]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-im.cc
Fix profiledbootstrap
[thirdparty/gcc.git] / gcc / tree-ssa-loop-im.cc
1 /* Loop invariant motion.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "tree-affine.h"
41 #include "tree-ssa-propagate.h"
42 #include "trans-mem.h"
43 #include "gimple-fold.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "alias.h"
47 #include "builtins.h"
48 #include "tree-dfa.h"
49 #include "tree-ssa.h"
50 #include "dbgcnt.h"
51
52 /* TODO: Support for predicated code motion. I.e.
53
54 while (1)
55 {
56 if (cond)
57 {
58 a = inv;
59 something;
60 }
61 }
62
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
65
66 if (cond)
67 a = inv;
68 while (1)
69 {
70 if (cond)
71 something;
72 } */
73
74 /* The auxiliary data kept for each statement. */
75
76 struct lim_aux_data
77 {
78 class loop *max_loop; /* The outermost loop in that the statement
79 is invariant. */
80
81 class loop *tgt_loop; /* The loop out of that we want to move the
82 invariant. */
83
84 class loop *always_executed_in;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
87 is entered. */
88
89 unsigned cost; /* Cost of the computation performed by the
90 statement. */
91
92 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
93
94 vec<gimple *> depends; /* Vector of statements that must be also
95 hoisted out of the loop when this statement
96 is hoisted; i.e. those that define the
97 operands of the statement and are inside of
98 the MAX_LOOP loop. */
99 };
100
101 /* Maps statements to their lim_aux_data. */
102
103 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
104
105 /* Description of a memory reference location. */
106
107 struct mem_ref_loc
108 {
109 tree *ref; /* The reference itself. */
110 gimple *stmt; /* The statement in that it occurs. */
111 };
112
113
114 /* Description of a memory reference. */
115
116 class im_mem_ref
117 {
118 public:
119 unsigned id : 30; /* ID assigned to the memory reference
120 (its index in memory_accesses.refs_list) */
121 unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
122 unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
123 hashval_t hash; /* Its hash value. */
124
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. We are using mem.ref == error_mark_node for the
127 case the reference is represented by its single access stmt
128 in accesses_in_loop[0]. */
129 ao_ref mem;
130
131 bitmap stored; /* The set of loops in that this memory location
132 is stored to. */
133 bitmap loaded; /* The set of loops in that this memory location
134 is loaded from. */
135 vec<mem_ref_loc> accesses_in_loop;
136 /* The locations of the accesses. */
137
138 /* The following set is computed on demand. */
139 bitmap_head dep_loop; /* The set of loops in that the memory
140 reference is {in,}dependent in
141 different modes. */
142 };
143
144 /* We use six bits per loop in the ref->dep_loop bitmap to record
145 the dep_kind x dep_state combinations. */
146
147 enum dep_kind { lim_raw, sm_war, sm_waw };
148 enum dep_state { dep_unknown, dep_independent, dep_dependent };
149
150 /* coldest outermost loop for given loop. */
151 vec<class loop *> coldest_outermost_loop;
152 /* hotter outer loop nearest to given loop. */
153 vec<class loop *> hotter_than_inner_loop;
154
155 /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
156
157 static void
158 record_loop_dependence (class loop *loop, im_mem_ref *ref,
159 dep_kind kind, dep_state state)
160 {
161 gcc_assert (state != dep_unknown);
162 unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
163 bitmap_set_bit (&ref->dep_loop, bit);
164 }
165
166 /* Query the loop dependence cache of REF for LOOP, KIND. */
167
168 static dep_state
169 query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
170 {
171 unsigned first_bit = 6 * loop->num + kind * 2;
172 if (bitmap_bit_p (&ref->dep_loop, first_bit))
173 return dep_independent;
174 else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
175 return dep_dependent;
176 return dep_unknown;
177 }
178
179 /* Mem_ref hashtable helpers. */
180
181 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
182 {
183 typedef ao_ref *compare_type;
184 static inline hashval_t hash (const im_mem_ref *);
185 static inline bool equal (const im_mem_ref *, const ao_ref *);
186 };
187
188 /* A hash function for class im_mem_ref object OBJ. */
189
190 inline hashval_t
191 mem_ref_hasher::hash (const im_mem_ref *mem)
192 {
193 return mem->hash;
194 }
195
196 /* An equality function for class im_mem_ref object MEM1 with
197 memory reference OBJ2. */
198
199 inline bool
200 mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
201 {
202 if (obj2->max_size_known_p ())
203 return (mem1->ref_decomposed
204 && ((TREE_CODE (mem1->mem.base) == MEM_REF
205 && TREE_CODE (obj2->base) == MEM_REF
206 && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0),
207 TREE_OPERAND (obj2->base, 0), 0)
208 && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset,
209 mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset))
210 || (operand_equal_p (mem1->mem.base, obj2->base, 0)
211 && known_eq (mem1->mem.offset, obj2->offset)))
212 && known_eq (mem1->mem.size, obj2->size)
213 && known_eq (mem1->mem.max_size, obj2->max_size)
214 && mem1->mem.volatile_p == obj2->volatile_p
215 && (mem1->mem.ref_alias_set == obj2->ref_alias_set
216 /* We are not canonicalizing alias-sets but for the
217 special-case we didn't canonicalize yet and the
218 incoming ref is a alias-set zero MEM we pick
219 the correct one already. */
220 || (!mem1->ref_canonical
221 && (TREE_CODE (obj2->ref) == MEM_REF
222 || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
223 && obj2->ref_alias_set == 0)
224 /* Likewise if there's a canonical ref with alias-set zero. */
225 || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
226 && types_compatible_p (TREE_TYPE (mem1->mem.ref),
227 TREE_TYPE (obj2->ref)));
228 else
229 return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
230 }
231
232
233 /* Description of memory accesses in loops. */
234
235 static struct
236 {
237 /* The hash table of memory references accessed in loops. */
238 hash_table<mem_ref_hasher> *refs;
239
240 /* The list of memory references. */
241 vec<im_mem_ref *> refs_list;
242
243 /* The set of memory references accessed in each loop. */
244 vec<bitmap_head> refs_loaded_in_loop;
245
246 /* The set of memory references stored in each loop. */
247 vec<bitmap_head> refs_stored_in_loop;
248
249 /* The set of memory references stored in each loop, including subloops . */
250 vec<bitmap_head> all_refs_stored_in_loop;
251
252 /* Cache for expanding memory addresses. */
253 hash_map<tree, name_expansion *> *ttae_cache;
254 } memory_accesses;
255
256 /* Obstack for the bitmaps in the above data structures. */
257 static bitmap_obstack lim_bitmap_obstack;
258 static obstack mem_ref_obstack;
259
260 static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
261 static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
262 static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);
263
264 /* Minimum cost of an expensive expression. */
265 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
266
267 /* The outermost loop for which execution of the header guarantees that the
268 block will be executed. */
269 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
270 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
271
272 /* ID of the shared unanalyzable mem. */
273 #define UNANALYZABLE_MEM_ID 0
274
275 /* Whether the reference was analyzable. */
276 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
277
278 static struct lim_aux_data *
279 init_lim_data (gimple *stmt)
280 {
281 lim_aux_data *p = XCNEW (struct lim_aux_data);
282 lim_aux_data_map->put (stmt, p);
283
284 return p;
285 }
286
287 static struct lim_aux_data *
288 get_lim_data (gimple *stmt)
289 {
290 lim_aux_data **p = lim_aux_data_map->get (stmt);
291 if (!p)
292 return NULL;
293
294 return *p;
295 }
296
297 /* Releases the memory occupied by DATA. */
298
299 static void
300 free_lim_aux_data (struct lim_aux_data *data)
301 {
302 data->depends.release ();
303 free (data);
304 }
305
306 static void
307 clear_lim_data (gimple *stmt)
308 {
309 lim_aux_data **p = lim_aux_data_map->get (stmt);
310 if (!p)
311 return;
312
313 free_lim_aux_data (*p);
314 *p = NULL;
315 }
316
317
318 /* The possibilities of statement movement. */
319 enum move_pos
320 {
321 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
322 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
323 become executed -- memory accesses, ... */
324 MOVE_POSSIBLE /* Unlimited movement. */
325 };
326
327
328 /* If it is possible to hoist the statement STMT unconditionally,
329 returns MOVE_POSSIBLE.
330 If it is possible to hoist the statement STMT, but we must avoid making
331 it executed if it would not be executed in the original program (e.g.
332 because it may trap), return MOVE_PRESERVE_EXECUTION.
333 Otherwise return MOVE_IMPOSSIBLE. */
334
335 static enum move_pos
336 movement_possibility_1 (gimple *stmt)
337 {
338 tree lhs;
339 enum move_pos ret = MOVE_POSSIBLE;
340
341 if (flag_unswitch_loops
342 && gimple_code (stmt) == GIMPLE_COND)
343 {
344 /* If we perform unswitching, force the operands of the invariant
345 condition to be moved out of the loop. */
346 return MOVE_POSSIBLE;
347 }
348
349 if (gimple_code (stmt) == GIMPLE_PHI
350 && gimple_phi_num_args (stmt) <= 2
351 && !virtual_operand_p (gimple_phi_result (stmt))
352 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
353 return MOVE_POSSIBLE;
354
355 if (gimple_get_lhs (stmt) == NULL_TREE)
356 return MOVE_IMPOSSIBLE;
357
358 if (gimple_vdef (stmt))
359 return MOVE_IMPOSSIBLE;
360
361 if (stmt_ends_bb_p (stmt)
362 || gimple_has_volatile_ops (stmt)
363 || gimple_has_side_effects (stmt)
364 || stmt_could_throw_p (cfun, stmt))
365 return MOVE_IMPOSSIBLE;
366
367 if (is_gimple_call (stmt))
368 {
369 /* While pure or const call is guaranteed to have no side effects, we
370 cannot move it arbitrarily. Consider code like
371
372 char *s = something ();
373
374 while (1)
375 {
376 if (s)
377 t = strlen (s);
378 else
379 t = 0;
380 }
381
382 Here the strlen call cannot be moved out of the loop, even though
383 s is invariant. In addition to possibly creating a call with
384 invalid arguments, moving out a function call that is not executed
385 may cause performance regressions in case the call is costly and
386 not executed at all. */
387 ret = MOVE_PRESERVE_EXECUTION;
388 lhs = gimple_call_lhs (stmt);
389 }
390 else if (is_gimple_assign (stmt))
391 lhs = gimple_assign_lhs (stmt);
392 else
393 return MOVE_IMPOSSIBLE;
394
395 if (TREE_CODE (lhs) == SSA_NAME
396 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
397 return MOVE_IMPOSSIBLE;
398
399 if (TREE_CODE (lhs) != SSA_NAME
400 || gimple_could_trap_p (stmt))
401 return MOVE_PRESERVE_EXECUTION;
402
403 /* Non local loads in a transaction cannot be hoisted out. Well,
404 unless the load happens on every path out of the loop, but we
405 don't take this into account yet. */
406 if (flag_tm
407 && gimple_in_transaction (stmt)
408 && gimple_assign_single_p (stmt))
409 {
410 tree rhs = gimple_assign_rhs1 (stmt);
411 if (DECL_P (rhs) && is_global_var (rhs))
412 {
413 if (dump_file)
414 {
415 fprintf (dump_file, "Cannot hoist conditional load of ");
416 print_generic_expr (dump_file, rhs, TDF_SLIM);
417 fprintf (dump_file, " because it is in a transaction.\n");
418 }
419 return MOVE_IMPOSSIBLE;
420 }
421 }
422
423 return ret;
424 }
425
426 static enum move_pos
427 movement_possibility (gimple *stmt)
428 {
429 enum move_pos pos = movement_possibility_1 (stmt);
430 if (pos == MOVE_POSSIBLE)
431 {
432 use_operand_p use_p;
433 ssa_op_iter ssa_iter;
434 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, ssa_iter, SSA_OP_USE)
435 if (TREE_CODE (USE_FROM_PTR (use_p)) == SSA_NAME
436 && ssa_name_maybe_undef_p (USE_FROM_PTR (use_p)))
437 return MOVE_PRESERVE_EXECUTION;
438 }
439 return pos;
440 }
441
442
443 /* Compare the profile count inequality of bb and loop's preheader, it is
444 three-state as stated in profile-count.h, FALSE is returned if inequality
445 cannot be decided. */
446 bool
447 bb_colder_than_loop_preheader (basic_block bb, class loop *loop)
448 {
449 gcc_assert (bb && loop);
450 return bb->count < loop_preheader_edge (loop)->src->count;
451 }
452
453 /* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile
454 count.
455 It does three steps check:
456 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just
457 return NULL which means it should not be moved out at all;
458 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of
459 OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP;
460 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a
461 hotter loop between OUTERMOST_LOOP and loop in pre-computed
462 HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return
463 OUTERMOST_LOOP.
464 At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as
465 the hoist target. */
466
467 static class loop *
468 get_coldest_out_loop (class loop *outermost_loop, class loop *loop,
469 basic_block curr_bb)
470 {
471 gcc_assert (outermost_loop == loop
472 || flow_loop_nested_p (outermost_loop, loop));
473
474 /* If bb_colder_than_loop_preheader returns false due to three-state
475 comparision, OUTERMOST_LOOP is returned finally to preserve the behavior.
