]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-im.c
cfgexpand.c (expand_used_vars): Use virtual_operand_p.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "tree-flow.h"
30 #include "cfgloop.h"
31 #include "domwalk.h"
32 #include "params.h"
33 #include "tree-pass.h"
34 #include "flags.h"
35 #include "hashtab.h"
36 #include "tree-affine.h"
37 #include "pointer-set.h"
38 #include "tree-ssa-propagate.h"
39
40 /* TODO: Support for predicated code motion. I.e.
41
42 while (1)
43 {
44 if (cond)
45 {
46 a = inv;
47 something;
48 }
49 }
50
51 Where COND and INV are invariants, but evaluating INV may trap or be
52 invalid from some other reason if !COND. This may be transformed to
53
54 if (cond)
55 a = inv;
56 while (1)
57 {
58 if (cond)
59 something;
60 } */
61
62 /* A type for the list of statements that have to be moved in order to be able
63 to hoist an invariant computation. */
64
65 struct depend
66 {
67 gimple stmt;
68 struct depend *next;
69 };
70
71 /* The auxiliary data kept for each statement. */
72
73 struct lim_aux_data
74 {
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
77
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
80
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
85
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
88
89 struct depend *depends; /* List of statements that must be also hoisted
90 out of the loop when this statement is
91 hoisted; i.e. those that define the operands
92 of the statement and are inside of the
93 MAX_LOOP loop. */
94 };
95
96 /* Maps statements to their lim_aux_data. */
97
98 static struct pointer_map_t *lim_aux_data_map;
99
100 /* Description of a memory reference location. */
101
102 typedef struct mem_ref_loc
103 {
104 tree *ref; /* The reference itself. */
105 gimple stmt; /* The statement in that it occurs. */
106 } *mem_ref_loc_p;
107
108 DEF_VEC_P(mem_ref_loc_p);
109 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
110
111 /* The list of memory reference locations in a loop. */
112
113 typedef struct mem_ref_locs
114 {
115 VEC (mem_ref_loc_p, heap) *locs;
116 } *mem_ref_locs_p;
117
118 DEF_VEC_P(mem_ref_locs_p);
119 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
120
121 /* Description of a memory reference. */
122
123 typedef struct mem_ref
124 {
125 tree mem; /* The memory itself. */
126 unsigned id; /* ID assigned to the memory reference
127 (its index in memory_accesses.refs_list) */
128 hashval_t hash; /* Its hash value. */
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
134
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap dep_loop; /* The complement of INDEP_LOOP. */
146
147 bitmap indep_ref; /* The set of memory references on that
148 this reference is independent. */
149 bitmap dep_ref; /* The complement of INDEP_REF. */
150 } *mem_ref_p;
151
152 DEF_VEC_P(mem_ref_p);
153 DEF_VEC_ALLOC_P(mem_ref_p, heap);
154
155 DEF_VEC_P(bitmap);
156 DEF_VEC_ALLOC_P(bitmap, heap);
157
158 DEF_VEC_P(htab_t);
159 DEF_VEC_ALLOC_P(htab_t, heap);
160
161 /* Description of memory accesses in loops. */
162
163 static struct
164 {
165 /* The hash table of memory references accessed in loops. */
166 htab_t refs;
167
168 /* The list of memory references. */
169 VEC (mem_ref_p, heap) *refs_list;
170
171 /* The set of memory references accessed in each loop. */
172 VEC (bitmap, heap) *refs_in_loop;
173
174 /* The set of memory references accessed in each loop, including
175 subloops. */
176 VEC (bitmap, heap) *all_refs_in_loop;
177
178 /* The set of memory references stored in each loop, including
179 subloops. */
180 VEC (bitmap, heap) *all_refs_stored_in_loop;
181
182 /* Cache for expanding memory addresses. */
183 struct pointer_map_t *ttae_cache;
184 } memory_accesses;
185
186 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
187
188 /* Minimum cost of an expensive expression. */
189 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
190
191 /* The outermost loop for which execution of the header guarantees that the
192 block will be executed. */
193 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
194 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
195
196 /* Whether the reference was analyzable. */
197 #define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
198
199 static struct lim_aux_data *
200 init_lim_data (gimple stmt)
201 {
202 void **p = pointer_map_insert (lim_aux_data_map, stmt);
203
204 *p = XCNEW (struct lim_aux_data);
205 return (struct lim_aux_data *) *p;
206 }
207
208 static struct lim_aux_data *
209 get_lim_data (gimple stmt)
210 {
211 void **p = pointer_map_contains (lim_aux_data_map, stmt);
212 if (!p)
213 return NULL;
214
215 return (struct lim_aux_data *) *p;
216 }
217
218 /* Releases the memory occupied by DATA. */
219
220 static void
221 free_lim_aux_data (struct lim_aux_data *data)
222 {
223 struct depend *dep, *next;
224
225 for (dep = data->depends; dep; dep = next)
226 {
227 next = dep->next;
228 free (dep);
229 }
230 free (data);
231 }
232
233 static void
234 clear_lim_data (gimple stmt)
235 {
236 void **p = pointer_map_contains (lim_aux_data_map, stmt);
237 if (!p)
238 return;
239
240 free_lim_aux_data ((struct lim_aux_data *) *p);
241 *p = NULL;
242 }
243
244 /* Calls CBCK for each index in memory reference ADDR_P. There are two
245 kinds situations handled; in each of these cases, the memory reference
246 and DATA are passed to the callback:
247
248 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
249 pass the pointer to the index to the callback.
250
251 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
252 pointer to addr to the callback.
253
254 If the callback returns false, the whole search stops and false is returned.
255 Otherwise the function returns true after traversing through the whole
256 reference *ADDR_P. */
257
258 bool
259 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
260 {
261 tree *nxt, *idx;
262
263 for (; ; addr_p = nxt)
264 {
265 switch (TREE_CODE (*addr_p))
266 {
267 case SSA_NAME:
268 return cbck (*addr_p, addr_p, data);
269
270 case MEM_REF:
271 nxt = &TREE_OPERAND (*addr_p, 0);
272 return cbck (*addr_p, nxt, data);
273
274 case BIT_FIELD_REF:
275 case VIEW_CONVERT_EXPR:
276 case REALPART_EXPR:
277 case IMAGPART_EXPR:
278 nxt = &TREE_OPERAND (*addr_p, 0);
279 break;
280
281 case COMPONENT_REF:
282 /* If the component has varying offset, it behaves like index
283 as well. */
284 idx = &TREE_OPERAND (*addr_p, 2);
285 if (*idx
286 && !cbck (*addr_p, idx, data))
287 return false;
288
289 nxt = &TREE_OPERAND (*addr_p, 0);
290 break;
291
292 case ARRAY_REF:
293 case ARRAY_RANGE_REF:
294 nxt = &TREE_OPERAND (*addr_p, 0);
295 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
296 return false;
297 break;
298
299 case VAR_DECL:
300 case PARM_DECL:
301 case STRING_CST:
302 case RESULT_DECL:
303 case VECTOR_CST:
304 case COMPLEX_CST:
305 case INTEGER_CST:
306 case REAL_CST:
307 case FIXED_CST:
308 case CONSTRUCTOR:
309 return true;
310
311 case ADDR_EXPR:
312 gcc_assert (is_gimple_min_invariant (*addr_p));
313 return true;
314
315 case TARGET_MEM_REF:
316 idx = &TMR_BASE (*addr_p);
317 if (*idx
318 && !cbck (*addr_p, idx, data))
319 return false;
320 idx = &TMR_INDEX (*addr_p);
321 if (*idx
322 && !cbck (*addr_p, idx, data))
323 return false;
324 idx = &TMR_INDEX2 (*addr_p);
325 if (*idx
326 && !cbck (*addr_p, idx, data))
327 return false;
328 return true;
329
330 default:
331 gcc_unreachable ();
332 }
333 }
334 }
335
336 /* If it is possible to hoist the statement STMT unconditionally,
337 returns MOVE_POSSIBLE.
338 If it is possible to hoist the statement STMT, but we must avoid making
339 it executed if it would not be executed in the original program (e.g.
340 because it may trap), return MOVE_PRESERVE_EXECUTION.
