]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-ivopts.c
re PR tree-optimization/66768 (address space gets lost on literal pointer)
[thirdparty/gcc.git] / gcc / tree-ssa-loop-ivopts.c
1 /* Induction variable optimizations.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
25 following steps:
26
27 1) The interesting uses of induction variables are found. This includes
28
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
32
33 Note the interesting uses are categorized and handled in group.
34 Generally, address type uses are grouped together if their iv bases
35 are different in constant offset.
36
37 2) Candidates for the induction variables are found. This includes
38
39 -- old induction variables
40 -- the variables defined by expressions derived from the "interesting
41 groups/uses" above
42
43 3) The optimal (w.r. to a cost function) set of variables is chosen. The
44 cost function assigns a cost to sets of induction variables and consists
45 of three parts:
46
47 -- The group/use costs. Each of the interesting groups/uses chooses
48 the best induction variable in the set and adds its cost to the sum.
49 The cost reflects the time spent on modifying the induction variables
50 value to be usable for the given purpose (adding base and offset for
51 arrays, etc.).
52 -- The variable costs. Each of the variables has a cost assigned that
53 reflects the costs associated with incrementing the value of the
54 variable. The original variables are somewhat preferred.
55 -- The set cost. Depending on the size of the set, extra cost may be
56 added to reflect register pressure.
57
58 All the costs are defined in a machine-specific way, using the target
59 hooks and machine descriptions to determine them.
60
61 4) The trees are transformed to use the new variables, the dead code is
62 removed.
63
64 All of this is done loop by loop. Doing it globally is theoretically
65 possible, it might give a better performance and it might enable us
66 to decide costs more precisely, but getting all the interactions right
67 would be complicated. */
68
69 #include "config.h"
70 #include "system.h"
71 #include "coretypes.h"
72 #include "backend.h"
73 #include "rtl.h"
74 #include "tree.h"
75 #include "gimple.h"
76 #include "cfghooks.h"
77 #include "tree-pass.h"
78 #include "memmodel.h"
79 #include "tm_p.h"
80 #include "ssa.h"
81 #include "expmed.h"
82 #include "insn-config.h"
83 #include "emit-rtl.h"
84 #include "recog.h"
85 #include "cgraph.h"
86 #include "gimple-pretty-print.h"
87 #include "alias.h"
88 #include "fold-const.h"
89 #include "stor-layout.h"
90 #include "tree-eh.h"
91 #include "gimplify.h"
92 #include "gimple-iterator.h"
93 #include "gimplify-me.h"
94 #include "tree-cfg.h"
95 #include "tree-ssa-loop-ivopts.h"
96 #include "tree-ssa-loop-manip.h"
97 #include "tree-ssa-loop-niter.h"
98 #include "tree-ssa-loop.h"
99 #include "explow.h"
100 #include "expr.h"
101 #include "tree-dfa.h"
102 #include "tree-ssa.h"
103 #include "cfgloop.h"
104 #include "tree-scalar-evolution.h"
105 #include "params.h"
106 #include "tree-affine.h"
107 #include "tree-ssa-propagate.h"
108 #include "tree-ssa-address.h"
109 #include "builtins.h"
110 #include "tree-vectorizer.h"
111
112 /* FIXME: Expressions are expanded to RTL in this pass to determine the
113 cost of different addressing modes. This should be moved to a TBD
114 interface between the GIMPLE and RTL worlds. */
115
116 /* The infinite cost. */
117 #define INFTY 10000000
118
119 /* Returns the expected number of loop iterations for LOOP.
120 The average trip count is computed from profile data if it
121 exists. */
122
123 static inline HOST_WIDE_INT
124 avg_loop_niter (struct loop *loop)
125 {
126 HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
127 if (niter == -1)
128 {
129 niter = likely_max_stmt_executions_int (loop);
130
131 if (niter == -1 || niter > PARAM_VALUE (PARAM_AVG_LOOP_NITER))
132 return PARAM_VALUE (PARAM_AVG_LOOP_NITER);
133 }
134
135 return niter;
136 }
137
138 struct iv_use;
139
140 /* Representation of the induction variable. */
141 struct iv
142 {
143 tree base; /* Initial value of the iv. */
144 tree base_object; /* A memory object to that the induction variable points. */
145 tree step; /* Step of the iv (constant only). */
146 tree ssa_name; /* The ssa name with the value. */
147 struct iv_use *nonlin_use; /* The identifier in the use if it is the case. */
148 bool biv_p; /* Is it a biv? */
149 bool no_overflow; /* True if the iv doesn't overflow. */
150 bool have_address_use;/* For biv, indicate if it's used in any address
151 type use. */
152 };
153
154 /* Per-ssa version information (induction variable descriptions, etc.). */
155 struct version_info
156 {
157 tree name; /* The ssa name. */
158 struct iv *iv; /* Induction variable description. */
159 bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
160 an expression that is not an induction variable. */
161 bool preserve_biv; /* For the original biv, whether to preserve it. */
162 unsigned inv_id; /* Id of an invariant. */
163 };
164
165 /* Types of uses. */
166 enum use_type
167 {
168 USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
169 USE_ADDRESS, /* Use in an address. */
170 USE_COMPARE /* Use is a compare. */
171 };
172
173 /* Cost of a computation. */
174 struct comp_cost
175 {
176 comp_cost (): cost (0), complexity (0), scratch (0)
177 {}
178
179 comp_cost (int cost, unsigned complexity, int scratch = 0)
180 : cost (cost), complexity (complexity), scratch (scratch)
181 {}
182
183 /* Returns true if COST is infinite. */
184 bool infinite_cost_p ();
185
186 /* Adds costs COST1 and COST2. */
187 friend comp_cost operator+ (comp_cost cost1, comp_cost cost2);
188
189 /* Adds COST to the comp_cost. */
190 comp_cost operator+= (comp_cost cost);
191
192 /* Adds constant C to this comp_cost. */
193 comp_cost operator+= (HOST_WIDE_INT c);
194
195 /* Subtracts constant C to this comp_cost. */
196 comp_cost operator-= (HOST_WIDE_INT c);
197
198 /* Divide the comp_cost by constant C. */
199 comp_cost operator/= (HOST_WIDE_INT c);
200
201 /* Multiply the comp_cost by constant C. */
202 comp_cost operator*= (HOST_WIDE_INT c);
203
204 /* Subtracts costs COST1 and COST2. */
205 friend comp_cost operator- (comp_cost cost1, comp_cost cost2);
206
207 /* Subtracts COST from this comp_cost. */
208 comp_cost operator-= (comp_cost cost);
209
210 /* Returns true if COST1 is smaller than COST2. */
211 friend bool operator< (comp_cost cost1, comp_cost cost2);
212
213 /* Returns true if COST1 and COST2 are equal. */
214 friend bool operator== (comp_cost cost1, comp_cost cost2);
215
216 /* Returns true if COST1 is smaller or equal than COST2. */
217 friend bool operator<= (comp_cost cost1, comp_cost cost2);
218
219 int cost; /* The runtime cost. */
220 unsigned complexity; /* The estimate of the complexity of the code for
221 the computation (in no concrete units --
222 complexity field should be larger for more
223 complex expressions and addressing modes). */
224 int scratch; /* Scratch used during cost computation. */
225 };
226
227 static const comp_cost no_cost;
228 static const comp_cost infinite_cost (INFTY, INFTY, INFTY);
229
230 bool
231 comp_cost::infinite_cost_p ()
232 {
233 return cost == INFTY;
234 }
235
236 comp_cost
237 operator+ (comp_cost cost1, comp_cost cost2)
238 {
239 if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
240 return infinite_cost;
241
242 cost1.cost += cost2.cost;
243 cost1.complexity += cost2.complexity;
244
245 return cost1;
246 }
247
248 comp_cost
249 operator- (comp_cost cost1, comp_cost cost2)
250 {
251 if (cost1.infinite_cost_p ())
252 return infinite_cost;
253
254 gcc_assert (!cost2.infinite_cost_p ());
255
256 cost1.cost -= cost2.cost;
257 cost1.complexity -= cost2.complexity;
258
259 return cost1;
260 }
261
262 comp_cost
263 comp_cost::operator+= (comp_cost cost)
264 {
265 *this = *this + cost;
266 return *this;
267 }
268
269 comp_cost
270 comp_cost::operator+= (HOST_WIDE_INT c)
271 {
272 if (infinite_cost_p ())
273 return *this;
274
275 this->cost += c;
276
277 return *this;
278 }
279
280 comp_cost
281 comp_cost::operator-= (HOST_WIDE_INT c)
282 {
283 if (infinite_cost_p ())
284 return *this;
285
286 this->cost -= c;
287
288 return *this;
289 }
290
291 comp_cost
292 comp_cost::operator/= (HOST_WIDE_INT c)
293 {
294 if (infinite_cost_p ())
295 return *this;
296
297 this->cost /= c;
298
299 return *this;
300 }
301
302 comp_cost
303 comp_cost::operator*= (HOST_WIDE_INT c)
304 {
305 if (infinite_cost_p ())
306 return *this;
307
308 this->cost *= c;
309
310 return *this;
311 }
312
313 comp_cost
314 comp_cost::operator-= (comp_cost cost)
315 {
316 *this = *this - cost;
317 return *this;
318 }
319
320 bool
321 operator< (comp_cost cost1, comp_cost cost2)
322 {
323 if (cost1.cost == cost2.cost)
324 return cost1.complexity < cost2.complexity;
325
326 return cost1.cost < cost2.cost;
327 }
328
329 bool
330 operator== (comp_cost cost1, comp_cost cost2)
331 {
332 return cost1.cost == cost2.cost
333 && cost1.complexity == cost2.complexity;
334 }
335
336 bool
337 operator<= (comp_cost cost1, comp_cost cost2)
338 {
339 return cost1 < cost2 || cost1 == cost2;
340 }
341
342 struct iv_inv_expr_ent;
343
344 /* The candidate - cost pair. */
345 struct cost_pair
346 {
347 struct iv_cand *cand; /* The candidate. */
348 comp_cost cost; /* The cost. */
349 bitmap depends_on; /* The list of invariants that have to be
350 preserved. */
351 tree value; /* For final value elimination, the expression for
352 the final value of the iv. For iv elimination,
353 the new bound to compare with. */
354 enum tree_code comp; /* For iv elimination, the comparison. */
355 iv_inv_expr_ent *inv_expr; /* Loop invariant expression. */
356 };
357
358 /* Use. */
359 struct iv_use
360 {
361 unsigned id; /* The id of the use. */
362 unsigned group_id; /* The group id the use belongs to. */
363 enum use_type type; /* Type of the use. */
364 struct iv *iv; /* The induction variable it is based on. */
365 gimple *stmt; /* Statement in that it occurs. */
366 tree *op_p; /* The place where it occurs. */
367
368 tree addr_base; /* Base address with const offset stripped. */
369 unsigned HOST_WIDE_INT addr_offset;
370 /* Const offset stripped from base address. */
371 };
372
373 /* Group of uses. */
374 struct iv_group
375 {
376 /* The id of the group. */
377 unsigned id;
378 /* Uses of the group are of the same type. */
379 enum use_type type;
380 /* The set of "related" IV candidates, plus the important ones. */
381 bitmap related_cands;
382 /* Number of IV candidates in the cost_map. */
383 unsigned n_map_members;
384 /* The costs wrto the iv candidates. */
385 struct cost_pair *cost_map;
386 /* The selected candidate for the group. */
387 struct iv_cand *selected;
388 /* Uses in the group. */
389 vec<struct iv_use *> vuses;
390 };
391
392 /* The position where the iv is computed. */
393 enum iv_position
394 {
395 IP_NORMAL, /* At the end, just before the exit condition. */
396 IP_END, /* At the end of the latch block. */
397 IP_BEFORE_USE, /* Immediately before a specific use. */
398 IP_AFTER_USE, /* Immediately after a specific use. */
399 IP_ORIGINAL /* The original biv. */
400 };
401
402 /* The induction variable candidate. */
403 struct iv_cand
404 {
405 unsigned id; /* The number of the candidate. */
406 bool important; /* Whether this is an "important" candidate, i.e. such
407 that it should be considered by all uses. */
408 ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
409 gimple *incremented_at;/* For original biv, the statement where it is
410 incremented. */
411 tree var_before; /* The variable used for it before increment. */
412 tree var_after; /* The variable used for it after increment. */
413 struct iv *iv; /* The value of the candidate. NULL for
414 "pseudocandidate" used to indicate the possibility
415 to replace the final value of an iv by direct
416 computation of the value. */
417 unsigned cost; /* Cost of the candidate. */
418 unsigned cost_step; /* Cost of the candidate's increment operation. */
419 struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
420 where it is incremented. */
421 bitmap depends_on; /* The list of invariants that are used in step of the
422 biv. */
423 struct iv *orig_iv; /* The original iv if this cand is added from biv with
424 smaller type. */
425 };
426
427 /* Hashtable entry for common candidate derived from iv uses. */
428 struct iv_common_cand
429 {
430 tree base;
431 tree step;
432 /* IV uses from which this common candidate is derived. */
433 auto_vec<struct iv_use *> uses;
434 hashval_t hash;
435 };
436
437 /* Hashtable helpers. */
438
439 struct iv_common_cand_hasher : delete_ptr_hash <iv_common_cand>
440 {
441 static inline hashval_t hash (const iv_common_cand *);
442 static inline bool equal (const iv_common_cand *, const iv_common_cand *);
443 };
444
445 /* Hash function for possible common candidates. */
446
447 inline hashval_t
448 iv_common_cand_hasher::hash (const iv_common_cand *ccand)
449 {
450 return ccand->hash;
451 }
452
453 /* Hash table equality function for common candidates. */
454
455 inline bool
456 iv_common_cand_hasher::equal (const iv_common_cand *ccand1,
457 const iv_common_cand *ccand2)
458 {
459 return (ccand1->hash == ccand2->hash
460 && operand_equal_p (ccand1->base, ccand2->base, 0)
461 && operand_equal_p (ccand1->step, ccand2->step, 0)
462 && (TYPE_PRECISION (TREE_TYPE (ccand1->base))
463 == TYPE_PRECISION (TREE_TYPE (ccand2->base))));
464 }
465
466 /* Loop invariant expression hashtable entry. */
467
468 struct iv_inv_expr_ent
469 {
470 /* Tree expression of the entry. */
471 tree expr;
472 /* Unique indentifier. */
473 int id;
474 /* Hash value. */
475 hashval_t hash;
476 };
477
478 /* Sort iv_inv_expr_ent pair A and B by id field. */
479
480 static int
481 sort_iv_inv_expr_ent (const void *a, const void *b)
482 {
483 const iv_inv_expr_ent * const *e1 = (const iv_inv_expr_ent * const *) (a);
484 const iv_inv_expr_ent * const *e2 = (const iv_inv_expr_ent * const *) (b);
485
486 unsigned id1 = (*e1)->id;
487 unsigned id2 = (*e2)->id;
488
489 if (id1 < id2)
490 return -1;
491 else if (id1 > id2)
492 return 1;
493 else
494 return 0;
495 }
496
497 /* Hashtable helpers. */
498
499 struct iv_inv_expr_hasher : free_ptr_hash <iv_inv_expr_ent>
500 {
501 static inline hashval_t hash (const iv_inv_expr_ent *);
502 static inline bool equal (const iv_inv_expr_ent *, const iv_inv_expr_ent *);
503 };
504
505 /* Hash function for loop invariant expressions. */
506
507 inline hashval_t
508 iv_inv_expr_hasher::hash (const iv_inv_expr_ent *expr)
509 {
510 return expr->hash;
511 }
512
513 /* Hash table equality function for expressions. */
514
515 inline bool
516 iv_inv_expr_hasher::equal (const iv_inv_expr_ent *expr1,
517 const iv_inv_expr_ent *expr2)
518 {
519 return expr1->hash == expr2->hash
520 && operand_equal_p (expr1->expr, expr2->expr, 0);
521 }
522
523 struct ivopts_data
524 {
525 /* The currently optimized loop. */
526 struct loop *current_loop;
527 source_location loop_loc;
528
529 /* Numbers of iterations for all exits of the current loop. */
530 hash_map<edge, tree_niter_desc *> *niters;
531
532 /* Number of registers used in it. */
533 unsigned regs_used;
534
535 /* The size of version_info array allocated. */
536 unsigned version_info_size;
537
538 /* The array of information for the ssa names. */
539 struct version_info *version_info;
540
541 /* The hashtable of loop invariant expressions created
542 by ivopt. */
543 hash_table<iv_inv_expr_hasher> *inv_expr_tab;
544
545 /* Loop invariant expression id. */
546 int max_inv_expr_id;
547
548 /* The bitmap of indices in version_info whose value was changed. */
549 bitmap relevant;
550
551 /* The uses of induction variables. */
552 vec<iv_group *> vgroups;
553
554 /* The candidates. */
555 vec<iv_cand *> vcands;
556
557 /* A bitmap of important candidates. */
558 bitmap important_candidates;
559
560 /* Cache used by tree_to_aff_combination_expand. */
561 hash_map<tree, name_expansion *> *name_expansion_cache;
562
563 /* The hashtable of common candidates derived from iv uses. */
564 hash_table<iv_common_cand_hasher> *iv_common_cand_tab;
565
566 /* The common candidates. */
567 vec<iv_common_cand *> iv_common_cands;
568
569 /* The maximum invariant id. */
570 unsigned max_inv_id;
571
572 /* Number of no_overflow BIVs which are not used in memory address. */
573 unsigned bivs_not_used_in_addr;
574
575 /* Obstack for iv structure. */
576 struct obstack iv_obstack;
577
578 /* Whether to consider just related and important candidates when replacing a
579 use. */
580 bool consider_all_candidates;
581
582 /* Are we optimizing for speed? */
583 bool speed;
584
585 /* Whether the loop body includes any function calls. */
586 bool body_includes_call;
587
588 /* Whether the loop body can only be exited via single exit. */
589 bool loop_single_exit_p;
590 };
591
592 /* An assignment of iv candidates to uses. */
593
594 struct iv_ca
595 {
596 /* The number of uses covered by the assignment. */
597 unsigned upto;
598
599 /* Number of uses that cannot be expressed by the candidates in the set. */
600 unsigned bad_groups;
601
602 /* Candidate assigned to a use, together with the related costs. */
603 struct cost_pair **cand_for_group;
604
605 /* Number of times each candidate is used. */
606 unsigned *n_cand_uses;
607
608 /* The candidates used. */
609 bitmap cands;
610
611 /* The number of candidates in the set. */
612 unsigned n_cands;
613
614 /* Total number of registers needed. */
615 unsigned n_regs;
616
617 /* Total cost of expressing uses. */
618 comp_cost cand_use_cost;
619
620 /* Total cost of candidates. */
621 unsigned cand_cost;
622
623 /* Number of times each invariant is used. */
624 unsigned *n_invariant_uses;
625
626 /* Hash set with used invariant expression. */
627 hash_map <iv_inv_expr_ent *, unsigned> *used_inv_exprs;
628
629 /* Total cost of the assignment. */
630 comp_cost cost;
631 };
632
633 /* Difference of two iv candidate assignments. */
634
635 struct iv_ca_delta
636 {
637 /* Changed group. */
638 struct iv_group *group;
639
640 /* An old assignment (for rollback purposes). */
641 struct cost_pair *old_cp;
642
643 /* A new assignment. */
644 struct cost_pair *new_cp;
645
646 /* Next change in the list. */
647 struct iv_ca_delta *next;
648 };
649
650 /* Bound on number of candidates below that all candidates are considered. */
651
652 #define CONSIDER_ALL_CANDIDATES_BOUND \
653 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
654
655 /* If there are more iv occurrences, we just give up (it is quite unlikely that
656 optimizing such a loop would help, and it would take ages). */
657
658 #define MAX_CONSIDERED_GROUPS \
659 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
660
661 /* If there are at most this number of ivs in the set, try removing unnecessary
662 ivs from the set always. */
663
664 #define ALWAYS_PRUNE_CAND_SET_BOUND \
665 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
666
667 /* The list of trees for that the decl_rtl field must be reset is stored
668 here. */
669
670 static vec<tree> decl_rtl_to_reset;
671
672 static comp_cost force_expr_to_var_cost (tree, bool);
673
674 /* The single loop exit if it dominates the latch, NULL otherwise. */
675
676 edge
677 single_dom_exit (struct loop *loop)
678 {
679 edge exit = single_exit (loop);
680
681 if (!exit)
682 return NULL;
683
684 if (!just_once_each_iteration_p (loop, exit->src))
685 return NULL;
686
687 return exit;
688 }
689
690 /* Dumps information about the induction variable IV to FILE. Don't dump
691 variable's name if DUMP_NAME is FALSE. The information is dumped with
692 preceding spaces indicated by INDENT_LEVEL. */
693
694 void
695 dump_iv (FILE *file, struct iv *iv, bool dump_name, unsigned indent_level)
696 {
697 const char *p;
698 const char spaces[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
699
700 if (indent_level > 4)
701 indent_level = 4;
702 p = spaces + 8 - (indent_level << 1);
703
704 fprintf (file, "%sIV struct:\n", p);
705 if (iv->ssa_name && dump_name)
706 {
707 fprintf (file, "%s SSA_NAME:\t", p);
708 print_generic_expr (file, iv->ssa_name, TDF_SLIM);
709 fprintf (file, "\n");
710 }
711
712 fprintf (file, "%s Type:\t", p);
713 print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
714 fprintf (file, "\n");
715
716 fprintf (file, "%s Base:\t", p);
717 print_generic_expr (file, iv->base, TDF_SLIM);
718 fprintf (file, "\n");
719
720 fprintf (file, "%s Step:\t", p);
721 print_generic_expr (file, iv->step, TDF_SLIM);
722 fprintf (file, "\n");
723
724 if (iv->base_object)
725 {
726 fprintf (file, "%s Object:\t", p);
727 print_generic_expr (file, iv->base_object, TDF_SLIM);
728 fprintf (file, "\n");
729 }
730
731 fprintf (file, "%s Biv:\t%c\n", p, iv->biv_p ? 'Y' : 'N');
732
733 fprintf (file, "%s Overflowness wrto loop niter:\t%s\n",
734 p, iv->no_overflow ? "No-overflow" : "Overflow");
735 }
736
737 /* Dumps information about the USE to FILE. */
738
739 void
740 dump_use (FILE *file, struct iv_use *use)
741 {
742 fprintf (file, " Use %d.%d:\n", use->group_id, use->id);
743 fprintf (file, " At stmt:\t");
744 print_gimple_stmt (file, use->stmt, 0, 0);
745 fprintf (file, " At pos:\t");
746 if (use->op_p)
747 print_generic_expr (file, *use->op_p, TDF_SLIM);
748 fprintf (file, "\n");
749 dump_iv (file, use->iv, false, 2);
750 }
751
752 /* Dumps information about the uses to FILE. */
753
754 void
755 dump_groups (FILE *file, struct ivopts_data *data)
756 {
757 unsigned i, j;
758 struct iv_group *group;
759
760 for (i = 0; i < data->vgroups.length (); i++)
761 {
762 group = data->vgroups[i];
763 fprintf (file, "Group %d:\n", group->id);
764 if (group->type == USE_NONLINEAR_EXPR)
765 fprintf (file, " Type:\tGENERIC\n");
766 else if (group->type == USE_ADDRESS)
767 fprintf (file, " Type:\tADDRESS\n");
768 else
769 {
770 gcc_assert (group->type == USE_COMPARE);
771 fprintf (file, " Type:\tCOMPARE\n");
772 }
773 for (j = 0; j < group->vuses.length (); j++)
774 dump_use (file, group->vuses[j]);
775 }
776 }
777
778 /* Dumps information about induction variable candidate CAND to FILE. */
779
780 void
781 dump_cand (FILE *file, struct iv_cand *cand)
782 {
783 struct iv *iv = cand->iv;
784
785 fprintf (file, "Candidate %d:\n", cand->id);
786 if (cand->depends_on)
787 {
788 fprintf (file, " Depend on: ");
789 dump_bitmap (file, cand->depends_on);
790 }
791
792 if (cand->var_before)
793 {
794 fprintf (file, " Var befor: ");
795 print_generic_expr (file, cand->var_before, TDF_SLIM);
796 fprintf (file, "\n");
797 }
798 if (cand->var_after)
799 {
800 fprintf (file, " Var after: ");
801 print_generic_expr (file, cand->var_after, TDF_SLIM);
802 fprintf (file, "\n");
803 }
804
805 switch (cand->pos)
806 {
807 case IP_NORMAL:
808 fprintf (file, " Incr POS: before exit test\n");
809 break;
810
811 case IP_BEFORE_USE:
812 fprintf (file, " Incr POS: before use %d\n", cand->ainc_use->id);
813 break;
814
815 case IP_AFTER_USE:
816 fprintf (file, " Incr POS: after use %d\n", cand->ainc_use->id);
817 break;
818
819 case IP_END:
820 fprintf (file, " Incr POS: at end\n");
821 break;
822
823 case IP_ORIGINAL:
824 fprintf (file, " Incr POS: orig biv\n");
825 break;
826 }
827
828 dump_iv (file, iv, false, 1);
829 }
830
831 /* Returns the info for ssa version VER. */
832
833 static inline struct version_info *
834 ver_info (struct ivopts_data *data, unsigned ver)
835 {
836 return data->version_info + ver;
837 }
838
839 /* Returns the info for ssa name NAME. */
840
841 static inline struct version_info *
842 name_info (struct ivopts_data *data, tree name)
843 {
844 return ver_info (data, SSA_NAME_VERSION (name));
845 }
846
847 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
848 emitted in LOOP. */
849
850 static bool
851 stmt_after_ip_normal_pos (struct loop *loop, gimple *stmt)
852 {
853 basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
854
855 gcc_assert (bb);
856
857 if (sbb == loop->latch)
858 return true;
859
860 if (sbb != bb)
861 return false;
862
863 return stmt == last_stmt (bb);
864 }
865
866 /* Returns true if STMT if after the place where the original induction
867 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
868 if the positions are identical. */
869
870 static bool
871 stmt_after_inc_pos (struct iv_cand *cand, gimple *stmt, bool true_if_equal)
872 {
873 basic_block cand_bb = gimple_bb (cand->incremented_at);
874 basic_block stmt_bb = gimple_bb (stmt);
875
876 if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
877 return false;
878
879 if (stmt_bb != cand_bb)
880 return true;
881
882 if (true_if_equal
883 && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
884 return true;
885 return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
886 }
887
888 /* Returns true if STMT if after the place where the induction variable
889 CAND is incremented in LOOP. */
890
891 static bool
892 stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple *stmt)
893 {
894 switch (cand->pos)
895 {
896 case IP_END:
897 return false;
898
899 case IP_NORMAL:
900 return stmt_after_ip_normal_pos (loop, stmt);
901
902 case IP_ORIGINAL:
903 case IP_AFTER_USE:
904 return stmt_after_inc_pos (cand, stmt, false);
905
906 case IP_BEFORE_USE:
907 return stmt_after_inc_pos (cand, stmt, true);
908
909 default:
910 gcc_unreachable ();
911 }
912 }
913
914 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
915
916 static bool
917 abnormal_ssa_name_p (tree exp)
918 {
919 if (!exp)
920 return false;
921
922 if (TREE_CODE (exp) != SSA_NAME)
923 return false;
924
925 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
926 }
927
928 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
929 abnormal phi node. Callback for for_each_index. */
930
931 static bool
932 idx_contains_abnormal_ssa_name_p (tree base, tree *index,
933 void *data ATTRIBUTE_UNUSED)
934 {
935 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
936 {
937 if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
938 return false;
939 if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
940 return false;
941 }
942
943 return !abnormal_ssa_name_p (*index);
944 }
945
946 /* Returns true if EXPR contains a ssa name that occurs in an
947 abnormal phi node. */
948
949 bool
950 contains_abnormal_ssa_name_p (tree expr)
951 {
952 enum tree_code code;
953 enum tree_code_class codeclass;
954
955 if (!expr)
956 return false;
957
958 code = TREE_CODE (expr);
959 codeclass = TREE_CODE_CLASS (code);
960
961 if (code == SSA_NAME)
962 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
963
964 if (code == INTEGER_CST
965 || is_gimple_min_invariant (expr))
966 return false;
967
968 if (code == ADDR_EXPR)
969 return !for_each_index (&TREE_OPERAND (expr, 0),
970 idx_contains_abnormal_ssa_name_p,
971 NULL);
972
973 if (code == COND_EXPR)
974 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
975 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
976 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
977
978 switch (codeclass)
979 {
980 case tcc_binary:
981 case tcc_comparison:
982 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
983 return true;
984
985 /* Fallthru. */
986 case tcc_unary:
987 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
988 return true;
989
990 break;
991
992 default:
993 gcc_unreachable ();
994 }
995
996 return false;
997 }
998
999 /* Returns the structure describing number of iterations determined from
1000 EXIT of DATA->current_loop, or NULL if something goes wrong. */
1001
1002 static struct tree_niter_desc *
1003 niter_for_exit (struct ivopts_data *data, edge exit)
1004 {
1005 struct tree_niter_desc *desc;
1006 tree_niter_desc **slot;
1007
1008 if (!data->niters)
1009 {
1010 data->niters = new hash_map<edge, tree_niter_desc *>;
1011 slot = NULL;
1012 }
1013 else
1014 slot = data->niters->get (exit);
1015
1016 if (!slot)
1017 {
1018 /* Try to determine number of iterations. We cannot safely work with ssa
1019 names that appear in phi nodes on abnormal edges, so that we do not
1020 create overlapping life ranges for them (PR 27283). */
1021 desc = XNEW (struct tree_niter_desc);
1022 if (!number_of_iterations_exit (data->current_loop,
1023 exit, desc, true)
1024 || contains_abnormal_ssa_name_p (desc->niter))
1025 {
1026 XDELETE (desc);
1027 desc = NULL;
1028 }
1029 data->niters->put (exit, desc);
1030 }
1031 else
1032 desc = *slot;
1033
1034 return desc;
1035 }
1036
1037 /* Returns the structure describing number of iterations determined from
1038 single dominating exit of DATA->current_loop, or NULL if something
1039 goes wrong. */
1040
1041 static struct tree_niter_desc *
1042 niter_for_single_dom_exit (struct ivopts_data *data)
1043 {
1044 edge exit = single_dom_exit (data->current_loop);
1045
1046 if (!exit)
1047 return NULL;
1048
1049 return niter_for_exit (data, exit);
1050 }
1051
1052 /* Initializes data structures used by the iv optimization pass, stored
1053 in DATA. */
1054
1055 static void
1056 tree_ssa_iv_optimize_init (struct ivopts_data *data)
1057 {
1058 data->version_info_size = 2 * num_ssa_names;
1059 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
1060 data->relevant = BITMAP_ALLOC (NULL);
1061 data->important_candidates = BITMAP_ALLOC (NULL);
1062 data->max_inv_id = 0;
1063 data->niters = NULL;
1064 data->vgroups.create (20);
1065 data->vcands.create (20);
1066 data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10);
1067 data->max_inv_expr_id = 0;
1068 data->name_expansion_cache = NULL;
1069 data->iv_common_cand_tab = new hash_table<iv_common_cand_hasher> (10);
1070 data->iv_common_cands.create (20);
1071 decl_rtl_to_reset.create (20);
1072 gcc_obstack_init (&data->iv_obstack);
1073 }
1074
1075 /* Returns a memory object to that EXPR points. In case we are able to
1076 determine that it does not point to any such object, NULL is returned. */
1077
1078 static tree
1079 determine_base_object (tree expr)
1080 {
1081 enum tree_code code = TREE_CODE (expr);
1082 tree base, obj;
1083
1084 /* If this is a pointer casted to any type, we need to determine
1085 the base object for the pointer; so handle conversions before
1086 throwing away non-pointer expressions. */
1087 if (CONVERT_EXPR_P (expr))
1088 return determine_base_object (TREE_OPERAND (expr, 0));
1089
1090 if (!POINTER_TYPE_P (TREE_TYPE (expr)))
1091 return NULL_TREE;
1092
1093 switch (code)
1094 {
1095 case INTEGER_CST:
1096 return NULL_TREE;
1097
1098 case ADDR_EXPR:
1099 obj = TREE_OPERAND (expr, 0);
1100 base = get_base_address (obj);
1101
1102 if (!base)
1103 return expr;
1104
1105 if (TREE_CODE (base) == MEM_REF)
1106 return determine_base_object (TREE_OPERAND (base, 0));
1107
1108 return fold_convert (ptr_type_node,
1109 build_fold_addr_expr (base));
1110
1111 case POINTER_PLUS_EXPR:
1112 return determine_base_object (TREE_OPERAND (expr, 0));
1113
1114 case PLUS_EXPR:
1115 case MINUS_EXPR:
1116 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
1117 gcc_unreachable ();
1118
1119 default:
1120 return fold_convert (ptr_type_node, expr);
1121 }
1122 }
1123
1124 /* Return true if address expression with non-DECL_P operand appears
1125 in EXPR. */
1126
1127 static bool
1128 contain_complex_addr_expr (tree expr)
1129 {
1130 bool res = false;
1131
1132 STRIP_NOPS (expr);
1133 switch (TREE_CODE (expr))
1134 {
1135 case POINTER_PLUS_EXPR:
1136 case PLUS_EXPR:
1137 case MINUS_EXPR:
1138 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0));
1139 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1));
1140 break;
1141
1142 case ADDR_EXPR:
1143 return (!DECL_P (TREE_OPERAND (expr, 0)));
1144
1145 default:
1146 return false;
1147 }
1148
1149 return res;
1150 }
1151
1152 /* Allocates an induction variable with given initial value BASE and step STEP
1153 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
1154
1155 static struct iv *
1156 alloc_iv (struct ivopts_data *data, tree base, tree step,
1157 bool no_overflow = false)
1158 {
1159 tree expr = base;
1160 struct iv *iv = (struct iv*) obstack_alloc (&data->iv_obstack,
1161 sizeof (struct iv));
1162 gcc_assert (step != NULL_TREE);
1163
1164 /* Lower address expression in base except ones with DECL_P as operand.
