]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-im.c
function.h (loops_for_fn): New inline function.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "tree-flow.h"
29 #include "cfgloop.h"
30 #include "domwalk.h"
31 #include "params.h"
32 #include "tree-pass.h"
33 #include "flags.h"
34 #include "hash-table.h"
35 #include "tree-affine.h"
36 #include "pointer-set.h"
37 #include "tree-ssa-propagate.h"
38
39 /* TODO: Support for predicated code motion. I.e.
40
41 while (1)
42 {
43 if (cond)
44 {
45 a = inv;
46 something;
47 }
48 }
49
50 Where COND and INV are invariants, but evaluating INV may trap or be
51 invalid from some other reason if !COND. This may be transformed to
52
53 if (cond)
54 a = inv;
55 while (1)
56 {
57 if (cond)
58 something;
59 } */
60
61 /* The auxiliary data kept for each statement. */
62
63 struct lim_aux_data
64 {
65 struct loop *max_loop; /* The outermost loop in that the statement
66 is invariant. */
67
68 struct loop *tgt_loop; /* The loop out of that we want to move the
69 invariant. */
70
71 struct loop *always_executed_in;
72 /* The outermost loop for that we are sure
73 the statement is executed if the loop
74 is entered. */
75
76 unsigned cost; /* Cost of the computation performed by the
77 statement. */
78
79 vec<gimple> depends; /* Vector of statements that must be also
80 hoisted out of the loop when this statement
81 is hoisted; i.e. those that define the
82 operands of the statement and are inside of
83 the MAX_LOOP loop. */
84 };
85
86 /* Maps statements to their lim_aux_data. */
87
88 static struct pointer_map_t *lim_aux_data_map;
89
90 /* Description of a memory reference location. */
91
92 typedef struct mem_ref_loc
93 {
94 tree *ref; /* The reference itself. */
95 gimple stmt; /* The statement in that it occurs. */
96 } *mem_ref_loc_p;
97
98
99 /* Description of a memory reference. */
100
101 typedef struct mem_ref
102 {
103 unsigned id; /* ID assigned to the memory reference
104 (its index in memory_accesses.refs_list) */
105 hashval_t hash; /* Its hash value. */
106
107 /* The memory access itself and associated caching of alias-oracle
108 query meta-data. */
109 ao_ref mem;
110
111 bitmap_head stored; /* The set of loops in that this memory location
112 is stored to. */
113 vec<vec<mem_ref_loc> > accesses_in_loop;
114 /* The locations of the accesses. Vector
115 indexed by the loop number. */
116
117 /* The following sets are computed on demand. We keep both set and
118 its complement, so that we know whether the information was
119 already computed or not. */
120 bitmap_head indep_loop; /* The set of loops in that the memory
121 reference is independent, meaning:
122 If it is stored in the loop, this store
123 is independent on all other loads and
124 stores.
125 If it is only loaded, then it is independent
126 on all stores in the loop. */
127 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
128 } *mem_ref_p;
129
130 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
131 to record (in)dependence against stores in the loop and its subloops, the
132 second to record (in)dependence against all references in the loop
133 and its subloops. */
134 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
135
136 /* Mem_ref hashtable helpers. */
137
138 struct mem_ref_hasher : typed_noop_remove <mem_ref>
139 {
140 typedef mem_ref value_type;
141 typedef tree_node compare_type;
142 static inline hashval_t hash (const value_type *);
143 static inline bool equal (const value_type *, const compare_type *);
144 };
145
146 /* A hash function for struct mem_ref object OBJ. */
147
148 inline hashval_t
149 mem_ref_hasher::hash (const value_type *mem)
150 {
151 return mem->hash;
152 }
153
154 /* An equality function for struct mem_ref object MEM1 with
155 memory reference OBJ2. */
156
157 inline bool
158 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
159 {
160 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
161 }
162
163
164 /* Description of memory accesses in loops. */
165
166 static struct
167 {
168 /* The hash table of memory references accessed in loops. */
169 hash_table <mem_ref_hasher> refs;
170
171 /* The list of memory references. */
172 vec<mem_ref_p> refs_list;
173
174 /* The set of memory references accessed in each loop. */
175 vec<bitmap_head> refs_in_loop;
176
177 /* The set of memory references stored in each loop. */
178 vec<bitmap_head> refs_stored_in_loop;
179
180 /* The set of memory references stored in each loop, including subloops . */
181 vec<bitmap_head> all_refs_stored_in_loop;
182
183 /* Cache for expanding memory addresses. */
184 struct pointer_map_t *ttae_cache;
185 } memory_accesses;
186
187 /* Obstack for the bitmaps in the above data structures. */
188 static bitmap_obstack lim_bitmap_obstack;
189
190 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
191
192 /* Minimum cost of an expensive expression. */
193 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
194
195 /* The outermost loop for which execution of the header guarantees that the
196 block will be executed. */
197 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
198 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
199
200 /* ID of the shared unanalyzable mem. */
201 #define UNANALYZABLE_MEM_ID 0
202
203 /* Whether the reference was analyzable. */
204 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
205
206 static struct lim_aux_data *
207 init_lim_data (gimple stmt)
208 {
209 void **p = pointer_map_insert (lim_aux_data_map, stmt);
210
211 *p = XCNEW (struct lim_aux_data);
212 return (struct lim_aux_data *) *p;
213 }
214
215 static struct lim_aux_data *
216 get_lim_data (gimple stmt)
217 {
218 void **p = pointer_map_contains (lim_aux_data_map, stmt);
219 if (!p)
220 return NULL;
221
222 return (struct lim_aux_data *) *p;
223 }
224
225 /* Releases the memory occupied by DATA. */
226
227 static void
228 free_lim_aux_data (struct lim_aux_data *data)
229 {
230 data->depends.release();
231 free (data);
232 }
233
234 static void
235 clear_lim_data (gimple stmt)
236 {
237 void **p = pointer_map_contains (lim_aux_data_map, stmt);
238 if (!p)
239 return;
240
241 free_lim_aux_data ((struct lim_aux_data *) *p);
242 *p = NULL;
243 }
244
245 /* Calls CBCK for each index in memory reference ADDR_P. There are two
246 kinds situations handled; in each of these cases, the memory reference
247 and DATA are passed to the callback:
248
249 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
250 pass the pointer to the index to the callback.
251
252 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
253 pointer to addr to the callback.
254
255 If the callback returns false, the whole search stops and false is returned.
256 Otherwise the function returns true after traversing through the whole
257 reference *ADDR_P. */
258
259 bool
260 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
261 {
262 tree *nxt, *idx;
263
264 for (; ; addr_p = nxt)
265 {
266 switch (TREE_CODE (*addr_p))
267 {
268 case SSA_NAME:
269 return cbck (*addr_p, addr_p, data);
270
271 case MEM_REF:
272 nxt = &TREE_OPERAND (*addr_p, 0);
273 return cbck (*addr_p, nxt, data);
274
275 case BIT_FIELD_REF:
276 case VIEW_CONVERT_EXPR:
277 case REALPART_EXPR:
278 case IMAGPART_EXPR:
279 nxt = &TREE_OPERAND (*addr_p, 0);
280 break;
281
282 case COMPONENT_REF:
283 /* If the component has varying offset, it behaves like index
284 as well. */
285 idx = &TREE_OPERAND (*addr_p, 2);
286 if (*idx
287 && !cbck (*addr_p, idx, data))
288 return false;
289
290 nxt = &TREE_OPERAND (*addr_p, 0);
291 break;
292
293 case ARRAY_REF:
294 case ARRAY_RANGE_REF:
295 nxt = &TREE_OPERAND (*addr_p, 0);
296 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
297 return false;
298 break;
299
300 case VAR_DECL:
301 case PARM_DECL:
302 case CONST_DECL:
303 case STRING_CST:
304 case RESULT_DECL:
305 case VECTOR_CST:
306 case COMPLEX_CST:
307 case INTEGER_CST:
308 case REAL_CST:
309 case FIXED_CST:
310 case CONSTRUCTOR:
311 return true;
312
313 case ADDR_EXPR:
314 gcc_assert (is_gimple_min_invariant (*addr_p));
315 return true;
316
317 case TARGET_MEM_REF:
318 idx = &TMR_BASE (*addr_p);
319 if (*idx
320 && !cbck (*addr_p, idx, data))
321 return false;
322 idx = &TMR_INDEX (*addr_p);
323 if (*idx
324 && !cbck (*addr_p, idx, data))
325 return false;
326 idx = &TMR_INDEX2 (*addr_p);
327 if (*idx
328 && !cbck (*addr_p, idx, data))
329 return false;
330 return true;
331
332 default:
333 gcc_unreachable ();
334 }
335 }
336 }
337
338 /* If it is possible to hoist the statement STMT unconditionally,
339 returns MOVE_POSSIBLE.
340 If it is possible to hoist the statement STMT, but we must avoid making
341 it executed if it would not be executed in the original program (e.g.
342 because it may trap), return MOVE_PRESERVE_EXECUTION.
