tree->rtl conversion process. */
308
309 static inline void
310 mark_all_vars_used (tree *expr_p)
311 {
312 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
313 }
314
315 /* This function looks through the program and uses FLAGS to determine what
316 SSA versioned variables are given entries in a new partition table. This
317 new partition map is returned. */
318
319 var_map
320 create_ssa_var_map (int flags)
321 {
322 block_stmt_iterator bsi;
323 basic_block bb;
324 tree dest, use;
325 tree stmt;
326 stmt_ann_t ann;
327 var_map map;
328 ssa_op_iter iter;
329 #ifdef ENABLE_CHECKING
330 sbitmap used_in_real_ops;
331 sbitmap used_in_virtual_ops;
332 #endif
333
334 map = init_var_map (num_ssa_names + 1);
335
336 #ifdef ENABLE_CHECKING
337 used_in_real_ops = sbitmap_alloc (num_referenced_vars);
338 sbitmap_zero (used_in_real_ops);
339
340 used_in_virtual_ops = sbitmap_alloc (num_referenced_vars);
341 sbitmap_zero (used_in_virtual_ops);
342 #endif
343
344 if (flags & SSA_VAR_MAP_REF_COUNT)
345 {
346 map->ref_count
347 = (int *)xmalloc (((num_ssa_names + 1) * sizeof (int)));
348 memset (map->ref_count, 0, (num_ssa_names + 1) * sizeof (int));
349 }
350
351 FOR_EACH_BB (bb)
352 {
353 tree phi, arg;
354 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
355 {
356 int i;
357 register_ssa_partition (map, PHI_RESULT (phi), false);
358 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
359 {
360 arg = PHI_ARG_DEF (phi, i);
361 if (TREE_CODE (arg) == SSA_NAME)
362 register_ssa_partition (map, arg, true);
363
364 mark_all_vars_used (&PHI_ARG_DEF_TREE (phi, i));
365 }
366 }
367
368 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
369 {
370 stmt = bsi_stmt (bsi);
371 get_stmt_operands (stmt);
372 ann = stmt_ann (stmt);
373
374 /* Register USE and DEF operands in each statement. */
375 FOR_EACH_SSA_TREE_OPERAND (use , stmt, iter, SSA_OP_USE)
376 {
377 register_ssa_partition (map, use, true);
378
379 #ifdef ENABLE_CHECKING
380 SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (use))->uid);
381 #endif
382 }
383
384 FOR_EACH_SSA_TREE_OPERAND (dest, stmt, iter, SSA_OP_DEF)
385 {
386 register_ssa_partition (map, dest, false);
387
388 #ifdef ENABLE_CHECKING
389 SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (dest))->uid);
390 #endif
391 }
392
393 #ifdef ENABLE_CHECKING
394 /* Validate that virtual ops don't get used in funny ways. */
395 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter,
396 SSA_OP_VIRTUAL_USES | SSA_OP_VMUSTDEF)
397 {
398 SET_BIT (used_in_virtual_ops, var_ann (SSA_NAME_VAR (use))->uid);
399 }
400
401 #endif /* ENABLE_CHECKING */
402
403 mark_all_vars_used (bsi_stmt_ptr (bsi));
404 }
405 }
406
407 #if defined ENABLE_CHECKING
408 {
409 unsigned i;
410 sbitmap both = sbitmap_alloc (num_referenced_vars);
411 sbitmap_a_and_b (both, used_in_real_ops, used_in_virtual_ops);
412 if (sbitmap_first_set_bit (both) >= 0)
413 {
414 EXECUTE_IF_SET_IN_SBITMAP (both, 0, i,
415 fprintf (stderr, "Variable %s used in real and virtual operands\n",
416 get_name (referenced_var (i))));
417 internal_error ("SSA corruption");
418 }
419
420 sbitmap_free (used_in_real_ops);
421 sbitmap_free (used_in_virtual_ops);
422 sbitmap_free (both);
423 }
424 #endif
425
426 return map;
427 }
428
429
430 /* Allocate and return a new live range information object base on MAP. */
431
432 static tree_live_info_p
433 new_tree_live_info (var_map map)
434 {
435 tree_live_info_p live;
436 unsigned x;
437
438 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
439 live->map = map;
440 live->num_blocks = last_basic_block;
441
442 live->global = BITMAP_XMALLOC ();
443
444 live->livein = (bitmap *)xmalloc (num_var_partitions (map) * sizeof (bitmap));
445 for (x = 0; x < num_var_partitions (map); x++)
446 live->livein[x] = BITMAP_XMALLOC ();
447
448 /* liveout is deferred until it is actually requested. */
449 live->liveout = NULL;
450 return live;
451 }
452
453
454 /* Free storage for live range info object LIVE. */
455
456 void
457 delete_tree_live_info (tree_live_info_p live)
458 {
459 int x;
460 if (live->liveout)
461 {
462 for (x = live->num_blocks - 1; x >= 0; x--)
463 BITMAP_XFREE (live->liveout[x]);
464 free (live->liveout);
465 }
466 if (live->livein)
467 {
468 for (x = num_var_partitions (live->map) - 1; x >= 0; x--)
469 BITMAP_XFREE (live->livein[x]);
470 free (live->livein);
471 }
472 if (live->global)
473 BITMAP_XFREE (live->global);
474
475 free (live);
476 }
477
478
479 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
480 for partition I. STACK is a varray used for temporary memory which is
481 passed in rather than being allocated on every call. */
482
483 static void
484 live_worklist (tree_live_info_p live, varray_type stack, int i)
485 {
486 unsigned b;
487 tree var;
488 basic_block def_bb = NULL;
489 edge e;
490 var_map map = live->map;
491 edge_iterator ei;