1165 By doing this:
1166 1) More accurate cost can be computed for address expressions;
1167 2) Duplicate candidates won't be created for bases in different
1168 forms, like &a[0] and &a. */
1169 STRIP_NOPS (expr);
1170 if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0)))
1171 || contain_complex_addr_expr (expr))
1172 {
1173 aff_tree comb;
1174 tree_to_aff_combination (expr, TREE_TYPE (base), &comb);
1175 base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
1176 }
1177
1178 iv->base = base;
1179 iv->base_object = determine_base_object (base);
1180 iv->step = step;
1181 iv->biv_p = false;
1182 iv->nonlin_use = NULL;
1183 iv->ssa_name = NULL_TREE;
1184 if (!no_overflow
1185 && !iv_can_overflow_p (data->current_loop, TREE_TYPE (base),
1186 base, step))
1187 no_overflow = true;
1188 iv->no_overflow = no_overflow;
1189 iv->have_address_use = false;
1190
1191 return iv;
1192 }
1193
1194 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1195 doesn't overflow. */
1196
1197 static void
1198 set_iv (struct ivopts_data *data, tree iv, tree base, tree step,
1199 bool no_overflow)
1200 {
1201 struct version_info *info = name_info (data, iv);
1202
1203 gcc_assert (!info->iv);
1204
1205 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
1206 info->iv = alloc_iv (data, base, step, no_overflow);
1207 info->iv->ssa_name = iv;
1208 }
1209
1210 /* Finds induction variable declaration for VAR. */
1211
1212 static struct iv *
1213 get_iv (struct ivopts_data *data, tree var)
1214 {
1215 basic_block bb;
1216 tree type = TREE_TYPE (var);
1217
1218 if (!POINTER_TYPE_P (type)
1219 && !INTEGRAL_TYPE_P (type))
1220 return NULL;
1221
1222 if (!name_info (data, var)->iv)
1223 {
1224 bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1225
1226 if (!bb
1227 || !flow_bb_inside_loop_p (data->current_loop, bb))
1228 set_iv (data, var, var, build_int_cst (type, 0), true);
1229 }
1230
1231 return name_info (data, var)->iv;
1232 }
1233
1234 /* Return the first non-invariant ssa var found in EXPR. */
1235
1236 static tree
1237 extract_single_var_from_expr (tree expr)
1238 {
1239 int i, n;
1240 tree tmp;
1241 enum tree_code code;
1242
1243 if (!expr || is_gimple_min_invariant (expr))
1244 return NULL;
1245
1246 code = TREE_CODE (expr);
1247 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1248 {
1249 n = TREE_OPERAND_LENGTH (expr);
1250 for (i = 0; i < n; i++)
1251 {
1252 tmp = extract_single_var_from_expr (TREE_OPERAND (expr, i));
1253
1254 if (tmp)
1255 return tmp;
1256 }
1257 }
1258 return (TREE_CODE (expr) == SSA_NAME) ? expr : NULL;
1259 }
1260
1261 /* Finds basic ivs. */
1262
1263 static bool
1264 find_bivs (struct ivopts_data *data)
1265 {
1266 gphi *phi;
1267 affine_iv iv;
1268 tree step, type, base, stop;
1269 bool found = false;
1270 struct loop *loop = data->current_loop;
1271 gphi_iterator psi;
1272
1273 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1274 {
1275 phi = psi.phi ();
1276
1277 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
1278 continue;
1279
1280 if (virtual_operand_p (PHI_RESULT (phi)))
1281 continue;
1282
1283 if (!simple_iv (loop, loop, PHI_RESULT (phi), &iv, true))
1284 continue;
1285
1286 if (integer_zerop (iv.step))
1287 continue;
1288
1289 step = iv.step;
1290 base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1291 /* Stop expanding iv base at the first ssa var referred by iv step.
1292 Ideally we should stop at any ssa var, because that's expensive
1293 and unusual to happen, we just do it on the first one.
1294
1295 See PR64705 for the rationale. */
1296 stop = extract_single_var_from_expr (step);
1297 base = expand_simple_operations (base, stop);
1298 if (contains_abnormal_ssa_name_p (base)
1299 || contains_abnormal_ssa_name_p (step))
1300 continue;
1301
1302 type = TREE_TYPE (PHI_RESULT (phi));
1303 base = fold_convert (type, base);
1304 if (step)
1305 {
1306 if (POINTER_TYPE_P (type))
1307 step = convert_to_ptrofftype (step);
1308 else
1309 step = fold_convert (type, step);
1310 }
1311
1312 set_iv (data, PHI_RESULT (phi), base, step, iv.no_overflow);
1313 found = true;
1314 }
1315
1316 return found;
1317 }
1318
1319 /* Marks basic ivs. */
1320
1321 static void
1322 mark_bivs (struct ivopts_data *data)
1323 {
1324 gphi *phi;
1325 gimple *def;
1326 tree var;
1327 struct iv *iv, *incr_iv;
1328 struct loop *loop = data->current_loop;
1329 basic_block incr_bb;
1330 gphi_iterator psi;
1331
1332 data->bivs_not_used_in_addr = 0;
1333 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1334 {
1335 phi = psi.phi ();
1336
1337 iv = get_iv (data, PHI_RESULT (phi));
1338 if (!iv)
1339 continue;
1340
1341 var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1342 def = SSA_NAME_DEF_STMT (var);
1343 /* Don't mark iv peeled from other one as biv. */
1344 if (def
1345 && gimple_code (def) == GIMPLE_PHI
1346 && gimple_bb (def) == loop->header)
1347 continue;
1348
1349 incr_iv = get_iv (data, var);
1350 if (!incr_iv)
1351 continue;
1352
1353 /* If the increment is in the subloop, ignore it. */
1354 incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1355 if (incr_bb->loop_father != data->current_loop
1356 || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
1357 continue;
1358
1359 iv->biv_p = true;
1360 incr_iv->biv_p = true;
1361 if (iv->no_overflow)
1362 data->bivs_not_used_in_addr++;
1363 if (incr_iv->no_overflow)
1364 data->bivs_not_used_in_addr++;
1365 }
1366 }
1367
1368 /* Checks whether STMT defines a linear induction variable and stores its
1369 parameters to IV. */
1370
1371 static bool
1372 find_givs_in_stmt_scev (struct ivopts_data *data, gimple *stmt, affine_iv *iv)
1373 {
1374 tree lhs, stop;
1375 struct loop *loop = data->current_loop;
1376
1377 iv->base = NULL_TREE;
1378 iv->step = NULL_TREE;
1379
1380 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1381 return false;
1382
1383 lhs = gimple_assign_lhs (stmt);
1384 if (TREE_CODE (lhs) != SSA_NAME)
1385 return false;
1386
1387 if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
1388 return false;
1389
1390 /* Stop expanding iv base at the first ssa var referred by iv step.
1391 Ideally we should stop at any ssa var, because that's expensive
1392 and unusual to happen, we just do it on the first one.
1393
1394 See PR64705 for the rationale. */
1395 stop = extract_single_var_from_expr (iv->step);
1396 iv->base = expand_simple_operations (iv->base, stop);
1397 if (contains_abnormal_ssa_name_p (iv->base)
1398 || contains_abnormal_ssa_name_p (iv->step))
1399 return false;
1400
1401 /* If STMT could throw, then do not consider STMT as defining a GIV.
1402 While this will suppress optimizations, we can not safely delete this
1403 GIV and associated statements, even if it appears it is not used. */
1404 if (stmt_could_throw_p (stmt))
1405 return false;
1406
1407 return true;
1408 }
1409
1410 /* Finds general ivs in statement STMT. */
1411
1412 static void
1413 find_givs_in_stmt (struct ivopts_data *data, gimple *stmt)
1414 {
1415 affine_iv iv;
1416
1417 if (!find_givs_in_stmt_scev (data, stmt, &iv))
1418 return;
1419
1420 set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step, iv.no_overflow);
1421 }
1422
1423 /* Finds general ivs in basic block BB. */
1424
1425 static void
1426 find_givs_in_bb (struct ivopts_data *data, basic_block bb)
1427 {
1428 gimple_stmt_iterator bsi;
1429
1430 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1431 find_givs_in_stmt (data, gsi_stmt (bsi));
1432 }
1433
1434 /* Finds general ivs. */
1435
1436 static void
1437 find_givs (struct ivopts_data *data)
1438 {
1439 struct loop *loop = data->current_loop;
1440 basic_block *body = get_loop_body_in_dom_order (loop);
1441 unsigned i;
1442
1443 for (i = 0; i < loop->num_nodes; i++)
1444 find_givs_in_bb (data, body[i]);
1445 free (body);
1446 }
1447
1448 /* For each ssa name defined in LOOP determines whether it is an induction
1449 variable and if so, its initial value and step. */
1450
1451 static bool
1452 find_induction_variables (struct ivopts_data *data)
1453 {
1454 unsigned i;
1455 bitmap_iterator bi;
1456
1457 if (!find_bivs (data))
1458 return false;
1459
1460 find_givs (data);
1461 mark_bivs (data);
1462
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1464 {
1465 struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
1466
1467 if (niter)
1468 {
1469 fprintf (dump_file, " number of iterations ");
1470 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1471 if (!integer_zerop (niter->may_be_zero))
1472 {
1473 fprintf (dump_file, "; zero if ");
1474 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1475 }
1476 fprintf (dump_file, "\n");
1477 };
1478
1479 fprintf (dump_file, "\n<Induction Vars>:\n");
1480 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1481 {
1482 struct version_info *info = ver_info (data, i);
1483 if (info->iv && info->iv->step && !integer_zerop (info->iv->step))
1484 dump_iv (dump_file, ver_info (data, i)->iv, true, 0);
1485 }
1486 }
1487
1488 return true;
1489 }
1490
1491 /* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
1492 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1493 is the const offset stripped from IV base; for other types use, both
1494 are zero by default. */
1495
1496 static struct iv_use *
1497 record_use (struct iv_group *group, tree *use_p, struct iv *iv,
1498 gimple *stmt, enum use_type type, tree addr_base,
1499 unsigned HOST_WIDE_INT addr_offset)
1500 {
1501 struct iv_use *use = XCNEW (struct iv_use);
1502
1503 use->id = group->vuses.length ();
1504 use->group_id = group->id;
1505 use->type = type;
1506 use->iv = iv;
1507 use->stmt = stmt;
1508 use->op_p = use_p;
1509 use->addr_base = addr_base;
1510 use->addr_offset = addr_offset;
1511
1512 group->vuses.safe_push (use);
1513 return use;
1514 }
1515
1516 /* Checks whether OP is a loop-level invariant and if so, records it.
1517 NONLINEAR_USE is true if the invariant is used in a way we do not
1518 handle specially. */
1519
1520 static void
1521 record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
1522 {
1523 basic_block bb;
1524 struct version_info *info;
1525
1526 if (TREE_CODE (op) != SSA_NAME
1527 || virtual_operand_p (op))
1528 return;
1529
1530 bb = gimple_bb (SSA_NAME_DEF_STMT (op));
1531 if (bb
1532 && flow_bb_inside_loop_p (data->current_loop, bb))
1533 return;
1534
1535 info = name_info (data, op);
1536 info->name = op;
1537 info->has_nonlin_use |= nonlinear_use;
1538 if (!info->inv_id)
1539 info->inv_id = ++data->max_inv_id;
1540 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
1541 }
1542
1543 static tree
1544 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset);
1545
1546 /* Record a group of TYPE. */
1547
1548 static struct iv_group *
1549 record_group (struct ivopts_data *data, enum use_type type)
1550 {
1551 struct iv_group *group = XCNEW (struct iv_group);
1552
1553 group->id = data->vgroups.length ();
1554 group->type = type;
1555 group->related_cands = BITMAP_ALLOC (NULL);
1556 group->vuses.create (1);
1557
1558 data->vgroups.safe_push (group);
1559 return group;
1560 }
1561
1562 /* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
1563 New group will be created if there is no existing group for the use. */
1564
1565 static struct iv_use *
1566 record_group_use (struct ivopts_data *data, tree *use_p,
1567 struct iv *iv, gimple *stmt, enum use_type type)
1568 {
1569 tree addr_base = NULL;
1570 struct iv_group *group = NULL;
1571 unsigned HOST_WIDE_INT addr_offset = 0;
1572
1573 /* Record non address type use in a new group. */
1574 if (type == USE_ADDRESS && iv->base_object)
1575 {
1576 unsigned int i;
1577
1578 addr_base = strip_offset (iv->base, &addr_offset);
1579 for (i = 0; i < data->vgroups.length (); i++)
1580 {
1581 struct iv_use *use;
1582
1583 group = data->vgroups[i];
1584 use = group->vuses[0];
1585 if (use->type != USE_ADDRESS || !use->iv->base_object)
1586 continue;
1587
1588 /* Check if it has the same stripped base and step. */
1589 if (operand_equal_p (iv->base_object, use->iv->base_object, 0)
1590 && operand_equal_p (iv->step, use->iv->step, 0)
1591 && operand_equal_p (addr_base, use->addr_base, 0))
1592 break;
1593 }
1594 if (i == data->vgroups.length ())
1595 group = NULL;
1596 }
1597
1598 if (!group)
1599 group = record_group (data, type);
1600
1601 return record_use (group, use_p, iv, stmt, type, addr_base, addr_offset);
1602 }
1603
1604 /* Checks whether the use OP is interesting and if so, records it. */
1605
1606 static struct iv_use *
1607 find_interesting_uses_op (struct ivopts_data *data, tree op)
1608 {
1609 struct iv *iv;
1610 gimple *stmt;
1611 struct iv_use *use;
1612
1613 if (TREE_CODE (op) != SSA_NAME)
1614 return NULL;
1615
1616 iv = get_iv (data, op);
1617 if (!iv)
1618 return NULL;
1619
1620 if (iv->nonlin_use)
1621 {
1622 gcc_assert (iv->nonlin_use->type == USE_NONLINEAR_EXPR);
1623 return iv->nonlin_use;
1624 }
1625
1626 if (integer_zerop (iv->step))
1627 {
1628 record_invariant (data, op, true);
1629 return NULL;
1630 }
1631
1632 stmt = SSA_NAME_DEF_STMT (op);
1633 gcc_assert (gimple_code (stmt) == GIMPLE_PHI || is_gimple_assign (stmt));
1634
1635 use = record_group_use (data, NULL, iv, stmt, USE_NONLINEAR_EXPR);
1636 iv->nonlin_use = use;
1637 return use;
1638 }
1639
1640 /* Given a condition in statement STMT, checks whether it is a compare
1641 of an induction variable and an invariant. If this is the case,
1642 CONTROL_VAR is set to location of the iv, BOUND to the location of
1643 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1644 induction variable descriptions, and true is returned. If this is not
1645 the case, CONTROL_VAR and BOUND are set to the arguments of the
1646 condition and false is returned. */
1647
1648 static bool
1649 extract_cond_operands (struct ivopts_data *data, gimple *stmt,
1650 tree **control_var, tree **bound,
1651 struct iv **iv_var, struct iv **iv_bound)
1652 {
1653 /* The objects returned when COND has constant operands. */
1654 static struct iv const_iv;
1655 static tree zero;
1656 tree *op0 = &zero, *op1 = &zero;
1657 struct iv *iv0 = &const_iv, *iv1 = &const_iv;
1658 bool ret = false;
1659
1660 if (gimple_code (stmt) == GIMPLE_COND)
1661 {
1662 gcond *cond_stmt = as_a <gcond *> (stmt);
1663 op0 = gimple_cond_lhs_ptr (cond_stmt);
1664 op1 = gimple_cond_rhs_ptr (cond_stmt);
1665 }
1666 else
1667 {
1668 op0 = gimple_assign_rhs1_ptr (stmt);
1669 op1 = gimple_assign_rhs2_ptr (stmt);
1670 }
1671
1672 zero = integer_zero_node;
1673 const_iv.step = integer_zero_node;
1674
1675 if (TREE_CODE (*op0) == SSA_NAME)
1676 iv0 = get_iv (data, *op0);
1677 if (TREE_CODE (*op1) == SSA_NAME)
1678 iv1 = get_iv (data, *op1);
1679
1680 /* Exactly one of the compared values must be an iv, and the other one must
1681 be an invariant. */
1682 if (!iv0 || !iv1)
1683 goto end;
1684
1685 if (integer_zerop (iv0->step))
1686 {
1687 /* Control variable may be on the other side. */
1688 std::swap (op0, op1);
1689 std::swap (iv0, iv1);
1690 }
1691 ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
1692
1693 end:
1694 if (control_var)
1695 *control_var = op0;
1696 if (iv_var)
1697 *iv_var = iv0;
1698 if (bound)
1699 *bound = op1;
1700 if (iv_bound)
1701 *iv_bound = iv1;
1702
1703 return ret;
1704 }
1705
1706 /* Checks whether the condition in STMT is interesting and if so,
1707 records it. */
1708
1709 static void
1710 find_interesting_uses_cond (struct ivopts_data *data, gimple *stmt)
1711 {
1712 tree *var_p, *bound_p;
1713 struct iv *var_iv;
1714
1715 if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
1716 {
1717 find_interesting_uses_op (data, *var_p);
1718 find_interesting_uses_op (data, *bound_p);
1719 return;
1720 }
1721
1722 record_group_use (data, NULL, var_iv, stmt, USE_COMPARE);
1723 }
1724
1725 /* Returns the outermost loop EXPR is obviously invariant in
1726 relative to the loop LOOP, i.e. if all its operands are defined
1727 outside of the returned loop. Returns NULL if EXPR is not
1728 even obviously invariant in LOOP. */
1729
1730 struct loop *
1731 outermost_invariant_loop_for_expr (struct loop *loop, tree expr)
1732 {
1733 basic_block def_bb;
1734 unsigned i, len;
1735
1736 if (is_gimple_min_invariant (expr))
1737 return current_loops->tree_root;
1738
1739 if (TREE_CODE (expr) == SSA_NAME)
1740 {
1741 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1742 if (def_bb)
1743 {
1744 if (flow_bb_inside_loop_p (loop, def_bb))
1745 return NULL;
1746 return superloop_at_depth (loop,
1747 loop_depth (def_bb->loop_father) + 1);
1748 }
1749
1750 return current_loops->tree_root;
1751 }
1752
1753 if (!EXPR_P (expr))
1754 return NULL;
1755
1756 unsigned maxdepth = 0;
1757 len = TREE_OPERAND_LENGTH (expr);
1758 for (i = 0; i < len; i++)
1759 {
1760 struct loop *ivloop;
1761 if (!TREE_OPERAND (expr, i))
1762 continue;
1763
1764 ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
1765 if (!ivloop)
1766 return NULL;
1767 maxdepth = MAX (maxdepth, loop_depth (ivloop));
1768 }
1769
1770 return superloop_at_depth (loop, maxdepth);
1771 }
1772
1773 /* Returns true if expression EXPR is obviously invariant in LOOP,
1774 i.e. if all its operands are defined outside of the LOOP. LOOP
1775 should not be the function body. */
1776
1777 bool
1778 expr_invariant_in_loop_p (struct loop *loop, tree expr)
1779 {
1780 basic_block def_bb;
1781 unsigned i, len;
1782
1783 gcc_assert (loop_depth (loop) > 0);
1784
1785 if (is_gimple_min_invariant (expr))
1786 return true;
1787
1788 if (TREE_CODE (expr) == SSA_NAME)
1789 {
1790 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1791 if (def_bb
1792 && flow_bb_inside_loop_p (loop, def_bb))
1793 return false;
1794
1795 return true;
1796 }
1797
1798 if (!EXPR_P (expr))
1799 return false;
1800
1801 len = TREE_OPERAND_LENGTH (expr);
1802 for (i = 0; i < len; i++)
1803 if (TREE_OPERAND (expr, i)
1804 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
1805 return false;
1806
1807 return true;
1808 }
1809
1810 /* Given expression EXPR which computes inductive values with respect
1811 to loop recorded in DATA, this function returns biv from which EXPR
1812 is derived by tracing definition chains of ssa variables in EXPR. */
1813
1814 static struct iv*
1815 find_deriving_biv_for_expr (struct ivopts_data *data, tree expr)
1816 {
1817 struct iv *iv;
1818 unsigned i, n;
1819 tree e2, e1;
1820 enum tree_code code;
1821 gimple *stmt;
1822
1823 if (expr == NULL_TREE)
1824 return NULL;
1825
1826 if (is_gimple_min_invariant (expr))
1827 return NULL;
1828
1829 code = TREE_CODE (expr);
1830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1831 {
1832 n = TREE_OPERAND_LENGTH (expr);
1833 for (i = 0; i < n; i++)
1834 {
1835 iv = find_deriving_biv_for_expr (data, TREE_OPERAND (expr, i));
1836 if (iv)
1837 return iv;
1838 }
1839 }
1840
1841 /* Stop if it's not ssa name. */
1842 if (code != SSA_NAME)
1843 return NULL;
1844
1845 iv = get_iv (data, expr);
1846 if (!iv || integer_zerop (iv->step))
1847 return NULL;
1848 else if (iv->biv_p)
1849 return iv;
1850
1851 stmt = SSA_NAME_DEF_STMT (expr);
1852 if (gphi *phi = dyn_cast <gphi *> (stmt))
1853 {
1854 ssa_op_iter iter;
1855 use_operand_p use_p;
1856 basic_block phi_bb = gimple_bb (phi);
1857
1858 /* Skip loop header PHI that doesn't define biv. */
1859 if (phi_bb->loop_father == data->current_loop)
1860 return NULL;
1861
1862 if (virtual_operand_p (gimple_phi_result (phi)))
1863 return NULL;
1864
1865 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
1866 {
1867 tree use = USE_FROM_PTR (use_p);
1868 iv = find_deriving_biv_for_expr (data, use);
1869 if (iv)
1870 return iv;
1871 }
1872 return NULL;
1873 }
1874 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1875 return NULL;
1876
1877 e1 = gimple_assign_rhs1 (stmt);
1878 code = gimple_assign_rhs_code (stmt);
1879 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1880 return find_deriving_biv_for_expr (data, e1);
1881
1882 switch (code)
1883 {
1884 case MULT_EXPR:
1885 case PLUS_EXPR:
1886 case MINUS_EXPR:
1887 case POINTER_PLUS_EXPR:
1888 /* Increments, decrements and multiplications by a constant
1889 are simple. */
1890 e2 = gimple_assign_rhs2 (stmt);
1891 iv = find_deriving_biv_for_expr (data, e2);
1892 if (iv)
1893 return iv;
1894 gcc_fallthrough ();
1895
1896 CASE_CONVERT:
1897 /* Casts are simple. */
1898 return find_deriving_biv_for_expr (data, e1);
1899
1900 default:
1901 break;
1902 }
1903
1904 return NULL;
1905 }
1906
1907 /* Record BIV, its predecessor and successor that they are used in
1908 address type uses. */
1909
1910 static void
1911 record_biv_for_address_use (struct ivopts_data *data, struct iv *biv)
1912 {
1913 unsigned i;
1914 tree type, base_1, base_2;
1915 bitmap_iterator bi;
1916
1917 if (!biv || !biv->biv_p || integer_zerop (biv->step)
1918 || biv->have_address_use || !biv->no_overflow)
1919 return;
1920
1921 type = TREE_TYPE (biv->base);
1922 if (!INTEGRAL_TYPE_P (type))
1923 return;
1924
1925 biv->have_address_use = true;
1926 data->bivs_not_used_in_addr--;
1927 base_1 = fold_build2 (PLUS_EXPR, type, biv->base, biv->step);
1928 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1929 {
1930 struct iv *iv = ver_info (data, i)->iv;
1931
1932 if (!iv || !iv->biv_p || integer_zerop (iv->step)
1933 || iv->have_address_use || !iv->no_overflow)
1934 continue;
1935
1936 if (type != TREE_TYPE (iv->base)
1937 || !INTEGRAL_TYPE_P (TREE_TYPE (iv->base)))
1938 continue;
1939
1940 if (!operand_equal_p (biv->step, iv->step, 0))
1941 continue;
1942
1943 base_2 = fold_build2 (PLUS_EXPR, type, iv->base, iv->step);
1944 if (operand_equal_p (base_1, iv->base, 0)
1945 || operand_equal_p (base_2, biv->base, 0))
1946 {
1947 iv->have_address_use = true;
1948 data->bivs_not_used_in_addr--;
1949 }
1950 }
1951 }
1952
1953 /* Cumulates the steps of indices into DATA and replaces their values with the
1954 initial ones. Returns false when the value of the index cannot be determined.
1955 Callback for for_each_index. */
1956
1957 struct ifs_ivopts_data
1958 {
1959 struct ivopts_data *ivopts_data;
1960 gimple *stmt;
1961 tree step;
1962 };
1963
1964 static bool
1965 idx_find_step (tree base, tree *idx, void *data)
1966 {
1967 struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
1968 struct iv *iv;
1969 bool use_overflow_semantics = false;
1970 tree step, iv_base, iv_step, lbound, off;
1971 struct loop *loop = dta->ivopts_data->current_loop;
1972
1973 /* If base is a component ref, require that the offset of the reference
1974 be invariant. */
1975 if (TREE_CODE (base) == COMPONENT_REF)
1976 {
1977 off = component_ref_field_offset (base);
1978 return expr_invariant_in_loop_p (loop, off);
1979 }
1980
1981 /* If base is array, first check whether we will be able to move the
1982 reference out of the loop (in order to take its address in strength
1983 reduction). In order for this to work we need both lower bound
1984 and step to be loop invariants. */
1985 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1986 {
1987 /* Moreover, for a range, the size needs to be invariant as well. */
1988 if (TREE_CODE (base) == ARRAY_RANGE_REF
1989 && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
1990 return false;
1991
1992 step = array_ref_element_size (base);
1993 lbound = array_ref_low_bound (base);
1994
1995 if (!expr_invariant_in_loop_p (loop, step)
1996 || !expr_invariant_in_loop_p (loop, lbound))
1997 return false;
1998 }
1999
2000 if (TREE_CODE (*idx) != SSA_NAME)
2001 return true;
2002
2003 iv = get_iv (dta->ivopts_data, *idx);
2004 if (!iv)
2005 return false;
2006
2007 /* XXX We produce for a base of *D42 with iv->base being &x[0]
2008 *&x[0], which is not folded and does not trigger the
2009 ARRAY_REF path below. */
2010 *idx = iv->base;
2011
2012 if (integer_zerop (iv->step))
2013 return true;
2014
2015 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
2016 {
2017 step = array_ref_element_size (base);
2018
2019 /* We only handle addresses whose step is an integer constant. */
2020 if (TREE_CODE (step) != INTEGER_CST)
2021 return false;
2022 }
2023 else
2024 /* The step for pointer arithmetics already is 1 byte. */
2025 step = size_one_node;
2026
2027 iv_base = iv->base;
2028 iv_step = iv->step;
2029 if (iv->no_overflow && nowrap_type_p (TREE_TYPE (iv_step)))
2030 use_overflow_semantics = true;
2031
2032 if (!convert_affine_scev (dta->ivopts_data->current_loop,
2033 sizetype, &iv_base, &iv_step, dta->stmt,
2034 use_overflow_semantics))
2035 {
2036 /* The index might wrap. */
2037 return false;
2038 }
2039
2040 step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
2041 dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
2042
2043 if (dta->ivopts_data->bivs_not_used_in_addr)
2044 {
2045 if (!iv->biv_p)
2046 iv = find_deriving_biv_for_expr (dta->ivopts_data, iv->ssa_name);
2047
2048 record_biv_for_address_use (dta->ivopts_data, iv);
2049 }
2050 return true;
2051 }
2052
2053 /* Records use in index IDX. Callback for for_each_index. Ivopts data
2054 object is passed to it in DATA. */
2055
2056 static bool
2057 idx_record_use (tree base, tree *idx,
2058 void *vdata)
2059 {
2060 struct ivopts_data *data = (struct ivopts_data *) vdata;
2061 find_interesting_uses_op (data, *idx);
2062 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
2063 {
2064 find_interesting_uses_op (data, array_ref_element_size (base));
2065 find_interesting_uses_op (data, array_ref_low_bound (base));
2066 }
2067 return true;
2068 }
2069
2070 /* If we can prove that TOP = cst * BOT for some constant cst,
2071 store cst to MUL and return true. Otherwise return false.