343 Otherwise return MOVE_IMPOSSIBLE. */
344
345 enum move_pos
346 movement_possibility (gimple stmt)
347 {
348 tree lhs;
349 enum move_pos ret = MOVE_POSSIBLE;
350
351 if (flag_unswitch_loops
352 && gimple_code (stmt) == GIMPLE_COND)
353 {
354 /* If we perform unswitching, force the operands of the invariant
355 condition to be moved out of the loop. */
356 return MOVE_POSSIBLE;
357 }
358
359 if (gimple_code (stmt) == GIMPLE_PHI
360 && gimple_phi_num_args (stmt) <= 2
361 && !virtual_operand_p (gimple_phi_result (stmt))
362 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
363 return MOVE_POSSIBLE;
364
365 if (gimple_get_lhs (stmt) == NULL_TREE)
366 return MOVE_IMPOSSIBLE;
367
368 if (gimple_vdef (stmt))
369 return MOVE_IMPOSSIBLE;
370
371 if (stmt_ends_bb_p (stmt)
372 || gimple_has_volatile_ops (stmt)
373 || gimple_has_side_effects (stmt)
374 || stmt_could_throw_p (stmt))
375 return MOVE_IMPOSSIBLE;
376
377 if (is_gimple_call (stmt))
378 {
379 /* While pure or const call is guaranteed to have no side effects, we
380 cannot move it arbitrarily. Consider code like
381
382 char *s = something ();
383
384 while (1)
385 {
386 if (s)
387 t = strlen (s);
388 else
389 t = 0;
390 }
391
392 Here the strlen call cannot be moved out of the loop, even though
393 s is invariant. In addition to possibly creating a call with
394 invalid arguments, moving out a function call that is not executed
395 may cause performance regressions in case the call is costly and
396 not executed at all. */
397 ret = MOVE_PRESERVE_EXECUTION;
398 lhs = gimple_call_lhs (stmt);
399 }
400 else if (is_gimple_assign (stmt))
401 lhs = gimple_assign_lhs (stmt);
402 else
403 return MOVE_IMPOSSIBLE;
404
405 if (TREE_CODE (lhs) == SSA_NAME
406 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
407 return MOVE_IMPOSSIBLE;
408
409 if (TREE_CODE (lhs) != SSA_NAME
410 || gimple_could_trap_p (stmt))
411 return MOVE_PRESERVE_EXECUTION;
412
413 /* Non local loads in a transaction cannot be hoisted out. Well,
414 unless the load happens on every path out of the loop, but we
415 don't take this into account yet. */
416 if (flag_tm
417 && gimple_in_transaction (stmt)
418 && gimple_assign_single_p (stmt))
419 {
420 tree rhs = gimple_assign_rhs1 (stmt);
421 if (DECL_P (rhs) && is_global_var (rhs))
422 {
423 if (dump_file)
424 {
425 fprintf (dump_file, "Cannot hoist conditional load of ");
426 print_generic_expr (dump_file, rhs, TDF_SLIM);
427 fprintf (dump_file, " because it is in a transaction.\n");
428 }
429 return MOVE_IMPOSSIBLE;
430 }
431 }
432
433 return ret;
434 }
435
436 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
437 loop to that we could move the expression using DEF if it did not have
438 other operands, i.e. the outermost loop enclosing LOOP in that the value
439 of DEF is invariant. */
440
441 static struct loop *
442 outermost_invariant_loop (tree def, struct loop *loop)
443 {
444 gimple def_stmt;
445 basic_block def_bb;
446 struct loop *max_loop;
447 struct lim_aux_data *lim_data;
448
449 if (!def)
450 return superloop_at_depth (loop, 1);
451
452 if (TREE_CODE (def) != SSA_NAME)
453 {
454 gcc_assert (is_gimple_min_invariant (def));
455 return superloop_at_depth (loop, 1);
456 }
457
458 def_stmt = SSA_NAME_DEF_STMT (def);
459 def_bb = gimple_bb (def_stmt);
460 if (!def_bb)
461 return superloop_at_depth (loop, 1);
462
463 max_loop = find_common_loop (loop, def_bb->loop_father);
464
465 lim_data = get_lim_data (def_stmt);
466 if (lim_data != NULL && lim_data->max_loop != NULL)
467 max_loop = find_common_loop (max_loop,
468 loop_outer (lim_data->max_loop));
469 if (max_loop == loop)
470 return NULL;
471 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
472
473 return max_loop;
474 }
475
476 /* DATA is a structure containing information associated with a statement
477 inside LOOP. DEF is one of the operands of this statement.
478
479 Find the outermost loop enclosing LOOP in that value of DEF is invariant
480 and record this in DATA->max_loop field. If DEF itself is defined inside
481 this loop as well (i.e. we need to hoist it out of the loop if we want
482 to hoist the statement represented by DATA), record the statement in that
483 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
484 add the cost of the computation of DEF to the DATA->cost.
485
486 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
487
488 static bool
489 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
490 bool add_cost)
491 {
492 gimple def_stmt = SSA_NAME_DEF_STMT (def);
493 basic_block def_bb = gimple_bb (def_stmt);
494 struct loop *max_loop;
495 struct lim_aux_data *def_data;
496
497 if (!def_bb)
498 return true;
499
500 max_loop = outermost_invariant_loop (def, loop);
501 if (!max_loop)
502 return false;
503
504 if (flow_loop_nested_p (data->max_loop, max_loop))
505 data->max_loop = max_loop;
506
507 def_data = get_lim_data (def_stmt);
508 if (!def_data)
509 return true;
510
511 if (add_cost
512 /* Only add the cost if the statement defining DEF is inside LOOP,
513 i.e. if it is likely that by moving the invariants dependent
514 on it, we will be able to avoid creating a new register for
515 it (since it will be only used in these dependent invariants). */
516 && def_bb->loop_father == loop)
517 data->cost += def_data->cost;
518
519 data->depends.safe_push (def_stmt);
520
521 return true;
522 }
523
524 /* Returns an estimate for a cost of statement STMT. The values here
525 are just ad-hoc constants, similar to costs for inlining. */
526
527 static unsigned
528 stmt_cost (gimple stmt)
529 {
530 /* Always try to create possibilities for unswitching. */
531 if (gimple_code (stmt) == GIMPLE_COND
532 || gimple_code (stmt) == GIMPLE_PHI)
533 return LIM_EXPENSIVE;
534
535 /* We should be hoisting calls if possible. */
536 if (is_gimple_call (stmt))
537 {
538 tree fndecl;
539
540 /* Unless the call is a builtin_constant_p; this always folds to a
541 constant, so moving it is useless. */
542 fndecl = gimple_call_fndecl (stmt);
543 if (fndecl
544 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
545 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
546 return 0;
547
548 return LIM_EXPENSIVE;
549 }
550
551 /* Hoisting memory references out should almost surely be a win. */
552 if (gimple_references_memory_p (stmt))
553 return LIM_EXPENSIVE;
554
555 if (gimple_code (stmt) != GIMPLE_ASSIGN)
556 return 1;
557
558 switch (gimple_assign_rhs_code (stmt))
559 {
560 case MULT_EXPR:
561 case WIDEN_MULT_EXPR:
562 case WIDEN_MULT_PLUS_EXPR:
563 case WIDEN_MULT_MINUS_EXPR:
564 case DOT_PROD_EXPR:
565 case FMA_EXPR:
566 case TRUNC_DIV_EXPR:
567 case CEIL_DIV_EXPR:
568 case FLOOR_DIV_EXPR:
569 case ROUND_DIV_EXPR:
570 case EXACT_DIV_EXPR:
571 case CEIL_MOD_EXPR:
572 case FLOOR_MOD_EXPR:
573 case ROUND_MOD_EXPR:
574 case TRUNC_MOD_EXPR:
575 case RDIV_EXPR:
576 /* Division and multiplication are usually expensive. */
577 return LIM_EXPENSIVE;
578
579 case LSHIFT_EXPR:
580 case RSHIFT_EXPR:
581 case WIDEN_LSHIFT_EXPR:
582 case LROTATE_EXPR:
583 case RROTATE_EXPR:
584 /* Shifts and rotates are usually expensive. */
585 return LIM_EXPENSIVE;
586
587 case CONSTRUCTOR:
588 /* Make vector construction cost proportional to the number
589 of elements. */
590 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
591
592 case SSA_NAME:
593 case PAREN_EXPR:
594 /* Whether or not something is wrapped inside a PAREN_EXPR
595 should not change move cost. Nor should an intermediate
596 unpropagated SSA name copy. */
597 return 0;
598
599 default:
600 return 1;
601 }
602 }
603
604 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
605 REF is independent. If REF is not independent in LOOP, NULL is returned
606 instead. */
607
608 static struct loop *
609 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
610 {
611 struct loop *aloop;
612
613 if (bitmap_bit_p (&ref->stored, loop->num))
614 return NULL;
615
616 for (aloop = outer;
617 aloop != loop;
618 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
619 if (!bitmap_bit_p (&ref->stored, aloop->num)
620 && ref_indep_loop_p (aloop, ref))
621 return aloop;
622
623 if (ref_indep_loop_p (loop, ref))
624 return loop;
625 else
626 return NULL;
627 }
628
629 /* If there is a simple load or store to a memory reference in STMT, returns
630 the location of the memory reference, and sets IS_STORE according to whether
631 it is a store or load. Otherwise, returns NULL. */
632
633 static tree *
634 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
635 {
636 tree *lhs, *rhs;
637
638 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
639 if (!gimple_assign_single_p (stmt))
640 return NULL;
641
642 lhs = gimple_assign_lhs_ptr (stmt);
643 rhs = gimple_assign_rhs1_ptr (stmt);
644
645 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
646 {
647 *is_store = false;
648 return rhs;
649 }
650 else if (gimple_vdef (stmt)
651 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
652 {
653 *is_store = true;
654 return lhs;
655 }
656 else
657 return NULL;
658 }
659
660 /* Returns the memory reference contained in STMT. */
661
662 static mem_ref_p
663 mem_ref_in_stmt (gimple stmt)
664 {
665 bool store;
666 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
667 hashval_t hash;
668 mem_ref_p ref;
669
670 if (!mem)
671 return NULL;
672 gcc_assert (!store);
673
674 hash = iterative_hash_expr (*mem, 0);
675 ref = memory_accesses.refs.find_with_hash (*mem, hash);
676
677 gcc_assert (ref != NULL);
678 return ref;
679 }
680
681 /* From a controlling predicate in DOM determine the arguments from
682 the PHI node PHI that are chosen if the predicate evaluates to
683 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
684 they are non-NULL. Returns true if the arguments can be determined,
685 else return false. */
686
687 static bool
688 extract_true_false_args_from_phi (basic_block dom, gimple phi,
689 tree *true_arg_p, tree *false_arg_p)
690 {
691 basic_block bb = gimple_bb (phi);
692 edge true_edge, false_edge, tem;
693 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
694
695 /* We have to verify that one edge into the PHI node is dominated
696 by the true edge of the predicate block and the other edge
697 dominated by the false edge. This ensures that the PHI argument
698 we are going to take is completely determined by the path we
699 take from the predicate block.
