]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-live.cc
[PATCH v1 1/1] RISC-V: Nan-box the result of movbf on soft-bf16
[thirdparty/gcc.git] / gcc / tree-ssa-live.cc
1 /* Liveness for SSA trees.
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "timevar.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "gimple-pretty-print.h"
32 #include "diagnostic-core.h"
33 #include "gimple-iterator.h"
34 #include "tree-dfa.h"
35 #include "dumpfile.h"
36 #include "tree-ssa-live.h"
37 #include "debug.h"
38 #include "tree-ssa.h"
39 #include "ipa-utils.h"
40 #include "cfgloop.h"
41 #include "stringpool.h"
42 #include "attribs.h"
43 #include "optinfo.h"
44 #include "gimple-walk.h"
45 #include "cfganal.h"
46 #include "tree-cfg.h"
47
48 static void verify_live_on_entry (tree_live_info_p);
49
50
51 /* VARMAP maintains a mapping from SSA version number to real variables.
52
53 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
54 only member of it's own partition. Coalescing will attempt to group any
55 ssa_names which occur in a copy or in a PHI node into the same partition.
56
57 At the end of out-of-ssa, each partition becomes a "real" variable and is
58 rewritten as a compiler variable.
59
60 The var_map data structure is used to manage these partitions. It allows
61 partitions to be combined, and determines which partition belongs to what
62 ssa_name or variable, and vice versa. */
63
64
65 /* Remove the base table in MAP. */
66
67 static void
68 var_map_base_fini (var_map map)
69 {
70 /* Free the basevar info if it is present. */
71 if (map->partition_to_base_index != NULL)
72 {
73 free (map->partition_to_base_index);
74 map->partition_to_base_index = NULL;
75 map->num_basevars = 0;
76 }
77 }
78 /* Create a variable partition map of SIZE for region, initialize and return
79 it. Region is a loop if LOOP is non-NULL, otherwise is the current
80 function. If BITINT is non-NULL, only SSA_NAMEs from that bitmap
81 will be coalesced. */
82
83 var_map
84 init_var_map (int size, class loop *loop, bitmap bitint)
85 {
86 var_map map;
87
88 map = (var_map) xmalloc (sizeof (struct _var_map));
89 map->var_partition = partition_new (size);
90
91 map->partition_to_view = NULL;
92 map->view_to_partition = NULL;
93 map->num_partitions = size;
94 map->partition_size = size;
95 map->num_basevars = 0;
96 map->partition_to_base_index = NULL;
97 map->vec_bbs = vNULL;
98 if (loop)
99 {
100 map->bmp_bbs = BITMAP_ALLOC (NULL);
101 map->outofssa_p = false;
102 basic_block *bbs = get_loop_body_in_dom_order (loop);
103 for (unsigned i = 0; i < loop->num_nodes; ++i)
104 {
105 bitmap_set_bit (map->bmp_bbs, bbs[i]->index);
106 map->vec_bbs.safe_push (bbs[i]);
107 }
108 free (bbs);
109 }
110 else
111 {
112 map->bmp_bbs = NULL;
113 map->outofssa_p = bitint == NULL;
114 map->bitint = bitint;
115 basic_block bb;
116 map->vec_bbs.reserve_exact (n_basic_blocks_for_fn (cfun)
117 - NUM_FIXED_BLOCKS);
118 FOR_EACH_BB_FN (bb, cfun)
119 map->vec_bbs.quick_push (bb);
120 }
121 return map;
122 }
123
124
125 /* Free memory associated with MAP. */
126
127 void
128 delete_var_map (var_map map)
129 {
130 var_map_base_fini (map);
131 partition_delete (map->var_partition);
132 free (map->partition_to_view);
133 free (map->view_to_partition);
134 if (map->bmp_bbs)
135 BITMAP_FREE (map->bmp_bbs);
136 map->vec_bbs.release ();
137 free (map);
138 }
139
140
141 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
142 Returns the partition which represents the new partition. If the two
143 partitions cannot be combined, NO_PARTITION is returned. */
144
145 int
146 var_union (var_map map, tree var1, tree var2)
147 {
148 int p1, p2, p3;
149
150 gcc_assert (TREE_CODE (var1) == SSA_NAME);
151 gcc_assert (TREE_CODE (var2) == SSA_NAME);
152
153 /* This is independent of partition_to_view. If partition_to_view is
154 on, then whichever one of these partitions is absorbed will never have a
155 dereference into the partition_to_view array any more. */
156
157 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
158 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
159
160 gcc_assert (p1 != NO_PARTITION);
161 gcc_assert (p2 != NO_PARTITION);
162
163 if (p1 == p2)
164 p3 = p1;
165 else
166 p3 = partition_union (map->var_partition, p1, p2);
167
168 if (map->partition_to_view)
169 p3 = map->partition_to_view[p3];
170
171 return p3;
172 }
173
174
175 /* Compress the partition numbers in MAP such that they fall in the range
176 0..(num_partitions-1) instead of wherever they turned out during
177 the partitioning exercise. This removes any references to unused
178 partitions, thereby allowing bitmaps and other vectors to be much
179 denser.
180
181 This is implemented such that compaction doesn't affect partitioning.
182 Ie., once partitions are created and possibly merged, running one
183 or more different kind of compaction will not affect the partitions
184 themselves. Their index might change, but all the same variables will
185 still be members of the same partition group. This allows work on reduced
186 sets, and no loss of information when a larger set is later desired.