2072 The returned value is always sign-extended, regardless of the
2073 signedness of TOP and BOT. */
2074
2075 static bool
2076 constant_multiple_of (tree top, tree bot, widest_int *mul)
2077 {
2078 tree mby;
2079 enum tree_code code;
2080 unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
2081 widest_int res, p0, p1;
2082
2083 STRIP_NOPS (top);
2084 STRIP_NOPS (bot);
2085
2086 if (operand_equal_p (top, bot, 0))
2087 {
2088 *mul = 1;
2089 return true;
2090 }
2091
2092 code = TREE_CODE (top);
2093 switch (code)
2094 {
2095 case MULT_EXPR:
2096 mby = TREE_OPERAND (top, 1);
2097 if (TREE_CODE (mby) != INTEGER_CST)
2098 return false;
2099
2100 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
2101 return false;
2102
2103 *mul = wi::sext (res * wi::to_widest (mby), precision);
2104 return true;
2105
2106 case PLUS_EXPR:
2107 case MINUS_EXPR:
2108 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
2109 || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
2110 return false;
2111
2112 if (code == MINUS_EXPR)
2113 p1 = -p1;
2114 *mul = wi::sext (p0 + p1, precision);
2115 return true;
2116
2117 case INTEGER_CST:
2118 if (TREE_CODE (bot) != INTEGER_CST)
2119 return false;
2120
2121 p0 = widest_int::from (top, SIGNED);
2122 p1 = widest_int::from (bot, SIGNED);
2123 if (p1 == 0)
2124 return false;
2125 *mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision);
2126 return res == 0;
2127
2128 default:
2129 return false;
2130 }
2131 }
2132
2133 /* Return true if memory reference REF with step STEP may be unaligned. */
2134
2135 static bool
2136 may_be_unaligned_p (tree ref, tree step)
2137 {
2138 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
2139 thus they are not misaligned. */
2140 if (TREE_CODE (ref) == TARGET_MEM_REF)
2141 return false;
2142
2143 unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
2144 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align)
2145 align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref)));
2146
2147 unsigned HOST_WIDE_INT bitpos;
2148 unsigned int ref_align;
2149 get_object_alignment_1 (ref, &ref_align, &bitpos);
2150 if (ref_align < align
2151 || (bitpos % align) != 0
2152 || (bitpos % BITS_PER_UNIT) != 0)
2153 return true;
2154
2155 unsigned int trailing_zeros = tree_ctz (step);
2156 if (trailing_zeros < HOST_BITS_PER_INT
2157 && (1U << trailing_zeros) * BITS_PER_UNIT < align)
2158 return true;
2159
2160 return false;
2161 }
2162
2163 /* Return true if EXPR may be non-addressable. */
2164
2165 bool
2166 may_be_nonaddressable_p (tree expr)
2167 {
2168 switch (TREE_CODE (expr))
2169 {
2170 case TARGET_MEM_REF:
2171 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
2172 target, thus they are always addressable. */
2173 return false;
2174
2175 case MEM_REF:
2176 /* Likewise for MEM_REFs, modulo the storage order. */
2177 return REF_REVERSE_STORAGE_ORDER (expr);
2178
2179 case BIT_FIELD_REF:
2180 if (REF_REVERSE_STORAGE_ORDER (expr))
2181 return true;
2182 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2183
2184 case COMPONENT_REF:
2185 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
2186 return true;
2187 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
2188 || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2189
2190 case ARRAY_REF:
2191 case ARRAY_RANGE_REF:
2192 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
2193 return true;
2194 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2195
2196 case VIEW_CONVERT_EXPR:
2197 /* This kind of view-conversions may wrap non-addressable objects
2198 and make them look addressable. After some processing the
2199 non-addressability may be uncovered again, causing ADDR_EXPRs
2200 of inappropriate objects to be built. */
2201 if (is_gimple_reg (TREE_OPERAND (expr, 0))
2202 || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
2203 return true;
2204 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2205
2206 CASE_CONVERT:
2207 return true;
2208
2209 default:
2210 break;
2211 }
2212
2213 return false;
2214 }
2215
2216 /* Finds addresses in *OP_P inside STMT. */
2217
2218 static void
2219 find_interesting_uses_address (struct ivopts_data *data, gimple *stmt,
2220 tree *op_p)
2221 {
2222 tree base = *op_p, step = size_zero_node;
2223 struct iv *civ;
2224 struct ifs_ivopts_data ifs_ivopts_data;
2225
2226 /* Do not play with volatile memory references. A bit too conservative,
2227 perhaps, but safe. */
2228 if (gimple_has_volatile_ops (stmt))
2229 goto fail;
2230
2231 /* Ignore bitfields for now. Not really something terribly complicated
2232 to handle. TODO. */
2233 if (TREE_CODE (base) == BIT_FIELD_REF)
2234 goto fail;
2235
2236 base = unshare_expr (base);
2237
2238 if (TREE_CODE (base) == TARGET_MEM_REF)
2239 {
2240 tree type = build_pointer_type (TREE_TYPE (base));
2241 tree astep;
2242
2243 if (TMR_BASE (base)
2244 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
2245 {
2246 civ = get_iv (data, TMR_BASE (base));
2247 if (!civ)
2248 goto fail;
2249
2250 TMR_BASE (base) = civ->base;
2251 step = civ->step;
2252 }
2253 if (TMR_INDEX2 (base)
2254 && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
2255 {
2256 civ = get_iv (data, TMR_INDEX2 (base));
2257 if (!civ)
2258 goto fail;
2259
2260 TMR_INDEX2 (base) = civ->base;
2261 step = civ->step;
2262 }
2263 if (TMR_INDEX (base)
2264 && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
2265 {
2266 civ = get_iv (data, TMR_INDEX (base));
2267 if (!civ)
2268 goto fail;
2269
2270 TMR_INDEX (base) = civ->base;
2271 astep = civ->step;
2272
2273 if (astep)
2274 {
2275 if (TMR_STEP (base))
2276 astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
2277
2278 step = fold_build2 (PLUS_EXPR, type, step, astep);
2279 }
2280 }
2281
2282 if (integer_zerop (step))
2283 goto fail;
2284 base = tree_mem_ref_addr (type, base);
2285 }
2286 else
2287 {
2288 ifs_ivopts_data.ivopts_data = data;
2289 ifs_ivopts_data.stmt = stmt;
2290 ifs_ivopts_data.step = size_zero_node;
2291 if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
2292 || integer_zerop (ifs_ivopts_data.step))
2293 goto fail;
2294 step = ifs_ivopts_data.step;
2295
2296 /* Check that the base expression is addressable. This needs
2297 to be done after substituting bases of IVs into it. */
2298 if (may_be_nonaddressable_p (base))
2299 goto fail;
2300
2301 /* Moreover, on strict alignment platforms, check that it is
2302 sufficiently aligned. */
2303 if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
2304 goto fail;
2305
2306 base = build_fold_addr_expr (base);
2307
2308 /* Substituting bases of IVs into the base expression might
2309 have caused folding opportunities. */
2310 if (TREE_CODE (base) == ADDR_EXPR)
2311 {
2312 tree *ref = &TREE_OPERAND (base, 0);
2313 while (handled_component_p (*ref))
2314 ref = &TREE_OPERAND (*ref, 0);
2315 if (TREE_CODE (*ref) == MEM_REF)
2316 {
2317 tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
2318 TREE_OPERAND (*ref, 0),
2319 TREE_OPERAND (*ref, 1));
2320 if (tem)
2321 *ref = tem;
2322 }
2323 }
2324 }
2325
2326 civ = alloc_iv (data, base, step);
2327 /* Fail if base object of this memory reference is unknown. */
2328 if (civ->base_object == NULL_TREE)
2329 goto fail;
2330
2331 record_group_use (data, op_p, civ, stmt, USE_ADDRESS);
2332 return;
2333
2334 fail:
2335 for_each_index (op_p, idx_record_use, data);
2336 }
2337
2338 /* Finds and records invariants used in STMT. */
2339
2340 static void
2341 find_invariants_stmt (struct ivopts_data *data, gimple *stmt)
2342 {
2343 ssa_op_iter iter;
2344 use_operand_p use_p;
2345 tree op;
2346
2347 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2348 {
2349 op = USE_FROM_PTR (use_p);
2350 record_invariant (data, op, false);
2351 }
2352 }
2353
2354 /* Finds interesting uses of induction variables in the statement STMT. */
2355
2356 static void
2357 find_interesting_uses_stmt (struct ivopts_data *data, gimple *stmt)
2358 {
2359 struct iv *iv;
2360 tree op, *lhs, *rhs;
2361 ssa_op_iter iter;
2362 use_operand_p use_p;
2363 enum tree_code code;
2364
2365 find_invariants_stmt (data, stmt);
2366
2367 if (gimple_code (stmt) == GIMPLE_COND)
2368 {
2369 find_interesting_uses_cond (data, stmt);
2370 return;
2371 }
2372
2373 if (is_gimple_assign (stmt))
2374 {
2375 lhs = gimple_assign_lhs_ptr (stmt);
2376 rhs = gimple_assign_rhs1_ptr (stmt);
2377
2378 if (TREE_CODE (*lhs) == SSA_NAME)
2379 {
2380 /* If the statement defines an induction variable, the uses are not
2381 interesting by themselves. */
2382
2383 iv = get_iv (data, *lhs);
2384
2385 if (iv && !integer_zerop (iv->step))
2386 return;
2387 }
2388
2389 code = gimple_assign_rhs_code (stmt);
2390 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
2391 && (REFERENCE_CLASS_P (*rhs)
2392 || is_gimple_val (*rhs)))
2393 {
2394 if (REFERENCE_CLASS_P (*rhs))
2395 find_interesting_uses_address (data, stmt, rhs);
2396 else
2397 find_interesting_uses_op (data, *rhs);
2398
2399 if (REFERENCE_CLASS_P (*lhs))
2400 find_interesting_uses_address (data, stmt, lhs);
2401 return;
2402 }
2403 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2404 {
2405 find_interesting_uses_cond (data, stmt);
2406 return;
2407 }
2408
2409 /* TODO -- we should also handle address uses of type
2410
2411 memory = call (whatever);
2412
2413 and
2414
2415 call (memory). */
2416 }
2417
2418 if (gimple_code (stmt) == GIMPLE_PHI
2419 && gimple_bb (stmt) == data->current_loop->header)
2420 {
2421 iv = get_iv (data, PHI_RESULT (stmt));
2422
2423 if (iv && !integer_zerop (iv->step))
2424 return;
2425 }
2426
2427 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2428 {
2429 op = USE_FROM_PTR (use_p);
2430
2431 if (TREE_CODE (op) != SSA_NAME)
2432 continue;
2433
2434 iv = get_iv (data, op);
2435 if (!iv)
2436 continue;
2437
2438 find_interesting_uses_op (data, op);
2439 }
2440 }
2441
2442 /* Finds interesting uses of induction variables outside of loops
2443 on loop exit edge EXIT. */
2444
2445 static void
2446 find_interesting_uses_outside (struct ivopts_data *data, edge exit)
2447 {
2448 gphi *phi;
2449 gphi_iterator psi;
2450 tree def;
2451
2452 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2453 {
2454 phi = psi.phi ();
2455 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2456 if (!virtual_operand_p (def))
2457 find_interesting_uses_op (data, def);
2458 }
2459 }
2460
2461 /* Compute maximum offset of [base + offset] addressing mode
2462 for memory reference represented by USE. */
2463
2464 static HOST_WIDE_INT
2465 compute_max_addr_offset (struct iv_use *use)
2466 {
2467 int width;
2468 rtx reg, addr;
2469 HOST_WIDE_INT i, off;
2470 unsigned list_index, num;
2471 addr_space_t as;
2472 machine_mode mem_mode, addr_mode;
2473 static vec<HOST_WIDE_INT> max_offset_list;
2474
2475 as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
2476 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
2477
2478 num = max_offset_list.length ();
2479 list_index = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
2480 if (list_index >= num)
2481 {
2482 max_offset_list.safe_grow (list_index + MAX_MACHINE_MODE);
2483 for (; num < max_offset_list.length (); num++)
2484 max_offset_list[num] = -1;
2485 }
2486
2487 off = max_offset_list[list_index];
2488 if (off != -1)
2489 return off;
2490
2491 addr_mode = targetm.addr_space.address_mode (as);
2492 reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
2493 addr = gen_rtx_fmt_ee (PLUS, addr_mode, reg, NULL_RTX);
2494
2495 width = GET_MODE_BITSIZE (addr_mode) - 1;
2496 if (width > (HOST_BITS_PER_WIDE_INT - 1))
2497 width = HOST_BITS_PER_WIDE_INT - 1;
2498
2499 for (i = width; i > 0; i--)
2500 {
2501 off = (HOST_WIDE_INT_1U << i) - 1;
2502 XEXP (addr, 1) = gen_int_mode (off, addr_mode);
2503 if (memory_address_addr_space_p (mem_mode, addr, as))
2504 break;
2505
2506 /* For some strict-alignment targets, the offset must be naturally
2507 aligned. Try an aligned offset if mem_mode is not QImode. */
2508 off = (HOST_WIDE_INT_1U << i);
2509 if (off > GET_MODE_SIZE (mem_mode) && mem_mode != QImode)
2510 {
2511 off -= GET_MODE_SIZE (mem_mode);
2512 XEXP (addr, 1) = gen_int_mode (off, addr_mode);
2513 if (memory_address_addr_space_p (mem_mode, addr, as))
2514 break;
2515 }
2516 }
2517 if (i == 0)
2518 off = 0;
2519
2520 max_offset_list[list_index] = off;
2521 return off;
2522 }
2523
2524 /* Comparison function to sort group in ascending order of addr_offset. */
2525
2526 static int
2527 group_compare_offset (const void *a, const void *b)
2528 {
2529 const struct iv_use *const *u1 = (const struct iv_use *const *) a;
2530 const struct iv_use *const *u2 = (const struct iv_use *const *) b;
2531
2532 if ((*u1)->addr_offset != (*u2)->addr_offset)
2533 return (*u1)->addr_offset < (*u2)->addr_offset ? -1 : 1;
2534 else
2535 return 0;
2536 }
2537
2538 /* Check if small groups should be split. Return true if no group
2539 contains more than two uses with distinct addr_offsets. Return
2540 false otherwise. We want to split such groups because:
2541
2542 1) Small groups don't have much benefit and may interfer with
2543 general candidate selection.
2544 2) Size for problem with only small groups is usually small and
2545 general algorithm can handle it well.
2546
2547 TODO -- Above claim may not hold when we want to merge memory
2548 accesses with conseuctive addresses. */
2549
2550 static bool
2551 split_small_address_groups_p (struct ivopts_data *data)
2552 {
2553 unsigned int i, j, distinct = 1;
2554 struct iv_use *pre;
2555 struct iv_group *group;
2556
2557 for (i = 0; i < data->vgroups.length (); i++)
2558 {
2559 group = data->vgroups[i];
2560 if (group->vuses.length () == 1)
2561 continue;
2562
2563 gcc_assert (group->type == USE_ADDRESS);
2564 if (group->vuses.length () == 2)
2565 {
2566 if (group->vuses[0]->addr_offset > group->vuses[1]->addr_offset)
2567 std::swap (group->vuses[0], group->vuses[1]);
2568 }
2569 else
2570 group->vuses.qsort (group_compare_offset);
2571
2572 if (distinct > 2)
2573 continue;
2574
2575 distinct = 1;
2576 for (pre = group->vuses[0], j = 1; j < group->vuses.length (); j++)
2577 {
2578 if (group->vuses[j]->addr_offset != pre->addr_offset)
2579 {
2580 pre = group->vuses[j];
2581 distinct++;
2582 }
2583
2584 if (distinct > 2)
2585 break;
2586 }
2587 }
2588
2589 return (distinct <= 2);
2590 }
2591
2592 /* For each group of address type uses, this function further groups
2593 these uses according to the maximum offset supported by target's
2594 [base + offset] addressing mode. */
2595
2596 static void
2597 split_address_groups (struct ivopts_data *data)
2598 {
2599 unsigned int i, j;
2600 HOST_WIDE_INT max_offset = -1;
2601
2602 /* Reset max offset to split all small groups. */
2603 if (split_small_address_groups_p (data))
2604 max_offset = 0;
2605
2606 for (i = 0; i < data->vgroups.length (); i++)
2607 {
2608 struct iv_group *group = data->vgroups[i];
2609 struct iv_use *use = group->vuses[0];
2610
2611 use->id = 0;
2612 use->group_id = group->id;
2613 if (group->vuses.length () == 1)
2614 continue;
2615
2616 if (max_offset != 0)
2617 max_offset = compute_max_addr_offset (use);
2618
2619 for (j = 1; j < group->vuses.length (); j++)
2620 {
2621 struct iv_use *next = group->vuses[j];
2622
2623 /* Only uses with offset that can fit in offset part against
2624 the first use can be grouped together. */
2625 if (next->addr_offset - use->addr_offset
2626 > (unsigned HOST_WIDE_INT) max_offset)
2627 break;
2628
2629 next->id = j;
2630 next->group_id = group->id;
2631 }
2632 /* Split group. */
2633 if (j < group->vuses.length ())
2634 {
2635 struct iv_group *new_group = record_group (data, group->type);
2636 new_group->vuses.safe_splice (group->vuses);
2637 new_group->vuses.block_remove (0, j);
2638 group->vuses.truncate (j);
2639 }
2640 }
2641 }
2642
2643 /* Finds uses of the induction variables that are interesting. */
2644
2645 static void
2646 find_interesting_uses (struct ivopts_data *data)
2647 {
2648 basic_block bb;
2649 gimple_stmt_iterator bsi;
2650 basic_block *body = get_loop_body (data->current_loop);
2651 unsigned i;
2652 edge e;
2653
2654 for (i = 0; i < data->current_loop->num_nodes; i++)
2655 {
2656 edge_iterator ei;
2657 bb = body[i];
2658
2659 FOR_EACH_EDGE (e, ei, bb->succs)
2660 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2661 && !flow_bb_inside_loop_p (data->current_loop, e->dest))
2662 find_interesting_uses_outside (data, e);
2663
2664 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2665 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2666 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2667 if (!is_gimple_debug (gsi_stmt (bsi)))
2668 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2669 }
2670
2671 split_address_groups (data);
2672
2673 if (dump_file && (dump_flags & TDF_DETAILS))
2674 {
2675 bitmap_iterator bi;
2676
2677 fprintf (dump_file, "\n<Invariant Vars>:\n");
2678 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
2679 {
2680 struct version_info *info = ver_info (data, i);
2681 if (info->inv_id)
2682 {
2683 fprintf (dump_file, "Inv %d:\t", info->inv_id);
2684 print_generic_expr (dump_file, info->name, TDF_SLIM);
2685 fprintf (dump_file, "%s\n",
2686 info->has_nonlin_use ? "" : "\t(eliminable)");
2687 }
2688 }
2689
2690 fprintf (dump_file, "\n<IV Groups>:\n");
2691 dump_groups (dump_file, data);
2692 fprintf (dump_file, "\n");
2693 }
2694
2695 free (body);
2696 }
2697
2698 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2699 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2700 we are at the top-level of the processed address. */
2701
2702 static tree
2703 strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
2704 HOST_WIDE_INT *offset)
2705 {
2706 tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
2707 enum tree_code code;
2708 tree type, orig_type = TREE_TYPE (expr);
2709 HOST_WIDE_INT off0, off1, st;
2710 tree orig_expr = expr;
2711
2712 STRIP_NOPS (expr);
2713
2714 type = TREE_TYPE (expr);
2715 code = TREE_CODE (expr);
2716 *offset = 0;
2717
2718 switch (code)
2719 {
2720 case INTEGER_CST:
2721 if (!cst_and_fits_in_hwi (expr)
2722 || integer_zerop (expr))
2723 return orig_expr;
2724
2725 *offset = int_cst_value (expr);
2726 return build_int_cst (orig_type, 0);
2727
2728 case POINTER_PLUS_EXPR:
2729 case PLUS_EXPR:
2730 case MINUS_EXPR:
2731 op0 = TREE_OPERAND (expr, 0);
2732 op1 = TREE_OPERAND (expr, 1);
2733
2734 op0 = strip_offset_1 (op0, false, false, &off0);
2735 op1 = strip_offset_1 (op1, false, false, &off1);
2736
2737 *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
2738 if (op0 == TREE_OPERAND (expr, 0)
2739 && op1 == TREE_OPERAND (expr, 1))
2740 return orig_expr;
2741
2742 if (integer_zerop (op1))
2743 expr = op0;
2744 else if (integer_zerop (op0))
2745 {
2746 if (code == MINUS_EXPR)
2747 expr = fold_build1 (NEGATE_EXPR, type, op1);
2748 else
2749 expr = op1;
2750 }
2751 else
2752 expr = fold_build2 (code, type, op0, op1);
2753
2754 return fold_convert (orig_type, expr);
2755
2756 case MULT_EXPR:
2757 op1 = TREE_OPERAND (expr, 1);
2758 if (!cst_and_fits_in_hwi (op1))
2759 return orig_expr;
2760
2761 op0 = TREE_OPERAND (expr, 0);
2762 op0 = strip_offset_1 (op0, false, false, &off0);
2763 if (op0 == TREE_OPERAND (expr, 0))
2764 return orig_expr;
2765
2766 *offset = off0 * int_cst_value (op1);
2767 if (integer_zerop (op0))
2768 expr = op0;
2769 else
2770 expr = fold_build2 (MULT_EXPR, type, op0, op1);
2771
2772 return fold_convert (orig_type, expr);
2773
2774 case ARRAY_REF:
2775 case ARRAY_RANGE_REF:
2776 if (!inside_addr)
2777 return orig_expr;
2778
2779 step = array_ref_element_size (expr);
2780 if (!cst_and_fits_in_hwi (step))
2781 break;
2782
2783 st = int_cst_value (step);
2784 op1 = TREE_OPERAND (expr, 1);
2785 op1 = strip_offset_1 (op1, false, false, &off1);
2786 *offset = off1 * st;
2787
2788 if (top_compref
2789 && integer_zerop (op1))
2790 {
2791 /* Strip the component reference completely. */
2792 op0 = TREE_OPERAND (expr, 0);
2793 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2794 *offset += off0;
2795 return op0;
2796 }
2797 break;
2798
2799 case COMPONENT_REF:
2800 {
2801 tree field;
2802
2803 if (!inside_addr)
2804 return orig_expr;
2805
2806 tmp = component_ref_field_offset (expr);
2807 field = TREE_OPERAND (expr, 1);
2808 if (top_compref
2809 && cst_and_fits_in_hwi (tmp)
2810 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
2811 {
2812 HOST_WIDE_INT boffset, abs_off;
2813
2814 /* Strip the component reference completely. */
2815 op0 = TREE_OPERAND (expr, 0);
2816 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2817 boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
2818 abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
2819 if (boffset < 0)
2820 abs_off = -abs_off;
2821
2822 *offset = off0 + int_cst_value (tmp) + abs_off;
2823 return op0;
2824 }
2825 }
2826 break;
2827
2828 case ADDR_EXPR:
2829 op0 = TREE_OPERAND (expr, 0);
2830 op0 = strip_offset_1 (op0, true, true, &off0);
2831 *offset += off0;
2832
2833 if (op0 == TREE_OPERAND (expr, 0))
2834 return orig_expr;
2835
2836 expr = build_fold_addr_expr (op0);
2837 return fold_convert (orig_type, expr);
2838
2839 case MEM_REF:
2840 /* ??? Offset operand? */
2841 inside_addr = false;
2842 break;
2843
2844 default:
2845 return orig_expr;
2846 }
2847
2848 /* Default handling of expressions for that we want to recurse into
2849 the first operand. */
2850 op0 = TREE_OPERAND (expr, 0);
2851 op0 = strip_offset_1 (op0, inside_addr, false, &off0);
2852 *offset += off0;
2853
2854 if (op0 == TREE_OPERAND (expr, 0)
2855 && (!op1 || op1 == TREE_OPERAND (expr, 1)))
2856 return orig_expr;
2857
2858 expr = copy_node (expr);
2859 TREE_OPERAND (expr, 0) = op0;
2860 if (op1)
2861 TREE_OPERAND (expr, 1) = op1;
2862
2863 /* Inside address, we might strip the top level component references,
2864 thus changing type of the expression. Handling of ADDR_EXPR
2865 will fix that. */
2866 expr = fold_convert (orig_type, expr);
2867
2868 return expr;
2869 }
2870
2871 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2872
2873 static tree
2874 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
2875 {
2876 HOST_WIDE_INT off;
2877 tree core = strip_offset_1 (expr, false, false, &off);
2878 *offset = off;
2879 return core;
2880 }
2881
2882 /* Returns variant of TYPE that can be used as base for different uses.
2883 We return unsigned type with the same precision, which avoids problems
2884 with overflows. */
2885
2886 static tree
2887 generic_type_for (tree type)
2888 {
2889 if (POINTER_TYPE_P (type))
2890 return unsigned_type_for (type);
2891
2892 if (TYPE_UNSIGNED (type))
2893 return type;
2894
2895 return unsigned_type_for (type);
2896 }
2897
2898 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2899 the bitmap to that we should store it. */
2900
2901 static struct ivopts_data *fd_ivopts_data;
2902 static tree
2903 find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
2904 {
2905 bitmap *depends_on = (bitmap *) data;
2906 struct version_info *info;
2907
2908 if (TREE_CODE (*expr_p) != SSA_NAME)
2909 return NULL_TREE;
2910 info = name_info (fd_ivopts_data, *expr_p);
2911
2912 if (!info->inv_id || info->has_nonlin_use)
2913 return NULL_TREE;
2914
2915 if (!*depends_on)
2916 *depends_on = BITMAP_ALLOC (NULL);
2917 bitmap_set_bit (*depends_on, info->inv_id);
2918
2919 return NULL_TREE;
2920 }
2921
2922 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2923 position to POS. If USE is not NULL, the candidate is set as related to
2924 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2925 replacement of the final value of the iv by a direct computation. */
2926
2927 static struct iv_cand *
2928 add_candidate_1 (struct ivopts_data *data,
2929 tree base, tree step, bool important, enum iv_position pos,
2930 struct iv_use *use, gimple *incremented_at,
2931 struct iv *orig_iv = NULL)
2932 {
2933 unsigned i;
2934 struct iv_cand *cand = NULL;
2935 tree type, orig_type;
2936
2937 gcc_assert (base && step);
2938
2939 /* -fkeep-gc-roots-live means that we have to keep a real pointer
2940 live, but the ivopts code may replace a real pointer with one
2941 pointing before or after the memory block that is then adjusted
2942 into the memory block during the loop. FIXME: It would likely be
2943 better to actually force the pointer live and still use ivopts;
2944 for example, it would be enough to write the pointer into memory
2945 and keep it there until after the loop. */
2946 if (flag_keep_gc_roots_live && POINTER_TYPE_P (TREE_TYPE (base)))
2947 return NULL;
2948
2949 /* For non-original variables, make sure their values are computed in a type
2950 that does not invoke undefined behavior on overflows (since in general,
2951 we cannot prove that these induction variables are non-wrapping). */
2952 if (pos != IP_ORIGINAL)
2953 {
2954 orig_type = TREE_TYPE (base);
2955 type = generic_type_for (orig_type);
2956 if (type != orig_type)
2957 {
2958 base = fold_convert (type, base);
2959 step = fold_convert (type, step);
2960 }
2961 }
2962
2963 for (i = 0; i < data->vcands.length (); i++)
2964 {
2965 cand = data->vcands[i];
2966
2967 if (cand->pos != pos)
2968 continue;
2969
2970 if (cand->incremented_at != incremented_at
2971 || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2972 && cand->ainc_use != use))
2973 continue;
2974
2975 if (operand_equal_p (base, cand->iv->base, 0)
2976 && operand_equal_p (step, cand->iv->step, 0)
2977 && (TYPE_PRECISION (TREE_TYPE (base))
2978 == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
2979 break;
2980 }
2981
2982 if (i == data->vcands.length ())
2983 {
2984 cand = XCNEW (struct iv_cand);
2985 cand->id = i;
2986 cand->iv = alloc_iv (data, base, step);
2987 cand->pos = pos;
2988 if (pos != IP_ORIGINAL)
2989 {
2990 cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
2991 cand->var_after = cand->var_before;
2992 }
2993 cand->important = important;
2994 cand->incremented_at = incremented_at;
2995 data->vcands.safe_push (cand);
2996
2997 if (TREE_CODE (step) != INTEGER_CST)
2998 {
2999 fd_ivopts_data = data;
3000 walk_tree (&step, find_depends, &cand->depends_on, NULL);
3001 }
3002
3003 if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
3004 cand->ainc_use = use;
3005 else
3006 cand->ainc_use = NULL;
3007
3008 cand->orig_iv = orig_iv;
3009 if (dump_file && (dump_flags & TDF_DETAILS))
3010 dump_cand (dump_file, cand);
3011 }
3012
3013 cand->important |= important;
3014
3015 /* Relate candidate to the group for which it is added. */
3016 if (use)
3017 bitmap_set_bit (data->vgroups[use->group_id]->related_cands, i);
3018
3019 return cand;
3020 }
3021
3022 /* Returns true if incrementing the induction variable at the end of the LOOP
3023 is allowed.
3024
3025 The purpose is to avoid splitting latch edge with a biv increment, thus
3026 creating a jump, possibly confusing other optimization passes and leaving
3027 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
3028 is not available (so we do not have a better alternative), or if the latch
3029 edge is already nonempty. */
3030
3031 static bool
3032 allow_ip_end_pos_p (struct loop *loop)
3033 {
3034 if (!ip_normal_pos (loop))
3035 return true;
3036
3037 if (!empty_block_p (ip_end_pos (loop)))
3038 return true;
3039
3040 return false;
3041 }
3042
3043 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
3044 Important field is set to IMPORTANT. */
3045
3046 static void
3047 add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
3048 bool important, struct iv_use *use)
3049 {
3050 basic_block use_bb = gimple_bb (use->stmt);
3051 machine_mode mem_mode;
3052 unsigned HOST_WIDE_INT cstepi;
3053
3054 /* If we insert the increment in any position other than the standard
3055 ones, we must ensure that it is incremented once per iteration.
