]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-ivopts.c
This patch implements the unification of the *bitmap interfaces as discussed.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-ivopts.c
1 /* Induction variable optimizations.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This pass tries to find the optimal set of induction variables for the loop.
22 It optimizes just the basic linear induction variables (although adding
23 support for other types should not be too hard). It includes the
24 optimizations commonly known as strength reduction, induction variable
25 coalescing and induction variable elimination. It does it in the
26 following steps:
27
28 1) The interesting uses of induction variables are found. This includes
29
30 -- uses of induction variables in non-linear expressions
31 -- addresses of arrays
32 -- comparisons of induction variables
33
34 2) Candidates for the induction variables are found. This includes
35
36 -- old induction variables
37 -- the variables defined by expressions derived from the "interesting
38 uses" above
39
40 3) The optimal (w.r. to a cost function) set of variables is chosen. The
41 cost function assigns a cost to sets of induction variables and consists
42 of three parts:
43
44 -- The use costs. Each of the interesting uses chooses the best induction
45 variable in the set and adds its cost to the sum. The cost reflects
46 the time spent on modifying the induction variables value to be usable
47 for the given purpose (adding base and offset for arrays, etc.).
48 -- The variable costs. Each of the variables has a cost assigned that
49 reflects the costs associated with incrementing the value of the
50 variable. The original variables are somewhat preferred.
51 -- The set cost. Depending on the size of the set, extra cost may be
52 added to reflect register pressure.
53
54 All the costs are defined in a machine-specific way, using the target
55 hooks and machine descriptions to determine them.
56
57 4) The trees are transformed to use the new variables, the dead code is
58 removed.
59
60 All of this is done loop by loop. Doing it globally is theoretically
61 possible, it might give a better performance and it might enable us
62 to decide costs more precisely, but getting all the interactions right
63 would be complicated. */
64
65 #include "config.h"
66 #include "system.h"
67 #include "coretypes.h"
68 #include "tm.h"
69 #include "tree.h"
70 #include "tm_p.h"
71 #include "basic-block.h"
72 #include "gimple-pretty-print.h"
73 #include "tree-flow.h"
74 #include "cfgloop.h"
75 #include "tree-pass.h"
76 #include "ggc.h"
77 #include "insn-config.h"
78 #include "pointer-set.h"
79 #include "hashtab.h"
80 #include "tree-chrec.h"
81 #include "tree-scalar-evolution.h"
82 #include "cfgloop.h"
83 #include "params.h"
84 #include "langhooks.h"
85 #include "tree-affine.h"
86 #include "target.h"
87 #include "tree-inline.h"
88 #include "tree-ssa-propagate.h"
89 #include "expmed.h"
90
91 /* FIXME: Expressions are expanded to RTL in this pass to determine the
92 cost of different addressing modes. This should be moved to a TBD
93 interface between the GIMPLE and RTL worlds. */
94 #include "expr.h"
95 #include "recog.h"
96
97 /* The infinite cost. */
98 #define INFTY 10000000
99
100 #define AVG_LOOP_NITER(LOOP) 5
101
102 /* Returns the expected number of loop iterations for LOOP.
103 The average trip count is computed from profile data if it
104 exists. */
105
106 static inline HOST_WIDE_INT
107 avg_loop_niter (struct loop *loop)
108 {
109 HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
110 if (niter == -1)
111 return AVG_LOOP_NITER (loop);
112
113 return niter;
114 }
115
116 /* Representation of the induction variable. */
117 struct iv
118 {
119 tree base; /* Initial value of the iv. */
120 tree base_object; /* A memory object to that the induction variable points. */
121 tree step; /* Step of the iv (constant only). */
122 tree ssa_name; /* The ssa name with the value. */
123 bool biv_p; /* Is it a biv? */
124 bool have_use_for; /* Do we already have a use for it? */
125 unsigned use_id; /* The identifier in the use if it is the case. */
126 };
127
128 /* Per-ssa version information (induction variable descriptions, etc.). */
129 struct version_info
130 {
131 tree name; /* The ssa name. */
132 struct iv *iv; /* Induction variable description. */
133 bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
134 an expression that is not an induction variable. */
135 bool preserve_biv; /* For the original biv, whether to preserve it. */
136 unsigned inv_id; /* Id of an invariant. */
137 };
138
139 /* Types of uses. */
140 enum use_type
141 {
142 USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
143 USE_ADDRESS, /* Use in an address. */
144 USE_COMPARE /* Use is a compare. */
145 };
146
147 /* Cost of a computation. */
148 typedef struct
149 {
150 int cost; /* The runtime cost. */
151 unsigned complexity; /* The estimate of the complexity of the code for
152 the computation (in no concrete units --
153 complexity field should be larger for more
154 complex expressions and addressing modes). */
155 } comp_cost;
156
157 static const comp_cost no_cost = {0, 0};
158 static const comp_cost infinite_cost = {INFTY, INFTY};
159
160 /* The candidate - cost pair. */
161 struct cost_pair
162 {
163 struct iv_cand *cand; /* The candidate. */
164 comp_cost cost; /* The cost. */
165 bitmap depends_on; /* The list of invariants that have to be
166 preserved. */
167 tree value; /* For final value elimination, the expression for
168 the final value of the iv. For iv elimination,
169 the new bound to compare with. */
170 enum tree_code comp; /* For iv elimination, the comparison. */
171 int inv_expr_id; /* Loop invariant expression id. */
172 };
173
174 /* Use. */
175 struct iv_use
176 {
177 unsigned id; /* The id of the use. */
178 enum use_type type; /* Type of the use. */
179 struct iv *iv; /* The induction variable it is based on. */
180 gimple stmt; /* Statement in that it occurs. */
181 tree *op_p; /* The place where it occurs. */
182 bitmap related_cands; /* The set of "related" iv candidates, plus the common
183 important ones. */
184
185 unsigned n_map_members; /* Number of candidates in the cost_map list. */
186 struct cost_pair *cost_map;
187 /* The costs wrto the iv candidates. */
188
189 struct iv_cand *selected;
190 /* The selected candidate. */
191 };
192
193 /* The position where the iv is computed. */
194 enum iv_position
195 {
196 IP_NORMAL, /* At the end, just before the exit condition. */
197 IP_END, /* At the end of the latch block. */
198 IP_BEFORE_USE, /* Immediately before a specific use. */
199 IP_AFTER_USE, /* Immediately after a specific use. */
200 IP_ORIGINAL /* The original biv. */
201 };
202
203 /* The induction variable candidate. */
204 struct iv_cand
205 {
206 unsigned id; /* The number of the candidate. */
207 bool important; /* Whether this is an "important" candidate, i.e. such
208 that it should be considered by all uses. */
209 ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
210 gimple incremented_at;/* For original biv, the statement where it is
211 incremented. */
212 tree var_before; /* The variable used for it before increment. */
213 tree var_after; /* The variable used for it after increment. */
214 struct iv *iv; /* The value of the candidate. NULL for
215 "pseudocandidate" used to indicate the possibility
216 to replace the final value of an iv by direct
217 computation of the value. */
218 unsigned cost; /* Cost of the candidate. */
219 unsigned cost_step; /* Cost of the candidate's increment operation. */
220 struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
221 where it is incremented. */
222 bitmap depends_on; /* The list of invariants that are used in step of the
223 biv. */
224 };
225
226 /* Loop invariant expression hashtable entry. */
227 struct iv_inv_expr_ent
228 {
229 tree expr;
230 int id;
231 hashval_t hash;
232 };
233
234 /* The data used by the induction variable optimizations. */
235
236 typedef struct iv_use *iv_use_p;
237 DEF_VEC_P(iv_use_p);
238 DEF_VEC_ALLOC_P(iv_use_p,heap);
239
240 typedef struct iv_cand *iv_cand_p;
241 DEF_VEC_P(iv_cand_p);
242 DEF_VEC_ALLOC_P(iv_cand_p,heap);
243
244 struct ivopts_data
245 {
246 /* The currently optimized loop. */
247 struct loop *current_loop;
248
249 /* Numbers of iterations for all exits of the current loop. */
250 struct pointer_map_t *niters;
251
252 /* Number of registers used in it. */
253 unsigned regs_used;
254
255 /* The size of version_info array allocated. */
256 unsigned version_info_size;
257
258 /* The array of information for the ssa names. */
259 struct version_info *version_info;
260
261 /* The hashtable of loop invariant expressions created
262 by ivopt. */
263 htab_t inv_expr_tab;
264
265 /* Loop invariant expression id. */
266 int inv_expr_id;
267
268 /* The bitmap of indices in version_info whose value was changed. */
269 bitmap relevant;
270
271 /* The uses of induction variables. */
272 VEC(iv_use_p,heap) *iv_uses;
273
274 /* The candidates. */
275 VEC(iv_cand_p,heap) *iv_candidates;
276
277 /* A bitmap of important candidates. */
278 bitmap important_candidates;
279
280 /* The maximum invariant id. */
281 unsigned max_inv_id;
282
283 /* Whether to consider just related and important candidates when replacing a
284 use. */
285 bool consider_all_candidates;
286
287 /* Are we optimizing for speed? */
288 bool speed;
289
290 /* Whether the loop body includes any function calls. */
291 bool body_includes_call;
292
293 /* Whether the loop body can only be exited via single exit. */
294 bool loop_single_exit_p;
295 };
296
297 /* An assignment of iv candidates to uses. */
298
299 struct iv_ca
300 {
301 /* The number of uses covered by the assignment. */
302 unsigned upto;
303
304 /* Number of uses that cannot be expressed by the candidates in the set. */
305 unsigned bad_uses;
306
307 /* Candidate assigned to a use, together with the related costs. */
308 struct cost_pair **cand_for_use;
309
310 /* Number of times each candidate is used. */
311 unsigned *n_cand_uses;
312
313 /* The candidates used. */
314 bitmap cands;
315
316 /* The number of candidates in the set. */
317 unsigned n_cands;
318
319 /* Total number of registers needed. */
320 unsigned n_regs;
321
322 /* Total cost of expressing uses. */
323 comp_cost cand_use_cost;
324
325 /* Total cost of candidates. */
326 unsigned cand_cost;
327
328 /* Number of times each invariant is used. */
329 unsigned *n_invariant_uses;
330
331 /* The array holding the number of uses of each loop
332 invariant expressions created by ivopt. */
333 unsigned *used_inv_expr;
334
335 /* The number of created loop invariants. */
336 unsigned num_used_inv_expr;
337
338 /* Total cost of the assignment. */
339 comp_cost cost;
340 };
341
342 /* Difference of two iv candidate assignments. */
343
344 struct iv_ca_delta
345 {
346 /* Changed use. */
347 struct iv_use *use;
348
349 /* An old assignment (for rollback purposes). */
350 struct cost_pair *old_cp;
351
352 /* A new assignment. */
353 struct cost_pair *new_cp;
354
355 /* Next change in the list. */
356 struct iv_ca_delta *next_change;
357 };
358
359 /* Bound on number of candidates below that all candidates are considered. */
360
361 #define CONSIDER_ALL_CANDIDATES_BOUND \
362 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
363
364 /* If there are more iv occurrences, we just give up (it is quite unlikely that
365 optimizing such a loop would help, and it would take ages). */
366
367 #define MAX_CONSIDERED_USES \
368 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
369
370 /* If there are at most this number of ivs in the set, try removing unnecessary
371 ivs from the set always. */
372
373 #define ALWAYS_PRUNE_CAND_SET_BOUND \
374 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
375
376 /* The list of trees for that the decl_rtl field must be reset is stored
377 here. */
378
379 static VEC(tree,heap) *decl_rtl_to_reset;
380
381 static comp_cost force_expr_to_var_cost (tree, bool);
382
383 /* Number of uses recorded in DATA. */
384
385 static inline unsigned
386 n_iv_uses (struct ivopts_data *data)
387 {
388 return VEC_length (iv_use_p, data->iv_uses);
389 }
390
391 /* Ith use recorded in DATA. */
392
393 static inline struct iv_use *
394 iv_use (struct ivopts_data *data, unsigned i)
395 {
396 return VEC_index (iv_use_p, data->iv_uses, i);
397 }
398
399 /* Number of candidates recorded in DATA. */
400
401 static inline unsigned
402 n_iv_cands (struct ivopts_data *data)
403 {
404 return VEC_length (iv_cand_p, data->iv_candidates);
405 }
406
407 /* Ith candidate recorded in DATA. */
408
409 static inline struct iv_cand *
410 iv_cand (struct ivopts_data *data, unsigned i)
411 {
412 return VEC_index (iv_cand_p, data->iv_candidates, i);
413 }
414
415 /* The single loop exit if it dominates the latch, NULL otherwise. */
416
417 edge
418 single_dom_exit (struct loop *loop)
419 {
420 edge exit = single_exit (loop);
421
422 if (!exit)
423 return NULL;
424
425 if (!just_once_each_iteration_p (loop, exit->src))
426 return NULL;
427
428 return exit;
429 }
430
431 /* Dumps information about the induction variable IV to FILE. */
432
433 extern void dump_iv (FILE *, struct iv *);
434 void
435 dump_iv (FILE *file, struct iv *iv)
436 {
437 if (iv->ssa_name)
438 {
439 fprintf (file, "ssa name ");
440 print_generic_expr (file, iv->ssa_name, TDF_SLIM);
441 fprintf (file, "\n");
442 }
443
444 fprintf (file, " type ");
445 print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
446 fprintf (file, "\n");
447
448 if (iv->step)
449 {
450 fprintf (file, " base ");
451 print_generic_expr (file, iv->base, TDF_SLIM);
452 fprintf (file, "\n");
453
454 fprintf (file, " step ");
455 print_generic_expr (file, iv->step, TDF_SLIM);
456 fprintf (file, "\n");
457 }
458 else
459 {
460 fprintf (file, " invariant ");
461 print_generic_expr (file, iv->base, TDF_SLIM);
462 fprintf (file, "\n");
463 }
464
465 if (iv->base_object)
466 {
467 fprintf (file, " base object ");
468 print_generic_expr (file, iv->base_object, TDF_SLIM);
469 fprintf (file, "\n");
470 }
471
472 if (iv->biv_p)
473 fprintf (file, " is a biv\n");
474 }
475
476 /* Dumps information about the USE to FILE. */
477
478 extern void dump_use (FILE *, struct iv_use *);
479 void
480 dump_use (FILE *file, struct iv_use *use)
481 {
482 fprintf (file, "use %d\n", use->id);
483
484 switch (use->type)
485 {
486 case USE_NONLINEAR_EXPR:
487 fprintf (file, " generic\n");
488 break;
489
490 case USE_ADDRESS:
491 fprintf (file, " address\n");
492 break;
493
494 case USE_COMPARE:
495 fprintf (file, " compare\n");
496 break;
497
498 default:
499 gcc_unreachable ();
500 }
501
502 fprintf (file, " in statement ");
503 print_gimple_stmt (file, use->stmt, 0, 0);
504 fprintf (file, "\n");
505
506 fprintf (file, " at position ");
507 if (use->op_p)
508 print_generic_expr (file, *use->op_p, TDF_SLIM);
509 fprintf (file, "\n");
510
511 dump_iv (file, use->iv);
512
513 if (use->related_cands)
514 {
515 fprintf (file, " related candidates ");
516 dump_bitmap (file, use->related_cands);
517 }
518 }
519
520 /* Dumps information about the uses to FILE. */
521
522 extern void dump_uses (FILE *, struct ivopts_data *);
523 void
524 dump_uses (FILE *file, struct ivopts_data *data)
525 {
526 unsigned i;
527 struct iv_use *use;
528
529 for (i = 0; i < n_iv_uses (data); i++)
530 {
531 use = iv_use (data, i);
532
533 dump_use (file, use);
534 fprintf (file, "\n");
535 }
536 }
537
538 /* Dumps information about induction variable candidate CAND to FILE. */
539
540 extern void dump_cand (FILE *, struct iv_cand *);
541 void
542 dump_cand (FILE *file, struct iv_cand *cand)
543 {
544 struct iv *iv = cand->iv;
545
546 fprintf (file, "candidate %d%s\n",
547 cand->id, cand->important ? " (important)" : "");
548
549 if (cand->depends_on)
550 {
551 fprintf (file, " depends on ");
552 dump_bitmap (file, cand->depends_on);
553 }
554
555 if (!iv)
556 {
557 fprintf (file, " final value replacement\n");
558 return;
559 }
560
561 if (cand->var_before)
562 {
563 fprintf (file, " var_before ");
564 print_generic_expr (file, cand->var_before, TDF_SLIM);
565 fprintf (file, "\n");
566 }
567 if (cand->var_after)
568 {
569 fprintf (file, " var_after ");
570 print_generic_expr (file, cand->var_after, TDF_SLIM);
571 fprintf (file, "\n");
572 }
573
574 switch (cand->pos)
575 {
576 case IP_NORMAL:
577 fprintf (file, " incremented before exit test\n");
578 break;
579
580 case IP_BEFORE_USE:
581 fprintf (file, " incremented before use %d\n", cand->ainc_use->id);
582 break;
583
584 case IP_AFTER_USE:
585 fprintf (file, " incremented after use %d\n", cand->ainc_use->id);
586 break;
587
588 case IP_END:
589 fprintf (file, " incremented at end\n");
590 break;
591
592 case IP_ORIGINAL:
593 fprintf (file, " original biv\n");
594 break;
595 }
596
597 dump_iv (file, iv);
598 }
599
600 /* Returns the info for ssa version VER. */
601
602 static inline struct version_info *
603 ver_info (struct ivopts_data *data, unsigned ver)
604 {
605 return data->version_info + ver;
606 }
607
608 /* Returns the info for ssa name NAME. */
609
610 static inline struct version_info *
611 name_info (struct ivopts_data *data, tree name)
612 {
613 return ver_info (data, SSA_NAME_VERSION (name));
614 }
615
616 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
617 emitted in LOOP. */
618
619 static bool
620 stmt_after_ip_normal_pos (struct loop *loop, gimple stmt)
621 {
622 basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
623
624 gcc_assert (bb);
625
626 if (sbb == loop->latch)
627 return true;
628
629 if (sbb != bb)
630 return false;
631
632 return stmt == last_stmt (bb);
633 }
634
635 /* Returns true if STMT if after the place where the original induction
636 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
637 if the positions are identical. */
638
639 static bool
640 stmt_after_inc_pos (struct iv_cand *cand, gimple stmt, bool true_if_equal)
641 {
642 basic_block cand_bb = gimple_bb (cand->incremented_at);
643 basic_block stmt_bb = gimple_bb (stmt);
644
645 if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
646 return false;
647
648 if (stmt_bb != cand_bb)
649 return true;
650
651 if (true_if_equal
652 && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
653 return true;
654 return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
655 }
656
657 /* Returns true if STMT if after the place where the induction variable
658 CAND is incremented in LOOP. */
659
660 static bool
661 stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple stmt)
662 {
663 switch (cand->pos)
664 {
665 case IP_END:
666 return false;
667
668 case IP_NORMAL:
669 return stmt_after_ip_normal_pos (loop, stmt);
670
671 case IP_ORIGINAL:
672 case IP_AFTER_USE:
673 return stmt_after_inc_pos (cand, stmt, false);
674
675 case IP_BEFORE_USE:
676 return stmt_after_inc_pos (cand, stmt, true);
677
678 default:
679 gcc_unreachable ();
680 }
681 }
682
683 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
684
685 static bool
686 abnormal_ssa_name_p (tree exp)
687 {
688 if (!exp)
689 return false;
690
691 if (TREE_CODE (exp) != SSA_NAME)
692 return false;
693
694 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
695 }
696
697 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
698 abnormal phi node. Callback for for_each_index. */
699
700 static bool
701 idx_contains_abnormal_ssa_name_p (tree base, tree *index,
702 void *data ATTRIBUTE_UNUSED)
703 {
704 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
705 {
706 if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
707 return false;
708 if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
709 return false;
710 }
711
712 return !abnormal_ssa_name_p (*index);
713 }
714
715 /* Returns true if EXPR contains a ssa name that occurs in an
716 abnormal phi node. */
717
718 bool
719 contains_abnormal_ssa_name_p (tree expr)
720 {
721 enum tree_code code;
722 enum tree_code_class codeclass;
723
724 if (!expr)
725 return false;
726
727 code = TREE_CODE (expr);
728 codeclass = TREE_CODE_CLASS (code);
729
730 if (code == SSA_NAME)
731 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
732
733 if (code == INTEGER_CST
734 || is_gimple_min_invariant (expr))
735 return false;
736
737 if (code == ADDR_EXPR)
738 return !for_each_index (&TREE_OPERAND (expr, 0),
739 idx_contains_abnormal_ssa_name_p,
740 NULL);
741
742 if (code == COND_EXPR)
743 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
744 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
745 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
746
747 switch (codeclass)
748 {
749 case tcc_binary:
750 case tcc_comparison:
751 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
752 return true;
753
754 /* Fallthru. */
755 case tcc_unary:
756 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
757 return true;
758
759 break;
760
761 default:
762 gcc_unreachable ();
763 }
764
765 return false;
766 }
767
768 /* Returns the structure describing number of iterations determined from
769 EXIT of DATA->current_loop, or NULL if something goes wrong. */
770
771 static struct tree_niter_desc *
772 niter_for_exit (struct ivopts_data *data, edge exit)
773 {
774 struct tree_niter_desc *desc;
775 void **slot;
776
777 if (!data->niters)
778 {
779 data->niters = pointer_map_create ();
780 slot = NULL;
781 }
782 else
783 slot = pointer_map_contains (data->niters, exit);
784
785 if (!slot)
786 {
787 /* Try to determine number of iterations. We cannot safely work with ssa
788 names that appear in phi nodes on abnormal edges, so that we do not
789 create overlapping life ranges for them (PR 27283). */
790 desc = XNEW (struct tree_niter_desc);
791 if (!number_of_iterations_exit (data->current_loop,
792 exit, desc, true)
793 || contains_abnormal_ssa_name_p (desc->niter))
794 {
795 XDELETE (desc);
796 desc = NULL;
797 }
798 slot = pointer_map_insert (data->niters, exit);
799 *slot = desc;
800 }
801 else
802 desc = (struct tree_niter_desc *) *slot;
803
804 return desc;
805 }
806
807 /* Returns the structure describing number of iterations determined from
808 single dominating exit of DATA->current_loop, or NULL if something
809 goes wrong. */
810
811 static struct tree_niter_desc *
812 niter_for_single_dom_exit (struct ivopts_data *data)
813 {
814 edge exit = single_dom_exit (data->current_loop);
815
816 if (!exit)
817 return NULL;
818
819 return niter_for_exit (data, exit);
820 }
821
822 /* Hash table equality function for expressions. */
823
824 static int
825 htab_inv_expr_eq (const void *ent1, const void *ent2)
826 {
827 const struct iv_inv_expr_ent *expr1 =
828 (const struct iv_inv_expr_ent *)ent1;
829 const struct iv_inv_expr_ent *expr2 =
830 (const struct iv_inv_expr_ent *)ent2;
831
832 return expr1->hash == expr2->hash
833 && operand_equal_p (expr1->expr, expr2->expr, 0);
834 }
835
836 /* Hash function for loop invariant expressions. */
837
838 static hashval_t
839 htab_inv_expr_hash (const void *ent)
840 {
841 const struct iv_inv_expr_ent *expr =
842 (const struct iv_inv_expr_ent *)ent;
843 return expr->hash;
844 }
845
846 /* Initializes data structures used by the iv optimization pass, stored
847 in DATA. */
848
849 static void
850 tree_ssa_iv_optimize_init (struct ivopts_data *data)
851 {
852 data->version_info_size = 2 * num_ssa_names;
853 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
854 data->relevant = BITMAP_ALLOC (NULL);
855 data->important_candidates = BITMAP_ALLOC (NULL);
856 data->max_inv_id = 0;
857 data->niters = NULL;
858 data->iv_uses = VEC_alloc (iv_use_p, heap, 20);
859 data->iv_candidates = VEC_alloc (iv_cand_p, heap, 20);
860 data->inv_expr_tab = htab_create (10, htab_inv_expr_hash,
861 htab_inv_expr_eq, free);
862 data->inv_expr_id = 0;
863 decl_rtl_to_reset = VEC_alloc (tree, heap, 20);
864 }
865
866 /* Returns a memory object to that EXPR points. In case we are able to
867 determine that it does not point to any such object, NULL is returned. */
868
869 static tree
870 determine_base_object (tree expr)
871 {
872 enum tree_code code = TREE_CODE (expr);
873 tree base, obj;
874
875 /* If this is a pointer casted to any type, we need to determine
876 the base object for the pointer; so handle conversions before
877 throwing away non-pointer expressions. */
878 if (CONVERT_EXPR_P (expr))
879 return determine_base_object (TREE_OPERAND (expr, 0));
880
881 if (!POINTER_TYPE_P (TREE_TYPE (expr)))
882 return NULL_TREE;
883
884 switch (code)
885 {
886 case INTEGER_CST:
887 return NULL_TREE;
888
889 case ADDR_EXPR:
890 obj = TREE_OPERAND (expr, 0);
891 base = get_base_address (obj);
892
893 if (!base)
894 return expr;
895
896 if (TREE_CODE (base) == MEM_REF)
897 return determine_base_object (TREE_OPERAND (base, 0));
898
899 return fold_convert (ptr_type_node,
900 build_fold_addr_expr (base));
901
902 case POINTER_PLUS_EXPR:
903 return determine_base_object (TREE_OPERAND (expr, 0));
904
905 case PLUS_EXPR:
906 case MINUS_EXPR:
907 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
908 gcc_unreachable ();
909
910 default:
911 return fold_convert (ptr_type_node, expr);
912 }
913 }
914
915 /* Allocates an induction variable with given initial value BASE and step STEP
916 for loop LOOP. */
917
918 static struct iv *
919 alloc_iv (tree base, tree step)
920 {
921 struct iv *iv = XCNEW (struct iv);
922 gcc_assert (step != NULL_TREE);
923
924 iv->base = base;
925 iv->base_object = determine_base_object (base);
926 iv->step = step;
927 iv->biv_p = false;
928 iv->have_use_for = false;
929 iv->use_id = 0;
930 iv->ssa_name = NULL_TREE;
931
932 return iv;
933 }
934
935 /* Sets STEP and BASE for induction variable IV. */
936
937 static void
938 set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
939 {
940 struct version_info *info = name_info (data, iv);
941
942 gcc_assert (!info->iv);
943
944 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
945 info->iv = alloc_iv (base, step);
946 info->iv->ssa_name = iv;
947 }
948
949 /* Finds induction variable declaration for VAR. */
950
951 static struct iv *
952 get_iv (struct ivopts_data *data, tree var)
953 {
954 basic_block bb;
955 tree type = TREE_TYPE (var);
956
957 if (!POINTER_TYPE_P (type)
958 && !INTEGRAL_TYPE_P (type))
959 return NULL;
960
961 if (!name_info (data, var)->iv)
962 {
963 bb = gimple_bb (SSA_NAME_DEF_STMT (var));
964
965 if (!bb
966 || !flow_bb_inside_loop_p (data->current_loop, bb))
967 set_iv (data, var, var, build_int_cst (type, 0));
968 }
969
970 return name_info (data, var)->iv;
971 }
972
973 /* Determines the step of a biv defined in PHI. Returns NULL if PHI does
974 not define a simple affine biv with nonzero step. */
975
976 static tree
977 determine_biv_step (gimple phi)
978 {
979 struct loop *loop = gimple_bb (phi)->loop_father;
980 tree name = PHI_RESULT (phi);
981 affine_iv iv;
982
983 if (virtual_operand_p (name))
984 return NULL_TREE;
985
986 if (!simple_iv (loop, loop, name, &iv, true))
987 return NULL_TREE;
988
989 return integer_zerop (iv.step) ? NULL_TREE : iv.step;
990 }
991
992 /* Finds basic ivs. */
993
994 static bool
995 find_bivs (struct ivopts_data *data)
996 {
997 gimple phi;
998 tree step, type, base;
999 bool found = false;
1000 struct loop *loop = data->current_loop;
1001 gimple_stmt_iterator psi;
1002
1003 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1004 {
1005 phi = gsi_stmt (psi);
1006
1007 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
1008 continue;
1009
1010 step = determine_biv_step (phi);
1011 if (!step)
1012 continue;
1013
1014 base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1015 base = expand_simple_operations (base);
1016 if (contains_abnormal_ssa_name_p (base)
1017 || contains_abnormal_ssa_name_p (step))
1018 continue;
1019
1020 type = TREE_TYPE (PHI_RESULT (phi));
1021 base = fold_convert (type, base);
1022 if (step)
1023 {
1024 if (POINTER_TYPE_P (type))
1025 step = convert_to_ptrofftype (step);
1026 else
1027 step = fold_convert (type, step);
1028 }
1029
1030 set_iv (data, PHI_RESULT (phi), base, step);
1031 found = true;
1032 }
1033
1034 return found;
1035 }
1036
1037 /* Marks basic ivs. */
1038
1039 static void
1040 mark_bivs (struct ivopts_data *data)
1041 {
1042 gimple phi;
1043 tree var;
1044 struct iv *iv, *incr_iv;
1045 struct loop *loop = data->current_loop;
1046 basic_block incr_bb;
1047 gimple_stmt_iterator psi;
1048
1049 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1050 {
1051 phi = gsi_stmt (psi);
1052
1053 iv = get_iv (data, PHI_RESULT (phi));
1054 if (!iv)
1055 continue;
1056
1057 var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1058 incr_iv = get_iv (data, var);
1059 if (!incr_iv)
1060 continue;
1061
1062 /* If the increment is in the subloop, ignore it. */
1063 incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1064 if (incr_bb->loop_father != data->current_loop
1065 || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
1066 continue;
1067
1068 iv->biv_p = true;
1069 incr_iv->biv_p = true;
1070 }
1071 }
1072
1073 /* Checks whether STMT defines a linear induction variable and stores its
1074 parameters to IV. */
1075
1076 static bool
1077 find_givs_in_stmt_scev (struct ivopts_data *data, gimple stmt, affine_iv *iv)
1078 {
1079 tree lhs;
1080 struct loop *loop = data->current_loop;
1081
1082 iv->base = NULL_TREE;
1083 iv->step = NULL_TREE;
1084
1085 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1086 return false;
1087
1088 lhs = gimple_assign_lhs (stmt);
1089 if (TREE_CODE (lhs) != SSA_NAME)
1090 return false;
1091
1092 if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
1093 return false;
1094 iv->base = expand_simple_operations (iv->base);
1095
1096 if (contains_abnormal_ssa_name_p (iv->base)
1097 || contains_abnormal_ssa_name_p (iv->step))
1098 return false;
1099
1100 /* If STMT could throw, then do not consider STMT as defining a GIV.