187
188 In particular, coalescing can work on partitions which have 2 or more
189 definitions, and then 'recompact' later to include all the single
190 definitions for assignment to program variables. */
191
192
193 /* Set MAP back to the initial state of having no partition view. Return a
194 bitmap which has a bit set for each partition number which is in use in the
195 varmap. */
196
197 static bitmap
198 partition_view_init (var_map map)
199 {
200 bitmap used;
201 int tmp;
202 unsigned int x;
203
204 used = BITMAP_ALLOC (NULL);
205
206 /* Already in a view? Abandon the old one. */
207 if (map->partition_to_view)
208 {
209 free (map->partition_to_view);
210 map->partition_to_view = NULL;
211 }
212 if (map->view_to_partition)
213 {
214 free (map->view_to_partition);
215 map->view_to_partition = NULL;
216 }
217
218 /* Find out which partitions are actually referenced. */
219 for (x = 0; x < map->partition_size; x++)
220 {
221 tmp = partition_find (map->var_partition, x);
222 if (ssa_name (tmp) != NULL_TREE && !virtual_operand_p (ssa_name (tmp))
223 && (!has_zero_uses (ssa_name (tmp))
224 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))
225 || (SSA_NAME_VAR (ssa_name (tmp))
226 && !VAR_P (SSA_NAME_VAR (ssa_name (tmp))))))
227 bitmap_set_bit (used, tmp);
228 }
229
230 map->num_partitions = map->partition_size;
231 return used;
232 }
233
234
235 /* This routine will finalize the view data for MAP based on the partitions
236 set in SELECTED. This is either the same bitmap returned from
237 partition_view_init, or a trimmed down version if some of those partitions
238 were not desired in this view. SELECTED is freed before returning. */
239
240 static void
241 partition_view_fini (var_map map, bitmap selected)
242 {
243 bitmap_iterator bi;
244 unsigned count, i, x, limit;
245
246 gcc_assert (selected);
247
248 count = bitmap_count_bits (selected);
249 limit = map->partition_size;
250
251 /* If its a one-to-one ratio, we don't need any view compaction. */
252 if (count < limit)
253 {
254 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
255 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
256 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
257
258 i = 0;
259 /* Give each selected partition an index. */
260 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
261 {
262 map->partition_to_view[x] = i;
263 map->view_to_partition[i] = x;
264 i++;
265 }
266 gcc_assert (i == count);
267 map->num_partitions = i;
268 }
269
270 BITMAP_FREE (selected);
271 }
272
273
274 /* Create a partition view which includes all the used partitions in MAP. */
275
276 void
277 partition_view_normal (var_map map)
278 {
279 bitmap used;
280
281 used = partition_view_init (map);
282 partition_view_fini (map, used);
283
284 var_map_base_fini (map);
285 }
286
287
288 /* Create a partition view in MAP which includes just partitions which occur in
289 the bitmap ONLY. If WANT_BASES is true, create the base variable map
290 as well. */
291
292 void
293 partition_view_bitmap (var_map map, bitmap only)
294 {
295 bitmap used;
296 bitmap new_partitions = BITMAP_ALLOC (NULL);
297 unsigned x, p;
298 bitmap_iterator bi;
299
300 used = partition_view_init (map);
301 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
302 {
303 p = partition_find (map->var_partition, x);
304 gcc_assert (bitmap_bit_p (used, p));
305 bitmap_set_bit (new_partitions, p);
306 }
307 partition_view_fini (map, new_partitions);
308
309 var_map_base_fini (map);
310 }
311
312
313 static bitmap usedvars;
314
315 /* Mark VAR as used, so that it'll be preserved during rtl expansion.
316 Returns true if VAR wasn't marked before. */
317
318 static inline bool
319 set_is_used (tree var)
320 {
321 return bitmap_set_bit (usedvars, DECL_UID (var));
322 }
323
324 /* Return true if VAR is marked as used. */
325
326 static inline bool
327 is_used_p (tree var)
328 {
329 return bitmap_bit_p (usedvars, DECL_UID (var));
330 }
331
332 static inline void mark_all_vars_used (tree *);
333
334 /* Helper function for mark_all_vars_used, called via walk_tree. */
335
336 static tree
337 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
338 {
339 tree t = *tp;
340 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
341 tree b;
342
343 if (TREE_CODE (t) == SSA_NAME)
344 {
345 *walk_subtrees = 0;
346 t = SSA_NAME_VAR (t);
347 if (!t)
348 return NULL;
349 }
350
351 if (IS_EXPR_CODE_CLASS (c)
352 && (b = TREE_BLOCK (t)) != NULL)
353 TREE_USED (b) = true;
354
355 /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
356 fields do not contain vars. */
357 if (TREE_CODE (t) == TARGET_MEM_REF)
358 {
359 mark_all_vars_used (&TMR_BASE (t));
360 mark_all_vars_used (&TMR_INDEX (t));
361 mark_all_vars_used (&TMR_INDEX2 (t));
362 *walk_subtrees = 0;
363 return NULL;
364 }
365
366 /* Only need to mark VAR_DECLS; parameters and return results are not
367 eliminated as unused. */
368 if (VAR_P (t))
369 {
370 /* When a global var becomes used for the first time also walk its
371 initializer (non global ones don't have any). */
372 if (set_is_used (t) && is_global_var (t)
373 && DECL_CONTEXT (t) == current_function_decl)
374 mark_all_vars_used (&DECL_INITIAL (t));
375 }
376 /* remove_unused_scope_block_p requires information about labels
377 which are not DECL_IGNORED_P to tell if they might be used in the IL. */
378 else if (TREE_CODE (t) == LABEL_DECL)
379 /* Although the TREE_USED values that the frontend uses would be
380 acceptable (albeit slightly over-conservative) for our purposes,
381 init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
382 must re-compute it here. */
383 TREE_USED (t) = 1;
384
385 if (IS_TYPE_OR_DECL_P (t))
386 *walk_subtrees = 0;
387
388 return NULL;
389 }
390
391 /* Mark the scope block SCOPE and its subblocks unused when they can be
392 possibly eliminated if dead. */
393
394 static void
395 mark_scope_block_unused (tree scope)
396 {
397 tree t;
398 TREE_USED (scope) = false;
399 if (!(*debug_hooks->ignore_block) (scope))
400 TREE_USED (scope) = true;
401 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
402 mark_scope_block_unused (t);
403 }
404
405 /* Look if the block is dead (by possibly eliminating its dead subblocks)
406 and return true if so.
407 Block is declared dead if:
408 1) No statements are associated with it.
409 2) Declares no live variables
410 3) All subblocks are dead
411 or there is precisely one subblocks and the block
412 has same abstract origin as outer block and declares
413 no variables, so it is pure wrapper.
414 When we are not outputting full debug info, we also eliminate dead variables
415 out of scope blocks to let them to be recycled by GGC and to save copying work
416 done by the inliner. */
417
418 static bool
419 remove_unused_scope_block_p (tree scope, bool in_ctor_dtor_block)
420 {
421 tree *t, *next;
422 bool unused = !TREE_USED (scope);
423 int nsubblocks = 0;
424
425 /* For ipa-polymorphic-call.cc purposes, preserve blocks:
426 1) with BLOCK_ABSTRACT_ORIGIN of a ctor/dtor or their clones */
427 if (inlined_polymorphic_ctor_dtor_block_p (scope, true))
428 {
429 in_ctor_dtor_block = true;
430 unused = false;
431 }
432 /* 2) inside such blocks, the outermost block with block_ultimate_origin
433 being a FUNCTION_DECL. */
434 else if (in_ctor_dtor_block)
435 {
436 tree fn = block_ultimate_origin (scope);
437 if (fn && TREE_CODE (fn) == FUNCTION_DECL)
438 {
439 in_ctor_dtor_block = false;
440 unused = false;
441 }
442 }
443
444 for (t = &BLOCK_VARS (scope); *t; t = next)
445 {
446 next = &DECL_CHAIN (*t);
447
448 /* Debug info of nested function refers to the block of the
449 function. We might stil call it even if all statements
450 of function it was nested into was elliminated.