492 bitmap_iterator bi;
493
494 var = partition_to_var (map, i);
495 if (SSA_NAME_DEF_STMT (var))
496 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
497
498 EXECUTE_IF_SET_IN_BITMAP (live->livein[i], 0, b, bi)
499 {
500 VARRAY_PUSH_INT (stack, b);
501 }
502
503 while (VARRAY_ACTIVE_SIZE (stack) > 0)
504 {
505 b = VARRAY_TOP_INT (stack);
506 VARRAY_POP (stack);
507
508 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (b)->preds)
509 if (e->src != ENTRY_BLOCK_PTR)
510 {
511 /* Its not live on entry to the block its defined in. */
512 if (e->src == def_bb)
513 continue;
514 if (!bitmap_bit_p (live->livein[i], e->src->index))
515 {
516 bitmap_set_bit (live->livein[i], e->src->index);
517 VARRAY_PUSH_INT (stack, e->src->index);
518 }
519 }
520 }
521 }
522
523
524 /* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
525
526 static inline void
527 set_if_valid (var_map map, bitmap vec, tree var)
528 {
529 int p = var_to_partition (map, var);
530 if (p != NO_PARTITION)
531 bitmap_set_bit (vec, p);
532 }
533
534
535 /* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
536 global bit for it in the LIVE object. BB is the block being processed. */
537
538 static inline void
539 add_livein_if_notdef (tree_live_info_p live, bitmap def_vec,
540 tree var, basic_block bb)
541 {
542 int p = var_to_partition (live->map, var);
543 if (p == NO_PARTITION || bb == ENTRY_BLOCK_PTR)
544 return;
545 if (!bitmap_bit_p (def_vec, p))
546 {
547 bitmap_set_bit (live->livein[p], bb->index);
548 bitmap_set_bit (live->global, p);
549 }
550 }
551
552
553 /* Given partition map MAP, calculate all the live on entry bitmaps for
554 each basic block. Return a live info object. */
555
556 tree_live_info_p
557 calculate_live_on_entry (var_map map)
558 {
559 tree_live_info_p live;
560 unsigned i;
561 basic_block bb;
562 bitmap saw_def;
563 tree phi, var, stmt;
564 tree op;
565 edge e;
566 varray_type stack;
567 block_stmt_iterator bsi;
568 stmt_ann_t ann;
569 ssa_op_iter iter;
570 bitmap_iterator bi;
571 #ifdef ENABLE_CHECKING
572 int num;
573 edge_iterator ei;
574 #endif
575
576 saw_def = BITMAP_XMALLOC ();
577
578 live = new_tree_live_info (map);
579
580 FOR_EACH_BB (bb)
581 {
582 bitmap_clear (saw_def);
583
584 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
585 {
586 for (i = 0; i < (unsigned)PHI_NUM_ARGS (phi); i++)
587 {
588 var = PHI_ARG_DEF (phi, i);
589 if (!phi_ssa_name_p (var))
590 continue;
591 stmt = SSA_NAME_DEF_STMT (var);
592 e = PHI_ARG_EDGE (phi, i);
593
594 /* Any uses in PHIs which either don't have def's or are not
595 defined in the block from which the def comes, will be live
596 on entry to that block. */
597 if (!stmt || e->src != bb_for_stmt (stmt))
598 add_livein_if_notdef (live, saw_def, var, e->src);
599 }
600 }
601
602 /* Don't mark PHI results as defined until all the PHI nodes have
603 been processed. If the PHI sequence is:
604 a_3 = PHI <a_1, a_2>
605 b_3 = PHI <b_1, a_3>
606 The a_3 referred to in b_3's PHI node is the one incoming on the
607 edge, *not* the PHI node just seen. */
608
609 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
610 {
611 var = PHI_RESULT (phi);
612 set_if_valid (map, saw_def, var);
613 }
614
615 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
616 {
617 stmt = bsi_stmt (bsi);
618 get_stmt_operands (stmt);
619 ann = stmt_ann (stmt);
620
621 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
622 {
623 add_livein_if_notdef (live, saw_def, op, bb);
624 }
625
626 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
627 {
628 set_if_valid (map, saw_def, op);
629 }
630 }
631 }
632
633 VARRAY_INT_INIT (stack, last_basic_block, "stack");
634 EXECUTE_IF_SET_IN_BITMAP (live->global, 0, i, bi)
635 {
636 live_worklist (live, stack, i);
637 }
638
639 #ifdef ENABLE_CHECKING
640 /* Check for live on entry partitions and report those with a DEF in
641 the program. This will typically mean an optimization has done
642 something wrong. */
643
644 bb = ENTRY_BLOCK_PTR;
645 num = 0;
646 FOR_EACH_EDGE (e, ei, bb->succs)
647 {
648 int entry_block = e->dest->index;
649 if (e->dest == EXIT_BLOCK_PTR)
650 continue;
651 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
652 {
653 basic_block tmp;
654 tree d;
655 var = partition_to_var (map, i);
656 stmt = SSA_NAME_DEF_STMT (var);
657 tmp = bb_for_stmt (stmt);
658 d = default_def (SSA_NAME_VAR (var));
659
660 if (bitmap_bit_p (live_entry_blocks (live, i), entry_block))
661 {
662 if (!IS_EMPTY_STMT (stmt))
663 {
664 num++;
665 print_generic_expr (stderr, var, TDF_SLIM);
666 fprintf (stderr, " is defined ");
667 if (tmp)
668 fprintf (stderr, " in BB%d, ", tmp->index);
669 fprintf (stderr, "by:\n");
670 print_generic_expr (stderr, stmt, TDF_SLIM);
671 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
672 entry_block);
673 fprintf (stderr, " So it appears to have multiple defs.\n");