341 Otherwise return MOVE_IMPOSSIBLE. */
342
343 enum move_pos
344 movement_possibility (gimple stmt)
345 {
346 tree lhs;
347 enum move_pos ret = MOVE_POSSIBLE;
348
349 if (flag_unswitch_loops
350 && gimple_code (stmt) == GIMPLE_COND)
351 {
352 /* If we perform unswitching, force the operands of the invariant
353 condition to be moved out of the loop. */
354 return MOVE_POSSIBLE;
355 }
356
357 if (gimple_code (stmt) == GIMPLE_PHI
358 && gimple_phi_num_args (stmt) <= 2
359 && !virtual_operand_p (gimple_phi_result (stmt))
360 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
361 return MOVE_POSSIBLE;
362
363 if (gimple_get_lhs (stmt) == NULL_TREE)
364 return MOVE_IMPOSSIBLE;
365
366 if (gimple_vdef (stmt))
367 return MOVE_IMPOSSIBLE;
368
369 if (stmt_ends_bb_p (stmt)
370 || gimple_has_volatile_ops (stmt)
371 || gimple_has_side_effects (stmt)
372 || stmt_could_throw_p (stmt))
373 return MOVE_IMPOSSIBLE;
374
375 if (is_gimple_call (stmt))
376 {
377 /* While pure or const call is guaranteed to have no side effects, we
378 cannot move it arbitrarily. Consider code like
379
380 char *s = something ();
381
382 while (1)
383 {
384 if (s)
385 t = strlen (s);
386 else
387 t = 0;
388 }
389
390 Here the strlen call cannot be moved out of the loop, even though
391 s is invariant. In addition to possibly creating a call with
392 invalid arguments, moving out a function call that is not executed
393 may cause performance regressions in case the call is costly and
394 not executed at all. */
395 ret = MOVE_PRESERVE_EXECUTION;
396 lhs = gimple_call_lhs (stmt);
397 }
398 else if (is_gimple_assign (stmt))
399 lhs = gimple_assign_lhs (stmt);
400 else
401 return MOVE_IMPOSSIBLE;
402
403 if (TREE_CODE (lhs) == SSA_NAME
404 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
405 return MOVE_IMPOSSIBLE;
406
407 if (TREE_CODE (lhs) != SSA_NAME
408 || gimple_could_trap_p (stmt))
409 return MOVE_PRESERVE_EXECUTION;
410
411 /* Non local loads in a transaction cannot be hoisted out. Well,
412 unless the load happens on every path out of the loop, but we
413 don't take this into account yet. */
414 if (flag_tm
415 && gimple_in_transaction (stmt)
416 && gimple_assign_single_p (stmt))
417 {
418 tree rhs = gimple_assign_rhs1 (stmt);
419 if (DECL_P (rhs) && is_global_var (rhs))
420 {
421 if (dump_file)
422 {
423 fprintf (dump_file, "Cannot hoist conditional load of ");
424 print_generic_expr (dump_file, rhs, TDF_SLIM);
425 fprintf (dump_file, " because it is in a transaction.\n");
426 }
427 return MOVE_IMPOSSIBLE;
428 }
429 }
430
431 return ret;
432 }
433
434 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
435 loop to that we could move the expression using DEF if it did not have
436 other operands, i.e. the outermost loop enclosing LOOP in that the value
437 of DEF is invariant. */
438
439 static struct loop *
440 outermost_invariant_loop (tree def, struct loop *loop)
441 {
442 gimple def_stmt;
443 basic_block def_bb;
444 struct loop *max_loop;
445 struct lim_aux_data *lim_data;
446
447 if (!def)
448 return superloop_at_depth (loop, 1);
449
450 if (TREE_CODE (def) != SSA_NAME)
451 {
452 gcc_assert (is_gimple_min_invariant (def));
453 return superloop_at_depth (loop, 1);
454 }
455
456 def_stmt = SSA_NAME_DEF_STMT (def);
457 def_bb = gimple_bb (def_stmt);
458 if (!def_bb)
459 return superloop_at_depth (loop, 1);
460
461 max_loop = find_common_loop (loop, def_bb->loop_father);
462
463 lim_data = get_lim_data (def_stmt);
464 if (lim_data != NULL && lim_data->max_loop != NULL)
465 max_loop = find_common_loop (max_loop,
466 loop_outer (lim_data->max_loop));
467 if (max_loop == loop)
468 return NULL;
469 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
470
471 return max_loop;
472 }
473
474 /* DATA is a structure containing information associated with a statement
475 inside LOOP. DEF is one of the operands of this statement.
476
477 Find the outermost loop enclosing LOOP in that value of DEF is invariant
478 and record this in DATA->max_loop field. If DEF itself is defined inside
479 this loop as well (i.e. we need to hoist it out of the loop if we want
480 to hoist the statement represented by DATA), record the statement in that
481 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
482 add the cost of the computation of DEF to the DATA->cost.
483
484 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
485
486 static bool
487 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
488 bool add_cost)
489 {
490 gimple def_stmt = SSA_NAME_DEF_STMT (def);
491 basic_block def_bb = gimple_bb (def_stmt);
492 struct loop *max_loop;
493 struct depend *dep;
494 struct lim_aux_data *def_data;
495
496 if (!def_bb)
497 return true;
498
499 max_loop = outermost_invariant_loop (def, loop);
500 if (!max_loop)
501 return false;
502
503 if (flow_loop_nested_p (data->max_loop, max_loop))
504 data->max_loop = max_loop;
505
506 def_data = get_lim_data (def_stmt);
507 if (!def_data)
508 return true;
509
510 if (add_cost
511 /* Only add the cost if the statement defining DEF is inside LOOP,
512 i.e. if it is likely that by moving the invariants dependent
513 on it, we will be able to avoid creating a new register for
514 it (since it will be only used in these dependent invariants). */
515 && def_bb->loop_father == loop)
516 data->cost += def_data->cost;
517
518 dep = XNEW (struct depend);
519 dep->stmt = def_stmt;
520 dep->next = data->depends;
521 data->depends = dep;
522
523 return true;
524 }
525
526 /* Returns an estimate for a cost of statement STMT. The values here
527 are just ad-hoc constants, similar to costs for inlining. */
528
529 static unsigned
530 stmt_cost (gimple stmt)
531 {
532 /* Always try to create possibilities for unswitching. */
533 if (gimple_code (stmt) == GIMPLE_COND
534 || gimple_code (stmt) == GIMPLE_PHI)
535 return LIM_EXPENSIVE;
536
537 /* We should be hoisting calls if possible. */
538 if (is_gimple_call (stmt))
539 {
540 tree fndecl;
541
542 /* Unless the call is a builtin_constant_p; this always folds to a
543 constant, so moving it is useless. */
544 fndecl = gimple_call_fndecl (stmt);
545 if (fndecl
546 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
547 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
548 return 0;
549
550 return LIM_EXPENSIVE;
551 }
552
553 /* Hoisting memory references out should almost surely be a win. */
554 if (gimple_references_memory_p (stmt))
555 return LIM_EXPENSIVE;
556
557 if (gimple_code (stmt) != GIMPLE_ASSIGN)
558 return 1;
559
560 switch (gimple_assign_rhs_code (stmt))
561 {
562 case MULT_EXPR:
563 case WIDEN_MULT_EXPR:
564 case WIDEN_MULT_PLUS_EXPR:
565 case WIDEN_MULT_MINUS_EXPR:
566 case DOT_PROD_EXPR:
567 case FMA_EXPR:
568 case TRUNC_DIV_EXPR:
569 case CEIL_DIV_EXPR:
570 case FLOOR_DIV_EXPR:
571 case ROUND_DIV_EXPR:
572 case EXACT_DIV_EXPR:
573 case CEIL_MOD_EXPR:
574 case FLOOR_MOD_EXPR:
575 case ROUND_MOD_EXPR:
576 case TRUNC_MOD_EXPR:
577 case RDIV_EXPR:
578 /* Division and multiplication are usually expensive. */
579 return LIM_EXPENSIVE;
580
581 case LSHIFT_EXPR:
582 case RSHIFT_EXPR:
583 case WIDEN_LSHIFT_EXPR:
584 case LROTATE_EXPR:
585 case RROTATE_EXPR:
586 /* Shifts and rotates are usually expensive. */
587 return LIM_EXPENSIVE;
588
589 case CONSTRUCTOR:
590 /* Make vector construction cost proportional to the number
591 of elements. */
592 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
593
594 case SSA_NAME:
595 case PAREN_EXPR:
596 /* Whether or not something is wrapped inside a PAREN_EXPR
597 should not change move cost. Nor should an intermediate
598 unpropagated SSA name copy. */
599 return 0;
600
601 default:
602 return 1;
603 }
604 }
605
606 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
607 REF is independent. If REF is not independent in LOOP, NULL is returned
608 instead. */
609
610 static struct loop *
611 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
612 {
613 struct loop *aloop;
614
615 if (bitmap_bit_p (ref->stored, loop->num))
616 return NULL;
617
618 for (aloop = outer;
619 aloop != loop;
620 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
621 if (!bitmap_bit_p (ref->stored, aloop->num)
622 && ref_indep_loop_p (aloop, ref))
623 return aloop;
624
625 if (ref_indep_loop_p (loop, ref))
626 return loop;
627 else
628 return NULL;
629 }
630
631 /* If there is a simple load or store to a memory reference in STMT, returns
632 the location of the memory reference, and sets IS_STORE according to whether
633 it is a store or load. Otherwise, returns NULL. */
634
635 static tree *
636 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
637 {
638 tree *lhs;
639 enum tree_code code;
640
641 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
642 if (gimple_code (stmt) != GIMPLE_ASSIGN)
643 return NULL;
644
645 code = gimple_assign_rhs_code (stmt);
646
647 lhs = gimple_assign_lhs_ptr (stmt);
648
649 if (TREE_CODE (*lhs) == SSA_NAME)
650 {
651 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
652 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
653 return NULL;
654
655 *is_store = false;
656 return gimple_assign_rhs1_ptr (stmt);
657 }
658 else if (code == SSA_NAME
659 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
660 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
661 {
662 *is_store = true;
663 return lhs;
664 }
665 else
666 return NULL;
667 }
668
669 /* Returns the memory reference contained in STMT. */
670
671 static mem_ref_p
672 mem_ref_in_stmt (gimple stmt)
673 {
674 bool store;
675 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
676 hashval_t hash;
677 mem_ref_p ref;
678
679 if (!mem)
680 return NULL;
681 gcc_assert (!store);
682
683 hash = iterative_hash_expr (*mem, 0);
684 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
685
686 gcc_assert (ref != NULL);
687 return ref;
688 }
689
690 /* From a controlling predicate in DOM determine the arguments from
691 the PHI node PHI that are chosen if the predicate evaluates to
692 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
693 they are non-NULL. Returns true if the arguments can be determined,
694 else return false. */
695
696 static bool
697 extract_true_false_args_from_phi (basic_block dom, gimple phi,
698 tree *true_arg_p, tree *false_arg_p)
699 {
700 basic_block bb = gimple_bb (phi);
701 edge true_edge, false_edge, tem;
702 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
703
704 /* We have to verify that one edge into the PHI node is dominated
705 by the true edge of the predicate block and the other edge
706 dominated by the false edge. This ensures that the PHI argument
707 we are going to take is completely determined by the path we
708 take from the predicate block.
