]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-ivopts.c
NEXT_INSN and PREV_INSN take a const rtx_insn
[thirdparty/gcc.git] / gcc / tree-ssa-loop-ivopts.c
1 /* Induction variable optimizations.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
25 following steps:
26
27 1) The interesting uses of induction variables are found. This includes
28
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
32
33 2) Candidates for the induction variables are found. This includes
34
35 -- old induction variables
36 -- the variables defined by expressions derived from the "interesting
37 uses" above
38
39 3) The optimal (w.r. to a cost function) set of variables is chosen. The
40 cost function assigns a cost to sets of induction variables and consists
41 of three parts:
42
43 -- The use costs. Each of the interesting uses chooses the best induction
44 variable in the set and adds its cost to the sum. The cost reflects
45 the time spent on modifying the induction variables value to be usable
46 for the given purpose (adding base and offset for arrays, etc.).
47 -- The variable costs. Each of the variables has a cost assigned that
48 reflects the costs associated with incrementing the value of the
49 variable. The original variables are somewhat preferred.
50 -- The set cost. Depending on the size of the set, extra cost may be
51 added to reflect register pressure.
52
53 All the costs are defined in a machine-specific way, using the target
54 hooks and machine descriptions to determine them.
55
56 4) The trees are transformed to use the new variables, the dead code is
57 removed.
58
59 All of this is done loop by loop. Doing it globally is theoretically
60 possible, it might give a better performance and it might enable us
61 to decide costs more precisely, but getting all the interactions right
62 would be complicated. */
63
64 #include "config.h"
65 #include "system.h"
66 #include "coretypes.h"
67 #include "tm.h"
68 #include "tree.h"
69 #include "stor-layout.h"
70 #include "tm_p.h"
71 #include "basic-block.h"
72 #include "gimple-pretty-print.h"
73 #include "hash-map.h"
74 #include "hash-table.h"
75 #include "tree-ssa-alias.h"
76 #include "internal-fn.h"
77 #include "tree-eh.h"
78 #include "gimple-expr.h"
79 #include "is-a.h"
80 #include "gimple.h"
81 #include "gimplify.h"
82 #include "gimple-iterator.h"
83 #include "gimplify-me.h"
84 #include "gimple-ssa.h"
85 #include "cgraph.h"
86 #include "tree-cfg.h"
87 #include "tree-phinodes.h"
88 #include "ssa-iterators.h"
89 #include "stringpool.h"
90 #include "tree-ssanames.h"
91 #include "tree-ssa-loop-ivopts.h"
92 #include "tree-ssa-loop-manip.h"
93 #include "tree-ssa-loop-niter.h"
94 #include "tree-ssa-loop.h"
95 #include "expr.h"
96 #include "tree-dfa.h"
97 #include "tree-ssa.h"
98 #include "cfgloop.h"
99 #include "tree-pass.h"
100 #include "insn-config.h"
101 #include "tree-chrec.h"
102 #include "tree-scalar-evolution.h"
103 #include "cfgloop.h"
104 #include "params.h"
105 #include "langhooks.h"
106 #include "tree-affine.h"
107 #include "target.h"
108 #include "tree-inline.h"
109 #include "tree-ssa-propagate.h"
110 #include "expmed.h"
111 #include "tree-ssa-address.h"
112 #include "builtins.h"
113
114 /* FIXME: Expressions are expanded to RTL in this pass to determine the
115 cost of different addressing modes. This should be moved to a TBD
116 interface between the GIMPLE and RTL worlds. */
117 #include "expr.h"
118 #include "recog.h"
119
120 /* The infinite cost. */
121 #define INFTY 10000000
122
123 #define AVG_LOOP_NITER(LOOP) 5
124
125 /* Returns the expected number of loop iterations for LOOP.