674 }
675 else
676 {
677 if (d != var)
678 {
679 num++;
680 print_generic_expr (stderr, var, TDF_SLIM);
681 fprintf (stderr, " is live-on-entry to BB%d ",entry_block);
682 if (d)
683 {
684 fprintf (stderr, " but is not the default def of ");
685 print_generic_expr (stderr, d, TDF_SLIM);
686 fprintf (stderr, "\n");
687 }
688 else
689 fprintf (stderr, " and there is no default def.\n");
690 }
691 }
692 }
693 else
694 if (d == var)
695 {
696 /* The only way this var shouldn't be marked live on entry is
697 if it occurs in a PHI argument of the block. */
698 int z, ok = 0;
699 for (phi = phi_nodes (e->dest);
700 phi && !ok;
701 phi = PHI_CHAIN (phi))
702 {
703 for (z = 0; z < PHI_NUM_ARGS (phi); z++)
704 if (var == PHI_ARG_DEF (phi, z))
705 {
706 ok = 1;
707 break;
708 }
709 }
710 if (ok)
711 continue;
712 num++;
713 print_generic_expr (stderr, var, TDF_SLIM);
714 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
715 entry_block);
716 fprintf (stderr, "but it is a default def so it should be.\n");
717 }
718 }
719 }
720 gcc_assert (num <= 0);
721 #endif
722
723 BITMAP_XFREE (saw_def);
724
725 return live;
726 }
727
728
729 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
730
731 void
732 calculate_live_on_exit (tree_live_info_p liveinfo)
733 {
734 unsigned b;
735 unsigned i, x;
736 bitmap *on_exit;
737 basic_block bb;
738 edge e;
739 tree t, phi;
740 bitmap on_entry;
741 var_map map = liveinfo->map;
742
743 on_exit = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
744 for (x = 0; x < (unsigned)last_basic_block; x++)
745 on_exit[x] = BITMAP_XMALLOC ();
746
747 /* Set all the live-on-exit bits for uses in PHIs. */
748 FOR_EACH_BB (bb)
749 {
750 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
751 for (i = 0; i < (unsigned)PHI_NUM_ARGS (phi); i++)
752 {
753 t = PHI_ARG_DEF (phi, i);
754 e = PHI_ARG_EDGE (phi, i);
755 if (!phi_ssa_name_p (t) || e->src == ENTRY_BLOCK_PTR)
756 continue;
757 set_if_valid (map, on_exit[e->src->index], t);
758 }
759 }
760
761 /* Set live on exit for all predecessors of live on entry's. */
762 for (i = 0; i < num_var_partitions (map); i++)
763 {
764 bitmap_iterator bi;
765
766 on_entry = live_entry_blocks (liveinfo, i);
767 EXECUTE_IF_SET_IN_BITMAP (on_entry, 0, b, bi)
768 {
769 edge_iterator ei;
770 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (b)->preds)
771 if (e->src != ENTRY_BLOCK_PTR)
772 bitmap_set_bit (on_exit[e->src->index], i);
773 }
774 }
775
776 liveinfo->liveout = on_exit;
777 }
778
779
780 /* Initialize a tree_partition_associator object using MAP. */
781
782 tpa_p
783 tpa_init (var_map map)
784 {
785 tpa_p tpa;
786 int num_partitions = num_var_partitions (map);
787 int x;
788
789 if (num_partitions == 0)
790 return NULL;
791
792 tpa = (tpa_p) xmalloc (sizeof (struct tree_partition_associator_d));
793 tpa->num_trees = 0;
794 tpa->uncompressed_num = -1;
795 tpa->map = map;
796 tpa->next_partition = (int *)xmalloc (num_partitions * sizeof (int));
797 memset (tpa->next_partition, TPA_NONE, num_partitions * sizeof (int));
798
799 tpa->partition_to_tree_map = (int *)xmalloc (num_partitions * sizeof (int));
800 memset (tpa->partition_to_tree_map, TPA_NONE, num_partitions * sizeof (int));
801
802 x = MAX (40, (num_partitions / 20));
803 VARRAY_TREE_INIT (tpa->trees, x, "trees");
804 VARRAY_INT_INIT (tpa->first_partition, x, "first_partition");
805
806 return tpa;
807
808 }
809
810
811 /* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
812
813 void
814 tpa_remove_partition (tpa_p tpa, int tree_index, int partition_index)
815 {
816 int i;
817
818 i = tpa_first_partition (tpa, tree_index);
819 if (i == partition_index)
820 {
821 VARRAY_INT (tpa->first_partition, tree_index) = tpa->next_partition[i];
822 }
823 else
824 {
825 for ( ; i != TPA_NONE; i = tpa_next_partition (tpa, i))
826 {
827 if (tpa->next_partition[i] == partition_index)
828 {
829 tpa->next_partition[i] = tpa->next_partition[partition_index];
830 break;
831 }
832 }
833 }
834 }
835
836
837 /* Free the memory used by tree_partition_associator object TPA. */
838
839 void
840 tpa_delete (tpa_p tpa)
841 {
842 if (!tpa)
843 return;
844
845 free (tpa->partition_to_tree_map);
846 free (tpa->next_partition);
847 free (tpa);
848 }
849
850
851 /* This function will remove any tree entries from TPA which have only a single
852 element. This will help keep the size of the conflict graph down. The
853 function returns the number of remaining tree lists. */
854
855 int
856 tpa_compact (tpa_p tpa)
857 {
858 int last, x, y, first, swap_i;
859 tree swap_t;
860
861 /* Find the last list which has more than 1 partition. */
862 for (last = tpa->num_trees - 1; last > 0; last--)
863 {
864 first = tpa_first_partition (tpa, last);
865 if (tpa_next_partition (tpa, first) != NO_PARTITION)
866 break;
867 }
868
869 x = 0;
870 while (x < last)
871 {