3056 It must not be in an inner nested loop, or one side of an if
3057 statement. */
3058 if (use_bb->loop_father != data->current_loop
3059 || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
3060 || stmt_could_throw_p (use->stmt)
3061 || !cst_and_fits_in_hwi (step))
3062 return;
3063
3064 cstepi = int_cst_value (step);
3065
3066 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
3067 if (((USE_LOAD_PRE_INCREMENT (mem_mode)
3068 || USE_STORE_PRE_INCREMENT (mem_mode))
3069 && GET_MODE_SIZE (mem_mode) == cstepi)
3070 || ((USE_LOAD_PRE_DECREMENT (mem_mode)
3071 || USE_STORE_PRE_DECREMENT (mem_mode))
3072 && GET_MODE_SIZE (mem_mode) == -cstepi))
3073 {
3074 enum tree_code code = MINUS_EXPR;
3075 tree new_base;
3076 tree new_step = step;
3077
3078 if (POINTER_TYPE_P (TREE_TYPE (base)))
3079 {
3080 new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
3081 code = POINTER_PLUS_EXPR;
3082 }
3083 else
3084 new_step = fold_convert (TREE_TYPE (base), new_step);
3085 new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
3086 add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
3087 use->stmt);
3088 }
3089 if (((USE_LOAD_POST_INCREMENT (mem_mode)
3090 || USE_STORE_POST_INCREMENT (mem_mode))
3091 && GET_MODE_SIZE (mem_mode) == cstepi)
3092 || ((USE_LOAD_POST_DECREMENT (mem_mode)
3093 || USE_STORE_POST_DECREMENT (mem_mode))
3094 && GET_MODE_SIZE (mem_mode) == -cstepi))
3095 {
3096 add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
3097 use->stmt);
3098 }
3099 }
3100
3101 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3102 position to POS. If USE is not NULL, the candidate is set as related to
3103 it. The candidate computation is scheduled before exit condition and at
3104 the end of loop. */
3105
3106 static void
3107 add_candidate (struct ivopts_data *data,
3108 tree base, tree step, bool important, struct iv_use *use,
3109 struct iv *orig_iv = NULL)
3110 {
3111 if (ip_normal_pos (data->current_loop))
3112 add_candidate_1 (data, base, step, important,
3113 IP_NORMAL, use, NULL, orig_iv);
3114 if (ip_end_pos (data->current_loop)
3115 && allow_ip_end_pos_p (data->current_loop))
3116 add_candidate_1 (data, base, step, important, IP_END, use, NULL, orig_iv);
3117 }
3118
3119 /* Adds standard iv candidates. */
3120
3121 static void
3122 add_standard_iv_candidates (struct ivopts_data *data)
3123 {
3124 add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
3125
3126 /* The same for a double-integer type if it is still fast enough. */
3127 if (TYPE_PRECISION
3128 (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
3129 && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
3130 add_candidate (data, build_int_cst (long_integer_type_node, 0),
3131 build_int_cst (long_integer_type_node, 1), true, NULL);
3132
3133 /* The same for a double-integer type if it is still fast enough. */
3134 if (TYPE_PRECISION
3135 (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
3136 && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
3137 add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
3138 build_int_cst (long_long_integer_type_node, 1), true, NULL);
3139 }
3140
3141
3142 /* Adds candidates bases on the old induction variable IV. */
3143
3144 static void
3145 add_iv_candidate_for_biv (struct ivopts_data *data, struct iv *iv)
3146 {
3147 gimple *phi;
3148 tree def;
3149 struct iv_cand *cand;
3150
3151 /* Check if this biv is used in address type use. */
3152 if (iv->no_overflow && iv->have_address_use
3153 && INTEGRAL_TYPE_P (TREE_TYPE (iv->base))
3154 && TYPE_PRECISION (TREE_TYPE (iv->base)) < TYPE_PRECISION (sizetype))
3155 {
3156 tree base = fold_convert (sizetype, iv->base);
3157 tree step = fold_convert (sizetype, iv->step);
3158
3159 /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
3160 add_candidate (data, base, step, true, NULL, iv);
3161 /* Add iv cand of the original type only if it has nonlinear use. */
3162 if (iv->nonlin_use)
3163 add_candidate (data, iv->base, iv->step, true, NULL);
3164 }
3165 else
3166 add_candidate (data, iv->base, iv->step, true, NULL);
3167
3168 /* The same, but with initial value zero. */
3169 if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
3170 add_candidate (data, size_int (0), iv->step, true, NULL);
3171 else
3172 add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
3173 iv->step, true, NULL);
3174
3175 phi = SSA_NAME_DEF_STMT (iv->ssa_name);
3176 if (gimple_code (phi) == GIMPLE_PHI)
3177 {
3178 /* Additionally record the possibility of leaving the original iv
3179 untouched. */
3180 def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
3181 /* Don't add candidate if it's from another PHI node because
3182 it's an affine iv appearing in the form of PEELED_CHREC. */
3183 phi = SSA_NAME_DEF_STMT (def);
3184 if (gimple_code (phi) != GIMPLE_PHI)
3185 {
3186 cand = add_candidate_1 (data,
3187 iv->base, iv->step, true, IP_ORIGINAL, NULL,
3188 SSA_NAME_DEF_STMT (def));
3189 if (cand)
3190 {
3191 cand->var_before = iv->ssa_name;
3192 cand->var_after = def;
3193 }
3194 }
3195 else
3196 gcc_assert (gimple_bb (phi) == data->current_loop->header);
3197 }
3198 }
3199
3200 /* Adds candidates based on the old induction variables. */
3201
3202 static void
3203 add_iv_candidate_for_bivs (struct ivopts_data *data)
3204 {
3205 unsigned i;
3206 struct iv *iv;
3207 bitmap_iterator bi;
3208
3209 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
3210 {
3211 iv = ver_info (data, i)->iv;
3212 if (iv && iv->biv_p && !integer_zerop (iv->step))
3213 add_iv_candidate_for_biv (data, iv);
3214 }
3215 }
3216
3217 /* Record common candidate {BASE, STEP} derived from USE in hashtable. */
3218
3219 static void
3220 record_common_cand (struct ivopts_data *data, tree base,
3221 tree step, struct iv_use *use)
3222 {
3223 struct iv_common_cand ent;
3224 struct iv_common_cand **slot;
3225
3226 ent.base = base;
3227 ent.step = step;
3228 ent.hash = iterative_hash_expr (base, 0);
3229 ent.hash = iterative_hash_expr (step, ent.hash);
3230
3231 slot = data->iv_common_cand_tab->find_slot (&ent, INSERT);
3232 if (*slot == NULL)
3233 {
3234 *slot = new iv_common_cand ();
3235 (*slot)->base = base;
3236 (*slot)->step = step;
3237 (*slot)->uses.create (8);
3238 (*slot)->hash = ent.hash;
3239 data->iv_common_cands.safe_push ((*slot));
3240 }
3241
3242 gcc_assert (use != NULL);
3243 (*slot)->uses.safe_push (use);
3244 return;
3245 }
3246
3247 /* Comparison function used to sort common candidates. */
3248
3249 static int
3250 common_cand_cmp (const void *p1, const void *p2)
3251 {
3252 unsigned n1, n2;
3253 const struct iv_common_cand *const *const ccand1
3254 = (const struct iv_common_cand *const *)p1;
3255 const struct iv_common_cand *const *const ccand2
3256 = (const struct iv_common_cand *const *)p2;
3257
3258 n1 = (*ccand1)->uses.length ();
3259 n2 = (*ccand2)->uses.length ();
3260 return n2 - n1;
3261 }
3262
3263 /* Adds IV candidates based on common candidated recorded. */
3264
3265 static void
3266 add_iv_candidate_derived_from_uses (struct ivopts_data *data)
3267 {
3268 unsigned i, j;
3269 struct iv_cand *cand_1, *cand_2;
3270
3271 data->iv_common_cands.qsort (common_cand_cmp);
3272 for (i = 0; i < data->iv_common_cands.length (); i++)
3273 {
3274 struct iv_common_cand *ptr = data->iv_common_cands[i];
3275
3276 /* Only add IV candidate if it's derived from multiple uses. */
3277 if (ptr->uses.length () <= 1)
3278 break;
3279
3280 cand_1 = NULL;
3281 cand_2 = NULL;
3282 if (ip_normal_pos (data->current_loop))
3283 cand_1 = add_candidate_1 (data, ptr->base, ptr->step,
3284 false, IP_NORMAL, NULL, NULL);
3285
3286 if (ip_end_pos (data->current_loop)
3287 && allow_ip_end_pos_p (data->current_loop))
3288 cand_2 = add_candidate_1 (data, ptr->base, ptr->step,
3289 false, IP_END, NULL, NULL);
3290
3291 /* Bind deriving uses and the new candidates. */
3292 for (j = 0; j < ptr->uses.length (); j++)
3293 {
3294 struct iv_group *group = data->vgroups[ptr->uses[j]->group_id];
3295 if (cand_1)
3296 bitmap_set_bit (group->related_cands, cand_1->id);
3297 if (cand_2)
3298 bitmap_set_bit (group->related_cands, cand_2->id);
3299 }
3300 }
3301
3302 /* Release data since it is useless from this point. */
3303 data->iv_common_cand_tab->empty ();
3304 data->iv_common_cands.truncate (0);
3305 }
3306
3307 /* Adds candidates based on the value of USE's iv. */
3308
3309 static void
3310 add_iv_candidate_for_use (struct ivopts_data *data, struct iv_use *use)
3311 {
3312 unsigned HOST_WIDE_INT offset;
3313 tree base;
3314 tree basetype;
3315 struct iv *iv = use->iv;
3316
3317 add_candidate (data, iv->base, iv->step, false, use);
3318
3319 /* Record common candidate for use in case it can be shared by others. */
3320 record_common_cand (data, iv->base, iv->step, use);
3321
3322 /* Record common candidate with initial value zero. */
3323 basetype = TREE_TYPE (iv->base);
3324 if (POINTER_TYPE_P (basetype))
3325 basetype = sizetype;
3326 record_common_cand (data, build_int_cst (basetype, 0), iv->step, use);
3327
3328 /* Record common candidate with constant offset stripped in base.
3329 Like the use itself, we also add candidate directly for it. */
3330 base = strip_offset (iv->base, &offset);
3331 if (offset || base != iv->base)
3332 {
3333 record_common_cand (data, base, iv->step, use);
3334 add_candidate (data, base, iv->step, false, use);
3335 }
3336
3337 /* Record common candidate with base_object removed in base. */
3338 if (iv->base_object != NULL)
3339 {
3340 unsigned i;
3341 aff_tree aff_base;
3342 tree step, base_object = iv->base_object;
3343
3344 base = iv->base;
3345 step = iv->step;
3346 STRIP_NOPS (base);
3347 STRIP_NOPS (step);
3348 STRIP_NOPS (base_object);
3349 tree_to_aff_combination (base, TREE_TYPE (base), &aff_base);
3350 for (i = 0; i < aff_base.n; i++)
3351 {
3352 if (aff_base.elts[i].coef != 1)
3353 continue;
3354
3355 if (operand_equal_p (aff_base.elts[i].val, base_object, 0))
3356 break;
3357 }
3358 if (i < aff_base.n)
3359 {
3360 aff_combination_remove_elt (&aff_base, i);
3361 base = aff_combination_to_tree (&aff_base);
3362 basetype = TREE_TYPE (base);
3363 if (POINTER_TYPE_P (basetype))
3364 basetype = sizetype;
3365
3366 step = fold_convert (basetype, step);
3367 record_common_cand (data, base, step, use);
3368 /* Also record common candidate with offset stripped. */
3369 base = strip_offset (base, &offset);
3370 if (offset)
3371 record_common_cand (data, base, step, use);
3372 }
3373 }
3374
3375 /* At last, add auto-incremental candidates. Make such variables
3376 important since other iv uses with same base object may be based
3377 on it. */
3378 if (use != NULL && use->type == USE_ADDRESS)
3379 add_autoinc_candidates (data, iv->base, iv->step, true, use);
3380 }
3381
3382 /* Adds candidates based on the uses. */
3383
3384 static void
3385 add_iv_candidate_for_groups (struct ivopts_data *data)
3386 {
3387 unsigned i;
3388
3389 /* Only add candidate for the first use in group. */
3390 for (i = 0; i < data->vgroups.length (); i++)
3391 {
3392 struct iv_group *group = data->vgroups[i];
3393
3394 gcc_assert (group->vuses[0] != NULL);
3395 add_iv_candidate_for_use (data, group->vuses[0]);
3396 }
3397 add_iv_candidate_derived_from_uses (data);
3398 }
3399
3400 /* Record important candidates and add them to related_cands bitmaps. */
3401
3402 static void
3403 record_important_candidates (struct ivopts_data *data)
3404 {
3405 unsigned i;
3406 struct iv_group *group;
3407
3408 for (i = 0; i < data->vcands.length (); i++)
3409 {
3410 struct iv_cand *cand = data->vcands[i];
3411
3412 if (cand->important)
3413 bitmap_set_bit (data->important_candidates, i);
3414 }
3415
3416 data->consider_all_candidates = (data->vcands.length ()
3417 <= CONSIDER_ALL_CANDIDATES_BOUND);
3418
3419 /* Add important candidates to groups' related_cands bitmaps. */
3420 for (i = 0; i < data->vgroups.length (); i++)
3421 {
3422 group = data->vgroups[i];
3423 bitmap_ior_into (group->related_cands, data->important_candidates);
3424 }
3425 }
3426
3427 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
3428 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3429 we allocate a simple list to every use. */
3430
3431 static void
3432 alloc_use_cost_map (struct ivopts_data *data)
3433 {
3434 unsigned i, size, s;
3435
3436 for (i = 0; i < data->vgroups.length (); i++)
3437 {
3438 struct iv_group *group = data->vgroups[i];
3439
3440 if (data->consider_all_candidates)
3441 size = data->vcands.length ();
3442 else
3443 {
3444 s = bitmap_count_bits (group->related_cands);
3445
3446 /* Round up to the power of two, so that moduling by it is fast. */
3447 size = s ? (1 << ceil_log2 (s)) : 1;
3448 }
3449
3450 group->n_map_members = size;
3451 group->cost_map = XCNEWVEC (struct cost_pair, size);
3452 }
3453 }
3454
3455 /* Sets cost of (GROUP, CAND) pair to COST and record that it depends
3456 on invariants DEPENDS_ON and that the value used in expressing it
3457 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3458
3459 static void
3460 set_group_iv_cost (struct ivopts_data *data,
3461 struct iv_group *group, struct iv_cand *cand,
3462 comp_cost cost, bitmap depends_on, tree value,
3463 enum tree_code comp, iv_inv_expr_ent *inv_expr)
3464 {
3465 unsigned i, s;
3466
3467 if (cost.infinite_cost_p ())
3468 {
3469 BITMAP_FREE (depends_on);
3470 return;
3471 }
3472
3473 if (data->consider_all_candidates)
3474 {
3475 group->cost_map[cand->id].cand = cand;
3476 group->cost_map[cand->id].cost = cost;
3477 group->cost_map[cand->id].depends_on = depends_on;
3478 group->cost_map[cand->id].value = value;
3479 group->cost_map[cand->id].comp = comp;
3480 group->cost_map[cand->id].inv_expr = inv_expr;
3481 return;
3482 }
3483
3484 /* n_map_members is a power of two, so this computes modulo. */
3485 s = cand->id & (group->n_map_members - 1);
3486 for (i = s; i < group->n_map_members; i++)
3487 if (!group->cost_map[i].cand)
3488 goto found;
3489 for (i = 0; i < s; i++)
3490 if (!group->cost_map[i].cand)
3491 goto found;
3492
3493 gcc_unreachable ();
3494
3495 found:
3496 group->cost_map[i].cand = cand;
3497 group->cost_map[i].cost = cost;
3498 group->cost_map[i].depends_on = depends_on;
3499 group->cost_map[i].value = value;
3500 group->cost_map[i].comp = comp;
3501 group->cost_map[i].inv_expr = inv_expr;
3502 }
3503
3504 /* Gets cost of (GROUP, CAND) pair. */
3505
3506 static struct cost_pair *
3507 get_group_iv_cost (struct ivopts_data *data, struct iv_group *group,
3508 struct iv_cand *cand)
3509 {
3510 unsigned i, s;
3511 struct cost_pair *ret;
3512
3513 if (!cand)
3514 return NULL;
3515
3516 if (data->consider_all_candidates)
3517 {
3518 ret = group->cost_map + cand->id;
3519 if (!ret->cand)
3520 return NULL;
3521
3522 return ret;
3523 }
3524
3525 /* n_map_members is a power of two, so this computes modulo. */
3526 s = cand->id & (group->n_map_members - 1);
3527 for (i = s; i < group->n_map_members; i++)
3528 if (group->cost_map[i].cand == cand)
3529 return group->cost_map + i;
3530 else if (group->cost_map[i].cand == NULL)
3531 return NULL;
3532 for (i = 0; i < s; i++)
3533 if (group->cost_map[i].cand == cand)
3534 return group->cost_map + i;
3535 else if (group->cost_map[i].cand == NULL)
3536 return NULL;
3537
3538 return NULL;
3539 }
3540
3541 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3542 static rtx
3543 produce_memory_decl_rtl (tree obj, int *regno)
3544 {
3545 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
3546 machine_mode address_mode = targetm.addr_space.address_mode (as);
3547 rtx x;
3548
3549 gcc_assert (obj);
3550 if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
3551 {
3552 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
3553 x = gen_rtx_SYMBOL_REF (address_mode, name);
3554 SET_SYMBOL_REF_DECL (x, obj);
3555 x = gen_rtx_MEM (DECL_MODE (obj), x);
3556 set_mem_addr_space (x, as);
3557 targetm.encode_section_info (obj, x, true);
3558 }
3559 else
3560 {
3561 x = gen_raw_REG (address_mode, (*regno)++);
3562 x = gen_rtx_MEM (DECL_MODE (obj), x);
3563 set_mem_addr_space (x, as);
3564 }
3565
3566 return x;
3567 }
3568
3569 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3570 walk_tree. DATA contains the actual fake register number. */
3571
3572 static tree
3573 prepare_decl_rtl (tree *expr_p, int *ws, void *data)
3574 {
3575 tree obj = NULL_TREE;
3576 rtx x = NULL_RTX;
3577 int *regno = (int *) data;
3578
3579 switch (TREE_CODE (*expr_p))
3580 {
3581 case ADDR_EXPR:
3582 for (expr_p = &TREE_OPERAND (*expr_p, 0);
3583 handled_component_p (*expr_p);
3584 expr_p = &TREE_OPERAND (*expr_p, 0))
3585 continue;
3586 obj = *expr_p;
3587 if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
3588 x = produce_memory_decl_rtl (obj, regno);
3589 break;
3590
3591 case SSA_NAME:
3592 *ws = 0;
3593 obj = SSA_NAME_VAR (*expr_p);
3594 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3595 if (!obj)
3596 return NULL_TREE;
3597 if (!DECL_RTL_SET_P (obj))
3598 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
3599 break;
3600
3601 case VAR_DECL:
3602 case PARM_DECL:
3603 case RESULT_DECL:
3604 *ws = 0;
3605 obj = *expr_p;
3606
3607 if (DECL_RTL_SET_P (obj))
3608 break;
3609
3610 if (DECL_MODE (obj) == BLKmode)
3611 x = produce_memory_decl_rtl (obj, regno);
3612 else
3613 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
3614
3615 break;
3616
3617 default:
3618 break;
3619 }
3620
3621 if (x)
3622 {
3623 decl_rtl_to_reset.safe_push (obj);
3624 SET_DECL_RTL (obj, x);
3625 }
3626
3627 return NULL_TREE;
3628 }
3629
3630 /* Determines cost of the computation of EXPR. */
3631
3632 static unsigned
3633 computation_cost (tree expr, bool speed)
3634 {
3635 rtx_insn *seq;
3636 rtx rslt;
3637 tree type = TREE_TYPE (expr);
3638 unsigned cost;
3639 /* Avoid using hard regs in ways which may be unsupported. */
3640 int regno = LAST_VIRTUAL_REGISTER + 1;
3641 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3642 enum node_frequency real_frequency = node->frequency;
3643
3644 node->frequency = NODE_FREQUENCY_NORMAL;
3645 crtl->maybe_hot_insn_p = speed;
3646 walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
3647 start_sequence ();
3648 rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
3649 seq = get_insns ();
3650 end_sequence ();
3651 default_rtl_profile ();
3652 node->frequency = real_frequency;
3653
3654 cost = seq_cost (seq, speed);
3655 if (MEM_P (rslt))
3656 cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
3657 TYPE_ADDR_SPACE (type), speed);
3658 else if (!REG_P (rslt))
3659 cost += set_src_cost (rslt, TYPE_MODE (type), speed);
3660
3661 return cost;
3662 }
3663
3664 /* Returns variable containing the value of candidate CAND at statement AT. */
3665
3666 static tree
3667 var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple *stmt)
3668 {
3669 if (stmt_after_increment (loop, cand, stmt))
3670 return cand->var_after;
3671 else
3672 return cand->var_before;
3673 }
3674
3675 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3676 same precision that is at least as wide as the precision of TYPE, stores
3677 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3678 type of A and B. */
3679
3680 static tree
3681 determine_common_wider_type (tree *a, tree *b)
3682 {
3683 tree wider_type = NULL;
3684 tree suba, subb;
3685 tree atype = TREE_TYPE (*a);
3686
3687 if (CONVERT_EXPR_P (*a))
3688 {
3689 suba = TREE_OPERAND (*a, 0);
3690 wider_type = TREE_TYPE (suba);
3691 if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
3692 return atype;
3693 }
3694 else
3695 return atype;
3696
3697 if (CONVERT_EXPR_P (*b))
3698 {
3699 subb = TREE_OPERAND (*b, 0);
3700 if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
3701 return atype;
3702 }
3703 else
3704 return atype;
3705
3706 *a = suba;
3707 *b = subb;
3708 return wider_type;
3709 }
3710
3711 /* Determines the expression by that USE is expressed from induction variable
3712 CAND at statement AT in LOOP. The expression is stored in a decomposed
3713 form into AFF. Returns false if USE cannot be expressed using CAND. */
3714
3715 static bool
3716 get_computation_aff (struct loop *loop,
3717 struct iv_use *use, struct iv_cand *cand, gimple *at,
3718 struct aff_tree *aff)
3719 {
3720 tree ubase = use->iv->base;
3721 tree ustep = use->iv->step;
3722 tree cbase = cand->iv->base;
3723 tree cstep = cand->iv->step, cstep_common;
3724 tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
3725 tree common_type, var;
3726 tree uutype;
3727 aff_tree cbase_aff, var_aff;
3728 widest_int rat;
3729
3730 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
3731 {
3732 /* We do not have a precision to express the values of use. */
3733 return false;
3734 }
3735
3736 var = var_at_stmt (loop, cand, at);
3737 uutype = unsigned_type_for (utype);
3738
3739 /* If the conversion is not noop, perform it. */
3740 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
3741 {
3742 if (cand->orig_iv != NULL && CONVERT_EXPR_P (cbase)
3743 && (CONVERT_EXPR_P (cstep) || TREE_CODE (cstep) == INTEGER_CST))
3744 {
3745 tree inner_base, inner_step, inner_type;
3746 inner_base = TREE_OPERAND (cbase, 0);
3747 if (CONVERT_EXPR_P (cstep))
3748 inner_step = TREE_OPERAND (cstep, 0);
3749 else
3750 inner_step = cstep;
3751
3752 inner_type = TREE_TYPE (inner_base);
3753 /* If candidate is added from a biv whose type is smaller than
3754 ctype, we know both candidate and the biv won't overflow.
3755 In this case, it's safe to skip the convertion in candidate.
3756 As an example, (unsigned short)((unsigned long)A) equals to
3757 (unsigned short)A, if A has a type no larger than short. */
3758 if (TYPE_PRECISION (inner_type) <= TYPE_PRECISION (uutype))
3759 {
3760 cbase = inner_base;
3761 cstep = inner_step;
3762 }
3763 }
3764 cstep = fold_convert (uutype, cstep);
3765 cbase = fold_convert (uutype, cbase);
3766 var = fold_convert (uutype, var);
3767 }
3768
3769 /* Ratio is 1 when computing the value of biv cand by itself.
3770 We can't rely on constant_multiple_of in this case because the
3771 use is created after the original biv is selected. The call
3772 could fail because of inconsistent fold behavior. See PR68021
3773 for more information. */
3774 if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
3775 {
3776 gcc_assert (is_gimple_assign (use->stmt));
3777 gcc_assert (use->iv->ssa_name == cand->var_after);
3778 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
3779 rat = 1;
3780 }
3781 else if (!constant_multiple_of (ustep, cstep, &rat))
3782 return false;
3783
3784 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3785 type, we achieve better folding by computing their difference in this
3786 wider type, and cast the result to UUTYPE. We do not need to worry about
3787 overflows, as all the arithmetics will in the end be performed in UUTYPE
3788 anyway. */
3789 common_type = determine_common_wider_type (&ubase, &cbase);
3790
3791 /* use = ubase - ratio * cbase + ratio * var. */
3792 tree_to_aff_combination (ubase, common_type, aff);
3793 tree_to_aff_combination (cbase, common_type, &cbase_aff);
3794 tree_to_aff_combination (var, uutype, &var_aff);
3795
3796 /* We need to shift the value if we are after the increment. */
3797 if (stmt_after_increment (loop, cand, at))
3798 {
3799 aff_tree cstep_aff;
3800
3801 if (common_type != uutype)
3802 cstep_common = fold_convert (common_type, cstep);
3803 else
3804 cstep_common = cstep;
3805
3806 tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
3807 aff_combination_add (&cbase_aff, &cstep_aff);
3808 }
3809
3810 aff_combination_scale (&cbase_aff, -rat);
3811 aff_combination_add (aff, &cbase_aff);
3812 if (common_type != uutype)
3813 aff_combination_convert (aff, uutype);
3814
3815 aff_combination_scale (&var_aff, rat);
3816 aff_combination_add (aff, &var_aff);
3817
3818 return true;
3819 }
3820
3821 /* Return the type of USE. */
3822
3823 static tree
3824 get_use_type (struct iv_use *use)
3825 {
3826 tree base_type = TREE_TYPE (use->iv->base);
3827 tree type;
3828
3829 if (use->type == USE_ADDRESS)
3830 {
3831 /* The base_type may be a void pointer. Create a pointer type based on
3832 the mem_ref instead. */
3833 type = build_pointer_type (TREE_TYPE (*use->op_p));
3834 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
3835 == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
3836 }
3837 else
3838 type = base_type;
3839
3840 return type;
3841 }
3842
3843 /* Determines the expression by that USE is expressed from induction variable
3844 CAND at statement AT in LOOP. The computation is unshared. */
3845
3846 static tree
3847 get_computation_at (struct loop *loop,
3848 struct iv_use *use, struct iv_cand *cand, gimple *at)
3849 {
3850 aff_tree aff;
3851 tree type = get_use_type (use);
3852
3853 if (!get_computation_aff (loop, use, cand, at, &aff))
3854 return NULL_TREE;
3855 unshare_aff_combination (&aff);
3856 return fold_convert (type, aff_combination_to_tree (&aff));
3857 }
3858
3859 /* Determines the expression by that USE is expressed from induction variable
3860 CAND in LOOP. The computation is unshared. */
3861
3862 static tree
3863 get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
3864 {
3865 return get_computation_at (loop, use, cand, use->stmt);
3866 }
3867
3868 /* Adjust the cost COST for being in loop setup rather than loop body.
3869 If we're optimizing for space, the loop setup overhead is constant;
3870 if we're optimizing for speed, amortize it over the per-iteration cost. */
3871 static unsigned
3872 adjust_setup_cost (struct ivopts_data *data, unsigned cost)
3873 {
3874 if (cost == INFTY)
3875 return cost;
3876 else if (optimize_loop_for_speed_p (data->current_loop))
3877 return cost / avg_loop_niter (data->current_loop);
3878 else
3879 return cost;
3880 }
3881
3882 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3883 validity for a memory reference accessing memory of mode MODE in
3884 address space AS. */
3885
3886
3887 bool
3888 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, machine_mode mode,
3889 addr_space_t as)
3890 {
3891 #define MAX_RATIO 128
3892 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
3893 static vec<sbitmap> valid_mult_list;
3894 sbitmap valid_mult;
3895
3896 if (data_index >= valid_mult_list.length ())
3897 valid_mult_list.safe_grow_cleared (data_index + 1);
3898
3899 valid_mult = valid_mult_list[data_index];
3900 if (!valid_mult)
3901 {
3902 machine_mode address_mode = targetm.addr_space.address_mode (as);
3903 rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3904 rtx reg2 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
3905 rtx addr, scaled;
3906 HOST_WIDE_INT i;
3907
3908 valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
3909 bitmap_clear (valid_mult);
3910 scaled = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
3911 addr = gen_rtx_fmt_ee (PLUS, address_mode, scaled, reg2);
3912 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3913 {
3914 XEXP (scaled, 1) = gen_int_mode (i, address_mode);
3915 if (memory_address_addr_space_p (mode, addr, as)
3916 || memory_address_addr_space_p (mode, scaled, as))
3917 bitmap_set_bit (valid_mult, i + MAX_RATIO);
3918 }
3919
3920 if (dump_file && (dump_flags & TDF_DETAILS))
3921 {
3922 fprintf (dump_file, " allowed multipliers:");
3923 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3924 if (bitmap_bit_p (valid_mult, i + MAX_RATIO))
3925 fprintf (dump_file, " %d", (int) i);
3926 fprintf (dump_file, "\n");
3927 fprintf (dump_file, "\n");
3928 }
3929
3930 valid_mult_list[data_index] = valid_mult;
3931 }
3932
3933 if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
3934 return false;
3935
3936 return bitmap_bit_p (valid_mult, ratio + MAX_RATIO);
3937 }
3938
3939 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3940 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3941 variable is omitted. Compute the cost for a memory reference that accesses
3942 a memory location of mode MEM_MODE in address space AS.
3943
3944 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3945 size of MEM_MODE / RATIO) is available. To make this determination, we
3946 look at the size of the increment to be made, which is given in CSTEP.
3947 CSTEP may be zero if the step is unknown.
3948 STMT_AFTER_INC is true iff the statement we're looking at is after the
3949 increment of the original biv.