1101 While this will suppress optimizations, we can not safely delete this
1102 GIV and associated statements, even if it appears it is not used. */
1103 if (stmt_could_throw_p (stmt))
1104 return false;
1105
1106 return true;
1107 }
1108
1109 /* Finds general ivs in statement STMT. */
1110
1111 static void
1112 find_givs_in_stmt (struct ivopts_data *data, gimple stmt)
1113 {
1114 affine_iv iv;
1115
1116 if (!find_givs_in_stmt_scev (data, stmt, &iv))
1117 return;
1118
1119 set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step);
1120 }
1121
1122 /* Finds general ivs in basic block BB. */
1123
1124 static void
1125 find_givs_in_bb (struct ivopts_data *data, basic_block bb)
1126 {
1127 gimple_stmt_iterator bsi;
1128
1129 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1130 find_givs_in_stmt (data, gsi_stmt (bsi));
1131 }
1132
1133 /* Finds general ivs. */
1134
1135 static void
1136 find_givs (struct ivopts_data *data)
1137 {
1138 struct loop *loop = data->current_loop;
1139 basic_block *body = get_loop_body_in_dom_order (loop);
1140 unsigned i;
1141
1142 for (i = 0; i < loop->num_nodes; i++)
1143 find_givs_in_bb (data, body[i]);
1144 free (body);
1145 }
1146
1147 /* For each ssa name defined in LOOP determines whether it is an induction
1148 variable and if so, its initial value and step. */
1149
1150 static bool
1151 find_induction_variables (struct ivopts_data *data)
1152 {
1153 unsigned i;
1154 bitmap_iterator bi;
1155
1156 if (!find_bivs (data))
1157 return false;
1158
1159 find_givs (data);
1160 mark_bivs (data);
1161
1162 if (dump_file && (dump_flags & TDF_DETAILS))
1163 {
1164 struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
1165
1166 if (niter)
1167 {
1168 fprintf (dump_file, " number of iterations ");
1169 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1170 if (!integer_zerop (niter->may_be_zero))
1171 {
1172 fprintf (dump_file, "; zero if ");
1173 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1174 }
1175 fprintf (dump_file, "\n\n");
1176 };
1177
1178 fprintf (dump_file, "Induction variables:\n\n");
1179
1180 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1181 {
1182 if (ver_info (data, i)->iv)
1183 dump_iv (dump_file, ver_info (data, i)->iv);
1184 }
1185 }
1186
1187 return true;
1188 }
1189
1190 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
1191
1192 static struct iv_use *
1193 record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
1194 gimple stmt, enum use_type use_type)
1195 {
1196 struct iv_use *use = XCNEW (struct iv_use);
1197
1198 use->id = n_iv_uses (data);
1199 use->type = use_type;
1200 use->iv = iv;
1201 use->stmt = stmt;
1202 use->op_p = use_p;
1203 use->related_cands = BITMAP_ALLOC (NULL);
1204
1205 /* To avoid showing ssa name in the dumps, if it was not reset by the
1206 caller. */
1207 iv->ssa_name = NULL_TREE;
1208
1209 if (dump_file && (dump_flags & TDF_DETAILS))
1210 dump_use (dump_file, use);
1211
1212 VEC_safe_push (iv_use_p, heap, data->iv_uses, use);
1213
1214 return use;
1215 }
1216
1217 /* Checks whether OP is a loop-level invariant and if so, records it.
1218 NONLINEAR_USE is true if the invariant is used in a way we do not
1219 handle specially. */
1220
1221 static void
1222 record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
1223 {
1224 basic_block bb;
1225 struct version_info *info;
1226
1227 if (TREE_CODE (op) != SSA_NAME
1228 || virtual_operand_p (op))
1229 return;
1230
1231 bb = gimple_bb (SSA_NAME_DEF_STMT (op));
1232 if (bb
1233 && flow_bb_inside_loop_p (data->current_loop, bb))
1234 return;
1235
1236 info = name_info (data, op);
1237 info->name = op;
1238 info->has_nonlin_use |= nonlinear_use;
1239 if (!info->inv_id)
1240 info->inv_id = ++data->max_inv_id;
1241 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
1242 }
1243
1244 /* Checks whether the use OP is interesting and if so, records it. */
1245
1246 static struct iv_use *
1247 find_interesting_uses_op (struct ivopts_data *data, tree op)
1248 {
1249 struct iv *iv;
1250 struct iv *civ;
1251 gimple stmt;
1252 struct iv_use *use;
1253
1254 if (TREE_CODE (op) != SSA_NAME)
1255 return NULL;
1256
1257 iv = get_iv (data, op);
1258 if (!iv)
1259 return NULL;
1260
1261 if (iv->have_use_for)
1262 {
1263 use = iv_use (data, iv->use_id);
1264
1265 gcc_assert (use->type == USE_NONLINEAR_EXPR);
1266 return use;
1267 }
1268
1269 if (integer_zerop (iv->step))
1270 {
1271 record_invariant (data, op, true);
1272 return NULL;
1273 }
1274 iv->have_use_for = true;
1275
1276 civ = XNEW (struct iv);
1277 *civ = *iv;
1278
1279 stmt = SSA_NAME_DEF_STMT (op);
1280 gcc_assert (gimple_code (stmt) == GIMPLE_PHI
1281 || is_gimple_assign (stmt));
1282
1283 use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
1284 iv->use_id = use->id;
1285
1286 return use;
1287 }
1288
1289 /* Given a condition in statement STMT, checks whether it is a compare
1290 of an induction variable and an invariant. If this is the case,
1291 CONTROL_VAR is set to location of the iv, BOUND to the location of
1292 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1293 induction variable descriptions, and true is returned. If this is not
1294 the case, CONTROL_VAR and BOUND are set to the arguments of the
1295 condition and false is returned. */
1296
1297 static bool
1298 extract_cond_operands (struct ivopts_data *data, gimple stmt,
1299 tree **control_var, tree **bound,
1300 struct iv **iv_var, struct iv **iv_bound)
1301 {
1302 /* The objects returned when COND has constant operands. */
1303 static struct iv const_iv;
1304 static tree zero;
1305 tree *op0 = &zero, *op1 = &zero, *tmp_op;
1306 struct iv *iv0 = &const_iv, *iv1 = &const_iv, *tmp_iv;
1307 bool ret = false;
1308
1309 if (gimple_code (stmt) == GIMPLE_COND)
1310 {
1311 op0 = gimple_cond_lhs_ptr (stmt);
1312 op1 = gimple_cond_rhs_ptr (stmt);
1313 }
1314 else
1315 {
1316 op0 = gimple_assign_rhs1_ptr (stmt);
1317 op1 = gimple_assign_rhs2_ptr (stmt);
1318 }
1319
1320 zero = integer_zero_node;
1321 const_iv.step = integer_zero_node;
1322
1323 if (TREE_CODE (*op0) == SSA_NAME)
1324 iv0 = get_iv (data, *op0);
1325 if (TREE_CODE (*op1) == SSA_NAME)
1326 iv1 = get_iv (data, *op1);
1327
1328 /* Exactly one of the compared values must be an iv, and the other one must
1329 be an invariant. */
1330 if (!iv0 || !iv1)
1331 goto end;
1332
1333 if (integer_zerop (iv0->step))
1334 {
1335 /* Control variable may be on the other side. */
1336 tmp_op = op0; op0 = op1; op1 = tmp_op;
1337 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
1338 }
1339 ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
1340
1341 end:
1342 if (control_var)
1343 *control_var = op0;;
1344 if (iv_var)
1345 *iv_var = iv0;;
1346 if (bound)
1347 *bound = op1;
1348 if (iv_bound)
1349 *iv_bound = iv1;
1350
1351 return ret;
1352 }
1353
1354 /* Checks whether the condition in STMT is interesting and if so,
1355 records it. */
1356
1357 static void
1358 find_interesting_uses_cond (struct ivopts_data *data, gimple stmt)
1359 {
1360 tree *var_p, *bound_p;
1361 struct iv *var_iv, *civ;
1362
1363 if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
1364 {
1365 find_interesting_uses_op (data, *var_p);
1366 find_interesting_uses_op (data, *bound_p);
1367 return;
1368 }
1369
1370 civ = XNEW (struct iv);
1371 *civ = *var_iv;
1372 record_use (data, NULL, civ, stmt, USE_COMPARE);
1373 }
1374
1375 /* Returns true if expression EXPR is obviously invariant in LOOP,
1376 i.e. if all its operands are defined outside of the LOOP. LOOP
1377 should not be the function body. */
1378
1379 bool
1380 expr_invariant_in_loop_p (struct loop *loop, tree expr)
1381 {
1382 basic_block def_bb;
1383 unsigned i, len;
1384
1385 gcc_assert (loop_depth (loop) > 0);
1386
1387 if (is_gimple_min_invariant (expr))
1388 return true;
1389
1390 if (TREE_CODE (expr) == SSA_NAME)
1391 {
1392 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1393 if (def_bb
1394 && flow_bb_inside_loop_p (loop, def_bb))
1395 return false;
1396
1397 return true;
1398 }
1399
1400 if (!EXPR_P (expr))
1401 return false;
1402
1403 len = TREE_OPERAND_LENGTH (expr);
1404 for (i = 0; i < len; i++)
1405 if (TREE_OPERAND (expr, i)
1406 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
1407 return false;
1408
1409 return true;
1410 }
1411
1412 /* Returns true if statement STMT is obviously invariant in LOOP,
1413 i.e. if all its operands on the RHS are defined outside of the LOOP.
1414 LOOP should not be the function body. */
1415
1416 bool
1417 stmt_invariant_in_loop_p (struct loop *loop, gimple stmt)
1418 {
1419 unsigned i;
1420 tree lhs;
1421
1422 gcc_assert (loop_depth (loop) > 0);
1423
1424 lhs = gimple_get_lhs (stmt);
1425 for (i = 0; i < gimple_num_ops (stmt); i++)
1426 {
1427 tree op = gimple_op (stmt, i);
1428 if (op != lhs && !expr_invariant_in_loop_p (loop, op))
1429 return false;
1430 }
1431
1432 return true;
1433 }
1434
1435 /* Cumulates the steps of indices into DATA and replaces their values with the
1436 initial ones. Returns false when the value of the index cannot be determined.
1437 Callback for for_each_index. */
1438
1439 struct ifs_ivopts_data
1440 {
1441 struct ivopts_data *ivopts_data;
1442 gimple stmt;
1443 tree step;
1444 };
1445
1446 static bool
1447 idx_find_step (tree base, tree *idx, void *data)
1448 {
1449 struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
1450 struct iv *iv;
1451 tree step, iv_base, iv_step, lbound, off;
1452 struct loop *loop = dta->ivopts_data->current_loop;
1453
1454 /* If base is a component ref, require that the offset of the reference
1455 be invariant. */
1456 if (TREE_CODE (base) == COMPONENT_REF)
1457 {
1458 off = component_ref_field_offset (base);
1459 return expr_invariant_in_loop_p (loop, off);
1460 }
1461
1462 /* If base is array, first check whether we will be able to move the
1463 reference out of the loop (in order to take its address in strength
1464 reduction). In order for this to work we need both lower bound
1465 and step to be loop invariants. */
1466 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1467 {
1468 /* Moreover, for a range, the size needs to be invariant as well. */
1469 if (TREE_CODE (base) == ARRAY_RANGE_REF
1470 && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
1471 return false;
1472
1473 step = array_ref_element_size (base);
1474 lbound = array_ref_low_bound (base);
1475
1476 if (!expr_invariant_in_loop_p (loop, step)
1477 || !expr_invariant_in_loop_p (loop, lbound))
1478 return false;
1479 }
1480
1481 if (TREE_CODE (*idx) != SSA_NAME)
1482 return true;
1483
1484 iv = get_iv (dta->ivopts_data, *idx);
1485 if (!iv)
1486 return false;
1487
1488 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1489 *&x[0], which is not folded and does not trigger the
1490 ARRAY_REF path below. */
1491 *idx = iv->base;
1492
1493 if (integer_zerop (iv->step))
1494 return true;
1495
1496 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1497 {
1498 step = array_ref_element_size (base);
1499
1500 /* We only handle addresses whose step is an integer constant. */
1501 if (TREE_CODE (step) != INTEGER_CST)
1502 return false;
1503 }
1504 else
1505 /* The step for pointer arithmetics already is 1 byte. */
1506 step = size_one_node;
1507
1508 iv_base = iv->base;
1509 iv_step = iv->step;
1510 if (!convert_affine_scev (dta->ivopts_data->current_loop,
1511 sizetype, &iv_base, &iv_step, dta->stmt,
1512 false))
1513 {
1514 /* The index might wrap. */
1515 return false;
1516 }
1517
1518 step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
1519 dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
1520
1521 return true;
1522 }
1523
1524 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1525 object is passed to it in DATA. */
1526
1527 static bool
1528 idx_record_use (tree base, tree *idx,
1529 void *vdata)
1530 {
1531 struct ivopts_data *data = (struct ivopts_data *) vdata;
1532 find_interesting_uses_op (data, *idx);
1533 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1534 {
1535 find_interesting_uses_op (data, array_ref_element_size (base));
1536 find_interesting_uses_op (data, array_ref_low_bound (base));
1537 }
1538 return true;
1539 }
1540
1541 /* If we can prove that TOP = cst * BOT for some constant cst,
1542 store cst to MUL and return true. Otherwise return false.