700 We can only use BB dominance checks below if the destination of
701 the true/false edges are dominated by their edge, thus only
702 have a single predecessor. */
703 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
704 tem = EDGE_PRED (bb, 0);
705 if (tem == true_edge
706 || (single_pred_p (true_edge->dest)
707 && (tem->src == true_edge->dest
708 || dominated_by_p (CDI_DOMINATORS,
709 tem->src, true_edge->dest))))
710 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
711 else if (tem == false_edge
712 || (single_pred_p (false_edge->dest)
713 && (tem->src == false_edge->dest
714 || dominated_by_p (CDI_DOMINATORS,
715 tem->src, false_edge->dest))))
716 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
717 else
718 return false;
719 tem = EDGE_PRED (bb, 1);
720 if (tem == true_edge
721 || (single_pred_p (true_edge->dest)
722 && (tem->src == true_edge->dest
723 || dominated_by_p (CDI_DOMINATORS,
724 tem->src, true_edge->dest))))
725 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
726 else if (tem == false_edge
727 || (single_pred_p (false_edge->dest)
728 && (tem->src == false_edge->dest
729 || dominated_by_p (CDI_DOMINATORS,
730 tem->src, false_edge->dest))))
731 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
732 else
733 return false;
734 if (!arg0 || !arg1)
735 return false;
736
737 if (true_arg_p)
738 *true_arg_p = arg0;
739 if (false_arg_p)
740 *false_arg_p = arg1;
741
742 return true;
743 }
744
745 /* Determine the outermost loop to that it is possible to hoist a statement
746 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
747 the outermost loop in that the value computed by STMT is invariant.
748 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
749 we preserve the fact whether STMT is executed. It also fills other related
750 information to LIM_DATA (STMT).
751
752 The function returns false if STMT cannot be hoisted outside of the loop it
753 is defined in, and true otherwise. */
754
755 static bool
756 determine_max_movement (gimple stmt, bool must_preserve_exec)
757 {
758 basic_block bb = gimple_bb (stmt);
759 struct loop *loop = bb->loop_father;
760 struct loop *level;
761 struct lim_aux_data *lim_data = get_lim_data (stmt);
762 tree val;
763 ssa_op_iter iter;
764
765 if (must_preserve_exec)
766 level = ALWAYS_EXECUTED_IN (bb);
767 else
768 level = superloop_at_depth (loop, 1);
769 lim_data->max_loop = level;
770
771 if (gimple_code (stmt) == GIMPLE_PHI)
772 {
773 use_operand_p use_p;
774 unsigned min_cost = UINT_MAX;
775 unsigned total_cost = 0;
776 struct lim_aux_data *def_data;
777
778 /* We will end up promoting dependencies to be unconditionally
779 evaluated. For this reason the PHI cost (and thus the
780 cost we remove from the loop by doing the invariant motion)
781 is that of the cheapest PHI argument dependency chain. */
782 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
783 {
784 val = USE_FROM_PTR (use_p);
785 if (TREE_CODE (val) != SSA_NAME)
786 continue;
787 if (!add_dependency (val, lim_data, loop, false))
788 return false;
789 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
790 if (def_data)
791 {
792 min_cost = MIN (min_cost, def_data->cost);
793 total_cost += def_data->cost;
794 }
795 }
796
797 lim_data->cost += min_cost;
798
799 if (gimple_phi_num_args (stmt) > 1)
800 {
801 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
802 gimple cond;
803 if (gsi_end_p (gsi_last_bb (dom)))
804 return false;
805 cond = gsi_stmt (gsi_last_bb (dom));
806 if (gimple_code (cond) != GIMPLE_COND)
807 return false;
808 /* Verify that this is an extended form of a diamond and
809 the PHI arguments are completely controlled by the
810 predicate in DOM. */
811 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
812 return false;
813
814 /* Fold in dependencies and cost of the condition. */
815 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
816 {
817 if (!add_dependency (val, lim_data, loop, false))
818 return false;
819 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
820 if (def_data)
821 total_cost += def_data->cost;
822 }
823
824 /* We want to avoid unconditionally executing very expensive
825 operations. As costs for our dependencies cannot be
826 negative just claim we are not invariand for this case.
827 We also are not sure whether the control-flow inside the
828 loop will vanish. */
829 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
830 && !(min_cost != 0
831 && total_cost / min_cost <= 2))
832 return false;
833
834 /* Assume that the control-flow in the loop will vanish.
835 ??? We should verify this and not artificially increase
836 the cost if that is not the case. */
837 lim_data->cost += stmt_cost (stmt);
838 }
839
840 return true;
841 }
842 else
843 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
844 if (!add_dependency (val, lim_data, loop, true))
845 return false;
846
847 if (gimple_vuse (stmt))
848 {
849 mem_ref_p ref = mem_ref_in_stmt (stmt);
850
851 if (ref)
852 {
853 lim_data->max_loop
854 = outermost_indep_loop (lim_data->max_loop, loop, ref);
855 if (!lim_data->max_loop)
856 return false;
857 }
858 else
859 {
860 if ((val = gimple_vuse (stmt)) != NULL_TREE)
861 {
862 if (!add_dependency (val, lim_data, loop, false))
863 return false;
864 }
865 }
866 }
867
868 lim_data->cost += stmt_cost (stmt);
869
870 return true;
871 }
872
873 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
874 and that one of the operands of this statement is computed by STMT.
875 Ensure that STMT (together with all the statements that define its
876 operands) is hoisted at least out of the loop LEVEL. */
877
878 static void
879 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
880 {
881 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
882 struct lim_aux_data *lim_data;
883 gimple dep_stmt;
884 unsigned i;
885
886 stmt_loop = find_common_loop (orig_loop, stmt_loop);
887 lim_data = get_lim_data (stmt);
888 if (lim_data != NULL && lim_data->tgt_loop != NULL)
889 stmt_loop = find_common_loop (stmt_loop,
890 loop_outer (lim_data->tgt_loop));
891 if (flow_loop_nested_p (stmt_loop, level))
892 return;
893
894 gcc_assert (level == lim_data->max_loop
895 || flow_loop_nested_p (lim_data->max_loop, level));
896
897 lim_data->tgt_loop = level;
898 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
899 set_level (dep_stmt, orig_loop, level);
900 }
901
902 /* Determines an outermost loop from that we want to hoist the statement STMT.
903 For now we chose the outermost possible loop. TODO -- use profiling
904 information to set it more sanely. */
905
906 static void
907 set_profitable_level (gimple stmt)
908 {
909 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
910 }
911
912 /* Returns true if STMT is a call that has side effects. */
913
914 static bool
915 nonpure_call_p (gimple stmt)
916 {
917 if (gimple_code (stmt) != GIMPLE_CALL)
918 return false;
919
920 return gimple_has_side_effects (stmt);
921 }
922
923 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
924
925 static gimple
926 rewrite_reciprocal (gimple_stmt_iterator *bsi)
927 {
928 gimple stmt, stmt1, stmt2;
929 tree name, lhs, type;
930 tree real_one;
931 gimple_stmt_iterator gsi;
932
933 stmt = gsi_stmt (*bsi);
934 lhs = gimple_assign_lhs (stmt);
935 type = TREE_TYPE (lhs);
936
937 real_one = build_one_cst (type);
938
939 name = make_temp_ssa_name (type, NULL, "reciptmp");
940 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
941 gimple_assign_rhs2 (stmt));
942
943 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
944 gimple_assign_rhs1 (stmt));
945
946 /* Replace division stmt with reciprocal and multiply stmts.