872 first = tpa_first_partition (tpa, x);
873
874 /* If there is not more than one partition, swap with the current end
875 of the tree list. */
876 if (tpa_next_partition (tpa, first) == NO_PARTITION)
877 {
878 swap_t = VARRAY_TREE (tpa->trees, last);
879 swap_i = VARRAY_INT (tpa->first_partition, last);
880
881 /* Update the last entry. Since it is known to only have one
882 partition, there is nothing else to update. */
883 VARRAY_TREE (tpa->trees, last) = VARRAY_TREE (tpa->trees, x);
884 VARRAY_INT (tpa->first_partition, last)
885 = VARRAY_INT (tpa->first_partition, x);
886 tpa->partition_to_tree_map[tpa_first_partition (tpa, last)] = last;
887
888 /* Since this list is known to have more than one partition, update
889 the list owner entries. */
890 VARRAY_TREE (tpa->trees, x) = swap_t;
891 VARRAY_INT (tpa->first_partition, x) = swap_i;
892 for (y = tpa_first_partition (tpa, x);
893 y != NO_PARTITION;
894 y = tpa_next_partition (tpa, y))
895 tpa->partition_to_tree_map[y] = x;
896
897 /* Ensure last is a list with more than one partition. */
898 last--;
899 for (; last > x; last--)
900 {
901 first = tpa_first_partition (tpa, last);
902 if (tpa_next_partition (tpa, first) != NO_PARTITION)
903 break;
904 }
905 }
906 x++;
907 }
908
909 first = tpa_first_partition (tpa, x);
910 if (tpa_next_partition (tpa, first) != NO_PARTITION)
911 x++;
912 tpa->uncompressed_num = tpa->num_trees;
913 tpa->num_trees = x;
914 return last;
915 }
916
917
918 /* Initialize a root_var object with SSA partitions from MAP which are based
919 on each root variable. */
920
921 root_var_p
922 root_var_init (var_map map)
923 {
924 root_var_p rv;
925 int num_partitions = num_var_partitions (map);
926 int x, p;
927 tree t;
928 var_ann_t ann;
929 sbitmap seen;
930
931 rv = tpa_init (map);
932 if (!rv)
933 return NULL;
934
935 seen = sbitmap_alloc (num_partitions);
936 sbitmap_zero (seen);
937
938 /* Start at the end and work towards the front. This will provide a list
939 that is ordered from smallest to largest. */
940 for (x = num_partitions - 1; x >= 0; x--)
941 {
942 t = partition_to_var (map, x);
943
944 /* The var map may not be compacted yet, so check for NULL. */
945 if (!t)
946 continue;
947
948 p = var_to_partition (map, t);
949
950 gcc_assert (p != NO_PARTITION);
951
952 /* Make sure we only put coalesced partitions into the list once. */
953 if (TEST_BIT (seen, p))
954 continue;
955 SET_BIT (seen, p);
956 if (TREE_CODE (t) == SSA_NAME)
957 t = SSA_NAME_VAR (t);
958 ann = var_ann (t);
959 if (ann->root_var_processed)
960 {
961 rv->next_partition[p] = VARRAY_INT (rv->first_partition,
962 VAR_ANN_ROOT_INDEX (ann));
963 VARRAY_INT (rv->first_partition, VAR_ANN_ROOT_INDEX (ann)) = p;
964 }
965 else
966 {
967 ann->root_var_processed = 1;
968 VAR_ANN_ROOT_INDEX (ann) = rv->num_trees++;
969 VARRAY_PUSH_TREE (rv->trees, t);
970 VARRAY_PUSH_INT (rv->first_partition, p);
971 }
972 rv->partition_to_tree_map[p] = VAR_ANN_ROOT_INDEX (ann);
973 }
974
975 /* Reset the out_of_ssa_tag flag on each variable for later use. */
976 for (x = 0; x < rv->num_trees; x++)
977 {
978 t = VARRAY_TREE (rv->trees, x);
979 var_ann (t)->root_var_processed = 0;
980 }
981
982 sbitmap_free (seen);
983 return rv;
984 }
985
986
987 /* Initialize a type_var structure which associates all the partitions in MAP
988 of the same type to the type node's index. Volatiles are ignored. */
989
990 type_var_p
991 type_var_init (var_map map)
992 {
993 type_var_p tv;
994 int x, y, p;
995 int num_partitions = num_var_partitions (map);
996 tree t;
997 sbitmap seen;
998
999 seen = sbitmap_alloc (num_partitions);
1000 sbitmap_zero (seen);
1001
1002 tv = tpa_init (map);
1003 if (!tv)
1004 return NULL;
1005
1006 for (x = num_partitions - 1; x >= 0; x--)
1007 {
1008 t = partition_to_var (map, x);
1009
1010 /* Disallow coalescing of these types of variables. */
1011 if (!t
1012 || TREE_THIS_VOLATILE (t)
1013 || TREE_CODE (t) == RESULT_DECL
1014 || TREE_CODE (t) == PARM_DECL
1015 || (DECL_P (t)
1016 && (DECL_REGISTER (t)
1017 || !DECL_IGNORED_P (t)
1018 || DECL_RTL_SET_P (t))))
1019 continue;
1020
1021 p = var_to_partition (map, t);
1022
1023 gcc_assert (p != NO_PARTITION);
1024
1025 /* If partitions have been coalesced, only add the representative
1026 for the partition to the list once. */
1027 if (TEST_BIT (seen, p))
1028 continue;
1029 SET_BIT (seen, p);
1030 t = TREE_TYPE (t);
1031
1032 /* Find the list for this type. */
1033 for (y = 0; y < tv->num_trees; y++)
1034 if (t == VARRAY_TREE (tv->trees, y))
1035 break;
1036 if (y == tv->num_trees)
1037 {
1038 tv->num_trees++;
1039 VARRAY_PUSH_TREE (tv->trees, t);
1040 VARRAY_PUSH_INT (tv->first_partition, p);
1041 }
1042 else
1043 {
1044 tv->next_partition[p] = VARRAY_INT (tv->first_partition, y);
1045 VARRAY_INT (tv->first_partition, y) = p;
1046 }
1047 tv->partition_to_tree_map[p] = y;