1543 The returned value is always sign-extended, regardless of the
1544 signedness of TOP and BOT. */
1545
1546 static bool
1547 constant_multiple_of (tree top, tree bot, double_int *mul)
1548 {
1549 tree mby;
1550 enum tree_code code;
1551 double_int res, p0, p1;
1552 unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
1553
1554 STRIP_NOPS (top);
1555 STRIP_NOPS (bot);
1556
1557 if (operand_equal_p (top, bot, 0))
1558 {
1559 *mul = double_int_one;
1560 return true;
1561 }
1562
1563 code = TREE_CODE (top);
1564 switch (code)
1565 {
1566 case MULT_EXPR:
1567 mby = TREE_OPERAND (top, 1);
1568 if (TREE_CODE (mby) != INTEGER_CST)
1569 return false;
1570
1571 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
1572 return false;
1573
1574 *mul = (res * tree_to_double_int (mby)).sext (precision);
1575 return true;
1576
1577 case PLUS_EXPR:
1578 case MINUS_EXPR:
1579 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
1580 || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
1581 return false;
1582
1583 if (code == MINUS_EXPR)
1584 p1 = -p1;
1585 *mul = (p0 + p1).sext (precision);
1586 return true;
1587
1588 case INTEGER_CST:
1589 if (TREE_CODE (bot) != INTEGER_CST)
1590 return false;
1591
1592 p0 = tree_to_double_int (top).sext (precision);
1593 p1 = tree_to_double_int (bot).sext (precision);
1594 if (p1.is_zero ())
1595 return false;
1596 *mul = p0.sdivmod (p1, FLOOR_DIV_EXPR, &res).sext (precision);
1597 return res.is_zero ();
1598
1599 default:
1600 return false;
1601 }
1602 }
1603
1604 /* Returns true if memory reference REF with step STEP may be unaligned. */
1605
1606 static bool
1607 may_be_unaligned_p (tree ref, tree step)
1608 {
1609 tree base;
1610 tree base_type;
1611 HOST_WIDE_INT bitsize;
1612 HOST_WIDE_INT bitpos;
1613 tree toffset;
1614 enum machine_mode mode;
1615 int unsignedp, volatilep;
1616 unsigned base_align;
1617
1618 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1619 thus they are not misaligned. */
1620 if (TREE_CODE (ref) == TARGET_MEM_REF)
1621 return false;
1622
1623 /* The test below is basically copy of what expr.c:normal_inner_ref
1624 does to check whether the object must be loaded by parts when
1625 STRICT_ALIGNMENT is true. */
1626 base = get_inner_reference (ref, &bitsize, &bitpos, &toffset, &mode,
1627 &unsignedp, &volatilep, true);
1628 base_type = TREE_TYPE (base);
1629 base_align = get_object_alignment (base);
1630 base_align = MAX (base_align, TYPE_ALIGN (base_type));
1631
1632 if (mode != BLKmode)
1633 {
1634 unsigned mode_align = GET_MODE_ALIGNMENT (mode);
1635
1636 if (base_align < mode_align
1637 || (bitpos % mode_align) != 0
1638 || (bitpos % BITS_PER_UNIT) != 0)
1639 return true;
1640
1641 if (toffset
1642 && (highest_pow2_factor (toffset) * BITS_PER_UNIT) < mode_align)
1643 return true;
1644
1645 if ((highest_pow2_factor (step) * BITS_PER_UNIT) < mode_align)
1646 return true;
1647 }
1648
1649 return false;
1650 }
1651
1652 /* Return true if EXPR may be non-addressable. */
1653
1654 bool
1655 may_be_nonaddressable_p (tree expr)
1656 {
1657 switch (TREE_CODE (expr))
1658 {
1659 case TARGET_MEM_REF:
1660 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1661 target, thus they are always addressable. */
1662 return false;
1663
1664 case COMPONENT_REF:
1665 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
1666 || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
1667
1668 case VIEW_CONVERT_EXPR:
1669 /* This kind of view-conversions may wrap non-addressable objects
1670 and make them look addressable. After some processing the
1671 non-addressability may be uncovered again, causing ADDR_EXPRs
1672 of inappropriate objects to be built. */
1673 if (is_gimple_reg (TREE_OPERAND (expr, 0))
1674 || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
1675 return true;
1676
1677 /* ... fall through ... */
1678
1679 case ARRAY_REF:
1680 case ARRAY_RANGE_REF:
1681 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
1682
1683 CASE_CONVERT:
1684 return true;
1685
1686 default:
1687 break;
1688 }
1689
1690 return false;
1691 }
1692
1693 /* Finds addresses in *OP_P inside STMT. */
1694
1695 static void
1696 find_interesting_uses_address (struct ivopts_data *data, gimple stmt, tree *op_p)
1697 {
1698 tree base = *op_p, step = size_zero_node;
1699 struct iv *civ;
1700 struct ifs_ivopts_data ifs_ivopts_data;
1701
1702 /* Do not play with volatile memory references. A bit too conservative,
1703 perhaps, but safe. */
1704 if (gimple_has_volatile_ops (stmt))
1705 goto fail;
1706
1707 /* Ignore bitfields for now. Not really something terribly complicated
1708 to handle. TODO. */
1709 if (TREE_CODE (base) == BIT_FIELD_REF)
1710 goto fail;
1711
1712 base = unshare_expr (base);
1713
1714 if (TREE_CODE (base) == TARGET_MEM_REF)
1715 {
1716 tree type = build_pointer_type (TREE_TYPE (base));
1717 tree astep;
1718
1719 if (TMR_BASE (base)
1720 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
1721 {
1722 civ = get_iv (data, TMR_BASE (base));
1723 if (!civ)
1724 goto fail;
1725
1726 TMR_BASE (base) = civ->base;
1727 step = civ->step;
1728 }
1729 if (TMR_INDEX2 (base)
1730 && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
1731 {
1732 civ = get_iv (data, TMR_INDEX2 (base));
1733 if (!civ)
1734 goto fail;
1735
1736 TMR_INDEX2 (base) = civ->base;
1737 step = civ->step;
1738 }
1739 if (TMR_INDEX (base)
1740 && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
1741 {
1742 civ = get_iv (data, TMR_INDEX (base));
1743 if (!civ)
1744 goto fail;
1745
1746 TMR_INDEX (base) = civ->base;
1747 astep = civ->step;
1748
1749 if (astep)
1750 {
1751 if (TMR_STEP (base))
1752 astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
1753
1754 step = fold_build2 (PLUS_EXPR, type, step, astep);
1755 }
1756 }
1757
1758 if (integer_zerop (step))
1759 goto fail;
1760 base = tree_mem_ref_addr (type, base);
1761 }
1762 else
1763 {
1764 ifs_ivopts_data.ivopts_data = data;
1765 ifs_ivopts_data.stmt = stmt;
1766 ifs_ivopts_data.step = size_zero_node;
1767 if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
1768 || integer_zerop (ifs_ivopts_data.step))
1769 goto fail;
1770 step = ifs_ivopts_data.step;
1771
1772 /* Check that the base expression is addressable. This needs
1773 to be done after substituting bases of IVs into it. */
1774 if (may_be_nonaddressable_p (base))
1775 goto fail;
1776
1777 /* Moreover, on strict alignment platforms, check that it is
1778 sufficiently aligned. */
1779 if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
1780 goto fail;
1781
1782 base = build_fold_addr_expr (base);
1783
1784 /* Substituting bases of IVs into the base expression might
1785 have caused folding opportunities. */
1786 if (TREE_CODE (base) == ADDR_EXPR)
1787 {
1788 tree *ref = &TREE_OPERAND (base, 0);
1789 while (handled_component_p (*ref))
1790 ref = &TREE_OPERAND (*ref, 0);
1791 if (TREE_CODE (*ref) == MEM_REF)
1792 {
1793 tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
1794 TREE_OPERAND (*ref, 0),
1795 TREE_OPERAND (*ref, 1));
1796 if (tem)
1797 *ref = tem;
1798 }
1799 }
1800 }
1801
1802 civ = alloc_iv (base, step);
1803 record_use (data, op_p, civ, stmt, USE_ADDRESS);
1804 return;
1805
1806 fail:
1807 for_each_index (op_p, idx_record_use, data);
1808 }
1809
1810 /* Finds and records invariants used in STMT. */
1811
1812 static void
1813 find_invariants_stmt (struct ivopts_data *data, gimple stmt)
1814 {
1815 ssa_op_iter iter;
1816 use_operand_p use_p;
1817 tree op;
1818
1819 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
1820 {
1821 op = USE_FROM_PTR (use_p);
1822 record_invariant (data, op, false);
1823 }
1824 }
1825
1826 /* Finds interesting uses of induction variables in the statement STMT. */
1827
1828 static void
1829 find_interesting_uses_stmt (struct ivopts_data *data, gimple stmt)
1830 {
1831 struct iv *iv;
1832 tree op, *lhs, *rhs;
1833 ssa_op_iter iter;
1834 use_operand_p use_p;
1835 enum tree_code code;
1836
1837 find_invariants_stmt (data, stmt);
1838
1839 if (gimple_code (stmt) == GIMPLE_COND)
1840 {
1841 find_interesting_uses_cond (data, stmt);
1842 return;
1843 }
1844
1845 if (is_gimple_assign (stmt))
1846 {
1847 lhs = gimple_assign_lhs_ptr (stmt);
1848 rhs = gimple_assign_rhs1_ptr (stmt);
1849
1850 if (TREE_CODE (*lhs) == SSA_NAME)
1851 {
1852 /* If the statement defines an induction variable, the uses are not
1853 interesting by themselves. */
1854
1855 iv = get_iv (data, *lhs);
1856
1857 if (iv && !integer_zerop (iv->step))
1858 return;
1859 }
1860
1861 code = gimple_assign_rhs_code (stmt);
1862 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
1863 && (REFERENCE_CLASS_P (*rhs)
1864 || is_gimple_val (*rhs)))
1865 {
1866 if (REFERENCE_CLASS_P (*rhs))
1867 find_interesting_uses_address (data, stmt, rhs);
1868 else
1869 find_interesting_uses_op (data, *rhs);
1870
1871 if (REFERENCE_CLASS_P (*lhs))
1872 find_interesting_uses_address (data, stmt, lhs);
1873 return;
1874 }
1875 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1876 {
1877 find_interesting_uses_cond (data, stmt);
1878 return;
1879 }
1880
1881 /* TODO -- we should also handle address uses of type
1882
1883 memory = call (whatever);
1884
1885 and
1886
1887 call (memory). */
1888 }
1889
1890 if (gimple_code (stmt) == GIMPLE_PHI
1891 && gimple_bb (stmt) == data->current_loop->header)
1892 {
1893 iv = get_iv (data, PHI_RESULT (stmt));
1894
1895 if (iv && !integer_zerop (iv->step))
1896 return;
1897 }
1898
1899 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
1900 {
1901 op = USE_FROM_PTR (use_p);
1902
1903 if (TREE_CODE (op) != SSA_NAME)
1904 continue;
1905
1906 iv = get_iv (data, op);
1907 if (!iv)
1908 continue;
1909
1910 find_interesting_uses_op (data, op);
1911 }
1912 }
1913
1914 /* Finds interesting uses of induction variables outside of loops
1915 on loop exit edge EXIT. */
1916
1917 static void
1918 find_interesting_uses_outside (struct ivopts_data *data, edge exit)
1919 {
1920 gimple phi;
1921 gimple_stmt_iterator psi;
1922 tree def;
1923
1924 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
1925 {
1926 phi = gsi_stmt (psi);
1927 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1928 if (!virtual_operand_p (def))
1929 find_interesting_uses_op (data, def);
1930 }
1931 }
1932
1933 /* Finds uses of the induction variables that are interesting. */
1934
1935 static void
1936 find_interesting_uses (struct ivopts_data *data)
1937 {
1938 basic_block bb;
1939 gimple_stmt_iterator bsi;
1940 basic_block *body = get_loop_body (data->current_loop);
1941 unsigned i;
1942 struct version_info *info;
1943 edge e;
1944
1945 if (dump_file && (dump_flags & TDF_DETAILS))
1946 fprintf (dump_file, "Uses:\n\n");
1947
1948 for (i = 0; i < data->current_loop->num_nodes; i++)
1949 {
1950 edge_iterator ei;
1951 bb = body[i];
1952
1953 FOR_EACH_EDGE (e, ei, bb->succs)
1954 if (e->dest != EXIT_BLOCK_PTR
1955 && !flow_bb_inside_loop_p (data->current_loop, e->dest))
1956 find_interesting_uses_outside (data, e);
1957
1958 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1959 find_interesting_uses_stmt (data, gsi_stmt (bsi));
1960 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1961 if (!is_gimple_debug (gsi_stmt (bsi)))
1962 find_interesting_uses_stmt (data, gsi_stmt (bsi));
1963 }
1964
1965 if (dump_file && (dump_flags & TDF_DETAILS))
1966 {
1967 bitmap_iterator bi;
1968
1969 fprintf (dump_file, "\n");
1970
1971 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1972 {
1973 info = ver_info (data, i);
1974 if (info->inv_id)
1975 {
1976 fprintf (dump_file, " ");
1977 print_generic_expr (dump_file, info->name, TDF_SLIM);
1978 fprintf (dump_file, " is invariant (%d)%s\n",
1979 info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
1980 }
1981 }
1982
1983 fprintf (dump_file, "\n");
1984 }
1985
1986 free (body);
1987 }
1988
1989 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
1990 is true, assume we are inside an address. If TOP_COMPREF is true, assume
1991 we are at the top-level of the processed address. */
1992
1993 static tree
1994 strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
1995 unsigned HOST_WIDE_INT *offset)
1996 {
1997 tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
1998 enum tree_code code;
1999 tree type, orig_type = TREE_TYPE (expr);
2000 unsigned HOST_WIDE_INT off0, off1, st;
2001 tree orig_expr = expr;
2002
2003 STRIP_NOPS (expr);
2004
2005 type = TREE_TYPE (expr);
2006 code = TREE_CODE (expr);
2007 *offset = 0;
2008
2009 switch (code)
2010 {
2011 case INTEGER_CST:
2012 if (!cst_and_fits_in_hwi (expr)
2013 || integer_zerop (expr))
2014 return orig_expr;
2015
2016 *offset = int_cst_value (expr);
2017 return build_int_cst (orig_type, 0);
2018
2019 case POINTER_PLUS_EXPR:
2020 case PLUS_EXPR:
2021 case MINUS_EXPR:
2022 op0 = TREE_OPERAND (expr, 0);
2023 op1 = TREE_OPERAND (expr, 1);
2024
2025 op0 = strip_offset_1 (op0, false, false, &off0);
2026 op1 = strip_offset_1 (op1, false, false, &off1);
2027
2028 *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
2029 if (op0 == TREE_OPERAND (expr, 0)
2030 && op1 == TREE_OPERAND (expr, 1))
2031 return orig_expr;
2032
2033 if (integer_zerop (op1))
2034 expr = op0;
2035 else if (integer_zerop (op0))
2036 {
2037 if (code == MINUS_EXPR)
2038 expr = fold_build1 (NEGATE_EXPR, type, op1);
2039 else
2040 expr = op1;
2041 }
2042 else
2043 expr = fold_build2 (code, type, op0, op1);
2044
2045 return fold_convert (orig_type, expr);
2046
2047 case MULT_EXPR:
2048 op1 = TREE_OPERAND (expr, 1);
2049 if (!cst_and_fits_in_hwi (op1))
2050 return orig_expr;
2051
2052 op0 = TREE_OPERAND (expr, 0);
2053 op0 = strip_offset_1 (op0, false, false, &off0);
2054 if (op0 == TREE_OPERAND (expr, 0))
2055 return orig_expr;
2056
2057 *offset = off0 * int_cst_value (op1);
2058 if (integer_zerop (op0))
2059 expr = op0;
2060 else
2061 expr = fold_build2 (MULT_EXPR, type, op0, op1);
2062
2063 return fold_convert (orig_type, expr);
2064
2065 case ARRAY_REF:
2066 case ARRAY_RANGE_REF:
2067 if (!inside_addr)
2068 return orig_expr;
2069
2070 step = array_ref_element_size (expr);
2071 if (!cst_and_fits_in_hwi (step))
2072 break;
2073
2074 st = int_cst_value (step);
2075 op1 = TREE_OPERAND (expr, 1);
2076 op1 = strip_offset_1 (op1, false, false, &off1);
2077 *offset = off1 * st;
2078
2079 if (top_compref
2080 && integer_zerop (op1))
2081 {
2082 /* Strip the component reference completely. */
2083 op0 = TREE_OPERAND (expr, 0);
2084 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2085 *offset += off0;
2086 return op0;
2087 }
2088 break;
2089
2090 case COMPONENT_REF:
2091 if (!inside_addr)
2092 return orig_expr;
2093
2094 tmp = component_ref_field_offset (expr);
2095 if (top_compref
2096 && cst_and_fits_in_hwi (tmp))
2097 {
2098 /* Strip the component reference completely. */
2099 op0 = TREE_OPERAND (expr, 0);
2100 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2101 *offset = off0 + int_cst_value (tmp);
2102 return op0;
2103 }
2104 break;
2105
2106 case ADDR_EXPR:
2107 op0 = TREE_OPERAND (expr, 0);
2108 op0 = strip_offset_1 (op0, true, true, &off0);
2109 *offset += off0;
2110
2111 if (op0 == TREE_OPERAND (expr, 0))
2112 return orig_expr;
2113
2114 expr = build_fold_addr_expr (op0);
2115 return fold_convert (orig_type, expr);
2116
2117 case MEM_REF:
2118 /* ??? Offset operand? */
2119 inside_addr = false;
2120 break;
2121
2122 default:
2123 return orig_expr;
2124 }
2125
2126 /* Default handling of expressions for that we want to recurse into
2127 the first operand. */
2128 op0 = TREE_OPERAND (expr, 0);
2129 op0 = strip_offset_1 (op0, inside_addr, false, &off0);
2130 *offset += off0;
2131
2132 if (op0 == TREE_OPERAND (expr, 0)
2133 && (!op1 || op1 == TREE_OPERAND (expr, 1)))
2134 return orig_expr;
2135
2136 expr = copy_node (expr);
2137 TREE_OPERAND (expr, 0) = op0;
2138 if (op1)
2139 TREE_OPERAND (expr, 1) = op1;
2140
2141 /* Inside address, we might strip the top level component references,
2142 thus changing type of the expression. Handling of ADDR_EXPR
2143 will fix that. */
2144 expr = fold_convert (orig_type, expr);
2145
2146 return expr;
2147 }
2148
2149 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2150
2151 static tree
2152 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
2153 {
2154 return strip_offset_1 (expr, false, false, offset);
2155 }
2156
2157 /* Returns variant of TYPE that can be used as base for different uses.
2158 We return unsigned type with the same precision, which avoids problems
2159 with overflows. */
2160
2161 static tree
2162 generic_type_for (tree type)
2163 {
2164 if (POINTER_TYPE_P (type))
2165 return unsigned_type_for (type);
2166
2167 if (TYPE_UNSIGNED (type))
2168 return type;
2169
2170 return unsigned_type_for (type);
2171 }
2172
2173 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2174 the bitmap to that we should store it. */
2175
2176 static struct ivopts_data *fd_ivopts_data;
2177 static tree
2178 find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
2179 {
2180 bitmap *depends_on = (bitmap *) data;
2181 struct version_info *info;
2182
2183 if (TREE_CODE (*expr_p) != SSA_NAME)
2184 return NULL_TREE;
2185 info = name_info (fd_ivopts_data, *expr_p);
2186
2187 if (!info->inv_id || info->has_nonlin_use)
2188 return NULL_TREE;
2189
2190 if (!*depends_on)
2191 *depends_on = BITMAP_ALLOC (NULL);
2192 bitmap_set_bit (*depends_on, info->inv_id);
2193
2194 return NULL_TREE;
2195 }
2196
2197 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2198 position to POS. If USE is not NULL, the candidate is set as related to
2199 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2200 replacement of the final value of the iv by a direct computation. */
2201
2202 static struct iv_cand *
2203 add_candidate_1 (struct ivopts_data *data,
2204 tree base, tree step, bool important, enum iv_position pos,
2205 struct iv_use *use, gimple incremented_at)
2206 {
2207 unsigned i;
2208 struct iv_cand *cand = NULL;
2209 tree type, orig_type;
2210
2211 /* For non-original variables, make sure their values are computed in a type
2212 that does not invoke undefined behavior on overflows (since in general,
2213 we cannot prove that these induction variables are non-wrapping). */
2214 if (pos != IP_ORIGINAL)
2215 {
2216 orig_type = TREE_TYPE (base);
2217 type = generic_type_for (orig_type);
2218 if (type != orig_type)
2219 {
2220 base = fold_convert (type, base);
2221 step = fold_convert (type, step);
2222 }
2223 }
2224
2225 for (i = 0; i < n_iv_cands (data); i++)
2226 {
2227 cand = iv_cand (data, i);
2228
2229 if (cand->pos != pos)
2230 continue;
2231
2232 if (cand->incremented_at != incremented_at
2233 || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2234 && cand->ainc_use != use))
2235 continue;
2236
2237 if (!cand->iv)
2238 {
2239 if (!base && !step)
2240 break;
2241
2242 continue;
2243 }
2244
2245 if (!base && !step)
2246 continue;
2247
2248 if (operand_equal_p (base, cand->iv->base, 0)
2249 && operand_equal_p (step, cand->iv->step, 0)
2250 && (TYPE_PRECISION (TREE_TYPE (base))
2251 == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
2252 break;
2253 }
2254
2255 if (i == n_iv_cands (data))
2256 {
2257 cand = XCNEW (struct iv_cand);
2258 cand->id = i;
2259
2260 if (!base && !step)
2261 cand->iv = NULL;
2262 else
2263 cand->iv = alloc_iv (base, step);
2264
2265 cand->pos = pos;
2266 if (pos != IP_ORIGINAL && cand->iv)
2267 {
2268 cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
2269 cand->var_after = cand->var_before;
2270 }
2271 cand->important = important;
2272 cand->incremented_at = incremented_at;
2273 VEC_safe_push (iv_cand_p, heap, data->iv_candidates, cand);
2274
2275 if (step
2276 && TREE_CODE (step) != INTEGER_CST)
2277 {
2278 fd_ivopts_data = data;
2279 walk_tree (&step, find_depends, &cand->depends_on, NULL);
2280 }
2281
2282 if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2283 cand->ainc_use = use;
2284 else
2285 cand->ainc_use = NULL;
2286
2287 if (dump_file && (dump_flags & TDF_DETAILS))
2288 dump_cand (dump_file, cand);
2289 }
2290
2291 if (important && !cand->important)
2292 {
2293 cand->important = true;
2294 if (dump_file && (dump_flags & TDF_DETAILS))
2295 fprintf (dump_file, "Candidate %d is important\n", cand->id);
2296 }
2297
2298 if (use)
2299 {
2300 bitmap_set_bit (use->related_cands, i);
2301 if (dump_file && (dump_flags & TDF_DETAILS))
2302 fprintf (dump_file, "Candidate %d is related to use %d\n",
2303 cand->id, use->id);
2304 }
2305
2306 return cand;
2307 }
2308
2309 /* Returns true if incrementing the induction variable at the end of the LOOP
2310 is allowed.
2311
2312 The purpose is to avoid splitting latch edge with a biv increment, thus
2313 creating a jump, possibly confusing other optimization passes and leaving
2314 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2315 is not available (so we do not have a better alternative), or if the latch
2316 edge is already nonempty. */
2317
2318 static bool
2319 allow_ip_end_pos_p (struct loop *loop)
2320 {
2321 if (!ip_normal_pos (loop))
2322 return true;
2323
2324 if (!empty_block_p (ip_end_pos (loop)))
2325 return true;
2326
2327 return false;
2328 }
2329
2330 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2331 Important field is set to IMPORTANT. */
2332
2333 static void
2334 add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
2335 bool important, struct iv_use *use)
2336 {
2337 basic_block use_bb = gimple_bb (use->stmt);
2338 enum machine_mode mem_mode;
2339 unsigned HOST_WIDE_INT cstepi;
2340
2341 /* If we insert the increment in any position other than the standard
2342 ones, we must ensure that it is incremented once per iteration.
2343 It must not be in an inner nested loop, or one side of an if
2344 statement. */
2345 if (use_bb->loop_father != data->current_loop
2346 || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
2347 || stmt_could_throw_p (use->stmt)
2348 || !cst_and_fits_in_hwi (step))
2349 return;
2350
2351 cstepi = int_cst_value (step);
2352
2353 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
2354 if (((USE_LOAD_PRE_INCREMENT (mem_mode)
2355 || USE_STORE_PRE_INCREMENT (mem_mode))
2356 && GET_MODE_SIZE (mem_mode) == cstepi)
2357 || ((USE_LOAD_PRE_DECREMENT (mem_mode)
2358 || USE_STORE_PRE_DECREMENT (mem_mode))
2359 && GET_MODE_SIZE (mem_mode) == -cstepi))
2360 {
2361 enum tree_code code = MINUS_EXPR;
2362 tree new_base;
2363 tree new_step = step;
2364
2365 if (POINTER_TYPE_P (TREE_TYPE (base)))
2366 {
2367 new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
2368 code = POINTER_PLUS_EXPR;
2369 }
2370 else
2371 new_step = fold_convert (TREE_TYPE (base), new_step);
2372 new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
2373 add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
2374 use->stmt);
2375 }
2376 if (((USE_LOAD_POST_INCREMENT (mem_mode)
2377 || USE_STORE_POST_INCREMENT (mem_mode))
2378 && GET_MODE_SIZE (mem_mode) == cstepi)
2379 || ((USE_LOAD_POST_DECREMENT (mem_mode)
2380 || USE_STORE_POST_DECREMENT (mem_mode))
2381 && GET_MODE_SIZE (mem_mode) == -cstepi))
2382 {
2383 add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
2384 use->stmt);
2385 }
2386 }
2387
2388 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2389 position to POS. If USE is not NULL, the candidate is set as related to
2390 it. The candidate computation is scheduled on all available positions. */
2391
2392 static void
2393 add_candidate (struct ivopts_data *data,
2394 tree base, tree step, bool important, struct iv_use *use)
2395 {
2396 if (ip_normal_pos (data->current_loop))
2397 add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL);
2398 if (ip_end_pos (data->current_loop)
2399 && allow_ip_end_pos_p (data->current_loop))
2400 add_candidate_1 (data, base, step, important, IP_END, use, NULL);
2401
2402 if (use != NULL && use->type == USE_ADDRESS)
2403 add_autoinc_candidates (data, base, step, important, use);
2404 }
2405
2406 /* Adds standard iv candidates. */
2407
2408 static void
2409 add_standard_iv_candidates (struct ivopts_data *data)
2410 {
2411 add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
2412
2413 /* The same for a double-integer type if it is still fast enough. */
2414 if (TYPE_PRECISION
2415 (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
2416 && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
2417 add_candidate (data, build_int_cst (long_integer_type_node, 0),
2418 build_int_cst (long_integer_type_node, 1), true, NULL);
2419
2420 /* The same for a double-integer type if it is still fast enough. */
2421 if (TYPE_PRECISION
2422 (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
2423 && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
2424 add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
2425 build_int_cst (long_long_integer_type_node, 1), true, NULL);
2426 }
2427
2428
2429 /* Adds candidates bases on the old induction variable IV. */
2430
2431 static void
2432 add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
2433 {
2434 gimple phi;
2435 tree def;
2436 struct iv_cand *cand;
2437
2438 add_candidate (data, iv->base, iv->step, true, NULL);
2439
2440 /* The same, but with initial value zero. */
2441 if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
2442 add_candidate (data, size_int (0), iv->step, true, NULL);
2443 else
2444 add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
2445 iv->step, true, NULL);
2446
2447 phi = SSA_NAME_DEF_STMT (iv->ssa_name);
2448 if (gimple_code (phi) == GIMPLE_PHI)
2449 {
2450 /* Additionally record the possibility of leaving the original iv