709 We can only use BB dominance checks below if the destination of
710 the true/false edges are dominated by their edge, thus only
711 have a single predecessor. */
712 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
713 tem = EDGE_PRED (bb, 0);
714 if (tem == true_edge
715 || (single_pred_p (true_edge->dest)
716 && (tem->src == true_edge->dest
717 || dominated_by_p (CDI_DOMINATORS,
718 tem->src, true_edge->dest))))
719 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
720 else if (tem == false_edge
721 || (single_pred_p (false_edge->dest)
722 && (tem->src == false_edge->dest
723 || dominated_by_p (CDI_DOMINATORS,
724 tem->src, false_edge->dest))))
725 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
726 else
727 return false;
728 tem = EDGE_PRED (bb, 1);
729 if (tem == true_edge
730 || (single_pred_p (true_edge->dest)
731 && (tem->src == true_edge->dest
732 || dominated_by_p (CDI_DOMINATORS,
733 tem->src, true_edge->dest))))
734 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
735 else if (tem == false_edge
736 || (single_pred_p (false_edge->dest)
737 && (tem->src == false_edge->dest
738 || dominated_by_p (CDI_DOMINATORS,
739 tem->src, false_edge->dest))))
740 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
741 else
742 return false;
743 if (!arg0 || !arg1)
744 return false;
745
746 if (true_arg_p)
747 *true_arg_p = arg0;
748 if (false_arg_p)
749 *false_arg_p = arg1;
750
751 return true;
752 }
753
754 /* Determine the outermost loop to that it is possible to hoist a statement
755 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
756 the outermost loop in that the value computed by STMT is invariant.
757 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
758 we preserve the fact whether STMT is executed. It also fills other related
759 information to LIM_DATA (STMT).
760
761 The function returns false if STMT cannot be hoisted outside of the loop it
762 is defined in, and true otherwise. */
763
764 static bool
765 determine_max_movement (gimple stmt, bool must_preserve_exec)
766 {
767 basic_block bb = gimple_bb (stmt);
768 struct loop *loop = bb->loop_father;
769 struct loop *level;
770 struct lim_aux_data *lim_data = get_lim_data (stmt);
771 tree val;
772 ssa_op_iter iter;
773
774 if (must_preserve_exec)
775 level = ALWAYS_EXECUTED_IN (bb);
776 else
777 level = superloop_at_depth (loop, 1);
778 lim_data->max_loop = level;
779
780 if (gimple_code (stmt) == GIMPLE_PHI)
781 {
782 use_operand_p use_p;
783 unsigned min_cost = UINT_MAX;
784 unsigned total_cost = 0;
785 struct lim_aux_data *def_data;
786
787 /* We will end up promoting dependencies to be unconditionally
788 evaluated. For this reason the PHI cost (and thus the
789 cost we remove from the loop by doing the invariant motion)
790 is that of the cheapest PHI argument dependency chain. */
791 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
792 {
793 val = USE_FROM_PTR (use_p);
794 if (TREE_CODE (val) != SSA_NAME)
795 continue;
796 if (!add_dependency (val, lim_data, loop, false))
797 return false;
798 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
799 if (def_data)
800 {
801 min_cost = MIN (min_cost, def_data->cost);
802 total_cost += def_data->cost;
803 }
804 }
805
806 lim_data->cost += min_cost;
807
808 if (gimple_phi_num_args (stmt) > 1)
809 {
810 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
811 gimple cond;
812 if (gsi_end_p (gsi_last_bb (dom)))
813 return false;
814 cond = gsi_stmt (gsi_last_bb (dom));
815 if (gimple_code (cond) != GIMPLE_COND)
816 return false;
817 /* Verify that this is an extended form of a diamond and
818 the PHI arguments are completely controlled by the
819 predicate in DOM. */
820 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
821 return false;
822
823 /* Fold in dependencies and cost of the condition. */
824 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
825 {
826 if (!add_dependency (val, lim_data, loop, false))
827 return false;
828 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
829 if (def_data)
830 total_cost += def_data->cost;
831 }
832
833 /* We want to avoid unconditionally executing very expensive
834 operations. As costs for our dependencies cannot be
835 negative just claim we are not invariand for this case.
836 We also are not sure whether the control-flow inside the
837 loop will vanish. */
838 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
839 && !(min_cost != 0
840 && total_cost / min_cost <= 2))
841 return false;
842
843 /* Assume that the control-flow in the loop will vanish.
844 ??? We should verify this and not artificially increase
845 the cost if that is not the case. */
846 lim_data->cost += stmt_cost (stmt);
847 }
848
849 return true;
850 }
851 else
852 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
853 if (!add_dependency (val, lim_data, loop, true))
854 return false;
855
856 if (gimple_vuse (stmt))
857 {
858 mem_ref_p ref = mem_ref_in_stmt (stmt);
859
860 if (ref)
861 {
862 lim_data->max_loop
863 = outermost_indep_loop (lim_data->max_loop, loop, ref);
864 if (!lim_data->max_loop)
865 return false;
866 }
867 else
868 {
869 if ((val = gimple_vuse (stmt)) != NULL_TREE)
870 {
871 if (!add_dependency (val, lim_data, loop, false))
872 return false;
873 }
874 }
875 }
876
877 lim_data->cost += stmt_cost (stmt);
878
879 return true;
880 }
881
882 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
883 and that one of the operands of this statement is computed by STMT.
884 Ensure that STMT (together with all the statements that define its
885 operands) is hoisted at least out of the loop LEVEL. */
886
887 static void
888 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
889 {
890 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
891 struct depend *dep;
892 struct lim_aux_data *lim_data;
893
894 stmt_loop = find_common_loop (orig_loop, stmt_loop);
895 lim_data = get_lim_data (stmt);
896 if (lim_data != NULL && lim_data->tgt_loop != NULL)
897 stmt_loop = find_common_loop (stmt_loop,
898 loop_outer (lim_data->tgt_loop));
899 if (flow_loop_nested_p (stmt_loop, level))
900 return;
901
902 gcc_assert (level == lim_data->max_loop
903 || flow_loop_nested_p (lim_data->max_loop, level));
904
905 lim_data->tgt_loop = level;
906 for (dep = lim_data->depends; dep; dep = dep->next)
907 set_level (dep->stmt, orig_loop, level);
908 }
909
910 /* Determines an outermost loop from that we want to hoist the statement STMT.
911 For now we chose the outermost possible loop. TODO -- use profiling
912 information to set it more sanely. */
913
914 static void
915 set_profitable_level (gimple stmt)
916 {
917 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
918 }
919
920 /* Returns true if STMT is a call that has side effects. */
921
922 static bool
923 nonpure_call_p (gimple stmt)
924 {
925 if (gimple_code (stmt) != GIMPLE_CALL)
926 return false;
927
928 return gimple_has_side_effects (stmt);
929 }
930
931 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
932
933 static gimple
934 rewrite_reciprocal (gimple_stmt_iterator *bsi)
935 {
936 gimple stmt, stmt1, stmt2;
937 tree name, lhs, type;
938 tree real_one;
939 gimple_stmt_iterator gsi;
940
941 stmt = gsi_stmt (*bsi);
942 lhs = gimple_assign_lhs (stmt);
943 type = TREE_TYPE (lhs);
944
945 real_one = build_one_cst (type);
946
947 name = make_temp_ssa_name (type, NULL, "reciptmp");
948 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
949 gimple_assign_rhs2 (stmt));
950
951 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
952 gimple_assign_rhs1 (stmt));
953
954 /* Replace division stmt with reciprocal and multiply stmts.