126 The average trip count is computed from profile data if it
127 exists. */
128
129 static inline HOST_WIDE_INT
130 avg_loop_niter (struct loop *loop)
131 {
132 HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
133 if (niter == -1)
134 return AVG_LOOP_NITER (loop);
135
136 return niter;
137 }
138
139 /* Representation of the induction variable. */
140 struct iv
141 {
142 tree base; /* Initial value of the iv. */
143 tree base_object; /* A memory object to that the induction variable points. */
144 tree step; /* Step of the iv (constant only). */
145 tree ssa_name; /* The ssa name with the value. */
146 bool biv_p; /* Is it a biv? */
147 bool have_use_for; /* Do we already have a use for it? */
148 unsigned use_id; /* The identifier in the use if it is the case. */
149 };
150
151 /* Per-ssa version information (induction variable descriptions, etc.). */
152 struct version_info
153 {
154 tree name; /* The ssa name. */
155 struct iv *iv; /* Induction variable description. */
156 bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
157 an expression that is not an induction variable. */
158 bool preserve_biv; /* For the original biv, whether to preserve it. */
159 unsigned inv_id; /* Id of an invariant. */
160 };
161
162 /* Types of uses. */
163 enum use_type
164 {
165 USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
166 USE_ADDRESS, /* Use in an address. */
167 USE_COMPARE /* Use is a compare. */
168 };
169
170 /* Cost of a computation. */
171 typedef struct
172 {
173 int cost; /* The runtime cost. */
174 unsigned complexity; /* The estimate of the complexity of the code for
175 the computation (in no concrete units --
176 complexity field should be larger for more
177 complex expressions and addressing modes). */
178 } comp_cost;
179
180 static const comp_cost no_cost = {0, 0};
181 static const comp_cost infinite_cost = {INFTY, INFTY};
182
183 /* The candidate - cost pair. */
184 struct cost_pair
185 {
186 struct iv_cand *cand; /* The candidate. */
187 comp_cost cost; /* The cost. */
188 bitmap depends_on; /* The list of invariants that have to be
189 preserved. */
190 tree value; /* For final value elimination, the expression for
191 the final value of the iv. For iv elimination,
192 the new bound to compare with. */
193 enum tree_code comp; /* For iv elimination, the comparison. */
194 int inv_expr_id; /* Loop invariant expression id. */
195 };
196
197 /* Use. */
198 struct iv_use
199 {
200 unsigned id; /* The id of the use. */
201 enum use_type type; /* Type of the use. */
202 struct iv *iv; /* The induction variable it is based on. */
203 gimple stmt; /* Statement in that it occurs. */
204 tree *op_p; /* The place where it occurs. */
205 bitmap related_cands; /* The set of "related" iv candidates, plus the common
206 important ones. */
207
208 unsigned n_map_members; /* Number of candidates in the cost_map list. */
209 struct cost_pair *cost_map;
210 /* The costs wrto the iv candidates. */
211
212 struct iv_cand *selected;
213 /* The selected candidate. */
214 };
215
216 /* The position where the iv is computed. */
217 enum iv_position
218 {
219 IP_NORMAL, /* At the end, just before the exit condition. */
220 IP_END, /* At the end of the latch block. */
221 IP_BEFORE_USE, /* Immediately before a specific use. */
222 IP_AFTER_USE, /* Immediately after a specific use. */
223 IP_ORIGINAL /* The original biv. */
224 };
225
226 /* The induction variable candidate. */
227 struct iv_cand
228 {
229 unsigned id; /* The number of the candidate. */
230 bool important; /* Whether this is an "important" candidate, i.e. such
231 that it should be considered by all uses. */
232 ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
233 gimple incremented_at;/* For original biv, the statement where it is
234 incremented. */
235 tree var_before; /* The variable used for it before increment. */
236 tree var_after; /* The variable used for it after increment. */
237 struct iv *iv; /* The value of the candidate. NULL for
238 "pseudocandidate" used to indicate the possibility
239 to replace the final value of an iv by direct
240 computation of the value. */
241 unsigned cost; /* Cost of the candidate. */
242 unsigned cost_step; /* Cost of the candidate's increment operation. */
243 struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
244 where it is incremented. */
245 bitmap depends_on; /* The list of invariants that are used in step of the
246 biv. */
247 };
248
249 /* Loop invariant expression hashtable entry. */
250 struct iv_inv_expr_ent
251 {
252 tree expr;
253 int id;
254 hashval_t hash;
255 };
256
257 /* The data used by the induction variable optimizations. */
258
259 typedef struct iv_use *iv_use_p;
260
261 typedef struct iv_cand *iv_cand_p;
262
263 /* Hashtable helpers. */
264
265 struct iv_inv_expr_hasher : typed_free_remove <iv_inv_expr_ent>
266 {
267 typedef iv_inv_expr_ent value_type;
268 typedef iv_inv_expr_ent compare_type;
269 static inline hashval_t hash (const value_type *);
270 static inline bool equal (const value_type *, const compare_type *);
271 };
272
273 /* Hash function for loop invariant expressions. */
274
275 inline hashval_t
276 iv_inv_expr_hasher::hash (const value_type *expr)
277 {
278 return expr->hash;
279 }
280
281 /* Hash table equality function for expressions. */
282
283 inline bool
284 iv_inv_expr_hasher::equal (const value_type *expr1, const compare_type *expr2)
285 {
286 return expr1->hash == expr2->hash