1048 }
1049 sbitmap_free (seen);
1050 return tv;
1051 }
1052
1053
1054 /* Create a new coalesce list object from MAP and return it. */
1055
1056 coalesce_list_p
1057 create_coalesce_list (var_map map)
1058 {
1059 coalesce_list_p list;
1060
1061 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
1062
1063 list->map = map;
1064 list->add_mode = true;
1065 list->list = (partition_pair_p *) xcalloc (num_var_partitions (map),
1066 sizeof (struct partition_pair_d));
1067 return list;
1068 }
1069
1070
1071 /* Delete coalesce list CL. */
1072
1073 void
1074 delete_coalesce_list (coalesce_list_p cl)
1075 {
1076 free (cl->list);
1077 free (cl);
1078 }
1079
1080
1081 /* Find a matching coalesce pair object in CL for partitions P1 and P2. If
1082 one isn't found, return NULL if CREATE is false, otherwise create a new
1083 coalesce pair object and return it. */
1084
1085 static partition_pair_p
1086 find_partition_pair (coalesce_list_p cl, int p1, int p2, bool create)
1087 {
1088 partition_pair_p node, tmp;
1089 int s;
1090
1091 /* Normalize so that p1 is the smaller value. */
1092 if (p2 < p1)
1093 {
1094 s = p1;
1095 p1 = p2;
1096 p2 = s;
1097 }
1098
1099 tmp = NULL;
1100
1101 /* The list is sorted such that if we find a value greater than p2,
1102 p2 is not in the list. */
1103 for (node = cl->list[p1]; node; node = node->next)
1104 {
1105 if (node->second_partition == p2)
1106 return node;
1107 else
1108 if (node->second_partition > p2)
1109 break;
1110 tmp = node;
1111 }
1112
1113 if (!create)
1114 return NULL;
1115
1116 node = (partition_pair_p) xmalloc (sizeof (struct partition_pair_d));
1117 node->first_partition = p1;
1118 node->second_partition = p2;
1119 node->cost = 0;
1120
1121 if (tmp != NULL)
1122 {
1123 node->next = tmp->next;
1124 tmp->next = node;
1125 }
1126 else
1127 {
1128 /* This is now the first node in the list. */
1129 node->next = cl->list[p1];
1130 cl->list[p1] = node;
1131 }
1132
1133 return node;
1134 }
1135
1136
1137 /* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
1138
1139 void
1140 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
1141 {
1142 partition_pair_p node;
1143
1144 gcc_assert (cl->add_mode);
1145
1146 if (p1 == p2)
1147 return;
1148
1149 node = find_partition_pair (cl, p1, p2, true);
1150
1151 node->cost += value;
1152 }
1153
1154
1155 /* Comparison function to allow qsort to sort P1 and P2 in descending order. */
1156
1157 static
1158 int compare_pairs (const void *p1, const void *p2)
1159 {
1160 return (*(partition_pair_p *)p2)->cost - (*(partition_pair_p *)p1)->cost;
1161 }
1162
1163
1164 /* Prepare CL for removal of preferred pairs. When finished, list element
1165 0 has all the coalesce pairs, sorted in order from most important coalesce
1166 to least important. */
1167
1168 void
1169 sort_coalesce_list (coalesce_list_p cl)
1170 {
1171 unsigned x, num, count;
1172 partition_pair_p chain, p;
1173 partition_pair_p *list;
1174
1175 gcc_assert (cl->add_mode);
1176
1177 cl->add_mode = false;
1178
1179 /* Compact the array of lists to a single list, and count the elements. */
1180 num = 0;
1181 chain = NULL;
1182 for (x = 0; x < num_var_partitions (cl->map); x++)
1183 if (cl->list[x] != NULL)
1184 {
1185 for (p = cl->list[x]; p->next != NULL; p = p->next)
1186 num++;
1187 num++;
1188 p->next = chain;
1189 chain = cl->list[x];
1190 cl->list[x] = NULL;
1191 }
1192
1193 /* Only call qsort if there are more than 2 items. */
1194 if (num > 2)
1195 {
1196 list = xmalloc (sizeof (partition_pair_p) * num);
1197 count = 0;
1198 for (p = chain; p != NULL; p = p->next)
1199 list[count++] = p;
1200
1201 gcc_assert (count == num);
1202
1203 qsort (list, count, sizeof (partition_pair_p), compare_pairs);
1204
1205 p = list[0];
1206 for (x = 1; x < num; x++)
1207 {
1208 p->next = list[x];
1209 p = list[x];
1210 }
1211 p->next = NULL;
1212 cl->list[0] = list[0];
1213 free (list);
1214 }
1215 else
1216 {
1217 cl->list[0] = chain;
1218 if (num == 2)
1219 {
1220 /* Simply swap the two elements if they are in the wrong order. */
1221 if (chain->cost < chain->next->cost)
1222 {
1223 cl->list[0] = chain->next;
1224 cl->list[0]->next = chain;
1225 chain->next = NULL;
1226 }
1227 }
1228 }
1229 }
1230
1231
1232 /* Retrieve the best remaining pair to coalesce from CL. Returns the 2
1233 partitions via P1 and P2. Their calculated cost is returned by the function.
1234 NO_BEST_COALESCE is returned if the coalesce list is empty. */
1235
1236 int
1237 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
1238 {
1239 partition_pair_p node;
1240 int ret;
1241
1242 gcc_assert (!cl->add_mode);
1243
1244 node = cl->list[0];
1245 if (!node)
1246 return NO_BEST_COALESCE;
1247
1248 cl->list[0] = node->next;
1249
1250 *p1 = node->first_partition;
1251 *p2 = node->second_partition;
1252 ret = node->cost;
1253 free (node);
1254
1255 return ret;