955 The multiply stmt is not invariant, so update iterator
956 and avoid rescanning. */
957 gsi = *bsi;
958 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
959 gsi_replace (&gsi, stmt2, true);
960
961 /* Continue processing with invariant reciprocal statement. */
962 return stmt1;
963 }
964
965 /* Check if the pattern at *BSI is a bittest of the form
966 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
967
968 static gimple
969 rewrite_bittest (gimple_stmt_iterator *bsi)
970 {
971 gimple stmt, use_stmt, stmt1, stmt2;
972 tree lhs, name, t, a, b;
973 use_operand_p use;
974
975 stmt = gsi_stmt (*bsi);
976 lhs = gimple_assign_lhs (stmt);
977
978 /* Verify that the single use of lhs is a comparison against zero. */
979 if (TREE_CODE (lhs) != SSA_NAME
980 || !single_imm_use (lhs, &use, &use_stmt)
981 || gimple_code (use_stmt) != GIMPLE_COND)
982 return stmt;
983 if (gimple_cond_lhs (use_stmt) != lhs
984 || (gimple_cond_code (use_stmt) != NE_EXPR
985 && gimple_cond_code (use_stmt) != EQ_EXPR)
986 || !integer_zerop (gimple_cond_rhs (use_stmt)))
987 return stmt;
988
989 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
990 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
991 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
992 return stmt;
993
994 /* There is a conversion in between possibly inserted by fold. */
995 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
996 {
997 t = gimple_assign_rhs1 (stmt1);
998 if (TREE_CODE (t) != SSA_NAME
999 || !has_single_use (t))
1000 return stmt;
1001 stmt1 = SSA_NAME_DEF_STMT (t);
1002 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1003 return stmt;
1004 }
1005
1006 /* Verify that B is loop invariant but A is not. Verify that with
1007 all the stmt walking we are still in the same loop. */
1008 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1009 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1010 return stmt;
1011
1012 a = gimple_assign_rhs1 (stmt1);
1013 b = gimple_assign_rhs2 (stmt1);
1014
1015 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1016 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1017 {
1018 gimple_stmt_iterator rsi;
1019
1020 /* 1 << B */
1021 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1022 build_int_cst (TREE_TYPE (a), 1), b);
1023 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1024 stmt1 = gimple_build_assign (name, t);
1025
1026 /* A & (1 << B) */
1027 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1028 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1029 stmt2 = gimple_build_assign (name, t);
1030
1031 /* Replace the SSA_NAME we compare against zero. Adjust
1032 the type of zero accordingly. */
1033 SET_USE (use, name);
1034 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1035
1036 /* Don't use gsi_replace here, none of the new assignments sets
1037 the variable originally set in stmt. Move bsi to stmt1, and
1038 then remove the original stmt, so that we get a chance to
1039 retain debug info for it. */
1040 rsi = *bsi;
1041 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1042 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1043 gsi_remove (&rsi, true);
1044
1045 return stmt1;
1046 }
1047
1048 return stmt;
1049 }
1050
1051
1052 /* Determine the outermost loops in that statements in basic block BB are
1053 invariant, and record them to the LIM_DATA associated with the statements.
1054 Callback for walk_dominator_tree. */
1055
1056 static void
1057 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1058 basic_block bb)
1059 {
1060 enum move_pos pos;
1061 gimple_stmt_iterator bsi;
1062 gimple stmt;
1063 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1064 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1065 struct lim_aux_data *lim_data;
1066
1067 if (!loop_outer (bb->loop_father))
1068 return;
1069
1070 if (dump_file && (dump_flags & TDF_DETAILS))
1071 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1072 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1073
1074 /* Look at PHI nodes, but only if there is at most two.
1075 ??? We could relax this further by post-processing the inserted
1076 code and transforming adjacent cond-exprs with the same predicate
1077 to control flow again. */
1078 bsi = gsi_start_phis (bb);
1079 if (!gsi_end_p (bsi)
1080 && ((gsi_next (&bsi), gsi_end_p (bsi))
1081 || (gsi_next (&bsi), gsi_end_p (bsi))))
1082 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1083 {
1084 stmt = gsi_stmt (bsi);
1085
1086 pos = movement_possibility (stmt);
1087 if (pos == MOVE_IMPOSSIBLE)
1088 continue;
1089
1090 lim_data = init_lim_data (stmt);
1091 lim_data->always_executed_in = outermost;
1092
1093 if (!determine_max_movement (stmt, false))
1094 {
1095 lim_data->max_loop = NULL;
1096 continue;
1097 }
1098
1099 if (dump_file && (dump_flags & TDF_DETAILS))
1100 {
1101 print_gimple_stmt (dump_file, stmt, 2, 0);
1102 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1103 loop_depth (lim_data->max_loop),
1104 lim_data->cost);
1105 }
1106
1107 if (lim_data->cost >= LIM_EXPENSIVE)
1108 set_profitable_level (stmt);
1109 }
1110
1111 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1112 {
1113 stmt = gsi_stmt (bsi);
1114
1115 pos = movement_possibility (stmt);
1116 if (pos == MOVE_IMPOSSIBLE)
1117 {
1118 if (nonpure_call_p (stmt))
1119 {
1120 maybe_never = true;
1121 outermost = NULL;
1122 }
1123 /* Make sure to note always_executed_in for stores to make
1124 store-motion work. */
1125 else if (stmt_makes_single_store (stmt))
1126 {
1127 struct lim_aux_data *lim_data = init_lim_data (stmt);
1128 lim_data->always_executed_in = outermost;
1129 }
1130 continue;
1131 }
1132
1133 if (is_gimple_assign (stmt)
1134 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1135 == GIMPLE_BINARY_RHS))
1136 {
1137 tree op0 = gimple_assign_rhs1 (stmt);
1138 tree op1 = gimple_assign_rhs2 (stmt);
1139 struct loop *ol1 = outermost_invariant_loop (op1,
1140 loop_containing_stmt (stmt));
1141
1142 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1143 to be hoisted out of loop, saving expensive divide. */
1144 if (pos == MOVE_POSSIBLE
1145 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1146 && flag_unsafe_math_optimizations
1147 && !flag_trapping_math
1148 && ol1 != NULL
1149 && outermost_invariant_loop (op0, ol1) == NULL)
1150 stmt = rewrite_reciprocal (&bsi);
1151
1152 /* If the shift count is invariant, convert (A >> B) & 1 to
1153 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1154 saving an expensive shift. */
1155 if (pos == MOVE_POSSIBLE
1156 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1157 && integer_onep (op1)
1158 && TREE_CODE (op0) == SSA_NAME
1159 && has_single_use (op0))
1160 stmt = rewrite_bittest (&bsi);
1161 }
1162
1163 lim_data = init_lim_data (stmt);
1164 lim_data->always_executed_in = outermost;
1165
1166 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1167 continue;
1168
1169 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1170 {
1171 lim_data->max_loop = NULL;
1172 continue;
1173 }
1174
1175 if (dump_file && (dump_flags & TDF_DETAILS))
1176 {
1177 print_gimple_stmt (dump_file, stmt, 2, 0);
1178 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1179 loop_depth (lim_data->max_loop),
1180 lim_data->cost);
1181 }
1182
1183 if (lim_data->cost >= LIM_EXPENSIVE)
1184 set_profitable_level (stmt);
1185 }
1186 }
1187
1188 /* For each statement determines the outermost loop in that it is invariant,
1189 statements on whose motion it depends and the cost of the computation.
1190 This information is stored to the LIM_DATA structure associated with
1191 each statement. */
1192
1193 static void
1194 determine_invariantness (void)
1195 {
1196 struct dom_walk_data walk_data;
1197
1198 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1199 walk_data.dom_direction = CDI_DOMINATORS;
1200 walk_data.before_dom_children = determine_invariantness_stmt;
1201
1202 init_walk_dominator_tree (&walk_data);
1203 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1204 fini_walk_dominator_tree (&walk_data);
1205 }
1206
1207 /* Hoist the statements in basic block BB out of the loops prescribed by
1208 data stored in LIM_DATA structures associated with each statement. Callback
1209 for walk_dominator_tree. */
1210
1211 static void
1212 move_computations_stmt (struct dom_walk_data *dw_data,
1213 basic_block bb)
1214 {
1215 struct loop *level;
1216 gimple_stmt_iterator bsi;
1217 gimple stmt;
1218 unsigned cost = 0;
1219 struct lim_aux_data *lim_data;
1220
1221 if (!loop_outer (bb->loop_father))
1222 return;
1223
1224 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1225 {
1226 gimple new_stmt;
1227 stmt = gsi_stmt (bsi);
1228
1229 lim_data = get_lim_data (stmt);
1230 if (lim_data == NULL)
1231 {
1232 gsi_next (&bsi);
1233 continue;
1234 }
1235
1236 cost = lim_data->cost;
1237 level = lim_data->tgt_loop;
1238 clear_lim_data (stmt);
1239
1240 if (!level)
1241 {
1242 gsi_next (&bsi);
1243 continue;
1244 }
1245
1246 if (dump_file && (dump_flags & TDF_DETAILS))
1247 {
1248 fprintf (dump_file, "Moving PHI node\n");
1249 print_gimple_stmt (dump_file, stmt, 0, 0);
1250 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1251 cost, level->num);
1252 }
1253
1254 if (gimple_phi_num_args (stmt) == 1)
1255 {
1256 tree arg = PHI_ARG_DEF (stmt, 0);
1257 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1258 gimple_phi_result (stmt),
1259 arg, NULL_TREE);
1260 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1261 }
1262 else
1263 {
1264 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1265 gimple cond = gsi_stmt (gsi_last_bb (dom));
1266 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1267 /* Get the PHI arguments corresponding to the true and false
1268 edges of COND. */