451
452 TODO: We can actually look into cgraph to see if function
453 will be output to file. */
454 if (TREE_CODE (*t) == FUNCTION_DECL)
455 unused = false;
456
457 /* If a decl has a value expr, we need to instantiate it
458 regardless of debug info generation, to avoid codegen
459 differences in memory overlap tests. update_equiv_regs() may
460 indirectly call validate_equiv_mem() to test whether a
461 SET_DEST overlaps with others, and if the value expr changes
462 by virtual register instantiation, we may get end up with
463 different results. */
464 else if (VAR_P (*t) && DECL_HAS_VALUE_EXPR_P (*t))
465 unused = false;
466
467 /* Remove everything we don't generate debug info for. */
468 else if (DECL_IGNORED_P (*t))
469 {
470 *t = DECL_CHAIN (*t);
471 next = t;
472 }
473
474 /* When we are outputting debug info, we usually want to output
475 info about optimized-out variables in the scope blocks.
476 Exception are the scope blocks not containing any instructions
477 at all so user can't get into the scopes at first place. */
478 else if (is_used_p (*t))
479 unused = false;
480 else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
481 /* For labels that are still used in the IL, the decision to
482 preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
483 risk having different ordering in debug vs. non-debug builds
484 during inlining or versioning.
485 A label appearing here (we have already checked DECL_IGNORED_P)
486 should not be used in the IL unless it has been explicitly used
487 before, so we use TREE_USED as an approximation. */
488 /* In principle, we should do the same here as for the debug case
489 below, however, when debugging, there might be additional nested
490 levels that keep an upper level with a label live, so we have to
491 force this block to be considered used, too. */
492 unused = false;
493
494 /* When we are not doing full debug info, we however can keep around
495 only the used variables for cfgexpand's memory packing saving quite
496 a lot of memory.
497
498 For sake of -g3, we keep around those vars but we don't count this as
499 use of block, so innermost block with no used vars and no instructions
500 can be considered dead. We only want to keep around blocks user can
501 breakpoint into and ask about value of optimized out variables.
502
503 Similarly we need to keep around types at least until all
504 variables of all nested blocks are gone. We track no
505 information on whether given type is used or not, so we have
506 to keep them even when not emitting debug information,
507 otherwise we may end up remapping variables and their (local)
508 types in different orders depending on whether debug
509 information is being generated. */
510
511 else if (TREE_CODE (*t) == TYPE_DECL
512 || debug_info_level == DINFO_LEVEL_NORMAL
513 || debug_info_level == DINFO_LEVEL_VERBOSE)
514 ;
515 else
516 {
517 *t = DECL_CHAIN (*t);
518 next = t;
519 }
520 }
521
522 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
523 if (remove_unused_scope_block_p (*t, in_ctor_dtor_block))
524 {
525 if (BLOCK_SUBBLOCKS (*t))
526 {
527 tree next = BLOCK_CHAIN (*t);
528 tree supercontext = BLOCK_SUPERCONTEXT (*t);
529
530 *t = BLOCK_SUBBLOCKS (*t);
531 while (BLOCK_CHAIN (*t))
532 {
533 BLOCK_SUPERCONTEXT (*t) = supercontext;
534 t = &BLOCK_CHAIN (*t);
535 }
536 BLOCK_CHAIN (*t) = next;
537 BLOCK_SUPERCONTEXT (*t) = supercontext;
538 t = &BLOCK_CHAIN (*t);
539 nsubblocks ++;
540 }
541 else
542 *t = BLOCK_CHAIN (*t);
543 }
544 else
545 {
546 t = &BLOCK_CHAIN (*t);
547 nsubblocks ++;
548 }
549
550
551 if (!unused)
552 ;
553 /* Outer scope is always used. */
554 else if (!BLOCK_SUPERCONTEXT (scope)
555 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
556 unused = false;
557 /* Innermost blocks with no live variables nor statements can be always
558 eliminated. */
559 else if (!nsubblocks)
560 ;
561 /* When not generating debug info we can eliminate info on unused
562 variables. */
563 else if (!flag_auto_profile
564 && debug_info_level == DINFO_LEVEL_NONE
565 && !optinfo_wants_inlining_info_p ())
566 {
567 /* Even for -g0 don't prune outer scopes from inlined functions,
568 otherwise late diagnostics from such functions will not be
569 emitted or suppressed properly. */
570 if (inlined_function_outer_scope_p (scope))
571 {
572 gcc_assert (TREE_CODE (BLOCK_ORIGIN (scope)) == FUNCTION_DECL);
573 unused = false;
574 }
575 }
576 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
577 unused = false;
578 /* See if this block is important for representation of inlined
579 function. Inlined functions are always represented by block
580 with block_ultimate_origin being set to FUNCTION_DECL and
581 DECL_SOURCE_LOCATION set, unless they expand to nothing... */
582 else if (inlined_function_outer_scope_p (scope))
583 unused = false;
584 else
585 /* Verfify that only blocks with source location set
586 are entry points to the inlined functions. */
587 gcc_assert (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope))
588 == UNKNOWN_LOCATION);
589
590 TREE_USED (scope) = !unused;
591 return unused;
592 }
593
594 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
595 eliminated during the tree->rtl conversion process. */
596
597 static inline void
598 mark_all_vars_used (tree *expr_p)
599 {
600 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
601 }
602
603 /* Helper function for clear_unused_block_pointer, called via walk_tree. */
604
605 static tree
606 clear_unused_block_pointer_1 (tree *tp, int *, void *)
607 {
608 if (EXPR_P (*tp) && TREE_BLOCK (*tp)
609 && !TREE_USED (TREE_BLOCK (*tp)))
610 TREE_SET_BLOCK (*tp, NULL);
611 return NULL_TREE;
612 }
613
614 /* Set all block pointer in debug or clobber stmt to NULL if the block
615 is unused, so that they will not be streamed out. */
616
617 static void
618 clear_unused_block_pointer (void)
619 {
620 basic_block bb;
621 gimple_stmt_iterator gsi;
622
623 FOR_EACH_BB_FN (bb, cfun)
624 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
625 {
626 unsigned i;
627 tree b;
628 gimple *stmt;
629
630 next:
631 stmt = gsi_stmt (gsi);
632 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
633 continue;
634 b = gimple_block (stmt);