947 The multiply stmt is not invariant, so update iterator
948 and avoid rescanning. */
949 gsi = *bsi;
950 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
951 gsi_replace (&gsi, stmt2, true);
952
953 /* Continue processing with invariant reciprocal statement. */
954 return stmt1;
955 }
956
957 /* Check if the pattern at *BSI is a bittest of the form
958 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
959
960 static gimple
961 rewrite_bittest (gimple_stmt_iterator *bsi)
962 {
963 gimple stmt, use_stmt, stmt1, stmt2;
964 tree lhs, name, t, a, b;
965 use_operand_p use;
966
967 stmt = gsi_stmt (*bsi);
968 lhs = gimple_assign_lhs (stmt);
969
970 /* Verify that the single use of lhs is a comparison against zero. */
971 if (TREE_CODE (lhs) != SSA_NAME
972 || !single_imm_use (lhs, &use, &use_stmt)
973 || gimple_code (use_stmt) != GIMPLE_COND)
974 return stmt;
975 if (gimple_cond_lhs (use_stmt) != lhs
976 || (gimple_cond_code (use_stmt) != NE_EXPR
977 && gimple_cond_code (use_stmt) != EQ_EXPR)
978 || !integer_zerop (gimple_cond_rhs (use_stmt)))
979 return stmt;
980
981 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
982 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
983 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
984 return stmt;
985
986 /* There is a conversion in between possibly inserted by fold. */
987 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
988 {
989 t = gimple_assign_rhs1 (stmt1);
990 if (TREE_CODE (t) != SSA_NAME
991 || !has_single_use (t))
992 return stmt;
993 stmt1 = SSA_NAME_DEF_STMT (t);
994 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
995 return stmt;
996 }
997
998 /* Verify that B is loop invariant but A is not. Verify that with
999 all the stmt walking we are still in the same loop. */
1000 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1001 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1002 return stmt;
1003
1004 a = gimple_assign_rhs1 (stmt1);
1005 b = gimple_assign_rhs2 (stmt1);
1006
1007 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1008 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1009 {
1010 gimple_stmt_iterator rsi;
1011
1012 /* 1 << B */
1013 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1014 build_int_cst (TREE_TYPE (a), 1), b);
1015 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1016 stmt1 = gimple_build_assign (name, t);
1017
1018 /* A & (1 << B) */
1019 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1020 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1021 stmt2 = gimple_build_assign (name, t);
1022
1023 /* Replace the SSA_NAME we compare against zero. Adjust
1024 the type of zero accordingly. */
1025 SET_USE (use, name);
1026 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1027
1028 /* Don't use gsi_replace here, none of the new assignments sets
1029 the variable originally set in stmt. Move bsi to stmt1, and
1030 then remove the original stmt, so that we get a chance to
1031 retain debug info for it. */
1032 rsi = *bsi;
1033 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1034 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1035 gsi_remove (&rsi, true);
1036
1037 return stmt1;
1038 }
1039
1040 return stmt;
1041 }
1042
1043
1044 /* Determine the outermost loops in that statements in basic block BB are
1045 invariant, and record them to the LIM_DATA associated with the statements.
1046 Callback for walk_dominator_tree. */
1047
1048 static void
1049 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1050 basic_block bb)
1051 {
1052 enum move_pos pos;
1053 gimple_stmt_iterator bsi;
1054 gimple stmt;
1055 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1056 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1057 struct lim_aux_data *lim_data;
1058
1059 if (!loop_outer (bb->loop_father))
1060 return;
1061
1062 if (dump_file && (dump_flags & TDF_DETAILS))
1063 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1064 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1065
1066 /* Look at PHI nodes, but only if there is at most two.
1067 ??? We could relax this further by post-processing the inserted
1068 code and transforming adjacent cond-exprs with the same predicate
1069 to control flow again. */
1070 bsi = gsi_start_phis (bb);
1071 if (!gsi_end_p (bsi)
1072 && ((gsi_next (&bsi), gsi_end_p (bsi))
1073 || (gsi_next (&bsi), gsi_end_p (bsi))))
1074 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1075 {
1076 stmt = gsi_stmt (bsi);
1077
1078 pos = movement_possibility (stmt);
1079 if (pos == MOVE_IMPOSSIBLE)
1080 continue;
1081
1082 lim_data = init_lim_data (stmt);
1083 lim_data->always_executed_in = outermost;
1084
1085 if (!determine_max_movement (stmt, false))
1086 {
1087 lim_data->max_loop = NULL;
1088 continue;
1089 }
1090
1091 if (dump_file && (dump_flags & TDF_DETAILS))
1092 {
1093 print_gimple_stmt (dump_file, stmt, 2, 0);
1094 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1095 loop_depth (lim_data->max_loop),
1096 lim_data->cost);
1097 }
1098
1099 if (lim_data->cost >= LIM_EXPENSIVE)
1100 set_profitable_level (stmt);
1101 }
1102
1103 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1104 {
1105 stmt = gsi_stmt (bsi);
1106
1107 pos = movement_possibility (stmt);
1108 if (pos == MOVE_IMPOSSIBLE)
1109 {
1110 if (nonpure_call_p (stmt))
1111 {
1112 maybe_never = true;
1113 outermost = NULL;
1114 }
1115 /* Make sure to note always_executed_in for stores to make
1116 store-motion work. */
1117 else if (stmt_makes_single_store (stmt))
1118 {
1119 struct lim_aux_data *lim_data = init_lim_data (stmt);
1120 lim_data->always_executed_in = outermost;
1121 }
1122 continue;
1123 }
1124
1125 if (is_gimple_assign (stmt)
1126 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1127 == GIMPLE_BINARY_RHS))
1128 {
1129 tree op0 = gimple_assign_rhs1 (stmt);
1130 tree op1 = gimple_assign_rhs2 (stmt);
1131 struct loop *ol1 = outermost_invariant_loop (op1,
1132 loop_containing_stmt (stmt));
1133
1134 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1135 to be hoisted out of loop, saving expensive divide. */
1136 if (pos == MOVE_POSSIBLE
1137 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1138 && flag_unsafe_math_optimizations
1139 && !flag_trapping_math
1140 && ol1 != NULL
1141 && outermost_invariant_loop (op0, ol1) == NULL)
1142 stmt = rewrite_reciprocal (&bsi);
1143
1144 /* If the shift count is invariant, convert (A >> B) & 1 to
1145 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1146 saving an expensive shift. */
1147 if (pos == MOVE_POSSIBLE
1148 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1149 && integer_onep (op1)
1150 && TREE_CODE (op0) == SSA_NAME
1151 && has_single_use (op0))
1152 stmt = rewrite_bittest (&bsi);
1153 }
1154
1155 lim_data = init_lim_data (stmt);
1156 lim_data->always_executed_in = outermost;
1157
1158 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1159 continue;
1160
1161 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1162 {
1163 lim_data->max_loop = NULL;
1164 continue;
1165 }
1166
1167 if (dump_file && (dump_flags & TDF_DETAILS))
1168 {
1169 print_gimple_stmt (dump_file, stmt, 2, 0);
1170 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1171 loop_depth (lim_data->max_loop),
1172 lim_data->cost);
1173 }
1174
1175 if (lim_data->cost >= LIM_EXPENSIVE)
1176 set_profitable_level (stmt);
1177 }
1178 }
1179
1180 /* For each statement determines the outermost loop in that it is invariant,
1181 statements on whose motion it depends and the cost of the computation.