1269 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1270 gcc_assert (arg0 && arg1);
1271 t = build2 (gimple_cond_code (cond), boolean_type_node,
1272 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1273 new_stmt = gimple_build_assign_with_ops3 (COND_EXPR,
1274 gimple_phi_result (stmt),
1275 t, arg0, arg1);
1276 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1277 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1278 }
1279 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1280 remove_phi_node (&bsi, false);
1281 }
1282
1283 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1284 {
1285 edge e;
1286
1287 stmt = gsi_stmt (bsi);
1288
1289 lim_data = get_lim_data (stmt);
1290 if (lim_data == NULL)
1291 {
1292 gsi_next (&bsi);
1293 continue;
1294 }
1295
1296 cost = lim_data->cost;
1297 level = lim_data->tgt_loop;
1298 clear_lim_data (stmt);
1299
1300 if (!level)
1301 {
1302 gsi_next (&bsi);
1303 continue;
1304 }
1305
1306 /* We do not really want to move conditionals out of the loop; we just
1307 placed it here to force its operands to be moved if necessary. */
1308 if (gimple_code (stmt) == GIMPLE_COND)
1309 continue;
1310
1311 if (dump_file && (dump_flags & TDF_DETAILS))
1312 {
1313 fprintf (dump_file, "Moving statement\n");
1314 print_gimple_stmt (dump_file, stmt, 0, 0);
1315 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1316 cost, level->num);
1317 }
1318
1319 e = loop_preheader_edge (level);
1320 gcc_assert (!gimple_vdef (stmt));
1321 if (gimple_vuse (stmt))
1322 {
1323 /* The new VUSE is the one from the virtual PHI in the loop
1324 header or the one already present. */
1325 gimple_stmt_iterator gsi2;
1326 for (gsi2 = gsi_start_phis (e->dest);
1327 !gsi_end_p (gsi2); gsi_next (&gsi2))
1328 {
1329 gimple phi = gsi_stmt (gsi2);
1330 if (virtual_operand_p (gimple_phi_result (phi)))
1331 {
1332 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1333 break;
1334 }
1335 }
1336 }
1337 gsi_remove (&bsi, false);
1338 gsi_insert_on_edge (e, stmt);
1339 }
1340 }
1341
1342 /* Hoist the statements out of the loops prescribed by data stored in
1343 LIM_DATA structures associated with each statement.*/
1344
1345 static unsigned int
1346 move_computations (void)
1347 {
1348 struct dom_walk_data walk_data;
1349 unsigned int todo = 0;
1350
1351 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1352 walk_data.global_data = &todo;
1353 walk_data.dom_direction = CDI_DOMINATORS;
1354 walk_data.before_dom_children = move_computations_stmt;
1355
1356 init_walk_dominator_tree (&walk_data);
1357 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1358 fini_walk_dominator_tree (&walk_data);
1359
1360 gsi_commit_edge_inserts ();
1361 if (need_ssa_update_p (cfun))
1362 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1363
1364 return todo;
1365 }
1366
1367 /* Checks whether the statement defining variable *INDEX can be hoisted
1368 out of the loop passed in DATA. Callback for for_each_index. */
1369
1370 static bool
1371 may_move_till (tree ref, tree *index, void *data)
1372 {
1373 struct loop *loop = (struct loop *) data, *max_loop;
1374
1375 /* If REF is an array reference, check also that the step and the lower
1376 bound is invariant in LOOP. */
1377 if (TREE_CODE (ref) == ARRAY_REF)
1378 {
1379 tree step = TREE_OPERAND (ref, 3);
1380 tree lbound = TREE_OPERAND (ref, 2);
1381
1382 max_loop = outermost_invariant_loop (step, loop);
1383 if (!max_loop)
1384 return false;
1385
1386 max_loop = outermost_invariant_loop (lbound, loop);
1387 if (!max_loop)
1388 return false;
1389 }
1390
1391 max_loop = outermost_invariant_loop (*index, loop);
1392 if (!max_loop)
1393 return false;
1394
1395 return true;
1396 }
1397
1398 /* If OP is SSA NAME, force the statement that defines it to be
1399 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1400
1401 static void
1402 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1403 {
1404 gimple stmt;
1405
1406 if (!op
1407 || is_gimple_min_invariant (op))
1408 return;
1409
1410 gcc_assert (TREE_CODE (op) == SSA_NAME);
1411
1412 stmt = SSA_NAME_DEF_STMT (op);
1413 if (gimple_nop_p (stmt))
1414 return;
1415
1416 set_level (stmt, orig_loop, loop);
1417 }
1418
1419 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1420 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1421 for_each_index. */
1422
1423 struct fmt_data
1424 {
1425 struct loop *loop;
1426 struct loop *orig_loop;
1427 };
1428
1429 static bool
1430 force_move_till (tree ref, tree *index, void *data)
1431 {
1432 struct fmt_data *fmt_data = (struct fmt_data *) data;
1433
1434 if (TREE_CODE (ref) == ARRAY_REF)
1435 {
1436 tree step = TREE_OPERAND (ref, 3);
1437 tree lbound = TREE_OPERAND (ref, 2);
1438
1439 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1440 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1441 }
1442
1443 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1444
1445 return true;
1446 }
1447
1448 /* A hash function for struct mem_ref object OBJ. */
1449
1450 static hashval_t
1451 memref_hash (const void *obj)
1452 {
1453 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1454
1455 return mem->hash;
1456 }
1457
1458 /* An equality function for struct mem_ref object OBJ1 with
1459 memory reference OBJ2. */
1460
1461 static int
1462 memref_eq (const void *obj1, const void *obj2)
1463 {
1464 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1465
1466 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1467 }
1468
1469 /* Releases list of memory reference locations ACCS. */
1470
1471 static void
1472 free_mem_ref_locs (mem_ref_locs_p accs)
1473 {
1474 unsigned i;
1475 mem_ref_loc_p loc;
1476
1477 if (!accs)
1478 return;
1479
1480 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1481 free (loc);
1482 VEC_free (mem_ref_loc_p, heap, accs->locs);
1483 free (accs);
1484 }
1485
1486 /* A function to free the mem_ref object OBJ. */
1487
1488 static void
1489 memref_free (void *obj)
1490 {
1491 struct mem_ref *const mem = (struct mem_ref *) obj;
1492 unsigned i;
1493 mem_ref_locs_p accs;
1494
1495 BITMAP_FREE (mem->stored);
1496 BITMAP_FREE (mem->indep_loop);
1497 BITMAP_FREE (mem->dep_loop);
1498 BITMAP_FREE (mem->indep_ref);
1499 BITMAP_FREE (mem->dep_ref);
1500
1501 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1502 free_mem_ref_locs (accs);
1503 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1504
1505 free (mem);
1506 }
1507
1508 /* Allocates and returns a memory reference description for MEM whose hash
1509 value is HASH and id is ID. */
1510
1511 static mem_ref_p
1512 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1513 {
1514 mem_ref_p ref = XNEW (struct mem_ref);
1515 ref->mem = mem;
1516 ref->id = id;
1517 ref->hash = hash;
1518 ref->stored = BITMAP_ALLOC (NULL);
1519 ref->indep_loop = BITMAP_ALLOC (NULL);
1520 ref->dep_loop = BITMAP_ALLOC (NULL);
1521 ref->indep_ref = BITMAP_ALLOC (NULL);
1522 ref->dep_ref = BITMAP_ALLOC (NULL);
1523 ref->accesses_in_loop = NULL;
1524
1525 return ref;
1526 }
1527
1528 /* Allocates and returns the new list of locations. */
1529
1530 static mem_ref_locs_p
1531 mem_ref_locs_alloc (void)
1532 {
1533 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1534 accs->locs = NULL;
1535 return accs;
1536 }
1537
1538 /* Records memory reference location *LOC in LOOP to the memory reference
1539 description REF. The reference occurs in statement STMT. */
1540
1541 static void
1542 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1543 {
1544 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1545 mem_ref_locs_p accs;
1546 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1547
1548 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1549 <= (unsigned) loop->num)
1550 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1551 loop->num + 1);
1552 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1553 if (!accs)
1554 {
1555 accs = mem_ref_locs_alloc ();
1556 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1557 }
1558
1559 aref->stmt = stmt;
1560 aref->ref = loc;
1561
1562 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1563 bitmap_set_bit (ril, ref->id);
1564 }
1565
1566 /* Marks reference REF as stored in LOOP. */
1567
1568 static void
1569 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1570 {
1571 for (;
1572 loop != current_loops->tree_root
1573 && !bitmap_bit_p (ref->stored, loop->num);
1574 loop = loop_outer (loop))
1575 bitmap_set_bit (ref->stored, loop->num);
1576 }
1577
1578 /* Gathers memory references in statement STMT in LOOP, storing the
1579 information about them in the memory_accesses structure. Marks
1580 the vops accessed through unrecognized statements there as
1581 well. */
1582
1583 static void
1584 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1585 {
1586 tree *mem = NULL;
1587 hashval_t hash;
1588 PTR *slot;
1589 mem_ref_p ref;
1590 bool is_stored;
1591 unsigned id;
1592
1593 if (!gimple_vuse (stmt))
1594 return;
1595
1596 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1597 if (!mem)
1598 {
1599 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1600 ref = mem_ref_alloc (error_mark_node, 0, id);
1601 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1602 if (dump_file && (dump_flags & TDF_DETAILS))
1603 {
1604 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1605 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1606 }
1607 if (gimple_vdef (stmt))
1608 mark_ref_stored (ref, loop);
1609 record_mem_ref_loc (ref, loop, stmt, mem);
1610 return;
1611 }
1612
1613 hash = iterative_hash_expr (*mem, 0);
1614 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1615
1616 if (*slot)
1617 {
1618 ref = (mem_ref_p) *slot;
1619 id = ref->id;
1620 }
1621 else
1622 {
1623 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1624 ref = mem_ref_alloc (*mem, hash, id);