476 Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */
477 if (curr_bb && bb_colder_than_loop_preheader (curr_bb, loop))
478 return NULL;
479
480 class loop *coldest_loop = coldest_outermost_loop[loop->num];
481 if (loop_depth (coldest_loop) < loop_depth (outermost_loop))
482 {
483 class loop *hotter_loop = hotter_than_inner_loop[loop->num];
484 if (!hotter_loop
485 || loop_depth (hotter_loop) < loop_depth (outermost_loop))
486 return outermost_loop;
487
488 /* hotter_loop is between OUTERMOST_LOOP and LOOP like:
489 [loop tree root, ..., coldest_loop, ..., outermost_loop, ...,
490 hotter_loop, second_coldest_loop, ..., loop]
491 return second_coldest_loop to be the hoist target. */
492 class loop *aloop;
493 for (aloop = hotter_loop->inner; aloop; aloop = aloop->next)
494 if (aloop == loop || flow_loop_nested_p (aloop, loop))
495 return aloop;
496 }
497 return coldest_loop;
498 }
499
500 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
501 loop to that we could move the expression using DEF if it did not have
502 other operands, i.e. the outermost loop enclosing LOOP in that the value
503 of DEF is invariant. */
504
505 static class loop *
506 outermost_invariant_loop (tree def, class loop *loop)
507 {
508 gimple *def_stmt;
509 basic_block def_bb;
510 class loop *max_loop;
511 struct lim_aux_data *lim_data;
512
513 if (!def)
514 return superloop_at_depth (loop, 1);
515
516 if (TREE_CODE (def) != SSA_NAME)
517 {
518 gcc_assert (is_gimple_min_invariant (def));
519 return superloop_at_depth (loop, 1);
520 }
521
522 def_stmt = SSA_NAME_DEF_STMT (def);
523 def_bb = gimple_bb (def_stmt);
524 if (!def_bb)
525 return superloop_at_depth (loop, 1);
526
527 max_loop = find_common_loop (loop, def_bb->loop_father);
528
529 lim_data = get_lim_data (def_stmt);
530 if (lim_data != NULL && lim_data->max_loop != NULL)
531 max_loop = find_common_loop (max_loop,
532 loop_outer (lim_data->max_loop));
533 if (max_loop == loop)
534 return NULL;
535 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
536
537 return max_loop;
538 }
539
540 /* DATA is a structure containing information associated with a statement
541 inside LOOP. DEF is one of the operands of this statement.
542
543 Find the outermost loop enclosing LOOP in that value of DEF is invariant
544 and record this in DATA->max_loop field. If DEF itself is defined inside
545 this loop as well (i.e. we need to hoist it out of the loop if we want
546 to hoist the statement represented by DATA), record the statement in that
547 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
548 add the cost of the computation of DEF to the DATA->cost.
549
550 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
551
552 static bool
553 add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
554 bool add_cost)
555 {
556 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
557 basic_block def_bb = gimple_bb (def_stmt);
558 class loop *max_loop;
559 struct lim_aux_data *def_data;
560
561 if (!def_bb)
562 return true;
563
564 max_loop = outermost_invariant_loop (def, loop);
565 if (!max_loop)
566 return false;
567
568 if (flow_loop_nested_p (data->max_loop, max_loop))
569 data->max_loop = max_loop;
570
571 def_data = get_lim_data (def_stmt);
572 if (!def_data)
573 return true;
574
575 if (add_cost
576 /* Only add the cost if the statement defining DEF is inside LOOP,
577 i.e. if it is likely that by moving the invariants dependent
578 on it, we will be able to avoid creating a new register for
579 it (since it will be only used in these dependent invariants). */
580 && def_bb->loop_father == loop)
581 data->cost += def_data->cost;
582
583 data->depends.safe_push (def_stmt);
584
585 return true;
586 }
587
588 /* Returns an estimate for a cost of statement STMT. The values here
589 are just ad-hoc constants, similar to costs for inlining. */
590
591 static unsigned
592 stmt_cost (gimple *stmt)
593 {
594 /* Always try to create possibilities for unswitching. */
595 if (gimple_code (stmt) == GIMPLE_COND
596 || gimple_code (stmt) == GIMPLE_PHI)
597 return LIM_EXPENSIVE;
598
599 /* We should be hoisting calls if possible. */
600 if (is_gimple_call (stmt))
601 {
602 tree fndecl;
603
604 /* Unless the call is a builtin_constant_p; this always folds to a
605 constant, so moving it is useless. */
606 fndecl = gimple_call_fndecl (stmt);
607 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
608 return 0;
609
610 return LIM_EXPENSIVE;
611 }
612
613 /* Hoisting memory references out should almost surely be a win. */
614 if (gimple_references_memory_p (stmt))
615 return LIM_EXPENSIVE;
616
617 if (gimple_code (stmt) != GIMPLE_ASSIGN)
618 return 1;
619
620 enum tree_code code = gimple_assign_rhs_code (stmt);
621 switch (code)
622 {
623 case MULT_EXPR:
624 case WIDEN_MULT_EXPR:
625 case WIDEN_MULT_PLUS_EXPR:
626 case WIDEN_MULT_MINUS_EXPR:
627 case DOT_PROD_EXPR:
628 case TRUNC_DIV_EXPR:
629 case CEIL_DIV_EXPR:
630 case FLOOR_DIV_EXPR:
631 case ROUND_DIV_EXPR:
632 case EXACT_DIV_EXPR:
633 case CEIL_MOD_EXPR:
634 case FLOOR_MOD_EXPR:
635 case ROUND_MOD_EXPR:
636 case TRUNC_MOD_EXPR:
637 case RDIV_EXPR:
638 /* Division and multiplication are usually expensive. */
639 return LIM_EXPENSIVE;
640
641 case LSHIFT_EXPR:
642 case RSHIFT_EXPR:
643 case WIDEN_LSHIFT_EXPR:
644 case LROTATE_EXPR:
645 case RROTATE_EXPR:
646 /* Shifts and rotates are usually expensive. */
647 return LIM_EXPENSIVE;
648
649 case COND_EXPR:
650 case VEC_COND_EXPR:
651 /* Conditionals are expensive. */
652 return LIM_EXPENSIVE;
653
654 case CONSTRUCTOR:
655 /* Make vector construction cost proportional to the number
656 of elements. */
657 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
658
659 case SSA_NAME:
660 case PAREN_EXPR:
661 /* Whether or not something is wrapped inside a PAREN_EXPR
662 should not change move cost. Nor should an intermediate
663 unpropagated SSA name copy. */
664 return 0;
665
666 default:
667 /* Comparisons are usually expensive. */
668 if (TREE_CODE_CLASS (code) == tcc_comparison)
669 return LIM_EXPENSIVE;
670 return 1;
671 }
672 }
673
674 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
675 REF is independent. If REF is not independent in LOOP, NULL is returned
676 instead. */
677
678 static class loop *
679 outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
680 {
681 class loop *aloop;
682
683 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
684 return NULL;
685
686 for (aloop = outer;
687 aloop != loop;
688 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
689 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
690 && ref_indep_loop_p (aloop, ref, lim_raw))
691 return aloop;
692
693 if (ref_indep_loop_p (loop, ref, lim_raw))
694 return loop;
695 else
696 return NULL;
697 }
698
699 /* If there is a simple load or store to a memory reference in STMT, returns
700 the location of the memory reference, and sets IS_STORE according to whether
701 it is a store or load. Otherwise, returns NULL. */
702
703 static tree *
704 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
705 {
706 tree *lhs, *rhs;
707
708 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
709 if (!gimple_assign_single_p (stmt))
710 return NULL;
711
712 lhs = gimple_assign_lhs_ptr (stmt);
713 rhs = gimple_assign_rhs1_ptr (stmt);
714
715 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
716 {
717 *is_store = false;
718 return rhs;
719 }
720 else if (gimple_vdef (stmt)
721 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
722 {
723 *is_store = true;
724 return lhs;
725 }
726 else
727 return NULL;
728 }
729
730 /* From a controlling predicate in DOM determine the arguments from
731 the PHI node PHI that are chosen if the predicate evaluates to
732 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
733 they are non-NULL. Returns true if the arguments can be determined,
734 else return false. */
735
736 static bool
737 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
738 tree *true_arg_p, tree *false_arg_p)
739 {
740 edge te, fe;
741 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
742 &te, &fe))
743 return false;
744
745 if (true_arg_p)
746 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
747 if (false_arg_p)
748 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
749
750 return true;
751 }
752
753 /* Determine the outermost loop to that it is possible to hoist a statement
754 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
755 the outermost loop in that the value computed by STMT is invariant.
756 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
757 we preserve the fact whether STMT is executed. It also fills other related
758 information to LIM_DATA (STMT).
759
760 The function returns false if STMT cannot be hoisted outside of the loop it
761 is defined in, and true otherwise. */
762
763 static bool
764 determine_max_movement (gimple *stmt, bool must_preserve_exec)
765 {
766 basic_block bb = gimple_bb (stmt);
767 class loop *loop = bb->loop_father;
768 class loop *level;
769 struct lim_aux_data *lim_data = get_lim_data (stmt);
770 tree val;
771 ssa_op_iter iter;
772
773 if (must_preserve_exec)
774 level = ALWAYS_EXECUTED_IN (bb);
775 else
776 level = superloop_at_depth (loop, 1);
777 lim_data->max_loop = get_coldest_out_loop (level, loop, bb);
778 if (!lim_data->max_loop)
779 return false;
780
781 if (gphi *phi = dyn_cast <gphi *> (stmt))
782 {
783 use_operand_p use_p;
784 unsigned min_cost = UINT_MAX;
785 unsigned total_cost = 0;
786 struct lim_aux_data *def_data;
787
788 /* We will end up promoting dependencies to be unconditionally
789 evaluated. For this reason the PHI cost (and thus the
790 cost we remove from the loop by doing the invariant motion)
791 is that of the cheapest PHI argument dependency chain. */
792 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
793 {
794 val = USE_FROM_PTR (use_p);
795
796 if (TREE_CODE (val) != SSA_NAME)
797 {
798 /* Assign const 1 to constants. */
799 min_cost = MIN (min_cost, 1);
800 total_cost += 1;
801 continue;
802 }
803 if (!add_dependency (val, lim_data, loop, false))
804 return false;
805
806 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
807 if (gimple_bb (def_stmt)
808 && gimple_bb (def_stmt)->loop_father == loop)
809 {
810 def_data = get_lim_data (def_stmt);
811 if (def_data)
812 {
813 min_cost = MIN (min_cost, def_data->cost);
814 total_cost += def_data->cost;
815 }
816 }
817 }
818
819 min_cost = MIN (min_cost, total_cost);
820 lim_data->cost += min_cost;
821
822 if (gimple_phi_num_args (phi) > 1)
823 {
824 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
825 gimple *cond;
826 if (gsi_end_p (gsi_last_bb (dom)))
827 return false;
828 cond = gsi_stmt (gsi_last_bb (dom));
829 if (gimple_code (cond) != GIMPLE_COND)
830 return false;
831 /* Verify that this is an extended form of a diamond and
832 the PHI arguments are completely controlled by the
833 predicate in DOM. */
834 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
835 return false;
836
837 /* Fold in dependencies and cost of the condition. */
838 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
839 {
840 if (!add_dependency (val, lim_data, loop, false))
841 return false;
842 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
843 if (def_data)
844 lim_data->cost += def_data->cost;
845 }
846
847 /* We want to avoid unconditionally executing very expensive
848 operations. As costs for our dependencies cannot be
849 negative just claim we are not invariand for this case.
850 We also are not sure whether the control-flow inside the
851 loop will vanish. */
852 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
853 && !(min_cost != 0
854 && total_cost / min_cost <= 2))
855 return false;
856
857 /* Assume that the control-flow in the loop will vanish.
858 ??? We should verify this and not artificially increase
859 the cost if that is not the case. */
860 lim_data->cost += stmt_cost (stmt);
861 }
862
863 return true;
864 }
865
866 /* A stmt that receives abnormal edges cannot be hoisted. */
867 if (is_a <gcall *> (stmt)
868 && (gimple_call_flags (stmt) & ECF_RETURNS_TWICE))
869 return false;
870
871 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
872 if (!add_dependency (val, lim_data, loop, true))
873 return false;
874
875 if (gimple_vuse (stmt))
876 {
877 im_mem_ref *ref
878 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
879 if (ref
880 && MEM_ANALYZABLE (ref))
881 {
882 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
883 loop, ref);
884 if (!lim_data->max_loop)
885 return false;
886 }
887 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
888 return false;
889 }
890
891 lim_data->cost += stmt_cost (stmt);
892
893 return true;
894 }
895
896 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
897 and that one of the operands of this statement is computed by STMT.
898 Ensure that STMT (together with all the statements that define its
899 operands) is hoisted at least out of the loop LEVEL. */
900
901 static void
902 set_level (gimple *stmt, class loop *orig_loop, class loop *level)
903 {
904 class loop *stmt_loop = gimple_bb (stmt)->loop_father;
905 struct lim_aux_data *lim_data;
906 gimple *dep_stmt;
907 unsigned i;
908
909 stmt_loop = find_common_loop (orig_loop, stmt_loop);
910 lim_data = get_lim_data (stmt);
911 if (lim_data != NULL && lim_data->tgt_loop != NULL)
912 stmt_loop = find_common_loop (stmt_loop,
913 loop_outer (lim_data->tgt_loop));
914 if (flow_loop_nested_p (stmt_loop, level))
915 return;
916
917 gcc_assert (level == lim_data->max_loop
918 || flow_loop_nested_p (lim_data->max_loop, level));
919
920 lim_data->tgt_loop = level;
921 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
922 set_level (dep_stmt, orig_loop, level);
923 }
924
925 /* Determines an outermost loop from that we want to hoist the statement STMT.
926 For now we chose the outermost possible loop. TODO -- use profiling
927 information to set it more sanely. */
928
929 static void
930 set_profitable_level (gimple *stmt)
931 {
932 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
933 }
934
935 /* Returns true if STMT is a call that has side effects. */
936
937 static bool
938 nonpure_call_p (gimple *stmt)
939 {
940 if (gimple_code (stmt) != GIMPLE_CALL)
941 return false;
942
943 return gimple_has_side_effects (stmt);
944 }
945
946 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
947
948 static gimple *
949 rewrite_reciprocal (gimple_stmt_iterator *bsi)
950 {
951 gassign *stmt, *stmt1, *stmt2;
952 tree name, lhs, type;
953 tree real_one;
954 gimple_stmt_iterator gsi;
955
956 stmt = as_a <gassign *> (gsi_stmt (*bsi));
957 lhs = gimple_assign_lhs (stmt);
958 type = TREE_TYPE (lhs);
959
960 real_one = build_one_cst (type);
961
962 name = make_temp_ssa_name (type, NULL, "reciptmp");
963 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
964 gimple_assign_rhs2 (stmt));
965 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
966 gimple_assign_rhs1 (stmt));
967
968 /* Replace division stmt with reciprocal and multiply stmts.