3950
3951 TODO -- there must be some better way. This all is quite crude. */
3952
3953 enum ainc_type
3954 {
3955 AINC_PRE_INC, /* Pre increment. */
3956 AINC_PRE_DEC, /* Pre decrement. */
3957 AINC_POST_INC, /* Post increment. */
3958 AINC_POST_DEC, /* Post decrement. */
3959 AINC_NONE /* Also the number of auto increment types. */
3960 };
3961
3962 struct address_cost_data
3963 {
3964 HOST_WIDE_INT min_offset, max_offset;
3965 unsigned costs[2][2][2][2];
3966 unsigned ainc_costs[AINC_NONE];
3967 };
3968
3969
3970 static comp_cost
3971 get_address_cost (bool symbol_present, bool var_present,
3972 unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
3973 HOST_WIDE_INT cstep, machine_mode mem_mode,
3974 addr_space_t as, bool speed,
3975 bool stmt_after_inc, bool *may_autoinc)
3976 {
3977 machine_mode address_mode = targetm.addr_space.address_mode (as);
3978 static vec<address_cost_data *> address_cost_data_list;
3979 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
3980 address_cost_data *data;
3981 static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
3982 static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
3983 unsigned cost, acost, complexity;
3984 enum ainc_type autoinc_type;
3985 bool offset_p, ratio_p, autoinc;
3986 HOST_WIDE_INT s_offset, autoinc_offset, msize;
3987 unsigned HOST_WIDE_INT mask;
3988 unsigned bits;
3989
3990 if (data_index >= address_cost_data_list.length ())
3991 address_cost_data_list.safe_grow_cleared (data_index + 1);
3992
3993 data = address_cost_data_list[data_index];
3994 if (!data)
3995 {
3996 HOST_WIDE_INT i;
3997 HOST_WIDE_INT rat, off = 0;
3998 int old_cse_not_expected, width;
3999 unsigned sym_p, var_p, off_p, rat_p, add_c;
4000 rtx_insn *seq;
4001 rtx addr, base;
4002 rtx reg0, reg1;
4003
4004 data = (address_cost_data *) xcalloc (1, sizeof (*data));
4005
4006 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
4007
4008 width = GET_MODE_BITSIZE (address_mode) - 1;
4009 if (width > (HOST_BITS_PER_WIDE_INT - 1))
4010 width = HOST_BITS_PER_WIDE_INT - 1;
4011 addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
4012
4013 for (i = width; i >= 0; i--)
4014 {
4015 off = -(HOST_WIDE_INT_1U << i);
4016 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4017 if (memory_address_addr_space_p (mem_mode, addr, as))
4018 break;
4019 }
4020 data->min_offset = (i == -1? 0 : off);
4021
4022 for (i = width; i >= 0; i--)
4023 {
4024 off = (HOST_WIDE_INT_1U << i) - 1;
4025 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4026 if (memory_address_addr_space_p (mem_mode, addr, as))
4027 break;
4028 /* For some strict-alignment targets, the offset must be naturally
4029 aligned. Try an aligned offset if mem_mode is not QImode. */
4030 off = mem_mode != QImode
4031 ? (HOST_WIDE_INT_1U << i)
4032 - GET_MODE_SIZE (mem_mode)
4033 : 0;
4034 if (off > 0)
4035 {
4036 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4037 if (memory_address_addr_space_p (mem_mode, addr, as))
4038 break;
4039 }
4040 }
4041 if (i == -1)
4042 off = 0;
4043 data->max_offset = off;
4044
4045 if (dump_file && (dump_flags & TDF_DETAILS))
4046 {
4047 fprintf (dump_file, "get_address_cost:\n");
4048 fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
4049 GET_MODE_NAME (mem_mode),
4050 data->min_offset);
4051 fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
4052 GET_MODE_NAME (mem_mode),
4053 data->max_offset);
4054 }
4055
4056 rat = 1;
4057 for (i = 2; i <= MAX_RATIO; i++)
4058 if (multiplier_allowed_in_address_p (i, mem_mode, as))
4059 {
4060 rat = i;
4061 break;
4062 }
4063
4064 /* Compute the cost of various addressing modes. */
4065 acost = 0;
4066 reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
4067 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
4068
4069 if (USE_LOAD_PRE_DECREMENT (mem_mode)
4070 || USE_STORE_PRE_DECREMENT (mem_mode))
4071 {
4072 addr = gen_rtx_PRE_DEC (address_mode, reg0);
4073 has_predec[mem_mode]
4074 = memory_address_addr_space_p (mem_mode, addr, as);
4075
4076 if (has_predec[mem_mode])
4077 data->ainc_costs[AINC_PRE_DEC]
4078 = address_cost (addr, mem_mode, as, speed);
4079 }
4080 if (USE_LOAD_POST_DECREMENT (mem_mode)
4081 || USE_STORE_POST_DECREMENT (mem_mode))
4082 {
4083 addr = gen_rtx_POST_DEC (address_mode, reg0);
4084 has_postdec[mem_mode]
4085 = memory_address_addr_space_p (mem_mode, addr, as);
4086
4087 if (has_postdec[mem_mode])
4088 data->ainc_costs[AINC_POST_DEC]
4089 = address_cost (addr, mem_mode, as, speed);
4090 }
4091 if (USE_LOAD_PRE_INCREMENT (mem_mode)
4092 || USE_STORE_PRE_DECREMENT (mem_mode))
4093 {
4094 addr = gen_rtx_PRE_INC (address_mode, reg0);
4095 has_preinc[mem_mode]
4096 = memory_address_addr_space_p (mem_mode, addr, as);
4097
4098 if (has_preinc[mem_mode])
4099 data->ainc_costs[AINC_PRE_INC]
4100 = address_cost (addr, mem_mode, as, speed);
4101 }
4102 if (USE_LOAD_POST_INCREMENT (mem_mode)
4103 || USE_STORE_POST_INCREMENT (mem_mode))
4104 {
4105 addr = gen_rtx_POST_INC (address_mode, reg0);
4106 has_postinc[mem_mode]
4107 = memory_address_addr_space_p (mem_mode, addr, as);
4108
4109 if (has_postinc[mem_mode])
4110 data->ainc_costs[AINC_POST_INC]
4111 = address_cost (addr, mem_mode, as, speed);
4112 }
4113 for (i = 0; i < 16; i++)
4114 {
4115 sym_p = i & 1;
4116 var_p = (i >> 1) & 1;
4117 off_p = (i >> 2) & 1;
4118 rat_p = (i >> 3) & 1;
4119
4120 addr = reg0;
4121 if (rat_p)
4122 addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
4123 gen_int_mode (rat, address_mode));
4124
4125 if (var_p)
4126 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
4127
4128 if (sym_p)
4129 {
4130 base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
4131 /* ??? We can run into trouble with some backends by presenting
4132 it with symbols which haven't been properly passed through
4133 targetm.encode_section_info. By setting the local bit, we
4134 enhance the probability of things working. */
4135 SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
4136
4137 if (off_p)
4138 base = gen_rtx_fmt_e (CONST, address_mode,
4139 gen_rtx_fmt_ee
4140 (PLUS, address_mode, base,
4141 gen_int_mode (off, address_mode)));
4142 }
4143 else if (off_p)
4144 base = gen_int_mode (off, address_mode);
4145 else
4146 base = NULL_RTX;
4147
4148 if (base)
4149 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
4150
4151 start_sequence ();
4152 /* To avoid splitting addressing modes, pretend that no cse will
4153 follow. */
4154 old_cse_not_expected = cse_not_expected;
4155 cse_not_expected = true;
4156 addr = memory_address_addr_space (mem_mode, addr, as);
4157 cse_not_expected = old_cse_not_expected;
4158 seq = get_insns ();
4159 end_sequence ();
4160
4161 acost = seq_cost (seq, speed);
4162 acost += address_cost (addr, mem_mode, as, speed);
4163
4164 if (!acost)
4165 acost = 1;
4166 data->costs[sym_p][var_p][off_p][rat_p] = acost;
4167 }
4168
4169 /* On some targets, it is quite expensive to load symbol to a register,
4170 which makes addresses that contain symbols look much more expensive.
4171 However, the symbol will have to be loaded in any case before the
4172 loop (and quite likely we have it in register already), so it does not
4173 make much sense to penalize them too heavily. So make some final
4174 tweaks for the SYMBOL_PRESENT modes:
4175
4176 If VAR_PRESENT is false, and the mode obtained by changing symbol to
4177 var is cheaper, use this mode with small penalty.
4178 If VAR_PRESENT is true, try whether the mode with
4179 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
4180 if this is the case, use it. */
4181 add_c = add_cost (speed, address_mode);
4182 for (i = 0; i < 8; i++)
4183 {
4184 var_p = i & 1;
4185 off_p = (i >> 1) & 1;
4186 rat_p = (i >> 2) & 1;
4187
4188 acost = data->costs[0][1][off_p][rat_p] + 1;
4189 if (var_p)
4190 acost += add_c;
4191
4192 if (acost < data->costs[1][var_p][off_p][rat_p])
4193 data->costs[1][var_p][off_p][rat_p] = acost;
4194 }
4195
4196 if (dump_file && (dump_flags & TDF_DETAILS))
4197 {
4198 fprintf (dump_file, "<Address Costs>:\n");
4199
4200 for (i = 0; i < 16; i++)
4201 {
4202 sym_p = i & 1;
4203 var_p = (i >> 1) & 1;
4204 off_p = (i >> 2) & 1;
4205 rat_p = (i >> 3) & 1;
4206
4207 fprintf (dump_file, " ");
4208 if (sym_p)
4209 fprintf (dump_file, "sym + ");
4210 if (var_p)
4211 fprintf (dump_file, "var + ");
4212 if (off_p)
4213 fprintf (dump_file, "cst + ");
4214 if (rat_p)
4215 fprintf (dump_file, "rat * ");
4216
4217 acost = data->costs[sym_p][var_p][off_p][rat_p];
4218 fprintf (dump_file, "index costs %d\n", acost);
4219 }
4220 if (has_predec[mem_mode] || has_postdec[mem_mode]
4221 || has_preinc[mem_mode] || has_postinc[mem_mode])
4222 fprintf (dump_file, " May include autoinc/dec\n");
4223 fprintf (dump_file, "\n");
4224 }
4225
4226 address_cost_data_list[data_index] = data;
4227 }
4228
4229 bits = GET_MODE_BITSIZE (address_mode);
4230 mask = ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
4231 offset &= mask;
4232 if ((offset >> (bits - 1) & 1))
4233 offset |= ~mask;
4234 s_offset = offset;
4235
4236 autoinc = false;
4237 autoinc_type = AINC_NONE;
4238 msize = GET_MODE_SIZE (mem_mode);
4239 autoinc_offset = offset;
4240 if (stmt_after_inc)
4241 autoinc_offset += ratio * cstep;
4242 if (symbol_present || var_present || ratio != 1)
4243 autoinc = false;
4244 else
4245 {
4246 if (has_postinc[mem_mode] && autoinc_offset == 0
4247 && msize == cstep)
4248 autoinc_type = AINC_POST_INC;
4249 else if (has_postdec[mem_mode] && autoinc_offset == 0
4250 && msize == -cstep)
4251 autoinc_type = AINC_POST_DEC;
4252 else if (has_preinc[mem_mode] && autoinc_offset == msize
4253 && msize == cstep)
4254 autoinc_type = AINC_PRE_INC;
4255 else if (has_predec[mem_mode] && autoinc_offset == -msize
4256 && msize == -cstep)
4257 autoinc_type = AINC_PRE_DEC;
4258
4259 if (autoinc_type != AINC_NONE)
4260 autoinc = true;
4261 }
4262
4263 cost = 0;
4264 offset_p = (s_offset != 0
4265 && data->min_offset <= s_offset
4266 && s_offset <= data->max_offset);
4267 ratio_p = (ratio != 1
4268 && multiplier_allowed_in_address_p (ratio, mem_mode, as));
4269
4270 if (ratio != 1 && !ratio_p)
4271 cost += mult_by_coeff_cost (ratio, address_mode, speed);
4272
4273 if (s_offset && !offset_p && !symbol_present)
4274 cost += add_cost (speed, address_mode);
4275
4276 if (may_autoinc)
4277 *may_autoinc = autoinc;
4278 if (autoinc)
4279 acost = data->ainc_costs[autoinc_type];
4280 else
4281 acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
4282 complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
4283 return comp_cost (cost + acost, complexity);
4284 }
4285
4286 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
4287 EXPR operand holding the shift. COST0 and COST1 are the costs for
4288 calculating the operands of EXPR. Returns true if successful, and returns
4289 the cost in COST. */
4290
4291 static bool
4292 get_shiftadd_cost (tree expr, machine_mode mode, comp_cost cost0,
4293 comp_cost cost1, tree mult, bool speed, comp_cost *cost)
4294 {
4295 comp_cost res;
4296 tree op1 = TREE_OPERAND (expr, 1);
4297 tree cst = TREE_OPERAND (mult, 1);
4298 tree multop = TREE_OPERAND (mult, 0);
4299 int m = exact_log2 (int_cst_value (cst));
4300 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
4301 int as_cost, sa_cost;
4302 bool mult_in_op1;
4303
4304 if (!(m >= 0 && m < maxm))
4305 return false;
4306
4307 STRIP_NOPS (op1);
4308 mult_in_op1 = operand_equal_p (op1, mult, 0);
4309
4310 as_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
4311
4312 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
4313 use that in preference to a shift insn followed by an add insn. */
4314 sa_cost = (TREE_CODE (expr) != MINUS_EXPR
4315 ? shiftadd_cost (speed, mode, m)
4316 : (mult_in_op1
4317 ? shiftsub1_cost (speed, mode, m)
4318 : shiftsub0_cost (speed, mode, m)));
4319
4320 res = comp_cost (MIN (as_cost, sa_cost), 0);
4321 res += (mult_in_op1 ? cost0 : cost1);
4322
4323 STRIP_NOPS (multop);
4324 if (!is_gimple_val (multop))
4325 res += force_expr_to_var_cost (multop, speed);
4326
4327 *cost = res;
4328 return true;
4329 }
4330
4331 /* Estimates cost of forcing expression EXPR into a variable. */
4332
4333 static comp_cost
4334 force_expr_to_var_cost (tree expr, bool speed)
4335 {
4336 static bool costs_initialized = false;
4337 static unsigned integer_cost [2];
4338 static unsigned symbol_cost [2];
4339 static unsigned address_cost [2];
4340 tree op0, op1;
4341 comp_cost cost0, cost1, cost;
4342 machine_mode mode;
4343
4344 if (!costs_initialized)
4345 {
4346 tree type = build_pointer_type (integer_type_node);
4347 tree var, addr;
4348 rtx x;
4349 int i;
4350
4351 var = create_tmp_var_raw (integer_type_node, "test_var");
4352 TREE_STATIC (var) = 1;
4353 x = produce_memory_decl_rtl (var, NULL);
4354 SET_DECL_RTL (var, x);
4355
4356 addr = build1 (ADDR_EXPR, type, var);
4357
4358
4359 for (i = 0; i < 2; i++)
4360 {
4361 integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
4362 2000), i);
4363
4364 symbol_cost[i] = computation_cost (addr, i) + 1;
4365
4366 address_cost[i]
4367 = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
4368 if (dump_file && (dump_flags & TDF_DETAILS))
4369 {
4370 fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
4371 fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
4372 fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
4373 fprintf (dump_file, " address %d\n", (int) address_cost[i]);
4374 fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
4375 fprintf (dump_file, "\n");
4376 }
4377 }
4378
4379 costs_initialized = true;
4380 }
4381
4382 STRIP_NOPS (expr);
4383
4384 if (SSA_VAR_P (expr))
4385 return no_cost;
4386
4387 if (is_gimple_min_invariant (expr))
4388 {
4389 if (TREE_CODE (expr) == INTEGER_CST)
4390 return comp_cost (integer_cost [speed], 0);
4391
4392 if (TREE_CODE (expr) == ADDR_EXPR)
4393 {
4394 tree obj = TREE_OPERAND (expr, 0);
4395
4396 if (VAR_P (obj)
4397 || TREE_CODE (obj) == PARM_DECL
4398 || TREE_CODE (obj) == RESULT_DECL)
4399 return comp_cost (symbol_cost [speed], 0);
4400 }
4401
4402 return comp_cost (address_cost [speed], 0);
4403 }
4404
4405 switch (TREE_CODE (expr))
4406 {
4407 case POINTER_PLUS_EXPR:
4408 case PLUS_EXPR:
4409 case MINUS_EXPR:
4410 case MULT_EXPR:
4411 op0 = TREE_OPERAND (expr, 0);
4412 op1 = TREE_OPERAND (expr, 1);
4413 STRIP_NOPS (op0);
4414 STRIP_NOPS (op1);
4415 break;
4416
4417 CASE_CONVERT:
4418 case NEGATE_EXPR:
4419 op0 = TREE_OPERAND (expr, 0);
4420 STRIP_NOPS (op0);
4421 op1 = NULL_TREE;
4422 break;
4423
4424 default:
4425 /* Just an arbitrary value, FIXME. */
4426 return comp_cost (target_spill_cost[speed], 0);
4427 }
4428
4429 if (op0 == NULL_TREE
4430 || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
4431 cost0 = no_cost;
4432 else
4433 cost0 = force_expr_to_var_cost (op0, speed);
4434
4435 if (op1 == NULL_TREE
4436 || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
4437 cost1 = no_cost;
4438 else
4439 cost1 = force_expr_to_var_cost (op1, speed);
4440
4441 mode = TYPE_MODE (TREE_TYPE (expr));
4442 switch (TREE_CODE (expr))
4443 {
4444 case POINTER_PLUS_EXPR:
4445 case PLUS_EXPR:
4446 case MINUS_EXPR:
4447 case NEGATE_EXPR:
4448 cost = comp_cost (add_cost (speed, mode), 0);
4449 if (TREE_CODE (expr) != NEGATE_EXPR)
4450 {
4451 tree mult = NULL_TREE;
4452 comp_cost sa_cost;
4453 if (TREE_CODE (op1) == MULT_EXPR)
4454 mult = op1;
4455 else if (TREE_CODE (op0) == MULT_EXPR)
4456 mult = op0;
4457
4458 if (mult != NULL_TREE
4459 && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
4460 && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
4461 speed, &sa_cost))
4462 return sa_cost;
4463 }
4464 break;
4465
4466 CASE_CONVERT:
4467 {
4468 tree inner_mode, outer_mode;
4469 outer_mode = TREE_TYPE (expr);
4470 inner_mode = TREE_TYPE (op0);
4471 cost = comp_cost (convert_cost (TYPE_MODE (outer_mode),
4472 TYPE_MODE (inner_mode), speed), 0);
4473 }
4474 break;
4475
4476 case MULT_EXPR:
4477 if (cst_and_fits_in_hwi (op0))
4478 cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0),
4479 mode, speed), 0);
4480 else if (cst_and_fits_in_hwi (op1))
4481 cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1),
4482 mode, speed), 0);
4483 else
4484 return comp_cost (target_spill_cost [speed], 0);
4485 break;
4486
4487 default:
4488 gcc_unreachable ();
4489 }
4490
4491 cost += cost0;
4492 cost += cost1;
4493
4494 /* Bound the cost by target_spill_cost. The parts of complicated
4495 computations often are either loop invariant or at least can
4496 be shared between several iv uses, so letting this grow without
4497 limits would not give reasonable results. */
4498 if (cost.cost > (int) target_spill_cost [speed])
4499 cost.cost = target_spill_cost [speed];
4500
4501 return cost;
4502 }
4503
4504 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4505 invariants the computation depends on. */
4506
4507 static comp_cost
4508 force_var_cost (struct ivopts_data *data,
4509 tree expr, bitmap *depends_on)
4510 {
4511 if (depends_on)
4512 {
4513 fd_ivopts_data = data;
4514 walk_tree (&expr, find_depends, depends_on, NULL);
4515 }
4516
4517 return force_expr_to_var_cost (expr, data->speed);
4518 }
4519
4520 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4521 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4522 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4523 invariants the computation depends on. */
4524
4525 static comp_cost
4526 split_address_cost (struct ivopts_data *data,
4527 tree addr, bool *symbol_present, bool *var_present,
4528 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4529 {
4530 tree core;
4531 HOST_WIDE_INT bitsize;
4532 HOST_WIDE_INT bitpos;
4533 tree toffset;
4534 machine_mode mode;
4535 int unsignedp, reversep, volatilep;
4536
4537 core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
4538 &unsignedp, &reversep, &volatilep);
4539
4540 if (toffset != 0
4541 || bitpos % BITS_PER_UNIT != 0
4542 || reversep
4543 || !VAR_P (core))
4544 {
4545 *symbol_present = false;
4546 *var_present = true;
4547 fd_ivopts_data = data;
4548 if (depends_on)
4549 walk_tree (&addr, find_depends, depends_on, NULL);
4550
4551 return comp_cost (target_spill_cost[data->speed], 0);
4552 }
4553
4554 *offset += bitpos / BITS_PER_UNIT;
4555 if (TREE_STATIC (core)
4556 || DECL_EXTERNAL (core))
4557 {
4558 *symbol_present = true;
4559 *var_present = false;
4560 return no_cost;
4561 }
4562
4563 *symbol_present = false;
4564 *var_present = true;
4565 return no_cost;
4566 }
4567
4568 /* Estimates cost of expressing difference of addresses E1 - E2 as
4569 var + symbol + offset. The value of offset is added to OFFSET,
4570 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4571 part is missing. DEPENDS_ON is a set of the invariants the computation
4572 depends on. */
4573
4574 static comp_cost
4575 ptr_difference_cost (struct ivopts_data *data,
4576 tree e1, tree e2, bool *symbol_present, bool *var_present,
4577 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4578 {
4579 HOST_WIDE_INT diff = 0;
4580 aff_tree aff_e1, aff_e2;
4581 tree type;
4582
4583 gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
4584
4585 if (ptr_difference_const (e1, e2, &diff))
4586 {
4587 *offset += diff;
4588 *symbol_present = false;
4589 *var_present = false;
4590 return no_cost;
4591 }
4592
4593 if (integer_zerop (e2))
4594 return split_address_cost (data, TREE_OPERAND (e1, 0),
4595 symbol_present, var_present, offset, depends_on);
4596
4597 *symbol_present = false;
4598 *var_present = true;
4599
4600 type = signed_type_for (TREE_TYPE (e1));
4601 tree_to_aff_combination (e1, type, &aff_e1);
4602 tree_to_aff_combination (e2, type, &aff_e2);
4603 aff_combination_scale (&aff_e2, -1);
4604 aff_combination_add (&aff_e1, &aff_e2);
4605
4606 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
4607 }
4608
4609 /* Estimates cost of expressing difference E1 - E2 as
4610 var + symbol + offset. The value of offset is added to OFFSET,
4611 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4612 part is missing. DEPENDS_ON is a set of the invariants the computation
4613 depends on. */
4614
4615 static comp_cost
4616 difference_cost (struct ivopts_data *data,
4617 tree e1, tree e2, bool *symbol_present, bool *var_present,
4618 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4619 {
4620 machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
4621 unsigned HOST_WIDE_INT off1, off2;
4622 aff_tree aff_e1, aff_e2;
4623 tree type;
4624
4625 e1 = strip_offset (e1, &off1);
4626 e2 = strip_offset (e2, &off2);
4627 *offset += off1 - off2;
4628
4629 STRIP_NOPS (e1);
4630 STRIP_NOPS (e2);
4631
4632 if (TREE_CODE (e1) == ADDR_EXPR)
4633 return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
4634 offset, depends_on);
4635 *symbol_present = false;
4636
4637 if (operand_equal_p (e1, e2, 0))
4638 {
4639 *var_present = false;
4640 return no_cost;
4641 }
4642
4643 *var_present = true;
4644
4645 if (integer_zerop (e2))
4646 return force_var_cost (data, e1, depends_on);
4647
4648 if (integer_zerop (e1))
4649 {
4650 comp_cost cost = force_var_cost (data, e2, depends_on);
4651 cost += mult_by_coeff_cost (-1, mode, data->speed);
4652 return cost;
4653 }
4654
4655 type = signed_type_for (TREE_TYPE (e1));
4656 tree_to_aff_combination (e1, type, &aff_e1);
4657 tree_to_aff_combination (e2, type, &aff_e2);
4658 aff_combination_scale (&aff_e2, -1);
4659 aff_combination_add (&aff_e1, &aff_e2);
4660
4661 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
4662 }
4663
4664 /* Returns true if AFF1 and AFF2 are identical. */
4665
4666 static bool
4667 compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
4668 {
4669 unsigned i;
4670
4671 if (aff1->n != aff2->n)
4672 return false;
4673
4674 for (i = 0; i < aff1->n; i++)
4675 {
4676 if (aff1->elts[i].coef != aff2->elts[i].coef)
4677 return false;
4678
4679 if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
4680 return false;
4681 }
4682 return true;
4683 }
4684
4685 /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
4686
4687 static iv_inv_expr_ent *
4688 record_inv_expr (struct ivopts_data *data, tree expr)
4689 {
4690 struct iv_inv_expr_ent ent;
4691 struct iv_inv_expr_ent **slot;
4692
4693 ent.expr = expr;
4694 ent.hash = iterative_hash_expr (expr, 0);
4695 slot = data->inv_expr_tab->find_slot (&ent, INSERT);
4696
4697 if (!*slot)
4698 {
4699 *slot = XNEW (struct iv_inv_expr_ent);
4700 (*slot)->expr = expr;
4701 (*slot)->hash = ent.hash;
4702 (*slot)->id = data->max_inv_expr_id++;
4703 }
4704
4705 return *slot;
4706 }
4707
4708 /* Returns the invariant expression if expression UBASE - RATIO * CBASE
4709 requires a new compiler generated temporary. Returns -1 otherwise.
4710 ADDRESS_P is a flag indicating if the expression is for address
4711 computation. */
4712
4713 static iv_inv_expr_ent *
4714 get_loop_invariant_expr (struct ivopts_data *data, tree ubase,
4715 tree cbase, HOST_WIDE_INT ratio,
4716 bool address_p)
4717 {
4718 aff_tree ubase_aff, cbase_aff;
4719 tree expr, ub, cb;
4720
4721 STRIP_NOPS (ubase);
4722 STRIP_NOPS (cbase);
4723 ub = ubase;
4724 cb = cbase;
4725
4726 if ((TREE_CODE (ubase) == INTEGER_CST)
4727 && (TREE_CODE (cbase) == INTEGER_CST))
4728 return NULL;
4729
4730 /* Strips the constant part. */
4731 if (TREE_CODE (ubase) == PLUS_EXPR
4732 || TREE_CODE (ubase) == MINUS_EXPR
4733 || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
4734 {
4735 if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
4736 ubase = TREE_OPERAND (ubase, 0);
4737 }
4738
4739 /* Strips the constant part. */
4740 if (TREE_CODE (cbase) == PLUS_EXPR
4741 || TREE_CODE (cbase) == MINUS_EXPR
4742 || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
4743 {
4744 if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
4745 cbase = TREE_OPERAND (cbase, 0);
4746 }
4747
4748 if (address_p)
4749 {
4750 if (((TREE_CODE (ubase) == SSA_NAME)
4751 || (TREE_CODE (ubase) == ADDR_EXPR
4752 && is_gimple_min_invariant (ubase)))
4753 && (TREE_CODE (cbase) == INTEGER_CST))
4754 return NULL;
4755
4756 if (((TREE_CODE (cbase) == SSA_NAME)
4757 || (TREE_CODE (cbase) == ADDR_EXPR
4758 && is_gimple_min_invariant (cbase)))
4759 && (TREE_CODE (ubase) == INTEGER_CST))
4760 return NULL;
4761 }
4762
4763 if (ratio == 1)
4764 {
4765 if (operand_equal_p (ubase, cbase, 0))
4766 return NULL;
4767
4768 if (TREE_CODE (ubase) == ADDR_EXPR
4769 && TREE_CODE (cbase) == ADDR_EXPR)
4770 {
4771 tree usym, csym;
4772
4773 usym = TREE_OPERAND (ubase, 0);
4774 csym = TREE_OPERAND (cbase, 0);
4775 if (TREE_CODE (usym) == ARRAY_REF)
4776 {
4777 tree ind = TREE_OPERAND (usym, 1);
4778 if (TREE_CODE (ind) == INTEGER_CST
4779 && tree_fits_shwi_p (ind)
4780 && tree_to_shwi (ind) == 0)
4781 usym = TREE_OPERAND (usym, 0);
4782 }
4783 if (TREE_CODE (csym) == ARRAY_REF)
4784 {
4785 tree ind = TREE_OPERAND (csym, 1);
4786 if (TREE_CODE (ind) == INTEGER_CST
4787 && tree_fits_shwi_p (ind)
4788 && tree_to_shwi (ind) == 0)
4789 csym = TREE_OPERAND (csym, 0);
4790 }
4791 if (operand_equal_p (usym, csym, 0))
4792 return NULL;
4793 }
4794 /* Now do more complex comparison */
4795 tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
4796 tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
4797 if (compare_aff_trees (&ubase_aff, &cbase_aff))
4798 return NULL;
4799 }
4800
4801 tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
4802 tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
4803
4804 aff_combination_scale (&cbase_aff, -1 * ratio);
4805 aff_combination_add (&ubase_aff, &cbase_aff);
4806 expr = aff_combination_to_tree (&ubase_aff);
4807 return record_inv_expr (data, expr);
4808 }
4809
4810 /* Scale (multiply) the computed COST (except scratch part that should be
4811 hoisted out a loop) by header->frequency / AT->frequency,
4812 which makes expected cost more accurate. */
4813
4814 static comp_cost
4815 get_scaled_computation_cost_at (ivopts_data *data, gimple *at, iv_cand *cand,
4816 comp_cost cost)
4817 {
4818 int loop_freq = data->current_loop->header->frequency;
4819 int bb_freq = gimple_bb (at)->frequency;
4820 if (loop_freq != 0)
4821 {
4822 gcc_assert (cost.scratch <= cost.cost);
4823 int scaled_cost
4824 = cost.scratch + (cost.cost - cost.scratch) * bb_freq / loop_freq;
4825
4826 if (dump_file && (dump_flags & TDF_DETAILS))
4827 fprintf (dump_file, "Scaling iv_use based on cand %d "
4828 "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
4829 cand->id, 1.0f * bb_freq / loop_freq, cost.cost,
4830 cost.scratch, scaled_cost, bb_freq, loop_freq);
4831
4832 cost.cost = scaled_cost;
4833 }
4834
4835 return cost;
4836 }
4837
4838 /* Determines the cost of the computation by that USE is expressed
4839 from induction variable CAND. If ADDRESS_P is true, we just need
4840 to create an address from it, otherwise we want to get it into
4841 register. A set of invariants we depend on is stored in
4842 DEPENDS_ON. AT is the statement at that the value is computed.
4843 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4844 addressing is likely. */
4845
4846 static comp_cost
4847 get_computation_cost_at (struct ivopts_data *data,
4848 struct iv_use *use, struct iv_cand *cand,
4849 bool address_p, bitmap *depends_on, gimple *at,
4850 bool *can_autoinc,
4851 iv_inv_expr_ent **inv_expr)
4852 {
4853 tree ubase = use->iv->base, ustep = use->iv->step;
4854 tree cbase, cstep;
4855 tree utype = TREE_TYPE (ubase), ctype;
4856 unsigned HOST_WIDE_INT cstepi, offset = 0;
4857 HOST_WIDE_INT ratio, aratio;
4858 bool var_present, symbol_present, stmt_is_after_inc;
4859 comp_cost cost;
4860 widest_int rat;
4861 bool speed = optimize_bb_for_speed_p (gimple_bb (at));
4862 machine_mode mem_mode = (address_p
4863 ? TYPE_MODE (TREE_TYPE (*use->op_p))
4864 : VOIDmode);
4865
4866 if (depends_on)
4867 *depends_on = NULL;
4868
4869 /* Only consider real candidates. */
4870 if (!cand->iv)
4871 return infinite_cost;
4872
4873 cbase = cand->iv->base;
4874 cstep = cand->iv->step;
4875 ctype = TREE_TYPE (cbase);
4876
4877 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
4878 {
4879 /* We do not have a precision to express the values of use. */
4880 return infinite_cost;
4881 }
4882
4883 if (address_p
4884 || (use->iv->base_object
4885 && cand->iv->base_object
4886 && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
4887 && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
4888 {
4889 /* Do not try to express address of an object with computation based
4890 on address of a different object. This may cause problems in rtl
4891 level alias analysis (that does not expect this to be happening,
4892 as this is illegal in C), and would be unlikely to be useful
4893 anyway. */
4894 if (use->iv->base_object
4895 && cand->iv->base_object
4896 && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
4897 return infinite_cost;
4898 }
4899
4900 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
4901 {
4902 /* TODO -- add direct handling of this case. */
4903 goto fallback;
4904 }
4905
4906 /* CSTEPI is removed from the offset in case statement is after the
4907 increment. If the step is not constant, we use zero instead.