1625 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1626 *slot = ref;
1627
1628 if (dump_file && (dump_flags & TDF_DETAILS))
1629 {
1630 fprintf (dump_file, "Memory reference %u: ", id);
1631 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1632 fprintf (dump_file, "\n");
1633 }
1634 }
1635
1636 if (is_stored)
1637 mark_ref_stored (ref, loop);
1638
1639 record_mem_ref_loc (ref, loop, stmt, mem);
1640 return;
1641 }
1642
1643 /* Gathers memory references in loops. */
1644
1645 static void
1646 gather_mem_refs_in_loops (void)
1647 {
1648 gimple_stmt_iterator bsi;
1649 basic_block bb;
1650 struct loop *loop;
1651 loop_iterator li;
1652 bitmap lrefs, alrefs, alrefso;
1653
1654 FOR_EACH_BB (bb)
1655 {
1656 loop = bb->loop_father;
1657 if (loop == current_loops->tree_root)
1658 continue;
1659
1660 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1661 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1662 }
1663
1664 /* Propagate the information about accessed memory references up
1665 the loop hierarchy. */
1666 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1667 {
1668 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1669 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1670 bitmap_ior_into (alrefs, lrefs);
1671
1672 if (loop_outer (loop) == current_loops->tree_root)
1673 continue;
1674
1675 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1676 loop_outer (loop)->num);
1677 bitmap_ior_into (alrefso, alrefs);
1678 }
1679 }
1680
1681 /* Create a mapping from virtual operands to references that touch them
1682 in LOOP. */
1683
1684 static void
1685 create_vop_ref_mapping_loop (struct loop *loop)
1686 {
1687 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1688 struct loop *sloop;
1689 bitmap_iterator bi;
1690 unsigned i;
1691 mem_ref_p ref;
1692
1693 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1694 {
1695 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1696 for (sloop = loop; sloop != current_loops->tree_root;
1697 sloop = loop_outer (sloop))
1698 if (bitmap_bit_p (ref->stored, loop->num))
1699 {
1700 bitmap refs_stored
1701 = VEC_index (bitmap, memory_accesses.all_refs_stored_in_loop,
1702 sloop->num);
1703 bitmap_set_bit (refs_stored, ref->id);
1704 }
1705 }
1706 }
1707
1708 /* For each non-clobbered virtual operand and each loop, record the memory
1709 references in this loop that touch the operand. */
1710
1711 static void
1712 create_vop_ref_mapping (void)
1713 {
1714 loop_iterator li;
1715 struct loop *loop;
1716
1717 FOR_EACH_LOOP (li, loop, 0)
1718 {
1719 create_vop_ref_mapping_loop (loop);
1720 }
1721 }
1722
1723 /* Gathers information about memory accesses in the loops. */
1724
1725 static void
1726 analyze_memory_references (void)
1727 {
1728 unsigned i;
1729 bitmap empty;
1730
1731 memory_accesses.refs
1732 = htab_create (100, memref_hash, memref_eq, memref_free);
1733 memory_accesses.refs_list = NULL;
1734 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1735 number_of_loops ());
1736 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1737 number_of_loops ());
1738 memory_accesses.all_refs_stored_in_loop = VEC_alloc (bitmap, heap,
1739 number_of_loops ());
1740
1741 for (i = 0; i < number_of_loops (); i++)
1742 {
1743 empty = BITMAP_ALLOC (NULL);
1744 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1745 empty = BITMAP_ALLOC (NULL);
1746 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1747 empty = BITMAP_ALLOC (NULL);
1748 VEC_quick_push (bitmap, memory_accesses.all_refs_stored_in_loop, empty);
1749 }
1750
1751 memory_accesses.ttae_cache = NULL;
1752
1753 gather_mem_refs_in_loops ();
1754 create_vop_ref_mapping ();
1755 }
1756
1757 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1758 tree_to_aff_combination_expand. */
1759
1760 static bool
1761 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1762 {
1763 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1764 object and their offset differ in such a way that the locations cannot
1765 overlap, then they cannot alias. */
1766 double_int size1, size2;
1767 aff_tree off1, off2;
1768
1769 /* Perform basic offset and type-based disambiguation. */
1770 if (!refs_may_alias_p (mem1, mem2))
1771 return false;
1772
1773 /* The expansion of addresses may be a bit expensive, thus we only do
1774 the check at -O2 and higher optimization levels. */
1775 if (optimize < 2)
1776 return true;
1777
1778 get_inner_reference_aff (mem1, &off1, &size1);
1779 get_inner_reference_aff (mem2, &off2, &size2);
1780 aff_combination_expand (&off1, ttae_cache);
1781 aff_combination_expand (&off2, ttae_cache);
1782 aff_combination_scale (&off1, double_int_minus_one);
1783 aff_combination_add (&off2, &off1);
1784
1785 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1786 return false;
1787
1788 return true;
1789 }
1790
1791 /* Rewrites location LOC by TMP_VAR. */
1792
1793 static void
1794 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1795 {
1796 *loc->ref = tmp_var;
1797 update_stmt (loc->stmt);
1798 }
1799
1800 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1801
1802 static void
1803 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1804 VEC (mem_ref_loc_p, heap) **locs)
1805 {
1806 mem_ref_locs_p accs;
1807 unsigned i;
1808 mem_ref_loc_p loc;
1809 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1810 loop->num);
1811 struct loop *subloop;
1812
1813 if (!bitmap_bit_p (refs, ref->id))
1814 return;
1815
1816 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1817 > (unsigned) loop->num)
1818 {
1819 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1820 if (accs)
1821 {
1822 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1823 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1824 }
1825 }
1826
1827 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1828 get_all_locs_in_loop (subloop, ref, locs);
1829 }
1830
1831 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1832
1833 static void
1834 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1835 {
1836 unsigned i;
1837 mem_ref_loc_p loc;
1838 VEC (mem_ref_loc_p, heap) *locs = NULL;
1839
1840 get_all_locs_in_loop (loop, ref, &locs);
1841 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
1842 rewrite_mem_ref_loc (loc, tmp_var);
1843 VEC_free (mem_ref_loc_p, heap, locs);
1844 }
1845
1846 /* The name and the length of the currently generated variable
1847 for lsm. */
1848 #define MAX_LSM_NAME_LENGTH 40
1849 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1850 static int lsm_tmp_name_length;
1851
1852 /* Adds S to lsm_tmp_name. */
1853
1854 static void
1855 lsm_tmp_name_add (const char *s)
1856 {
1857 int l = strlen (s) + lsm_tmp_name_length;
1858 if (l > MAX_LSM_NAME_LENGTH)
1859 return;
1860
1861 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1862 lsm_tmp_name_length = l;
1863 }
1864
1865 /* Stores the name for temporary variable that replaces REF to
1866 lsm_tmp_name. */
1867
1868 static void
1869 gen_lsm_tmp_name (tree ref)
1870 {
1871 const char *name;
1872
1873 switch (TREE_CODE (ref))
1874 {
1875 case MEM_REF:
1876 case TARGET_MEM_REF:
1877 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1878 lsm_tmp_name_add ("_");
1879 break;
1880
1881 case ADDR_EXPR:
1882 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1883 break;
1884
1885 case BIT_FIELD_REF:
1886 case VIEW_CONVERT_EXPR:
1887 case ARRAY_RANGE_REF:
1888 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1889 break;
1890
1891 case REALPART_EXPR:
1892 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1893 lsm_tmp_name_add ("_RE");
1894 break;
1895
1896 case IMAGPART_EXPR:
1897 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1898 lsm_tmp_name_add ("_IM");
1899 break;
1900
1901 case COMPONENT_REF:
1902 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1903 lsm_tmp_name_add ("_");
1904 name = get_name (TREE_OPERAND (ref, 1));
1905 if (!name)
1906 name = "F";
1907 lsm_tmp_name_add (name);
1908 break;
1909
1910 case ARRAY_REF:
1911 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1912 lsm_tmp_name_add ("_I");
1913 break;
1914
1915 case SSA_NAME:
1916 case VAR_DECL:
1917 case PARM_DECL:
1918 name = get_name (ref);
1919 if (!name)
1920 name = "D";
1921 lsm_tmp_name_add (name);
1922 break;
1923
1924 case STRING_CST:
1925 lsm_tmp_name_add ("S");
1926 break;
1927
1928 case RESULT_DECL:
1929 lsm_tmp_name_add ("R");
1930 break;
1931
1932 case INTEGER_CST:
1933 /* Nothing. */
1934 break;
1935
1936 default:
1937 gcc_unreachable ();
1938 }
1939 }
1940
1941 /* Determines name for temporary variable that replaces REF.
1942 The name is accumulated into the lsm_tmp_name variable.
1943 N is added to the name of the temporary. */
1944
1945 char *
1946 get_lsm_tmp_name (tree ref, unsigned n)
1947 {
1948 char ns[2];
1949
1950 lsm_tmp_name_length = 0;
1951 gen_lsm_tmp_name (ref);
1952 lsm_tmp_name_add ("_lsm");
1953 if (n < 10)
1954 {
1955 ns[0] = '0' + n;
1956 ns[1] = 0;
1957 lsm_tmp_name_add (ns);
1958 }
1959 return lsm_tmp_name;
1960 }
1961
1962 struct prev_flag_edges {
1963 /* Edge to insert new flag comparison code. */
1964 edge append_cond_position;
1965
1966 /* Edge for fall through from previous flag comparison. */
1967 edge last_cond_fallthru;
1968 };
1969
1970 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1971 MEM along edge EX.
1972
1973 The store is only done if MEM has changed. We do this so no
1974 changes to MEM occur on code paths that did not originally store
1975 into it.
1976
1977 The common case for execute_sm will transform:
1978
1979 for (...) {
1980 if (foo)
1981 stuff;
1982 else
1983 MEM = TMP_VAR;
1984 }
1985
1986 into:
1987
1988 lsm = MEM;
1989 for (...) {
1990 if (foo)
1991 stuff;
1992 else
1993 lsm = TMP_VAR;
1994 }
1995 MEM = lsm;
1996
1997 This function will generate:
1998
1999 lsm = MEM;
2000
2001 lsm_flag = false;
2002 ...