1182 This information is stored to the LIM_DATA structure associated with
1183 each statement. */
1184
1185 static void
1186 determine_invariantness (void)
1187 {
1188 struct dom_walk_data walk_data;
1189
1190 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1191 walk_data.dom_direction = CDI_DOMINATORS;
1192 walk_data.before_dom_children = determine_invariantness_stmt;
1193
1194 init_walk_dominator_tree (&walk_data);
1195 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1196 fini_walk_dominator_tree (&walk_data);
1197 }
1198
1199 /* Hoist the statements in basic block BB out of the loops prescribed by
1200 data stored in LIM_DATA structures associated with each statement. Callback
1201 for walk_dominator_tree. */
1202
1203 static void
1204 move_computations_stmt (struct dom_walk_data *dw_data,
1205 basic_block bb)
1206 {
1207 struct loop *level;
1208 gimple_stmt_iterator bsi;
1209 gimple stmt;
1210 unsigned cost = 0;
1211 struct lim_aux_data *lim_data;
1212
1213 if (!loop_outer (bb->loop_father))
1214 return;
1215
1216 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1217 {
1218 gimple new_stmt;
1219 stmt = gsi_stmt (bsi);
1220
1221 lim_data = get_lim_data (stmt);
1222 if (lim_data == NULL)
1223 {
1224 gsi_next (&bsi);
1225 continue;
1226 }
1227
1228 cost = lim_data->cost;
1229 level = lim_data->tgt_loop;
1230 clear_lim_data (stmt);
1231
1232 if (!level)
1233 {
1234 gsi_next (&bsi);
1235 continue;
1236 }
1237
1238 if (dump_file && (dump_flags & TDF_DETAILS))
1239 {
1240 fprintf (dump_file, "Moving PHI node\n");
1241 print_gimple_stmt (dump_file, stmt, 0, 0);
1242 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1243 cost, level->num);
1244 }
1245
1246 if (gimple_phi_num_args (stmt) == 1)
1247 {
1248 tree arg = PHI_ARG_DEF (stmt, 0);
1249 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1250 gimple_phi_result (stmt),
1251 arg, NULL_TREE);
1252 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1253 }
1254 else
1255 {
1256 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1257 gimple cond = gsi_stmt (gsi_last_bb (dom));
1258 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1259 /* Get the PHI arguments corresponding to the true and false
1260 edges of COND. */
1261 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1262 gcc_assert (arg0 && arg1);
1263 t = build2 (gimple_cond_code (cond), boolean_type_node,
1264 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1265 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1266 gimple_phi_result (stmt),
1267 t, arg0, arg1);
1268 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1269 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1270 }
1271 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1272 remove_phi_node (&bsi, false);
1273 }
1274
1275 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1276 {
1277 edge e;
1278
1279 stmt = gsi_stmt (bsi);
1280
1281 lim_data = get_lim_data (stmt);
1282 if (lim_data == NULL)
1283 {
1284 gsi_next (&bsi);
1285 continue;
1286 }
1287
1288 cost = lim_data->cost;
1289 level = lim_data->tgt_loop;
1290 clear_lim_data (stmt);
1291
1292 if (!level)
1293 {
1294 gsi_next (&bsi);
1295 continue;
1296 }
1297
1298 /* We do not really want to move conditionals out of the loop; we just
1299 placed it here to force its operands to be moved if necessary. */
1300 if (gimple_code (stmt) == GIMPLE_COND)
1301 continue;
1302
1303 if (dump_file && (dump_flags & TDF_DETAILS))
1304 {
1305 fprintf (dump_file, "Moving statement\n");
1306 print_gimple_stmt (dump_file, stmt, 0, 0);
1307 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1308 cost, level->num);
1309 }
1310
1311 e = loop_preheader_edge (level);
1312 gcc_assert (!gimple_vdef (stmt));
1313 if (gimple_vuse (stmt))
1314 {
1315 /* The new VUSE is the one from the virtual PHI in the loop
1316 header or the one already present. */
1317 gimple_stmt_iterator gsi2;
1318 for (gsi2 = gsi_start_phis (e->dest);
1319 !gsi_end_p (gsi2); gsi_next (&gsi2))
1320 {
1321 gimple phi = gsi_stmt (gsi2);
1322 if (virtual_operand_p (gimple_phi_result (phi)))
1323 {
1324 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1325 break;
1326 }
1327 }
1328 }
1329 gsi_remove (&bsi, false);
1330 gsi_insert_on_edge (e, stmt);
1331 }
1332 }
1333
1334 /* Hoist the statements out of the loops prescribed by data stored in
1335 LIM_DATA structures associated with each statement.*/
1336
1337 static unsigned int
1338 move_computations (void)
1339 {
1340 struct dom_walk_data walk_data;
1341 unsigned int todo = 0;
1342
1343 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1344 walk_data.global_data = &todo;
1345 walk_data.dom_direction = CDI_DOMINATORS;
1346 walk_data.before_dom_children = move_computations_stmt;
1347
1348 init_walk_dominator_tree (&walk_data);
1349 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1350 fini_walk_dominator_tree (&walk_data);
1351
1352 gsi_commit_edge_inserts ();
1353 if (need_ssa_update_p (cfun))
1354 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1355
1356 return todo;
1357 }
1358
1359 /* Checks whether the statement defining variable *INDEX can be hoisted
1360 out of the loop passed in DATA. Callback for for_each_index. */
1361
1362 static bool
1363 may_move_till (tree ref, tree *index, void *data)
1364 {
1365 struct loop *loop = (struct loop *) data, *max_loop;
1366
1367 /* If REF is an array reference, check also that the step and the lower
1368 bound is invariant in LOOP. */
1369 if (TREE_CODE (ref) == ARRAY_REF)
1370 {
1371 tree step = TREE_OPERAND (ref, 3);
1372 tree lbound = TREE_OPERAND (ref, 2);
1373
1374 max_loop = outermost_invariant_loop (step, loop);
1375 if (!max_loop)
1376 return false;
1377
1378 max_loop = outermost_invariant_loop (lbound, loop);
1379 if (!max_loop)
1380 return false;
1381 }
1382
1383 max_loop = outermost_invariant_loop (*index, loop);
1384 if (!max_loop)
1385 return false;
1386
1387 return true;
1388 }
1389
1390 /* If OP is SSA NAME, force the statement that defines it to be
1391 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1392
1393 static void
1394 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1395 {
1396 gimple stmt;
1397
1398 if (!op
1399 || is_gimple_min_invariant (op))
1400 return;
1401
1402 gcc_assert (TREE_CODE (op) == SSA_NAME);
1403
1404 stmt = SSA_NAME_DEF_STMT (op);
1405 if (gimple_nop_p (stmt))
1406 return;
1407
1408 set_level (stmt, orig_loop, loop);
1409 }
1410
1411 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1412 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1413 for_each_index. */
1414
1415 struct fmt_data
1416 {
1417 struct loop *loop;
1418 struct loop *orig_loop;
1419 };
1420
1421 static bool
1422 force_move_till (tree ref, tree *index, void *data)
1423 {
1424 struct fmt_data *fmt_data = (struct fmt_data *) data;
1425
1426 if (TREE_CODE (ref) == ARRAY_REF)
1427 {
1428 tree step = TREE_OPERAND (ref, 3);
1429 tree lbound = TREE_OPERAND (ref, 2);
1430
1431 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1432 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1433 }
1434
1435 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1436
1437 return true;
1438 }
1439
1440 /* A function to free the mem_ref object OBJ. */
1441
1442 static void
1443 memref_free (struct mem_ref *mem)
1444 {
1445 unsigned i;
1446 vec<mem_ref_loc> *accs;
1447
1448 FOR_EACH_VEC_ELT (mem->accesses_in_loop, i, accs)
1449 accs->release ();
1450 mem->accesses_in_loop.release ();
1451
1452 free (mem);
1453 }
1454
1455 /* Allocates and returns a memory reference description for MEM whose hash
1456 value is HASH and id is ID. */
1457
1458 static mem_ref_p
1459 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1460 {
1461 mem_ref_p ref = XNEW (struct mem_ref);
1462 ao_ref_init (&ref->mem, mem);
1463 ref->id = id;
1464 ref->hash = hash;
1465 bitmap_initialize (&ref->stored, &lim_bitmap_obstack);
1466 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1467 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1468 ref->accesses_in_loop.create (0);
1469
1470 return ref;
1471 }
1472
1473 /* Records memory reference location *LOC in LOOP to the memory reference
1474 description REF. The reference occurs in statement STMT. */
1475
1476 static void
1477 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1478 {
1479 mem_ref_loc aref;
1480
1481 if (ref->accesses_in_loop.length ()
1482 <= (unsigned) loop->num)
1483 ref->accesses_in_loop.safe_grow_cleared (loop->num + 1);
1484
1485 aref.stmt = stmt;
1486 aref.ref = loc;
1487 ref->accesses_in_loop[loop->num].safe_push (aref);
1488 }
1489
1490 /* Marks reference REF as stored in LOOP. */
1491
1492 static void
1493 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1494 {
1495 while (loop != current_loops->tree_root
1496 && bitmap_set_bit (&ref->stored, loop->num))
1497 loop = loop_outer (loop);
1498 }
1499
1500 /* Gathers memory references in statement STMT in LOOP, storing the
1501 information about them in the memory_accesses structure. Marks
1502 the vops accessed through unrecognized statements there as
1503 well. */
1504
1505 static void
1506 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1507 {
1508 tree *mem = NULL;
1509 hashval_t hash;
1510 mem_ref **slot;
1511 mem_ref_p ref;
1512 bool is_stored;
1513 unsigned id;
1514
1515 if (!gimple_vuse (stmt))
1516 return;
1517
1518 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1519 if (!mem)
1520 {
1521 /* We use the shared mem_ref for all unanalyzable refs. */
1522 id = UNANALYZABLE_MEM_ID;
1523 ref = memory_accesses.refs_list[id];
1524 if (dump_file && (dump_flags & TDF_DETAILS))
1525 {
1526 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1527 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1528 }
1529 is_stored = gimple_vdef (stmt);
1530 }
1531 else
1532 {
1533 hash = iterative_hash_expr (*mem, 0);
1534 slot = memory_accesses.refs.find_slot_with_hash (*mem, hash, INSERT);
1535 if (*slot)
1536 {
1537 ref = (mem_ref_p) *slot;
1538 id = ref->id;
1539 }
1540 else
1541 {
1542 id = memory_accesses.refs_list.length ();
1543 ref = mem_ref_alloc (*mem, hash, id);
1544 memory_accesses.refs_list.safe_push (ref);
1545 *slot = ref;
1546
1547 if (dump_file && (dump_flags & TDF_DETAILS))
1548 {
1549 fprintf (dump_file, "Memory reference %u: ", id);
1550 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1551 fprintf (dump_file, "\n");
1552 }
1553 }
1554
1555 record_mem_ref_loc (ref, loop, stmt, mem);
1556 }
1557 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1558 if (is_stored)
1559 {
1560 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1561 mark_ref_stored (ref, loop);
1562 }
1563 return;
1564 }
1565
1566 static unsigned *bb_loop_postorder;
1567
1568 /* qsort sort function to sort blocks after their loop fathers postorder. */
1569
1570 static int
1571 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1572 {
1573 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1574 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1575 struct loop *loop1 = bb1->loop_father;
1576 struct loop *loop2 = bb2->loop_father;
1577 if (loop1->num == loop2->num)
1578 return 0;
1579 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1580 }
1581
1582 /* Gathers memory references in loops. */
1583
1584 static void
1585 analyze_memory_references (void)
1586 {
1587 gimple_stmt_iterator bsi;
1588 basic_block bb, *bbs;
1589 struct loop *loop, *outer;
1590 loop_iterator li;
1591 unsigned i, n;
1592
1593 /* Initialize bb_loop_postorder with a mapping from loop->num to
1594 its postorder index. */
1595 i = 0;
1596 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
1597 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1598 bb_loop_postorder[loop->num] = i++;
1599 /* Collect all basic-blocks in loops and sort them after their
1600 loops postorder. */
1601 i = 0;
1602 bbs = XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
1603 FOR_EACH_BB (bb)
1604 if (bb->loop_father != current_loops->tree_root)
1605 bbs[i++] = bb;
1606 n = i;
1607 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1608 free (bb_loop_postorder);
1609
1610 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1611 That results in better locality for all the bitmaps. */
1612 for (i = 0; i < n; ++i)
1613 {
1614 basic_block bb = bbs[i];
1615 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1616 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1617 }
1618
1619 free (bbs);
1620
1621 /* Propagate the information about accessed memory references up
1622 the loop hierarchy. */
1623 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1624 {
1625 /* Finalize the overall touched references (including subloops). */
1626 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1627 &memory_accesses.refs_stored_in_loop[loop->num]);
1628
1629 /* Propagate the information about accessed memory references up
1630 the loop hierarchy. */
1631 outer = loop_outer (loop);
1632 if (outer == current_loops->tree_root)
1633 continue;
1634
1635 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1636 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1637 }
1638 }
1639
1640 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1641 tree_to_aff_combination_expand. */
1642
1643 static bool
1644 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1645 struct pointer_map_t **ttae_cache)
1646 {
1647 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1648 object and their offset differ in such a way that the locations cannot
1649 overlap, then they cannot alias. */
1650 double_int size1, size2;
1651 aff_tree off1, off2;
1652
1653 /* Perform basic offset and type-based disambiguation. */
1654 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1655 return false;
1656
1657 /* The expansion of addresses may be a bit expensive, thus we only do
1658 the check at -O2 and higher optimization levels. */
1659 if (optimize < 2)
1660 return true;
1661
1662 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1663 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1664 aff_combination_expand (&off1, ttae_cache);
1665 aff_combination_expand (&off2, ttae_cache);
1666 aff_combination_scale (&off1, double_int_minus_one);
1667 aff_combination_add (&off2, &off1);
1668
1669 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1670 return false;
1671
1672 return true;
1673 }
1674
1675 /* Iterates over all locations of REF in LOOP and its subloops calling
1676 fn.operator() with the location as argument. When that operator
1677 returns true the iteration is stopped and true is returned.