1256 }
1257
1258
1259 /* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
1260 VAR and any other live partitions in VEC which are associated via TPA.
1261 Reset the live bit in VEC. */
1262
1263 static inline void
1264 add_conflicts_if_valid (tpa_p tpa, conflict_graph graph,
1265 var_map map, bitmap vec, tree var)
1266 {
1267 int p, y, first;
1268 p = var_to_partition (map, var);
1269 if (p != NO_PARTITION)
1270 {
1271 bitmap_clear_bit (vec, p);
1272 first = tpa_find_tree (tpa, p);
1273 /* If find returns nothing, this object isn't interesting. */
1274 if (first == TPA_NONE)
1275 return;
1276 /* Only add interferences between objects in the same list. */
1277 for (y = tpa_first_partition (tpa, first);
1278 y != TPA_NONE;
1279 y = tpa_next_partition (tpa, y))
1280 {
1281 if (bitmap_bit_p (vec, y))
1282 conflict_graph_add (graph, p, y);
1283 }
1284 }
1285 }
1286
1287
1288 /* Return a conflict graph for the information contained in LIVE_INFO. Only
1289 conflicts between items in the same TPA list are added. If optional
1290 coalesce list CL is passed in, any copies encountered are added. */
1291
1292 conflict_graph
1293 build_tree_conflict_graph (tree_live_info_p liveinfo, tpa_p tpa,
1294 coalesce_list_p cl)
1295 {
1296 conflict_graph graph;
1297 var_map map;
1298 bitmap live;
1299 unsigned x, y, i;
1300 basic_block bb;
1301 varray_type partition_link, tpa_to_clear, tpa_nodes;
1302 unsigned l;
1303 ssa_op_iter iter;
1304 bitmap_iterator bi;
1305
1306 map = live_var_map (liveinfo);
1307 graph = conflict_graph_new (num_var_partitions (map));
1308
1309 if (tpa_num_trees (tpa) == 0)
1310 return graph;
1311
1312 live = BITMAP_XMALLOC ();
1313
1314 VARRAY_INT_INIT (partition_link, num_var_partitions (map) + 1, "part_link");
1315 VARRAY_INT_INIT (tpa_nodes, tpa_num_trees (tpa), "tpa nodes");
1316 VARRAY_INT_INIT (tpa_to_clear, 50, "tpa to clear");
1317
1318 FOR_EACH_BB (bb)
1319 {
1320 block_stmt_iterator bsi;
1321 tree phi;
1322
1323 /* Start with live on exit temporaries. */
1324 bitmap_copy (live, live_on_exit (liveinfo, bb));
1325
1326 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
1327 {
1328 bool is_a_copy = false;
1329 tree stmt = bsi_stmt (bsi);
1330 stmt_ann_t ann;
1331
1332 get_stmt_operands (stmt);
1333 ann = stmt_ann (stmt);
1334
1335 /* A copy between 2 partitions does not introduce an interference
1336 by itself. If they did, you would never be able to coalesce
1337 two things which are copied. If the two variables really do
1338 conflict, they will conflict elsewhere in the program.
1339
1340 This is handled specially here since we may also be interested
1341 in copies between real variables and SSA_NAME variables. We may
1342 be interested in trying to coalesce SSA_NAME variables with
1343 root variables in some cases. */
1344
1345 if (TREE_CODE (stmt) == MODIFY_EXPR)
1346 {
1347 tree lhs = TREE_OPERAND (stmt, 0);
1348 tree rhs = TREE_OPERAND (stmt, 1);
1349 int p1, p2;
1350 int bit;
1351
1352 if (DECL_P (lhs) || TREE_CODE (lhs) == SSA_NAME)
1353 p1 = var_to_partition (map, lhs);
1354 else
1355 p1 = NO_PARTITION;
1356
1357 if (DECL_P (rhs) || TREE_CODE (rhs) == SSA_NAME)
1358 p2 = var_to_partition (map, rhs);
1359 else
1360 p2 = NO_PARTITION;
1361
1362 if (p1 != NO_PARTITION && p2 != NO_PARTITION)
1363 {
1364 is_a_copy = true;
1365 bit = bitmap_bit_p (live, p2);
1366 /* If the RHS is live, make it not live while we add
1367 the conflicts, then make it live again. */
1368 if (bit)
1369 bitmap_clear_bit (live, p2);
1370 add_conflicts_if_valid (tpa, graph, map, live, lhs);
1371 if (bit)
1372 bitmap_set_bit (live, p2);
1373 if (cl)
1374 add_coalesce (cl, p1, p2, 1);
1375 set_if_valid (map, live, rhs);
1376 }
1377 }
1378
1379 if (!is_a_copy)
1380 {
1381 tree var;
1382 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
1383 {
1384 add_conflicts_if_valid (tpa, graph, map, live, var);
1385 }
1386
1387 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1388 {
1389 set_if_valid (map, live, var);
1390 }
1391 }
1392 }
1393
1394 /* If result of a PHI is unused, then the loops over the statements
1395 will not record any conflicts. However, since the PHI node is
1396 going to be translated out of SSA form we must record a conflict
1397 between the result of the PHI and any variables with are live.
1398 Otherwise the out-of-ssa translation may create incorrect code. */
1399 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1400 {
1401 tree result = PHI_RESULT (phi);
1402 int p = var_to_partition (map, result);
1403
1404 if (p != NO_PARTITION && ! bitmap_bit_p (live, p))
1405 add_conflicts_if_valid (tpa, graph, map, live, result);
1406 }
1407
1408 /* Anything which is still live at this point interferes.
1409 In order to implement this efficiently, only conflicts between
1410 partitions which have the same TPA root need be added.
1411 TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
1412 entry points to an index into 'partition_link', which then indexes
1413 into itself forming a linked list of partitions sharing a tpa root
1414 which have been seen as live up to this point. Since partitions start
1415 at index zero, all entries in partition_link are (partition + 1).
1416
1417 Conflicts are added between the current partition and any already seen.
1418 tpa_clear contains all the tpa_roots processed, and these are the only
1419 entries which need to be zero'd out for a clean restart. */
1420
1421 EXECUTE_IF_SET_IN_BITMAP (live, 0, x, bi)
1422 {
1423 i = tpa_find_tree (tpa, x);
1424 if (i != (unsigned)TPA_NONE)
1425 {
1426 int start = VARRAY_INT (tpa_nodes, i);
1427 /* If start is 0, a new root reference list is being started.