969 The multiply stmt is not invariant, so update iterator
970 and avoid rescanning. */
971 gsi = *bsi;
972 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
973 gsi_replace (&gsi, stmt2, true);
974
975 /* Continue processing with invariant reciprocal statement. */
976 return stmt1;
977 }
978
979 /* Check if the pattern at *BSI is a bittest of the form
980 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
981
982 static gimple *
983 rewrite_bittest (gimple_stmt_iterator *bsi)
984 {
985 gassign *stmt;
986 gimple *stmt1;
987 gassign *stmt2;
988 gimple *use_stmt;
989 gcond *cond_stmt;
990 tree lhs, name, t, a, b;
991 use_operand_p use;
992
993 stmt = as_a <gassign *> (gsi_stmt (*bsi));
994 lhs = gimple_assign_lhs (stmt);
995
996 /* Verify that the single use of lhs is a comparison against zero. */
997 if (TREE_CODE (lhs) != SSA_NAME
998 || !single_imm_use (lhs, &use, &use_stmt))
999 return stmt;
1000 cond_stmt = dyn_cast <gcond *> (use_stmt);
1001 if (!cond_stmt)
1002 return stmt;
1003 if (gimple_cond_lhs (cond_stmt) != lhs
1004 || (gimple_cond_code (cond_stmt) != NE_EXPR
1005 && gimple_cond_code (cond_stmt) != EQ_EXPR)
1006 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
1007 return stmt;
1008
1009 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
1010 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1011 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1012 return stmt;
1013
1014 /* There is a conversion in between possibly inserted by fold. */
1015 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
1016 {
1017 t = gimple_assign_rhs1 (stmt1);
1018 if (TREE_CODE (t) != SSA_NAME
1019 || !has_single_use (t))
1020 return stmt;
1021 stmt1 = SSA_NAME_DEF_STMT (t);
1022 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1023 return stmt;
1024 }
1025
1026 /* Verify that B is loop invariant but A is not. Verify that with
1027 all the stmt walking we are still in the same loop. */
1028 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1029 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1030 return stmt;
1031
1032 a = gimple_assign_rhs1 (stmt1);
1033 b = gimple_assign_rhs2 (stmt1);
1034
1035 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1036 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1037 {
1038 gimple_stmt_iterator rsi;
1039
1040 /* 1 << B */
1041 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1042 build_int_cst (TREE_TYPE (a), 1), b);
1043 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1044 stmt1 = gimple_build_assign (name, t);
1045
1046 /* A & (1 << B) */
1047 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1048 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1049 stmt2 = gimple_build_assign (name, t);
1050
1051 /* Replace the SSA_NAME we compare against zero. Adjust
1052 the type of zero accordingly. */
1053 SET_USE (use, name);
1054 gimple_cond_set_rhs (cond_stmt,
1055 build_int_cst_type (TREE_TYPE (name),
1056 0));
1057
1058 /* Don't use gsi_replace here, none of the new assignments sets
1059 the variable originally set in stmt. Move bsi to stmt1, and
1060 then remove the original stmt, so that we get a chance to
1061 retain debug info for it. */
1062 rsi = *bsi;
1063 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1064 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1065 gimple *to_release = gsi_stmt (rsi);
1066 gsi_remove (&rsi, true);
1067 release_defs (to_release);
1068
1069 return stmt1;
1070 }
1071
1072 return stmt;
1073 }
1074
1075 /* Determine the outermost loops in that statements in basic block BB are
1076 invariant, and record them to the LIM_DATA associated with the
1077 statements. */
1078
1079 static void
1080 compute_invariantness (basic_block bb)
1081 {
1082 enum move_pos pos;
1083 gimple_stmt_iterator bsi;
1084 gimple *stmt;
1085 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1086 class loop *outermost = ALWAYS_EXECUTED_IN (bb);
1087 struct lim_aux_data *lim_data;
1088
1089 if (!loop_outer (bb->loop_father))
1090 return;
1091
1092 if (dump_file && (dump_flags & TDF_DETAILS))
1093 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1094 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1095
1096 /* Look at PHI nodes, but only if there is at most two.
1097 ??? We could relax this further by post-processing the inserted
1098 code and transforming adjacent cond-exprs with the same predicate
1099 to control flow again. */
1100 bsi = gsi_start_phis (bb);
1101 if (!gsi_end_p (bsi)
1102 && ((gsi_next (&bsi), gsi_end_p (bsi))
1103 || (gsi_next (&bsi), gsi_end_p (bsi))))
1104 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1105 {
1106 stmt = gsi_stmt (bsi);
1107
1108 pos = movement_possibility (stmt);
1109 if (pos == MOVE_IMPOSSIBLE)
1110 continue;
1111
1112 lim_data = get_lim_data (stmt);
1113 if (! lim_data)
1114 lim_data = init_lim_data (stmt);
1115 lim_data->always_executed_in = outermost;
1116
1117 if (!determine_max_movement (stmt, false))
1118 {
1119 lim_data->max_loop = NULL;
1120 continue;
1121 }
1122
1123 if (dump_file && (dump_flags & TDF_DETAILS))
1124 {
1125 print_gimple_stmt (dump_file, stmt, 2);
1126 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1127 loop_depth (lim_data->max_loop),
1128 lim_data->cost);
1129 }
1130
1131 if (lim_data->cost >= LIM_EXPENSIVE)
1132 set_profitable_level (stmt);
1133 }
1134
1135 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1136 {
1137 stmt = gsi_stmt (bsi);
1138
1139 pos = movement_possibility (stmt);
1140 if (pos == MOVE_IMPOSSIBLE)
1141 {
1142 if (nonpure_call_p (stmt))
1143 {
1144 maybe_never = true;
1145 outermost = NULL;
1146 }
1147 /* Make sure to note always_executed_in for stores to make
1148 store-motion work. */
1149 else if (stmt_makes_single_store (stmt))
1150 {
1151 struct lim_aux_data *lim_data = get_lim_data (stmt);
1152 if (! lim_data)
1153 lim_data = init_lim_data (stmt);
1154 lim_data->always_executed_in = outermost;
1155 }
1156 continue;
1157 }
1158
1159 if (is_gimple_assign (stmt)
1160 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1161 == GIMPLE_BINARY_RHS))
1162 {
1163 tree op0 = gimple_assign_rhs1 (stmt);
1164 tree op1 = gimple_assign_rhs2 (stmt);
1165 class loop *ol1 = outermost_invariant_loop (op1,
1166 loop_containing_stmt (stmt));
1167
1168 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1169 to be hoisted out of loop, saving expensive divide. */
1170 if (pos == MOVE_POSSIBLE
1171 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1172 && flag_unsafe_math_optimizations
1173 && !flag_trapping_math
1174 && ol1 != NULL
1175 && outermost_invariant_loop (op0, ol1) == NULL)
1176 stmt = rewrite_reciprocal (&bsi);
1177
1178 /* If the shift count is invariant, convert (A >> B) & 1 to
1179 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1180 saving an expensive shift. */
1181 if (pos == MOVE_POSSIBLE
1182 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1183 && integer_onep (op1)
1184 && TREE_CODE (op0) == SSA_NAME
1185 && has_single_use (op0))
1186 stmt = rewrite_bittest (&bsi);
1187 }
1188
1189 lim_data = get_lim_data (stmt);
1190 if (! lim_data)
1191 lim_data = init_lim_data (stmt);
1192 lim_data->always_executed_in = outermost;
1193
1194 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1195 continue;
1196
1197 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1198 {
1199 lim_data->max_loop = NULL;
1200 continue;
1201 }
1202
1203 if (dump_file && (dump_flags & TDF_DETAILS))
1204 {
1205 print_gimple_stmt (dump_file, stmt, 2);
1206 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1207 loop_depth (lim_data->max_loop),
1208 lim_data->cost);
1209 }
1210
1211 if (lim_data->cost >= LIM_EXPENSIVE)
1212 set_profitable_level (stmt);
1213 }
1214 }
1215
1216 /* Hoist the statements in basic block BB out of the loops prescribed by
1217 data stored in LIM_DATA structures associated with each statement. Callback
1218 for walk_dominator_tree. */
1219
1220 unsigned int
1221 move_computations_worker (basic_block bb)
1222 {
1223 class loop *level;
1224 unsigned cost = 0;
1225 struct lim_aux_data *lim_data;
1226 unsigned int todo = 0;
1227
1228 if (!loop_outer (bb->loop_father))
1229 return todo;
1230
1231 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1232 {
1233 gassign *new_stmt;
1234 gphi *stmt = bsi.phi ();
1235
1236 lim_data = get_lim_data (stmt);
1237 if (lim_data == NULL)
1238 {
1239 gsi_next (&bsi);
1240 continue;
1241 }
1242
1243 cost = lim_data->cost;
1244 level = lim_data->tgt_loop;
1245 clear_lim_data (stmt);
1246
1247 if (!level)
1248 {
1249 gsi_next (&bsi);
1250 continue;
1251 }
1252
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 {
1255 fprintf (dump_file, "Moving PHI node\n");
1256 print_gimple_stmt (dump_file, stmt, 0);
1257 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1258 cost, level->num);
1259 }
1260
1261 if (gimple_phi_num_args (stmt) == 1)
1262 {
1263 tree arg = PHI_ARG_DEF (stmt, 0);
1264 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1265 TREE_CODE (arg), arg);
1266 }
1267 else
1268 {
1269 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1270 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1271 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1272 /* Get the PHI arguments corresponding to the true and false
1273 edges of COND. */
1274 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1275 gcc_assert (arg0 && arg1);
1276 t = make_ssa_name (boolean_type_node);
1277 new_stmt = gimple_build_assign (t, gimple_cond_code (cond),
1278 gimple_cond_lhs (cond),
1279 gimple_cond_rhs (cond));
1280 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1281 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1282 COND_EXPR, t, arg0, arg1);
1283 todo |= TODO_cleanup_cfg;
1284 }
1285 if (!ALWAYS_EXECUTED_IN (bb)
1286 || (ALWAYS_EXECUTED_IN (bb) != level
1287 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))
1288 reset_flow_sensitive_info (gimple_assign_lhs (new_stmt));
1289 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1290 remove_phi_node (&bsi, false);
1291 }
1292
1293 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1294 {
1295 edge e;
1296
1297 gimple *stmt = gsi_stmt (bsi);
1298
1299 lim_data = get_lim_data (stmt);
1300 if (lim_data == NULL)
1301 {
1302 gsi_next (&bsi);
1303 continue;
1304 }
1305
1306 cost = lim_data->cost;
1307 level = lim_data->tgt_loop;
1308 clear_lim_data (stmt);
1309
1310 if (!level)
1311 {
1312 gsi_next (&bsi);
1313 continue;
1314 }
1315
1316 /* We do not really want to move conditionals out of the loop; we just
1317 placed it here to force its operands to be moved if necessary. */
1318 if (gimple_code (stmt) == GIMPLE_COND)
1319 {
1320 gsi_next (&bsi);
1321 continue;
1322 }
1323
1324 if (dump_file && (dump_flags & TDF_DETAILS))
1325 {
1326 fprintf (dump_file, "Moving statement\n");
1327 print_gimple_stmt (dump_file, stmt, 0);
1328 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1329 cost, level->num);
1330 }
1331
1332 e = loop_preheader_edge (level);
1333 gcc_assert (!gimple_vdef (stmt));
1334 if (gimple_vuse (stmt))
1335 {
1336 /* The new VUSE is the one from the virtual PHI in the loop
1337 header or the one already present. */
1338 gphi_iterator gsi2;
1339 for (gsi2 = gsi_start_phis (e->dest);
1340 !gsi_end_p (gsi2); gsi_next (&gsi2))
1341 {
1342 gphi *phi = gsi2.phi ();
1343 if (virtual_operand_p (gimple_phi_result (phi)))
1344 {
1345 SET_USE (gimple_vuse_op (stmt),
1346 PHI_ARG_DEF_FROM_EDGE (phi, e));
1347 break;
1348 }
1349 }
1350 }
1351 gsi_remove (&bsi, false);
1352 if (gimple_has_lhs (stmt)
1353 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1354 && (!ALWAYS_EXECUTED_IN (bb)
1355 || !(ALWAYS_EXECUTED_IN (bb) == level
1356 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1357 reset_flow_sensitive_info (gimple_get_lhs (stmt));
1358 /* In case this is a stmt that is not unconditionally executed
1359 when the target loop header is executed and the stmt may
1360 invoke undefined integer or pointer overflow rewrite it to
1361 unsigned arithmetic. */
1362 if (is_gimple_assign (stmt)
1363 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1364 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1365 && arith_code_with_undefined_signed_overflow
1366 (gimple_assign_rhs_code (stmt))
1367 && (!ALWAYS_EXECUTED_IN (bb)
1368 || !(ALWAYS_EXECUTED_IN (bb) == level
1369 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1370 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1371 else
1372 gsi_insert_on_edge (e, stmt);
1373 }
1374
1375 return todo;
1376 }
1377
1378 /* Checks whether the statement defining variable *INDEX can be hoisted
1379 out of the loop passed in DATA. Callback for for_each_index. */
1380
1381 static bool
1382 may_move_till (tree ref, tree *index, void *data)
1383 {
1384 class loop *loop = (class loop *) data, *max_loop;
1385
1386 /* If REF is an array reference, check also that the step and the lower
1387 bound is invariant in LOOP. */
1388 if (TREE_CODE (ref) == ARRAY_REF)
1389 {
1390 tree step = TREE_OPERAND (ref, 3);
1391 tree lbound = TREE_OPERAND (ref, 2);
1392
1393 max_loop = outermost_invariant_loop (step, loop);
1394 if (!max_loop)
1395 return false;
1396
1397 max_loop = outermost_invariant_loop (lbound, loop);
1398 if (!max_loop)
1399 return false;
1400 }
1401
1402 max_loop = outermost_invariant_loop (*index, loop);
1403 if (!max_loop)
1404 return false;
1405
1406 return true;
1407 }
1408
1409 /* If OP is SSA NAME, force the statement that defines it to be
1410 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1411
1412 static void
1413 force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
1414 {
1415 gimple *stmt;
1416
1417 if (!op
1418 || is_gimple_min_invariant (op))
1419 return;
1420
1421 gcc_assert (TREE_CODE (op) == SSA_NAME);
1422
1423 stmt = SSA_NAME_DEF_STMT (op);
1424 if (gimple_nop_p (stmt))
1425 return;
1426
1427 set_level (stmt, orig_loop, loop);
1428 }
1429
1430 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1431 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1432 for_each_index. */
1433
1434 struct fmt_data
1435 {
1436 class loop *loop;
1437 class loop *orig_loop;
1438 };
1439
1440 static bool
1441 force_move_till (tree ref, tree *index, void *data)
1442 {
1443 struct fmt_data *fmt_data = (struct fmt_data *) data;
1444
1445 if (TREE_CODE (ref) == ARRAY_REF)
1446 {
1447 tree step = TREE_OPERAND (ref, 3);
1448 tree lbound = TREE_OPERAND (ref, 2);
1449
1450 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1451 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1452 }
1453
1454 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1455
1456 return true;
1457 }
1458
1459 /* A function to free the mem_ref object OBJ. */
1460
1461 static void
1462 memref_free (class im_mem_ref *mem)
1463 {
1464 mem->accesses_in_loop.release ();
1465 }
1466
1467 /* Allocates and returns a memory reference description for MEM whose hash
1468 value is HASH and id is ID. */
1469
1470 static im_mem_ref *
1471 mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
1472 {
1473 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
1474 if (mem)
1475 ref->mem = *mem;
1476 else
1477 ao_ref_init (&ref->mem, error_mark_node);
1478 ref->id = id;
1479 ref->ref_canonical = false;
1480 ref->ref_decomposed = false;
1481 ref->hash = hash;
1482 ref->stored = NULL;
1483 ref->loaded = NULL;
1484 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1485 ref->accesses_in_loop.create (1);
1486
1487 return ref;
1488 }
1489
1490 /* Records memory reference location *LOC in LOOP to the memory reference