1678 Otherwise false is returned. */
1679
1680 template <typename FN>
1681 static bool
1682 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1683 {
1684 unsigned i;
1685 mem_ref_loc_p loc;
1686 struct loop *subloop;
1687
1688 if (ref->accesses_in_loop.length () > (unsigned) loop->num)
1689 FOR_EACH_VEC_ELT (ref->accesses_in_loop[loop->num], i, loc)
1690 if (fn (loc))
1691 return true;
1692
1693 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1694 if (for_all_locs_in_loop (subloop, ref, fn))
1695 return true;
1696
1697 return false;
1698 }
1699
1700 /* Rewrites location LOC by TMP_VAR. */
1701
1702 struct rewrite_mem_ref_loc
1703 {
1704 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1705 bool operator()(mem_ref_loc_p loc);
1706 tree tmp_var;
1707 };
1708
1709 bool
1710 rewrite_mem_ref_loc::operator()(mem_ref_loc_p loc)
1711 {
1712 *loc->ref = tmp_var;
1713 update_stmt (loc->stmt);
1714 return false;
1715 }
1716
1717 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1718
1719 static void
1720 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1721 {
1722 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1723 }
1724
1725 /* Stores the first reference location in LOCP. */
1726
1727 struct first_mem_ref_loc_1
1728 {
1729 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1730 bool operator()(mem_ref_loc_p loc);
1731 mem_ref_loc_p *locp;
1732 };
1733
1734 bool
1735 first_mem_ref_loc_1::operator()(mem_ref_loc_p loc)
1736 {
1737 *locp = loc;
1738 return true;
1739 }
1740
1741 /* Returns the first reference location to REF in LOOP. */
1742
1743 static mem_ref_loc_p
1744 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1745 {
1746 mem_ref_loc_p locp = NULL;
1747 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1748 return locp;
1749 }
1750
1751 /* The name and the length of the currently generated variable
1752 for lsm. */
1753 #define MAX_LSM_NAME_LENGTH 40
1754 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1755 static int lsm_tmp_name_length;
1756
1757 /* Adds S to lsm_tmp_name. */
1758
1759 static void
1760 lsm_tmp_name_add (const char *s)
1761 {
1762 int l = strlen (s) + lsm_tmp_name_length;
1763 if (l > MAX_LSM_NAME_LENGTH)
1764 return;
1765
1766 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1767 lsm_tmp_name_length = l;
1768 }
1769
1770 /* Stores the name for temporary variable that replaces REF to
1771 lsm_tmp_name. */
1772
1773 static void
1774 gen_lsm_tmp_name (tree ref)
1775 {
1776 const char *name;
1777
1778 switch (TREE_CODE (ref))
1779 {
1780 case MEM_REF:
1781 case TARGET_MEM_REF:
1782 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1783 lsm_tmp_name_add ("_");
1784 break;
1785
1786 case ADDR_EXPR:
1787 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1788 break;
1789
1790 case BIT_FIELD_REF:
1791 case VIEW_CONVERT_EXPR:
1792 case ARRAY_RANGE_REF:
1793 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1794 break;
1795
1796 case REALPART_EXPR:
1797 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1798 lsm_tmp_name_add ("_RE");
1799 break;
1800
1801 case IMAGPART_EXPR:
1802 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1803 lsm_tmp_name_add ("_IM");
1804 break;
1805
1806 case COMPONENT_REF:
1807 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1808 lsm_tmp_name_add ("_");
1809 name = get_name (TREE_OPERAND (ref, 1));
1810 if (!name)
1811 name = "F";
1812 lsm_tmp_name_add (name);
1813 break;
1814
1815 case ARRAY_REF:
1816 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1817 lsm_tmp_name_add ("_I");
1818 break;
1819
1820 case SSA_NAME:
1821 case VAR_DECL:
1822 case PARM_DECL:
1823 name = get_name (ref);
1824 if (!name)
1825 name = "D";
1826 lsm_tmp_name_add (name);
1827 break;
1828
1829 case STRING_CST:
1830 lsm_tmp_name_add ("S");
1831 break;
1832
1833 case RESULT_DECL:
1834 lsm_tmp_name_add ("R");
1835 break;
1836
1837 case INTEGER_CST:
1838 /* Nothing. */
1839 break;
1840
1841 default:
1842 gcc_unreachable ();
1843 }
1844 }
1845
1846 /* Determines name for temporary variable that replaces REF.
1847 The name is accumulated into the lsm_tmp_name variable.
1848 N is added to the name of the temporary. */
1849
1850 char *
1851 get_lsm_tmp_name (tree ref, unsigned n)
1852 {
1853 char ns[2];
1854
1855 lsm_tmp_name_length = 0;
1856 gen_lsm_tmp_name (ref);
1857 lsm_tmp_name_add ("_lsm");
1858 if (n < 10)
1859 {
1860 ns[0] = '0' + n;
1861 ns[1] = 0;
1862 lsm_tmp_name_add (ns);
1863 }
1864 return lsm_tmp_name;
1865 }
1866
1867 struct prev_flag_edges {
1868 /* Edge to insert new flag comparison code. */
1869 edge append_cond_position;
1870
1871 /* Edge for fall through from previous flag comparison. */
1872 edge last_cond_fallthru;
1873 };
1874
1875 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1876 MEM along edge EX.
1877
1878 The store is only done if MEM has changed. We do this so no
1879 changes to MEM occur on code paths that did not originally store
1880 into it.
1881
1882 The common case for execute_sm will transform:
1883
1884 for (...) {
1885 if (foo)
1886 stuff;
1887 else
1888 MEM = TMP_VAR;
1889 }
1890
1891 into:
1892
1893 lsm = MEM;
1894 for (...) {
1895 if (foo)
1896 stuff;
1897 else
1898 lsm = TMP_VAR;
1899 }
1900 MEM = lsm;
1901
1902 This function will generate:
1903
1904 lsm = MEM;
1905
1906 lsm_flag = false;
1907 ...