2451 untouched. */
2452 def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
2453 cand = add_candidate_1 (data,
2454 iv->base, iv->step, true, IP_ORIGINAL, NULL,
2455 SSA_NAME_DEF_STMT (def));
2456 cand->var_before = iv->ssa_name;
2457 cand->var_after = def;
2458 }
2459 }
2460
2461 /* Adds candidates based on the old induction variables. */
2462
2463 static void
2464 add_old_ivs_candidates (struct ivopts_data *data)
2465 {
2466 unsigned i;
2467 struct iv *iv;
2468 bitmap_iterator bi;
2469
2470 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
2471 {
2472 iv = ver_info (data, i)->iv;
2473 if (iv && iv->biv_p && !integer_zerop (iv->step))
2474 add_old_iv_candidates (data, iv);
2475 }
2476 }
2477
2478 /* Adds candidates based on the value of the induction variable IV and USE. */
2479
2480 static void
2481 add_iv_value_candidates (struct ivopts_data *data,
2482 struct iv *iv, struct iv_use *use)
2483 {
2484 unsigned HOST_WIDE_INT offset;
2485 tree base;
2486 tree basetype;
2487
2488 add_candidate (data, iv->base, iv->step, false, use);
2489
2490 /* The same, but with initial value zero. Make such variable important,
2491 since it is generic enough so that possibly many uses may be based
2492 on it. */
2493 basetype = TREE_TYPE (iv->base);
2494 if (POINTER_TYPE_P (basetype))
2495 basetype = sizetype;
2496 add_candidate (data, build_int_cst (basetype, 0),
2497 iv->step, true, use);
2498
2499 /* Third, try removing the constant offset. Make sure to even
2500 add a candidate for &a[0] vs. (T *)&a. */
2501 base = strip_offset (iv->base, &offset);
2502 if (offset
2503 || base != iv->base)
2504 add_candidate (data, base, iv->step, false, use);
2505 }
2506
2507 /* Adds candidates based on the uses. */
2508
2509 static void
2510 add_derived_ivs_candidates (struct ivopts_data *data)
2511 {
2512 unsigned i;
2513
2514 for (i = 0; i < n_iv_uses (data); i++)
2515 {
2516 struct iv_use *use = iv_use (data, i);
2517
2518 if (!use)
2519 continue;
2520
2521 switch (use->type)
2522 {
2523 case USE_NONLINEAR_EXPR:
2524 case USE_COMPARE:
2525 case USE_ADDRESS:
2526 /* Just add the ivs based on the value of the iv used here. */
2527 add_iv_value_candidates (data, use->iv, use);
2528 break;
2529
2530 default:
2531 gcc_unreachable ();
2532 }
2533 }
2534 }
2535
2536 /* Record important candidates and add them to related_cands bitmaps
2537 if needed. */
2538
2539 static void
2540 record_important_candidates (struct ivopts_data *data)
2541 {
2542 unsigned i;
2543 struct iv_use *use;
2544
2545 for (i = 0; i < n_iv_cands (data); i++)
2546 {
2547 struct iv_cand *cand = iv_cand (data, i);
2548
2549 if (cand->important)
2550 bitmap_set_bit (data->important_candidates, i);
2551 }
2552
2553 data->consider_all_candidates = (n_iv_cands (data)
2554 <= CONSIDER_ALL_CANDIDATES_BOUND);
2555
2556 if (data->consider_all_candidates)
2557 {
2558 /* We will not need "related_cands" bitmaps in this case,
2559 so release them to decrease peak memory consumption. */
2560 for (i = 0; i < n_iv_uses (data); i++)
2561 {
2562 use = iv_use (data, i);
2563 BITMAP_FREE (use->related_cands);
2564 }
2565 }
2566 else
2567 {
2568 /* Add important candidates to the related_cands bitmaps. */
2569 for (i = 0; i < n_iv_uses (data); i++)
2570 bitmap_ior_into (iv_use (data, i)->related_cands,
2571 data->important_candidates);
2572 }
2573 }
2574
2575 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2576 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2577 we allocate a simple list to every use. */
2578
2579 static void
2580 alloc_use_cost_map (struct ivopts_data *data)
2581 {
2582 unsigned i, size, s, j;
2583
2584 for (i = 0; i < n_iv_uses (data); i++)
2585 {
2586 struct iv_use *use = iv_use (data, i);
2587 bitmap_iterator bi;
2588
2589 if (data->consider_all_candidates)
2590 size = n_iv_cands (data);
2591 else
2592 {
2593 s = 0;
2594 EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
2595 {
2596 s++;
2597 }
2598
2599 /* Round up to the power of two, so that moduling by it is fast. */
2600 for (size = 1; size < s; size <<= 1)
2601 continue;
2602 }
2603
2604 use->n_map_members = size;
2605 use->cost_map = XCNEWVEC (struct cost_pair, size);
2606 }
2607 }
2608
2609 /* Returns description of computation cost of expression whose runtime
2610 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
2611
2612 static comp_cost
2613 new_cost (unsigned runtime, unsigned complexity)
2614 {
2615 comp_cost cost;
2616
2617 cost.cost = runtime;
2618 cost.complexity = complexity;
2619
2620 return cost;
2621 }
2622
2623 /* Adds costs COST1 and COST2. */
2624
2625 static comp_cost
2626 add_costs (comp_cost cost1, comp_cost cost2)
2627 {
2628 cost1.cost += cost2.cost;
2629 cost1.complexity += cost2.complexity;
2630
2631 return cost1;
2632 }
2633 /* Subtracts costs COST1 and COST2. */
2634
2635 static comp_cost
2636 sub_costs (comp_cost cost1, comp_cost cost2)
2637 {
2638 cost1.cost -= cost2.cost;
2639 cost1.complexity -= cost2.complexity;
2640
2641 return cost1;
2642 }
2643
2644 /* Returns a negative number if COST1 < COST2, a positive number if
2645 COST1 > COST2, and 0 if COST1 = COST2. */
2646
2647 static int
2648 compare_costs (comp_cost cost1, comp_cost cost2)
2649 {
2650 if (cost1.cost == cost2.cost)
2651 return cost1.complexity - cost2.complexity;
2652
2653 return cost1.cost - cost2.cost;
2654 }
2655
2656 /* Returns true if COST is infinite. */
2657
2658 static bool
2659 infinite_cost_p (comp_cost cost)
2660 {
2661 return cost.cost == INFTY;
2662 }
2663
2664 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
2665 on invariants DEPENDS_ON and that the value used in expressing it
2666 is VALUE, and in case of iv elimination the comparison operator is COMP. */
2667
2668 static void
2669 set_use_iv_cost (struct ivopts_data *data,
2670 struct iv_use *use, struct iv_cand *cand,
2671 comp_cost cost, bitmap depends_on, tree value,
2672 enum tree_code comp, int inv_expr_id)
2673 {
2674 unsigned i, s;
2675
2676 if (infinite_cost_p (cost))
2677 {
2678 BITMAP_FREE (depends_on);
2679 return;
2680 }
2681
2682 if (data->consider_all_candidates)
2683 {
2684 use->cost_map[cand->id].cand = cand;
2685 use->cost_map[cand->id].cost = cost;
2686 use->cost_map[cand->id].depends_on = depends_on;
2687 use->cost_map[cand->id].value = value;
2688 use->cost_map[cand->id].comp = comp;
2689 use->cost_map[cand->id].inv_expr_id = inv_expr_id;
2690 return;
2691 }
2692
2693 /* n_map_members is a power of two, so this computes modulo. */
2694 s = cand->id & (use->n_map_members - 1);
2695 for (i = s; i < use->n_map_members; i++)
2696 if (!use->cost_map[i].cand)
2697 goto found;
2698 for (i = 0; i < s; i++)
2699 if (!use->cost_map[i].cand)
2700 goto found;
2701
2702 gcc_unreachable ();
2703
2704 found:
2705 use->cost_map[i].cand = cand;
2706 use->cost_map[i].cost = cost;
2707 use->cost_map[i].depends_on = depends_on;
2708 use->cost_map[i].value = value;
2709 use->cost_map[i].comp = comp;
2710 use->cost_map[i].inv_expr_id = inv_expr_id;
2711 }
2712
2713 /* Gets cost of (USE, CANDIDATE) pair. */
2714
2715 static struct cost_pair *
2716 get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
2717 struct iv_cand *cand)
2718 {
2719 unsigned i, s;
2720 struct cost_pair *ret;
2721
2722 if (!cand)
2723 return NULL;
2724
2725 if (data->consider_all_candidates)
2726 {
2727 ret = use->cost_map + cand->id;
2728 if (!ret->cand)
2729 return NULL;
2730
2731 return ret;
2732 }
2733
2734 /* n_map_members is a power of two, so this computes modulo. */
2735 s = cand->id & (use->n_map_members - 1);
2736 for (i = s; i < use->n_map_members; i++)
2737 if (use->cost_map[i].cand == cand)
2738 return use->cost_map + i;
2739
2740 for (i = 0; i < s; i++)
2741 if (use->cost_map[i].cand == cand)
2742 return use->cost_map + i;
2743
2744 return NULL;
2745 }
2746
2747 /* Returns estimate on cost of computing SEQ. */
2748
2749 static unsigned
2750 seq_cost (rtx seq, bool speed)
2751 {
2752 unsigned cost = 0;
2753 rtx set;
2754
2755 for (; seq; seq = NEXT_INSN (seq))
2756 {
2757 set = single_set (seq);
2758 if (set)
2759 cost += set_src_cost (SET_SRC (set), speed);
2760 else
2761 cost++;
2762 }
2763
2764 return cost;
2765 }
2766
2767 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
2768 static rtx
2769 produce_memory_decl_rtl (tree obj, int *regno)
2770 {
2771 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
2772 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2773 rtx x;
2774
2775 gcc_assert (obj);
2776 if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
2777 {
2778 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
2779 x = gen_rtx_SYMBOL_REF (address_mode, name);
2780 SET_SYMBOL_REF_DECL (x, obj);
2781 x = gen_rtx_MEM (DECL_MODE (obj), x);
2782 set_mem_addr_space (x, as);
2783 targetm.encode_section_info (obj, x, true);
2784 }
2785 else
2786 {
2787 x = gen_raw_REG (address_mode, (*regno)++);
2788 x = gen_rtx_MEM (DECL_MODE (obj), x);
2789 set_mem_addr_space (x, as);
2790 }
2791
2792 return x;
2793 }
2794
2795 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
2796 walk_tree. DATA contains the actual fake register number. */
2797
2798 static tree
2799 prepare_decl_rtl (tree *expr_p, int *ws, void *data)
2800 {
2801 tree obj = NULL_TREE;
2802 rtx x = NULL_RTX;
2803 int *regno = (int *) data;
2804
2805 switch (TREE_CODE (*expr_p))
2806 {
2807 case ADDR_EXPR:
2808 for (expr_p = &TREE_OPERAND (*expr_p, 0);
2809 handled_component_p (*expr_p);
2810 expr_p = &TREE_OPERAND (*expr_p, 0))
2811 continue;
2812 obj = *expr_p;
2813 if (DECL_P (obj) && !DECL_RTL_SET_P (obj))
2814 x = produce_memory_decl_rtl (obj, regno);
2815 break;
2816
2817 case SSA_NAME:
2818 *ws = 0;
2819 obj = SSA_NAME_VAR (*expr_p);
2820 /* Defer handling of anonymous SSA_NAMEs to the expander. */
2821 if (!obj)
2822 return NULL_TREE;
2823 if (!DECL_RTL_SET_P (obj))
2824 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
2825 break;
2826
2827 case VAR_DECL:
2828 case PARM_DECL:
2829 case RESULT_DECL:
2830 *ws = 0;
2831 obj = *expr_p;
2832
2833 if (DECL_RTL_SET_P (obj))
2834 break;
2835
2836 if (DECL_MODE (obj) == BLKmode)
2837 x = produce_memory_decl_rtl (obj, regno);
2838 else
2839 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
2840
2841 break;
2842
2843 default:
2844 break;
2845 }
2846
2847 if (x)
2848 {
2849 VEC_safe_push (tree, heap, decl_rtl_to_reset, obj);
2850 SET_DECL_RTL (obj, x);
2851 }
2852
2853 return NULL_TREE;
2854 }
2855
2856 /* Determines cost of the computation of EXPR. */
2857
2858 static unsigned
2859 computation_cost (tree expr, bool speed)
2860 {
2861 rtx seq, rslt;
2862 tree type = TREE_TYPE (expr);
2863 unsigned cost;
2864 /* Avoid using hard regs in ways which may be unsupported. */
2865 int regno = LAST_VIRTUAL_REGISTER + 1;
2866 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2867 enum node_frequency real_frequency = node->frequency;
2868
2869 node->frequency = NODE_FREQUENCY_NORMAL;
2870 crtl->maybe_hot_insn_p = speed;
2871 walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
2872 start_sequence ();
2873 rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
2874 seq = get_insns ();
2875 end_sequence ();
2876 default_rtl_profile ();
2877 node->frequency = real_frequency;
2878
2879 cost = seq_cost (seq, speed);
2880 if (MEM_P (rslt))
2881 cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
2882 TYPE_ADDR_SPACE (type), speed);
2883 else if (!REG_P (rslt))
2884 cost += set_src_cost (rslt, speed);
2885
2886 return cost;
2887 }
2888
2889 /* Returns variable containing the value of candidate CAND at statement AT. */
2890
2891 static tree
2892 var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple stmt)
2893 {
2894 if (stmt_after_increment (loop, cand, stmt))
2895 return cand->var_after;
2896 else
2897 return cand->var_before;
2898 }
2899
2900 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
2901 same precision that is at least as wide as the precision of TYPE, stores
2902 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
2903 type of A and B. */
2904
2905 static tree
2906 determine_common_wider_type (tree *a, tree *b)
2907 {
2908 tree wider_type = NULL;
2909 tree suba, subb;
2910 tree atype = TREE_TYPE (*a);
2911
2912 if (CONVERT_EXPR_P (*a))
2913 {
2914 suba = TREE_OPERAND (*a, 0);
2915 wider_type = TREE_TYPE (suba);
2916 if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
2917 return atype;
2918 }
2919 else
2920 return atype;
2921
2922 if (CONVERT_EXPR_P (*b))
2923 {
2924 subb = TREE_OPERAND (*b, 0);
2925 if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
2926 return atype;
2927 }
2928 else
2929 return atype;
2930
2931 *a = suba;
2932 *b = subb;
2933 return wider_type;
2934 }
2935
2936 /* Determines the expression by that USE is expressed from induction variable
2937 CAND at statement AT in LOOP. The expression is stored in a decomposed
2938 form into AFF. Returns false if USE cannot be expressed using CAND. */
2939
2940 static bool
2941 get_computation_aff (struct loop *loop,
2942 struct iv_use *use, struct iv_cand *cand, gimple at,
2943 struct affine_tree_combination *aff)
2944 {
2945 tree ubase = use->iv->base;
2946 tree ustep = use->iv->step;
2947 tree cbase = cand->iv->base;
2948 tree cstep = cand->iv->step, cstep_common;
2949 tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
2950 tree common_type, var;
2951 tree uutype;
2952 aff_tree cbase_aff, var_aff;
2953 double_int rat;
2954
2955 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
2956 {
2957 /* We do not have a precision to express the values of use. */
2958 return false;
2959 }
2960
2961 var = var_at_stmt (loop, cand, at);
2962 uutype = unsigned_type_for (utype);
2963
2964 /* If the conversion is not noop, perform it. */
2965 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
2966 {
2967 cstep = fold_convert (uutype, cstep);
2968 cbase = fold_convert (uutype, cbase);
2969 var = fold_convert (uutype, var);
2970 }
2971
2972 if (!constant_multiple_of (ustep, cstep, &rat))
2973 return false;
2974
2975 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
2976 type, we achieve better folding by computing their difference in this
2977 wider type, and cast the result to UUTYPE. We do not need to worry about
2978 overflows, as all the arithmetics will in the end be performed in UUTYPE
2979 anyway. */
2980 common_type = determine_common_wider_type (&ubase, &cbase);
2981
2982 /* use = ubase - ratio * cbase + ratio * var. */
2983 tree_to_aff_combination (ubase, common_type, aff);
2984 tree_to_aff_combination (cbase, common_type, &cbase_aff);
2985 tree_to_aff_combination (var, uutype, &var_aff);
2986
2987 /* We need to shift the value if we are after the increment. */
2988 if (stmt_after_increment (loop, cand, at))
2989 {
2990 aff_tree cstep_aff;
2991
2992 if (common_type != uutype)
2993 cstep_common = fold_convert (common_type, cstep);
2994 else
2995 cstep_common = cstep;
2996
2997 tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
2998 aff_combination_add (&cbase_aff, &cstep_aff);
2999 }
3000
3001 aff_combination_scale (&cbase_aff, -rat);
3002 aff_combination_add (aff, &cbase_aff);
3003 if (common_type != uutype)
3004 aff_combination_convert (aff, uutype);
3005
3006 aff_combination_scale (&var_aff, rat);
3007 aff_combination_add (aff, &var_aff);
3008
3009 return true;
3010 }
3011
3012 /* Determines the expression by that USE is expressed from induction variable
3013 CAND at statement AT in LOOP. The computation is unshared. */
3014
3015 static tree
3016 get_computation_at (struct loop *loop,
3017 struct iv_use *use, struct iv_cand *cand, gimple at)
3018 {
3019 aff_tree aff;
3020 tree type = TREE_TYPE (use->iv->base);
3021
3022 if (!get_computation_aff (loop, use, cand, at, &aff))
3023 return NULL_TREE;
3024 unshare_aff_combination (&aff);
3025 return fold_convert (type, aff_combination_to_tree (&aff));
3026 }
3027
3028 /* Determines the expression by that USE is expressed from induction variable
3029 CAND in LOOP. The computation is unshared. */
3030
3031 static tree
3032 get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
3033 {
3034 return get_computation_at (loop, use, cand, use->stmt);
3035 }
3036
3037 /* Adjust the cost COST for being in loop setup rather than loop body.
3038 If we're optimizing for space, the loop setup overhead is constant;
3039 if we're optimizing for speed, amortize it over the per-iteration cost. */
3040 static unsigned
3041 adjust_setup_cost (struct ivopts_data *data, unsigned cost)
3042 {
3043 if (cost == INFTY)
3044 return cost;
3045 else if (optimize_loop_for_speed_p (data->current_loop))
3046 return cost / avg_loop_niter (data->current_loop);
3047 else
3048 return cost;
3049 }
3050
3051 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3052 validity for a memory reference accessing memory of mode MODE in
3053 address space AS. */
3054
3055 DEF_VEC_P (sbitmap);
3056 DEF_VEC_ALLOC_P (sbitmap, heap);
3057
3058 bool
3059 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, enum machine_mode mode,
3060 addr_space_t as)
3061 {
3062 #define MAX_RATIO 128
3063 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
3064 static VEC (sbitmap, heap) *valid_mult_list;
3065 sbitmap valid_mult;
3066
3067 if (data_index >= VEC_length (sbitmap, valid_mult_list))
3068 VEC_safe_grow_cleared (sbitmap, heap, valid_mult_list, data_index + 1);
3069
3070 valid_mult = VEC_index (sbitmap, valid_mult_list, data_index);
3071 if (!valid_mult)
3072 {
3073 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
3074 rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3075 rtx addr;
3076 HOST_WIDE_INT i;
3077
3078 valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
3079 bitmap_clear (valid_mult);
3080 addr = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
3081 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3082 {
3083 XEXP (addr, 1) = gen_int_mode (i, address_mode);
3084 if (memory_address_addr_space_p (mode, addr, as))
3085 SET_BIT (valid_mult, i + MAX_RATIO);
3086 }
3087
3088 if (dump_file && (dump_flags & TDF_DETAILS))
3089 {
3090 fprintf (dump_file, " allowed multipliers:");
3091 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3092 if (TEST_BIT (valid_mult, i + MAX_RATIO))
3093 fprintf (dump_file, " %d", (int) i);
3094 fprintf (dump_file, "\n");
3095 fprintf (dump_file, "\n");
3096 }
3097
3098 VEC_replace (sbitmap, valid_mult_list, data_index, valid_mult);
3099 }
3100
3101 if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
3102 return false;
3103
3104 return TEST_BIT (valid_mult, ratio + MAX_RATIO);
3105 }
3106
3107 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3108 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3109 variable is omitted. Compute the cost for a memory reference that accesses
3110 a memory location of mode MEM_MODE in address space AS.
3111
3112 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3113 size of MEM_MODE / RATIO) is available. To make this determination, we
3114 look at the size of the increment to be made, which is given in CSTEP.
3115 CSTEP may be zero if the step is unknown.
3116 STMT_AFTER_INC is true iff the statement we're looking at is after the
3117 increment of the original biv.
3118
3119 TODO -- there must be some better way. This all is quite crude. */
3120
3121 typedef struct address_cost_data_s
3122 {
3123 HOST_WIDE_INT min_offset, max_offset;
3124 unsigned costs[2][2][2][2];
3125 } *address_cost_data;
3126
3127 DEF_VEC_P (address_cost_data);
3128 DEF_VEC_ALLOC_P (address_cost_data, heap);
3129
3130 static comp_cost
3131 get_address_cost (bool symbol_present, bool var_present,
3132 unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
3133 HOST_WIDE_INT cstep, enum machine_mode mem_mode,
3134 addr_space_t as, bool speed,
3135 bool stmt_after_inc, bool *may_autoinc)
3136 {
3137 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
3138 static VEC(address_cost_data, heap) *address_cost_data_list;
3139 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
3140 address_cost_data data;
3141 static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
3142 static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
3143 unsigned cost, acost, complexity;
3144 bool offset_p, ratio_p, autoinc;
3145 HOST_WIDE_INT s_offset, autoinc_offset, msize;
3146 unsigned HOST_WIDE_INT mask;
3147 unsigned bits;
3148
3149 if (data_index >= VEC_length (address_cost_data, address_cost_data_list))
3150 VEC_safe_grow_cleared (address_cost_data, heap, address_cost_data_list,
3151 data_index + 1);
3152
3153 data = VEC_index (address_cost_data, address_cost_data_list, data_index);
3154 if (!data)
3155 {
3156 HOST_WIDE_INT i;
3157 HOST_WIDE_INT rat, off = 0;
3158 int old_cse_not_expected, width;
3159 unsigned sym_p, var_p, off_p, rat_p, add_c;
3160 rtx seq, addr, base;
3161 rtx reg0, reg1;
3162
3163 data = (address_cost_data) xcalloc (1, sizeof (*data));
3164
3165 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3166
3167 width = GET_MODE_BITSIZE (address_mode) - 1;
3168 if (width > (HOST_BITS_PER_WIDE_INT - 1))
3169 width = HOST_BITS_PER_WIDE_INT - 1;
3170 addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
3171
3172 for (i = width; i >= 0; i--)
3173 {
3174 off = -((unsigned HOST_WIDE_INT) 1 << i);
3175 XEXP (addr, 1) = gen_int_mode (off, address_mode);
3176 if (memory_address_addr_space_p (mem_mode, addr, as))
3177 break;
3178 }
3179 data->min_offset = (i == -1? 0 : off);
3180
3181 for (i = width; i >= 0; i--)
3182 {
3183 off = ((unsigned HOST_WIDE_INT) 1 << i) - 1;
3184 XEXP (addr, 1) = gen_int_mode (off, address_mode);
3185 if (memory_address_addr_space_p (mem_mode, addr, as))
3186 break;
3187 }
3188 if (i == -1)
3189 off = 0;
3190 data->max_offset = off;
3191
3192 if (dump_file && (dump_flags & TDF_DETAILS))
3193 {
3194 fprintf (dump_file, "get_address_cost:\n");
3195 fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
3196 GET_MODE_NAME (mem_mode),
3197 data->min_offset);
3198 fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
3199 GET_MODE_NAME (mem_mode),
3200 data->max_offset);
3201 }
3202
3203 rat = 1;
3204 for (i = 2; i <= MAX_RATIO; i++)
3205 if (multiplier_allowed_in_address_p (i, mem_mode, as))
3206 {
3207 rat = i;
3208 break;
3209 }
3210
3211 /* Compute the cost of various addressing modes. */
3212 acost = 0;
3213 reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3214 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
3215
3216 if (USE_LOAD_PRE_DECREMENT (mem_mode)
3217 || USE_STORE_PRE_DECREMENT (mem_mode))
3218 {
3219 addr = gen_rtx_PRE_DEC (address_mode, reg0);
3220 has_predec[mem_mode]
3221 = memory_address_addr_space_p (mem_mode, addr, as);
3222 }
3223 if (USE_LOAD_POST_DECREMENT (mem_mode)
3224 || USE_STORE_POST_DECREMENT (mem_mode))
3225 {
3226 addr = gen_rtx_POST_DEC (address_mode, reg0);
3227 has_postdec[mem_mode]
3228 = memory_address_addr_space_p (mem_mode, addr, as);
3229 }
3230 if (USE_LOAD_PRE_INCREMENT (mem_mode)
3231 || USE_STORE_PRE_DECREMENT (mem_mode))
3232 {
3233 addr = gen_rtx_PRE_INC (address_mode, reg0);
3234 has_preinc[mem_mode]
3235 = memory_address_addr_space_p (mem_mode, addr, as);
3236 }
3237 if (USE_LOAD_POST_INCREMENT (mem_mode)
3238 || USE_STORE_POST_INCREMENT (mem_mode))
3239 {
3240 addr = gen_rtx_POST_INC (address_mode, reg0);
3241 has_postinc[mem_mode]
3242 = memory_address_addr_space_p (mem_mode, addr, as);
3243 }
3244 for (i = 0; i < 16; i++)
3245 {
3246 sym_p = i & 1;
3247 var_p = (i >> 1) & 1;
3248 off_p = (i >> 2) & 1;
3249 rat_p = (i >> 3) & 1;
3250
3251 addr = reg0;
3252 if (rat_p)
3253 addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
3254 gen_int_mode (rat, address_mode));
3255
3256 if (var_p)
3257 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
3258
3259 if (sym_p)
3260 {
3261 base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
3262 /* ??? We can run into trouble with some backends by presenting
3263 it with symbols which haven't been properly passed through
3264 targetm.encode_section_info. By setting the local bit, we
3265 enhance the probability of things working. */
3266 SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
3267
3268 if (off_p)
3269 base = gen_rtx_fmt_e (CONST, address_mode,
3270 gen_rtx_fmt_ee
3271 (PLUS, address_mode, base,
3272 gen_int_mode (off, address_mode)));
3273 }
3274 else if (off_p)
3275 base = gen_int_mode (off, address_mode);
3276 else
3277 base = NULL_RTX;
3278
3279 if (base)
3280 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
3281
3282 start_sequence ();
3283 /* To avoid splitting addressing modes, pretend that no cse will
3284 follow. */
3285 old_cse_not_expected = cse_not_expected;
3286 cse_not_expected = true;
3287 addr = memory_address_addr_space (mem_mode, addr, as);
3288 cse_not_expected = old_cse_not_expected;
3289 seq = get_insns ();
3290 end_sequence ();
3291
3292 acost = seq_cost (seq, speed);
3293 acost += address_cost (addr, mem_mode, as, speed);
3294
3295 if (!acost)
3296 acost = 1;
3297 data->costs[sym_p][var_p][off_p][rat_p] = acost;
3298 }
3299
3300 /* On some targets, it is quite expensive to load symbol to a register,
3301 which makes addresses that contain symbols look much more expensive.
3302 However, the symbol will have to be loaded in any case before the
3303 loop (and quite likely we have it in register already), so it does not
3304 make much sense to penalize them too heavily. So make some final
3305 tweaks for the SYMBOL_PRESENT modes:
3306
3307 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3308 var is cheaper, use this mode with small penalty.