635 if (b && !TREE_USED (b))
636 {
637 /* Elide debug marker stmts that have an associated BLOCK from an
638 inline instance removed with also the outermost scope BLOCK of
639 said inline instance removed. If the outermost scope BLOCK of
640 said inline instance is preserved use that in place of the
641 removed BLOCK. That keeps the marker associated to the correct
642 inline instance (or no inline instance in case it was not from
643 an inline instance). */
644 if (gimple_debug_nonbind_marker_p (stmt)
645 && BLOCK_ABSTRACT_ORIGIN (b))
646 {
647 while (TREE_CODE (b) == BLOCK
648 && !inlined_function_outer_scope_p (b))
649 b = BLOCK_SUPERCONTEXT (b);
650 if (TREE_CODE (b) == BLOCK)
651 {
652 if (TREE_USED (b))
653 {
654 gimple_set_block (stmt, b);
655 continue;
656 }
657 gsi_remove (&gsi, true);
658 if (gsi_end_p (gsi))
659 break;
660 goto next;
661 }
662 }
663 gimple_set_block (stmt, NULL);
664 }
665 for (i = 0; i < gimple_num_ops (stmt); i++)
666 walk_tree (gimple_op_ptr (stmt, i), clear_unused_block_pointer_1,
667 NULL, NULL);
668 }
669 }
670
671 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
672 indentation level and FLAGS is as in print_generic_expr. */
673
674 static void
675 dump_scope_block (FILE *file, int indent, tree scope, dump_flags_t flags)
676 {
677 tree var, t;
678 unsigned int i;
679
680 fprintf (file, "\n%*s{ Scope block #%i%s",indent, "" , BLOCK_NUMBER (scope),
681 TREE_USED (scope) ? "" : " (unused)");
682 if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope)) != UNKNOWN_LOCATION)
683 {
684 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
685 fprintf (file, " %s:%i", s.file, s.line);
686 }
687 if (BLOCK_ABSTRACT_ORIGIN (scope))
688 {
689 tree origin = block_ultimate_origin (scope);
690 if (origin)
691 {
692 fprintf (file, " Originating from :");
693 if (DECL_P (origin))
694 print_generic_decl (file, origin, flags);
695 else
696 fprintf (file, "#%i", BLOCK_NUMBER (origin));
697 }
698 }
699 if (BLOCK_FRAGMENT_ORIGIN (scope))
700 fprintf (file, " Fragment of : #%i",
701 BLOCK_NUMBER (BLOCK_FRAGMENT_ORIGIN (scope)));
702 else if (BLOCK_FRAGMENT_CHAIN (scope))
703 {
704 fprintf (file, " Fragment chain :");
705 for (t = BLOCK_FRAGMENT_CHAIN (scope); t ;
706 t = BLOCK_FRAGMENT_CHAIN (t))
707 fprintf (file, " #%i", BLOCK_NUMBER (t));
708 }
709 fprintf (file, " \n");
710 for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
711 {
712 fprintf (file, "%*s", indent, "");
713 print_generic_decl (file, var, flags);
714 fprintf (file, "\n");
715 }
716 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
717 {
718 fprintf (file, "%*s",indent, "");
719 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
720 flags);
721 fprintf (file, " (nonlocalized)\n");
722 }
723 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
724 dump_scope_block (file, indent + 2, t, flags);
725 fprintf (file, "\n%*s}\n",indent, "");
726 }
727
728 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
729 is as in print_generic_expr. */
730
731 DEBUG_FUNCTION void
732 debug_scope_block (tree scope, dump_flags_t flags)
733 {
734 dump_scope_block (stderr, 0, scope, flags);
735 }
736
737
738 /* Dump the tree of lexical scopes of current_function_decl to FILE.
739 FLAGS is as in print_generic_expr. */
740
741 void
742 dump_scope_blocks (FILE *file, dump_flags_t flags)
743 {
744 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
745 }
746
747
748 /* Dump the tree of lexical scopes of current_function_decl to stderr.
749 FLAGS is as in print_generic_expr. */
750
751 DEBUG_FUNCTION void
752 debug_scope_blocks (dump_flags_t flags)
753 {
754 dump_scope_blocks (stderr, flags);
755 }
756
757 /* Remove local variables that are not referenced in the IL. */
758
759 void
760 remove_unused_locals (void)
761 {
762 basic_block bb;
763 tree var;
764 unsigned srcidx, dstidx, num;
765 bool have_local_clobbers = false;
766
767 /* Removing declarations from lexical blocks when not optimizing is
768 not only a waste of time, it actually causes differences in stack
769 layout. */
770 if (!optimize)
771 return;
772
773 timevar_push (TV_REMOVE_UNUSED);
774
775 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
776
777 usedvars = BITMAP_ALLOC (NULL);
778 auto_bitmap useddebug;
779
780 /* Walk the CFG marking all referenced symbols. */
781 FOR_EACH_BB_FN (bb, cfun)
782 {
783 gimple_stmt_iterator gsi;
784 size_t i;
785 edge_iterator ei;
786 edge e;
787
788 /* Walk the statements. */
789 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
790 {
791 gimple *stmt = gsi_stmt (gsi);
792 tree b = gimple_block (stmt);
793
794 /* If we wanted to mark the block referenced by the inline
795 entry point marker as used, this would be a good spot to
796 do it. If the block is not otherwise used, the stmt will
797 be cleaned up in clean_unused_block_pointer. */
798 if (is_gimple_debug (stmt))
799 {
800 if (gimple_debug_bind_p (stmt))
801 {
802 tree var = gimple_debug_bind_get_var (stmt);
803 if (VAR_P (var))
804 {
805 if (!gimple_debug_bind_get_value (stmt))
806 /* Run the 2nd phase. */
807 have_local_clobbers = true;
808 else
809 bitmap_set_bit (useddebug, DECL_UID (var));
810 }
811 }
812 continue;
813 }
814
815 if (gimple_clobber_p (stmt))
816 {
817 have_local_clobbers = true;
818 continue;
819 }
820
821 if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
822 {
823 have_local_clobbers = true;
824 continue;
825 }
826
827 if (b)
828 TREE_USED (b) = true;
829
830 for (i = 0; i < gimple_num_ops (stmt); i++)
831 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i));
832 }
833
834 for (gphi_iterator gpi = gsi_start_phis (bb);
835 !gsi_end_p (gpi);
836 gsi_next (&gpi))
837 {
838 use_operand_p arg_p;
839 ssa_op_iter i;
840 tree def;
841 gphi *phi = gpi.phi ();
842
843 if (virtual_operand_p (gimple_phi_result (phi)))
844 continue;
845
846 def = gimple_phi_result (phi);
847 mark_all_vars_used (&def);
848
849 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
850 {
851 tree arg = USE_FROM_PTR (arg_p);
852 int index = PHI_ARG_INDEX_FROM_USE (arg_p);
853 tree block =
854 LOCATION_BLOCK (gimple_phi_arg_location (phi, index));
855 if (block != NULL)
856 TREE_USED (block) = true;
857 mark_all_vars_used (&arg);
858 }
859 }
860