1428 Register it to be cleared. */
1429 if (!start)
1430 VARRAY_PUSH_INT (tpa_to_clear, i);
1431
1432 /* Add interferences to other tpa members seen. */
1433 for (y = start; y != 0; y = VARRAY_INT (partition_link, y))
1434 conflict_graph_add (graph, x, y - 1);
1435 VARRAY_INT (tpa_nodes, i) = x + 1;
1436 VARRAY_INT (partition_link, x + 1) = start;
1437 }
1438 }
1439
1440 /* Now clear the used tpa root references. */
1441 for (l = 0; l < VARRAY_ACTIVE_SIZE (tpa_to_clear); l++)
1442 VARRAY_INT (tpa_nodes, VARRAY_INT (tpa_to_clear, l)) = 0;
1443 VARRAY_POP_ALL (tpa_to_clear);
1444 }
1445
1446 BITMAP_XFREE (live);
1447 return graph;
1448 }
1449
1450
1451 /* This routine will attempt to coalesce the elements in TPA subject to the
1452 conflicts found in GRAPH. If optional coalesce_list CL is provided,
1453 only coalesces specified within the coalesce list are attempted. Otherwise
1454 an attempt is made to coalesce as many partitions within each TPA grouping
1455 as possible. If DEBUG is provided, debug output will be sent there. */
1456
1457 void
1458 coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
1459 coalesce_list_p cl, FILE *debug)
1460 {
1461 int x, y, z, w;
1462 tree var, tmp;
1463
1464 /* Attempt to coalesce any items in a coalesce list. */
1465 if (cl)
1466 {
1467 while (pop_best_coalesce (cl, &x, &y) != NO_BEST_COALESCE)
1468 {
1469 if (debug)
1470 {
1471 fprintf (debug, "Coalesce list: (%d)", x);
1472 print_generic_expr (debug, partition_to_var (map, x), TDF_SLIM);
1473 fprintf (debug, " & (%d)", y);
1474 print_generic_expr (debug, partition_to_var (map, y), TDF_SLIM);
1475 }
1476
1477 w = tpa_find_tree (tpa, x);
1478 z = tpa_find_tree (tpa, y);
1479 if (w != z || w == TPA_NONE || z == TPA_NONE)
1480 {
1481 if (debug)
1482 {
1483 if (w != z)
1484 fprintf (debug, ": Fail, Non-matching TPA's\n");
1485 if (w == TPA_NONE)
1486 fprintf (debug, ": Fail %d non TPA.\n", x);
1487 else
1488 fprintf (debug, ": Fail %d non TPA.\n", y);
1489 }
1490 continue;
1491 }
1492 var = partition_to_var (map, x);
1493 tmp = partition_to_var (map, y);
1494 x = var_to_partition (map, var);
1495 y = var_to_partition (map, tmp);
1496 if (debug)
1497 fprintf (debug, " [map: %d, %d] ", x, y);
1498 if (x == y)
1499 {
1500 if (debug)
1501 fprintf (debug, ": Already Coalesced.\n");
1502 continue;
1503 }
1504 if (!conflict_graph_conflict_p (graph, x, y))
1505 {
1506 z = var_union (map, var, tmp);
1507 if (z == NO_PARTITION)
1508 {
1509 if (debug)
1510 fprintf (debug, ": Unable to perform partition union.\n");
1511 continue;
1512 }
1513
1514 /* z is the new combined partition. We need to remove the other
1515 partition from the list. Set x to be that other partition. */
1516 if (z == x)
1517 {
1518 conflict_graph_merge_regs (graph, x, y);
1519 w = tpa_find_tree (tpa, y);
1520 tpa_remove_partition (tpa, w, y);
1521 }
1522 else
1523 {
1524 conflict_graph_merge_regs (graph, y, x);
1525 w = tpa_find_tree (tpa, x);
1526 tpa_remove_partition (tpa, w, x);
1527 }
1528
1529 if (debug)
1530 fprintf (debug, ": Success -> %d\n", z);
1531 }
1532 else
1533 if (debug)
1534 fprintf (debug, ": Fail due to conflict\n");
1535 }
1536 /* If using a coalesce list, don't try to coalesce anything else. */
1537 return;
1538 }
1539
1540 for (x = 0; x < tpa_num_trees (tpa); x++)
1541 {
1542 while (tpa_first_partition (tpa, x) != TPA_NONE)
1543 {
1544 int p1, p2;
1545 /* Coalesce first partition with anything that doesn't conflict. */
1546 y = tpa_first_partition (tpa, x);
1547 tpa_remove_partition (tpa, x, y);
1548
1549 var = partition_to_var (map, y);
1550 /* p1 is the partition representative to which y belongs. */
1551 p1 = var_to_partition (map, var);
1552
1553 for (z = tpa_next_partition (tpa, y);
1554 z != TPA_NONE;
1555 z = tpa_next_partition (tpa, z))
1556 {
1557 tmp = partition_to_var (map, z);
1558 /* p2 is the partition representative to which z belongs. */
1559 p2 = var_to_partition (map, tmp);
1560 if (debug)
1561 {
1562 fprintf (debug, "Coalesce : ");
1563 print_generic_expr (debug, var, TDF_SLIM);
1564 fprintf (debug, " &");
1565 print_generic_expr (debug, tmp, TDF_SLIM);
1566 fprintf (debug, " (%d ,%d)", p1, p2);
1567 }
1568
1569 /* If partitions are already merged, don't check for conflict. */
1570 if (tmp == var)
1571 {
1572 tpa_remove_partition (tpa, x, z);
1573 if (debug)
1574 fprintf (debug, ": Already coalesced\n");
1575 }
1576 else
1577 if (!conflict_graph_conflict_p (graph, p1, p2))
1578 {
1579 int v;
1580 if (tpa_find_tree (tpa, y) == TPA_NONE
1581 || tpa_find_tree (tpa, z) == TPA_NONE)
1582 {
1583 if (debug)
1584 fprintf (debug, ": Fail non-TPA member\n");
1585 continue;
1586 }
1587 if ((v = var_union (map, var, tmp)) == NO_PARTITION)
1588 {
1589 if (debug)
1590 fprintf (debug, ": Fail cannot combine partitions\n");
1591 continue;
1592 }
1593
1594 tpa_remove_partition (tpa, x, z);
1595 if (v == p1)