4908 This is a bit imprecise (there is the extra addition), but
4909 redundancy elimination is likely to transform the code so that
4910 it uses value of the variable before increment anyway,
4911 so it is not that much unrealistic. */
4912 if (cst_and_fits_in_hwi (cstep))
4913 cstepi = int_cst_value (cstep);
4914 else
4915 cstepi = 0;
4916
4917 if (!constant_multiple_of (ustep, cstep, &rat))
4918 return infinite_cost;
4919
4920 if (wi::fits_shwi_p (rat))
4921 ratio = rat.to_shwi ();
4922 else
4923 return infinite_cost;
4924
4925 STRIP_NOPS (cbase);
4926 ctype = TREE_TYPE (cbase);
4927
4928 stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
4929
4930 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4931 or ratio == 1, it is better to handle this like
4932
4933 ubase - ratio * cbase + ratio * var
4934
4935 (also holds in the case ratio == -1, TODO. */
4936
4937 if (cst_and_fits_in_hwi (cbase))
4938 {
4939 offset = - ratio * (unsigned HOST_WIDE_INT) int_cst_value (cbase);
4940 cost = difference_cost (data,
4941 ubase, build_int_cst (utype, 0),
4942 &symbol_present, &var_present, &offset,
4943 depends_on);
4944 cost /= avg_loop_niter (data->current_loop);
4945 }
4946 else if (ratio == 1)
4947 {
4948 tree real_cbase = cbase;
4949
4950 /* Check to see if any adjustment is needed. */
4951 if (cstepi == 0 && stmt_is_after_inc)
4952 {
4953 aff_tree real_cbase_aff;
4954 aff_tree cstep_aff;
4955
4956 tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
4957 &real_cbase_aff);
4958 tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
4959
4960 aff_combination_add (&real_cbase_aff, &cstep_aff);
4961 real_cbase = aff_combination_to_tree (&real_cbase_aff);
4962 }
4963
4964 cost = difference_cost (data,
4965 ubase, real_cbase,
4966 &symbol_present, &var_present, &offset,
4967 depends_on);
4968 cost /= avg_loop_niter (data->current_loop);
4969 }
4970 else if (address_p
4971 && !POINTER_TYPE_P (ctype)
4972 && multiplier_allowed_in_address_p
4973 (ratio, mem_mode,
4974 TYPE_ADDR_SPACE (TREE_TYPE (utype))))
4975 {
4976 tree real_cbase = cbase;
4977
4978 if (cstepi == 0 && stmt_is_after_inc)
4979 {
4980 if (POINTER_TYPE_P (ctype))
4981 real_cbase = fold_build2 (POINTER_PLUS_EXPR, ctype, cbase, cstep);
4982 else
4983 real_cbase = fold_build2 (PLUS_EXPR, ctype, cbase, cstep);
4984 }
4985 real_cbase = fold_build2 (MULT_EXPR, ctype, real_cbase,
4986 build_int_cst (ctype, ratio));
4987 cost = difference_cost (data,
4988 ubase, real_cbase,
4989 &symbol_present, &var_present, &offset,
4990 depends_on);
4991 cost /= avg_loop_niter (data->current_loop);
4992 }
4993 else
4994 {
4995 cost = force_var_cost (data, cbase, depends_on);
4996 cost += difference_cost (data, ubase, build_int_cst (utype, 0),
4997 &symbol_present, &var_present, &offset,
4998 depends_on);
4999 cost /= avg_loop_niter (data->current_loop);
5000 cost += add_cost (data->speed, TYPE_MODE (ctype));
5001 }
5002
5003 /* Record setup cost in scratch field. */
5004 cost.scratch = cost.cost;
5005
5006 if (inv_expr && depends_on && *depends_on)
5007 {
5008 *inv_expr = get_loop_invariant_expr (data, ubase, cbase, ratio,
5009 address_p);
5010 /* Clear depends on. */
5011 if (*inv_expr != NULL)
5012 bitmap_clear (*depends_on);
5013 }
5014
5015 /* If we are after the increment, the value of the candidate is higher by
5016 one iteration. */
5017 if (stmt_is_after_inc)
5018 offset -= ratio * cstepi;
5019
5020 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
5021 (symbol/var1/const parts may be omitted). If we are looking for an
5022 address, find the cost of addressing this. */
5023 if (address_p)
5024 {
5025 cost += get_address_cost (symbol_present, var_present,
5026 offset, ratio, cstepi,
5027 mem_mode,
5028 TYPE_ADDR_SPACE (TREE_TYPE (utype)),
5029 speed, stmt_is_after_inc, can_autoinc);
5030 return get_scaled_computation_cost_at (data, at, cand, cost);
5031 }
5032
5033 /* Otherwise estimate the costs for computing the expression. */
5034 if (!symbol_present && !var_present && !offset)
5035 {
5036 if (ratio != 1)
5037 cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
5038 return get_scaled_computation_cost_at (data, at, cand, cost);
5039 }
5040
5041 /* Symbol + offset should be compile-time computable so consider that they
5042 are added once to the variable, if present. */
5043 if (var_present && (symbol_present || offset))
5044 cost += adjust_setup_cost (data,
5045 add_cost (speed, TYPE_MODE (ctype)));
5046
5047 /* Having offset does not affect runtime cost in case it is added to
5048 symbol, but it increases complexity. */
5049 if (offset)
5050 cost.complexity++;
5051
5052 cost += add_cost (speed, TYPE_MODE (ctype));
5053
5054 aratio = ratio > 0 ? ratio : -ratio;
5055 if (aratio != 1)
5056 cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
5057
5058 return get_scaled_computation_cost_at (data, at, cand, cost);
5059
5060 fallback:
5061 if (can_autoinc)
5062 *can_autoinc = false;
5063
5064 /* Just get the expression, expand it and measure the cost. */
5065 tree comp = get_computation_at (data->current_loop, use, cand, at);
5066
5067 if (!comp)
5068 return infinite_cost;
5069
5070 if (address_p)
5071 comp = build_simple_mem_ref (comp);
5072
5073 cost = comp_cost (computation_cost (comp, speed), 0);
5074
5075 return get_scaled_computation_cost_at (data, at, cand, cost);
5076 }
5077
5078 /* Determines the cost of the computation by that USE is expressed
5079 from induction variable CAND. If ADDRESS_P is true, we just need
5080 to create an address from it, otherwise we want to get it into
5081 register. A set of invariants we depend on is stored in
5082 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
5083 autoinc addressing is likely. */
5084
5085 static comp_cost
5086 get_computation_cost (struct ivopts_data *data,
5087 struct iv_use *use, struct iv_cand *cand,
5088 bool address_p, bitmap *depends_on,
5089 bool *can_autoinc, iv_inv_expr_ent **inv_expr)
5090 {
5091 return get_computation_cost_at (data,
5092 use, cand, address_p, depends_on, use->stmt,
5093 can_autoinc, inv_expr);
5094 }
5095
5096 /* Determines cost of computing the use in GROUP with CAND in a generic
5097 expression. */
5098
5099 static bool
5100 determine_group_iv_cost_generic (struct ivopts_data *data,
5101 struct iv_group *group, struct iv_cand *cand)
5102 {
5103 comp_cost cost;
5104 iv_inv_expr_ent *inv_expr = NULL;
5105 bitmap depends_on = NULL;
5106 struct iv_use *use = group->vuses[0];
5107
5108 /* The simple case first -- if we need to express value of the preserved
5109 original biv, the cost is 0. This also prevents us from counting the
5110 cost of increment twice -- once at this use and once in the cost of
5111 the candidate. */
5112 if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
5113 cost = no_cost;
5114 else
5115 cost = get_computation_cost (data, use, cand, false,
5116 &depends_on, NULL, &inv_expr);
5117
5118 set_group_iv_cost (data, group, cand, cost, depends_on,
5119 NULL_TREE, ERROR_MARK, inv_expr);
5120 return !cost.infinite_cost_p ();
5121 }
5122
5123 /* Determines cost of computing uses in GROUP with CAND in addresses. */
5124
5125 static bool
5126 determine_group_iv_cost_address (struct ivopts_data *data,
5127 struct iv_group *group, struct iv_cand *cand)
5128 {
5129 unsigned i;
5130 bitmap depends_on;
5131 bool can_autoinc;
5132 iv_inv_expr_ent *inv_expr = NULL;
5133 struct iv_use *use = group->vuses[0];
5134 comp_cost sum_cost = no_cost, cost;
5135
5136 cost = get_computation_cost (data, use, cand, true,
5137 &depends_on, &can_autoinc, &inv_expr);
5138
5139 sum_cost = cost;
5140 if (!sum_cost.infinite_cost_p () && cand->ainc_use == use)
5141 {
5142 if (can_autoinc)
5143 sum_cost -= cand->cost_step;
5144 /* If we generated the candidate solely for exploiting autoincrement
5145 opportunities, and it turns out it can't be used, set the cost to
5146 infinity to make sure we ignore it. */
5147 else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
5148 sum_cost = infinite_cost;
5149 }
5150
5151 /* Uses in a group can share setup code, so only add setup cost once. */
5152 cost -= cost.scratch;
5153 /* Compute and add costs for rest uses of this group. */
5154 for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++)
5155 {
5156 struct iv_use *next = group->vuses[i];
5157
5158 /* TODO: We could skip computing cost for sub iv_use when it has the
5159 same cost as the first iv_use, but the cost really depends on the
5160 offset and where the iv_use is. */
5161 cost = get_computation_cost (data, next, cand, true,
5162 NULL, &can_autoinc, NULL);
5163 sum_cost += cost;
5164 }
5165 set_group_iv_cost (data, group, cand, sum_cost, depends_on,
5166 NULL_TREE, ERROR_MARK, inv_expr);
5167
5168 return !sum_cost.infinite_cost_p ();
5169 }
5170
5171 /* Computes value of candidate CAND at position AT in iteration NITER, and
5172 stores it to VAL. */
5173
5174 static void
5175 cand_value_at (struct loop *loop, struct iv_cand *cand, gimple *at, tree niter,
5176 aff_tree *val)
5177 {
5178 aff_tree step, delta, nit;
5179 struct iv *iv = cand->iv;
5180 tree type = TREE_TYPE (iv->base);
5181 tree steptype;
5182 if (POINTER_TYPE_P (type))
5183 steptype = sizetype;
5184 else
5185 steptype = unsigned_type_for (type);
5186
5187 tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step);
5188 aff_combination_convert (&step, steptype);
5189 tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
5190 aff_combination_convert (&nit, steptype);
5191 aff_combination_mult (&nit, &step, &delta);
5192 if (stmt_after_increment (loop, cand, at))
5193 aff_combination_add (&delta, &step);
5194
5195 tree_to_aff_combination (iv->base, type, val);
5196 if (!POINTER_TYPE_P (type))
5197 aff_combination_convert (val, steptype);
5198 aff_combination_add (val, &delta);
5199 }
5200
5201 /* Returns period of induction variable iv. */
5202
5203 static tree
5204 iv_period (struct iv *iv)
5205 {
5206 tree step = iv->step, period, type;
5207 tree pow2div;
5208
5209 gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
5210
5211 type = unsigned_type_for (TREE_TYPE (step));
5212 /* Period of the iv is lcm (step, type_range)/step -1,
5213 i.e., N*type_range/step - 1. Since type range is power
5214 of two, N == (step >> num_of_ending_zeros_binary (step),
5215 so the final result is
5216
5217 (type_range >> num_of_ending_zeros_binary (step)) - 1
5218
5219 */
5220 pow2div = num_ending_zeros (step);
5221
5222 period = build_low_bits_mask (type,
5223 (TYPE_PRECISION (type)
5224 - tree_to_uhwi (pow2div)));
5225
5226 return period;
5227 }
5228
5229 /* Returns the comparison operator used when eliminating the iv USE. */
5230
5231 static enum tree_code
5232 iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
5233 {
5234 struct loop *loop = data->current_loop;
5235 basic_block ex_bb;
5236 edge exit;
5237
5238 ex_bb = gimple_bb (use->stmt);
5239 exit = EDGE_SUCC (ex_bb, 0);
5240 if (flow_bb_inside_loop_p (loop, exit->dest))
5241 exit = EDGE_SUCC (ex_bb, 1);
5242
5243 return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
5244 }
5245
5246 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
5247 we only detect the situation that BASE = SOMETHING + OFFSET, where the
5248 calculation is performed in non-wrapping type.
5249
5250 TODO: More generally, we could test for the situation that
5251 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
5252 This would require knowing the sign of OFFSET. */
5253
5254 static bool
5255 difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset)
5256 {
5257 enum tree_code code;
5258 tree e1, e2;
5259 aff_tree aff_e1, aff_e2, aff_offset;
5260
5261 if (!nowrap_type_p (TREE_TYPE (base)))
5262 return false;
5263
5264 base = expand_simple_operations (base);
5265
5266 if (TREE_CODE (base) == SSA_NAME)
5267 {
5268 gimple *stmt = SSA_NAME_DEF_STMT (base);
5269
5270 if (gimple_code (stmt) != GIMPLE_ASSIGN)
5271 return false;
5272
5273 code = gimple_assign_rhs_code (stmt);
5274 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
5275 return false;
5276
5277 e1 = gimple_assign_rhs1 (stmt);
5278 e2 = gimple_assign_rhs2 (stmt);
5279 }
5280 else
5281 {
5282 code = TREE_CODE (base);
5283 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
5284 return false;
5285 e1 = TREE_OPERAND (base, 0);
5286 e2 = TREE_OPERAND (base, 1);
5287 }
5288
5289 /* Use affine expansion as deeper inspection to prove the equality. */
5290 tree_to_aff_combination_expand (e2, TREE_TYPE (e2),
5291 &aff_e2, &data->name_expansion_cache);
5292 tree_to_aff_combination_expand (offset, TREE_TYPE (offset),
5293 &aff_offset, &data->name_expansion_cache);
5294 aff_combination_scale (&aff_offset, -1);
5295 switch (code)
5296 {
5297 case PLUS_EXPR:
5298 aff_combination_add (&aff_e2, &aff_offset);
5299 if (aff_combination_zero_p (&aff_e2))
5300 return true;
5301
5302 tree_to_aff_combination_expand (e1, TREE_TYPE (e1),
5303 &aff_e1, &data->name_expansion_cache);
5304 aff_combination_add (&aff_e1, &aff_offset);
5305 return aff_combination_zero_p (&aff_e1);
5306
5307 case POINTER_PLUS_EXPR:
5308 aff_combination_add (&aff_e2, &aff_offset);
5309 return aff_combination_zero_p (&aff_e2);
5310
5311 default:
5312 return false;
5313 }
5314 }
5315
5316 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
5317 comparison with CAND. NITER describes the number of iterations of
5318 the loops. If successful, the comparison in COMP_P is altered accordingly.
5319
5320 We aim to handle the following situation:
5321
5322 sometype *base, *p;
5323 int a, b, i;
5324
5325 i = a;
5326 p = p_0 = base + a;
5327
5328 do
5329 {
5330 bla (*p);
5331 p++;
5332 i++;
5333 }
5334 while (i < b);
5335
5336 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
5337 We aim to optimize this to
5338
5339 p = p_0 = base + a;
5340 do
5341 {
5342 bla (*p);
5343 p++;
5344 }
5345 while (p < p_0 - a + b);
5346
5347 This preserves the correctness, since the pointer arithmetics does not
5348 overflow. More precisely:
5349
5350 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
5351 overflow in computing it or the values of p.
5352 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
5353 overflow. To prove this, we use the fact that p_0 = base + a. */
5354
5355 static bool
5356 iv_elimination_compare_lt (struct ivopts_data *data,
5357 struct iv_cand *cand, enum tree_code *comp_p,
5358 struct tree_niter_desc *niter)
5359 {
5360 tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
5361 struct aff_tree nit, tmpa, tmpb;
5362 enum tree_code comp;
5363 HOST_WIDE_INT step;
5364
5365 /* We need to know that the candidate induction variable does not overflow.
5366 While more complex analysis may be used to prove this, for now just
5367 check that the variable appears in the original program and that it
5368 is computed in a type that guarantees no overflows. */
5369 cand_type = TREE_TYPE (cand->iv->base);
5370 if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
5371 return false;
5372
5373 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
5374 the calculation of the BOUND could overflow, making the comparison
5375 invalid. */
5376 if (!data->loop_single_exit_p)
5377 return false;
5378
5379 /* We need to be able to decide whether candidate is increasing or decreasing
5380 in order to choose the right comparison operator. */
5381 if (!cst_and_fits_in_hwi (cand->iv->step))
5382 return false;
5383 step = int_cst_value (cand->iv->step);
5384
5385 /* Check that the number of iterations matches the expected pattern:
5386 a + 1 > b ? 0 : b - a - 1. */
5387 mbz = niter->may_be_zero;
5388 if (TREE_CODE (mbz) == GT_EXPR)
5389 {
5390 /* Handle a + 1 > b. */
5391 tree op0 = TREE_OPERAND (mbz, 0);
5392 if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
5393 {
5394 a = TREE_OPERAND (op0, 0);
5395 b = TREE_OPERAND (mbz, 1);
5396 }
5397 else
5398 return false;
5399 }
5400 else if (TREE_CODE (mbz) == LT_EXPR)
5401 {
5402 tree op1 = TREE_OPERAND (mbz, 1);
5403
5404 /* Handle b < a + 1. */
5405 if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
5406 {
5407 a = TREE_OPERAND (op1, 0);
5408 b = TREE_OPERAND (mbz, 0);
5409 }
5410 else
5411 return false;
5412 }
5413 else
5414 return false;
5415
5416 /* Expected number of iterations is B - A - 1. Check that it matches
5417 the actual number, i.e., that B - A - NITER = 1. */
5418 tree_to_aff_combination (niter->niter, nit_type, &nit);
5419 tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
5420 tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
5421 aff_combination_scale (&nit, -1);
5422 aff_combination_scale (&tmpa, -1);
5423 aff_combination_add (&tmpb, &tmpa);
5424 aff_combination_add (&tmpb, &nit);
5425 if (tmpb.n != 0 || tmpb.offset != 1)
5426 return false;
5427
5428 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
5429 overflow. */
5430 offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
5431 cand->iv->step,
5432 fold_convert (TREE_TYPE (cand->iv->step), a));
5433 if (!difference_cannot_overflow_p (data, cand->iv->base, offset))
5434 return false;
5435
5436 /* Determine the new comparison operator. */
5437 comp = step < 0 ? GT_EXPR : LT_EXPR;
5438 if (*comp_p == NE_EXPR)
5439 *comp_p = comp;
5440 else if (*comp_p == EQ_EXPR)
5441 *comp_p = invert_tree_comparison (comp, false);
5442 else
5443 gcc_unreachable ();
5444
5445 return true;
5446 }
5447
5448 /* Check whether it is possible to express the condition in USE by comparison
5449 of candidate CAND. If so, store the value compared with to BOUND, and the
5450 comparison operator to COMP. */
5451
5452 static bool
5453 may_eliminate_iv (struct ivopts_data *data,
5454 struct iv_use *use, struct iv_cand *cand, tree *bound,
5455 enum tree_code *comp)
5456 {
5457 basic_block ex_bb;
5458 edge exit;
5459 tree period;
5460 struct loop *loop = data->current_loop;
5461 aff_tree bnd;
5462 struct tree_niter_desc *desc = NULL;
5463
5464 if (TREE_CODE (cand->iv->step) != INTEGER_CST)
5465 return false;
5466
5467 /* For now works only for exits that dominate the loop latch.
5468 TODO: extend to other conditions inside loop body. */
5469 ex_bb = gimple_bb (use->stmt);
5470 if (use->stmt != last_stmt (ex_bb)
5471 || gimple_code (use->stmt) != GIMPLE_COND
5472 || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
5473 return false;
5474
5475 exit = EDGE_SUCC (ex_bb, 0);
5476 if (flow_bb_inside_loop_p (loop, exit->dest))
5477 exit = EDGE_SUCC (ex_bb, 1);
5478 if (flow_bb_inside_loop_p (loop, exit->dest))
5479 return false;
5480
5481 desc = niter_for_exit (data, exit);
5482 if (!desc)
5483 return false;
5484
5485 /* Determine whether we can use the variable to test the exit condition.
5486 This is the case iff the period of the induction variable is greater
5487 than the number of iterations for which the exit condition is true. */
5488 period = iv_period (cand->iv);
5489
5490 /* If the number of iterations is constant, compare against it directly. */
5491 if (TREE_CODE (desc->niter) == INTEGER_CST)
5492 {
5493 /* See cand_value_at. */
5494 if (stmt_after_increment (loop, cand, use->stmt))
5495 {
5496 if (!tree_int_cst_lt (desc->niter, period))
5497 return false;
5498 }
5499 else
5500 {
5501 if (tree_int_cst_lt (period, desc->niter))
5502 return false;
5503 }
5504 }
5505
5506 /* If not, and if this is the only possible exit of the loop, see whether
5507 we can get a conservative estimate on the number of iterations of the
5508 entire loop and compare against that instead. */
5509 else
5510 {
5511 widest_int period_value, max_niter;
5512
5513 max_niter = desc->max;
5514 if (stmt_after_increment (loop, cand, use->stmt))
5515 max_niter += 1;
5516 period_value = wi::to_widest (period);
5517 if (wi::gtu_p (max_niter, period_value))
5518 {
5519 /* See if we can take advantage of inferred loop bound
5520 information. */
5521 if (data->loop_single_exit_p)
5522 {
5523 if (!max_loop_iterations (loop, &max_niter))
5524 return false;
5525 /* The loop bound is already adjusted by adding 1. */
5526 if (wi::gtu_p (max_niter, period_value))
5527 return false;
5528 }
5529 else
5530 return false;
5531 }
5532 }
5533
5534 cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
5535
5536 *bound = fold_convert (TREE_TYPE (cand->iv->base),
5537 aff_combination_to_tree (&bnd));
5538 *comp = iv_elimination_compare (data, use);
5539
5540 /* It is unlikely that computing the number of iterations using division
5541 would be more profitable than keeping the original induction variable. */
5542 if (expression_expensive_p (*bound))
5543 return false;
5544
5545 /* Sometimes, it is possible to handle the situation that the number of
5546 iterations may be zero unless additional assumtions by using <
5547 instead of != in the exit condition.
5548
5549 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5550 base the exit condition on it. However, that is often too
5551 expensive. */
5552 if (!integer_zerop (desc->may_be_zero))
5553 return iv_elimination_compare_lt (data, cand, comp, desc);
5554
5555 return true;
5556 }
5557
5558 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5559 be copied, if it is used in the loop body and DATA->body_includes_call. */
5560
5561 static int
5562 parm_decl_cost (struct ivopts_data *data, tree bound)
5563 {
5564 tree sbound = bound;
5565 STRIP_NOPS (sbound);
5566
5567 if (TREE_CODE (sbound) == SSA_NAME
5568 && SSA_NAME_IS_DEFAULT_DEF (sbound)
5569 && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
5570 && data->body_includes_call)
5571 return COSTS_N_INSNS (1);
5572
5573 return 0;
5574 }
5575
5576 /* Determines cost of computing the use in GROUP with CAND in a condition. */
5577
5578 static bool
5579 determine_group_iv_cost_cond (struct ivopts_data *data,
5580 struct iv_group *group, struct iv_cand *cand)
5581 {
5582 tree bound = NULL_TREE;
5583 struct iv *cmp_iv;
5584 bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
5585 comp_cost elim_cost, express_cost, cost, bound_cost;
5586 bool ok;
5587 iv_inv_expr_ent *elim_inv_expr = NULL, *express_inv_expr = NULL, *inv_expr;
5588 tree *control_var, *bound_cst;
5589 enum tree_code comp = ERROR_MARK;
5590 struct iv_use *use = group->vuses[0];
5591
5592 gcc_assert (cand->iv);
5593
5594 /* Try iv elimination. */
5595 if (may_eliminate_iv (data, use, cand, &bound, &comp))
5596 {
5597 elim_cost = force_var_cost (data, bound, &depends_on_elim);
5598 if (elim_cost.cost == 0)
5599 elim_cost.cost = parm_decl_cost (data, bound);
5600 else if (TREE_CODE (bound) == INTEGER_CST)
5601 elim_cost.cost = 0;
5602 /* If we replace a loop condition 'i < n' with 'p < base + n',
5603 depends_on_elim will have 'base' and 'n' set, which implies
5604 that both 'base' and 'n' will be live during the loop. More likely,
5605 'base + n' will be loop invariant, resulting in only one live value
5606 during the loop. So in that case we clear depends_on_elim and set
5607 elim_inv_expr_id instead. */
5608 if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
5609 {
5610 elim_inv_expr = record_inv_expr (data, bound);
5611 bitmap_clear (depends_on_elim);
5612 }
5613 /* The bound is a loop invariant, so it will be only computed
5614 once. */
5615 elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
5616 }
5617 else
5618 elim_cost = infinite_cost;
5619
5620 /* Try expressing the original giv. If it is compared with an invariant,
5621 note that we cannot get rid of it. */
5622 ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
5623 NULL, &cmp_iv);
5624 gcc_assert (ok);
5625
5626 /* When the condition is a comparison of the candidate IV against
5627 zero, prefer this IV.
5628
5629 TODO: The constant that we're subtracting from the cost should
5630 be target-dependent. This information should be added to the
5631 target costs for each backend. */
5632 if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */
5633 && integer_zerop (*bound_cst)
5634 && (operand_equal_p (*control_var, cand->var_after, 0)
5635 || operand_equal_p (*control_var, cand->var_before, 0)))
5636 elim_cost -= 1;
5637
5638 express_cost = get_computation_cost (data, use, cand, false,
5639 &depends_on_express, NULL,
5640 &express_inv_expr);
5641 fd_ivopts_data = data;
5642 walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
5643
5644 /* Count the cost of the original bound as well. */
5645 bound_cost = force_var_cost (data, *bound_cst, NULL);
5646 if (bound_cost.cost == 0)
5647 bound_cost.cost = parm_decl_cost (data, *bound_cst);
5648 else if (TREE_CODE (*bound_cst) == INTEGER_CST)
5649 bound_cost.cost = 0;
5650 express_cost += bound_cost;
5651
5652 /* Choose the better approach, preferring the eliminated IV. */
5653 if (elim_cost <= express_cost)
5654 {
5655 cost = elim_cost;
5656 depends_on = depends_on_elim;
5657 depends_on_elim = NULL;
5658 inv_expr = elim_inv_expr;
5659 }
5660 else
5661 {
5662 cost = express_cost;
5663 depends_on = depends_on_express;
5664 depends_on_express = NULL;
5665 bound = NULL_TREE;
5666 comp = ERROR_MARK;
5667 inv_expr = express_inv_expr;
5668 }
5669
5670 set_group_iv_cost (data, group, cand, cost,
5671 depends_on, bound, comp, inv_expr);
5672
5673 if (depends_on_elim)
5674 BITMAP_FREE (depends_on_elim);
5675 if (depends_on_express)
5676 BITMAP_FREE (depends_on_express);
5677
5678 return !cost.infinite_cost_p ();
5679 }
5680
5681 /* Determines cost of computing uses in GROUP with CAND. Returns false
5682 if USE cannot be represented with CAND. */
5683
5684 static bool
5685 determine_group_iv_cost (struct ivopts_data *data,
5686 struct iv_group *group, struct iv_cand *cand)
5687 {
5688 switch (group->type)
5689 {
5690 case USE_NONLINEAR_EXPR:
5691 return determine_group_iv_cost_generic (data, group, cand);
5692
5693 case USE_ADDRESS:
5694 return determine_group_iv_cost_address (data, group, cand);
5695
5696 case USE_COMPARE:
5697 return determine_group_iv_cost_cond (data, group, cand);
5698
5699 default:
5700 gcc_unreachable ();
5701 }
5702 }
5703
5704 /* Return true if get_computation_cost indicates that autoincrement is
5705 a possibility for the pair of USE and CAND, false otherwise. */
5706
5707 static bool
5708 autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
5709 struct iv_cand *cand)
5710 {
5711 bitmap depends_on;
5712 bool can_autoinc;
5713 comp_cost cost;
5714
5715 if (use->type != USE_ADDRESS)
5716 return false;
5717
5718 cost = get_computation_cost (data, use, cand, true, &depends_on,
5719 &can_autoinc, NULL);
5720
5721 BITMAP_FREE (depends_on);
5722
5723 return !cost.infinite_cost_p () && can_autoinc;
5724 }
5725
5726 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5727 use that allows autoincrement, and set their AINC_USE if possible. */
5728
5729 static void
5730 set_autoinc_for_original_candidates (struct ivopts_data *data)
5731 {
5732 unsigned i, j;
5733
5734 for (i = 0; i < data->vcands.length (); i++)
5735 {
5736 struct iv_cand *cand = data->vcands[i];
5737 struct iv_use *closest_before = NULL;
5738 struct iv_use *closest_after = NULL;
5739 if (cand->pos != IP_ORIGINAL)
5740 continue;
5741
5742 for (j = 0; j < data->vgroups.length (); j++)
5743 {
5744 struct iv_group *group = data->vgroups[j];
5745 struct iv_use *use = group->vuses[0];
5746 unsigned uid = gimple_uid (use->stmt);
5747
5748 if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
5749 continue;
5750
5751 if (uid < gimple_uid (cand->incremented_at)
5752 && (closest_before == NULL
5753 || uid > gimple_uid (closest_before->stmt)))
5754 closest_before = use;
5755
5756 if (uid > gimple_uid (cand->incremented_at)
5757 && (closest_after == NULL
5758 || uid < gimple_uid (closest_after->stmt)))
5759 closest_after = use;
5760 }
5761
5762 if (closest_before != NULL
5763 && autoinc_possible_for_pair (data, closest_before, cand))
5764 cand->ainc_use = closest_before;
5765 else if (closest_after != NULL
5766 && autoinc_possible_for_pair (data, closest_after, cand))
5767 cand->ainc_use = closest_after;
5768 }
5769 }
5770
5771 /* Finds the candidates for the induction variables. */
5772
5773 static void
5774 find_iv_candidates (struct ivopts_data *data)
5775 {
5776 /* Add commonly used ivs. */
5777 add_standard_iv_candidates (data);
5778
5779 /* Add old induction variables. */
5780 add_iv_candidate_for_bivs (data);
5781
5782 /* Add induction variables derived from uses. */
5783 add_iv_candidate_for_groups (data);
5784
5785 set_autoinc_for_original_candidates (data);
5786
5787 /* Record the important candidates. */
5788 record_important_candidates (data);
5789
5790 if (dump_file && (dump_flags & TDF_DETAILS))
5791 {
5792 unsigned i;
5793
5794 fprintf (dump_file, "\n<Important Candidates>:\t");
5795 for (i = 0; i < data->vcands.length (); i++)
5796 if (data->vcands[i]->important)
5797 fprintf (dump_file, " %d,", data->vcands[i]->id);
5798 fprintf (dump_file, "\n");
5799
5800 fprintf (dump_file, "\n<Group, Cand> Related:\n");
5801 for (i = 0; i < data->vgroups.length (); i++)
5802 {
5803 struct iv_group *group = data->vgroups[i];
5804
5805 if (group->related_cands)
5806 {
5807 fprintf (dump_file, " Group %d:\t", group->id);
5808 dump_bitmap (dump_file, group->related_cands);
5809 }
5810 }
5811 fprintf (dump_file, "\n");
5812 }
5813 }
5814
5815 /* Determines costs of computing use of iv with an iv candidate. */
5816
5817 static void
5818 determine_group_iv_costs (struct ivopts_data *data)
5819 {
5820 unsigned i, j;
5821 struct iv_cand *cand;
5822 struct iv_group *group;
5823 bitmap to_clear = BITMAP_ALLOC (NULL);
5824
5825 alloc_use_cost_map (data);
5826
5827 for (i = 0; i < data->vgroups.length (); i++)
5828 {
5829 group = data->vgroups[i];
5830
5831 if (data->consider_all_candidates)
5832 {
5833 for (j = 0; j < data->vcands.length (); j++)
5834 {
5835 cand = data->vcands[j];
5836 determine_group_iv_cost (data, group, cand);
5837 }
5838 }
5839 else
5840 {
5841 bitmap_iterator bi;
5842
5843 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, j, bi)
5844 {
5845 cand = data->vcands[j];
5846 if (!determine_group_iv_cost (data, group, cand))
5847 bitmap_set_bit (to_clear, j);
5848 }
5849
5850 /* Remove the candidates for that the cost is infinite from
5851 the list of related candidates. */
5852 bitmap_and_compl_into (group->related_cands, to_clear);
5853 bitmap_clear (to_clear);
5854 }
5855 }
5856
5857 BITMAP_FREE (to_clear);
5858
5859 if (dump_file && (dump_flags & TDF_DETAILS))
5860 {
5861 fprintf (dump_file, "\n<Invariant Expressions>:\n");
5862 auto_vec <iv_inv_expr_ent *> list (data->inv_expr_tab->elements ());
5863
5864 for (hash_table<iv_inv_expr_hasher>::iterator it
5865 = data->inv_expr_tab->begin (); it != data->inv_expr_tab->end ();
5866 ++it)
5867 list.safe_push (*it);
5868
5869 list.qsort (sort_iv_inv_expr_ent);
5870
5871 for (i = 0; i < list.length (); ++i)
5872 {
5873 fprintf (dump_file, "inv_expr %d: \t", i);
5874 print_generic_expr (dump_file, list[i]->expr, TDF_SLIM);
5875 fprintf (dump_file, "\n");
5876 }
5877
5878 fprintf (dump_file, "\n<Group-candidate Costs>:\n");
5879
5880 for (i = 0; i < data->vgroups.length (); i++)
5881 {
5882 group = data->vgroups[i];
5883
5884 fprintf (dump_file, "Group %d:\n", i);
5885 fprintf (dump_file, " cand\tcost\tcompl.\tinv.ex.\tdepends on\n");
5886 for (j = 0; j < group->n_map_members; j++)
5887 {
5888 if (!group->cost_map[j].cand
5889 || group->cost_map[j].cost.infinite_cost_p ())
5890 continue;
5891
5892 fprintf (dump_file, " %d\t%d\t%d\t",
5893 group->cost_map[j].cand->id,
5894 group->cost_map[j].cost.cost,
5895 group->cost_map[j].cost.complexity);
5896 if (group->cost_map[j].inv_expr != NULL)
5897 fprintf (dump_file, "%d\t",
5898 group->cost_map[j].inv_expr->id);
5899 else
5900 fprintf (dump_file, "\t");
5901 if (group->cost_map[j].depends_on)
5902 bitmap_print (dump_file,
5903 group->cost_map[j].depends_on, "","");
5904 fprintf (dump_file, "\n");
5905 }
5906
5907 fprintf (dump_file, "\n");
5908 }
5909 fprintf (dump_file, "\n");
5910 }
5911 }
5912
5913 /* Determines cost of the candidate CAND. */
5914
5915 static void
5916 determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
5917 {
5918 comp_cost cost_base;
5919 unsigned cost, cost_step;
5920 tree base;
5921
5922 if (!cand->iv)
5923 {
5924 cand->cost = 0;
5925 return;
5926 }
5927
5928 /* There are two costs associated with the candidate -- its increment
5929 and its initialization. The second is almost negligible for any loop
5930 that rolls enough, so we take it just very little into account. */
5931
5932 base = cand->iv->base;
5933 cost_base = force_var_cost (data, base, NULL);
5934 /* It will be exceptional that the iv register happens to be initialized with
5935 the proper value at no cost. In general, there will at least be a regcopy
5936 or a const set. */
5937 if (cost_base.cost == 0)
5938 cost_base.cost = COSTS_N_INSNS (1);
5939 cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
5940
5941 cost = cost_step + adjust_setup_cost (data, cost_base.cost);
5942
5943 /* Prefer the original ivs unless we may gain something by replacing it.