3309 If VAR_PRESENT is true, try whether the mode with
3310 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3311 if this is the case, use it. */
3312 add_c = add_cost (speed, address_mode);
3313 for (i = 0; i < 8; i++)
3314 {
3315 var_p = i & 1;
3316 off_p = (i >> 1) & 1;
3317 rat_p = (i >> 2) & 1;
3318
3319 acost = data->costs[0][1][off_p][rat_p] + 1;
3320 if (var_p)
3321 acost += add_c;
3322
3323 if (acost < data->costs[1][var_p][off_p][rat_p])
3324 data->costs[1][var_p][off_p][rat_p] = acost;
3325 }
3326
3327 if (dump_file && (dump_flags & TDF_DETAILS))
3328 {
3329 fprintf (dump_file, "Address costs:\n");
3330
3331 for (i = 0; i < 16; i++)
3332 {
3333 sym_p = i & 1;
3334 var_p = (i >> 1) & 1;
3335 off_p = (i >> 2) & 1;
3336 rat_p = (i >> 3) & 1;
3337
3338 fprintf (dump_file, " ");
3339 if (sym_p)
3340 fprintf (dump_file, "sym + ");
3341 if (var_p)
3342 fprintf (dump_file, "var + ");
3343 if (off_p)
3344 fprintf (dump_file, "cst + ");
3345 if (rat_p)
3346 fprintf (dump_file, "rat * ");
3347
3348 acost = data->costs[sym_p][var_p][off_p][rat_p];
3349 fprintf (dump_file, "index costs %d\n", acost);
3350 }
3351 if (has_predec[mem_mode] || has_postdec[mem_mode]
3352 || has_preinc[mem_mode] || has_postinc[mem_mode])
3353 fprintf (dump_file, " May include autoinc/dec\n");
3354 fprintf (dump_file, "\n");
3355 }
3356
3357 VEC_replace (address_cost_data, address_cost_data_list,
3358 data_index, data);
3359 }
3360
3361 bits = GET_MODE_BITSIZE (address_mode);
3362 mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
3363 offset &= mask;
3364 if ((offset >> (bits - 1) & 1))
3365 offset |= ~mask;
3366 s_offset = offset;
3367
3368 autoinc = false;
3369 msize = GET_MODE_SIZE (mem_mode);
3370 autoinc_offset = offset;
3371 if (stmt_after_inc)
3372 autoinc_offset += ratio * cstep;
3373 if (symbol_present || var_present || ratio != 1)
3374 autoinc = false;
3375 else if ((has_postinc[mem_mode] && autoinc_offset == 0
3376 && msize == cstep)
3377 || (has_postdec[mem_mode] && autoinc_offset == 0
3378 && msize == -cstep)
3379 || (has_preinc[mem_mode] && autoinc_offset == msize
3380 && msize == cstep)
3381 || (has_predec[mem_mode] && autoinc_offset == -msize
3382 && msize == -cstep))
3383 autoinc = true;
3384
3385 cost = 0;
3386 offset_p = (s_offset != 0
3387 && data->min_offset <= s_offset
3388 && s_offset <= data->max_offset);
3389 ratio_p = (ratio != 1
3390 && multiplier_allowed_in_address_p (ratio, mem_mode, as));
3391
3392 if (ratio != 1 && !ratio_p)
3393 cost += mult_by_coeff_cost (ratio, address_mode, speed);
3394
3395 if (s_offset && !offset_p && !symbol_present)
3396 cost += add_cost (speed, address_mode);
3397
3398 if (may_autoinc)
3399 *may_autoinc = autoinc;
3400 acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
3401 complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
3402 return new_cost (cost + acost, complexity);
3403 }
3404
3405 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3406 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3407 calculating the operands of EXPR. Returns true if successful, and returns
3408 the cost in COST. */
3409
3410 static bool
3411 get_shiftadd_cost (tree expr, enum machine_mode mode, comp_cost cost0,
3412 comp_cost cost1, tree mult, bool speed, comp_cost *cost)
3413 {
3414 comp_cost res;
3415 tree op1 = TREE_OPERAND (expr, 1);
3416 tree cst = TREE_OPERAND (mult, 1);
3417 tree multop = TREE_OPERAND (mult, 0);
3418 int m = exact_log2 (int_cst_value (cst));
3419 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
3420 int sa_cost;
3421
3422 if (!(m >= 0 && m < maxm))
3423 return false;
3424
3425 sa_cost = (TREE_CODE (expr) != MINUS_EXPR
3426 ? shiftadd_cost (speed, mode, m)
3427 : (mult == op1
3428 ? shiftsub1_cost (speed, mode, m)
3429 : shiftsub0_cost (speed, mode, m)));
3430 res = new_cost (sa_cost, 0);
3431 res = add_costs (res, mult == op1 ? cost0 : cost1);
3432
3433 STRIP_NOPS (multop);
3434 if (!is_gimple_val (multop))
3435 res = add_costs (res, force_expr_to_var_cost (multop, speed));
3436
3437 *cost = res;
3438 return true;
3439 }
3440
3441 /* Estimates cost of forcing expression EXPR into a variable. */
3442
3443 static comp_cost
3444 force_expr_to_var_cost (tree expr, bool speed)
3445 {
3446 static bool costs_initialized = false;
3447 static unsigned integer_cost [2];
3448 static unsigned symbol_cost [2];
3449 static unsigned address_cost [2];
3450 tree op0, op1;
3451 comp_cost cost0, cost1, cost;
3452 enum machine_mode mode;
3453
3454 if (!costs_initialized)
3455 {
3456 tree type = build_pointer_type (integer_type_node);
3457 tree var, addr;
3458 rtx x;
3459 int i;
3460
3461 var = create_tmp_var_raw (integer_type_node, "test_var");
3462 TREE_STATIC (var) = 1;
3463 x = produce_memory_decl_rtl (var, NULL);
3464 SET_DECL_RTL (var, x);
3465
3466 addr = build1 (ADDR_EXPR, type, var);
3467
3468
3469 for (i = 0; i < 2; i++)
3470 {
3471 integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
3472 2000), i);
3473
3474 symbol_cost[i] = computation_cost (addr, i) + 1;
3475
3476 address_cost[i]
3477 = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
3478 if (dump_file && (dump_flags & TDF_DETAILS))
3479 {
3480 fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
3481 fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
3482 fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
3483 fprintf (dump_file, " address %d\n", (int) address_cost[i]);
3484 fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
3485 fprintf (dump_file, "\n");
3486 }
3487 }
3488
3489 costs_initialized = true;
3490 }
3491
3492 STRIP_NOPS (expr);
3493
3494 if (SSA_VAR_P (expr))
3495 return no_cost;
3496
3497 if (is_gimple_min_invariant (expr))
3498 {
3499 if (TREE_CODE (expr) == INTEGER_CST)
3500 return new_cost (integer_cost [speed], 0);
3501
3502 if (TREE_CODE (expr) == ADDR_EXPR)
3503 {
3504 tree obj = TREE_OPERAND (expr, 0);
3505
3506 if (TREE_CODE (obj) == VAR_DECL
3507 || TREE_CODE (obj) == PARM_DECL
3508 || TREE_CODE (obj) == RESULT_DECL)
3509 return new_cost (symbol_cost [speed], 0);
3510 }
3511
3512 return new_cost (address_cost [speed], 0);
3513 }
3514
3515 switch (TREE_CODE (expr))
3516 {
3517 case POINTER_PLUS_EXPR:
3518 case PLUS_EXPR:
3519 case MINUS_EXPR:
3520 case MULT_EXPR:
3521 op0 = TREE_OPERAND (expr, 0);
3522 op1 = TREE_OPERAND (expr, 1);
3523 STRIP_NOPS (op0);
3524 STRIP_NOPS (op1);
3525
3526 if (is_gimple_val (op0))
3527 cost0 = no_cost;
3528 else
3529 cost0 = force_expr_to_var_cost (op0, speed);
3530
3531 if (is_gimple_val (op1))
3532 cost1 = no_cost;
3533 else
3534 cost1 = force_expr_to_var_cost (op1, speed);
3535
3536 break;
3537
3538 case NEGATE_EXPR:
3539 op0 = TREE_OPERAND (expr, 0);
3540 STRIP_NOPS (op0);
3541 op1 = NULL_TREE;
3542
3543 if (is_gimple_val (op0))
3544 cost0 = no_cost;
3545 else
3546 cost0 = force_expr_to_var_cost (op0, speed);
3547
3548 cost1 = no_cost;
3549 break;
3550
3551 default:
3552 /* Just an arbitrary value, FIXME. */
3553 return new_cost (target_spill_cost[speed], 0);
3554 }
3555
3556 mode = TYPE_MODE (TREE_TYPE (expr));
3557 switch (TREE_CODE (expr))
3558 {
3559 case POINTER_PLUS_EXPR:
3560 case PLUS_EXPR:
3561 case MINUS_EXPR:
3562 case NEGATE_EXPR:
3563 cost = new_cost (add_cost (speed, mode), 0);
3564 if (TREE_CODE (expr) != NEGATE_EXPR)
3565 {
3566 tree mult = NULL_TREE;
3567 comp_cost sa_cost;
3568 if (TREE_CODE (op1) == MULT_EXPR)
3569 mult = op1;
3570 else if (TREE_CODE (op0) == MULT_EXPR)
3571 mult = op0;
3572
3573 if (mult != NULL_TREE
3574 && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
3575 && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
3576 speed, &sa_cost))
3577 return sa_cost;
3578 }
3579 break;
3580
3581 case MULT_EXPR:
3582 if (cst_and_fits_in_hwi (op0))
3583 cost = new_cost (mult_by_coeff_cost (int_cst_value (op0),
3584 mode, speed), 0);
3585 else if (cst_and_fits_in_hwi (op1))
3586 cost = new_cost (mult_by_coeff_cost (int_cst_value (op1),
3587 mode, speed), 0);
3588 else
3589 return new_cost (target_spill_cost [speed], 0);
3590 break;
3591
3592 default:
3593 gcc_unreachable ();
3594 }
3595
3596 cost = add_costs (cost, cost0);
3597 cost = add_costs (cost, cost1);
3598
3599 /* Bound the cost by target_spill_cost. The parts of complicated
3600 computations often are either loop invariant or at least can
3601 be shared between several iv uses, so letting this grow without
3602 limits would not give reasonable results. */
3603 if (cost.cost > (int) target_spill_cost [speed])
3604 cost.cost = target_spill_cost [speed];
3605
3606 return cost;
3607 }
3608
3609 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
3610 invariants the computation depends on. */
3611
3612 static comp_cost
3613 force_var_cost (struct ivopts_data *data,
3614 tree expr, bitmap *depends_on)
3615 {
3616 if (depends_on)
3617 {
3618 fd_ivopts_data = data;
3619 walk_tree (&expr, find_depends, depends_on, NULL);
3620 }
3621
3622 return force_expr_to_var_cost (expr, data->speed);
3623 }
3624
3625 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
3626 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
3627 to false if the corresponding part is missing. DEPENDS_ON is a set of the
3628 invariants the computation depends on. */
3629
3630 static comp_cost
3631 split_address_cost (struct ivopts_data *data,
3632 tree addr, bool *symbol_present, bool *var_present,
3633 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
3634 {
3635 tree core;
3636 HOST_WIDE_INT bitsize;
3637 HOST_WIDE_INT bitpos;
3638 tree toffset;
3639 enum machine_mode mode;
3640 int unsignedp, volatilep;
3641
3642 core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
3643 &unsignedp, &volatilep, false);
3644
3645 if (toffset != 0
3646 || bitpos % BITS_PER_UNIT != 0
3647 || TREE_CODE (core) != VAR_DECL)
3648 {
3649 *symbol_present = false;
3650 *var_present = true;
3651 fd_ivopts_data = data;
3652 walk_tree (&addr, find_depends, depends_on, NULL);
3653 return new_cost (target_spill_cost[data->speed], 0);
3654 }
3655
3656 *offset += bitpos / BITS_PER_UNIT;
3657 if (TREE_STATIC (core)
3658 || DECL_EXTERNAL (core))
3659 {
3660 *symbol_present = true;
3661 *var_present = false;
3662 return no_cost;
3663 }
3664
3665 *symbol_present = false;
3666 *var_present = true;
3667 return no_cost;
3668 }
3669
3670 /* Estimates cost of expressing difference of addresses E1 - E2 as
3671 var + symbol + offset. The value of offset is added to OFFSET,
3672 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3673 part is missing. DEPENDS_ON is a set of the invariants the computation
3674 depends on. */
3675
3676 static comp_cost
3677 ptr_difference_cost (struct ivopts_data *data,
3678 tree e1, tree e2, bool *symbol_present, bool *var_present,
3679 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
3680 {
3681 HOST_WIDE_INT diff = 0;
3682 aff_tree aff_e1, aff_e2;
3683 tree type;
3684
3685 gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
3686
3687 if (ptr_difference_const (e1, e2, &diff))
3688 {
3689 *offset += diff;
3690 *symbol_present = false;
3691 *var_present = false;
3692 return no_cost;
3693 }
3694
3695 if (integer_zerop (e2))
3696 return split_address_cost (data, TREE_OPERAND (e1, 0),
3697 symbol_present, var_present, offset, depends_on);
3698
3699 *symbol_present = false;
3700 *var_present = true;
3701
3702 type = signed_type_for (TREE_TYPE (e1));
3703 tree_to_aff_combination (e1, type, &aff_e1);
3704 tree_to_aff_combination (e2, type, &aff_e2);
3705 aff_combination_scale (&aff_e2, double_int_minus_one);
3706 aff_combination_add (&aff_e1, &aff_e2);
3707
3708 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
3709 }
3710
3711 /* Estimates cost of expressing difference E1 - E2 as
3712 var + symbol + offset. The value of offset is added to OFFSET,
3713 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3714 part is missing. DEPENDS_ON is a set of the invariants the computation
3715 depends on. */
3716
3717 static comp_cost
3718 difference_cost (struct ivopts_data *data,
3719 tree e1, tree e2, bool *symbol_present, bool *var_present,
3720 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
3721 {
3722 enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
3723 unsigned HOST_WIDE_INT off1, off2;
3724 aff_tree aff_e1, aff_e2;
3725 tree type;
3726
3727 e1 = strip_offset (e1, &off1);
3728 e2 = strip_offset (e2, &off2);
3729 *offset += off1 - off2;
3730
3731 STRIP_NOPS (e1);
3732 STRIP_NOPS (e2);
3733
3734 if (TREE_CODE (e1) == ADDR_EXPR)
3735 return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
3736 offset, depends_on);
3737 *symbol_present = false;
3738
3739 if (operand_equal_p (e1, e2, 0))
3740 {
3741 *var_present = false;
3742 return no_cost;
3743 }
3744
3745 *var_present = true;
3746
3747 if (integer_zerop (e2))
3748 return force_var_cost (data, e1, depends_on);
3749
3750 if (integer_zerop (e1))
3751 {
3752 comp_cost cost = force_var_cost (data, e2, depends_on);
3753 cost.cost += mult_by_coeff_cost (-1, mode, data->speed);
3754 return cost;
3755 }
3756
3757 type = signed_type_for (TREE_TYPE (e1));
3758 tree_to_aff_combination (e1, type, &aff_e1);
3759 tree_to_aff_combination (e2, type, &aff_e2);
3760 aff_combination_scale (&aff_e2, double_int_minus_one);
3761 aff_combination_add (&aff_e1, &aff_e2);
3762
3763 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
3764 }
3765
3766 /* Returns true if AFF1 and AFF2 are identical. */
3767
3768 static bool
3769 compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
3770 {
3771 unsigned i;
3772
3773 if (aff1->n != aff2->n)
3774 return false;
3775
3776 for (i = 0; i < aff1->n; i++)
3777 {
3778 if (aff1->elts[i].coef != aff2->elts[i].coef)
3779 return false;
3780
3781 if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
3782 return false;
3783 }
3784 return true;
3785 }
3786
3787 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
3788
3789 static int
3790 get_expr_id (struct ivopts_data *data, tree expr)
3791 {
3792 struct iv_inv_expr_ent ent;
3793 struct iv_inv_expr_ent **slot;
3794
3795 ent.expr = expr;
3796 ent.hash = iterative_hash_expr (expr, 0);
3797 slot = (struct iv_inv_expr_ent **) htab_find_slot (data->inv_expr_tab,
3798 &ent, INSERT);
3799 if (*slot)
3800 return (*slot)->id;
3801
3802 *slot = XNEW (struct iv_inv_expr_ent);
3803 (*slot)->expr = expr;
3804 (*slot)->hash = ent.hash;
3805 (*slot)->id = data->inv_expr_id++;
3806 return (*slot)->id;
3807 }
3808
3809 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
3810 requires a new compiler generated temporary. Returns -1 otherwise.
3811 ADDRESS_P is a flag indicating if the expression is for address
3812 computation. */
3813
3814 static int
3815 get_loop_invariant_expr_id (struct ivopts_data *data, tree ubase,
3816 tree cbase, HOST_WIDE_INT ratio,
3817 bool address_p)
3818 {
3819 aff_tree ubase_aff, cbase_aff;
3820 tree expr, ub, cb;
3821
3822 STRIP_NOPS (ubase);
3823 STRIP_NOPS (cbase);
3824 ub = ubase;
3825 cb = cbase;
3826
3827 if ((TREE_CODE (ubase) == INTEGER_CST)
3828 && (TREE_CODE (cbase) == INTEGER_CST))
3829 return -1;
3830
3831 /* Strips the constant part. */
3832 if (TREE_CODE (ubase) == PLUS_EXPR
3833 || TREE_CODE (ubase) == MINUS_EXPR
3834 || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
3835 {
3836 if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
3837 ubase = TREE_OPERAND (ubase, 0);
3838 }
3839
3840 /* Strips the constant part. */
3841 if (TREE_CODE (cbase) == PLUS_EXPR
3842 || TREE_CODE (cbase) == MINUS_EXPR
3843 || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
3844 {
3845 if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
3846 cbase = TREE_OPERAND (cbase, 0);
3847 }
3848
3849 if (address_p)
3850 {
3851 if (((TREE_CODE (ubase) == SSA_NAME)
3852 || (TREE_CODE (ubase) == ADDR_EXPR
3853 && is_gimple_min_invariant (ubase)))
3854 && (TREE_CODE (cbase) == INTEGER_CST))
3855 return -1;
3856
3857 if (((TREE_CODE (cbase) == SSA_NAME)
3858 || (TREE_CODE (cbase) == ADDR_EXPR
3859 && is_gimple_min_invariant (cbase)))
3860 && (TREE_CODE (ubase) == INTEGER_CST))
3861 return -1;
3862 }
3863
3864 if (ratio == 1)
3865 {
3866 if(operand_equal_p (ubase, cbase, 0))
3867 return -1;
3868
3869 if (TREE_CODE (ubase) == ADDR_EXPR
3870 && TREE_CODE (cbase) == ADDR_EXPR)
3871 {
3872 tree usym, csym;
3873
3874 usym = TREE_OPERAND (ubase, 0);
3875 csym = TREE_OPERAND (cbase, 0);
3876 if (TREE_CODE (usym) == ARRAY_REF)
3877 {
3878 tree ind = TREE_OPERAND (usym, 1);
3879 if (TREE_CODE (ind) == INTEGER_CST
3880 && host_integerp (ind, 0)
3881 && TREE_INT_CST_LOW (ind) == 0)
3882 usym = TREE_OPERAND (usym, 0);
3883 }
3884 if (TREE_CODE (csym) == ARRAY_REF)
3885 {
3886 tree ind = TREE_OPERAND (csym, 1);
3887 if (TREE_CODE (ind) == INTEGER_CST
3888 && host_integerp (ind, 0)
3889 && TREE_INT_CST_LOW (ind) == 0)
3890 csym = TREE_OPERAND (csym, 0);
3891 }
3892 if (operand_equal_p (usym, csym, 0))
3893 return -1;
3894 }
3895 /* Now do more complex comparison */
3896 tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
3897 tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
3898 if (compare_aff_trees (&ubase_aff, &cbase_aff))
3899 return -1;
3900 }
3901
3902 tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
3903 tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
3904
3905 aff_combination_scale (&cbase_aff, double_int::from_shwi (-1 * ratio));
3906 aff_combination_add (&ubase_aff, &cbase_aff);
3907 expr = aff_combination_to_tree (&ubase_aff);
3908 return get_expr_id (data, expr);
3909 }
3910
3911
3912
3913 /* Determines the cost of the computation by that USE is expressed
3914 from induction variable CAND. If ADDRESS_P is true, we just need
3915 to create an address from it, otherwise we want to get it into
3916 register. A set of invariants we depend on is stored in
3917 DEPENDS_ON. AT is the statement at that the value is computed.
3918 If CAN_AUTOINC is nonnull, use it to record whether autoinc
3919 addressing is likely. */
3920
3921 static comp_cost
3922 get_computation_cost_at (struct ivopts_data *data,
3923 struct iv_use *use, struct iv_cand *cand,
3924 bool address_p, bitmap *depends_on, gimple at,
3925 bool *can_autoinc,
3926 int *inv_expr_id)
3927 {
3928 tree ubase = use->iv->base, ustep = use->iv->step;
3929 tree cbase, cstep;
3930 tree utype = TREE_TYPE (ubase), ctype;
3931 unsigned HOST_WIDE_INT cstepi, offset = 0;
3932 HOST_WIDE_INT ratio, aratio;
3933 bool var_present, symbol_present, stmt_is_after_inc;
3934 comp_cost cost;
3935 double_int rat;
3936 bool speed = optimize_bb_for_speed_p (gimple_bb (at));
3937
3938 *depends_on = NULL;
3939
3940 /* Only consider real candidates. */
3941 if (!cand->iv)
3942 return infinite_cost;
3943
3944 cbase = cand->iv->base;
3945 cstep = cand->iv->step;
3946 ctype = TREE_TYPE (cbase);
3947
3948 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
3949 {
3950 /* We do not have a precision to express the values of use. */
3951 return infinite_cost;
3952 }
3953
3954 if (address_p
3955 || (use->iv->base_object
3956 && cand->iv->base_object
3957 && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
3958 && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
3959 {
3960 /* Do not try to express address of an object with computation based
3961 on address of a different object. This may cause problems in rtl
3962 level alias analysis (that does not expect this to be happening,
3963 as this is illegal in C), and would be unlikely to be useful
3964 anyway. */
3965 if (use->iv->base_object
3966 && cand->iv->base_object
3967 && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
3968 return infinite_cost;
3969 }
3970
3971 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
3972 {
3973 /* TODO -- add direct handling of this case. */
3974 goto fallback;
3975 }
3976
3977 /* CSTEPI is removed from the offset in case statement is after the
3978 increment. If the step is not constant, we use zero instead.
3979 This is a bit imprecise (there is the extra addition), but
3980 redundancy elimination is likely to transform the code so that
3981 it uses value of the variable before increment anyway,
3982 so it is not that much unrealistic. */
3983 if (cst_and_fits_in_hwi (cstep))
3984 cstepi = int_cst_value (cstep);
3985 else
3986 cstepi = 0;
3987
3988 if (!constant_multiple_of (ustep, cstep, &rat))
3989 return infinite_cost;
3990
3991 if (rat.fits_shwi ())
3992 ratio = rat.to_shwi ();
3993 else
3994 return infinite_cost;
3995
3996 STRIP_NOPS (cbase);
3997 ctype = TREE_TYPE (cbase);
3998
3999 stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
4000
4001 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4002 or ratio == 1, it is better to handle this like
4003
4004 ubase - ratio * cbase + ratio * var
4005
4006 (also holds in the case ratio == -1, TODO. */
4007
4008 if (cst_and_fits_in_hwi (cbase))
4009 {
4010 offset = - ratio * int_cst_value (cbase);
4011 cost = difference_cost (data,
4012 ubase, build_int_cst (utype, 0),
4013 &symbol_present, &var_present, &offset,
4014 depends_on);
4015 cost.cost /= avg_loop_niter (data->current_loop);
4016 }
4017 else if (ratio == 1)
4018 {
4019 tree real_cbase = cbase;
4020
4021 /* Check to see if any adjustment is needed. */
4022 if (cstepi == 0 && stmt_is_after_inc)
4023 {
4024 aff_tree real_cbase_aff;
4025 aff_tree cstep_aff;
4026
4027 tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
4028 &real_cbase_aff);
4029 tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
4030
4031 aff_combination_add (&real_cbase_aff, &cstep_aff);
4032 real_cbase = aff_combination_to_tree (&real_cbase_aff);
4033 }
4034
4035 cost = difference_cost (data,
4036 ubase, real_cbase,
4037 &symbol_present, &var_present, &offset,
4038 depends_on);
4039 cost.cost /= avg_loop_niter (data->current_loop);
4040 }
4041 else if (address_p
4042 && !POINTER_TYPE_P (ctype)
4043 && multiplier_allowed_in_address_p
4044 (ratio, TYPE_MODE (TREE_TYPE (utype)),
4045 TYPE_ADDR_SPACE (TREE_TYPE (utype))))
4046 {
4047 cbase
4048 = fold_build2 (MULT_EXPR, ctype, cbase, build_int_cst (ctype, ratio));
4049 cost = difference_cost (data,
4050 ubase, cbase,
4051 &symbol_present, &var_present, &offset,
4052 depends_on);
4053 cost.cost /= avg_loop_niter (data->current_loop);
4054 }
4055 else
4056 {
4057 cost = force_var_cost (data, cbase, depends_on);
4058 cost = add_costs (cost,
4059 difference_cost (data,
4060 ubase, build_int_cst (utype, 0),
4061 &symbol_present, &var_present,
4062 &offset, depends_on));
4063 cost.cost /= avg_loop_niter (data->current_loop);
4064 cost.cost += add_cost (data->speed, TYPE_MODE (ctype));
4065 }
4066
4067 if (inv_expr_id)
4068 {
4069 *inv_expr_id =
4070 get_loop_invariant_expr_id (data, ubase, cbase, ratio, address_p);
4071 /* Clear depends on. */
4072 if (*inv_expr_id != -1 && depends_on && *depends_on)
4073 bitmap_clear (*depends_on);
4074 }
4075
4076 /* If we are after the increment, the value of the candidate is higher by
4077 one iteration. */
4078 if (stmt_is_after_inc)
4079 offset -= ratio * cstepi;
4080
4081 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4082 (symbol/var1/const parts may be omitted). If we are looking for an
4083 address, find the cost of addressing this. */
4084 if (address_p)
4085 return add_costs (cost,
4086 get_address_cost (symbol_present, var_present,
4087 offset, ratio, cstepi,
4088 TYPE_MODE (TREE_TYPE (utype)),
4089 TYPE_ADDR_SPACE (TREE_TYPE (utype)),
4090 speed, stmt_is_after_inc,
4091 can_autoinc));
4092
4093 /* Otherwise estimate the costs for computing the expression. */
4094 if (!symbol_present && !var_present && !offset)
4095 {
4096 if (ratio != 1)
4097 cost.cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
4098 return cost;
4099 }
4100
4101 /* Symbol + offset should be compile-time computable so consider that they
4102 are added once to the variable, if present. */
4103 if (var_present && (symbol_present || offset))
4104 cost.cost += adjust_setup_cost (data,
4105 add_cost (speed, TYPE_MODE (ctype)));
4106
4107 /* Having offset does not affect runtime cost in case it is added to
4108 symbol, but it increases complexity. */
4109 if (offset)
4110 cost.complexity++;
4111
4112 cost.cost += add_cost (speed, TYPE_MODE (ctype));
4113
4114 aratio = ratio > 0 ? ratio : -ratio;
4115 if (aratio != 1)
4116 cost.cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
4117 return cost;
4118
4119 fallback:
4120 if (can_autoinc)
4121 *can_autoinc = false;
4122
4123 {
4124 /* Just get the expression, expand it and measure the cost. */
4125 tree comp = get_computation_at (data->current_loop, use, cand, at);
4126
4127 if (!comp)
4128 return infinite_cost;
4129
4130 if (address_p)
4131 comp = build_simple_mem_ref (comp);
4132
4133 return new_cost (computation_cost (comp, speed), 0);
4134 }
4135 }
4136
4137 /* Determines the cost of the computation by that USE is expressed
4138 from induction variable CAND. If ADDRESS_P is true, we just need
4139 to create an address from it, otherwise we want to get it into
4140 register. A set of invariants we depend on is stored in
4141 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4142 autoinc addressing is likely. */
4143
4144 static comp_cost
4145 get_computation_cost (struct ivopts_data *data,
4146 struct iv_use *use, struct iv_cand *cand,
4147 bool address_p, bitmap *depends_on,
4148 bool *can_autoinc, int *inv_expr_id)
4149 {
4150 return get_computation_cost_at (data,
4151 use, cand, address_p, depends_on, use->stmt,
4152 can_autoinc, inv_expr_id);
4153 }
4154
4155 /* Determines cost of basing replacement of USE on CAND in a generic
4156 expression. */
4157
4158 static bool
4159 determine_use_iv_cost_generic (struct ivopts_data *data,
4160 struct iv_use *use, struct iv_cand *cand)
4161 {
4162 bitmap depends_on;
4163 comp_cost cost;
4164 int inv_expr_id = -1;
4165
4166 /* The simple case first -- if we need to express value of the preserved
4167 original biv, the cost is 0. This also prevents us from counting the
4168 cost of increment twice -- once at this use and once in the cost of
4169 the candidate. */
4170 if (cand->pos == IP_ORIGINAL
4171 && cand->incremented_at == use->stmt)
4172 {
4173 set_use_iv_cost (data, use, cand, no_cost, NULL, NULL_TREE,
4174 ERROR_MARK, -1);
4175 return true;
4176 }
4177
4178 cost = get_computation_cost (data, use, cand, false, &depends_on,
4179 NULL, &inv_expr_id);
4180
4181 set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
4182 inv_expr_id);
4183
4184 return !infinite_cost_p (cost);
4185 }
4186
4187 /* Determines cost of basing replacement of USE on CAND in an address. */
4188
4189 static bool
4190 determine_use_iv_cost_address (struct ivopts_data *data,
4191 struct iv_use *use, struct iv_cand *cand)
4192 {
4193 bitmap depends_on;
4194 bool can_autoinc;
4195 int inv_expr_id = -1;
4196 comp_cost cost = get_computation_cost (data, use, cand, true, &depends_on,
4197 &can_autoinc, &inv_expr_id);
4198
4199 if (cand->ainc_use == use)
4200 {
4201 if (can_autoinc)
4202 cost.cost -= cand->cost_step;
4203 /* If we generated the candidate solely for exploiting autoincrement
4204 opportunities, and it turns out it can't be used, set the cost to
4205 infinity to make sure we ignore it. */
4206 else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
4207 cost = infinite_cost;
4208 }
4209 set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
4210 inv_expr_id);
4211
4212 return !infinite_cost_p (cost);
4213 }
4214
4215 /* Computes value of candidate CAND at position AT in iteration NITER, and
4216 stores it to VAL. */
4217
4218 static void
4219 cand_value_at (struct loop *loop, struct iv_cand *cand, gimple at, tree niter,
4220 aff_tree *val)
4221 {
4222 aff_tree step, delta, nit;
4223 struct iv *iv = cand->iv;
4224 tree type = TREE_TYPE (iv->base);
4225 tree steptype = type;
4226 if (POINTER_TYPE_P (type))
4227 steptype = sizetype;
4228
4229 tree_to_aff_combination (iv->step, steptype, &step);
4230 tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
4231 aff_combination_convert (&nit, steptype);
4232 aff_combination_mult (&nit, &step, &delta);
4233 if (stmt_after_increment (loop, cand, at))
4234 aff_combination_add (&delta, &step);
4235
4236 tree_to_aff_combination (iv->base, type, val);
4237 aff_combination_add (val, &delta);
4238 }
4239
4240 /* Returns period of induction variable iv. */
4241
4242 static tree
4243 iv_period (struct iv *iv)
4244 {
4245 tree step = iv->step, period, type;
4246 tree pow2div;
4247
4248 gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
4249
4250 type = unsigned_type_for (TREE_TYPE (step));
4251 /* Period of the iv is lcm (step, type_range)/step -1,
4252 i.e., N*type_range/step - 1. Since type range is power
4253 of two, N == (step >> num_of_ending_zeros_binary (step),
4254 so the final result is
4255
4256 (type_range >> num_of_ending_zeros_binary (step)) - 1
4257
4258 */
4259 pow2div = num_ending_zeros (step);
4260
4261 period = build_low_bits_mask (type,
4262 (TYPE_PRECISION (type)
4263 - tree_low_cst (pow2div, 1)));
4264
4265 return period;
4266 }
4267
4268 /* Returns the comparison operator used when eliminating the iv USE. */
4269
4270 static enum tree_code
4271 iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
4272 {
4273 struct loop *loop = data->current_loop;
4274 basic_block ex_bb;
4275 edge exit;
4276
4277 ex_bb = gimple_bb (use->stmt);
4278 exit = EDGE_SUCC (ex_bb, 0);
4279 if (flow_bb_inside_loop_p (loop, exit->dest))
4280 exit = EDGE_SUCC (ex_bb, 1);
4281
4282 return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
4283 }
4284
4285 static tree
4286 strip_wrap_conserving_type_conversions (tree exp)
4287 {
4288 while (tree_ssa_useless_type_conversion (exp)
4289 && (nowrap_type_p (TREE_TYPE (exp))
4290 == nowrap_type_p (TREE_TYPE (TREE_OPERAND (exp, 0)))))
4291 exp = TREE_OPERAND (exp, 0);
4292 return exp;
4293 }
4294
4295 /* Walk the SSA form and check whether E == WHAT. Fairly simplistic, we
4296 check for an exact match. */
4297
4298 static bool
4299 expr_equal_p (tree e, tree what)
4300 {
4301 gimple stmt;
4302 enum tree_code code;
4303
4304 e = strip_wrap_conserving_type_conversions (e);
4305 what = strip_wrap_conserving_type_conversions (what);
4306
4307 code = TREE_CODE (what);
4308 if (TREE_TYPE (e) != TREE_TYPE (what))
4309 return false;
4310
4311 if (operand_equal_p (e, what, 0))
4312 return true;
4313
4314 if (TREE_CODE (e) != SSA_NAME)
4315 return false;
4316
4317 stmt = SSA_NAME_DEF_STMT (e);
4318 if (gimple_code (stmt) != GIMPLE_ASSIGN
4319 || gimple_assign_rhs_code (stmt) != code)
4320 return false;
4321
4322 switch (get_gimple_rhs_class (code))
4323 {
4324 case GIMPLE_BINARY_RHS:
4325 if (!expr_equal_p (gimple_assign_rhs2 (stmt), TREE_OPERAND (what, 1)))
4326 return false;
4327 /* Fallthru. */
4328
4329 case GIMPLE_UNARY_RHS:
4330 case GIMPLE_SINGLE_RHS:
4331 return expr_equal_p (gimple_assign_rhs1 (stmt), TREE_OPERAND (what, 0));
4332 default:
4333 return false;
4334 }
4335 }
4336
4337 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4338 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4339 calculation is performed in non-wrapping type.