1491 description REF. The reference occurs in statement STMT. */
1492
1493 static void
1494 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1495 {
1496 mem_ref_loc aref;
1497 aref.stmt = stmt;
1498 aref.ref = loc;
1499 ref->accesses_in_loop.safe_push (aref);
1500 }
1501
1502 /* Set the LOOP bit in REF stored bitmap and allocate that if
1503 necessary. Return whether a bit was changed. */
1504
1505 static bool
1506 set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
1507 {
1508 if (!ref->stored)
1509 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1510 return bitmap_set_bit (ref->stored, loop->num);
1511 }
1512
1513 /* Marks reference REF as stored in LOOP. */
1514
1515 static void
1516 mark_ref_stored (im_mem_ref *ref, class loop *loop)
1517 {
1518 while (loop != current_loops->tree_root
1519 && set_ref_stored_in_loop (ref, loop))
1520 loop = loop_outer (loop);
1521 }
1522
1523 /* Set the LOOP bit in REF loaded bitmap and allocate that if
1524 necessary. Return whether a bit was changed. */
1525
1526 static bool
1527 set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
1528 {
1529 if (!ref->loaded)
1530 ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
1531 return bitmap_set_bit (ref->loaded, loop->num);
1532 }
1533
1534 /* Marks reference REF as loaded in LOOP. */
1535
1536 static void
1537 mark_ref_loaded (im_mem_ref *ref, class loop *loop)
1538 {
1539 while (loop != current_loops->tree_root
1540 && set_ref_loaded_in_loop (ref, loop))
1541 loop = loop_outer (loop);
1542 }
1543
1544 /* Gathers memory references in statement STMT in LOOP, storing the
1545 information about them in the memory_accesses structure. Marks
1546 the vops accessed through unrecognized statements there as
1547 well. */
1548
1549 static void
1550 gather_mem_refs_stmt (class loop *loop, gimple *stmt)
1551 {
1552 tree *mem = NULL;
1553 hashval_t hash;
1554 im_mem_ref **slot;
1555 im_mem_ref *ref;
1556 bool is_stored;
1557 unsigned id;
1558
1559 if (!gimple_vuse (stmt))
1560 return;
1561
1562 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1563 if (!mem && is_gimple_assign (stmt))
1564 {
1565 /* For aggregate copies record distinct references but use them
1566 only for disambiguation purposes. */
1567 id = memory_accesses.refs_list.length ();
1568 ref = mem_ref_alloc (NULL, 0, id);
1569 memory_accesses.refs_list.safe_push (ref);
1570 if (dump_file && (dump_flags & TDF_DETAILS))
1571 {
1572 fprintf (dump_file, "Unhandled memory reference %u: ", id);
1573 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1574 }
1575 record_mem_ref_loc (ref, stmt, mem);
1576 is_stored = gimple_vdef (stmt);
1577 }
1578 else if (!mem)
1579 {
1580 /* We use the shared mem_ref for all unanalyzable refs. */
1581 id = UNANALYZABLE_MEM_ID;
1582 ref = memory_accesses.refs_list[id];
1583 if (dump_file && (dump_flags & TDF_DETAILS))
1584 {
1585 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1586 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1587 }
1588 is_stored = gimple_vdef (stmt);
1589 }
1590 else
1591 {
1592 /* We are looking for equal refs that might differ in structure
1593 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1594 make sure we can canonicalize the ref in the hashtable if
1595 non-operand_equal_p refs are found. For the lookup we mark
1596 the case we want strict equality with aor.max_size == -1. */
1597 ao_ref aor;
1598 ao_ref_init (&aor, *mem);
1599 ao_ref_base (&aor);
1600 ao_ref_alias_set (&aor);
1601 HOST_WIDE_INT offset, size, max_size;
1602 poly_int64 saved_maxsize = aor.max_size, mem_off;
1603 tree mem_base;
1604 bool ref_decomposed;
1605 if (aor.max_size_known_p ()
1606 && aor.offset.is_constant (&offset)
1607 && aor.size.is_constant (&size)
1608 && aor.max_size.is_constant (&max_size)
1609 && size == max_size
1610 && (size % BITS_PER_UNIT) == 0
1611 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1612 size. Make sure this is consistent with the extraction. */
1613 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
1614 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
1615 aor.size)
1616 && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
1617 {
1618 ref_decomposed = true;
1619 tree base = ao_ref_base (&aor);
1620 poly_int64 moffset;
1621 HOST_WIDE_INT mcoffset;
1622 if (TREE_CODE (base) == MEM_REF
1623 && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (&moffset)
1624 && moffset.is_constant (&mcoffset))
1625 {
1626 hash = iterative_hash_expr (TREE_OPERAND (base, 0), 0);
1627 hash = iterative_hash_host_wide_int (mcoffset, hash);
1628 }
1629 else
1630 {
1631 hash = iterative_hash_expr (base, 0);
1632 hash = iterative_hash_host_wide_int (offset, hash);
1633 }
1634 hash = iterative_hash_host_wide_int (size, hash);
1635 }
1636 else
1637 {
1638 ref_decomposed = false;
1639 hash = iterative_hash_expr (aor.ref, 0);
1640 aor.max_size = -1;
1641 }
1642 slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
1643 aor.max_size = saved_maxsize;
1644 if (*slot)
1645 {
1646 if (!(*slot)->ref_canonical
1647 && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
1648 {
1649 /* If we didn't yet canonicalize the hashtable ref (which
1650 we'll end up using for code insertion) and hit a second
1651 equal ref that is not structurally equivalent create
1652 a canonical ref which is a bare MEM_REF. */
1653 if (TREE_CODE (*mem) == MEM_REF
1654 || TREE_CODE (*mem) == TARGET_MEM_REF)
1655 {
1656 (*slot)->mem.ref = *mem;
1657 (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
1658 }
1659 else
1660 {
1661 tree ref_alias_type = reference_alias_ptr_type (*mem);
1662 unsigned int ref_align = get_object_alignment (*mem);
1663 tree ref_type = TREE_TYPE (*mem);
1664 tree tmp = build1 (ADDR_EXPR, ptr_type_node,
1665 unshare_expr (mem_base));
1666 if (TYPE_ALIGN (ref_type) != ref_align)
1667 ref_type = build_aligned_type (ref_type, ref_align);
1668 (*slot)->mem.ref
1669 = fold_build2 (MEM_REF, ref_type, tmp,
1670 build_int_cst (ref_alias_type, mem_off));
1671 if ((*slot)->mem.volatile_p)
1672 TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
1673 gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
1674 && is_gimple_mem_ref_addr
1675 (TREE_OPERAND ((*slot)->mem.ref,
1676 0)));
1677 (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
1678 }
1679 (*slot)->ref_canonical = true;
1680 }
1681 ref = *slot;
1682 id = ref->id;
1683 }
1684 else
1685 {
1686 id = memory_accesses.refs_list.length ();
1687 ref = mem_ref_alloc (&aor, hash, id);
1688 ref->ref_decomposed = ref_decomposed;
1689 memory_accesses.refs_list.safe_push (ref);
1690 *slot = ref;
1691
1692 if (dump_file && (dump_flags & TDF_DETAILS))
1693 {
1694 fprintf (dump_file, "Memory reference %u: ", id);
1695 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1696 fprintf (dump_file, "\n");
1697 }
1698 }
1699
1700 record_mem_ref_loc (ref, stmt, mem);
1701 }
1702 if (is_stored)
1703 {
1704 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1705 mark_ref_stored (ref, loop);
1706 }
1707 /* A not simple memory op is also a read when it is a write. */
1708 if (!is_stored || id == UNANALYZABLE_MEM_ID
1709 || ref->mem.ref == error_mark_node)
1710 {
1711 bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
1712 mark_ref_loaded (ref, loop);
1713 }
1714 init_lim_data (stmt)->ref = ref->id;
1715 return;
1716 }
1717
1718 static unsigned *bb_loop_postorder;
1719
1720 /* qsort sort function to sort blocks after their loop fathers postorder. */
1721
1722 static int
1723 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
1724 void *bb_loop_postorder_)
1725 {
1726 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1727 basic_block bb1 = *(const basic_block *)bb1_;
1728 basic_block bb2 = *(const basic_block *)bb2_;
1729 class loop *loop1 = bb1->loop_father;
1730 class loop *loop2 = bb2->loop_father;
1731 if (loop1->num == loop2->num)
1732 return bb1->index - bb2->index;
1733 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1734 }
1735
1736 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1737
1738 static int
1739 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
1740 void *bb_loop_postorder_)
1741 {
1742 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1743 const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
1744 const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
1745 class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1746 class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1747 if (loop1->num == loop2->num)
1748 return 0;
1749 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1750 }
1751
1752 /* Gathers memory references in loops. */
1753
1754 static void
1755 analyze_memory_references (bool store_motion)
1756 {
1757 gimple_stmt_iterator bsi;
1758 basic_block bb, *bbs;
1759 class loop *outer;
1760 unsigned i, n;
1761
1762 /* Collect all basic-blocks in loops and sort them after their
1763 loops postorder. */
1764 i = 0;
1765 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1766 FOR_EACH_BB_FN (bb, cfun)
1767 if (bb->loop_father != current_loops->tree_root)
1768 bbs[i++] = bb;
1769 n = i;
1770 gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
1771 bb_loop_postorder);
1772
1773 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1774 That results in better locality for all the bitmaps. It also
1775 automatically sorts the location list of gathered memory references
1776 after their loop postorder number allowing to binary-search it. */
1777 for (i = 0; i < n; ++i)
1778 {
1779 basic_block bb = bbs[i];
1780 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1781 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1782 }
1783
1784 /* Verify the list of gathered memory references is sorted after their
1785 loop postorder number. */
1786 if (flag_checking)
1787 {
1788 im_mem_ref *ref;
1789 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1790 for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
1791 gcc_assert (sort_locs_in_loop_postorder_cmp
1792 (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
1793 bb_loop_postorder) <= 0);
1794 }
1795
1796 free (bbs);
1797
1798 if (!store_motion)
1799 return;
1800
1801 /* Propagate the information about accessed memory references up
1802 the loop hierarchy. */
1803 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1804 {
1805 /* Finalize the overall touched references (including subloops). */
1806 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1807 &memory_accesses.refs_stored_in_loop[loop->num]);
1808
1809 /* Propagate the information about accessed memory references up
1810 the loop hierarchy. */
1811 outer = loop_outer (loop);
1812 if (outer == current_loops->tree_root)
1813 continue;
1814
1815 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1816 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1817 }
1818 }
1819
1820 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1821 tree_to_aff_combination_expand. */
1822
1823 static bool
1824 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1825 hash_map<tree, name_expansion *> **ttae_cache,
1826 bool tbaa_p)
1827 {
1828 gcc_checking_assert (mem1->mem.ref != error_mark_node
1829 && mem2->mem.ref != error_mark_node);
1830
1831 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1832 object and their offset differ in such a way that the locations cannot
1833 overlap, then they cannot alias. */
1834 poly_widest_int size1, size2;
1835 aff_tree off1, off2;
1836
1837 /* Perform basic offset and type-based disambiguation. */
1838 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
1839 return false;
1840
1841 /* The expansion of addresses may be a bit expensive, thus we only do
1842 the check at -O2 and higher optimization levels. */
1843 if (optimize < 2)
1844 return true;
1845
1846 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1847 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1848 aff_combination_expand (&off1, ttae_cache);
1849 aff_combination_expand (&off2, ttae_cache);
1850 aff_combination_scale (&off1, -1);
1851 aff_combination_add (&off2, &off1);
1852
1853 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1854 return false;
1855
1856 return true;
1857 }
1858
1859 /* Compare function for bsearch searching for reference locations
1860 in a loop. */
1861
1862 static int
1863 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
1864 void *bb_loop_postorder_)
1865 {
1866 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1867 class loop *loop = (class loop *)const_cast<void *>(loop_);
1868 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1869 class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1870 if (loop->num == loc_loop->num
1871 || flow_loop_nested_p (loop, loc_loop))
1872 return 0;
1873 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1874 ? -1 : 1);
1875 }
1876
1877 /* Iterates over all locations of REF in LOOP and its subloops calling
1878 fn.operator() with the location as argument. When that operator
1879 returns true the iteration is stopped and true is returned.
1880 Otherwise false is returned. */
1881
1882 template <typename FN>
1883 static bool
1884 for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
1885 {
1886 unsigned i;
1887 mem_ref_loc *loc;
1888
1889 /* Search for the cluster of locs in the accesses_in_loop vector
1890 which is sorted after postorder index of the loop father. */
1891 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
1892 bb_loop_postorder);
1893 if (!loc)
1894 return false;
1895
1896 /* We have found one location inside loop or its sub-loops. Iterate
1897 both forward and backward to cover the whole cluster. */
1898 i = loc - ref->accesses_in_loop.address ();
1899 while (i > 0)
1900 {
1901 --i;
1902 mem_ref_loc *l = &ref->accesses_in_loop[i];
1903 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1904 break;
1905 if (fn (l))
1906 return true;
1907 }
1908 for (i = loc - ref->accesses_in_loop.address ();
1909 i < ref->accesses_in_loop.length (); ++i)
1910 {
1911 mem_ref_loc *l = &ref->accesses_in_loop[i];
1912 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1913 break;
1914 if (fn (l))
1915 return true;
1916 }
1917
1918 return false;
1919 }
1920
1921 /* Rewrites location LOC by TMP_VAR. */
1922
1923 class rewrite_mem_ref_loc
1924 {
1925 public:
1926 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1927 bool operator () (mem_ref_loc *loc);
1928 tree tmp_var;
1929 };
1930
1931 bool
1932 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1933 {
1934 *loc->ref = tmp_var;
1935 update_stmt (loc->stmt);
1936 return false;
1937 }
1938
1939 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1940
1941 static void
1942 rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
1943 {
1944 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1945 }
1946
1947 /* Stores the first reference location in LOCP. */
1948
1949 class first_mem_ref_loc_1
1950 {
1951 public:
1952 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1953 bool operator () (mem_ref_loc *loc);
1954 mem_ref_loc **locp;
1955 };
1956
1957 bool
1958 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1959 {
1960 *locp = loc;
1961 return true;
1962 }
1963
1964 /* Returns the first reference location to REF in LOOP. */
1965
1966 static mem_ref_loc *
1967 first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
1968 {
1969 mem_ref_loc *locp = NULL;
1970 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1971 return locp;
1972 }
1973
1974 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1975 MEM along edge EX.