2003 for (...) {
2004 if (foo)
2005 stuff;
2006 else {
2007 lsm = TMP_VAR;
2008 lsm_flag = true;
2009 }
2010 }
2011 if (lsm_flag) <--
2012 MEM = lsm; <--
2013 */
2014
2015 static void
2016 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
2017 {
2018 basic_block new_bb, then_bb, old_dest;
2019 bool loop_has_only_one_exit;
2020 edge then_old_edge, orig_ex = ex;
2021 gimple_stmt_iterator gsi;
2022 gimple stmt;
2023 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
2024
2025 /* ?? Insert store after previous store if applicable. See note
2026 below. */
2027 if (prev_edges)
2028 ex = prev_edges->append_cond_position;
2029
2030 loop_has_only_one_exit = single_pred_p (ex->dest);
2031
2032 if (loop_has_only_one_exit)
2033 ex = split_block_after_labels (ex->dest);
2034
2035 old_dest = ex->dest;
2036 new_bb = split_edge (ex);
2037 then_bb = create_empty_bb (new_bb);
2038 if (current_loops && new_bb->loop_father)
2039 add_bb_to_loop (then_bb, new_bb->loop_father);
2040
2041 gsi = gsi_start_bb (new_bb);
2042 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2043 NULL_TREE, NULL_TREE);
2044 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2045
2046 gsi = gsi_start_bb (then_bb);
2047 /* Insert actual store. */
2048 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2049 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2050
2051 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
2052 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
2053 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
2054
2055 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2056
2057 if (prev_edges)
2058 {
2059 basic_block prevbb = prev_edges->last_cond_fallthru->src;
2060 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
2061 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2062 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2063 recompute_dominator (CDI_DOMINATORS, old_dest));
2064 }
2065
2066 /* ?? Because stores may alias, they must happen in the exact
2067 sequence they originally happened. Save the position right after
2068 the (_lsm) store we just created so we can continue appending after
2069 it and maintain the original order. */
2070 {
2071 struct prev_flag_edges *p;
2072
2073 if (orig_ex->aux)
2074 orig_ex->aux = NULL;
2075 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
2076 p = (struct prev_flag_edges *) orig_ex->aux;
2077 p->append_cond_position = then_old_edge;
2078 p->last_cond_fallthru = find_edge (new_bb, old_dest);
2079 orig_ex->aux = (void *) p;
2080 }
2081
2082 if (!loop_has_only_one_exit)
2083 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
2084 {
2085 gimple phi = gsi_stmt (gsi);
2086 unsigned i;
2087
2088 for (i = 0; i < gimple_phi_num_args (phi); i++)
2089 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2090 {
2091 tree arg = gimple_phi_arg_def (phi, i);
2092 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2093 update_stmt (phi);
2094 }
2095 }
2096 /* Remove the original fall through edge. This was the
2097 single_succ_edge (new_bb). */
2098 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
2099 }
2100
2101 /* Helper function for execute_sm. On every location where REF is
2102 set, set an appropriate flag indicating the store. */
2103
2104 static tree
2105 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
2106 {
2107 unsigned i;
2108 mem_ref_loc_p loc;
2109 tree flag;
2110 VEC (mem_ref_loc_p, heap) *locs = NULL;
2111 char *str = get_lsm_tmp_name (ref->mem, ~0);
2112
2113 lsm_tmp_name_add ("_flag");
2114 flag = create_tmp_reg (boolean_type_node, str);
2115 get_all_locs_in_loop (loop, ref, &locs);
2116 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2117 {
2118 gimple_stmt_iterator gsi;
2119 gimple stmt;
2120
2121 gsi = gsi_for_stmt (loc->stmt);
2122 stmt = gimple_build_assign (flag, boolean_true_node);
2123 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2124 }
2125 VEC_free (mem_ref_loc_p, heap, locs);
2126 return flag;
2127 }
2128
2129 /* Executes store motion of memory reference REF from LOOP.
2130 Exits from the LOOP are stored in EXITS. The initialization of the
2131 temporary variable is put to the preheader of the loop, and assignments
2132 to the reference from the temporary variable are emitted to exits. */
2133
2134 static void
2135 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2136 {
2137 tree tmp_var, store_flag;
2138 unsigned i;
2139 gimple load;
2140 struct fmt_data fmt_data;
2141 edge ex, latch_edge;
2142 struct lim_aux_data *lim_data;
2143 bool multi_threaded_model_p = false;
2144
2145 if (dump_file && (dump_flags & TDF_DETAILS))
2146 {
2147 fprintf (dump_file, "Executing store motion of ");
2148 print_generic_expr (dump_file, ref->mem, 0);
2149 fprintf (dump_file, " from loop %d\n", loop->num);
2150 }
2151
2152 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem),
2153 get_lsm_tmp_name (ref->mem, ~0));
2154
2155 fmt_data.loop = loop;
2156 fmt_data.orig_loop = loop;
2157 for_each_index (&ref->mem, force_move_till, &fmt_data);
2158
2159 if (block_in_transaction (loop_preheader_edge (loop)->src)
2160 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2161 multi_threaded_model_p = true;
2162
2163 if (multi_threaded_model_p)
2164 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2165
2166 rewrite_mem_refs (loop, ref, tmp_var);
2167
2168 /* Emit the load code into the latch, so that we are sure it will
2169 be processed after all dependencies. */
2170 latch_edge = loop_latch_edge (loop);
2171
2172 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2173 load altogether, since the store is predicated by a flag. We
2174 could, do the load only if it was originally in the loop. */
2175 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2176 lim_data = init_lim_data (load);
2177 lim_data->max_loop = loop;
2178 lim_data->tgt_loop = loop;
2179 gsi_insert_on_edge (latch_edge, load);
2180
2181 if (multi_threaded_model_p)
2182 {
2183 load = gimple_build_assign (store_flag, boolean_false_node);
2184 lim_data = init_lim_data (load);
2185 lim_data->max_loop = loop;
2186 lim_data->tgt_loop = loop;
2187 gsi_insert_on_edge (latch_edge, load);
2188 }
2189
2190 /* Sink the store to every exit from the loop. */
2191 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2192 if (!multi_threaded_model_p)
2193 {
2194 gimple store;
2195 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2196 gsi_insert_on_edge (ex, store);
2197 }
2198 else
2199 execute_sm_if_changed (ex, ref->mem, tmp_var, store_flag);
2200 }
2201
2202 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2203 edges of the LOOP. */
2204
2205 static void
2206 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2207 VEC (edge, heap) *exits)
2208 {
2209 mem_ref_p ref;
2210 unsigned i;
2211 bitmap_iterator bi;
2212
2213 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2214 {
2215 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2216 execute_sm (loop, exits, ref);
2217 }
2218 }
2219
2220 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2221 make sure REF is always stored to in LOOP. */
2222
2223 static bool
2224 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2225 {
2226 VEC (mem_ref_loc_p, heap) *locs = NULL;
2227 unsigned i;
2228 mem_ref_loc_p loc;
2229 bool ret = false;
2230 struct loop *must_exec;
2231 tree base;
2232
2233 base = get_base_address (ref->mem);
2234 if (INDIRECT_REF_P (base)
2235 || TREE_CODE (base) == MEM_REF)
2236 base = TREE_OPERAND (base, 0);
2237
2238 get_all_locs_in_loop (loop, ref, &locs);
2239 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2240 {
2241 if (!get_lim_data (loc->stmt))
2242 continue;
2243
2244 /* If we require an always executed store make sure the statement
2245 stores to the reference. */
2246 if (stored_p)
2247 {
2248 tree lhs;
2249 if (!gimple_get_lhs (loc->stmt))
2250 continue;
2251 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2252 if (!lhs)
2253 continue;
2254 if (INDIRECT_REF_P (lhs)
2255 || TREE_CODE (lhs) == MEM_REF)
2256 lhs = TREE_OPERAND (lhs, 0);
2257 if (lhs != base)
2258 continue;
2259 }
2260
2261 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2262 if (!must_exec)
2263 continue;
2264
2265 if (must_exec == loop
2266 || flow_loop_nested_p (must_exec, loop))
2267 {
2268 ret = true;
2269 break;
2270 }
2271 }
2272 VEC_free (mem_ref_loc_p, heap, locs);
2273
2274 return ret;
2275 }
2276
2277 /* Returns true if REF1 and REF2 are independent. */
2278
2279 static bool
2280 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2281 {
2282 if (ref1 == ref2
2283 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2284 return true;
2285 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2286 return false;
2287 if (!MEM_ANALYZABLE (ref1)
2288 || !MEM_ANALYZABLE (ref2))
2289 return false;
2290
2291 if (dump_file && (dump_flags & TDF_DETAILS))
2292 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2293 ref1->id, ref2->id);
2294
2295 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2296 &memory_accesses.ttae_cache))
2297 {
2298 bitmap_set_bit (ref1->dep_ref, ref2->id);
2299 bitmap_set_bit (ref2->dep_ref, ref1->id);
2300 if (dump_file && (dump_flags & TDF_DETAILS))
2301 fprintf (dump_file, "dependent.\n");
2302 return false;
2303 }
2304 else
2305 {
2306 bitmap_set_bit (ref1->indep_ref, ref2->id);
2307 bitmap_set_bit (ref2->indep_ref, ref1->id);
2308 if (dump_file && (dump_flags & TDF_DETAILS))
2309 fprintf (dump_file, "independent.\n");
2310 return true;
2311 }
2312 }
2313
2314 /* Records the information whether REF is independent in LOOP (according
2315 to INDEP). */
2316
2317 static void
2318 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2319 {
2320 if (indep)
2321 bitmap_set_bit (ref->indep_loop, loop->num);
2322 else
2323 bitmap_set_bit (ref->dep_loop, loop->num);
2324 }
2325
2326 /* Returns true if REF is independent on all other memory references in
2327 LOOP. */
2328
2329 static bool
2330 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2331 {
2332 bitmap refs_to_check;
2333 unsigned i;
2334 bitmap_iterator bi;
2335 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2336 mem_ref_p aref;
2337
2338 if (stored)
2339 refs_to_check = VEC_index (bitmap,
2340 memory_accesses.all_refs_in_loop, loop->num);
2341 else
2342 refs_to_check = VEC_index (bitmap,
2343 memory_accesses.all_refs_stored_in_loop,
2344 loop->num);
2345
2346 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2347 {
2348 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2349 if (!MEM_ANALYZABLE (aref)
2350 || !refs_independent_p (ref, aref))
2351 {
2352 ret = false;
2353 record_indep_loop (loop, aref, false);
2354 break;
2355 }
2356 }
2357
2358 return ret;
2359 }
2360
2361 /* Returns true if REF is independent on all other memory references in
2362 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2363
2364 static bool
2365 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2366 {
2367 bool ret;
2368
2369 if (bitmap_bit_p (ref->indep_loop, loop->num))
2370 return true;
2371 if (bitmap_bit_p (ref->dep_loop, loop->num))
2372 return false;
2373
2374 ret = ref_indep_loop_p_1 (loop, ref);
2375
2376 if (dump_file && (dump_flags & TDF_DETAILS))
2377 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2378 ref->id, loop->num, ret ? "independent" : "dependent");
2379
2380 record_indep_loop (loop, ref, ret);
2381
2382 return ret;
2383 }
2384
2385 /* Returns true if we can perform store motion of REF from LOOP. */
2386
2387 static bool
2388 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2389 {
2390 tree base;
2391
2392 /* Can't hoist unanalyzable refs. */
2393 if (!MEM_ANALYZABLE (ref))
2394 return false;
2395
2396 /* Unless the reference is stored in the loop, there is nothing to do. */
2397 if (!bitmap_bit_p (ref->stored, loop->num))
2398 return false;
2399
2400 /* It should be movable. */
2401 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2402 || TREE_THIS_VOLATILE (ref->mem)
2403 || !for_each_index (&ref->mem, may_move_till, loop))
2404 return false;
2405
2406 /* If it can throw fail, we do not properly update EH info. */
2407 if (tree_could_throw_p (ref->mem))
2408 return false;
2409
2410 /* If it can trap, it must be always executed in LOOP.