4340
4341 TODO: More generally, we could test for the situation that
4342 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4343 This would require knowing the sign of OFFSET.
4344
4345 Also, we only look for the first addition in the computation of BASE.
4346 More complex analysis would be better, but introducing it just for
4347 this optimization seems like an overkill. */
4348
4349 static bool
4350 difference_cannot_overflow_p (tree base, tree offset)
4351 {
4352 enum tree_code code;
4353 tree e1, e2;
4354
4355 if (!nowrap_type_p (TREE_TYPE (base)))
4356 return false;
4357
4358 base = expand_simple_operations (base);
4359
4360 if (TREE_CODE (base) == SSA_NAME)
4361 {
4362 gimple stmt = SSA_NAME_DEF_STMT (base);
4363
4364 if (gimple_code (stmt) != GIMPLE_ASSIGN)
4365 return false;
4366
4367 code = gimple_assign_rhs_code (stmt);
4368 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
4369 return false;
4370
4371 e1 = gimple_assign_rhs1 (stmt);
4372 e2 = gimple_assign_rhs2 (stmt);
4373 }
4374 else
4375 {
4376 code = TREE_CODE (base);
4377 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
4378 return false;
4379 e1 = TREE_OPERAND (base, 0);
4380 e2 = TREE_OPERAND (base, 1);
4381 }
4382
4383 /* TODO: deeper inspection may be necessary to prove the equality. */
4384 switch (code)
4385 {
4386 case PLUS_EXPR:
4387 return expr_equal_p (e1, offset) || expr_equal_p (e2, offset);
4388 case POINTER_PLUS_EXPR:
4389 return expr_equal_p (e2, offset);
4390
4391 default:
4392 return false;
4393 }
4394 }
4395
4396 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4397 comparison with CAND. NITER describes the number of iterations of
4398 the loops. If successful, the comparison in COMP_P is altered accordingly.
4399
4400 We aim to handle the following situation:
4401
4402 sometype *base, *p;
4403 int a, b, i;
4404
4405 i = a;
4406 p = p_0 = base + a;
4407
4408 do
4409 {
4410 bla (*p);
4411 p++;
4412 i++;
4413 }
4414 while (i < b);
4415
4416 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4417 We aim to optimize this to
4418
4419 p = p_0 = base + a;
4420 do
4421 {
4422 bla (*p);
4423 p++;
4424 }
4425 while (p < p_0 - a + b);
4426
4427 This preserves the correctness, since the pointer arithmetics does not
4428 overflow. More precisely:
4429
4430 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4431 overflow in computing it or the values of p.
4432 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4433 overflow. To prove this, we use the fact that p_0 = base + a. */
4434
4435 static bool
4436 iv_elimination_compare_lt (struct ivopts_data *data,
4437 struct iv_cand *cand, enum tree_code *comp_p,
4438 struct tree_niter_desc *niter)
4439 {
4440 tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
4441 struct affine_tree_combination nit, tmpa, tmpb;
4442 enum tree_code comp;
4443 HOST_WIDE_INT step;
4444
4445 /* We need to know that the candidate induction variable does not overflow.
4446 While more complex analysis may be used to prove this, for now just
4447 check that the variable appears in the original program and that it
4448 is computed in a type that guarantees no overflows. */
4449 cand_type = TREE_TYPE (cand->iv->base);
4450 if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
4451 return false;
4452
4453 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4454 the calculation of the BOUND could overflow, making the comparison
4455 invalid. */
4456 if (!data->loop_single_exit_p)
4457 return false;
4458
4459 /* We need to be able to decide whether candidate is increasing or decreasing
4460 in order to choose the right comparison operator. */
4461 if (!cst_and_fits_in_hwi (cand->iv->step))
4462 return false;
4463 step = int_cst_value (cand->iv->step);
4464
4465 /* Check that the number of iterations matches the expected pattern:
4466 a + 1 > b ? 0 : b - a - 1. */
4467 mbz = niter->may_be_zero;
4468 if (TREE_CODE (mbz) == GT_EXPR)
4469 {
4470 /* Handle a + 1 > b. */
4471 tree op0 = TREE_OPERAND (mbz, 0);
4472 if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
4473 {
4474 a = TREE_OPERAND (op0, 0);
4475 b = TREE_OPERAND (mbz, 1);
4476 }
4477 else
4478 return false;
4479 }
4480 else if (TREE_CODE (mbz) == LT_EXPR)
4481 {
4482 tree op1 = TREE_OPERAND (mbz, 1);
4483
4484 /* Handle b < a + 1. */
4485 if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
4486 {
4487 a = TREE_OPERAND (op1, 0);
4488 b = TREE_OPERAND (mbz, 0);
4489 }
4490 else
4491 return false;
4492 }
4493 else
4494 return false;
4495
4496 /* Expected number of iterations is B - A - 1. Check that it matches
4497 the actual number, i.e., that B - A - NITER = 1. */
4498 tree_to_aff_combination (niter->niter, nit_type, &nit);
4499 tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
4500 tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
4501 aff_combination_scale (&nit, double_int_minus_one);
4502 aff_combination_scale (&tmpa, double_int_minus_one);
4503 aff_combination_add (&tmpb, &tmpa);
4504 aff_combination_add (&tmpb, &nit);
4505 if (tmpb.n != 0 || tmpb.offset != double_int_one)
4506 return false;
4507
4508 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4509 overflow. */
4510 offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
4511 cand->iv->step,
4512 fold_convert (TREE_TYPE (cand->iv->step), a));
4513 if (!difference_cannot_overflow_p (cand->iv->base, offset))
4514 return false;
4515
4516 /* Determine the new comparison operator. */
4517 comp = step < 0 ? GT_EXPR : LT_EXPR;
4518 if (*comp_p == NE_EXPR)
4519 *comp_p = comp;
4520 else if (*comp_p == EQ_EXPR)
4521 *comp_p = invert_tree_comparison (comp, false);
4522 else
4523 gcc_unreachable ();
4524
4525 return true;
4526 }
4527
4528 /* Check whether it is possible to express the condition in USE by comparison
4529 of candidate CAND. If so, store the value compared with to BOUND, and the
4530 comparison operator to COMP. */
4531
4532 static bool
4533 may_eliminate_iv (struct ivopts_data *data,
4534 struct iv_use *use, struct iv_cand *cand, tree *bound,
4535 enum tree_code *comp)
4536 {
4537 basic_block ex_bb;
4538 edge exit;
4539 tree period;
4540 struct loop *loop = data->current_loop;
4541 aff_tree bnd;
4542 struct tree_niter_desc *desc = NULL;
4543
4544 if (TREE_CODE (cand->iv->step) != INTEGER_CST)
4545 return false;
4546
4547 /* For now works only for exits that dominate the loop latch.
4548 TODO: extend to other conditions inside loop body. */
4549 ex_bb = gimple_bb (use->stmt);
4550 if (use->stmt != last_stmt (ex_bb)
4551 || gimple_code (use->stmt) != GIMPLE_COND
4552 || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
4553 return false;
4554
4555 exit = EDGE_SUCC (ex_bb, 0);
4556 if (flow_bb_inside_loop_p (loop, exit->dest))
4557 exit = EDGE_SUCC (ex_bb, 1);
4558 if (flow_bb_inside_loop_p (loop, exit->dest))
4559 return false;
4560
4561 desc = niter_for_exit (data, exit);
4562 if (!desc)
4563 return false;
4564
4565 /* Determine whether we can use the variable to test the exit condition.
4566 This is the case iff the period of the induction variable is greater
4567 than the number of iterations for which the exit condition is true. */
4568 period = iv_period (cand->iv);
4569
4570 /* If the number of iterations is constant, compare against it directly. */
4571 if (TREE_CODE (desc->niter) == INTEGER_CST)
4572 {
4573 /* See cand_value_at. */
4574 if (stmt_after_increment (loop, cand, use->stmt))
4575 {
4576 if (!tree_int_cst_lt (desc->niter, period))
4577 return false;
4578 }
4579 else
4580 {
4581 if (tree_int_cst_lt (period, desc->niter))
4582 return false;
4583 }
4584 }
4585
4586 /* If not, and if this is the only possible exit of the loop, see whether
4587 we can get a conservative estimate on the number of iterations of the
4588 entire loop and compare against that instead. */
4589 else
4590 {
4591 double_int period_value, max_niter;
4592
4593 max_niter = desc->max;
4594 if (stmt_after_increment (loop, cand, use->stmt))
4595 max_niter += double_int_one;
4596 period_value = tree_to_double_int (period);
4597 if (max_niter.ugt (period_value))
4598 {
4599 /* See if we can take advantage of inferred loop bound information. */
4600 if (data->loop_single_exit_p)
4601 {
4602 if (!max_loop_iterations (loop, &max_niter))
4603 return false;
4604 /* The loop bound is already adjusted by adding 1. */
4605 if (max_niter.ugt (period_value))
4606 return false;
4607 }
4608 else
4609 return false;
4610 }
4611 }
4612
4613 cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
4614
4615 *bound = aff_combination_to_tree (&bnd);
4616 *comp = iv_elimination_compare (data, use);
4617
4618 /* It is unlikely that computing the number of iterations using division
4619 would be more profitable than keeping the original induction variable. */
4620 if (expression_expensive_p (*bound))
4621 return false;
4622
4623 /* Sometimes, it is possible to handle the situation that the number of
4624 iterations may be zero unless additional assumtions by using <
4625 instead of != in the exit condition.
4626
4627 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
4628 base the exit condition on it. However, that is often too
4629 expensive. */
4630 if (!integer_zerop (desc->may_be_zero))
4631 return iv_elimination_compare_lt (data, cand, comp, desc);
4632
4633 return true;
4634 }
4635
4636 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
4637 be copied, if is is used in the loop body and DATA->body_includes_call. */
4638
4639 static int
4640 parm_decl_cost (struct ivopts_data *data, tree bound)
4641 {
4642 tree sbound = bound;
4643 STRIP_NOPS (sbound);
4644
4645 if (TREE_CODE (sbound) == SSA_NAME
4646 && SSA_NAME_IS_DEFAULT_DEF (sbound)
4647 && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
4648 && data->body_includes_call)
4649 return COSTS_N_INSNS (1);
4650
4651 return 0;
4652 }
4653
4654 /* Determines cost of basing replacement of USE on CAND in a condition. */
4655
4656 static bool
4657 determine_use_iv_cost_condition (struct ivopts_data *data,
4658 struct iv_use *use, struct iv_cand *cand)
4659 {
4660 tree bound = NULL_TREE;
4661 struct iv *cmp_iv;
4662 bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
4663 comp_cost elim_cost, express_cost, cost, bound_cost;
4664 bool ok;
4665 int elim_inv_expr_id = -1, express_inv_expr_id = -1, inv_expr_id;
4666 tree *control_var, *bound_cst;
4667 enum tree_code comp = ERROR_MARK;
4668
4669 /* Only consider real candidates. */
4670 if (!cand->iv)
4671 {
4672 set_use_iv_cost (data, use, cand, infinite_cost, NULL, NULL_TREE,
4673 ERROR_MARK, -1);
4674 return false;
4675 }
4676
4677 /* Try iv elimination. */
4678 if (may_eliminate_iv (data, use, cand, &bound, &comp))
4679 {
4680 elim_cost = force_var_cost (data, bound, &depends_on_elim);
4681 if (elim_cost.cost == 0)
4682 elim_cost.cost = parm_decl_cost (data, bound);
4683 else if (TREE_CODE (bound) == INTEGER_CST)
4684 elim_cost.cost = 0;
4685 /* If we replace a loop condition 'i < n' with 'p < base + n',
4686 depends_on_elim will have 'base' and 'n' set, which implies
4687 that both 'base' and 'n' will be live during the loop. More likely,
4688 'base + n' will be loop invariant, resulting in only one live value
4689 during the loop. So in that case we clear depends_on_elim and set
4690 elim_inv_expr_id instead. */
4691 if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
4692 {
4693 elim_inv_expr_id = get_expr_id (data, bound);
4694 bitmap_clear (depends_on_elim);
4695 }
4696 /* The bound is a loop invariant, so it will be only computed
4697 once. */
4698 elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
4699 }
4700 else
4701 elim_cost = infinite_cost;
4702
4703 /* Try expressing the original giv. If it is compared with an invariant,
4704 note that we cannot get rid of it. */
4705 ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
4706 NULL, &cmp_iv);
4707 gcc_assert (ok);
4708
4709 /* When the condition is a comparison of the candidate IV against
4710 zero, prefer this IV.
4711
4712 TODO: The constant that we're subtracting from the cost should
4713 be target-dependent. This information should be added to the
4714 target costs for each backend. */
4715 if (!infinite_cost_p (elim_cost) /* Do not try to decrease infinite! */
4716 && integer_zerop (*bound_cst)
4717 && (operand_equal_p (*control_var, cand->var_after, 0)
4718 || operand_equal_p (*control_var, cand->var_before, 0)))
4719 elim_cost.cost -= 1;
4720
4721 express_cost = get_computation_cost (data, use, cand, false,
4722 &depends_on_express, NULL,
4723 &express_inv_expr_id);
4724 fd_ivopts_data = data;
4725 walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
4726
4727 /* Count the cost of the original bound as well. */
4728 bound_cost = force_var_cost (data, *bound_cst, NULL);
4729 if (bound_cost.cost == 0)
4730 bound_cost.cost = parm_decl_cost (data, *bound_cst);
4731 else if (TREE_CODE (*bound_cst) == INTEGER_CST)
4732 bound_cost.cost = 0;
4733 express_cost.cost += bound_cost.cost;
4734
4735 /* Choose the better approach, preferring the eliminated IV. */
4736 if (compare_costs (elim_cost, express_cost) <= 0)
4737 {
4738 cost = elim_cost;
4739 depends_on = depends_on_elim;
4740 depends_on_elim = NULL;
4741 inv_expr_id = elim_inv_expr_id;
4742 }
4743 else
4744 {
4745 cost = express_cost;
4746 depends_on = depends_on_express;
4747 depends_on_express = NULL;
4748 bound = NULL_TREE;
4749 comp = ERROR_MARK;
4750 inv_expr_id = express_inv_expr_id;
4751 }
4752
4753 set_use_iv_cost (data, use, cand, cost, depends_on, bound, comp, inv_expr_id);
4754
4755 if (depends_on_elim)
4756 BITMAP_FREE (depends_on_elim);
4757 if (depends_on_express)
4758 BITMAP_FREE (depends_on_express);
4759
4760 return !infinite_cost_p (cost);
4761 }
4762
4763 /* Determines cost of basing replacement of USE on CAND. Returns false
4764 if USE cannot be based on CAND. */
4765
4766 static bool
4767 determine_use_iv_cost (struct ivopts_data *data,
4768 struct iv_use *use, struct iv_cand *cand)
4769 {
4770 switch (use->type)
4771 {
4772 case USE_NONLINEAR_EXPR:
4773 return determine_use_iv_cost_generic (data, use, cand);
4774
4775 case USE_ADDRESS:
4776 return determine_use_iv_cost_address (data, use, cand);
4777
4778 case USE_COMPARE:
4779 return determine_use_iv_cost_condition (data, use, cand);
4780
4781 default:
4782 gcc_unreachable ();
4783 }
4784 }
4785
4786 /* Return true if get_computation_cost indicates that autoincrement is
4787 a possibility for the pair of USE and CAND, false otherwise. */
4788
4789 static bool
4790 autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
4791 struct iv_cand *cand)
4792 {
4793 bitmap depends_on;
4794 bool can_autoinc;
4795 comp_cost cost;
4796
4797 if (use->type != USE_ADDRESS)
4798 return false;
4799
4800 cost = get_computation_cost (data, use, cand, true, &depends_on,
4801 &can_autoinc, NULL);
4802
4803 BITMAP_FREE (depends_on);
4804
4805 return !infinite_cost_p (cost) && can_autoinc;
4806 }
4807
4808 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
4809 use that allows autoincrement, and set their AINC_USE if possible. */
4810
4811 static void
4812 set_autoinc_for_original_candidates (struct ivopts_data *data)
4813 {
4814 unsigned i, j;
4815
4816 for (i = 0; i < n_iv_cands (data); i++)
4817 {
4818 struct iv_cand *cand = iv_cand (data, i);
4819 struct iv_use *closest = NULL;
4820 if (cand->pos != IP_ORIGINAL)
4821 continue;
4822 for (j = 0; j < n_iv_uses (data); j++)
4823 {
4824 struct iv_use *use = iv_use (data, j);
4825 unsigned uid = gimple_uid (use->stmt);
4826 if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at)
4827 || uid > gimple_uid (cand->incremented_at))
4828 continue;
4829 if (closest == NULL || uid > gimple_uid (closest->stmt))
4830 closest = use;
4831 }
4832 if (closest == NULL || !autoinc_possible_for_pair (data, closest, cand))
4833 continue;
4834 cand->ainc_use = closest;
4835 }
4836 }
4837
4838 /* Finds the candidates for the induction variables. */
4839
4840 static void
4841 find_iv_candidates (struct ivopts_data *data)
4842 {
4843 /* Add commonly used ivs. */
4844 add_standard_iv_candidates (data);
4845
4846 /* Add old induction variables. */
4847 add_old_ivs_candidates (data);
4848
4849 /* Add induction variables derived from uses. */
4850 add_derived_ivs_candidates (data);
4851
4852 set_autoinc_for_original_candidates (data);
4853
4854 /* Record the important candidates. */
4855 record_important_candidates (data);
4856 }
4857
4858 /* Determines costs of basing the use of the iv on an iv candidate. */
4859
4860 static void
4861 determine_use_iv_costs (struct ivopts_data *data)
4862 {
4863 unsigned i, j;
4864 struct iv_use *use;
4865 struct iv_cand *cand;
4866 bitmap to_clear = BITMAP_ALLOC (NULL);
4867
4868 alloc_use_cost_map (data);
4869
4870 for (i = 0; i < n_iv_uses (data); i++)
4871 {
4872 use = iv_use (data, i);
4873
4874 if (data->consider_all_candidates)
4875 {
4876 for (j = 0; j < n_iv_cands (data); j++)
4877 {
4878 cand = iv_cand (data, j);
4879 determine_use_iv_cost (data, use, cand);
4880 }
4881 }
4882 else
4883 {
4884 bitmap_iterator bi;
4885
4886 EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
4887 {
4888 cand = iv_cand (data, j);
4889 if (!determine_use_iv_cost (data, use, cand))
4890 bitmap_set_bit (to_clear, j);
4891 }
4892
4893 /* Remove the candidates for that the cost is infinite from
4894 the list of related candidates. */
4895 bitmap_and_compl_into (use->related_cands, to_clear);
4896 bitmap_clear (to_clear);
4897 }
4898 }
4899
4900 BITMAP_FREE (to_clear);
4901
4902 if (dump_file && (dump_flags & TDF_DETAILS))
4903 {
4904 fprintf (dump_file, "Use-candidate costs:\n");
4905
4906 for (i = 0; i < n_iv_uses (data); i++)
4907 {
4908 use = iv_use (data, i);
4909
4910 fprintf (dump_file, "Use %d:\n", i);
4911 fprintf (dump_file, " cand\tcost\tcompl.\tdepends on\n");
4912 for (j = 0; j < use->n_map_members; j++)
4913 {
4914 if (!use->cost_map[j].cand
4915 || infinite_cost_p (use->cost_map[j].cost))
4916 continue;
4917
4918 fprintf (dump_file, " %d\t%d\t%d\t",
4919 use->cost_map[j].cand->id,
4920 use->cost_map[j].cost.cost,
4921 use->cost_map[j].cost.complexity);
4922 if (use->cost_map[j].depends_on)
4923 bitmap_print (dump_file,
4924 use->cost_map[j].depends_on, "","");
4925 if (use->cost_map[j].inv_expr_id != -1)
4926 fprintf (dump_file, " inv_expr:%d", use->cost_map[j].inv_expr_id);
4927 fprintf (dump_file, "\n");
4928 }
4929
4930 fprintf (dump_file, "\n");
4931 }
4932 fprintf (dump_file, "\n");
4933 }
4934 }
4935
4936 /* Determines cost of the candidate CAND. */
4937
4938 static void
4939 determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
4940 {
4941 comp_cost cost_base;
4942 unsigned cost, cost_step;
4943 tree base;
4944
4945 if (!cand->iv)
4946 {
4947 cand->cost = 0;
4948 return;
4949 }
4950
4951 /* There are two costs associated with the candidate -- its increment
4952 and its initialization. The second is almost negligible for any loop
4953 that rolls enough, so we take it just very little into account. */
4954
4955 base = cand->iv->base;
4956 cost_base = force_var_cost (data, base, NULL);
4957 /* It will be exceptional that the iv register happens to be initialized with
4958 the proper value at no cost. In general, there will at least be a regcopy
4959 or a const set. */
4960 if (cost_base.cost == 0)
4961 cost_base.cost = COSTS_N_INSNS (1);
4962 cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
4963
4964 cost = cost_step + adjust_setup_cost (data, cost_base.cost);
4965
4966 /* Prefer the original ivs unless we may gain something by replacing it.