861 FOR_EACH_EDGE (e, ei, bb->succs)
862 if (LOCATION_BLOCK (e->goto_locus) != NULL)
863 TREE_USED (LOCATION_BLOCK (e->goto_locus)) = true;
864 }
865
866 /* We do a two-pass approach about the out-of-scope clobbers. We want
867 to remove them if they are the only references to a local variable,
868 but we want to retain them when there's any other. So the first pass
869 ignores them, and the second pass (if there were any) tries to remove
870 them. We do the same for .DEFERRED_INIT. */
871 if (have_local_clobbers)
872 FOR_EACH_BB_FN (bb, cfun)
873 {
874 gimple_stmt_iterator gsi;
875
876 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
877 {
878 gimple *stmt = gsi_stmt (gsi);
879 tree b = gimple_block (stmt);
880
881 if (gimple_clobber_p (stmt))
882 {
883 tree lhs = gimple_assign_lhs (stmt);
884 tree base = get_base_address (lhs);
885 /* Remove clobbers referencing unused vars, or clobbers
886 with MEM_REF lhs referencing uninitialized pointers. */
887 if ((VAR_P (base) && !is_used_p (base))
888 || (TREE_CODE (lhs) == MEM_REF
889 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
890 && SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0))
891 && (TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))
892 != PARM_DECL)))
893 {
894 unlink_stmt_vdef (stmt);
895 gsi_remove (&gsi, true);
896 release_defs (stmt);
897 continue;
898 }
899 if (b)
900 TREE_USED (b) = true;
901 }
902 else if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
903 {
904 tree lhs = gimple_call_lhs (stmt);
905 tree base = get_base_address (lhs);
906 if (DECL_P (base) && !is_used_p (base))
907 {
908 unlink_stmt_vdef (stmt);
909 gsi_remove (&gsi, true);
910 release_defs (stmt);
911 continue;
912 }
913 if (b)
914 TREE_USED (b) = true;
915 }
916 else if (gimple_debug_bind_p (stmt))
917 {
918 tree var = gimple_debug_bind_get_var (stmt);
919 if (VAR_P (var)
920 && !bitmap_bit_p (useddebug, DECL_UID (var))
921 && !is_used_p (var))
922 {
923 if (dump_file && (dump_flags & TDF_DETAILS))
924 fprintf (dump_file, "Dead debug bind reset to %u\n",
925 DECL_UID (var));
926 gsi_remove (&gsi, true);
927 continue;
928 }
929 }
930 gsi_next (&gsi);
931 }
932 }
933
934 if (cfun->has_simduid_loops)
935 {
936 for (auto loop : loops_list (cfun, 0))
937 if (loop->simduid && !is_used_p (loop->simduid))
938 loop->simduid = NULL_TREE;
939 }
940
941 cfun->has_local_explicit_reg_vars = false;
942
943 /* Remove unmarked local and global vars from local_decls. */
944 num = vec_safe_length (cfun->local_decls);
945 for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
946 {
947 var = (*cfun->local_decls)[srcidx];
948 if (VAR_P (var))
949 {
950 if (!is_used_p (var))
951 {
952 tree def;
953 if (cfun->nonlocal_goto_save_area
954 && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
955 cfun->nonlocal_goto_save_area = NULL;
956 /* Release any default def associated with var. */
957 if ((def = ssa_default_def (cfun, var)) != NULL_TREE)
958 {
959 set_ssa_default_def (cfun, var, NULL_TREE);
960 release_ssa_name (def);
961 }
962 continue;
963 }
964 }
965 if (VAR_P (var) && DECL_HARD_REGISTER (var) && !is_global_var (var))
966 cfun->has_local_explicit_reg_vars = true;
967
968 if (srcidx != dstidx)
969 (*cfun->local_decls)[dstidx] = var;
970 dstidx++;
971 }
972 if (dstidx != num)
973 {
974 statistics_counter_event (cfun, "unused VAR_DECLs removed", num - dstidx);
975 cfun->local_decls->truncate (dstidx);
976 }
977
978 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl),
979 polymorphic_ctor_dtor_p (current_function_decl,
980 true) != NULL_TREE);
981 clear_unused_block_pointer ();
982
983 BITMAP_FREE (usedvars);
984
985 if (dump_file && (dump_flags & TDF_DETAILS))
986 {
987 fprintf (dump_file, "Scope blocks after cleanups:\n");
988 dump_scope_blocks (dump_file, dump_flags);
989 }
990
991 timevar_pop (TV_REMOVE_UNUSED);
992 }
993
994 /* Allocate and return a new live range information object base on MAP. */
995
996 static tree_live_info_p
997 new_tree_live_info (var_map map)
998 {
999 tree_live_info_p live;
1000 basic_block bb;
1001
1002 live = XNEW (struct tree_live_info_d);
1003 live->map = map;
1004 live->num_blocks = last_basic_block_for_fn (cfun);
1005
1006 bitmap_obstack_initialize (&live->livein_obstack);
1007 bitmap_obstack_initialize (&live->liveout_obstack);
1008
1009 live->livein = XCNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
1010 live->liveout = XCNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
1011 for (unsigned i = 0; map->vec_bbs.iterate (i, &bb); ++i)
1012 {
1013 bitmap_initialize (&live->livein[bb->index], &live->livein_obstack);
1014 bitmap_initialize (&live->liveout[bb->index], &live->liveout_obstack);
1015 }
1016
1017 live->work_stack = XNEWVEC (int, last_basic_block_for_fn (cfun));
1018 live->stack_top = live->work_stack;
1019
1020 return live;
1021 }
1022
1023
1024 /* Free storage for live range info object LIVE. */
1025
1026 void
1027 delete_tree_live_info (tree_live_info_p live)
1028 {
1029 if (live->livein)
1030 {
1031 bitmap_obstack_release (&live->livein_obstack);
1032 free (live->livein);
1033 }
1034 if (live->liveout)
1035 {
1036 bitmap_obstack_release (&live->liveout_obstack);
1037 free (live->liveout);
1038 }
1039 free (live->work_stack);
1040 free (live);
1041 }
1042
1043
1044 /* Visit basic block BB and propagate any required live on entry bits from
1045 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
1046 TMP is a temporary work bitmap which is passed in to avoid reallocating
1047 it each time. */
1048
1049 static void
1050 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited)
1051 {
1052 edge e;
1053 bool change;
1054 edge_iterator ei;
1055 basic_block pred_bb;
1056 bitmap loe;
1057
1058 gcc_checking_assert (!bitmap_bit_p (visited, bb->index));
1059 bitmap_set_bit (visited, bb->index);
1060
1061 loe = live_on_entry (live, bb);
1062
1063 FOR_EACH_EDGE (e, ei, bb->preds)
1064 {
1065 pred_bb = e->src;
1066 if (!region_contains_p (live->map, pred_bb))
1067 continue;
1068 /* Variables live-on-entry from BB that aren't defined in the
1069 predecessor block. This should be the live on entry vars to pred.
1070 Note that liveout is the DEFs in a block while live on entry is
1071 being calculated.