1976
1977 The store is only done if MEM has changed. We do this so no
1978 changes to MEM occur on code paths that did not originally store
1979 into it.
1980
1981 The common case for execute_sm will transform:
1982
1983 for (...) {
1984 if (foo)
1985 stuff;
1986 else
1987 MEM = TMP_VAR;
1988 }
1989
1990 into:
1991
1992 lsm = MEM;
1993 for (...) {
1994 if (foo)
1995 stuff;
1996 else
1997 lsm = TMP_VAR;
1998 }
1999 MEM = lsm;
2000
2001 This function will generate:
2002
2003 lsm = MEM;
2004
2005 lsm_flag = false;
2006 ...
2007 for (...) {
2008 if (foo)
2009 stuff;
2010 else {
2011 lsm = TMP_VAR;
2012 lsm_flag = true;
2013 }
2014 }
2015 if (lsm_flag) <--
2016 MEM = lsm; <-- (X)
2017
2018 In case MEM and TMP_VAR are NULL the function will return the then
2019 block so the caller can insert (X) and other related stmts.
2020 */
2021
2022 static basic_block
2023 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
2024 edge preheader, hash_set <basic_block> *flag_bbs,
2025 edge &append_cond_position, edge &last_cond_fallthru)
2026 {
2027 basic_block new_bb, then_bb, old_dest;
2028 bool loop_has_only_one_exit;
2029 edge then_old_edge;
2030 gimple_stmt_iterator gsi;
2031 gimple *stmt;
2032 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
2033
2034 profile_count count_sum = profile_count::zero ();
2035 int nbbs = 0, ncount = 0;
2036 profile_probability flag_probability = profile_probability::uninitialized ();
2037
2038 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
2039 at loop exit.
2040
2041 This code may look fancy, but it cannot update profile very realistically
2042 because we do not know the probability that flag will be true at given
2043 loop exit.
2044
2045 We look for two interesting extremes
2046 - when exit is dominated by block setting the flag, we know it will
2047 always be true. This is a common case.
2048 - when all blocks setting the flag have very low frequency we know
2049 it will likely be false.
2050 In all other cases we default to 2/3 for flag being true. */
2051
2052 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
2053 it != flag_bbs->end (); ++it)
2054 {
2055 if ((*it)->count.initialized_p ())
2056 count_sum += (*it)->count, ncount ++;
2057 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
2058 flag_probability = profile_probability::always ();
2059 nbbs++;
2060 }
2061
2062 profile_probability cap
2063 = profile_probability::guessed_always ().apply_scale (2, 3);
2064
2065 if (flag_probability.initialized_p ())
2066 ;
2067 else if (ncount == nbbs
2068 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
2069 {
2070 flag_probability = count_sum.probability_in (preheader->count ());
2071 if (flag_probability > cap)
2072 flag_probability = cap;
2073 }
2074
2075 if (!flag_probability.initialized_p ())
2076 flag_probability = cap;
2077
2078 /* ?? Insert store after previous store if applicable. See note
2079 below. */
2080 if (append_cond_position)
2081 ex = append_cond_position;
2082
2083 loop_has_only_one_exit = single_pred_p (ex->dest);
2084
2085 if (loop_has_only_one_exit)
2086 ex = split_block_after_labels (ex->dest);
2087 else
2088 {
2089 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
2090 !gsi_end_p (gpi); gsi_next (&gpi))
2091 {
2092 gphi *phi = gpi.phi ();
2093 if (virtual_operand_p (gimple_phi_result (phi)))
2094 continue;
2095
2096 /* When the destination has a non-virtual PHI node with multiple
2097 predecessors make sure we preserve the PHI structure by
2098 forcing a forwarder block so that hoisting of that PHI will
2099 still work. */
2100 split_edge (ex);
2101 break;
2102 }
2103 }
2104
2105 old_dest = ex->dest;
2106 new_bb = split_edge (ex);
2107 if (append_cond_position)
2108 new_bb->count += last_cond_fallthru->count ();
2109 then_bb = create_empty_bb (new_bb);
2110 then_bb->count = new_bb->count.apply_probability (flag_probability);
2111 if (irr)
2112 then_bb->flags = BB_IRREDUCIBLE_LOOP;
2113 add_bb_to_loop (then_bb, new_bb->loop_father);
2114
2115 gsi = gsi_start_bb (new_bb);
2116 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2117 NULL_TREE, NULL_TREE);
2118 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2119
2120 /* Insert actual store. */
2121 if (mem)
2122 {
2123 gsi = gsi_start_bb (then_bb);
2124 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2125 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2126 }
2127
2128 edge e1 = single_succ_edge (new_bb);
2129 edge e2 = make_edge (new_bb, then_bb,
2130 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2131 e2->probability = flag_probability;
2132
2133 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
2134 e1->flags &= ~EDGE_FALLTHRU;
2135
2136 e1->probability = flag_probability.invert ();
2137
2138 then_old_edge = make_single_succ_edge (then_bb, old_dest,
2139 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2140
2141 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2142
2143 if (append_cond_position)
2144 {
2145 basic_block prevbb = last_cond_fallthru->src;
2146 redirect_edge_succ (last_cond_fallthru, new_bb);
2147 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2148 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2149 recompute_dominator (CDI_DOMINATORS, old_dest));
2150 }
2151
2152 /* ?? Because stores may alias, they must happen in the exact
2153 sequence they originally happened. Save the position right after
2154 the (_lsm) store we just created so we can continue appending after
2155 it and maintain the original order. */
2156 append_cond_position = then_old_edge;
2157 last_cond_fallthru = find_edge (new_bb, old_dest);
2158
2159 if (!loop_has_only_one_exit)
2160 for (gphi_iterator gpi = gsi_start_phis (old_dest);
2161 !gsi_end_p (gpi); gsi_next (&gpi))
2162 {
2163 gphi *phi = gpi.phi ();
2164 unsigned i;
2165
2166 for (i = 0; i < gimple_phi_num_args (phi); i++)
2167 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2168 {
2169 tree arg = gimple_phi_arg_def (phi, i);
2170 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2171 update_stmt (phi);
2172 }
2173 }
2174
2175 return then_bb;
2176 }
2177
2178 /* When REF is set on the location, set flag indicating the store. */
2179
2180 class sm_set_flag_if_changed
2181 {
2182 public:
2183 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
2184 : flag (flag_), bbs (bbs_) {}
2185 bool operator () (mem_ref_loc *loc);
2186 tree flag;
2187 hash_set <basic_block> *bbs;
2188 };
2189
2190 bool
2191 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
2192 {
2193 /* Only set the flag for writes. */
2194 if (is_gimple_assign (loc->stmt)
2195 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2196 {
2197 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2198 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
2199 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2200 bbs->add (gimple_bb (stmt));
2201 }
2202 return false;
2203 }
2204
2205 /* Helper function for execute_sm. On every location where REF is
2206 set, set an appropriate flag indicating the store. */
2207
2208 static tree
2209 execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
2210 hash_set <basic_block> *bbs)
2211 {
2212 tree flag;
2213 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
2214 flag = create_tmp_reg (boolean_type_node, str);
2215 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
2216 return flag;
2217 }
2218
2219 struct sm_aux
2220 {
2221 tree tmp_var;
2222 tree store_flag;
2223 hash_set <basic_block> flag_bbs;
2224 };
2225
2226 /* Executes store motion of memory reference REF from LOOP.
2227 Exits from the LOOP are stored in EXITS. The initialization of the
2228 temporary variable is put to the preheader of the loop, and assignments
2229 to the reference from the temporary variable are emitted to exits. */
2230
2231 static void
2232 execute_sm (class loop *loop, im_mem_ref *ref,
2233 hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt,
2234 bool use_other_flag_var)
2235 {
2236 gassign *load;
2237 struct fmt_data fmt_data;
2238 struct lim_aux_data *lim_data;
2239 bool multi_threaded_model_p = false;
2240 gimple_stmt_iterator gsi;
2241 sm_aux *aux = new sm_aux;
2242
2243 if (dump_file && (dump_flags & TDF_DETAILS))
2244 {
2245 fprintf (dump_file, "Executing store motion of ");
2246 print_generic_expr (dump_file, ref->mem.ref);
2247 fprintf (dump_file, " from loop %d\n", loop->num);
2248 }
2249
2250 aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2251 get_lsm_tmp_name (ref->mem.ref, ~0));
2252
2253 fmt_data.loop = loop;
2254 fmt_data.orig_loop = loop;
2255 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2256
2257 bool always_stored = ref_always_accessed_p (loop, ref, true);
2258 if (maybe_mt
2259 && (bb_in_transaction (loop_preheader_edge (loop)->src)
2260 || (! flag_store_data_races && ! always_stored)))
2261 multi_threaded_model_p = true;
2262
2263 if (multi_threaded_model_p && !use_other_flag_var)
2264 aux->store_flag
2265 = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
2266 else
2267 aux->store_flag = NULL_TREE;
2268
2269 /* Remember variable setup. */
2270 aux_map.put (ref, aux);
2271
2272 rewrite_mem_refs (loop, ref, aux->tmp_var);
2273
2274 /* Emit the load code on a random exit edge or into the latch if
2275 the loop does not exit, so that we are sure it will be processed
2276 by move_computations after all dependencies. */
2277 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2278
2279 /* Avoid doing a load if there was no load of the ref in the loop.
2280 Esp. when the ref is not always stored we cannot optimize it
2281 away later. But when it is not always stored we must use a conditional
2282 store then. */
2283 if ((!always_stored && !multi_threaded_model_p)
2284 || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
2285 load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
2286 else
2287 {
2288 /* If not emitting a load mark the uninitialized state on the
2289 loop entry as not to be warned for. */
2290 tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
2291 suppress_warning (uninit, OPT_Wuninitialized);
2292 load = gimple_build_assign (aux->tmp_var, uninit);
2293 }
2294 lim_data = init_lim_data (load);
2295 lim_data->max_loop = loop;
2296 lim_data->tgt_loop = loop;
2297 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2298
2299 if (aux->store_flag)
2300 {
2301 load = gimple_build_assign (aux->store_flag, boolean_false_node);
2302 lim_data = init_lim_data (load);
2303 lim_data->max_loop = loop;
2304 lim_data->tgt_loop = loop;
2305 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2306 }
2307 }
2308
2309 /* sm_ord is used for ordinary stores we can retain order with respect
2310 to other stores
2311 sm_unord is used for conditional executed stores which need to be
2312 able to execute in arbitrary order with respect to other stores
2313 sm_other is used for stores we do not try to apply store motion to. */
2314 enum sm_kind { sm_ord, sm_unord, sm_other };
2315 struct seq_entry
2316 {
2317 seq_entry () {}
2318 seq_entry (unsigned f, sm_kind k, tree fr = NULL)
2319 : first (f), second (k), from (fr) {}
2320 unsigned first;
2321 sm_kind second;
2322 tree from;
2323 };
2324
2325 static void
2326 execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
2327 hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
2328 edge &append_cond_position, edge &last_cond_fallthru)
2329 {
2330 /* Sink the stores to exit from the loop. */
2331 for (unsigned i = seq.length (); i > 0; --i)
2332 {
2333 im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
2334 if (seq[i-1].second == sm_other)
2335 {
2336 gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
2337 if (dump_file && (dump_flags & TDF_DETAILS))
2338 {
2339 fprintf (dump_file, "Re-issueing dependent store of ");
2340 print_generic_expr (dump_file, ref->mem.ref);
2341 fprintf (dump_file, " from loop %d on exit %d -> %d\n",
2342 loop->num, ex->src->index, ex->dest->index);
2343 }
2344 gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
2345 seq[i-1].from);
2346 gsi_insert_on_edge (ex, store);
2347 }
2348 else
2349 {
2350 sm_aux *aux = *aux_map.get (ref);
2351 if (!aux->store_flag || kind == sm_ord)
2352 {
2353 gassign *store;
2354 store = gimple_build_assign (unshare_expr (ref->mem.ref),
2355 aux->tmp_var);
2356 gsi_insert_on_edge (ex, store);
2357 }
2358 else
2359 execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
2360 aux->store_flag,
2361 loop_preheader_edge (loop), &aux->flag_bbs,
2362 append_cond_position, last_cond_fallthru);
2363 }
2364 }
2365 }
2366
2367 /* Push the SM candidate at index PTR in the sequence SEQ down until
2368 we hit the next SM candidate. Return true if that went OK and
2369 false if we could not disambiguate agains another unrelated ref.