5944 The reason is to make debugging simpler; so this is not relevant for
5945 artificial ivs created by other optimization passes. */
5946 if (cand->pos != IP_ORIGINAL
5947 || !SSA_NAME_VAR (cand->var_before)
5948 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
5949 cost++;
5950
5951 /* Prefer not to insert statements into latch unless there are some
5952 already (so that we do not create unnecessary jumps). */
5953 if (cand->pos == IP_END
5954 && empty_block_p (ip_end_pos (data->current_loop)))
5955 cost++;
5956
5957 cand->cost = cost;
5958 cand->cost_step = cost_step;
5959 }
5960
5961 /* Determines costs of computation of the candidates. */
5962
5963 static void
5964 determine_iv_costs (struct ivopts_data *data)
5965 {
5966 unsigned i;
5967
5968 if (dump_file && (dump_flags & TDF_DETAILS))
5969 {
5970 fprintf (dump_file, "<Candidate Costs>:\n");
5971 fprintf (dump_file, " cand\tcost\n");
5972 }
5973
5974 for (i = 0; i < data->vcands.length (); i++)
5975 {
5976 struct iv_cand *cand = data->vcands[i];
5977
5978 determine_iv_cost (data, cand);
5979
5980 if (dump_file && (dump_flags & TDF_DETAILS))
5981 fprintf (dump_file, " %d\t%d\n", i, cand->cost);
5982 }
5983
5984 if (dump_file && (dump_flags & TDF_DETAILS))
5985 fprintf (dump_file, "\n");
5986 }
5987
5988 /* Calculates cost for having SIZE induction variables. */
5989
5990 static unsigned
5991 ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
5992 {
5993 /* We add size to the cost, so that we prefer eliminating ivs
5994 if possible. */
5995 return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
5996 data->body_includes_call);
5997 }
5998
5999 /* For each size of the induction variable set determine the penalty. */
6000
6001 static void
6002 determine_set_costs (struct ivopts_data *data)
6003 {
6004 unsigned j, n;
6005 gphi *phi;
6006 gphi_iterator psi;
6007 tree op;
6008 struct loop *loop = data->current_loop;
6009 bitmap_iterator bi;
6010
6011 if (dump_file && (dump_flags & TDF_DETAILS))
6012 {
6013 fprintf (dump_file, "<Global Costs>:\n");
6014 fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
6015 fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
6016 fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
6017 fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
6018 }
6019
6020 n = 0;
6021 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
6022 {
6023 phi = psi.phi ();
6024 op = PHI_RESULT (phi);
6025
6026 if (virtual_operand_p (op))
6027 continue;
6028
6029 if (get_iv (data, op))
6030 continue;
6031
6032 n++;
6033 }
6034
6035 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
6036 {
6037 struct version_info *info = ver_info (data, j);
6038
6039 if (info->inv_id && info->has_nonlin_use)
6040 n++;
6041 }
6042
6043 data->regs_used = n;
6044 if (dump_file && (dump_flags & TDF_DETAILS))
6045 fprintf (dump_file, " regs_used %d\n", n);
6046
6047 if (dump_file && (dump_flags & TDF_DETAILS))
6048 {
6049 fprintf (dump_file, " cost for size:\n");
6050 fprintf (dump_file, " ivs\tcost\n");
6051 for (j = 0; j <= 2 * target_avail_regs; j++)
6052 fprintf (dump_file, " %d\t%d\n", j,
6053 ivopts_global_cost_for_size (data, j));
6054 fprintf (dump_file, "\n");
6055 }
6056 }
6057
6058 /* Returns true if A is a cheaper cost pair than B. */
6059
6060 static bool
6061 cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
6062 {
6063 if (!a)
6064 return false;
6065
6066 if (!b)
6067 return true;
6068
6069 if (a->cost < b->cost)
6070 return true;
6071
6072 if (b->cost < a->cost)
6073 return false;
6074
6075 /* In case the costs are the same, prefer the cheaper candidate. */
6076 if (a->cand->cost < b->cand->cost)
6077 return true;
6078
6079 return false;
6080 }
6081
6082
6083 /* Returns candidate by that USE is expressed in IVS. */
6084
6085 static struct cost_pair *
6086 iv_ca_cand_for_group (struct iv_ca *ivs, struct iv_group *group)
6087 {
6088 return ivs->cand_for_group[group->id];
6089 }
6090
6091 /* Computes the cost field of IVS structure. */
6092
6093 static void
6094 iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
6095 {
6096 comp_cost cost = ivs->cand_use_cost;
6097
6098 cost += ivs->cand_cost;
6099
6100 cost += ivopts_global_cost_for_size (data,
6101 ivs->n_regs
6102 + ivs->used_inv_exprs->elements ());
6103
6104 ivs->cost = cost;
6105 }
6106
6107 /* Remove invariants in set INVS to set IVS. */
6108
6109 static void
6110 iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
6111 {
6112 bitmap_iterator bi;
6113 unsigned iid;
6114
6115 if (!invs)
6116 return;
6117
6118 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
6119 {
6120 ivs->n_invariant_uses[iid]--;
6121 if (ivs->n_invariant_uses[iid] == 0)
6122 ivs->n_regs--;
6123 }
6124 }
6125
6126 /* Set USE not to be expressed by any candidate in IVS. */
6127
6128 static void
6129 iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
6130 struct iv_group *group)
6131 {
6132 unsigned gid = group->id, cid;
6133 struct cost_pair *cp;
6134
6135 cp = ivs->cand_for_group[gid];
6136 if (!cp)
6137 return;
6138 cid = cp->cand->id;
6139
6140 ivs->bad_groups++;
6141 ivs->cand_for_group[gid] = NULL;
6142 ivs->n_cand_uses[cid]--;
6143
6144 if (ivs->n_cand_uses[cid] == 0)
6145 {
6146 bitmap_clear_bit (ivs->cands, cid);
6147 /* Do not count the pseudocandidates. */
6148 if (cp->cand->iv)
6149 ivs->n_regs--;
6150 ivs->n_cands--;
6151 ivs->cand_cost -= cp->cand->cost;
6152
6153 iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
6154 }
6155
6156 ivs->cand_use_cost -= cp->cost;
6157
6158 iv_ca_set_remove_invariants (ivs, cp->depends_on);
6159
6160 if (cp->inv_expr != NULL)
6161 {
6162 unsigned *slot = ivs->used_inv_exprs->get (cp->inv_expr);
6163 --(*slot);
6164 if (*slot == 0)
6165 ivs->used_inv_exprs->remove (cp->inv_expr);
6166 }
6167 iv_ca_recount_cost (data, ivs);
6168 }
6169
6170 /* Add invariants in set INVS to set IVS. */
6171
6172 static void
6173 iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
6174 {
6175 bitmap_iterator bi;
6176 unsigned iid;
6177
6178 if (!invs)
6179 return;
6180
6181 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
6182 {
6183 ivs->n_invariant_uses[iid]++;
6184 if (ivs->n_invariant_uses[iid] == 1)
6185 ivs->n_regs++;
6186 }
6187 }
6188
6189 /* Set cost pair for GROUP in set IVS to CP. */
6190
6191 static void
6192 iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
6193 struct iv_group *group, struct cost_pair *cp)
6194 {
6195 unsigned gid = group->id, cid;
6196
6197 if (ivs->cand_for_group[gid] == cp)
6198 return;
6199
6200 if (ivs->cand_for_group[gid])
6201 iv_ca_set_no_cp (data, ivs, group);
6202
6203 if (cp)
6204 {
6205 cid = cp->cand->id;
6206
6207 ivs->bad_groups--;
6208 ivs->cand_for_group[gid] = cp;
6209 ivs->n_cand_uses[cid]++;
6210 if (ivs->n_cand_uses[cid] == 1)
6211 {
6212 bitmap_set_bit (ivs->cands, cid);
6213 /* Do not count the pseudocandidates. */
6214 if (cp->cand->iv)
6215 ivs->n_regs++;
6216 ivs->n_cands++;
6217 ivs->cand_cost += cp->cand->cost;
6218
6219 iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
6220 }
6221
6222 ivs->cand_use_cost += cp->cost;
6223 iv_ca_set_add_invariants (ivs, cp->depends_on);
6224
6225 if (cp->inv_expr != NULL)
6226 {
6227 unsigned *slot = &ivs->used_inv_exprs->get_or_insert (cp->inv_expr);
6228 ++(*slot);
6229 }
6230 iv_ca_recount_cost (data, ivs);
6231 }
6232 }
6233
6234 /* Extend set IVS by expressing USE by some of the candidates in it
6235 if possible. Consider all important candidates if candidates in
6236 set IVS don't give any result. */
6237
6238 static void
6239 iv_ca_add_group (struct ivopts_data *data, struct iv_ca *ivs,
6240 struct iv_group *group)
6241 {
6242 struct cost_pair *best_cp = NULL, *cp;
6243 bitmap_iterator bi;
6244 unsigned i;
6245 struct iv_cand *cand;
6246
6247 gcc_assert (ivs->upto >= group->id);
6248 ivs->upto++;
6249 ivs->bad_groups++;
6250
6251 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6252 {
6253 cand = data->vcands[i];
6254 cp = get_group_iv_cost (data, group, cand);
6255 if (cheaper_cost_pair (cp, best_cp))
6256 best_cp = cp;
6257 }
6258
6259 if (best_cp == NULL)
6260 {
6261 EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
6262 {
6263 cand = data->vcands[i];
6264 cp = get_group_iv_cost (data, group, cand);
6265 if (cheaper_cost_pair (cp, best_cp))
6266 best_cp = cp;
6267 }
6268 }
6269
6270 iv_ca_set_cp (data, ivs, group, best_cp);
6271 }
6272
6273 /* Get cost for assignment IVS. */
6274
6275 static comp_cost
6276 iv_ca_cost (struct iv_ca *ivs)
6277 {
6278 /* This was a conditional expression but it triggered a bug in
6279 Sun C 5.5. */
6280 if (ivs->bad_groups)
6281 return infinite_cost;
6282 else
6283 return ivs->cost;
6284 }
6285
6286 /* Returns true if all dependences of CP are among invariants in IVS. */
6287
6288 static bool
6289 iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
6290 {
6291 unsigned i;
6292 bitmap_iterator bi;
6293
6294 if (!cp->depends_on)
6295 return true;
6296
6297 EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
6298 {
6299 if (ivs->n_invariant_uses[i] == 0)
6300 return false;
6301 }
6302
6303 return true;
6304 }
6305
6306 /* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
6307 it before NEXT. */
6308
6309 static struct iv_ca_delta *
6310 iv_ca_delta_add (struct iv_group *group, struct cost_pair *old_cp,
6311 struct cost_pair *new_cp, struct iv_ca_delta *next)
6312 {
6313 struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
6314
6315 change->group = group;
6316 change->old_cp = old_cp;
6317 change->new_cp = new_cp;
6318 change->next = next;
6319
6320 return change;
6321 }
6322
6323 /* Joins two lists of changes L1 and L2. Destructive -- old lists
6324 are rewritten. */
6325
6326 static struct iv_ca_delta *
6327 iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
6328 {
6329 struct iv_ca_delta *last;
6330
6331 if (!l2)
6332 return l1;
6333
6334 if (!l1)
6335 return l2;
6336
6337 for (last = l1; last->next; last = last->next)
6338 continue;
6339 last->next = l2;
6340
6341 return l1;
6342 }
6343
6344 /* Reverse the list of changes DELTA, forming the inverse to it. */
6345
6346 static struct iv_ca_delta *
6347 iv_ca_delta_reverse (struct iv_ca_delta *delta)
6348 {
6349 struct iv_ca_delta *act, *next, *prev = NULL;
6350
6351 for (act = delta; act; act = next)
6352 {
6353 next = act->next;
6354 act->next = prev;
6355 prev = act;
6356
6357 std::swap (act->old_cp, act->new_cp);
6358 }
6359
6360 return prev;
6361 }
6362
6363 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
6364 reverted instead. */
6365
6366 static void
6367 iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
6368 struct iv_ca_delta *delta, bool forward)
6369 {
6370 struct cost_pair *from, *to;
6371 struct iv_ca_delta *act;
6372
6373 if (!forward)
6374 delta = iv_ca_delta_reverse (delta);
6375
6376 for (act = delta; act; act = act->next)
6377 {
6378 from = act->old_cp;
6379 to = act->new_cp;
6380 gcc_assert (iv_ca_cand_for_group (ivs, act->group) == from);
6381 iv_ca_set_cp (data, ivs, act->group, to);
6382 }
6383
6384 if (!forward)
6385 iv_ca_delta_reverse (delta);
6386 }
6387
6388 /* Returns true if CAND is used in IVS. */
6389
6390 static bool
6391 iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
6392 {
6393 return ivs->n_cand_uses[cand->id] > 0;
6394 }
6395
6396 /* Returns number of induction variable candidates in the set IVS. */
6397
6398 static unsigned
6399 iv_ca_n_cands (struct iv_ca *ivs)
6400 {
6401 return ivs->n_cands;
6402 }
6403
6404 /* Free the list of changes DELTA. */
6405
6406 static void
6407 iv_ca_delta_free (struct iv_ca_delta **delta)
6408 {
6409 struct iv_ca_delta *act, *next;
6410
6411 for (act = *delta; act; act = next)
6412 {
6413 next = act->next;
6414 free (act);
6415 }
6416
6417 *delta = NULL;
6418 }
6419
6420 /* Allocates new iv candidates assignment. */
6421
6422 static struct iv_ca *
6423 iv_ca_new (struct ivopts_data *data)
6424 {
6425 struct iv_ca *nw = XNEW (struct iv_ca);
6426
6427 nw->upto = 0;
6428 nw->bad_groups = 0;
6429 nw->cand_for_group = XCNEWVEC (struct cost_pair *,
6430 data->vgroups.length ());
6431 nw->n_cand_uses = XCNEWVEC (unsigned, data->vcands.length ());
6432 nw->cands = BITMAP_ALLOC (NULL);
6433 nw->n_cands = 0;
6434 nw->n_regs = 0;
6435 nw->cand_use_cost = no_cost;
6436 nw->cand_cost = 0;
6437 nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
6438 nw->used_inv_exprs = new hash_map <iv_inv_expr_ent *, unsigned> (13);
6439 nw->cost = no_cost;
6440
6441 return nw;
6442 }
6443
6444 /* Free memory occupied by the set IVS. */
6445
6446 static void
6447 iv_ca_free (struct iv_ca **ivs)
6448 {
6449 free ((*ivs)->cand_for_group);
6450 free ((*ivs)->n_cand_uses);
6451 BITMAP_FREE ((*ivs)->cands);
6452 free ((*ivs)->n_invariant_uses);
6453 delete ((*ivs)->used_inv_exprs);
6454 free (*ivs);
6455 *ivs = NULL;
6456 }
6457
6458 /* Dumps IVS to FILE. */
6459
6460 static void
6461 iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
6462 {
6463 unsigned i;
6464 comp_cost cost = iv_ca_cost (ivs);
6465
6466 fprintf (file, " cost: %d (complexity %d)\n", cost.cost,
6467 cost.complexity);
6468 fprintf (file, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
6469 ivs->cand_cost, ivs->cand_use_cost.cost,
6470 ivs->cand_use_cost.complexity);
6471 bitmap_print (file, ivs->cands, " candidates: ","\n");
6472
6473 for (i = 0; i < ivs->upto; i++)
6474 {
6475 struct iv_group *group = data->vgroups[i];
6476 struct cost_pair *cp = iv_ca_cand_for_group (ivs, group);
6477 if (cp)
6478 fprintf (file, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
6479 group->id, cp->cand->id, cp->cost.cost,
6480 cp->cost.complexity);
6481 else
6482 fprintf (file, " group:%d --> ??\n", group->id);
6483 }
6484
6485 const char *pref = "";
6486 fprintf (file, " invariant variables: ");
6487 for (i = 1; i <= data->max_inv_id; i++)
6488 if (ivs->n_invariant_uses[i])
6489 {
6490 fprintf (file, "%s%d", pref, i);
6491 pref = ", ";
6492 }
6493
6494 pref = "";
6495 fprintf (file, "\n invariant expressions: ");
6496 for (hash_map<iv_inv_expr_ent *, unsigned>::iterator it
6497 = ivs->used_inv_exprs->begin (); it != ivs->used_inv_exprs->end (); ++it)
6498 {
6499 fprintf (file, "%s%d", pref, (*it).first->id);
6500 pref = ", ";
6501 }
6502
6503 fprintf (file, "\n\n");
6504 }
6505
6506 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6507 new set, and store differences in DELTA. Number of induction variables
6508 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6509 the function will try to find a solution with mimimal iv candidates. */
6510
6511 static comp_cost
6512 iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
6513 struct iv_cand *cand, struct iv_ca_delta **delta,
6514 unsigned *n_ivs, bool min_ncand)
6515 {
6516 unsigned i;
6517 comp_cost cost;
6518 struct iv_group *group;
6519 struct cost_pair *old_cp, *new_cp;
6520
6521 *delta = NULL;
6522 for (i = 0; i < ivs->upto; i++)
6523 {
6524 group = data->vgroups[i];
6525 old_cp = iv_ca_cand_for_group (ivs, group);
6526
6527 if (old_cp
6528 && old_cp->cand == cand)
6529 continue;
6530
6531 new_cp = get_group_iv_cost (data, group, cand);
6532 if (!new_cp)
6533 continue;
6534
6535 if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
6536 continue;
6537
6538 if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
6539 continue;
6540
6541 *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
6542 }
6543
6544 iv_ca_delta_commit (data, ivs, *delta, true);
6545 cost = iv_ca_cost (ivs);
6546 if (n_ivs)
6547 *n_ivs = iv_ca_n_cands (ivs);
6548 iv_ca_delta_commit (data, ivs, *delta, false);
6549
6550 return cost;
6551 }
6552
6553 /* Try narrowing set IVS by removing CAND. Return the cost of
6554 the new set and store the differences in DELTA. START is
6555 the candidate with which we start narrowing. */
6556
6557 static comp_cost
6558 iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
6559 struct iv_cand *cand, struct iv_cand *start,
6560 struct iv_ca_delta **delta)
6561 {
6562 unsigned i, ci;
6563 struct iv_group *group;
6564 struct cost_pair *old_cp, *new_cp, *cp;
6565 bitmap_iterator bi;
6566 struct iv_cand *cnd;
6567 comp_cost cost, best_cost, acost;
6568
6569 *delta = NULL;
6570 for (i = 0; i < data->vgroups.length (); i++)
6571 {
6572 group = data->vgroups[i];
6573
6574 old_cp = iv_ca_cand_for_group (ivs, group);
6575 if (old_cp->cand != cand)
6576 continue;
6577
6578 best_cost = iv_ca_cost (ivs);
6579 /* Start narrowing with START. */
6580 new_cp = get_group_iv_cost (data, group, start);
6581
6582 if (data->consider_all_candidates)
6583 {
6584 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
6585 {
6586 if (ci == cand->id || (start && ci == start->id))
6587 continue;
6588
6589 cnd = data->vcands[ci];
6590
6591 cp = get_group_iv_cost (data, group, cnd);
6592 if (!cp)
6593 continue;
6594
6595 iv_ca_set_cp (data, ivs, group, cp);
6596 acost = iv_ca_cost (ivs);
6597
6598 if (acost < best_cost)
6599 {
6600 best_cost = acost;
6601 new_cp = cp;
6602 }
6603 }
6604 }
6605 else
6606 {
6607 EXECUTE_IF_AND_IN_BITMAP (group->related_cands, ivs->cands, 0, ci, bi)
6608 {
6609 if (ci == cand->id || (start && ci == start->id))
6610 continue;
6611
6612 cnd = data->vcands[ci];
6613
6614 cp = get_group_iv_cost (data, group, cnd);
6615 if (!cp)
6616 continue;
6617
6618 iv_ca_set_cp (data, ivs, group, cp);
6619 acost = iv_ca_cost (ivs);
6620
6621 if (acost < best_cost)
6622 {
6623 best_cost = acost;
6624 new_cp = cp;
6625 }
6626 }
6627 }
6628 /* Restore to old cp for use. */
6629 iv_ca_set_cp (data, ivs, group, old_cp);
6630
6631 if (!new_cp)
6632 {
6633 iv_ca_delta_free (delta);
6634 return infinite_cost;
6635 }
6636
6637 *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
6638 }
6639
6640 iv_ca_delta_commit (data, ivs, *delta, true);
6641 cost = iv_ca_cost (ivs);
6642 iv_ca_delta_commit (data, ivs, *delta, false);
6643
6644 return cost;
6645 }
6646
6647 /* Try optimizing the set of candidates IVS by removing candidates different
6648 from to EXCEPT_CAND from it. Return cost of the new set, and store
6649 differences in DELTA. */
6650
6651 static comp_cost
6652 iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
6653 struct iv_cand *except_cand, struct iv_ca_delta **delta)
6654 {
6655 bitmap_iterator bi;
6656 struct iv_ca_delta *act_delta, *best_delta;
6657 unsigned i;
6658 comp_cost best_cost, acost;
6659 struct iv_cand *cand;
6660
6661 best_delta = NULL;
6662 best_cost = iv_ca_cost (ivs);
6663
6664 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6665 {
6666 cand = data->vcands[i];
6667
6668 if (cand == except_cand)
6669 continue;
6670
6671 acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
6672
6673 if (acost < best_cost)
6674 {
6675 best_cost = acost;
6676 iv_ca_delta_free (&best_delta);
6677 best_delta = act_delta;
6678 }
6679 else
6680 iv_ca_delta_free (&act_delta);
6681 }
6682
6683 if (!best_delta)
6684 {
6685 *delta = NULL;
6686 return best_cost;
6687 }
6688
6689 /* Recurse to possibly remove other unnecessary ivs. */
6690 iv_ca_delta_commit (data, ivs, best_delta, true);
6691 best_cost = iv_ca_prune (data, ivs, except_cand, delta);
6692 iv_ca_delta_commit (data, ivs, best_delta, false);
6693 *delta = iv_ca_delta_join (best_delta, *delta);
6694 return best_cost;
6695 }
6696
6697 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6698 cheaper local cost for GROUP than BEST_CP. Return pointer to
6699 the corresponding cost_pair, otherwise just return BEST_CP. */
6700
6701 static struct cost_pair*
6702 cheaper_cost_with_cand (struct ivopts_data *data, struct iv_group *group,
6703 unsigned int cand_idx, struct iv_cand *old_cand,
6704 struct cost_pair *best_cp)
6705 {
6706 struct iv_cand *cand;
6707 struct cost_pair *cp;
6708
6709 gcc_assert (old_cand != NULL && best_cp != NULL);
6710 if (cand_idx == old_cand->id)
6711 return best_cp;
6712
6713 cand = data->vcands[cand_idx];
6714 cp = get_group_iv_cost (data, group, cand);
6715 if (cp != NULL && cheaper_cost_pair (cp, best_cp))
6716 return cp;
6717
6718 return best_cp;
6719 }
6720
6721 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6722 which are used by more than one iv uses. For each of those candidates,
6723 this function tries to represent iv uses under that candidate using
6724 other ones with lower local cost, then tries to prune the new set.