1072 Add these bits to live-on-entry for the pred. if there are any
1073 changes, and pred_bb has been visited already, add it to the
1074 revisit stack. */
1075 change = bitmap_ior_and_compl_into (live_on_entry (live, pred_bb),
1076 loe, &live->liveout[pred_bb->index]);
1077 if (change
1078 && bitmap_bit_p (visited, pred_bb->index))
1079 {
1080 bitmap_clear_bit (visited, pred_bb->index);
1081 *(live->stack_top)++ = pred_bb->index;
1082 }
1083 }
1084 }
1085
1086
1087 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
1088 of all the variables. */
1089
1090 static void
1091 live_worklist (tree_live_info_p live)
1092 {
1093 unsigned b;
1094 basic_block bb;
1095 auto_sbitmap visited (last_basic_block_for_fn (cfun) + 1);
1096
1097 bitmap_clear (visited);
1098
1099 /* Visit region's blocks in reverse order and propagate live on entry values
1100 into the predecessors blocks. */
1101 for (unsigned i = live->map->vec_bbs.length () - 1;
1102 live->map->vec_bbs.iterate (i, &bb); --i)
1103 loe_visit_block (live, bb, visited);
1104
1105 /* Process any blocks which require further iteration. */
1106 while (live->stack_top != live->work_stack)
1107 {
1108 b = *--(live->stack_top);
1109 loe_visit_block (live, BASIC_BLOCK_FOR_FN (cfun, b), visited);
1110 }
1111 }
1112
1113
1114 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
1115 links. Set the live on entry fields in LIVE. Def's are marked temporarily
1116 in the liveout vector. */
1117
1118 static void
1119 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
1120 {
1121 int p;
1122 gimple *stmt;
1123 use_operand_p use;
1124 basic_block def_bb = NULL;
1125 imm_use_iterator imm_iter;
1126
1127 p = var_to_partition (live->map, ssa_name);
1128 if (p == NO_PARTITION)
1129 return;
1130
1131 stmt = SSA_NAME_DEF_STMT (ssa_name);
1132 if (stmt)
1133 {
1134 def_bb = gimple_bb (stmt);
1135 /* Mark defs in liveout bitmap temporarily. */
1136 if (def_bb && region_contains_p (live->map, def_bb))
1137 bitmap_set_bit (&live->liveout[def_bb->index], p);
1138 }
1139 else
1140 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1141
1142 /* An undefined local variable does not need to be very alive. */
1143 if (ssa_undefined_value_p (ssa_name, false))
1144 return;
1145
1146 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
1147 add it to the list of live on entry blocks. */
1148 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
1149 {
1150 gimple *use_stmt = USE_STMT (use);
1151 basic_block add_block = NULL;
1152
1153 if (gimple_code (use_stmt) == GIMPLE_PHI)
1154 {
1155 /* Uses in PHI's are considered to be live at exit of the SRC block
1156 as this is where a copy would be inserted. Check to see if it is
1157 defined in that block, or whether its live on entry. */
1158 int index = PHI_ARG_INDEX_FROM_USE (use);
1159 edge e = gimple_phi_arg_edge (as_a <gphi *> (use_stmt), index);
1160 if (e->src != def_bb && region_contains_p (live->map, e->src))
1161 add_block = e->src;
1162 }
1163 else if (is_gimple_debug (use_stmt))
1164 continue;
1165 else
1166 {
1167 /* If its not defined in this block, its live on entry. */
1168 basic_block use_bb = gimple_bb (use_stmt);
1169 if (use_bb != def_bb && region_contains_p (live->map, use_bb))
1170 add_block = use_bb;
1171 }
1172
1173 /* If there was a live on entry use, set the bit. */
1174 if (add_block)
1175 bitmap_set_bit (&live->livein[add_block->index], p);
1176 }
1177 }
1178
1179
1180 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1181
1182 static void
1183 calculate_live_on_exit (tree_live_info_p liveinfo)
1184 {
1185 basic_block bb;
1186 edge e;
1187 edge_iterator ei;
1188
1189 /* live on entry calculations used liveout vectors for defs, clear them. */
1190 for (unsigned i = 0; liveinfo->map->vec_bbs.iterate (i, &bb); ++i)
1191 bitmap_clear (&liveinfo->liveout[bb->index]);
1192
1193 /* Set all the live-on-exit bits for uses in PHIs. */
1194 FOR_EACH_BB_FN (bb, cfun)
1195 {
1196 gphi_iterator gsi;
1197 size_t i;
1198
1199 /* Mark the PHI arguments which are live on exit to the pred block. */
1200 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1201 {
1202 gphi *phi = gsi.phi ();
1203 if (virtual_operand_p (gimple_phi_result (phi)))
1204 continue;
1205 for (i = 0; i < gimple_phi_num_args (phi); i++)
1206 {
1207 tree t = PHI_ARG_DEF (phi, i);
1208 int p;
1209
1210 if (TREE_CODE (t) != SSA_NAME)
1211 continue;
1212
1213 p = var_to_partition (liveinfo->map, t);
1214 if (p == NO_PARTITION)
1215 continue;
1216 e = gimple_phi_arg_edge (phi, i);
1217 if (region_contains_p (liveinfo->map, e->src))
1218 bitmap_set_bit (&liveinfo->liveout[e->src->index], p);
1219 }
1220 }
1221
1222 if (!region_contains_p (liveinfo->map, bb))
1223 continue;
1224
1225 /* Add each successors live on entry to this bock live on exit. */
1226 FOR_EACH_EDGE (e, ei, bb->succs)
1227 if (region_contains_p (liveinfo->map, e->dest))
1228 bitmap_ior_into (&liveinfo->liveout[bb->index],
1229 live_on_entry (liveinfo, e->dest));
1230 }
1231 }
1232
1233
1234 /* Given partition map MAP, calculate all the live on entry bitmaps for
1235 each partition. Return a new live info object. */
1236
1237 tree_live_info_p
1238 calculate_live_ranges (var_map map, bool want_livein)
1239 {
1240 tree var;
1241 unsigned i;
1242 tree_live_info_p live;
1243
1244 live = new_tree_live_info (map);
1245 for (i = 0; i < num_var_partitions (map); i++)
1246 {
1247 var = partition_to_var (map, i);
1248 if (var != NULL_TREE)
1249 set_var_live_on_entry (var, live);
1250 }
1251
1252 live_worklist (live);
1253
1254 if (flag_checking)
1255 verify_live_on_entry (live);
1256
1257 calculate_live_on_exit (live);
1258
1259 if (!want_livein)
1260 {
1261 bitmap_obstack_release (&live->livein_obstack);
1262 free (live->livein);
1263 live->livein = NULL;
1264 }
1265
1266 return live;
1267 }
1268 \f
1269 /* Data structure for compute_live_vars* functions. */
1270
1271 struct compute_live_vars_data {
1272 /* Vector of bitmaps for live vars indices at the end of basic blocks,
1273 indexed by bb->index. ACTIVE[ENTRY_BLOCK] must be empty bitmap,
1274 ACTIVE[EXIT_BLOCK] is used for STOP_AFTER. */
1275 vec<bitmap_head> active;
1276 /* Work bitmap of currently live variables. */
1277 bitmap work;
1278 /* Set of interesting variables. Variables with uids not in this
1279 hash_map are not tracked. */
1280 live_vars_map *vars;
1281 };
1282
1283 /* Callback for walk_stmt_load_store_addr_ops. If OP is a VAR_DECL with
1284 uid set in DATA->vars, enter its corresponding index into bitmap
1285 DATA->work. */
1286
1287 static bool
1288 compute_live_vars_visit (gimple *, tree op, tree, void *pdata)
1289 {
1290 compute_live_vars_data *data = (compute_live_vars_data *) pdata;
1291 op = get_base_address (op);
1292 if (op && VAR_P (op))
1293 if (unsigned int *v = data->vars->get (DECL_UID (op)))
1294 bitmap_set_bit (data->work, *v);
1295 return false;
1296 }
1297
1298 /* Helper routine for compute_live_vars, calculating the sets of live
1299 variables at the end of BB, leaving the result in DATA->work.