4967 The reason is to make debugging simpler; so this is not relevant for
4968 artificial ivs created by other optimization passes. */
4969 if (cand->pos != IP_ORIGINAL
4970 || !SSA_NAME_VAR (cand->var_before)
4971 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
4972 cost++;
4973
4974 /* Prefer not to insert statements into latch unless there are some
4975 already (so that we do not create unnecessary jumps). */
4976 if (cand->pos == IP_END
4977 && empty_block_p (ip_end_pos (data->current_loop)))
4978 cost++;
4979
4980 cand->cost = cost;
4981 cand->cost_step = cost_step;
4982 }
4983
4984 /* Determines costs of computation of the candidates. */
4985
4986 static void
4987 determine_iv_costs (struct ivopts_data *data)
4988 {
4989 unsigned i;
4990
4991 if (dump_file && (dump_flags & TDF_DETAILS))
4992 {
4993 fprintf (dump_file, "Candidate costs:\n");
4994 fprintf (dump_file, " cand\tcost\n");
4995 }
4996
4997 for (i = 0; i < n_iv_cands (data); i++)
4998 {
4999 struct iv_cand *cand = iv_cand (data, i);
5000
5001 determine_iv_cost (data, cand);
5002
5003 if (dump_file && (dump_flags & TDF_DETAILS))
5004 fprintf (dump_file, " %d\t%d\n", i, cand->cost);
5005 }
5006
5007 if (dump_file && (dump_flags & TDF_DETAILS))
5008 fprintf (dump_file, "\n");
5009 }
5010
5011 /* Calculates cost for having SIZE induction variables. */
5012
5013 static unsigned
5014 ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
5015 {
5016 /* We add size to the cost, so that we prefer eliminating ivs
5017 if possible. */
5018 return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
5019 data->body_includes_call);
5020 }
5021
5022 /* For each size of the induction variable set determine the penalty. */
5023
5024 static void
5025 determine_set_costs (struct ivopts_data *data)
5026 {
5027 unsigned j, n;
5028 gimple phi;
5029 gimple_stmt_iterator psi;
5030 tree op;
5031 struct loop *loop = data->current_loop;
5032 bitmap_iterator bi;
5033
5034 if (dump_file && (dump_flags & TDF_DETAILS))
5035 {
5036 fprintf (dump_file, "Global costs:\n");
5037 fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
5038 fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
5039 fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
5040 fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
5041 }
5042
5043 n = 0;
5044 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
5045 {
5046 phi = gsi_stmt (psi);
5047 op = PHI_RESULT (phi);
5048
5049 if (virtual_operand_p (op))
5050 continue;
5051
5052 if (get_iv (data, op))
5053 continue;
5054
5055 n++;
5056 }
5057
5058 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
5059 {
5060 struct version_info *info = ver_info (data, j);
5061
5062 if (info->inv_id && info->has_nonlin_use)
5063 n++;
5064 }
5065
5066 data->regs_used = n;
5067 if (dump_file && (dump_flags & TDF_DETAILS))
5068 fprintf (dump_file, " regs_used %d\n", n);
5069
5070 if (dump_file && (dump_flags & TDF_DETAILS))
5071 {
5072 fprintf (dump_file, " cost for size:\n");
5073 fprintf (dump_file, " ivs\tcost\n");
5074 for (j = 0; j <= 2 * target_avail_regs; j++)
5075 fprintf (dump_file, " %d\t%d\n", j,
5076 ivopts_global_cost_for_size (data, j));
5077 fprintf (dump_file, "\n");
5078 }
5079 }
5080
5081 /* Returns true if A is a cheaper cost pair than B. */
5082
5083 static bool
5084 cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
5085 {
5086 int cmp;
5087
5088 if (!a)
5089 return false;
5090
5091 if (!b)
5092 return true;
5093
5094 cmp = compare_costs (a->cost, b->cost);
5095 if (cmp < 0)
5096 return true;
5097
5098 if (cmp > 0)
5099 return false;
5100
5101 /* In case the costs are the same, prefer the cheaper candidate. */
5102 if (a->cand->cost < b->cand->cost)
5103 return true;
5104
5105 return false;
5106 }
5107
5108
5109 /* Returns candidate by that USE is expressed in IVS. */
5110
5111 static struct cost_pair *
5112 iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
5113 {
5114 return ivs->cand_for_use[use->id];
5115 }
5116
5117 /* Computes the cost field of IVS structure. */
5118
5119 static void
5120 iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
5121 {
5122 comp_cost cost = ivs->cand_use_cost;
5123
5124 cost.cost += ivs->cand_cost;
5125
5126 cost.cost += ivopts_global_cost_for_size (data,
5127 ivs->n_regs + ivs->num_used_inv_expr);
5128
5129 ivs->cost = cost;
5130 }
5131
5132 /* Remove invariants in set INVS to set IVS. */
5133
5134 static void
5135 iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
5136 {
5137 bitmap_iterator bi;
5138 unsigned iid;
5139
5140 if (!invs)
5141 return;
5142
5143 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
5144 {
5145 ivs->n_invariant_uses[iid]--;
5146 if (ivs->n_invariant_uses[iid] == 0)
5147 ivs->n_regs--;
5148 }
5149 }
5150
5151 /* Set USE not to be expressed by any candidate in IVS. */
5152
5153 static void
5154 iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
5155 struct iv_use *use)
5156 {
5157 unsigned uid = use->id, cid;
5158 struct cost_pair *cp;
5159
5160 cp = ivs->cand_for_use[uid];
5161 if (!cp)
5162 return;
5163 cid = cp->cand->id;
5164
5165 ivs->bad_uses++;
5166 ivs->cand_for_use[uid] = NULL;
5167 ivs->n_cand_uses[cid]--;
5168
5169 if (ivs->n_cand_uses[cid] == 0)
5170 {
5171 bitmap_clear_bit (ivs->cands, cid);
5172 /* Do not count the pseudocandidates. */
5173 if (cp->cand->iv)
5174 ivs->n_regs--;
5175 ivs->n_cands--;
5176 ivs->cand_cost -= cp->cand->cost;
5177
5178 iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
5179 }
5180
5181 ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
5182
5183 iv_ca_set_remove_invariants (ivs, cp->depends_on);
5184
5185 if (cp->inv_expr_id != -1)
5186 {
5187 ivs->used_inv_expr[cp->inv_expr_id]--;
5188 if (ivs->used_inv_expr[cp->inv_expr_id] == 0)
5189 ivs->num_used_inv_expr--;
5190 }
5191 iv_ca_recount_cost (data, ivs);
5192 }
5193
5194 /* Add invariants in set INVS to set IVS. */
5195
5196 static void
5197 iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
5198 {
5199 bitmap_iterator bi;
5200 unsigned iid;
5201
5202 if (!invs)
5203 return;
5204
5205 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
5206 {
5207 ivs->n_invariant_uses[iid]++;
5208 if (ivs->n_invariant_uses[iid] == 1)
5209 ivs->n_regs++;
5210 }
5211 }
5212
5213 /* Set cost pair for USE in set IVS to CP. */
5214
5215 static void
5216 iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
5217 struct iv_use *use, struct cost_pair *cp)
5218 {
5219 unsigned uid = use->id, cid;
5220
5221 if (ivs->cand_for_use[uid] == cp)
5222 return;
5223
5224 if (ivs->cand_for_use[uid])
5225 iv_ca_set_no_cp (data, ivs, use);
5226
5227 if (cp)
5228 {
5229 cid = cp->cand->id;
5230
5231 ivs->bad_uses--;
5232 ivs->cand_for_use[uid] = cp;
5233 ivs->n_cand_uses[cid]++;
5234 if (ivs->n_cand_uses[cid] == 1)
5235 {
5236 bitmap_set_bit (ivs->cands, cid);
5237 /* Do not count the pseudocandidates. */
5238 if (cp->cand->iv)
5239 ivs->n_regs++;
5240 ivs->n_cands++;
5241 ivs->cand_cost += cp->cand->cost;
5242
5243 iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
5244 }
5245
5246 ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
5247 iv_ca_set_add_invariants (ivs, cp->depends_on);
5248
5249 if (cp->inv_expr_id != -1)
5250 {
5251 ivs->used_inv_expr[cp->inv_expr_id]++;
5252 if (ivs->used_inv_expr[cp->inv_expr_id] == 1)
5253 ivs->num_used_inv_expr++;
5254 }
5255 iv_ca_recount_cost (data, ivs);
5256 }
5257 }
5258
5259 /* Extend set IVS by expressing USE by some of the candidates in it
5260 if possible. All important candidates will be considered
5261 if IMPORTANT_CANDIDATES is true. */
5262
5263 static void
5264 iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
5265 struct iv_use *use, bool important_candidates)
5266 {
5267 struct cost_pair *best_cp = NULL, *cp;
5268 bitmap_iterator bi;
5269 bitmap cands;
5270 unsigned i;
5271
5272 gcc_assert (ivs->upto >= use->id);
5273
5274 if (ivs->upto == use->id)
5275 {
5276 ivs->upto++;
5277 ivs->bad_uses++;
5278 }
5279
5280 cands = (important_candidates ? data->important_candidates : ivs->cands);
5281 EXECUTE_IF_SET_IN_BITMAP (cands, 0, i, bi)
5282 {
5283 struct iv_cand *cand = iv_cand (data, i);
5284
5285 cp = get_use_iv_cost (data, use, cand);
5286
5287 if (cheaper_cost_pair (cp, best_cp))
5288 best_cp = cp;
5289 }
5290
5291 iv_ca_set_cp (data, ivs, use, best_cp);
5292 }
5293
5294 /* Get cost for assignment IVS. */
5295
5296 static comp_cost
5297 iv_ca_cost (struct iv_ca *ivs)
5298 {
5299 /* This was a conditional expression but it triggered a bug in
5300 Sun C 5.5. */
5301 if (ivs->bad_uses)
5302 return infinite_cost;
5303 else
5304 return ivs->cost;
5305 }
5306
5307 /* Returns true if all dependences of CP are among invariants in IVS. */
5308
5309 static bool
5310 iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
5311 {
5312 unsigned i;
5313 bitmap_iterator bi;
5314
5315 if (!cp->depends_on)
5316 return true;
5317
5318 EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
5319 {
5320 if (ivs->n_invariant_uses[i] == 0)
5321 return false;
5322 }
5323
5324 return true;
5325 }
5326
5327 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5328 it before NEXT_CHANGE. */
5329
5330 static struct iv_ca_delta *
5331 iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
5332 struct cost_pair *new_cp, struct iv_ca_delta *next_change)
5333 {
5334 struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
5335
5336 change->use = use;
5337 change->old_cp = old_cp;
5338 change->new_cp = new_cp;
5339 change->next_change = next_change;
5340
5341 return change;
5342 }
5343
5344 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5345 are rewritten. */
5346
5347 static struct iv_ca_delta *
5348 iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
5349 {
5350 struct iv_ca_delta *last;
5351
5352 if (!l2)
5353 return l1;
5354
5355 if (!l1)
5356 return l2;
5357
5358 for (last = l1; last->next_change; last = last->next_change)
5359 continue;
5360 last->next_change = l2;
5361
5362 return l1;
5363 }
5364
5365 /* Reverse the list of changes DELTA, forming the inverse to it. */
5366
5367 static struct iv_ca_delta *
5368 iv_ca_delta_reverse (struct iv_ca_delta *delta)
5369 {
5370 struct iv_ca_delta *act, *next, *prev = NULL;
5371 struct cost_pair *tmp;
5372
5373 for (act = delta; act; act = next)
5374 {
5375 next = act->next_change;
5376 act->next_change = prev;
5377 prev = act;
5378
5379 tmp = act->old_cp;
5380 act->old_cp = act->new_cp;
5381 act->new_cp = tmp;
5382 }
5383
5384 return prev;
5385 }
5386
5387 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5388 reverted instead. */
5389
5390 static void
5391 iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
5392 struct iv_ca_delta *delta, bool forward)
5393 {
5394 struct cost_pair *from, *to;
5395 struct iv_ca_delta *act;
5396
5397 if (!forward)
5398 delta = iv_ca_delta_reverse (delta);
5399
5400 for (act = delta; act; act = act->next_change)
5401 {
5402 from = act->old_cp;
5403 to = act->new_cp;
5404 gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
5405 iv_ca_set_cp (data, ivs, act->use, to);
5406 }
5407
5408 if (!forward)
5409 iv_ca_delta_reverse (delta);
5410 }
5411
5412 /* Returns true if CAND is used in IVS. */
5413
5414 static bool
5415 iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
5416 {
5417 return ivs->n_cand_uses[cand->id] > 0;
5418 }
5419
5420 /* Returns number of induction variable candidates in the set IVS. */
5421
5422 static unsigned
5423 iv_ca_n_cands (struct iv_ca *ivs)
5424 {
5425 return ivs->n_cands;
5426 }
5427
5428 /* Free the list of changes DELTA. */
5429
5430 static void
5431 iv_ca_delta_free (struct iv_ca_delta **delta)
5432 {
5433 struct iv_ca_delta *act, *next;
5434
5435 for (act = *delta; act; act = next)
5436 {
5437 next = act->next_change;
5438 free (act);
5439 }
5440
5441 *delta = NULL;
5442 }
5443
5444 /* Allocates new iv candidates assignment. */
5445
5446 static struct iv_ca *
5447 iv_ca_new (struct ivopts_data *data)
5448 {
5449 struct iv_ca *nw = XNEW (struct iv_ca);
5450
5451 nw->upto = 0;
5452 nw->bad_uses = 0;
5453 nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
5454 nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
5455 nw->cands = BITMAP_ALLOC (NULL);
5456 nw->n_cands = 0;
5457 nw->n_regs = 0;
5458 nw->cand_use_cost = no_cost;
5459 nw->cand_cost = 0;
5460 nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
5461 nw->cost = no_cost;
5462 nw->used_inv_expr = XCNEWVEC (unsigned, data->inv_expr_id + 1);
5463 nw->num_used_inv_expr = 0;
5464
5465 return nw;
5466 }
5467
5468 /* Free memory occupied by the set IVS. */
5469
5470 static void
5471 iv_ca_free (struct iv_ca **ivs)
5472 {
5473 free ((*ivs)->cand_for_use);
5474 free ((*ivs)->n_cand_uses);
5475 BITMAP_FREE ((*ivs)->cands);
5476 free ((*ivs)->n_invariant_uses);
5477 free ((*ivs)->used_inv_expr);
5478 free (*ivs);
5479 *ivs = NULL;
5480 }
5481
5482 /* Dumps IVS to FILE. */
5483
5484 static void
5485 iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
5486 {
5487 const char *pref = " invariants ";
5488 unsigned i;
5489 comp_cost cost = iv_ca_cost (ivs);
5490
5491 fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
5492 fprintf (file, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5493 ivs->cand_cost, ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
5494 bitmap_print (file, ivs->cands, " candidates: ","\n");
5495
5496 for (i = 0; i < ivs->upto; i++)
5497 {
5498 struct iv_use *use = iv_use (data, i);
5499 struct cost_pair *cp = iv_ca_cand_for_use (ivs, use);
5500 if (cp)
5501 fprintf (file, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5502 use->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
5503 else
5504 fprintf (file, " use:%d --> ??\n", use->id);
5505 }
5506
5507 for (i = 1; i <= data->max_inv_id; i++)
5508 if (ivs->n_invariant_uses[i])
5509 {
5510 fprintf (file, "%s%d", pref, i);
5511 pref = ", ";
5512 }
5513 fprintf (file, "\n\n");
5514 }
5515
5516 /* Try changing candidate in IVS to CAND for each use. Return cost of the
5517 new set, and store differences in DELTA. Number of induction variables
5518 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
5519 the function will try to find a solution with mimimal iv candidates. */
5520
5521 static comp_cost
5522 iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
5523 struct iv_cand *cand, struct iv_ca_delta **delta,
5524 unsigned *n_ivs, bool min_ncand)
5525 {
5526 unsigned i;
5527 comp_cost cost;
5528 struct iv_use *use;
5529 struct cost_pair *old_cp, *new_cp;
5530
5531 *delta = NULL;
5532 for (i = 0; i < ivs->upto; i++)
5533 {
5534 use = iv_use (data, i);
5535 old_cp = iv_ca_cand_for_use (ivs, use);
5536
5537 if (old_cp
5538 && old_cp->cand == cand)
5539 continue;
5540
5541 new_cp = get_use_iv_cost (data, use, cand);
5542 if (!new_cp)
5543 continue;
5544
5545 if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
5546 continue;
5547
5548 if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
5549 continue;
5550
5551 *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
5552 }
5553
5554 iv_ca_delta_commit (data, ivs, *delta, true);
5555 cost = iv_ca_cost (ivs);
5556 if (n_ivs)
5557 *n_ivs = iv_ca_n_cands (ivs);
5558 iv_ca_delta_commit (data, ivs, *delta, false);
5559
5560 return cost;
5561 }
5562
5563 /* Try narrowing set IVS by removing CAND. Return the cost of
5564 the new set and store the differences in DELTA. */
5565
5566 static comp_cost
5567 iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
5568 struct iv_cand *cand, struct iv_ca_delta **delta)
5569 {
5570 unsigned i, ci;
5571 struct iv_use *use;
5572 struct cost_pair *old_cp, *new_cp, *cp;
5573 bitmap_iterator bi;
5574 struct iv_cand *cnd;
5575 comp_cost cost;
5576
5577 *delta = NULL;
5578 for (i = 0; i < n_iv_uses (data); i++)
5579 {
5580 use = iv_use (data, i);
5581
5582 old_cp = iv_ca_cand_for_use (ivs, use);
5583 if (old_cp->cand != cand)
5584 continue;
5585
5586 new_cp = NULL;
5587
5588 if (data->consider_all_candidates)
5589 {
5590 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
5591 {
5592 if (ci == cand->id)
5593 continue;
5594
5595 cnd = iv_cand (data, ci);
5596
5597 cp = get_use_iv_cost (data, use, cnd);
5598 if (!cp)
5599 continue;
5600
5601 if (!iv_ca_has_deps (ivs, cp))
5602 continue;
5603
5604 if (!cheaper_cost_pair (cp, new_cp))
5605 continue;
5606
5607 new_cp = cp;
5608 }
5609 }
5610 else
5611 {
5612 EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
5613 {
5614 if (ci == cand->id)
5615 continue;
5616
5617 cnd = iv_cand (data, ci);
5618
5619 cp = get_use_iv_cost (data, use, cnd);
5620 if (!cp)
5621 continue;
5622 if (!iv_ca_has_deps (ivs, cp))
5623 continue;
5624
5625 if (!cheaper_cost_pair (cp, new_cp))
5626 continue;
5627
5628 new_cp = cp;
5629 }
5630 }
5631
5632 if (!new_cp)
5633 {
5634 iv_ca_delta_free (delta);
5635 return infinite_cost;
5636 }
5637
5638 *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
5639 }
5640
5641 iv_ca_delta_commit (data, ivs, *delta, true);
5642 cost = iv_ca_cost (ivs);
5643 iv_ca_delta_commit (data, ivs, *delta, false);
5644
5645 return cost;
5646 }
5647
5648 /* Try optimizing the set of candidates IVS by removing candidates different
5649 from to EXCEPT_CAND from it. Return cost of the new set, and store
5650 differences in DELTA. */
5651
5652 static comp_cost
5653 iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
5654 struct iv_cand *except_cand, struct iv_ca_delta **delta)
5655 {
5656 bitmap_iterator bi;
5657 struct iv_ca_delta *act_delta, *best_delta;
5658 unsigned i;
5659 comp_cost best_cost, acost;
5660 struct iv_cand *cand;
5661
5662 best_delta = NULL;
5663 best_cost = iv_ca_cost (ivs);
5664
5665 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
5666 {
5667 cand = iv_cand (data, i);
5668
5669 if (cand == except_cand)
5670 continue;
5671
5672 acost = iv_ca_narrow (data, ivs, cand, &act_delta);
5673
5674 if (compare_costs (acost, best_cost) < 0)
5675 {
5676 best_cost = acost;
5677 iv_ca_delta_free (&best_delta);
5678 best_delta = act_delta;
5679 }
5680 else
5681 iv_ca_delta_free (&act_delta);
5682 }
5683
5684 if (!best_delta)
5685 {
5686 *delta = NULL;
5687 return best_cost;
5688 }
5689
5690 /* Recurse to possibly remove other unnecessary ivs. */
5691 iv_ca_delta_commit (data, ivs, best_delta, true);
5692 best_cost = iv_ca_prune (data, ivs, except_cand, delta);
5693 iv_ca_delta_commit (data, ivs, best_delta, false);
5694 *delta = iv_ca_delta_join (best_delta, *delta);
5695 return best_cost;
5696 }
5697
5698 /* Tries to extend the sets IVS in the best possible way in order
5699 to express the USE. If ORIGINALP is true, prefer candidates from
5700 the original set of IVs, otherwise favor important candidates not
5701 based on any memory object. */
5702
5703 static bool
5704 try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
5705 struct iv_use *use, bool originalp)
5706 {
5707 comp_cost best_cost, act_cost;
5708 unsigned i;
5709 bitmap_iterator bi;
5710 struct iv_cand *cand;
5711 struct iv_ca_delta *best_delta = NULL, *act_delta;
5712 struct cost_pair *cp;
5713
5714 iv_ca_add_use (data, ivs, use, false);
5715 best_cost = iv_ca_cost (ivs);
5716
5717 cp = iv_ca_cand_for_use (ivs, use);
5718 if (!cp)
5719 {
5720 ivs->upto--;
5721 ivs->bad_uses--;
5722 iv_ca_add_use (data, ivs, use, true);
5723 best_cost = iv_ca_cost (ivs);
5724 cp = iv_ca_cand_for_use (ivs, use);
5725 }
5726 if (cp)
5727 {
5728 best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
5729 iv_ca_set_no_cp (data, ivs, use);
5730 }
5731
5732 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
5733 first try important candidates not based on any memory object. Only if
5734 this fails, try the specific ones. Rationale -- in loops with many
5735 variables the best choice often is to use just one generic biv. If we
5736 added here many ivs specific to the uses, the optimization algorithm later
5737 would be likely to get stuck in a local minimum, thus causing us to create
5738 too many ivs. The approach from few ivs to more seems more likely to be
5739 successful -- starting from few ivs, replacing an expensive use by a
5740 specific iv should always be a win. */
5741 EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
5742 {
5743 cand = iv_cand (data, i);
5744
5745 if (originalp && cand->pos !=IP_ORIGINAL)
5746 continue;
5747
5748 if (!originalp && cand->iv->base_object != NULL_TREE)
5749 continue;
5750
5751 if (iv_ca_cand_used_p (ivs, cand))
5752 continue;
5753
5754 cp = get_use_iv_cost (data, use, cand);
5755 if (!cp)
5756 continue;
5757
5758 iv_ca_set_cp (data, ivs, use, cp);
5759 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
5760 true);
5761 iv_ca_set_no_cp (data, ivs, use);
5762 act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
5763
5764 if (compare_costs (act_cost, best_cost) < 0)
5765 {
5766 best_cost = act_cost;
5767
5768 iv_ca_delta_free (&best_delta);
5769 best_delta = act_delta;
5770 }
5771 else
5772 iv_ca_delta_free (&act_delta);
5773 }
5774
5775 if (infinite_cost_p (best_cost))
5776 {
5777 for (i = 0; i < use->n_map_members; i++)
5778 {
5779 cp = use->cost_map + i;
5780 cand = cp->cand;
5781 if (!cand)
5782 continue;
5783
5784 /* Already tried this. */
5785 if (cand->important)
5786 {
5787 if (originalp && cand->pos == IP_ORIGINAL)
5788 continue;
5789 if (!originalp && cand->iv->base_object == NULL_TREE)
5790 continue;
5791 }
5792
5793 if (iv_ca_cand_used_p (ivs, cand))
5794 continue;
5795
5796 act_delta = NULL;
5797 iv_ca_set_cp (data, ivs, use, cp);
5798 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
5799 iv_ca_set_no_cp (data, ivs, use);
5800 act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
5801 cp, act_delta);
5802
5803 if (compare_costs (act_cost, best_cost) < 0)
5804 {
5805 best_cost = act_cost;
5806
5807 if (best_delta)
5808 iv_ca_delta_free (&best_delta);
5809 best_delta = act_delta;
5810 }
5811 else
5812 iv_ca_delta_free (&act_delta);
5813 }
5814 }
5815
5816 iv_ca_delta_commit (data, ivs, best_delta, true);
5817 iv_ca_delta_free (&best_delta);
5818
5819 return !infinite_cost_p (best_cost);
5820 }
5821
5822 /* Finds an initial assignment of candidates to uses. */
5823
5824 static struct iv_ca *
5825 get_initial_solution (struct ivopts_data *data, bool originalp)
5826 {
5827 struct iv_ca *ivs = iv_ca_new (data);
5828 unsigned i;
5829
5830 for (i = 0; i < n_iv_uses (data); i++)
5831 if (!try_add_cand_for (data, ivs, iv_use (data, i), originalp))
5832 {
5833 iv_ca_free (&ivs);
5834 return NULL;
5835 }
5836
5837 return ivs;
5838 }
5839
5840 /* Tries to improve set of induction variables IVS. */
5841
5842 static bool
5843 try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
5844 {
5845 unsigned i, n_ivs;
5846 comp_cost acost, best_cost = iv_ca_cost (ivs);
5847 struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
5848 struct iv_cand *cand;
5849
5850 /* Try extending the set of induction variables by one. */