6725 If the new set has lower cost, It returns the new cost after recording
6726 candidate replacement in list DELTA. */
6727
6728 static comp_cost
6729 iv_ca_replace (struct ivopts_data *data, struct iv_ca *ivs,
6730 struct iv_ca_delta **delta)
6731 {
6732 bitmap_iterator bi, bj;
6733 unsigned int i, j, k;
6734 struct iv_cand *cand;
6735 comp_cost orig_cost, acost;
6736 struct iv_ca_delta *act_delta, *tmp_delta;
6737 struct cost_pair *old_cp, *best_cp = NULL;
6738
6739 *delta = NULL;
6740 orig_cost = iv_ca_cost (ivs);
6741
6742 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6743 {
6744 if (ivs->n_cand_uses[i] == 1
6745 || ivs->n_cand_uses[i] > ALWAYS_PRUNE_CAND_SET_BOUND)
6746 continue;
6747
6748 cand = data->vcands[i];
6749
6750 act_delta = NULL;
6751 /* Represent uses under current candidate using other ones with
6752 lower local cost. */
6753 for (j = 0; j < ivs->upto; j++)
6754 {
6755 struct iv_group *group = data->vgroups[j];
6756 old_cp = iv_ca_cand_for_group (ivs, group);
6757
6758 if (old_cp->cand != cand)
6759 continue;
6760
6761 best_cp = old_cp;
6762 if (data->consider_all_candidates)
6763 for (k = 0; k < data->vcands.length (); k++)
6764 best_cp = cheaper_cost_with_cand (data, group, k,
6765 old_cp->cand, best_cp);
6766 else
6767 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, k, bj)
6768 best_cp = cheaper_cost_with_cand (data, group, k,
6769 old_cp->cand, best_cp);
6770
6771 if (best_cp == old_cp)
6772 continue;
6773
6774 act_delta = iv_ca_delta_add (group, old_cp, best_cp, act_delta);
6775 }
6776 /* No need for further prune. */
6777 if (!act_delta)
6778 continue;
6779
6780 /* Prune the new candidate set. */
6781 iv_ca_delta_commit (data, ivs, act_delta, true);
6782 acost = iv_ca_prune (data, ivs, NULL, &tmp_delta);
6783 iv_ca_delta_commit (data, ivs, act_delta, false);
6784 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6785
6786 if (acost < orig_cost)
6787 {
6788 *delta = act_delta;
6789 return acost;
6790 }
6791 else
6792 iv_ca_delta_free (&act_delta);
6793 }
6794
6795 return orig_cost;
6796 }
6797
6798 /* Tries to extend the sets IVS in the best possible way in order to
6799 express the GROUP. If ORIGINALP is true, prefer candidates from
6800 the original set of IVs, otherwise favor important candidates not
6801 based on any memory object. */
6802
6803 static bool
6804 try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
6805 struct iv_group *group, bool originalp)
6806 {
6807 comp_cost best_cost, act_cost;
6808 unsigned i;
6809 bitmap_iterator bi;
6810 struct iv_cand *cand;
6811 struct iv_ca_delta *best_delta = NULL, *act_delta;
6812 struct cost_pair *cp;
6813
6814 iv_ca_add_group (data, ivs, group);
6815 best_cost = iv_ca_cost (ivs);
6816 cp = iv_ca_cand_for_group (ivs, group);
6817 if (cp)
6818 {
6819 best_delta = iv_ca_delta_add (group, NULL, cp, NULL);
6820 iv_ca_set_no_cp (data, ivs, group);
6821 }
6822
6823 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6824 first try important candidates not based on any memory object. Only if
6825 this fails, try the specific ones. Rationale -- in loops with many
6826 variables the best choice often is to use just one generic biv. If we
6827 added here many ivs specific to the uses, the optimization algorithm later
6828 would be likely to get stuck in a local minimum, thus causing us to create
6829 too many ivs. The approach from few ivs to more seems more likely to be
6830 successful -- starting from few ivs, replacing an expensive use by a
6831 specific iv should always be a win. */
6832 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, i, bi)
6833 {
6834 cand = data->vcands[i];
6835
6836 if (originalp && cand->pos !=IP_ORIGINAL)
6837 continue;
6838
6839 if (!originalp && cand->iv->base_object != NULL_TREE)
6840 continue;
6841
6842 if (iv_ca_cand_used_p (ivs, cand))
6843 continue;
6844
6845 cp = get_group_iv_cost (data, group, cand);
6846 if (!cp)
6847 continue;
6848
6849 iv_ca_set_cp (data, ivs, group, cp);
6850 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
6851 true);
6852 iv_ca_set_no_cp (data, ivs, group);
6853 act_delta = iv_ca_delta_add (group, NULL, cp, act_delta);
6854
6855 if (act_cost < best_cost)
6856 {
6857 best_cost = act_cost;
6858
6859 iv_ca_delta_free (&best_delta);
6860 best_delta = act_delta;
6861 }
6862 else
6863 iv_ca_delta_free (&act_delta);
6864 }
6865
6866 if (best_cost.infinite_cost_p ())
6867 {
6868 for (i = 0; i < group->n_map_members; i++)
6869 {
6870 cp = group->cost_map + i;
6871 cand = cp->cand;
6872 if (!cand)
6873 continue;
6874
6875 /* Already tried this. */
6876 if (cand->important)
6877 {
6878 if (originalp && cand->pos == IP_ORIGINAL)
6879 continue;
6880 if (!originalp && cand->iv->base_object == NULL_TREE)
6881 continue;
6882 }
6883
6884 if (iv_ca_cand_used_p (ivs, cand))
6885 continue;
6886
6887 act_delta = NULL;
6888 iv_ca_set_cp (data, ivs, group, cp);
6889 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
6890 iv_ca_set_no_cp (data, ivs, group);
6891 act_delta = iv_ca_delta_add (group,
6892 iv_ca_cand_for_group (ivs, group),
6893 cp, act_delta);
6894
6895 if (act_cost < best_cost)
6896 {
6897 best_cost = act_cost;
6898
6899 if (best_delta)
6900 iv_ca_delta_free (&best_delta);
6901 best_delta = act_delta;
6902 }
6903 else
6904 iv_ca_delta_free (&act_delta);
6905 }
6906 }
6907
6908 iv_ca_delta_commit (data, ivs, best_delta, true);
6909 iv_ca_delta_free (&best_delta);
6910
6911 return !best_cost.infinite_cost_p ();
6912 }
6913
6914 /* Finds an initial assignment of candidates to uses. */
6915
6916 static struct iv_ca *
6917 get_initial_solution (struct ivopts_data *data, bool originalp)
6918 {
6919 unsigned i;
6920 struct iv_ca *ivs = iv_ca_new (data);
6921
6922 for (i = 0; i < data->vgroups.length (); i++)
6923 if (!try_add_cand_for (data, ivs, data->vgroups[i], originalp))
6924 {
6925 iv_ca_free (&ivs);
6926 return NULL;
6927 }
6928
6929 return ivs;
6930 }
6931
6932 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6933 points to a bool variable, this function tries to break local
6934 optimal fixed-point by replacing candidates in IVS if it's true. */
6935
6936 static bool
6937 try_improve_iv_set (struct ivopts_data *data,
6938 struct iv_ca *ivs, bool *try_replace_p)
6939 {
6940 unsigned i, n_ivs;
6941 comp_cost acost, best_cost = iv_ca_cost (ivs);
6942 struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
6943 struct iv_cand *cand;
6944
6945 /* Try extending the set of induction variables by one. */
6946 for (i = 0; i < data->vcands.length (); i++)
6947 {
6948 cand = data->vcands[i];
6949
6950 if (iv_ca_cand_used_p (ivs, cand))
6951 continue;
6952
6953 acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
6954 if (!act_delta)
6955 continue;
6956
6957 /* If we successfully added the candidate and the set is small enough,
6958 try optimizing it by removing other candidates. */
6959 if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
6960 {
6961 iv_ca_delta_commit (data, ivs, act_delta, true);
6962 acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
6963 iv_ca_delta_commit (data, ivs, act_delta, false);
6964 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6965 }
6966
6967 if (acost < best_cost)
6968 {
6969 best_cost = acost;
6970 iv_ca_delta_free (&best_delta);
6971 best_delta = act_delta;
6972 }
6973 else
6974 iv_ca_delta_free (&act_delta);
6975 }
6976
6977 if (!best_delta)
6978 {
6979 /* Try removing the candidates from the set instead. */
6980 best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
6981
6982 if (!best_delta && *try_replace_p)
6983 {
6984 *try_replace_p = false;
6985 /* So far candidate selecting algorithm tends to choose fewer IVs
6986 so that it can handle cases in which loops have many variables
6987 but the best choice is often to use only one general biv. One
6988 weakness is it can't handle opposite cases, in which different
6989 candidates should be chosen with respect to each use. To solve
6990 the problem, we replace candidates in a manner described by the
6991 comments of iv_ca_replace, thus give general algorithm a chance
6992 to break local optimal fixed-point in these cases. */
6993 best_cost = iv_ca_replace (data, ivs, &best_delta);
6994 }
6995
6996 if (!best_delta)
6997 return false;
6998 }
6999
7000 iv_ca_delta_commit (data, ivs, best_delta, true);
7001 gcc_assert (best_cost == iv_ca_cost (ivs));
7002 iv_ca_delta_free (&best_delta);
7003 return true;
7004 }
7005
7006 /* Attempts to find the optimal set of induction variables. We do simple
7007 greedy heuristic -- we try to replace at most one candidate in the selected
7008 solution and remove the unused ivs while this improves the cost. */
7009
7010 static struct iv_ca *
7011 find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
7012 {
7013 struct iv_ca *set;
7014 bool try_replace_p = true;
7015
7016 /* Get the initial solution. */
7017 set = get_initial_solution (data, originalp);
7018 if (!set)
7019 {
7020 if (dump_file && (dump_flags & TDF_DETAILS))
7021 fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
7022 return NULL;
7023 }
7024
7025 if (dump_file && (dump_flags & TDF_DETAILS))
7026 {
7027 fprintf (dump_file, "Initial set of candidates:\n");
7028 iv_ca_dump (data, dump_file, set);
7029 }
7030
7031 while (try_improve_iv_set (data, set, &try_replace_p))
7032 {
7033 if (dump_file && (dump_flags & TDF_DETAILS))
7034 {
7035 fprintf (dump_file, "Improved to:\n");
7036 iv_ca_dump (data, dump_file, set);
7037 }
7038 }
7039
7040 return set;
7041 }
7042
7043 static struct iv_ca *
7044 find_optimal_iv_set (struct ivopts_data *data)
7045 {
7046 unsigned i;
7047 comp_cost cost, origcost;
7048 struct iv_ca *set, *origset;
7049
7050 /* Determine the cost based on a strategy that starts with original IVs,
7051 and try again using a strategy that prefers candidates not based
7052 on any IVs. */
7053 origset = find_optimal_iv_set_1 (data, true);
7054 set = find_optimal_iv_set_1 (data, false);
7055
7056 if (!origset && !set)
7057 return NULL;
7058
7059 origcost = origset ? iv_ca_cost (origset) : infinite_cost;
7060 cost = set ? iv_ca_cost (set) : infinite_cost;
7061
7062 if (dump_file && (dump_flags & TDF_DETAILS))
7063 {
7064 fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
7065 origcost.cost, origcost.complexity);
7066 fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
7067 cost.cost, cost.complexity);
7068 }
7069
7070 /* Choose the one with the best cost. */
7071 if (origcost <= cost)
7072 {
7073 if (set)
7074 iv_ca_free (&set);
7075 set = origset;
7076 }
7077 else if (origset)
7078 iv_ca_free (&origset);
7079
7080 for (i = 0; i < data->vgroups.length (); i++)
7081 {
7082 struct iv_group *group = data->vgroups[i];
7083 group->selected = iv_ca_cand_for_group (set, group)->cand;
7084 }
7085
7086 return set;
7087 }
7088
7089 /* Creates a new induction variable corresponding to CAND. */
7090
7091 static void
7092 create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
7093 {
7094 gimple_stmt_iterator incr_pos;
7095 tree base;
7096 struct iv_use *use;
7097 struct iv_group *group;
7098 bool after = false;
7099
7100 if (!cand->iv)
7101 return;
7102
7103 switch (cand->pos)
7104 {
7105 case IP_NORMAL:
7106 incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
7107 break;
7108
7109 case IP_END:
7110 incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
7111 after = true;
7112 break;
7113
7114 case IP_AFTER_USE:
7115 after = true;
7116 /* fall through */
7117 case IP_BEFORE_USE:
7118 incr_pos = gsi_for_stmt (cand->incremented_at);
7119 break;
7120
7121 case IP_ORIGINAL:
7122 /* Mark that the iv is preserved. */
7123 name_info (data, cand->var_before)->preserve_biv = true;
7124 name_info (data, cand->var_after)->preserve_biv = true;
7125
7126 /* Rewrite the increment so that it uses var_before directly. */
7127 use = find_interesting_uses_op (data, cand->var_after);
7128 group = data->vgroups[use->group_id];
7129 group->selected = cand;
7130 return;
7131 }
7132
7133 gimple_add_tmp_var (cand->var_before);
7134
7135 base = unshare_expr (cand->iv->base);
7136
7137 create_iv (base, unshare_expr (cand->iv->step),
7138 cand->var_before, data->current_loop,
7139 &incr_pos, after, &cand->var_before, &cand->var_after);
7140 }
7141
7142 /* Creates new induction variables described in SET. */
7143
7144 static void
7145 create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
7146 {
7147 unsigned i;
7148 struct iv_cand *cand;
7149 bitmap_iterator bi;
7150
7151 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
7152 {
7153 cand = data->vcands[i];
7154 create_new_iv (data, cand);
7155 }
7156
7157 if (dump_file && (dump_flags & TDF_DETAILS))
7158 {
7159 fprintf (dump_file, "Selected IV set for loop %d",
7160 data->current_loop->num);
7161 if (data->loop_loc != UNKNOWN_LOCATION)
7162 fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
7163 LOCATION_LINE (data->loop_loc));
7164 fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_DEC " avg niters",
7165 avg_loop_niter (data->current_loop));
7166 fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_UNSIGNED " expressions",
7167 (unsigned HOST_WIDE_INT) set->used_inv_exprs->elements ());
7168 fprintf (dump_file, ", %lu IVs:\n", bitmap_count_bits (set->cands));
7169 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
7170 {
7171 cand = data->vcands[i];
7172 dump_cand (dump_file, cand);
7173 }
7174 fprintf (dump_file, "\n");
7175 }
7176 }
7177
7178 /* Rewrites USE (definition of iv used in a nonlinear expression)
7179 using candidate CAND. */
7180
7181 static void
7182 rewrite_use_nonlinear_expr (struct ivopts_data *data,
7183 struct iv_use *use, struct iv_cand *cand)
7184 {
7185 tree comp;
7186 tree op, tgt;
7187 gassign *ass;
7188 gimple_stmt_iterator bsi;
7189
7190 /* An important special case -- if we are asked to express value of
7191 the original iv by itself, just exit; there is no need to
7192 introduce a new computation (that might also need casting the
7193 variable to unsigned and back). */
7194 if (cand->pos == IP_ORIGINAL
7195 && cand->incremented_at == use->stmt)
7196 {
7197 enum tree_code stmt_code;
7198
7199 gcc_assert (is_gimple_assign (use->stmt));
7200 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
7201
7202 /* Check whether we may leave the computation unchanged.
7203 This is the case only if it does not rely on other
7204 computations in the loop -- otherwise, the computation
7205 we rely upon may be removed in remove_unused_ivs,
7206 thus leading to ICE. */
7207 stmt_code = gimple_assign_rhs_code (use->stmt);
7208 if (stmt_code == PLUS_EXPR
7209 || stmt_code == MINUS_EXPR
7210 || stmt_code == POINTER_PLUS_EXPR)
7211 {
7212 if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
7213 op = gimple_assign_rhs2 (use->stmt);
7214 else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
7215 op = gimple_assign_rhs1 (use->stmt);
7216 else
7217 op = NULL_TREE;
7218 }
7219 else
7220 op = NULL_TREE;
7221
7222 if (op && expr_invariant_in_loop_p (data->current_loop, op))
7223 return;
7224 }
7225
7226 comp = get_computation (data->current_loop, use, cand);
7227 gcc_assert (comp != NULL_TREE);
7228
7229 switch (gimple_code (use->stmt))
7230 {
7231 case GIMPLE_PHI:
7232 tgt = PHI_RESULT (use->stmt);
7233
7234 /* If we should keep the biv, do not replace it. */
7235 if (name_info (data, tgt)->preserve_biv)
7236 return;
7237
7238 bsi = gsi_after_labels (gimple_bb (use->stmt));
7239 break;
7240
7241 case GIMPLE_ASSIGN:
7242 tgt = gimple_assign_lhs (use->stmt);
7243 bsi = gsi_for_stmt (use->stmt);
7244 break;
7245
7246 default:
7247 gcc_unreachable ();
7248 }
7249
7250 if (!valid_gimple_rhs_p (comp)
7251 || (gimple_code (use->stmt) != GIMPLE_PHI
7252 /* We can't allow re-allocating the stmt as it might be pointed
7253 to still. */
7254 && (get_gimple_rhs_num_ops (TREE_CODE (comp))
7255 >= gimple_num_ops (gsi_stmt (bsi)))))
7256 {
7257 comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
7258 true, GSI_SAME_STMT);
7259 if (POINTER_TYPE_P (TREE_TYPE (tgt)))
7260 {
7261 duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
7262 /* As this isn't a plain copy we have to reset alignment
7263 information. */
7264 if (SSA_NAME_PTR_INFO (comp))
7265 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
7266 }
7267 }
7268
7269 if (gimple_code (use->stmt) == GIMPLE_PHI)
7270 {
7271 ass = gimple_build_assign (tgt, comp);
7272 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
7273
7274 bsi = gsi_for_stmt (use->stmt);
7275 remove_phi_node (&bsi, false);
7276 }
7277 else
7278 {
7279 gimple_assign_set_rhs_from_tree (&bsi, comp);
7280 use->stmt = gsi_stmt (bsi);
7281 }
7282 }
7283
7284 /* Performs a peephole optimization to reorder the iv update statement with
7285 a mem ref to enable instruction combining in later phases. The mem ref uses
7286 the iv value before the update, so the reordering transformation requires
7287 adjustment of the offset. CAND is the selected IV_CAND.
7288
7289 Example:
7290
7291 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
7292 iv2 = iv1 + 1;
7293
7294 if (t < val) (1)
7295 goto L;
7296 goto Head;
7297
7298
7299 directly propagating t over to (1) will introduce overlapping live range
7300 thus increase register pressure. This peephole transform it into:
7301
7302
7303 iv2 = iv1 + 1;
7304 t = MEM_REF (base, iv2, 8, 8);
7305 if (t < val)
7306 goto L;
7307 goto Head;
7308 */
7309
7310 static void
7311 adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
7312 {
7313 tree var_after;
7314 gimple *iv_update, *stmt;
7315 basic_block bb;
7316 gimple_stmt_iterator gsi, gsi_iv;
7317
7318 if (cand->pos != IP_NORMAL)
7319 return;
7320
7321 var_after = cand->var_after;
7322 iv_update = SSA_NAME_DEF_STMT (var_after);
7323
7324 bb = gimple_bb (iv_update);
7325 gsi = gsi_last_nondebug_bb (bb);
7326 stmt = gsi_stmt (gsi);
7327
7328 /* Only handle conditional statement for now. */
7329 if (gimple_code (stmt) != GIMPLE_COND)
7330 return;
7331
7332 gsi_prev_nondebug (&gsi);
7333 stmt = gsi_stmt (gsi);
7334 if (stmt != iv_update)
7335 return;
7336
7337 gsi_prev_nondebug (&gsi);
7338 if (gsi_end_p (gsi))
7339 return;
7340
7341 stmt = gsi_stmt (gsi);
7342 if (gimple_code (stmt) != GIMPLE_ASSIGN)
7343 return;
7344
7345 if (stmt != use->stmt)
7346 return;
7347
7348 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
7349 return;
7350
7351 if (dump_file && (dump_flags & TDF_DETAILS))
7352 {
7353 fprintf (dump_file, "Reordering \n");
7354 print_gimple_stmt (dump_file, iv_update, 0, 0);
7355 print_gimple_stmt (dump_file, use->stmt, 0, 0);
7356 fprintf (dump_file, "\n");
7357 }
7358
7359 gsi = gsi_for_stmt (use->stmt);
7360 gsi_iv = gsi_for_stmt (iv_update);
7361 gsi_move_before (&gsi_iv, &gsi);
7362
7363 cand->pos = IP_BEFORE_USE;
7364 cand->incremented_at = use->stmt;
7365 }
7366
7367 /* Rewrites USE (address that is an iv) using candidate CAND. */
7368
7369 static void
7370 rewrite_use_address (struct ivopts_data *data,
7371 struct iv_use *use, struct iv_cand *cand)
7372 {
7373 aff_tree aff;
7374 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
7375 tree base_hint = NULL_TREE;
7376 tree ref, iv;
7377 bool ok;
7378
7379 adjust_iv_update_pos (cand, use);
7380 ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
7381 gcc_assert (ok);
7382 unshare_aff_combination (&aff);
7383
7384 /* To avoid undefined overflow problems, all IV candidates use unsigned
7385 integer types. The drawback is that this makes it impossible for
7386 create_mem_ref to distinguish an IV that is based on a memory object
7387 from one that represents simply an offset.
7388
7389 To work around this problem, we pass a hint to create_mem_ref that
7390 indicates which variable (if any) in aff is an IV based on a memory
7391 object. Note that we only consider the candidate. If this is not
7392 based on an object, the base of the reference is in some subexpression
7393 of the use -- but these will use pointer types, so they are recognized
7394 by the create_mem_ref heuristics anyway. */
7395 if (cand->iv->base_object)
7396 base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
7397
7398 iv = var_at_stmt (data->current_loop, cand, use->stmt);
7399 ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
7400 reference_alias_ptr_type (*use->op_p),
7401 iv, base_hint, data->speed);
7402 copy_ref_info (ref, *use->op_p);
7403 *use->op_p = ref;
7404 }
7405
7406 /* Rewrites USE (the condition such that one of the arguments is an iv) using
7407 candidate CAND. */
7408
7409 static void
7410 rewrite_use_compare (struct ivopts_data *data,
7411 struct iv_use *use, struct iv_cand *cand)
7412 {
7413 tree comp, *var_p, op, bound;
7414 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
7415 enum tree_code compare;
7416 struct iv_group *group = data->vgroups[use->group_id];
7417 struct cost_pair *cp = get_group_iv_cost (data, group, cand);
7418 bool ok;
7419
7420 bound = cp->value;
7421 if (bound)
7422 {
7423 tree var = var_at_stmt (data->current_loop, cand, use->stmt);
7424 tree var_type = TREE_TYPE (var);
7425 gimple_seq stmts;
7426
7427 if (dump_file && (dump_flags & TDF_DETAILS))
7428 {
7429 fprintf (dump_file, "Replacing exit test: ");
7430 print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
7431 }
7432 compare = cp->comp;
7433 bound = unshare_expr (fold_convert (var_type, bound));
7434 op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
7435 if (stmts)
7436 gsi_insert_seq_on_edge_immediate (
7437 loop_preheader_edge (data->current_loop),
7438 stmts);
7439
7440 gcond *cond_stmt = as_a <gcond *> (use->stmt);
7441 gimple_cond_set_lhs (cond_stmt, var);
7442 gimple_cond_set_code (cond_stmt, compare);
7443 gimple_cond_set_rhs (cond_stmt, op);
7444 return;
7445 }
7446
7447 /* The induction variable elimination failed; just express the original
7448 giv. */
7449 comp = get_computation (data->current_loop, use, cand);
7450 gcc_assert (comp != NULL_TREE);
7451
7452 ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
7453 gcc_assert (ok);
7454
7455 *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
7456 true, GSI_SAME_STMT);
7457 }
7458
7459 /* Rewrite the groups using the selected induction variables. */
7460
7461 static void
7462 rewrite_groups (struct ivopts_data *data)
7463 {
7464 unsigned i, j;
7465
7466 for (i = 0; i < data->vgroups.length (); i++)
7467 {
7468 struct iv_group *group = data->vgroups[i];
7469 struct iv_cand *cand = group->selected;
7470
7471 gcc_assert (cand);
7472
7473 if (group->type == USE_NONLINEAR_EXPR)
7474 {
7475 for (j = 0; j < group->vuses.length (); j++)
7476 {
7477 rewrite_use_nonlinear_expr (data, group->vuses[j], cand);
7478 update_stmt (group->vuses[j]->stmt);
7479 }
7480 }
7481 else if (group->type == USE_ADDRESS)
7482 {
7483 for (j = 0; j < group->vuses.length (); j++)
7484 {
7485 rewrite_use_address (data, group->vuses[j], cand);
7486 update_stmt (group->vuses[j]->stmt);
7487 }
7488 }
7489 else
7490 {
7491 gcc_assert (group->type == USE_COMPARE);
7492
7493 for (j = 0; j < group->vuses.length (); j++)
7494 {
7495 rewrite_use_compare (data, group->vuses[j], cand);
7496 update_stmt (group->vuses[j]->stmt);
7497 }
7498 }
7499 }
7500 }
7501
7502 /* Removes the ivs that are not used after rewriting. */
7503
7504 static void
7505 remove_unused_ivs (struct ivopts_data *data)
7506 {
7507 unsigned j;
7508 bitmap_iterator bi;
7509 bitmap toremove = BITMAP_ALLOC (NULL);
7510
7511 /* Figure out an order in which to release SSA DEFs so that we don't
7512 release something that we'd have to propagate into a debug stmt
7513 afterwards. */
7514 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
7515 {
7516 struct version_info *info;
7517
7518 info = ver_info (data, j);
7519 if (info->iv
7520 && !integer_zerop (info->iv->step)
7521 && !info->inv_id
7522 && !info->iv->nonlin_use
7523 && !info->preserve_biv)
7524 {
7525 bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
7526
7527 tree def = info->iv->ssa_name;
7528
7529 if (MAY_HAVE_DEBUG_STMTS && SSA_NAME_DEF_STMT (def))
7530 {
7531 imm_use_iterator imm_iter;
7532 use_operand_p use_p;
7533 gimple *stmt;
7534 int count = 0;
7535
7536 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
7537 {
7538 if (!gimple_debug_bind_p (stmt))
7539 continue;
7540
7541 /* We just want to determine whether to do nothing
7542 (count == 0), to substitute the computed
7543 expression into a single use of the SSA DEF by
7544 itself (count == 1), or to use a debug temp
7545 because the SSA DEF is used multiple times or as
7546 part of a larger expression (count > 1). */
7547 count++;
7548 if (gimple_debug_bind_get_value (stmt) != def)
7549 count++;
7550
7551 if (count > 1)
7552 BREAK_FROM_IMM_USE_STMT (imm_iter);
7553 }
7554
7555 if (!count)
7556 continue;
7557
7558 struct iv_use dummy_use;
7559 struct iv_cand *best_cand = NULL, *cand;
7560 unsigned i, best_pref = 0, cand_pref;
7561
7562 memset (&dummy_use, 0, sizeof (dummy_use));
7563 dummy_use.iv = info->iv;
7564 for (i = 0; i < data->vgroups.length () && i < 64; i++)
7565 {
7566 cand = data->vgroups[i]->selected;
7567 if (cand == best_cand)
7568 continue;
7569 cand_pref = operand_equal_p (cand->iv->step,
7570 info->iv->step, 0)
7571 ? 4 : 0;
7572 cand_pref
7573 += TYPE_MODE (TREE_TYPE (cand->iv->base))
7574 == TYPE_MODE (TREE_TYPE (info->iv->base))
7575 ? 2 : 0;
7576 cand_pref
7577 += TREE_CODE (cand->iv->base) == INTEGER_CST
7578 ? 1 : 0;
7579 if (best_cand == NULL || best_pref < cand_pref)
7580 {
7581 best_cand = cand;
7582 best_pref = cand_pref;
7583 }
7584 }
7585
7586 if (!best_cand)
7587 continue;
7588
7589 tree comp = get_computation_at (data->current_loop,
7590 &dummy_use, best_cand,
7591 SSA_NAME_DEF_STMT (def));
7592 if (!comp)
7593 continue;
7594
7595 if (count > 1)
7596 {
7597 tree vexpr = make_node (DEBUG_EXPR_DECL);
7598 DECL_ARTIFICIAL (vexpr) = 1;
7599 TREE_TYPE (vexpr) = TREE_TYPE (comp);
7600 if (SSA_NAME_VAR (def))
7601 SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (def)));
7602 else
7603 SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (vexpr)));
7604 gdebug *def_temp
7605 = gimple_build_debug_bind (vexpr, comp, NULL);
7606 gimple_stmt_iterator gsi;
7607
7608 if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
7609 gsi = gsi_after_labels (gimple_bb
7610 (SSA_NAME_DEF_STMT (def)));
7611 else
7612 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
7613
7614 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
7615 comp = vexpr;
7616 }
7617
7618 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
7619 {
7620 if (!gimple_debug_bind_p (stmt))
7621 continue;
7622
7623 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7624 SET_USE (use_p, comp);
7625
7626 update_stmt (stmt);
7627 }
7628 }
7629 }
7630 }
7631
7632 release_defs_bitset (toremove);
7633
7634 BITMAP_FREE (toremove);
7635 }
7636
7637 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7638 for hash_map::traverse. */
7639
7640 bool
7641 free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *)
7642 {
7643 free (value);
7644 return true;
7645 }
7646
7647 /* Frees data allocated by the optimization of a single loop. */
7648
7649 static void
7650 free_loop_data (struct ivopts_data *data)
7651 {
7652 unsigned i, j;
7653 bitmap_iterator bi;
7654 tree obj;
7655
7656 if (data->niters)
7657 {
7658 data->niters->traverse<void *, free_tree_niter_desc> (NULL);
7659 delete data->niters;
7660 data->niters = NULL;
7661 }
7662
7663 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
7664 {
7665 struct version_info *info;
7666
7667 info = ver_info (data, i);
7668 info->iv = NULL;
7669 info->has_nonlin_use = false;
7670 info->preserve_biv = false;
7671 info->inv_id = 0;
7672 }
7673 bitmap_clear (data->relevant);
7674 bitmap_clear (data->important_candidates);
7675
7676 for (i = 0; i < data->vgroups.length (); i++)
7677 {
7678 struct iv_group *group = data->vgroups[i];
7679
7680 for (j = 0; j < group->vuses.length (); j++)
7681 free (group->vuses[j]);
7682 group->vuses.release ();
7683
7684 BITMAP_FREE (group->related_cands);
7685 for (j = 0; j < group->n_map_members; j++)
7686 if (group->cost_map[j].depends_on)
7687 BITMAP_FREE (group->cost_map[j].depends_on);
7688
7689 free (group->cost_map);
7690 free (group);
7691 }
7692 data->vgroups.truncate (0);
7693
7694 for (i = 0; i < data->vcands.length (); i++)
7695 {
7696 struct iv_cand *cand = data->vcands[i];
7697
7698 if (cand->depends_on)
7699 BITMAP_FREE (cand->depends_on);
7700 free (cand);
7701 }
7702 data->vcands.truncate (0);
7703
7704 if (data->version_info_size < num_ssa_names)
7705 {
7706 data->version_info_size = 2 * num_ssa_names;
7707 free (data->version_info);
7708 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
7709 }
7710
7711 data->max_inv_id = 0;
7712
7713 FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
7714 SET_DECL_RTL (obj, NULL_RTX);
7715
7716 decl_rtl_to_reset.truncate (0);
7717
7718 data->inv_expr_tab->empty ();
7719 data->max_inv_expr_id = 0;
7720
7721 data->iv_common_cand_tab->empty ();
7722 data->iv_common_cands.truncate (0);
7723 }
7724
7725 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7726 loop tree. */
7727
7728 static void
7729 tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
7730 {
7731 free_loop_data (data);
7732 free (data->version_info);
7733 BITMAP_FREE (data->relevant);
7734 BITMAP_FREE (data->important_candidates);
7735
7736 decl_rtl_to_reset.release ();
7737 data->vgroups.release ();
7738 data->vcands.release ();
7739 delete data->inv_expr_tab;
7740 data->inv_expr_tab = NULL;
7741 free_affine_expand_cache (&data->name_expansion_cache);
7742 delete data->iv_common_cand_tab;
7743 data->iv_common_cand_tab = NULL;
7744 data->iv_common_cands.release ();
7745 obstack_free (&data->iv_obstack, NULL);
7746 }
7747
7748 /* Returns true if the loop body BODY includes any function calls. */
7749
7750 static bool
7751 loop_body_includes_call (basic_block *body, unsigned num_nodes)
7752 {
7753 gimple_stmt_iterator gsi;
7754 unsigned i;
7755
7756 for (i = 0; i < num_nodes; i++)
7757 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
7758 {
7759 gimple *stmt = gsi_stmt (gsi);
7760 if (is_gimple_call (stmt)
7761 && !gimple_call_internal_p (stmt)
7762 && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
7763 return true;
7764 }
7765 return false;
7766 }
7767
7768 /* Optimizes the LOOP. Returns true if anything changed. */
7769
7770 static bool
7771 tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
7772 {
7773 bool changed = false;
7774 struct iv_ca *iv_ca;
7775 edge exit = single_dom_exit (loop);
7776 basic_block *body;
7777
7778 gcc_assert (!data->niters);
7779 data->current_loop = loop;
7780 data->loop_loc = find_loop_location (loop);
7781 data->speed = optimize_loop_for_speed_p (loop);
7782
7783 if (dump_file && (dump_flags & TDF_DETAILS))
7784 {
7785 fprintf (dump_file, "Processing loop %d", loop->num);
7786 if (data->loop_loc != UNKNOWN_LOCATION)
7787 fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
7788 LOCATION_LINE (data->loop_loc));
7789 fprintf (dump_file, "\n");
7790
7791 if (exit)
7792 {
7793 fprintf (dump_file, " single exit %d -> %d, exit condition ",
7794 exit->src->index, exit->dest->index);
7795 print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
7796 fprintf (dump_file, "\n");
7797 }
7798
7799 fprintf (dump_file, "\n");
7800 }
7801
7802 body = get_loop_body (loop);
7803 data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
7804 renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
7805 free (body);
7806
7807 data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
7808
7809 /* For each ssa name determines whether it behaves as an induction variable
7810 in some loop. */
7811 if (!find_induction_variables (data))
7812 goto finish;
7813
7814 /* Finds interesting uses (item 1). */
7815 find_interesting_uses (data);
7816 if (data->vgroups.length () > MAX_CONSIDERED_GROUPS)
7817 goto finish;
7818
7819 /* Finds candidates for the induction variables (item 2). */
7820 find_iv_candidates (data);
7821
7822 /* Calculates the costs (item 3, part 1). */
7823 determine_iv_costs (data);
7824 determine_group_iv_costs (data);
7825 determine_set_costs (data);
7826
7827 /* Find the optimal set of induction variables (item 3, part 2). */
7828 iv_ca = find_optimal_iv_set (data);
7829 if (!iv_ca)
7830 goto finish;
7831 changed = true;
7832
7833 /* Create the new induction variables (item 4, part 1). */
7834 create_new_ivs (data, iv_ca);
7835 iv_ca_free (&iv_ca);
7836
7837 /* Rewrite the uses (item 4, part 2). */
7838 rewrite_groups (data);
7839
7840 /* Remove the ivs that are unused after rewriting. */
7841 remove_unused_ivs (data);
7842
7843 /* We have changed the structure of induction variables; it might happen
7844 that definitions in the scev database refer to some of them that were
7845 eliminated. */
7846 scev_reset ();
7847
7848 finish:
7849 free_loop_data (data);
7850
7851 return changed;
7852 }
7853
7854 /* Main entry point. Optimizes induction variables in loops. */
7855
7856 void
7857 tree_ssa_iv_optimize (void)
7858 {
7859 struct loop *loop;
7860 struct ivopts_data data;
7861
7862 tree_ssa_iv_optimize_init (&data);
7863
7864 /* Optimize the loops starting with the innermost ones. */
7865 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
7866 {
7867 if (dump_file && (dump_flags & TDF_DETAILS))
7868 flow_loop_dump (loop, dump_file, NULL, 1);
7869
7870 tree_ssa_iv_optimize_loop (&data, loop);
7871 }
7872
7873 tree_ssa_iv_optimize_finalize (&data);
7874 }