1300 If STOP_AFTER is non-NULL, stop processing after that stmt. */
1301
1302 static void
1303 compute_live_vars_1 (basic_block bb, compute_live_vars_data *data,
1304 gimple *stop_after)
1305 {
1306 edge e;
1307 edge_iterator ei;
1308 gimple_stmt_iterator gsi;
1309 walk_stmt_load_store_addr_fn visit = compute_live_vars_visit;
1310
1311 bitmap_clear (data->work);
1312 FOR_EACH_EDGE (e, ei, bb->preds)
1313 bitmap_ior_into (data->work, &data->active[e->src->index]);
1314
1315 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1316 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), data, NULL, NULL, visit);
1317 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1318 {
1319 gimple *stmt = gsi_stmt (gsi);
1320
1321 if (gimple_clobber_p (stmt))
1322 {
1323 tree lhs = gimple_assign_lhs (stmt);
1324 if (VAR_P (lhs))
1325 if (unsigned int *v = data->vars->get (DECL_UID (lhs)))
1326 bitmap_clear_bit (data->work, *v);
1327 }
1328 else if (!is_gimple_debug (stmt))
1329 walk_stmt_load_store_addr_ops (stmt, data, visit, visit, visit);
1330 if (stmt == stop_after)
1331 break;
1332 }
1333 }
1334
1335 /* For function FN and live_vars_map (hash map from DECL_UIDs to a dense set of
1336 indexes of automatic variables VARS, compute which of those variables are
1337 (might be) live at the end of each basic block. */
1338
1339 vec<bitmap_head>
1340 compute_live_vars (struct function *fn, live_vars_map *vars)
1341 {
1342 vec<bitmap_head> active;
1343
1344 /* We approximate the live range of a stack variable by taking the first
1345 mention of its name as starting point(s), and by the end-of-scope
1346 death clobber added by gimplify as ending point(s) of the range.
1347 This overapproximates in the case we for instance moved an address-taken
1348 operation upward, without also moving a dereference to it upwards.
1349 But it's conservatively correct as a variable never can hold values
1350 before its name is mentioned at least once.
1351
1352 We then do a mostly classical bitmap liveness algorithm. */
1353
1354 active.create (last_basic_block_for_fn (fn));
1355 active.quick_grow_cleared (last_basic_block_for_fn (fn));
1356 for (int i = 0; i < last_basic_block_for_fn (fn); i++)
1357 bitmap_initialize (&active[i], &bitmap_default_obstack);
1358
1359 bitmap work = BITMAP_ALLOC (NULL);
1360
1361 int *rpo = XNEWVEC (int, last_basic_block_for_fn (fn));
1362 int n_bbs = pre_and_rev_post_order_compute_fn (fn, NULL, rpo, false);
1363
1364 bool changed = true;
1365 compute_live_vars_data data = { active, work, vars };
1366 while (changed)
1367 {
1368 int i;
1369 changed = false;
1370 for (i = 0; i < n_bbs; i++)
1371 {
1372 basic_block bb = BASIC_BLOCK_FOR_FN (fn, rpo[i]);
1373 compute_live_vars_1 (bb, &data, NULL);
1374 if (bitmap_ior_into (&active[bb->index], work))
1375 changed = true;
1376 }
1377 }
1378
1379 free (rpo);
1380 BITMAP_FREE (work);
1381
1382 return active;
1383 }
1384
1385 /* For ACTIVE computed by compute_live_vars, compute a bitmap of variables
1386 live after the STOP_AFTER statement and return that bitmap. */
1387
1388 bitmap
1389 live_vars_at_stmt (vec<bitmap_head> &active, live_vars_map *vars,
1390 gimple *stop_after)
1391 {
1392 bitmap work = BITMAP_ALLOC (NULL);
1393 compute_live_vars_data data = { active, work, vars };
1394 basic_block bb = gimple_bb (stop_after);
1395 compute_live_vars_1 (bb, &data, stop_after);
1396 return work;
1397 }
1398
1399 /* Destroy what compute_live_vars has returned when it is no longer needed. */
1400
1401 void
1402 destroy_live_vars (vec<bitmap_head> &active)
1403 {
1404 unsigned len = active.length ();
1405 for (unsigned i = 0; i < len; i++)
1406 bitmap_clear (&active[i]);
1407
1408 active.release ();
1409 }
1410 \f
1411 /* Output partition map MAP to file F. */
1412
1413 void
1414 dump_var_map (FILE *f, var_map map)
1415 {
1416 int t;
1417 unsigned x, y;
1418 int p;
1419
1420 fprintf (f, "\nPartition map \n\n");
1421
1422 for (x = 0; x < map->num_partitions; x++)
1423 {
1424 if (map->view_to_partition != NULL)
1425 p = map->view_to_partition[x];
1426 else
1427 p = x;
1428
1429 if (ssa_name (p) == NULL_TREE
1430 || virtual_operand_p (ssa_name (p)))
1431 continue;
1432
1433 t = 0;
1434 for (y = 1; y < num_ssa_names; y++)
1435 {
1436 p = partition_find (map->var_partition, y);
1437 if (map->partition_to_view)
1438 p = map->partition_to_view[p];
1439 if (p == (int)x)
1440 {
1441 if (t++ == 0)
1442 {
1443 fprintf (f, "Partition %d (", x);
1444 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1445 fprintf (f, " - ");
1446 }
1447 fprintf (f, "%d ", y);
1448 }
1449 }
1450 if (t != 0)
1451 fprintf (f, ")\n");
1452 }
1453 fprintf (f, "\n");
1454 }
1455
1456
1457 /* Generic dump for the above. */
1458
1459 DEBUG_FUNCTION void
1460 debug (_var_map &ref)
1461 {
1462 dump_var_map (stderr, &ref);
1463 }
1464
1465 DEBUG_FUNCTION void
1466 debug (_var_map *ptr)
1467 {
1468 if (ptr)
1469 debug (*ptr);
1470 else
1471 fprintf (stderr, "<nil>\n");
1472 }
1473
1474
1475 /* Output live range info LIVE to file F, controlled by FLAG. */
1476
1477 void
1478 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1479 {
1480 basic_block bb;
1481 unsigned i;
1482 var_map map = live->map;
1483 bitmap_iterator bi;
1484
1485 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1486 {
1487 FOR_EACH_BB_FN (bb, cfun)
1488 {
1489 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1490 EXECUTE_IF_SET_IN_BITMAP (&live->livein[bb->index], 0, i, bi)
1491 {
1492 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1493 fprintf (f, " ");
1494 }
1495 fprintf (f, "\n");
1496 }
1497 }
1498
1499 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1500 {
1501 FOR_EACH_BB_FN (bb, cfun)
1502 {
1503 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1504 EXECUTE_IF_SET_IN_BITMAP (&live->liveout[bb->index], 0, i, bi)