1596 conflict_graph_merge_regs (graph, v, z);
1597 else
1598 {
1599 /* Update the first partition's representative. */
1600 conflict_graph_merge_regs (graph, v, y);
1601 p1 = v;
1602 }
1603
1604 /* The root variable of the partition may be changed
1605 now. */
1606 var = partition_to_var (map, p1);
1607
1608 if (debug)
1609 fprintf (debug, ": Success -> %d\n", v);
1610 }
1611 else
1612 if (debug)
1613 fprintf (debug, ": Fail, Conflict\n");
1614 }
1615 }
1616 }
1617 }
1618
1619
1620 /* Send debug info for coalesce list CL to file F. */
1621
1622 void
1623 dump_coalesce_list (FILE *f, coalesce_list_p cl)
1624 {
1625 partition_pair_p node;
1626 int x, num;
1627 tree var;
1628
1629 if (cl->add_mode)
1630 {
1631 fprintf (f, "Coalesce List:\n");
1632 num = num_var_partitions (cl->map);
1633 for (x = 0; x < num; x++)
1634 {
1635 node = cl->list[x];
1636 if (node)
1637 {
1638 fprintf (f, "[");
1639 print_generic_expr (f, partition_to_var (cl->map, x), TDF_SLIM);
1640 fprintf (f, "] - ");
1641 for ( ; node; node = node->next)
1642 {
1643 var = partition_to_var (cl->map, node->second_partition);
1644 print_generic_expr (f, var, TDF_SLIM);
1645 fprintf (f, "(%1d), ", node->cost);
1646 }
1647 fprintf (f, "\n");
1648 }
1649 }
1650 }
1651 else
1652 {
1653 fprintf (f, "Sorted Coalesce list:\n");
1654 for (node = cl->list[0]; node; node = node->next)
1655 {
1656 fprintf (f, "(%d) ", node->cost);
1657 var = partition_to_var (cl->map, node->first_partition);
1658 print_generic_expr (f, var, TDF_SLIM);
1659 fprintf (f, " : ");
1660 var = partition_to_var (cl->map, node->second_partition);
1661 print_generic_expr (f, var, TDF_SLIM);
1662 fprintf (f, "\n");
1663 }
1664 }
1665 }
1666
1667
1668 /* Output tree_partition_associator object TPA to file F.. */
1669
1670 void
1671 tpa_dump (FILE *f, tpa_p tpa)
1672 {
1673 int x, i;
1674
1675 if (!tpa)
1676 return;
1677
1678 for (x = 0; x < tpa_num_trees (tpa); x++)
1679 {
1680 print_generic_expr (f, tpa_tree (tpa, x), TDF_SLIM);
1681 fprintf (f, " : (");
1682 for (i = tpa_first_partition (tpa, x);
1683 i != TPA_NONE;
1684 i = tpa_next_partition (tpa, i))
1685 {
1686 fprintf (f, "(%d)",i);
1687 print_generic_expr (f, partition_to_var (tpa->map, i), TDF_SLIM);
1688 fprintf (f, " ");
1689
1690 #ifdef ENABLE_CHECKING
1691 if (tpa_find_tree (tpa, i) != x)
1692 fprintf (f, "**find tree incorrectly set** ");
1693 #endif
1694
1695 }
1696 fprintf (f, ")\n");
1697 }
1698 fflush (f);
1699 }
1700
1701
1702 /* Output partition map MAP to file F. */
1703
1704 void
1705 dump_var_map (FILE *f, var_map map)
1706 {
1707 int t;
1708 unsigned x, y;
1709 int p;
1710
1711 fprintf (f, "\nPartition map \n\n");
1712
1713 for (x = 0; x < map->num_partitions; x++)
1714 {
1715 if (map->compact_to_partition != NULL)
1716 p = map->compact_to_partition[x];
1717 else
1718 p = x;
1719
1720 if (map->partition_to_var[p] == NULL_TREE)
1721 continue;
1722
1723 t = 0;
1724 for (y = 1; y < num_ssa_names; y++)
1725 {
1726 p = partition_find (map->var_partition, y);
1727 if (map->partition_to_compact)
1728 p = map->partition_to_compact[p];
1729 if (p == (int)x)
1730 {
1731 if (t++ == 0)
1732 {
1733 fprintf(f, "Partition %d (", x);
1734 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1735 fprintf (f, " - ");
1736 }
1737 fprintf (f, "%d ", y);
1738 }
1739 }
1740 if (t != 0)
1741 fprintf (f, ")\n");
1742 }
1743 fprintf (f, "\n");
1744 }
1745
1746
1747 /* Output live range info LIVE to file F, controlled by FLAG. */
1748
1749 void
1750 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1751 {
1752 basic_block bb;
1753 unsigned i;
1754 var_map map = live->map;
1755 bitmap_iterator bi;
1756
1757 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1758 {
1759 FOR_EACH_BB (bb)
1760 {
1761 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1762 for (i = 0; i < num_var_partitions (map); i++)
1763 {
1764 if (bitmap_bit_p (live_entry_blocks (live, i), bb->index))
1765 {
1766 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1767 fprintf (f, " ");
1768 }
1769 }
1770 fprintf (f, "\n");
1771 }
1772 }
1773
1774 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1775 {
1776 FOR_EACH_BB (bb)
1777 {
1778 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1779 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1780 {
1781 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1782 fprintf (f, " ");
1783 }
1784 fprintf (f, "\n");
1785 }
1786 }
1787 }
1788
1789 #ifdef ENABLE_CHECKING
1790 void
1791 register_ssa_partition_check (tree ssa_var)
1792 {
1793 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1794 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1795 {
1796 fprintf (stderr, "Illegally registering a virtual SSA name :");
1797 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1798 fprintf (stderr, " in the SSA->Normal phase.\n");
1799 internal_error ("SSA corruption");
1800 }
1801 }
1802 #endif