2370 Update *AT to the index where the candidate now resides. */
2371
2372 static bool
2373 sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
2374 {
2375 *at = ptr;
2376 for (; ptr > 0; --ptr)
2377 {
2378 seq_entry &new_cand = seq[ptr];
2379 seq_entry &against = seq[ptr-1];
2380 if (against.second == sm_ord
2381 || (against.second == sm_other && against.from != NULL_TREE))
2382 /* Found the tail of the sequence. */
2383 break;
2384 /* We may not ignore self-dependences here. */
2385 if (new_cand.first == against.first
2386 || !refs_independent_p (memory_accesses.refs_list[new_cand.first],
2387 memory_accesses.refs_list[against.first],
2388 false))
2389 /* ??? Prune new_cand from the list of refs to apply SM to. */
2390 return false;
2391 std::swap (new_cand, against);
2392 *at = ptr - 1;
2393 }
2394 return true;
2395 }
2396
2397 /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
2398 walking backwards from VDEF (or the end of BB if VDEF is NULL). */
2399
2400 static int
2401 sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
2402 vec<seq_entry> &seq, bitmap refs_not_in_seq,
2403 bitmap refs_not_supported, bool forked,
2404 bitmap fully_visited)
2405 {
2406 if (!vdef)
2407 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
2408 gsi_prev (&gsi))
2409 {
2410 vdef = gimple_vdef (gsi_stmt (gsi));
2411 if (vdef)
2412 break;
2413 }
2414 if (!vdef)
2415 {
2416 gphi *vphi = get_virtual_phi (bb);
2417 if (vphi)
2418 vdef = gimple_phi_result (vphi);
2419 }
2420 if (!vdef)
2421 {
2422 if (single_pred_p (bb))
2423 /* This handles the perfect nest case. */
2424 return sm_seq_valid_bb (loop, single_pred (bb), vdef,
2425 seq, refs_not_in_seq, refs_not_supported,
2426 forked, fully_visited);
2427 return 0;
2428 }
2429 do
2430 {
2431 gimple *def = SSA_NAME_DEF_STMT (vdef);
2432 if (gimple_bb (def) != bb)
2433 {
2434 /* If we forked by processing a PHI do not allow our walk to
2435 merge again until we handle that robustly. */
2436 if (forked)
2437 {
2438 /* Mark refs_not_in_seq as unsupported. */
2439 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2440 return 1;
2441 }
2442 /* Otherwise it doesn't really matter if we end up in different
2443 BBs. */
2444 bb = gimple_bb (def);
2445 }
2446 if (gphi *phi = dyn_cast <gphi *> (def))
2447 {
2448 /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
2449 this is still linear.
2450 Eventually we want to cache intermediate results per BB
2451 (but we can't easily cache for different exits?). */
2452 /* Stop at PHIs with possible backedges. */
2453 if (bb == bb->loop_father->header
2454 || bb->flags & BB_IRREDUCIBLE_LOOP)
2455 {
2456 /* Mark refs_not_in_seq as unsupported. */
2457 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2458 return 1;
2459 }
2460 if (gimple_phi_num_args (phi) == 1)
2461 return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2462 gimple_phi_arg_def (phi, 0), seq,
2463 refs_not_in_seq, refs_not_supported,
2464 false, fully_visited);
2465 if (bitmap_bit_p (fully_visited,
2466 SSA_NAME_VERSION (gimple_phi_result (phi))))
2467 return 1;
2468 auto_vec<seq_entry> first_edge_seq;
2469 auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
2470 int eret;
2471 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2472 eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2473 gimple_phi_arg_def (phi, 0),
2474 first_edge_seq,
2475 tem_refs_not_in_seq, refs_not_supported,
2476 true, fully_visited);
2477 if (eret != 1)
2478 return -1;
2479 /* Simplify our lives by pruning the sequence of !sm_ord. */
2480 while (!first_edge_seq.is_empty ()
2481 && first_edge_seq.last ().second != sm_ord)
2482 first_edge_seq.pop ();
2483 for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
2484 {
2485 tree vuse = gimple_phi_arg_def (phi, i);
2486 edge e = gimple_phi_arg_edge (phi, i);
2487 auto_vec<seq_entry> edge_seq;
2488 bitmap_and_compl (tem_refs_not_in_seq,
2489 refs_not_in_seq, refs_not_supported);
2490 /* If we've marked all refs we search for as unsupported
2491 we can stop processing and use the sequence as before
2492 the PHI. */
2493 if (bitmap_empty_p (tem_refs_not_in_seq))
2494 return 1;
2495 eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
2496 tem_refs_not_in_seq, refs_not_supported,
2497 true, fully_visited);
2498 if (eret != 1)
2499 return -1;
2500 /* Simplify our lives by pruning the sequence of !sm_ord. */
2501 while (!edge_seq.is_empty ()
2502 && edge_seq.last ().second != sm_ord)
2503 edge_seq.pop ();
2504 unsigned min_len = MIN(first_edge_seq.length (),
2505 edge_seq.length ());
2506 /* Incrementally merge seqs into first_edge_seq. */
2507 int first_uneq = -1;
2508 auto_vec<seq_entry, 2> extra_refs;
2509 for (unsigned int i = 0; i < min_len; ++i)
2510 {
2511 /* ??? We can more intelligently merge when we face different
2512 order by additional sinking operations in one sequence.
2513 For now we simply mark them as to be processed by the
2514 not order-preserving SM code. */
2515 if (first_edge_seq[i].first != edge_seq[i].first)
2516 {
2517 if (first_edge_seq[i].second == sm_ord)
2518 bitmap_set_bit (refs_not_supported,
2519 first_edge_seq[i].first);
2520 if (edge_seq[i].second == sm_ord)
2521 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2522 first_edge_seq[i].second = sm_other;
2523 first_edge_seq[i].from = NULL_TREE;
2524 /* Record the dropped refs for later processing. */
2525 if (first_uneq == -1)
2526 first_uneq = i;
2527 extra_refs.safe_push (seq_entry (edge_seq[i].first,
2528 sm_other, NULL_TREE));
2529 }
2530 /* sm_other prevails. */
2531 else if (first_edge_seq[i].second != edge_seq[i].second)
2532 {
2533 /* Make sure the ref is marked as not supported. */
2534 bitmap_set_bit (refs_not_supported,
2535 first_edge_seq[i].first);
2536 first_edge_seq[i].second = sm_other;
2537 first_edge_seq[i].from = NULL_TREE;
2538 }
2539 else if (first_edge_seq[i].second == sm_other
2540 && first_edge_seq[i].from != NULL_TREE
2541 && (edge_seq[i].from == NULL_TREE
2542 || !operand_equal_p (first_edge_seq[i].from,
2543 edge_seq[i].from, 0)))
2544 first_edge_seq[i].from = NULL_TREE;
2545 }
2546 /* Any excess elements become sm_other since they are now
2547 coonditionally executed. */
2548 if (first_edge_seq.length () > edge_seq.length ())
2549 {
2550 for (unsigned i = edge_seq.length ();
2551 i < first_edge_seq.length (); ++i)
2552 {
2553 if (first_edge_seq[i].second == sm_ord)
2554 bitmap_set_bit (refs_not_supported,
2555 first_edge_seq[i].first);
2556 first_edge_seq[i].second = sm_other;
2557 }
2558 }
2559 else if (edge_seq.length () > first_edge_seq.length ())
2560 {
2561 if (first_uneq == -1)
2562 first_uneq = first_edge_seq.length ();
2563 for (unsigned i = first_edge_seq.length ();
2564 i < edge_seq.length (); ++i)
2565 {
2566 if (edge_seq[i].second == sm_ord)
2567 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2568 extra_refs.safe_push (seq_entry (edge_seq[i].first,
2569 sm_other, NULL_TREE));
2570 }
2571 }
2572 /* Put unmerged refs at first_uneq to force dependence checking
2573 on them. */
2574 if (first_uneq != -1)
2575 {
2576 /* Missing ordered_splice_at. */
2577 if ((unsigned)first_uneq == first_edge_seq.length ())
2578 first_edge_seq.safe_splice (extra_refs);
2579 else
2580 {
2581 unsigned fes_length = first_edge_seq.length ();
2582 first_edge_seq.safe_grow (fes_length
2583 + extra_refs.length ());
2584 memmove (&first_edge_seq[first_uneq + extra_refs.length ()],
2585 &first_edge_seq[first_uneq],
2586 (fes_length - first_uneq) * sizeof (seq_entry));
2587 memcpy (&first_edge_seq[first_uneq],
2588 extra_refs.address (),
2589 extra_refs.length () * sizeof (seq_entry));
2590 }
2591 }
2592 }
2593 /* Use the sequence from the first edge and push SMs down. */
2594 for (unsigned i = 0; i < first_edge_seq.length (); ++i)
2595 {
2596 unsigned id = first_edge_seq[i].first;
2597 seq.safe_push (first_edge_seq[i]);
2598 unsigned new_idx;
2599 if ((first_edge_seq[i].second == sm_ord
2600 || (first_edge_seq[i].second == sm_other
2601 && first_edge_seq[i].from != NULL_TREE))
2602 && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
2603 {
2604 if (first_edge_seq[i].second == sm_ord)
2605 bitmap_set_bit (refs_not_supported, id);
2606 /* Mark it sm_other. */
2607 seq[new_idx].second = sm_other;
2608 seq[new_idx].from = NULL_TREE;
2609 }
2610 }
2611 bitmap_set_bit (fully_visited,
2612 SSA_NAME_VERSION (gimple_phi_result (phi)));
2613 return 1;
2614 }
2615 lim_aux_data *data = get_lim_data (def);
2616 gcc_assert (data);
2617 if (data->ref == UNANALYZABLE_MEM_ID)
2618 return -1;
2619 /* Stop at memory references which we can't move. */
2620 else if (memory_accesses.refs_list[data->ref]->mem.ref == error_mark_node
2621 || TREE_THIS_VOLATILE
2622 (memory_accesses.refs_list[data->ref]->mem.ref))
2623 {
2624 /* Mark refs_not_in_seq as unsupported. */
2625 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2626 return 1;
2627 }
2628 /* One of the stores we want to apply SM to and we've not yet seen. */
2629 else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
2630 {
2631 seq.safe_push (seq_entry (data->ref, sm_ord));
2632
2633 /* 1) push it down the queue until a SMed
2634 and not ignored ref is reached, skipping all not SMed refs
2635 and ignored refs via non-TBAA disambiguation. */
2636 unsigned new_idx;
2637 if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
2638 /* If that fails but we did not fork yet continue, we'll see
2639 to re-materialize all of the stores in the sequence then.
2640 Further stores will only be pushed up to this one. */
2641 && forked)
2642 {
2643 bitmap_set_bit (refs_not_supported, data->ref);
2644 /* Mark it sm_other. */
2645 seq[new_idx].second = sm_other;
2646 }
2647
2648 /* 2) check whether we've seen all refs we want to SM and if so
2649 declare success for the active exit */
2650 if (bitmap_empty_p (refs_not_in_seq))
2651 return 1;
2652 }
2653 else
2654 /* Another store not part of the final sequence. Simply push it. */
2655 seq.safe_push (seq_entry (data->ref, sm_other,
2656 gimple_assign_rhs1 (def)));
2657
2658 vdef = gimple_vuse (def);
2659 }
2660 while (1);
2661 }
2662
2663 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2664 edges of the LOOP. */
2665
2666 static void
2667 hoist_memory_references (class loop *loop, bitmap mem_refs,
2668 const vec<edge> &exits)
2669 {
2670 im_mem_ref *ref;
2671 unsigned i;
2672 bitmap_iterator bi;
2673
2674 /* There's a special case we can use ordered re-materialization for
2675 conditionally excuted stores which is when all stores in the loop
2676 happen in the same basic-block. In that case we know we'll reach
2677 all stores and thus can simply process that BB and emit a single
2678 conditional block of ordered materializations. See PR102436. */
2679 basic_block single_store_bb = NULL;
2680 EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num],
2681 0, i, bi)
2682 {
2683 bool fail = false;
2684 ref = memory_accesses.refs_list[i];
2685 for (auto loc : ref->accesses_in_loop)
2686 if (!gimple_vdef (loc.stmt))
2687 ;
2688 else if (!single_store_bb)
2689 {
2690 single_store_bb = gimple_bb (loc.stmt);
2691 bool conditional = false;
2692 for (edge e : exits)
2693 if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb))
2694 {
2695 /* Conditional as seen from e. */
2696 conditional = true;
2697 break;
2698 }
2699 if (!conditional)
2700 {
2701 fail = true;
2702 break;
2703 }
2704 }
2705 else if (single_store_bb != gimple_bb (loc.stmt))
2706 {
2707 fail = true;
2708 break;
2709 }
2710 if (fail)
2711 {
2712 single_store_bb = NULL;
2713 break;
2714 }
2715 }
2716 if (single_store_bb)
2717 {
2718 /* Analyze the single block with stores. */
2719 auto_bitmap fully_visited;
2720 auto_bitmap refs_not_supported;
2721 auto_bitmap refs_not_in_seq;
2722 auto_vec<seq_entry> seq;
2723 bitmap_copy (refs_not_in_seq, mem_refs);
2724 int res = sm_seq_valid_bb (loop, single_store_bb, NULL_TREE,
2725 seq, refs_not_in_seq, refs_not_supported,
2726 false, fully_visited);
2727 if (res != 1)
2728 {
2729 /* Unhandled refs can still fail this. */
2730 bitmap_clear (mem_refs);
2731 return;
2732 }
2733
2734 /* We cannot handle sm_other since we neither remember the
2735 stored location nor the value at the point we execute them. */
2736 for (unsigned i = 0; i < seq.length (); ++i)
2737 {
2738 unsigned new_i;
2739 if (seq[i].second == sm_other
2740 && seq[i].from != NULL_TREE)
2741 seq[i].from = NULL_TREE;
2742 else if ((seq[i].second == sm_ord
2743 || (seq[i].second == sm_other
2744 && seq[i].from != NULL_TREE))
2745 && !sm_seq_push_down (seq, i, &new_i))
2746 {
2747 bitmap_set_bit (refs_not_supported, seq[new_i].first);
2748 seq[new_i].second = sm_other;
2749 seq[new_i].from = NULL_TREE;
2750 }
2751 }
2752 bitmap_and_compl_into (mem_refs, refs_not_supported);
2753 if (bitmap_empty_p (mem_refs))
2754 return;
2755
2756 /* Prune seq. */
2757 while (seq.last ().second == sm_other
2758 && seq.last ().from == NULL_TREE)
2759 seq.pop ();
2760
2761 hash_map<im_mem_ref *, sm_aux *> aux_map;
2762
2763 /* Execute SM but delay the store materialization for ordered
2764 sequences on exit. */
2765 bool first_p = true;
2766 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2767 {
2768 ref = memory_accesses.refs_list[i];
2769 execute_sm (loop, ref, aux_map, true, !first_p);
2770 first_p = false;
2771 }
2772
2773 /* Get at the single flag variable we eventually produced. */
2774 im_mem_ref *ref
2775 = memory_accesses.refs_list[bitmap_first_set_bit (mem_refs)];
2776 sm_aux *aux = *aux_map.get (ref);
2777
2778 /* Materialize ordered store sequences on exits. */
2779 edge e;
2780 FOR_EACH_VEC_ELT (exits, i, e)
2781 {
2782 edge append_cond_position = NULL;
2783 edge last_cond_fallthru = NULL;
2784 edge insert_e = e;
2785 /* Construct the single flag variable control flow and insert
2786 the ordered seq of stores in the then block. With
2787 -fstore-data-races we can do the stores unconditionally. */
2788 if (aux->store_flag)
2789 insert_e
2790 = single_pred_edge
2791 (execute_sm_if_changed (e, NULL_TREE, NULL_TREE,
2792 aux->store_flag,
2793 loop_preheader_edge (loop),
2794 &aux->flag_bbs, append_cond_position,
2795 last_cond_fallthru));
2796 execute_sm_exit (loop, insert_e, seq, aux_map, sm_ord,
2797 append_cond_position, last_cond_fallthru);
2798 gsi_commit_one_edge_insert (insert_e, NULL);
2799 }
2800
2801 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2802 iter != aux_map.end (); ++iter)
2803 delete (*iter).second;
2804
2805 return;