1908 for (...) {
1909 if (foo)
1910 stuff;
1911 else {
1912 lsm = TMP_VAR;
1913 lsm_flag = true;
1914 }
1915 }
1916 if (lsm_flag) <--
1917 MEM = lsm; <--
1918 */
1919
1920 static void
1921 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1922 {
1923 basic_block new_bb, then_bb, old_dest;
1924 bool loop_has_only_one_exit;
1925 edge then_old_edge, orig_ex = ex;
1926 gimple_stmt_iterator gsi;
1927 gimple stmt;
1928 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1929
1930 /* ?? Insert store after previous store if applicable. See note
1931 below. */
1932 if (prev_edges)
1933 ex = prev_edges->append_cond_position;
1934
1935 loop_has_only_one_exit = single_pred_p (ex->dest);
1936
1937 if (loop_has_only_one_exit)
1938 ex = split_block_after_labels (ex->dest);
1939
1940 old_dest = ex->dest;
1941 new_bb = split_edge (ex);
1942 then_bb = create_empty_bb (new_bb);
1943 if (current_loops && new_bb->loop_father)
1944 add_bb_to_loop (then_bb, new_bb->loop_father);
1945
1946 gsi = gsi_start_bb (new_bb);
1947 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1948 NULL_TREE, NULL_TREE);
1949 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1950
1951 gsi = gsi_start_bb (then_bb);
1952 /* Insert actual store. */
1953 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1954 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1955
1956 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
1957 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
1958 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
1959
1960 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1961
1962 if (prev_edges)
1963 {
1964 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1965 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1966 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1967 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1968 recompute_dominator (CDI_DOMINATORS, old_dest));
1969 }
1970
1971 /* ?? Because stores may alias, they must happen in the exact
1972 sequence they originally happened. Save the position right after
1973 the (_lsm) store we just created so we can continue appending after
1974 it and maintain the original order. */
1975 {
1976 struct prev_flag_edges *p;
1977
1978 if (orig_ex->aux)
1979 orig_ex->aux = NULL;
1980 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1981 p = (struct prev_flag_edges *) orig_ex->aux;
1982 p->append_cond_position = then_old_edge;
1983 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1984 orig_ex->aux = (void *) p;
1985 }
1986
1987 if (!loop_has_only_one_exit)
1988 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1989 {
1990 gimple phi = gsi_stmt (gsi);
1991 unsigned i;
1992
1993 for (i = 0; i < gimple_phi_num_args (phi); i++)
1994 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1995 {
1996 tree arg = gimple_phi_arg_def (phi, i);
1997 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1998 update_stmt (phi);
1999 }
2000 }
2001 /* Remove the original fall through edge. This was the
2002 single_succ_edge (new_bb). */
2003 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
2004 }
2005
2006 /* When REF is set on the location, set flag indicating the store. */
2007
2008 struct sm_set_flag_if_changed
2009 {
2010 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
2011 bool operator()(mem_ref_loc_p loc);
2012 tree flag;
2013 };
2014
2015 bool
2016 sm_set_flag_if_changed::operator()(mem_ref_loc_p loc)
2017 {
2018 /* Only set the flag for writes. */
2019 if (is_gimple_assign (loc->stmt)
2020 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2021 {
2022 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2023 gimple stmt = gimple_build_assign (flag, boolean_true_node);
2024 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2025 }
2026 return false;
2027 }
2028
2029 /* Helper function for execute_sm. On every location where REF is
2030 set, set an appropriate flag indicating the store. */
2031
2032 static tree
2033 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
2034 {
2035 tree flag;
2036 char *str = get_lsm_tmp_name (ref->mem.ref, ~0);
2037 lsm_tmp_name_add ("_flag");
2038 flag = create_tmp_reg (boolean_type_node, str);
2039 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
2040 return flag;
2041 }
2042
2043 /* Executes store motion of memory reference REF from LOOP.
2044 Exits from the LOOP are stored in EXITS. The initialization of the
2045 temporary variable is put to the preheader of the loop, and assignments
2046 to the reference from the temporary variable are emitted to exits. */
2047
2048 static void
2049 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
2050 {
2051 tree tmp_var, store_flag;
2052 unsigned i;
2053 gimple load;
2054 struct fmt_data fmt_data;
2055 edge ex;
2056 struct lim_aux_data *lim_data;
2057 bool multi_threaded_model_p = false;
2058 gimple_stmt_iterator gsi;
2059
2060 if (dump_file && (dump_flags & TDF_DETAILS))
2061 {
2062 fprintf (dump_file, "Executing store motion of ");
2063 print_generic_expr (dump_file, ref->mem.ref, 0);
2064 fprintf (dump_file, " from loop %d\n", loop->num);
2065 }
2066
2067 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2068 get_lsm_tmp_name (ref->mem.ref, ~0));
2069
2070 fmt_data.loop = loop;
2071 fmt_data.orig_loop = loop;
2072 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2073
2074 if (block_in_transaction (loop_preheader_edge (loop)->src)
2075 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2076 multi_threaded_model_p = true;
2077
2078 if (multi_threaded_model_p)
2079 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2080
2081 rewrite_mem_refs (loop, ref, tmp_var);
2082
2083 /* Emit the load code on a random exit edge or into the latch if
2084 the loop does not exit, so that we are sure it will be processed
2085 by move_computations after all dependencies. */
2086 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2087
2088 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2089 load altogether, since the store is predicated by a flag. We
2090 could, do the load only if it was originally in the loop. */
2091 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2092 lim_data = init_lim_data (load);
2093 lim_data->max_loop = loop;
2094 lim_data->tgt_loop = loop;
2095 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2096
2097 if (multi_threaded_model_p)
2098 {
2099 load = gimple_build_assign (store_flag, boolean_false_node);
2100 lim_data = init_lim_data (load);
2101 lim_data->max_loop = loop;
2102 lim_data->tgt_loop = loop;
2103 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2104 }
2105
2106 /* Sink the store to every exit from the loop. */
2107 FOR_EACH_VEC_ELT (exits, i, ex)
2108 if (!multi_threaded_model_p)
2109 {
2110 gimple store;
2111 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2112 gsi_insert_on_edge (ex, store);
2113 }
2114 else
2115 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2116 }
2117
2118 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2119 edges of the LOOP. */
2120
2121 static void
2122 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2123 vec<edge> exits)
2124 {
2125 mem_ref_p ref;
2126 unsigned i;
2127 bitmap_iterator bi;
2128
2129 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2130 {
2131 ref = memory_accesses.refs_list[i];
2132 execute_sm (loop, exits, ref);
2133 }
2134 }
2135
2136 struct ref_always_accessed
2137 {
2138 ref_always_accessed (struct loop *loop_, tree base_, bool stored_p_)
2139 : loop (loop_), base (base_), stored_p (stored_p_) {}
2140 bool operator()(mem_ref_loc_p loc);
2141 struct loop *loop;
2142 tree base;
2143 bool stored_p;
2144 };
2145
2146 bool
2147 ref_always_accessed::operator()(mem_ref_loc_p loc)
2148 {
2149 struct loop *must_exec;
2150
2151 if (!get_lim_data (loc->stmt))
2152 return false;
2153
2154 /* If we require an always executed store make sure the statement
2155 stores to the reference. */
2156 if (stored_p)
2157 {
2158 tree lhs;
2159 if (!gimple_get_lhs (loc->stmt))
2160 return false;
2161 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2162 if (!lhs)
2163 return false;
2164 if (INDIRECT_REF_P (lhs)
2165 || TREE_CODE (lhs) == MEM_REF)
2166 lhs = TREE_OPERAND (lhs, 0);
2167 if (lhs != base)
2168 return false;
2169 }
2170
2171 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2172 if (!must_exec)
2173 return false;
2174
2175 if (must_exec == loop
2176 || flow_loop_nested_p (must_exec, loop))
2177 return true;
2178
2179 return false;
2180 }
2181
2182 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2183 make sure REF is always stored to in LOOP. */
2184
2185 static bool
2186 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2187 {
2188 tree base = ao_ref_base (&ref->mem);
2189 if (TREE_CODE (base) == MEM_REF)
2190 base = TREE_OPERAND (base, 0);
2191
2192 return for_all_locs_in_loop (loop, ref,
2193 ref_always_accessed (loop, base, stored_p));
2194 }
2195
2196 /* Returns true if REF1 and REF2 are independent. */
2197
2198 static bool
2199 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2200 {
2201 if (ref1 == ref2)
2202 return true;
2203
2204 if (dump_file && (dump_flags & TDF_DETAILS))
2205 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2206 ref1->id, ref2->id);
2207
2208 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2209 {
2210 if (dump_file && (dump_flags & TDF_DETAILS))
2211 fprintf (dump_file, "dependent.\n");
2212 return false;
2213 }
2214 else
2215 {
2216 if (dump_file && (dump_flags & TDF_DETAILS))
2217 fprintf (dump_file, "independent.\n");
2218 return true;
2219 }
2220 }
2221
2222 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2223 and its super-loops. */
2224
2225 static void
2226 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2227 {
2228 /* We can propagate dependent-in-loop bits up the loop
2229 hierarchy to all outer loops. */
2230 while (loop != current_loops->tree_root
2231 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2232 loop = loop_outer (loop);
2233 }
2234
2235 /* Returns true if REF is independent on all other memory references in
2236 LOOP. */
2237
2238 static bool
2239 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2240 {
2241 bitmap refs_to_check;
2242 unsigned i;
2243 bitmap_iterator bi;
2244 mem_ref_p aref;
2245
2246 if (stored_p)
2247 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2248 else
2249 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2250
2251 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2252 return false;
2253
2254 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2255 {
2256 aref = memory_accesses.refs_list[i];
2257 if (!refs_independent_p (ref, aref))
2258 return false;
2259 }
2260
2261 return true;
2262 }
2263
2264 /* Returns true if REF is independent on all other memory references in
2265 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2266
2267 static bool
2268 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2269 {
2270 stored_p |= bitmap_bit_p (&ref->stored, loop->num);
2271
2272 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2273 return true;
2274 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2275 return false;
2276
2277 struct loop *inner = loop->inner;
2278 while (inner)
2279 {
2280 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2281 return false;
2282 inner = inner->next;
2283 }
2284
2285 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2286
2287 if (dump_file && (dump_flags & TDF_DETAILS))
2288 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2289 ref->id, loop->num, indep_p ? "independent" : "dependent");
2290
2291 /* Record the computed result in the cache. */
2292 if (indep_p)
2293 {
2294 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2295 && stored_p)
2296 {
2297 /* If it's independend against all refs then it's independent
2298 against stores, too. */
2299 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2300 }
2301 }
2302 else
2303 {
2304 record_dep_loop (loop, ref, stored_p);
2305 if (!stored_p)
2306 {
2307 /* If it's dependent against stores it's dependent against
2308 all refs, too. */
2309 record_dep_loop (loop, ref, true);
2310 }
2311 }
2312
2313 return indep_p;
2314 }
2315
2316 /* Returns true if REF is independent on all other memory references in
2317 LOOP. */
2318
2319 static bool
2320 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2321 {
2322 gcc_checking_assert (MEM_ANALYZABLE (ref));
2323
2324 return ref_indep_loop_p_2 (loop, ref, false);
2325 }
2326
2327 /* Returns true if we can perform store motion of REF from LOOP. */
2328
2329 static bool
2330 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2331 {
2332 tree base;
2333
2334 /* Can't hoist unanalyzable refs. */
2335 if (!MEM_ANALYZABLE (ref))
2336 return false;
2337
2338 /* It should be movable. */
2339 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2340 || TREE_THIS_VOLATILE (ref->mem.ref)
2341 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2342 return false;
2343
2344 /* If it can throw fail, we do not properly update EH info. */
2345 if (tree_could_throw_p (ref->mem.ref))
2346 return false;
2347
2348 /* If it can trap, it must be always executed in LOOP.