5851 for (i = 0; i < n_iv_cands (data); i++)
5852 {
5853 cand = iv_cand (data, i);
5854
5855 if (iv_ca_cand_used_p (ivs, cand))
5856 continue;
5857
5858 acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
5859 if (!act_delta)
5860 continue;
5861
5862 /* If we successfully added the candidate and the set is small enough,
5863 try optimizing it by removing other candidates. */
5864 if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
5865 {
5866 iv_ca_delta_commit (data, ivs, act_delta, true);
5867 acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
5868 iv_ca_delta_commit (data, ivs, act_delta, false);
5869 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
5870 }
5871
5872 if (compare_costs (acost, best_cost) < 0)
5873 {
5874 best_cost = acost;
5875 iv_ca_delta_free (&best_delta);
5876 best_delta = act_delta;
5877 }
5878 else
5879 iv_ca_delta_free (&act_delta);
5880 }
5881
5882 if (!best_delta)
5883 {
5884 /* Try removing the candidates from the set instead. */
5885 best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
5886
5887 /* Nothing more we can do. */
5888 if (!best_delta)
5889 return false;
5890 }
5891
5892 iv_ca_delta_commit (data, ivs, best_delta, true);
5893 gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
5894 iv_ca_delta_free (&best_delta);
5895 return true;
5896 }
5897
5898 /* Attempts to find the optimal set of induction variables. We do simple
5899 greedy heuristic -- we try to replace at most one candidate in the selected
5900 solution and remove the unused ivs while this improves the cost. */
5901
5902 static struct iv_ca *
5903 find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
5904 {
5905 struct iv_ca *set;
5906
5907 /* Get the initial solution. */
5908 set = get_initial_solution (data, originalp);
5909 if (!set)
5910 {
5911 if (dump_file && (dump_flags & TDF_DETAILS))
5912 fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
5913 return NULL;
5914 }
5915
5916 if (dump_file && (dump_flags & TDF_DETAILS))
5917 {
5918 fprintf (dump_file, "Initial set of candidates:\n");
5919 iv_ca_dump (data, dump_file, set);
5920 }
5921
5922 while (try_improve_iv_set (data, set))
5923 {
5924 if (dump_file && (dump_flags & TDF_DETAILS))
5925 {
5926 fprintf (dump_file, "Improved to:\n");
5927 iv_ca_dump (data, dump_file, set);
5928 }
5929 }
5930
5931 return set;
5932 }
5933
5934 static struct iv_ca *
5935 find_optimal_iv_set (struct ivopts_data *data)
5936 {
5937 unsigned i;
5938 struct iv_ca *set, *origset;
5939 struct iv_use *use;
5940 comp_cost cost, origcost;
5941
5942 /* Determine the cost based on a strategy that starts with original IVs,
5943 and try again using a strategy that prefers candidates not based
5944 on any IVs. */
5945 origset = find_optimal_iv_set_1 (data, true);
5946 set = find_optimal_iv_set_1 (data, false);
5947
5948 if (!origset && !set)
5949 return NULL;
5950
5951 origcost = origset ? iv_ca_cost (origset) : infinite_cost;
5952 cost = set ? iv_ca_cost (set) : infinite_cost;
5953
5954 if (dump_file && (dump_flags & TDF_DETAILS))
5955 {
5956 fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
5957 origcost.cost, origcost.complexity);
5958 fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
5959 cost.cost, cost.complexity);
5960 }
5961
5962 /* Choose the one with the best cost. */
5963 if (compare_costs (origcost, cost) <= 0)
5964 {
5965 if (set)
5966 iv_ca_free (&set);
5967 set = origset;
5968 }
5969 else if (origset)
5970 iv_ca_free (&origset);
5971
5972 for (i = 0; i < n_iv_uses (data); i++)
5973 {
5974 use = iv_use (data, i);
5975 use->selected = iv_ca_cand_for_use (set, use)->cand;
5976 }
5977
5978 return set;
5979 }
5980
5981 /* Creates a new induction variable corresponding to CAND. */
5982
5983 static void
5984 create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
5985 {
5986 gimple_stmt_iterator incr_pos;
5987 tree base;
5988 bool after = false;
5989
5990 if (!cand->iv)
5991 return;
5992
5993 switch (cand->pos)
5994 {
5995 case IP_NORMAL:
5996 incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
5997 break;
5998
5999 case IP_END:
6000 incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
6001 after = true;
6002 break;
6003
6004 case IP_AFTER_USE:
6005 after = true;
6006 /* fall through */
6007 case IP_BEFORE_USE:
6008 incr_pos = gsi_for_stmt (cand->incremented_at);
6009 break;
6010
6011 case IP_ORIGINAL:
6012 /* Mark that the iv is preserved. */
6013 name_info (data, cand->var_before)->preserve_biv = true;
6014 name_info (data, cand->var_after)->preserve_biv = true;
6015
6016 /* Rewrite the increment so that it uses var_before directly. */
6017 find_interesting_uses_op (data, cand->var_after)->selected = cand;
6018 return;
6019 }
6020
6021 gimple_add_tmp_var (cand->var_before);
6022
6023 base = unshare_expr (cand->iv->base);
6024
6025 create_iv (base, unshare_expr (cand->iv->step),
6026 cand->var_before, data->current_loop,
6027 &incr_pos, after, &cand->var_before, &cand->var_after);
6028 }
6029
6030 /* Creates new induction variables described in SET. */
6031
6032 static void
6033 create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
6034 {
6035 unsigned i;
6036 struct iv_cand *cand;
6037 bitmap_iterator bi;
6038
6039 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
6040 {
6041 cand = iv_cand (data, i);
6042 create_new_iv (data, cand);
6043 }
6044
6045 if (dump_file && (dump_flags & TDF_DETAILS))
6046 {
6047 fprintf (dump_file, "\nSelected IV set: \n");
6048 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
6049 {
6050 cand = iv_cand (data, i);
6051 dump_cand (dump_file, cand);
6052 }
6053 fprintf (dump_file, "\n");
6054 }
6055 }
6056
6057 /* Rewrites USE (definition of iv used in a nonlinear expression)
6058 using candidate CAND. */
6059
6060 static void
6061 rewrite_use_nonlinear_expr (struct ivopts_data *data,
6062 struct iv_use *use, struct iv_cand *cand)
6063 {
6064 tree comp;
6065 tree op, tgt;
6066 gimple ass;
6067 gimple_stmt_iterator bsi;
6068
6069 /* An important special case -- if we are asked to express value of
6070 the original iv by itself, just exit; there is no need to
6071 introduce a new computation (that might also need casting the
6072 variable to unsigned and back). */
6073 if (cand->pos == IP_ORIGINAL
6074 && cand->incremented_at == use->stmt)
6075 {
6076 tree step, ctype, utype;
6077 enum tree_code incr_code = PLUS_EXPR, old_code;
6078
6079 gcc_assert (is_gimple_assign (use->stmt));
6080 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
6081
6082 step = cand->iv->step;
6083 ctype = TREE_TYPE (step);
6084 utype = TREE_TYPE (cand->var_after);
6085 if (TREE_CODE (step) == NEGATE_EXPR)
6086 {
6087 incr_code = MINUS_EXPR;
6088 step = TREE_OPERAND (step, 0);
6089 }
6090
6091 /* Check whether we may leave the computation unchanged.
6092 This is the case only if it does not rely on other
6093 computations in the loop -- otherwise, the computation
6094 we rely upon may be removed in remove_unused_ivs,
6095 thus leading to ICE. */
6096 old_code = gimple_assign_rhs_code (use->stmt);
6097 if (old_code == PLUS_EXPR
6098 || old_code == MINUS_EXPR
6099 || old_code == POINTER_PLUS_EXPR)
6100 {
6101 if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
6102 op = gimple_assign_rhs2 (use->stmt);
6103 else if (old_code != MINUS_EXPR
6104 && gimple_assign_rhs2 (use->stmt) == cand->var_before)
6105 op = gimple_assign_rhs1 (use->stmt);
6106 else
6107 op = NULL_TREE;
6108 }
6109 else
6110 op = NULL_TREE;
6111
6112 if (op
6113 && (TREE_CODE (op) == INTEGER_CST
6114 || operand_equal_p (op, step, 0)))
6115 return;
6116
6117 /* Otherwise, add the necessary computations to express
6118 the iv. */
6119 op = fold_convert (ctype, cand->var_before);
6120 comp = fold_convert (utype,
6121 build2 (incr_code, ctype, op,
6122 unshare_expr (step)));
6123 }
6124 else
6125 {
6126 comp = get_computation (data->current_loop, use, cand);
6127 gcc_assert (comp != NULL_TREE);
6128 }
6129
6130 switch (gimple_code (use->stmt))
6131 {
6132 case GIMPLE_PHI:
6133 tgt = PHI_RESULT (use->stmt);
6134
6135 /* If we should keep the biv, do not replace it. */
6136 if (name_info (data, tgt)->preserve_biv)
6137 return;
6138
6139 bsi = gsi_after_labels (gimple_bb (use->stmt));
6140 break;
6141
6142 case GIMPLE_ASSIGN:
6143 tgt = gimple_assign_lhs (use->stmt);
6144 bsi = gsi_for_stmt (use->stmt);
6145 break;
6146
6147 default:
6148 gcc_unreachable ();
6149 }
6150
6151 if (!valid_gimple_rhs_p (comp)
6152 || (gimple_code (use->stmt) != GIMPLE_PHI
6153 /* We can't allow re-allocating the stmt as it might be pointed
6154 to still. */
6155 && (get_gimple_rhs_num_ops (TREE_CODE (comp))
6156 >= gimple_num_ops (gsi_stmt (bsi)))))
6157 {
6158 comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
6159 true, GSI_SAME_STMT);
6160 if (POINTER_TYPE_P (TREE_TYPE (tgt)))
6161 {
6162 duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
6163 /* As this isn't a plain copy we have to reset alignment
6164 information. */
6165 if (SSA_NAME_PTR_INFO (comp))
6166 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
6167 }
6168 }
6169
6170 if (gimple_code (use->stmt) == GIMPLE_PHI)
6171 {
6172 ass = gimple_build_assign (tgt, comp);
6173 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
6174
6175 bsi = gsi_for_stmt (use->stmt);
6176 remove_phi_node (&bsi, false);
6177 }
6178 else
6179 {
6180 gimple_assign_set_rhs_from_tree (&bsi, comp);
6181 use->stmt = gsi_stmt (bsi);
6182 }
6183 }
6184
6185 /* Performs a peephole optimization to reorder the iv update statement with
6186 a mem ref to enable instruction combining in later phases. The mem ref uses
6187 the iv value before the update, so the reordering transformation requires
6188 adjustment of the offset. CAND is the selected IV_CAND.
6189
6190 Example:
6191
6192 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6193 iv2 = iv1 + 1;
6194
6195 if (t < val) (1)
6196 goto L;
6197 goto Head;
6198
6199
6200 directly propagating t over to (1) will introduce overlapping live range
6201 thus increase register pressure. This peephole transform it into:
6202
6203
6204 iv2 = iv1 + 1;
6205 t = MEM_REF (base, iv2, 8, 8);
6206 if (t < val)
6207 goto L;
6208 goto Head;
6209 */
6210
6211 static void
6212 adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
6213 {
6214 tree var_after;
6215 gimple iv_update, stmt;
6216 basic_block bb;
6217 gimple_stmt_iterator gsi, gsi_iv;
6218
6219 if (cand->pos != IP_NORMAL)
6220 return;
6221
6222 var_after = cand->var_after;
6223 iv_update = SSA_NAME_DEF_STMT (var_after);
6224
6225 bb = gimple_bb (iv_update);
6226 gsi = gsi_last_nondebug_bb (bb);
6227 stmt = gsi_stmt (gsi);
6228
6229 /* Only handle conditional statement for now. */
6230 if (gimple_code (stmt) != GIMPLE_COND)
6231 return;
6232
6233 gsi_prev_nondebug (&gsi);
6234 stmt = gsi_stmt (gsi);
6235 if (stmt != iv_update)
6236 return;
6237
6238 gsi_prev_nondebug (&gsi);
6239 if (gsi_end_p (gsi))
6240 return;
6241
6242 stmt = gsi_stmt (gsi);
6243 if (gimple_code (stmt) != GIMPLE_ASSIGN)
6244 return;
6245
6246 if (stmt != use->stmt)
6247 return;
6248
6249 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
6250 return;
6251
6252 if (dump_file && (dump_flags & TDF_DETAILS))
6253 {
6254 fprintf (dump_file, "Reordering \n");
6255 print_gimple_stmt (dump_file, iv_update, 0, 0);
6256 print_gimple_stmt (dump_file, use->stmt, 0, 0);
6257 fprintf (dump_file, "\n");
6258 }
6259
6260 gsi = gsi_for_stmt (use->stmt);
6261 gsi_iv = gsi_for_stmt (iv_update);
6262 gsi_move_before (&gsi_iv, &gsi);
6263
6264 cand->pos = IP_BEFORE_USE;
6265 cand->incremented_at = use->stmt;
6266 }
6267
6268 /* Rewrites USE (address that is an iv) using candidate CAND. */
6269
6270 static void
6271 rewrite_use_address (struct ivopts_data *data,
6272 struct iv_use *use, struct iv_cand *cand)
6273 {
6274 aff_tree aff;
6275 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
6276 tree base_hint = NULL_TREE;
6277 tree ref, iv;
6278 bool ok;
6279
6280 adjust_iv_update_pos (cand, use);
6281 ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
6282 gcc_assert (ok);
6283 unshare_aff_combination (&aff);
6284
6285 /* To avoid undefined overflow problems, all IV candidates use unsigned
6286 integer types. The drawback is that this makes it impossible for
6287 create_mem_ref to distinguish an IV that is based on a memory object
6288 from one that represents simply an offset.
6289
6290 To work around this problem, we pass a hint to create_mem_ref that
6291 indicates which variable (if any) in aff is an IV based on a memory
6292 object. Note that we only consider the candidate. If this is not
6293 based on an object, the base of the reference is in some subexpression
6294 of the use -- but these will use pointer types, so they are recognized
6295 by the create_mem_ref heuristics anyway. */
6296 if (cand->iv->base_object)
6297 base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
6298
6299 iv = var_at_stmt (data->current_loop, cand, use->stmt);
6300 ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
6301 reference_alias_ptr_type (*use->op_p),
6302 iv, base_hint, data->speed);
6303 copy_ref_info (ref, *use->op_p);
6304 *use->op_p = ref;
6305 }
6306
6307 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6308 candidate CAND. */
6309
6310 static void
6311 rewrite_use_compare (struct ivopts_data *data,
6312 struct iv_use *use, struct iv_cand *cand)
6313 {
6314 tree comp, *var_p, op, bound;
6315 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
6316 enum tree_code compare;
6317 struct cost_pair *cp = get_use_iv_cost (data, use, cand);
6318 bool ok;
6319
6320 bound = cp->value;
6321 if (bound)
6322 {
6323 tree var = var_at_stmt (data->current_loop, cand, use->stmt);
6324 tree var_type = TREE_TYPE (var);
6325 gimple_seq stmts;
6326
6327 if (dump_file && (dump_flags & TDF_DETAILS))
6328 {
6329 fprintf (dump_file, "Replacing exit test: ");
6330 print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
6331 }
6332 compare = cp->comp;
6333 bound = unshare_expr (fold_convert (var_type, bound));
6334 op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
6335 if (stmts)
6336 gsi_insert_seq_on_edge_immediate (
6337 loop_preheader_edge (data->current_loop),
6338 stmts);
6339
6340 gimple_cond_set_lhs (use->stmt, var);
6341 gimple_cond_set_code (use->stmt, compare);
6342 gimple_cond_set_rhs (use->stmt, op);
6343 return;
6344 }
6345
6346 /* The induction variable elimination failed; just express the original
6347 giv. */
6348 comp = get_computation (data->current_loop, use, cand);
6349 gcc_assert (comp != NULL_TREE);
6350
6351 ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
6352 gcc_assert (ok);
6353
6354 *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
6355 true, GSI_SAME_STMT);
6356 }
6357
6358 /* Rewrites USE using candidate CAND. */
6359
6360 static void
6361 rewrite_use (struct ivopts_data *data, struct iv_use *use, struct iv_cand *cand)
6362 {
6363 switch (use->type)
6364 {
6365 case USE_NONLINEAR_EXPR:
6366 rewrite_use_nonlinear_expr (data, use, cand);
6367 break;
6368
6369 case USE_ADDRESS:
6370 rewrite_use_address (data, use, cand);
6371 break;
6372
6373 case USE_COMPARE:
6374 rewrite_use_compare (data, use, cand);
6375 break;
6376
6377 default:
6378 gcc_unreachable ();
6379 }
6380
6381 update_stmt (use->stmt);
6382 }
6383
6384 /* Rewrite the uses using the selected induction variables. */
6385
6386 static void
6387 rewrite_uses (struct ivopts_data *data)
6388 {
6389 unsigned i;
6390 struct iv_cand *cand;
6391 struct iv_use *use;
6392
6393 for (i = 0; i < n_iv_uses (data); i++)
6394 {
6395 use = iv_use (data, i);
6396 cand = use->selected;
6397 gcc_assert (cand);
6398
6399 rewrite_use (data, use, cand);
6400 }
6401 }
6402
6403 /* Removes the ivs that are not used after rewriting. */
6404
6405 static void
6406 remove_unused_ivs (struct ivopts_data *data)
6407 {
6408 unsigned j;
6409 bitmap_iterator bi;
6410 bitmap toremove = BITMAP_ALLOC (NULL);
6411
6412 /* Figure out an order in which to release SSA DEFs so that we don't
6413 release something that we'd have to propagate into a debug stmt
6414 afterwards. */
6415 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
6416 {
6417 struct version_info *info;
6418
6419 info = ver_info (data, j);
6420 if (info->iv
6421 && !integer_zerop (info->iv->step)
6422 && !info->inv_id
6423 && !info->iv->have_use_for
6424 && !info->preserve_biv)
6425 bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
6426 }
6427
6428 release_defs_bitset (toremove);
6429
6430 BITMAP_FREE (toremove);
6431 }
6432
6433 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
6434 for pointer_map_traverse. */
6435
6436 static bool
6437 free_tree_niter_desc (const void *key ATTRIBUTE_UNUSED, void **value,
6438 void *data ATTRIBUTE_UNUSED)
6439 {
6440 struct tree_niter_desc *const niter = (struct tree_niter_desc *) *value;
6441
6442 free (niter);
6443 return true;
6444 }
6445
6446 /* Frees data allocated by the optimization of a single loop. */
6447
6448 static void
6449 free_loop_data (struct ivopts_data *data)
6450 {
6451 unsigned i, j;
6452 bitmap_iterator bi;
6453 tree obj;
6454
6455 if (data->niters)
6456 {
6457 pointer_map_traverse (data->niters, free_tree_niter_desc, NULL);
6458 pointer_map_destroy (data->niters);
6459 data->niters = NULL;
6460 }
6461
6462 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
6463 {
6464 struct version_info *info;
6465
6466 info = ver_info (data, i);
6467 free (info->iv);
6468 info->iv = NULL;
6469 info->has_nonlin_use = false;
6470 info->preserve_biv = false;
6471 info->inv_id = 0;
6472 }
6473 bitmap_clear (data->relevant);
6474 bitmap_clear (data->important_candidates);
6475
6476 for (i = 0; i < n_iv_uses (data); i++)
6477 {
6478 struct iv_use *use = iv_use (data, i);
6479
6480 free (use->iv);
6481 BITMAP_FREE (use->related_cands);
6482 for (j = 0; j < use->n_map_members; j++)
6483 if (use->cost_map[j].depends_on)
6484 BITMAP_FREE (use->cost_map[j].depends_on);
6485 free (use->cost_map);
6486 free (use);
6487 }
6488 VEC_truncate (iv_use_p, data->iv_uses, 0);
6489
6490 for (i = 0; i < n_iv_cands (data); i++)
6491 {
6492 struct iv_cand *cand = iv_cand (data, i);
6493
6494 free (cand->iv);
6495 if (cand->depends_on)
6496 BITMAP_FREE (cand->depends_on);
6497 free (cand);
6498 }
6499 VEC_truncate (iv_cand_p, data->iv_candidates, 0);
6500
6501 if (data->version_info_size < num_ssa_names)
6502 {
6503 data->version_info_size = 2 * num_ssa_names;
6504 free (data->version_info);
6505 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
6506 }
6507
6508 data->max_inv_id = 0;
6509
6510 FOR_EACH_VEC_ELT (tree, decl_rtl_to_reset, i, obj)
6511 SET_DECL_RTL (obj, NULL_RTX);
6512
6513 VEC_truncate (tree, decl_rtl_to_reset, 0);
6514
6515 htab_empty (data->inv_expr_tab);
6516 data->inv_expr_id = 0;
6517 }
6518
6519 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
6520 loop tree. */
6521
6522 static void
6523 tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
6524 {
6525 free_loop_data (data);
6526 free (data->version_info);
6527 BITMAP_FREE (data->relevant);
6528 BITMAP_FREE (data->important_candidates);
6529
6530 VEC_free (tree, heap, decl_rtl_to_reset);
6531 VEC_free (iv_use_p, heap, data->iv_uses);
6532 VEC_free (iv_cand_p, heap, data->iv_candidates);
6533 htab_delete (data->inv_expr_tab);
6534 }
6535
6536 /* Returns true if the loop body BODY includes any function calls. */
6537
6538 static bool
6539 loop_body_includes_call (basic_block *body, unsigned num_nodes)
6540 {
6541 gimple_stmt_iterator gsi;
6542 unsigned i;
6543
6544 for (i = 0; i < num_nodes; i++)
6545 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
6546 {
6547 gimple stmt = gsi_stmt (gsi);
6548 if (is_gimple_call (stmt)
6549 && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
6550 return true;
6551 }
6552 return false;
6553 }
6554
6555 /* Optimizes the LOOP. Returns true if anything changed. */
6556
6557 static bool
6558 tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
6559 {
6560 bool changed = false;
6561 struct iv_ca *iv_ca;
6562 edge exit = single_dom_exit (loop);
6563 basic_block *body;
6564
6565 gcc_assert (!data->niters);
6566 data->current_loop = loop;
6567 data->speed = optimize_loop_for_speed_p (loop);
6568
6569 if (dump_file && (dump_flags & TDF_DETAILS))
6570 {
6571 fprintf (dump_file, "Processing loop %d\n", loop->num);
6572
6573 if (exit)
6574 {
6575 fprintf (dump_file, " single exit %d -> %d, exit condition ",
6576 exit->src->index, exit->dest->index);
6577 print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
6578 fprintf (dump_file, "\n");
6579 }
6580
6581 fprintf (dump_file, "\n");
6582 }
6583
6584 body = get_loop_body (loop);
6585 data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
6586 renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
6587 free (body);
6588
6589 data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
6590
6591 /* For each ssa name determines whether it behaves as an induction variable
6592 in some loop. */
6593 if (!find_induction_variables (data))
6594 goto finish;
6595
6596 /* Finds interesting uses (item 1). */
6597 find_interesting_uses (data);
6598 if (n_iv_uses (data) > MAX_CONSIDERED_USES)
6599 goto finish;
6600
6601 /* Finds candidates for the induction variables (item 2). */
6602 find_iv_candidates (data);
6603
6604 /* Calculates the costs (item 3, part 1). */
6605 determine_iv_costs (data);
6606 determine_use_iv_costs (data);
6607 determine_set_costs (data);
6608
6609 /* Find the optimal set of induction variables (item 3, part 2). */
6610 iv_ca = find_optimal_iv_set (data);
6611 if (!iv_ca)
6612 goto finish;
6613 changed = true;
6614
6615 /* Create the new induction variables (item 4, part 1). */
6616 create_new_ivs (data, iv_ca);
6617 iv_ca_free (&iv_ca);
6618
6619 /* Rewrite the uses (item 4, part 2). */
6620 rewrite_uses (data);
6621
6622 /* Remove the ivs that are unused after rewriting. */
6623 remove_unused_ivs (data);
6624
6625 /* We have changed the structure of induction variables; it might happen
6626 that definitions in the scev database refer to some of them that were
6627 eliminated. */
6628 scev_reset ();
6629
6630 finish:
6631 free_loop_data (data);
6632
6633 return changed;
6634 }
6635
6636 /* Main entry point. Optimizes induction variables in loops. */
6637
6638 void
6639 tree_ssa_iv_optimize (void)
6640 {
6641 struct loop *loop;
6642 struct ivopts_data data;
6643 loop_iterator li;
6644
6645 tree_ssa_iv_optimize_init (&data);
6646
6647 /* Optimize the loops starting with the innermost ones. */
6648 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
6649 {
6650 if (dump_file && (dump_flags & TDF_DETAILS))
6651 flow_loop_dump (loop, dump_file, NULL, 1);
6652
6653 tree_ssa_iv_optimize_loop (&data, loop);
6654 }
6655
6656 tree_ssa_iv_optimize_finalize (&data);
6657 }