2806 }
2807
2808 /* To address PR57359 before actually applying store-motion check
2809 the candidates found for validity with regards to reordering
2810 relative to other stores which we until here disambiguated using
2811 TBAA which isn't valid.
2812 What matters is the order of the last stores to the mem_refs
2813 with respect to the other stores of the loop at the point of the
2814 loop exits. */
2815
2816 /* For each exit compute the store order, pruning from mem_refs
2817 on the fly. */
2818 /* The complexity of this is at least
2819 O(number of exits * number of SM refs) but more approaching
2820 O(number of exits * number of SM refs * number of stores). */
2821 /* ??? Somehow do this in a single sweep over the loop body. */
2822 auto_vec<std::pair<edge, vec<seq_entry> > > sms;
2823 auto_bitmap refs_not_supported (&lim_bitmap_obstack);
2824 edge e;
2825 FOR_EACH_VEC_ELT (exits, i, e)
2826 {
2827 vec<seq_entry> seq;
2828 seq.create (4);
2829 auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
2830 bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported);
2831 if (bitmap_empty_p (refs_not_in_seq))
2832 {
2833 seq.release ();
2834 break;
2835 }
2836 auto_bitmap fully_visited;
2837 int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
2838 seq, refs_not_in_seq,
2839 refs_not_supported, false,
2840 fully_visited);
2841 if (res != 1)
2842 {
2843 bitmap_copy (refs_not_supported, mem_refs);
2844 seq.release ();
2845 break;
2846 }
2847 sms.safe_push (std::make_pair (e, seq));
2848 }
2849
2850 /* Prune pruned mem_refs from earlier processed exits. */
2851 bool changed = !bitmap_empty_p (refs_not_supported);
2852 while (changed)
2853 {
2854 changed = false;
2855 std::pair<edge, vec<seq_entry> > *seq;
2856 FOR_EACH_VEC_ELT (sms, i, seq)
2857 {
2858 bool need_to_push = false;
2859 for (unsigned i = 0; i < seq->second.length (); ++i)
2860 {
2861 sm_kind kind = seq->second[i].second;
2862 if (kind == sm_other && seq->second[i].from == NULL_TREE)
2863 break;
2864 unsigned id = seq->second[i].first;
2865 unsigned new_idx;
2866 if (kind == sm_ord
2867 && bitmap_bit_p (refs_not_supported, id))
2868 {
2869 seq->second[i].second = sm_other;
2870 gcc_assert (seq->second[i].from == NULL_TREE);
2871 need_to_push = true;
2872 }
2873 else if (need_to_push
2874 && !sm_seq_push_down (seq->second, i, &new_idx))
2875 {
2876 /* We need to push down both sm_ord and sm_other
2877 but for the latter we need to disqualify all
2878 following refs. */
2879 if (kind == sm_ord)
2880 {
2881 if (bitmap_set_bit (refs_not_supported, id))
2882 changed = true;
2883 seq->second[new_idx].second = sm_other;
2884 }
2885 else
2886 {
2887 for (unsigned j = seq->second.length () - 1;
2888 j > new_idx; --j)
2889 if (seq->second[j].second == sm_ord
2890 && bitmap_set_bit (refs_not_supported,
2891 seq->second[j].first))
2892 changed = true;
2893 seq->second.truncate (new_idx);
2894 break;
2895 }
2896 }
2897 }
2898 }
2899 }
2900 std::pair<edge, vec<seq_entry> > *seq;
2901 FOR_EACH_VEC_ELT (sms, i, seq)
2902 {
2903 /* Prune sm_other from the end. */
2904 while (!seq->second.is_empty ()
2905 && seq->second.last ().second == sm_other)
2906 seq->second.pop ();
2907 /* Prune duplicates from the start. */
2908 auto_bitmap seen (&lim_bitmap_obstack);
2909 unsigned j, k;
2910 for (j = k = 0; j < seq->second.length (); ++j)
2911 if (bitmap_set_bit (seen, seq->second[j].first))
2912 {
2913 if (k != j)
2914 seq->second[k] = seq->second[j];
2915 ++k;
2916 }
2917 seq->second.truncate (k);
2918 /* And verify. */
2919 seq_entry *e;
2920 FOR_EACH_VEC_ELT (seq->second, j, e)
2921 gcc_assert (e->second == sm_ord
2922 || (e->second == sm_other && e->from != NULL_TREE));
2923 }
2924
2925 /* Verify dependence for refs we cannot handle with the order preserving
2926 code (refs_not_supported) or prune them from mem_refs. */
2927 auto_vec<seq_entry> unord_refs;
2928 EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
2929 {
2930 ref = memory_accesses.refs_list[i];
2931 if (!ref_indep_loop_p (loop, ref, sm_waw))
2932 bitmap_clear_bit (mem_refs, i);
2933 /* We've now verified store order for ref with respect to all other
2934 stores in the loop does not matter. */
2935 else
2936 unord_refs.safe_push (seq_entry (i, sm_unord));
2937 }
2938
2939 hash_map<im_mem_ref *, sm_aux *> aux_map;
2940
2941 /* Execute SM but delay the store materialization for ordered
2942 sequences on exit. */
2943 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2944 {
2945 ref = memory_accesses.refs_list[i];
2946 execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i),
2947 false);
2948 }
2949
2950 /* Materialize ordered store sequences on exits. */
2951 FOR_EACH_VEC_ELT (exits, i, e)
2952 {
2953 edge append_cond_position = NULL;
2954 edge last_cond_fallthru = NULL;
2955 if (i < sms.length ())
2956 {
2957 gcc_assert (sms[i].first == e);
2958 execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
2959 append_cond_position, last_cond_fallthru);
2960 sms[i].second.release ();
2961 }
2962 if (!unord_refs.is_empty ())
2963 execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
2964 append_cond_position, last_cond_fallthru);
2965 /* Commit edge inserts here to preserve the order of stores
2966 when an exit exits multiple loops. */
2967 gsi_commit_one_edge_insert (e, NULL);
2968 }
2969
2970 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2971 iter != aux_map.end (); ++iter)
2972 delete (*iter).second;
2973 }
2974
2975 class ref_always_accessed
2976 {
2977 public:
2978 ref_always_accessed (class loop *loop_, bool stored_p_)
2979 : loop (loop_), stored_p (stored_p_) {}
2980 bool operator () (mem_ref_loc *loc);
2981 class loop *loop;
2982 bool stored_p;
2983 };
2984
2985 bool
2986 ref_always_accessed::operator () (mem_ref_loc *loc)
2987 {
2988 class loop *must_exec;
2989
2990 struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
2991 if (!lim_data)
2992 return false;
2993
2994 /* If we require an always executed store make sure the statement
2995 is a store. */
2996 if (stored_p)
2997 {
2998 tree lhs = gimple_get_lhs (loc->stmt);
2999 if (!lhs
3000 || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
3001 return false;
3002 }
3003
3004 must_exec = lim_data->always_executed_in;
3005 if (!must_exec)
3006 return false;
3007
3008 if (must_exec == loop
3009 || flow_loop_nested_p (must_exec, loop))
3010 return true;
3011
3012 return false;
3013 }
3014
3015 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
3016 make sure REF is always stored to in LOOP. */
3017
3018 static bool
3019 ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
3020 {
3021 return for_all_locs_in_loop (loop, ref,
3022 ref_always_accessed (loop, stored_p));
3023 }
3024
3025 /* Returns true if REF1 and REF2 are independent. */
3026
3027 static bool
3028 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
3029 {
3030 if (ref1 == ref2)
3031 return true;
3032
3033 if (dump_file && (dump_flags & TDF_DETAILS))
3034 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
3035 ref1->id, ref2->id);
3036
3037 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
3038 {
3039 if (dump_file && (dump_flags & TDF_DETAILS))
3040 fprintf (dump_file, "dependent.\n");
3041 return false;
3042 }
3043 else
3044 {
3045 if (dump_file && (dump_flags & TDF_DETAILS))
3046 fprintf (dump_file, "independent.\n");
3047 return true;
3048 }
3049 }
3050
3051 /* Returns true if REF is independent on all other accessess in LOOP.
3052 KIND specifies the kind of dependence to consider.
3053 lim_raw assumes REF is not stored in LOOP and disambiguates RAW
3054 dependences so if true REF can be hoisted out of LOOP
3055 sm_war disambiguates a store REF against all other loads to see
3056 whether the store can be sunk across loads out of LOOP
3057 sm_waw disambiguates a store REF against all other stores to see
3058 whether the store can be sunk across stores out of LOOP. */
3059
3060 static bool
3061 ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
3062 {
3063 bool indep_p = true;
3064 bitmap refs_to_check;
3065
3066 if (kind == sm_war)
3067 refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
3068 else
3069 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
3070
3071 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID)
3072 || ref->mem.ref == error_mark_node)
3073 indep_p = false;
3074 else
3075 {
3076 /* tri-state, { unknown, independent, dependent } */
3077 dep_state state = query_loop_dependence (loop, ref, kind);
3078 if (state != dep_unknown)
3079 return state == dep_independent ? true : false;
3080
3081 class loop *inner = loop->inner;
3082 while (inner)
3083 {
3084 if (!ref_indep_loop_p (inner, ref, kind))
3085 {
3086 indep_p = false;
3087 break;
3088 }
3089 inner = inner->next;
3090 }
3091
3092 if (indep_p)
3093 {
3094 unsigned i;
3095 bitmap_iterator bi;
3096 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
3097 {
3098 im_mem_ref *aref = memory_accesses.refs_list[i];
3099 if (aref->mem.ref == error_mark_node)
3100 {
3101 gimple *stmt = aref->accesses_in_loop[0].stmt;
3102 if ((kind == sm_war
3103 && ref_maybe_used_by_stmt_p (stmt, &ref->mem,
3104 kind != sm_waw))
3105 || stmt_may_clobber_ref_p_1 (stmt, &ref->mem,
3106 kind != sm_waw))
3107 {
3108 indep_p = false;
3109 break;
3110 }
3111 }
3112 else if (!refs_independent_p (ref, aref, kind != sm_waw))
3113 {
3114 indep_p = false;
3115 break;
3116 }
3117 }
3118 }
3119 }
3120
3121 if (dump_file && (dump_flags & TDF_DETAILS))
3122 fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
3123 kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
3124 ref->id, loop->num, indep_p ? "independent" : "dependent");
3125
3126 /* Record the computed result in the cache. */
3127 record_loop_dependence (loop, ref, kind,
3128 indep_p ? dep_independent : dep_dependent);
3129
3130 return indep_p;
3131 }
3132
3133 class ref_in_loop_hot_body
3134 {
3135 public:
3136 ref_in_loop_hot_body (class loop *loop_) : l (loop_) {}
3137 bool operator () (mem_ref_loc *loc);
3138 class loop *l;
3139 };
3140
3141 /* Check the coldest loop between loop L and innermost loop. If there is one
3142 cold loop between L and INNER_LOOP, store motion can be performed, otherwise
3143 no cold loop means no store motion. get_coldest_out_loop also handles cases
3144 when l is inner_loop. */
3145 bool
3146 ref_in_loop_hot_body::operator () (mem_ref_loc *loc)
3147 {
3148 basic_block curr_bb = gimple_bb (loc->stmt);
3149 class loop *inner_loop = curr_bb->loop_father;
3150 return get_coldest_out_loop (l, inner_loop, curr_bb);
3151 }
3152
3153
3154 /* Returns true if we can perform store motion of REF from LOOP. */
3155
3156 static bool
3157 can_sm_ref_p (class loop *loop, im_mem_ref *ref)
3158 {
3159 tree base;
3160
3161 /* Can't hoist unanalyzable refs. */
3162 if (!MEM_ANALYZABLE (ref))
3163 return false;
3164
3165 /* Can't hoist/sink aggregate copies. */
3166 if (ref->mem.ref == error_mark_node)
3167 return false;
3168
3169 /* It should be movable. */
3170 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
3171 || TREE_THIS_VOLATILE (ref->mem.ref)
3172 || !for_each_index (&ref->mem.ref, may_move_till, loop))
3173 return false;
3174
3175 /* If it can throw fail, we do not properly update EH info. */
3176 if (tree_could_throw_p (ref->mem.ref))
3177 return false;
3178
3179 /* If it can trap, it must be always executed in LOOP.