2349 Readonly memory locations may trap when storing to them, but
2350 tree_could_trap_p is a predicate for rvalues, so check that
2351 explicitly. */
2352 base = get_base_address (ref->mem.ref);
2353 if ((tree_could_trap_p (ref->mem.ref)
2354 || (DECL_P (base) && TREE_READONLY (base)))
2355 && !ref_always_accessed_p (loop, ref, true))
2356 return false;
2357
2358 /* And it must be independent on all other memory references
2359 in LOOP. */
2360 if (!ref_indep_loop_p (loop, ref))
2361 return false;
2362
2363 return true;
2364 }
2365
2366 /* Marks the references in LOOP for that store motion should be performed
2367 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2368 motion was performed in one of the outer loops. */
2369
2370 static void
2371 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2372 {
2373 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2374 unsigned i;
2375 bitmap_iterator bi;
2376 mem_ref_p ref;
2377
2378 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2379 {
2380 ref = memory_accesses.refs_list[i];
2381 if (can_sm_ref_p (loop, ref))
2382 bitmap_set_bit (refs_to_sm, i);
2383 }
2384 }
2385
2386 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2387 for a store motion optimization (i.e. whether we can insert statement
2388 on its exits). */
2389
2390 static bool
2391 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2392 vec<edge> exits)
2393 {
2394 unsigned i;
2395 edge ex;
2396
2397 FOR_EACH_VEC_ELT (exits, i, ex)
2398 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2399 return false;
2400
2401 return true;
2402 }
2403
2404 /* Try to perform store motion for all memory references modified inside
2405 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2406 store motion was executed in one of the outer loops. */
2407
2408 static void
2409 store_motion_loop (struct loop *loop, bitmap sm_executed)
2410 {
2411 vec<edge> exits = get_loop_exit_edges (loop);
2412 struct loop *subloop;
2413 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2414
2415 if (loop_suitable_for_sm (loop, exits))
2416 {
2417 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2418 hoist_memory_references (loop, sm_in_loop, exits);
2419 }
2420 exits.release ();
2421
2422 bitmap_ior_into (sm_executed, sm_in_loop);
2423 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2424 store_motion_loop (subloop, sm_executed);
2425 bitmap_and_compl_into (sm_executed, sm_in_loop);
2426 BITMAP_FREE (sm_in_loop);
2427 }
2428
2429 /* Try to perform store motion for all memory references modified inside
2430 loops. */
2431
2432 static void
2433 store_motion (void)
2434 {
2435 struct loop *loop;
2436 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2437
2438 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2439 store_motion_loop (loop, sm_executed);
2440
2441 BITMAP_FREE (sm_executed);
2442 gsi_commit_edge_inserts ();
2443 }
2444
2445 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2446 for each such basic block bb records the outermost loop for that execution
2447 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2448 blocks that contain a nonpure call. */
2449
2450 static void
2451 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2452 {
2453 basic_block bb = NULL, *bbs, last = NULL;
2454 unsigned i;
2455 edge e;
2456 struct loop *inn_loop = loop;
2457
2458 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2459 {
2460 bbs = get_loop_body_in_dom_order (loop);
2461
2462 for (i = 0; i < loop->num_nodes; i++)
2463 {
2464 edge_iterator ei;
2465 bb = bbs[i];
2466
2467 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2468 last = bb;
2469
2470 if (bitmap_bit_p (contains_call, bb->index))
2471 break;
2472
2473 FOR_EACH_EDGE (e, ei, bb->succs)
2474 if (!flow_bb_inside_loop_p (loop, e->dest))
2475 break;
2476 if (e)
2477 break;
2478
2479 /* A loop might be infinite (TODO use simple loop analysis
2480 to disprove this if possible). */
2481 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2482 break;
2483
2484 if (!flow_bb_inside_loop_p (inn_loop, bb))
2485 break;
2486
2487 if (bb->loop_father->header == bb)
2488 {
2489 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2490 break;
2491
2492 /* In a loop that is always entered we may proceed anyway.
2493 But record that we entered it and stop once we leave it. */
2494 inn_loop = bb->loop_father;
2495 }
2496 }
2497
2498 while (1)
2499 {
2500 SET_ALWAYS_EXECUTED_IN (last, loop);
2501 if (last == loop->header)
2502 break;
2503 last = get_immediate_dominator (CDI_DOMINATORS, last);
2504 }
2505
2506 free (bbs);
2507 }
2508
2509 for (loop = loop->inner; loop; loop = loop->next)
2510 fill_always_executed_in_1 (loop, contains_call);
2511 }
2512
2513 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2514 for each such basic block bb records the outermost loop for that execution
2515 of its header implies execution of bb. */
2516
2517 static void
2518 fill_always_executed_in (void)
2519 {
2520 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2521 basic_block bb;
2522 struct loop *loop;
2523
2524 bitmap_clear (contains_call);
2525 FOR_EACH_BB (bb)
2526 {
2527 gimple_stmt_iterator gsi;
2528 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2529 {
2530 if (nonpure_call_p (gsi_stmt (gsi)))
2531 break;
2532 }
2533
2534 if (!gsi_end_p (gsi))
2535 bitmap_set_bit (contains_call, bb->index);
2536 }
2537
2538 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2539 fill_always_executed_in_1 (loop, contains_call);
2540
2541 sbitmap_free (contains_call);
2542 }
2543
2544
2545 /* Compute the global information needed by the loop invariant motion pass. */
2546
2547 static void
2548 tree_ssa_lim_initialize (void)
2549 {
2550 unsigned i;
2551
2552 bitmap_obstack_initialize (&lim_bitmap_obstack);
2553 lim_aux_data_map = pointer_map_create ();
2554
2555 if (flag_tm)
2556 compute_transaction_bits ();
2557
2558 alloc_aux_for_edges (0);
2559
2560 memory_accesses.refs.create (100);
2561 memory_accesses.refs_list.create (100);
2562 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2563 memory_accesses.refs_list.quick_push
2564 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2565
2566 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2567 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2568 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2569 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2570 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2571 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2572
2573 for (i = 0; i < number_of_loops (cfun); i++)
2574 {
2575 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2576 &lim_bitmap_obstack);
2577 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2578 &lim_bitmap_obstack);
2579 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2580 &lim_bitmap_obstack);
2581 }
2582
2583 memory_accesses.ttae_cache = NULL;
2584 }
2585
2586 /* Cleans up after the invariant motion pass. */
2587
2588 static void
2589 tree_ssa_lim_finalize (void)
2590 {
2591 basic_block bb;
2592 unsigned i;
2593 mem_ref_p ref;
2594
2595 free_aux_for_edges ();
2596
2597 FOR_EACH_BB (bb)
2598 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2599
2600 bitmap_obstack_release (&lim_bitmap_obstack);
2601 pointer_map_destroy (lim_aux_data_map);
2602
2603 memory_accesses.refs.dispose ();
2604
2605 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2606 memref_free (ref);
2607 memory_accesses.refs_list.release ();
2608
2609 memory_accesses.refs_in_loop.release ();
2610 memory_accesses.refs_stored_in_loop.release ();
2611 memory_accesses.all_refs_stored_in_loop.release ();
2612
2613 if (memory_accesses.ttae_cache)
2614 free_affine_expand_cache (&memory_accesses.ttae_cache);
2615 }
2616
2617 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2618 i.e. those that are likely to be win regardless of the register pressure. */
2619
2620 unsigned int
2621 tree_ssa_lim (void)
2622 {
2623 unsigned int todo;
2624
2625 tree_ssa_lim_initialize ();
2626
2627 /* Gathers information about memory accesses in the loops. */
2628 analyze_memory_references ();
2629
2630 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2631 fill_always_executed_in ();
2632
2633 /* For each statement determine the outermost loop in that it is
2634 invariant and cost for computing the invariant. */
2635 determine_invariantness ();
2636
2637 /* Execute store motion. Force the necessary invariants to be moved
2638 out of the loops as well. */
2639 store_motion ();
2640
2641 /* Move the expressions that are expensive enough. */
2642 todo = move_computations ();
2643
2644 tree_ssa_lim_finalize ();
2645
2646 return todo;
2647 }