2411 Readonly memory locations may trap when storing to them, but
2412 tree_could_trap_p is a predicate for rvalues, so check that
2413 explicitly. */
2414 base = get_base_address (ref->mem);
2415 if ((tree_could_trap_p (ref->mem)
2416 || (DECL_P (base) && TREE_READONLY (base)))
2417 && !ref_always_accessed_p (loop, ref, true))
2418 return false;
2419
2420 /* And it must be independent on all other memory references
2421 in LOOP. */
2422 if (!ref_indep_loop_p (loop, ref))
2423 return false;
2424
2425 return true;
2426 }
2427
2428 /* Marks the references in LOOP for that store motion should be performed
2429 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2430 motion was performed in one of the outer loops. */
2431
2432 static void
2433 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2434 {
2435 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2436 loop->num);
2437 unsigned i;
2438 bitmap_iterator bi;
2439 mem_ref_p ref;
2440
2441 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2442 {
2443 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2444 if (can_sm_ref_p (loop, ref))
2445 bitmap_set_bit (refs_to_sm, i);
2446 }
2447 }
2448
2449 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2450 for a store motion optimization (i.e. whether we can insert statement
2451 on its exits). */
2452
2453 static bool
2454 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2455 VEC (edge, heap) *exits)
2456 {
2457 unsigned i;
2458 edge ex;
2459
2460 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2461 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2462 return false;
2463
2464 return true;
2465 }
2466
2467 /* Try to perform store motion for all memory references modified inside
2468 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2469 store motion was executed in one of the outer loops. */
2470
2471 static void
2472 store_motion_loop (struct loop *loop, bitmap sm_executed)
2473 {
2474 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2475 struct loop *subloop;
2476 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2477
2478 if (loop_suitable_for_sm (loop, exits))
2479 {
2480 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2481 hoist_memory_references (loop, sm_in_loop, exits);
2482 }
2483 VEC_free (edge, heap, exits);
2484
2485 bitmap_ior_into (sm_executed, sm_in_loop);
2486 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2487 store_motion_loop (subloop, sm_executed);
2488 bitmap_and_compl_into (sm_executed, sm_in_loop);
2489 BITMAP_FREE (sm_in_loop);
2490 }
2491
2492 /* Try to perform store motion for all memory references modified inside
2493 loops. */
2494
2495 static void
2496 store_motion (void)
2497 {
2498 struct loop *loop;
2499 bitmap sm_executed = BITMAP_ALLOC (NULL);
2500
2501 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2502 store_motion_loop (loop, sm_executed);
2503
2504 BITMAP_FREE (sm_executed);
2505 gsi_commit_edge_inserts ();
2506 }
2507
2508 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2509 for each such basic block bb records the outermost loop for that execution
2510 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2511 blocks that contain a nonpure call. */
2512
2513 static void
2514 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2515 {
2516 basic_block bb = NULL, *bbs, last = NULL;
2517 unsigned i;
2518 edge e;
2519 struct loop *inn_loop = loop;
2520
2521 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2522 {
2523 bbs = get_loop_body_in_dom_order (loop);
2524
2525 for (i = 0; i < loop->num_nodes; i++)
2526 {
2527 edge_iterator ei;
2528 bb = bbs[i];
2529
2530 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2531 last = bb;
2532
2533 if (TEST_BIT (contains_call, bb->index))
2534 break;
2535
2536 FOR_EACH_EDGE (e, ei, bb->succs)
2537 if (!flow_bb_inside_loop_p (loop, e->dest))
2538 break;
2539 if (e)
2540 break;
2541
2542 /* A loop might be infinite (TODO use simple loop analysis
2543 to disprove this if possible). */
2544 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2545 break;
2546
2547 if (!flow_bb_inside_loop_p (inn_loop, bb))
2548 break;
2549
2550 if (bb->loop_father->header == bb)
2551 {
2552 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2553 break;
2554
2555 /* In a loop that is always entered we may proceed anyway.
2556 But record that we entered it and stop once we leave it. */
2557 inn_loop = bb->loop_father;
2558 }
2559 }
2560
2561 while (1)
2562 {
2563 SET_ALWAYS_EXECUTED_IN (last, loop);
2564 if (last == loop->header)
2565 break;
2566 last = get_immediate_dominator (CDI_DOMINATORS, last);
2567 }
2568
2569 free (bbs);
2570 }
2571
2572 for (loop = loop->inner; loop; loop = loop->next)
2573 fill_always_executed_in (loop, contains_call);
2574 }
2575
2576 /* Compute the global information needed by the loop invariant motion pass. */
2577
2578 static void
2579 tree_ssa_lim_initialize (void)
2580 {
2581 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2582 gimple_stmt_iterator bsi;
2583 struct loop *loop;
2584 basic_block bb;
2585
2586 sbitmap_zero (contains_call);
2587 FOR_EACH_BB (bb)
2588 {
2589 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2590 {
2591 if (nonpure_call_p (gsi_stmt (bsi)))
2592 break;
2593 }
2594
2595 if (!gsi_end_p (bsi))
2596 SET_BIT (contains_call, bb->index);
2597 }
2598
2599 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2600 fill_always_executed_in (loop, contains_call);
2601
2602 sbitmap_free (contains_call);
2603
2604 lim_aux_data_map = pointer_map_create ();
2605
2606 if (flag_tm)
2607 compute_transaction_bits ();
2608
2609 alloc_aux_for_edges (0);
2610 }
2611
2612 /* Cleans up after the invariant motion pass. */
2613
2614 static void
2615 tree_ssa_lim_finalize (void)
2616 {
2617 basic_block bb;
2618 unsigned i;
2619 bitmap b;
2620
2621 free_aux_for_edges ();
2622
2623 FOR_EACH_BB (bb)
2624 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2625
2626 pointer_map_destroy (lim_aux_data_map);
2627
2628 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2629 htab_delete (memory_accesses.refs);
2630
2631 FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
2632 BITMAP_FREE (b);
2633 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2634
2635 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
2636 BITMAP_FREE (b);
2637 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2638
2639 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_stored_in_loop, i, b)
2640 BITMAP_FREE (b);
2641 VEC_free (bitmap, heap, memory_accesses.all_refs_stored_in_loop);
2642
2643 if (memory_accesses.ttae_cache)
2644 pointer_map_destroy (memory_accesses.ttae_cache);
2645 }
2646
2647 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2648 i.e. those that are likely to be win regardless of the register pressure. */
2649
2650 unsigned int
2651 tree_ssa_lim (void)
2652 {
2653 unsigned int todo;
2654
2655 tree_ssa_lim_initialize ();
2656
2657 /* Gathers information about memory accesses in the loops. */
2658 analyze_memory_references ();
2659
2660 /* For each statement determine the outermost loop in that it is
2661 invariant and cost for computing the invariant. */
2662 determine_invariantness ();
2663
2664 /* Execute store motion. Force the necessary invariants to be moved
2665 out of the loops as well. */
2666 store_motion ();
2667
2668 /* Move the expressions that are expensive enough. */
2669 todo = move_computations ();
2670
2671 tree_ssa_lim_finalize ();
2672
2673 return todo;
2674 }