3180 Readonly memory locations may trap when storing to them, but
3181 tree_could_trap_p is a predicate for rvalues, so check that
3182 explicitly. */
3183 base = get_base_address (ref->mem.ref);
3184 if ((tree_could_trap_p (ref->mem.ref)
3185 || (DECL_P (base) && TREE_READONLY (base)))
3186 /* ??? We can at least use false here, allowing loads? We
3187 are forcing conditional stores if the ref is not always
3188 stored to later anyway. So this would only guard
3189 the load we need to emit. Thus when the ref is not
3190 loaded we can elide this completely? */
3191 && !ref_always_accessed_p (loop, ref, true))
3192 return false;
3193
3194 /* Verify all loads of ref can be hoisted. */
3195 if (ref->loaded
3196 && bitmap_bit_p (ref->loaded, loop->num)
3197 && !ref_indep_loop_p (loop, ref, lim_raw))
3198 return false;
3199
3200 /* Verify the candidate can be disambiguated against all loads,
3201 that is, we can elide all in-loop stores. Disambiguation
3202 against stores is done later when we cannot guarantee preserving
3203 the order of stores. */
3204 if (!ref_indep_loop_p (loop, ref, sm_war))
3205 return false;
3206
3207 /* Verify whether the candidate is hot for LOOP. Only do store motion if the
3208 candidate's profile count is hot. Statement in cold BB shouldn't be moved
3209 out of it's loop_father. */
3210 if (!for_all_locs_in_loop (loop, ref, ref_in_loop_hot_body (loop)))
3211 return false;
3212
3213 return true;
3214 }
3215
3216 /* Marks the references in LOOP for that store motion should be performed
3217 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
3218 motion was performed in one of the outer loops. */
3219
3220 static void
3221 find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
3222 {
3223 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
3224 unsigned i;
3225 bitmap_iterator bi;
3226 im_mem_ref *ref;
3227
3228 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
3229 {
3230 ref = memory_accesses.refs_list[i];
3231 if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
3232 bitmap_set_bit (refs_to_sm, i);
3233 }
3234 }
3235
3236 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
3237 for a store motion optimization (i.e. whether we can insert statement
3238 on its exits). */
3239
3240 static bool
3241 loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
3242 const vec<edge> &exits)
3243 {
3244 unsigned i;
3245 edge ex;
3246
3247 FOR_EACH_VEC_ELT (exits, i, ex)
3248 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
3249 return false;
3250
3251 return true;
3252 }
3253
3254 /* Try to perform store motion for all memory references modified inside
3255 LOOP. SM_EXECUTED is the bitmap of the memory references for that
3256 store motion was executed in one of the outer loops. */
3257
3258 static void
3259 store_motion_loop (class loop *loop, bitmap sm_executed)
3260 {
3261 auto_vec<edge> exits = get_loop_exit_edges (loop);
3262 class loop *subloop;
3263 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
3264
3265 if (loop_suitable_for_sm (loop, exits))
3266 {
3267 find_refs_for_sm (loop, sm_executed, sm_in_loop);
3268 if (!bitmap_empty_p (sm_in_loop))
3269 hoist_memory_references (loop, sm_in_loop, exits);
3270 }
3271
3272 bitmap_ior_into (sm_executed, sm_in_loop);
3273 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
3274 store_motion_loop (subloop, sm_executed);
3275 bitmap_and_compl_into (sm_executed, sm_in_loop);
3276 BITMAP_FREE (sm_in_loop);
3277 }
3278
3279 /* Try to perform store motion for all memory references modified inside
3280 loops. */
3281
3282 static void
3283 do_store_motion (void)
3284 {
3285 class loop *loop;
3286 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
3287
3288 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
3289 store_motion_loop (loop, sm_executed);
3290
3291 BITMAP_FREE (sm_executed);
3292 }
3293
3294 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
3295 for each such basic block bb records the outermost loop for that execution
3296 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
3297 blocks that contain a nonpure call. */
3298
3299 static void
3300 fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
3301 {
3302 basic_block bb = NULL, last = NULL;
3303 edge e;
3304 class loop *inn_loop = loop;
3305
3306 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
3307 {
3308 auto_vec<basic_block, 64> worklist;
3309 worklist.reserve_exact (loop->num_nodes);
3310 worklist.quick_push (loop->header);
3311 do
3312 {
3313 edge_iterator ei;
3314 bb = worklist.pop ();
3315
3316 if (!flow_bb_inside_loop_p (inn_loop, bb))
3317 {
3318 /* When we are leaving a possibly infinite inner loop
3319 we have to stop processing. */
3320 if (!finite_loop_p (inn_loop))
3321 break;
3322 /* If the loop was finite we can continue with processing
3323 the loop we exited to. */
3324 inn_loop = bb->loop_father;
3325 }
3326
3327 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
3328 last = bb;
3329
3330 if (bitmap_bit_p (contains_call, bb->index))
3331 break;
3332
3333 /* If LOOP exits from this BB stop processing. */
3334 FOR_EACH_EDGE (e, ei, bb->succs)
3335 if (!flow_bb_inside_loop_p (loop, e->dest))
3336 break;
3337 if (e)
3338 break;
3339
3340 /* A loop might be infinite (TODO use simple loop analysis
3341 to disprove this if possible). */
3342 if (bb->flags & BB_IRREDUCIBLE_LOOP)
3343 break;
3344
3345 if (bb->loop_father->header == bb)
3346 /* Record that we enter into a subloop since it might not
3347 be finite. */
3348 /* ??? Entering into a not always executed subloop makes
3349 fill_always_executed_in quadratic in loop depth since
3350 we walk those loops N times. This is not a problem
3351 in practice though, see PR102253 for a worst-case testcase. */
3352 inn_loop = bb->loop_father;
3353
3354 /* Walk the body of LOOP sorted by dominance relation. Additionally,
3355 if a basic block S dominates the latch, then only blocks dominated
3356 by S are after it.
3357 This is get_loop_body_in_dom_order using a worklist algorithm and
3358 stopping once we are no longer interested in visiting further
3359 blocks. */
3360 unsigned old_len = worklist.length ();
3361 unsigned postpone = 0;
3362 for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
3363 son;
3364 son = next_dom_son (CDI_DOMINATORS, son))
3365 {
3366 if (!flow_bb_inside_loop_p (loop, son))
3367 continue;
3368 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
3369 postpone = worklist.length ();
3370 worklist.quick_push (son);
3371 }
3372 if (postpone)
3373 /* Postponing the block that dominates the latch means
3374 processing it last and thus putting it earliest in the
3375 worklist. */
3376 std::swap (worklist[old_len], worklist[postpone]);
3377 }
3378 while (!worklist.is_empty ());
3379
3380 while (1)
3381 {
3382 if (dump_enabled_p ())
3383 dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n",
3384 last->index, loop->num);
3385 SET_ALWAYS_EXECUTED_IN (last, loop);
3386 if (last == loop->header)
3387 break;
3388 last = get_immediate_dominator (CDI_DOMINATORS, last);
3389 }
3390 }
3391
3392 for (loop = loop->inner; loop; loop = loop->next)
3393 fill_always_executed_in_1 (loop, contains_call);
3394 }
3395
3396 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
3397 for each such basic block bb records the outermost loop for that execution
3398 of its header implies execution of bb. */
3399
3400 static void
3401 fill_always_executed_in (void)
3402 {
3403 basic_block bb;
3404 class loop *loop;
3405
3406 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
3407 bitmap_clear (contains_call);
3408 FOR_EACH_BB_FN (bb, cfun)
3409 {
3410 gimple_stmt_iterator gsi;
3411 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3412 {
3413 if (nonpure_call_p (gsi_stmt (gsi)))
3414 break;
3415 }
3416
3417 if (!gsi_end_p (gsi))
3418 bitmap_set_bit (contains_call, bb->index);
3419 }
3420
3421 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
3422 fill_always_executed_in_1 (loop, contains_call);
3423 }
3424
3425 /* Find the coldest loop preheader for LOOP, also find the nearest hotter loop
3426 to LOOP. Then recursively iterate each inner loop. */
3427
3428 void
3429 fill_coldest_and_hotter_out_loop (class loop *coldest_loop,
3430 class loop *hotter_loop, class loop *loop)
3431 {
3432 if (bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3433 coldest_loop))
3434 coldest_loop = loop;
3435
3436 coldest_outermost_loop[loop->num] = coldest_loop;
3437
3438 hotter_than_inner_loop[loop->num] = NULL;
3439 class loop *outer_loop = loop_outer (loop);
3440 if (hotter_loop
3441 && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3442 hotter_loop))
3443 hotter_than_inner_loop[loop->num] = hotter_loop;
3444
3445 if (outer_loop && outer_loop != current_loops->tree_root
3446 && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
3447 outer_loop))
3448 hotter_than_inner_loop[loop->num] = outer_loop;
3449
3450 if (dump_enabled_p ())
3451 {
3452 dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, ",
3453 loop->num, coldest_loop->num);
3454 if (hotter_than_inner_loop[loop->num])
3455 dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n",
3456 hotter_than_inner_loop[loop->num]->num);
3457 else
3458 dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n");
3459 }
3460
3461 class loop *inner_loop;
3462 for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next)
3463 fill_coldest_and_hotter_out_loop (coldest_loop,
3464 hotter_than_inner_loop[loop->num],
3465 inner_loop);
3466 }
3467
3468 /* Compute the global information needed by the loop invariant motion pass. */
3469
3470 static void
3471 tree_ssa_lim_initialize (bool store_motion)
3472 {
3473 unsigned i;
3474
3475 bitmap_obstack_initialize (&lim_bitmap_obstack);
3476 gcc_obstack_init (&mem_ref_obstack);
3477 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
3478
3479 if (flag_tm)
3480 compute_transaction_bits ();
3481
3482 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
3483 memory_accesses.refs_list.create (100);
3484 /* Allocate a special, unanalyzable mem-ref with ID zero. */
3485 memory_accesses.refs_list.quick_push
3486 (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
3487
3488 memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun));
3489 memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun));
3490 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
3491 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
3492 if (store_motion)
3493 {
3494 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
3495 memory_accesses.all_refs_stored_in_loop.quick_grow
3496 (number_of_loops (cfun));
3497 }
3498
3499 for (i = 0; i < number_of_loops (cfun); i++)
3500 {
3501 bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i],
3502 &lim_bitmap_obstack);
3503 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
3504 &lim_bitmap_obstack);
3505 if (store_motion)
3506 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
3507 &lim_bitmap_obstack);
3508 }
3509
3510 memory_accesses.ttae_cache = NULL;
3511
3512 /* Initialize bb_loop_postorder with a mapping from loop->num to
3513 its postorder index. */
3514 i = 0;
3515 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
3516 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
3517 bb_loop_postorder[loop->num] = i++;
3518 }
3519
3520 /* Cleans up after the invariant motion pass. */
3521
3522 static void
3523 tree_ssa_lim_finalize (void)
3524 {
3525 basic_block bb;
3526 unsigned i;
3527 im_mem_ref *ref;
3528
3529 FOR_EACH_BB_FN (bb, cfun)
3530 SET_ALWAYS_EXECUTED_IN (bb, NULL);
3531
3532 bitmap_obstack_release (&lim_bitmap_obstack);
3533 delete lim_aux_data_map;
3534
3535 delete memory_accesses.refs;
3536 memory_accesses.refs = NULL;
3537
3538 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
3539 memref_free (ref);
3540 memory_accesses.refs_list.release ();
3541 obstack_free (&mem_ref_obstack, NULL);
3542
3543 memory_accesses.refs_loaded_in_loop.release ();
3544 memory_accesses.refs_stored_in_loop.release ();
3545 memory_accesses.all_refs_stored_in_loop.release ();
3546
3547 if (memory_accesses.ttae_cache)
3548 free_affine_expand_cache (&memory_accesses.ttae_cache);
3549
3550 free (bb_loop_postorder);
3551
3552 coldest_outermost_loop.release ();
3553 hotter_than_inner_loop.release ();
3554 }
3555
3556 /* Moves invariants from loops. Only "expensive" invariants are moved out --
3557 i.e. those that are likely to be win regardless of the register pressure.
3558 Only perform store motion if STORE_MOTION is true. */
3559
3560 unsigned int
3561 loop_invariant_motion_in_fun (function *fun, bool store_motion)
3562 {
3563 unsigned int todo = 0;
3564
3565 tree_ssa_lim_initialize (store_motion);
3566
3567 mark_ssa_maybe_undefs ();
3568
3569 /* Gathers information about memory accesses in the loops. */
3570 analyze_memory_references (store_motion);
3571
3572 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
3573 fill_always_executed_in ();
3574
3575 /* Pre-compute coldest outermost loop and nearest hotter loop of each loop.
3576 */
3577 class loop *loop;
3578 coldest_outermost_loop.create (number_of_loops (cfun));
3579 coldest_outermost_loop.safe_grow_cleared (number_of_loops (cfun));
3580 hotter_than_inner_loop.create (number_of_loops (cfun));
3581 hotter_than_inner_loop.safe_grow_cleared (number_of_loops (cfun));
3582 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
3583 fill_coldest_and_hotter_out_loop (loop, NULL, loop);
3584
3585 int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3586 int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3587
3588 /* For each statement determine the outermost loop in that it is
3589 invariant and cost for computing the invariant. */
3590 for (int i = 0; i < n; ++i)
3591 compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3592
3593 /* Execute store motion. Force the necessary invariants to be moved
3594 out of the loops as well. */
3595 if (store_motion)
3596 do_store_motion ();
3597
3598 free (rpo);
3599 rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3600 n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3601
3602 /* Move the expressions that are expensive enough. */
3603 for (int i = 0; i < n; ++i)
3604 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3605
3606 free (rpo);
3607
3608 gsi_commit_edge_inserts ();
3609 if (need_ssa_update_p (fun))
3610 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3611
3612 tree_ssa_lim_finalize ();
3613
3614 return todo;
3615 }
3616
3617 /* Loop invariant motion pass. */
3618
3619 namespace {
3620
3621 const pass_data pass_data_lim =
3622 {
3623 GIMPLE_PASS, /* type */
3624 "lim", /* name */
3625 OPTGROUP_LOOP, /* optinfo_flags */
3626 TV_LIM, /* tv_id */
3627 PROP_cfg, /* properties_required */
3628 0, /* properties_provided */
3629 0, /* properties_destroyed */
3630 0, /* todo_flags_start */
3631 0, /* todo_flags_finish */
3632 };
3633
3634 class pass_lim : public gimple_opt_pass
3635 {
3636 public:
3637 pass_lim (gcc::context *ctxt)
3638 : gimple_opt_pass (pass_data_lim, ctxt)
3639 {}
3640
3641 /* opt_pass methods: */
3642 opt_pass * clone () final override { return new pass_lim (m_ctxt); }
3643 bool gate (function *) final override { return flag_tree_loop_im != 0; }
3644 unsigned int execute (function *) final override;
3645
3646 }; // class pass_lim
3647
3648 unsigned int
3649 pass_lim::execute (function *fun)
3650 {
3651 bool in_loop_pipeline = scev_initialized_p ();
3652 if (!in_loop_pipeline)
3653 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
3654
3655 if (number_of_loops (fun) <= 1)
3656 return 0;
3657 unsigned int todo = loop_invariant_motion_in_fun (fun, flag_move_loop_stores);
3658
3659 if (!in_loop_pipeline)
3660 loop_optimizer_finalize ();
3661 else
3662 scev_reset ();
3663 return todo;
3664 }
3665
3666 } // anon namespace
3667
3668 gimple_opt_pass *
3669 make_pass_lim (gcc::context *ctxt)
3670 {
3671 return new pass_lim (ctxt);
3672 }
3673
3674