1505 {
1506 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1507 fprintf (f, " ");
1508 }
1509 fprintf (f, "\n");
1510 }
1511 }
1512 }
1513
1514
1515 /* Generic dump for the above. */
1516
1517 DEBUG_FUNCTION void
1518 debug (tree_live_info_d &ref)
1519 {
1520 dump_live_info (stderr, &ref, 0);
1521 }
1522
1523 DEBUG_FUNCTION void
1524 debug (tree_live_info_d *ptr)
1525 {
1526 if (ptr)
1527 debug (*ptr);
1528 else
1529 fprintf (stderr, "<nil>\n");
1530 }
1531
1532
1533 /* Verify that the info in LIVE matches the current cfg. */
1534
1535 static void
1536 verify_live_on_entry (tree_live_info_p live)
1537 {
1538 unsigned i;
1539 tree var;
1540 gimple *stmt;
1541 basic_block bb;
1542 edge e;
1543 int num;
1544 edge_iterator ei;
1545 var_map map = live->map;
1546
1547 /* Check for live on entry partitions and report those with a DEF in
1548 the program. This will typically mean an optimization has done
1549 something wrong. */
1550 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1551 num = 0;
1552 FOR_EACH_EDGE (e, ei, bb->succs)
1553 {
1554 int entry_block = e->dest->index;
1555 if (!region_contains_p (live->map, e->dest))
1556 continue;
1557 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1558 {
1559 basic_block tmp;
1560 tree d = NULL_TREE;
1561 bitmap loe;
1562 var = partition_to_var (map, i);
1563 stmt = SSA_NAME_DEF_STMT (var);
1564 tmp = gimple_bb (stmt);
1565 if (SSA_NAME_VAR (var))
1566 d = ssa_default_def (cfun, SSA_NAME_VAR (var));
1567
1568 loe = live_on_entry (live, e->dest);
1569 if (loe && bitmap_bit_p (loe, i))
1570 {
1571 if (!gimple_nop_p (stmt))
1572 {
1573 num++;
1574 print_generic_expr (stderr, var, TDF_SLIM);
1575 fprintf (stderr, " is defined ");
1576 if (tmp)
1577 fprintf (stderr, " in BB%d, ", tmp->index);
1578 fprintf (stderr, "by:\n");
1579 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1580 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1581 entry_block);
1582 fprintf (stderr, " So it appears to have multiple defs.\n");
1583 }
1584 else
1585 {
1586 if (d != var)
1587 {
1588 num++;
1589 print_generic_expr (stderr, var, TDF_SLIM);
1590 fprintf (stderr, " is live-on-entry to BB%d ",
1591 entry_block);
1592 if (d)
1593 {
1594 fprintf (stderr, " but is not the default def of ");
1595 print_generic_expr (stderr, d, TDF_SLIM);
1596 fprintf (stderr, "\n");
1597 }
1598 else
1599 fprintf (stderr, " and there is no default def.\n");
1600 }
1601 }
1602 }
1603 else
1604 if (d == var)
1605 {
1606 /* An undefined local variable does not need to be very
1607 alive. */
1608 if (ssa_undefined_value_p (var, false))
1609 continue;
1610
1611 /* The only way this var shouldn't be marked live on entry is
1612 if it occurs in a PHI argument of the block. */
1613 size_t z;
1614 bool ok = false;
1615 gphi_iterator gsi;
1616 for (gsi = gsi_start_phis (e->dest);
1617 !gsi_end_p (gsi) && !ok;
1618 gsi_next (&gsi))
1619 {
1620 gphi *phi = gsi.phi ();
1621 if (virtual_operand_p (gimple_phi_result (phi)))
1622 continue;
1623 for (z = 0; z < gimple_phi_num_args (phi); z++)
1624 if (var == gimple_phi_arg_def (phi, z))
1625 {
1626 ok = true;
1627 break;
1628 }
1629 }
1630 if (ok)
1631 continue;
1632 /* Expand adds unused default defs for PARM_DECLs and
1633 RESULT_DECLs. They're ok. */
1634 if (has_zero_uses (var)
1635 && SSA_NAME_VAR (var)
1636 && !VAR_P (SSA_NAME_VAR (var)))
1637 continue;
1638 num++;
1639 print_generic_expr (stderr, var, TDF_SLIM);
1640 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1641 entry_block);
1642 fprintf (stderr, "but it is a default def so it should be.\n");
1643 }
1644 }
1645 }
1646 gcc_assert (num <= 0);
1647 }
1648
1649
1650 /* Virtual operand liveness analysis data init. */
1651
1652 void
1653 virtual_operand_live::init ()
1654 {
1655 liveout = XCNEWVEC (tree, last_basic_block_for_fn (cfun) + 1);
1656 liveout[ENTRY_BLOCK] = ssa_default_def (cfun, gimple_vop (cfun));
1657 }
1658
1659 /* Compute live-in of BB from cached live-out. */
1660
1661 tree
1662 virtual_operand_live::get_live_in (basic_block bb)
1663 {
1664 /* A virtual PHI is a convenient cache for live-in. */
1665 gphi *phi = get_virtual_phi (bb);
1666 if (phi)
1667 return gimple_phi_result (phi);
1668
1669 if (!liveout)
1670 init ();
1671
1672 /* Since we don't have a virtual PHI and we don't know whether there's
1673 a downstream virtual use (and thus PHIs are inserted where necessary)
1674 we now have to check each incoming edge live-out. */
1675 edge_iterator ei;
1676 edge e;
1677 tree livein = NULL_TREE;
1678 FOR_EACH_EDGE (e, ei, bb->preds)
1679 if (e->flags & EDGE_DFS_BACK)
1680 /* We can ignore backedges since if there's a def there it would
1681 have forced a PHI in the source because it also acts as use
1682 downstream. */
1683 continue;
1684 else if (!livein)
1685 livein = get_live_out (e->src);
1686 else if (get_live_out (e->src) != livein)
1687 /* When there's no virtual use downstream this indicates a point
1688 where we'd insert a PHI merging the different live virtual
1689 operands. */
1690 return NULL_TREE;
1691
1692 return livein;
1693 }
1694
1695 /* Compute live-out of BB. */
1696
1697 tree
1698 virtual_operand_live::get_live_out (basic_block bb)
1699 {
1700 if (!liveout)
1701 init ();
1702
1703 if (liveout[bb->index])
1704 return liveout[bb->index];
1705
1706 tree lo = NULL_TREE;
1707 for (auto gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1708 {
1709 gimple *stmt = gsi_stmt (gsi);
1710 if (gimple_vdef (stmt))
1711 {
1712 lo = gimple_vdef (stmt);
1713 break;
1714 }
1715 if (gimple_vuse (stmt))
1716 {
1717 lo = gimple_vuse (stmt);
1718 break;
1719 }
1720 }
1721 if (!lo)
1722 lo = get_live_in (bb);
1723 liveout[bb->index] = lo;
1724 return lo;
1725 }