287 && operand_equal_p (expr1->expr, expr2->expr, 0);
288 }
289
290 struct ivopts_data
291 {
292 /* The currently optimized loop. */
293 struct loop *current_loop;
294
295 /* Numbers of iterations for all exits of the current loop. */
296 hash_map<edge, tree_niter_desc *> *niters;
297
298 /* Number of registers used in it. */
299 unsigned regs_used;
300
301 /* The size of version_info array allocated. */
302 unsigned version_info_size;
303
304 /* The array of information for the ssa names. */
305 struct version_info *version_info;
306
307 /* The hashtable of loop invariant expressions created
308 by ivopt. */
309 hash_table<iv_inv_expr_hasher> *inv_expr_tab;
310
311 /* Loop invariant expression id. */
312 int inv_expr_id;
313
314 /* The bitmap of indices in version_info whose value was changed. */
315 bitmap relevant;
316
317 /* The uses of induction variables. */
318 vec<iv_use_p> iv_uses;
319
320 /* The candidates. */
321 vec<iv_cand_p> iv_candidates;
322
323 /* A bitmap of important candidates. */
324 bitmap important_candidates;
325
326 /* Cache used by tree_to_aff_combination_expand. */
327 hash_map<tree, name_expansion *> *name_expansion_cache;
328
329 /* The maximum invariant id. */
330 unsigned max_inv_id;
331
332 /* Whether to consider just related and important candidates when replacing a
333 use. */
334 bool consider_all_candidates;
335
336 /* Are we optimizing for speed? */
337 bool speed;
338
339 /* Whether the loop body includes any function calls. */
340 bool body_includes_call;
341
342 /* Whether the loop body can only be exited via single exit. */
343 bool loop_single_exit_p;
344 };
345
346 /* An assignment of iv candidates to uses. */
347
348 struct iv_ca
349 {
350 /* The number of uses covered by the assignment. */
351 unsigned upto;
352
353 /* Number of uses that cannot be expressed by the candidates in the set. */
354 unsigned bad_uses;
355
356 /* Candidate assigned to a use, together with the related costs. */
357 struct cost_pair **cand_for_use;
358
359 /* Number of times each candidate is used. */
360 unsigned *n_cand_uses;
361
362 /* The candidates used. */
363 bitmap cands;
364
365 /* The number of candidates in the set. */
366 unsigned n_cands;
367
368 /* Total number of registers needed. */
369 unsigned n_regs;
370
371 /* Total cost of expressing uses. */
372 comp_cost cand_use_cost;
373
374 /* Total cost of candidates. */
375 unsigned cand_cost;
376
377 /* Number of times each invariant is used. */
378 unsigned *n_invariant_uses;
379
380 /* The array holding the number of uses of each loop
381 invariant expressions created by ivopt. */
382 unsigned *used_inv_expr;
383
384 /* The number of created loop invariants. */
385 unsigned num_used_inv_expr;
386
387 /* Total cost of the assignment. */
388 comp_cost cost;
389 };
390
391 /* Difference of two iv candidate assignments. */
392
393 struct iv_ca_delta
394 {
395 /* Changed use. */
396 struct iv_use *use;
397
398 /* An old assignment (for rollback purposes). */
399 struct cost_pair *old_cp;
400
401 /* A new assignment. */
402 struct cost_pair *new_cp;
403
404 /* Next change in the list. */
405 struct iv_ca_delta *next_change;
406 };
407
408 /* Bound on number of candidates below that all candidates are considered. */
409
410 #define CONSIDER_ALL_CANDIDATES_BOUND \
411 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
412
413 /* If there are more iv occurrences, we just give up (it is quite unlikely that
414 optimizing such a loop would help, and it would take ages). */
415
416 #define MAX_CONSIDERED_USES \
417 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
418
419 /* If there are at most this number of ivs in the set, try removing unnecessary
420 ivs from the set always. */
421
422 #define ALWAYS_PRUNE_CAND_SET_BOUND \
423 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
424
425 /* The list of trees for that the decl_rtl field must be reset is stored
426 here. */
427
428 static vec<tree> decl_rtl_to_reset;
429
430 static comp_cost force_expr_to_var_cost (tree, bool);
431
432 /* Number of uses recorded in DATA. */
433
434 static inline unsigned
435 n_iv_uses (struct ivopts_data *data)
436 {
437 return data->iv_uses.length ();
438 }
439
440 /* Ith use recorded in DATA. */
441
442 static inline struct iv_use *
443 iv_use (struct ivopts_data *data, unsigned i)
444 {
445 return data->iv_uses[i];
446 }
447
448 /* Number of candidates recorded in DATA. */
449
450 static inline unsigned
451 n_iv_cands (struct ivopts_data *data)
452 {
453 return data->iv_candidates.length ();
454 }
455
456 /* Ith candidate recorded in DATA. */
457
458 static inline struct iv_cand *
459 iv_cand (struct ivopts_data *data, unsigned i)
460 {
461 return data->iv_candidates[i];
462 }
463
464 /* The single loop exit if it dominates the latch, NULL otherwise. */
465
466 edge
467 single_dom_exit (struct loop *loop)
468 {
469 edge exit = single_exit (loop);
470
471 if (!exit)
472 return NULL;
473
474 if (!just_once_each_iteration_p (loop, exit->src))
475 return NULL;
476
477 return exit;
478 }
479
480 /* Dumps information about the induction variable IV to FILE. */
481
482 void
483 dump_iv (FILE *file, struct iv *iv)
484 {
485 if (iv->ssa_name)
486 {
487 fprintf (file, "ssa name ");
488 print_generic_expr (file, iv->ssa_name, TDF_SLIM);
489 fprintf (file, "\n");
490 }
491
492 fprintf (file, " type ");
493 print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
494 fprintf (file, "\n");
495
496 if (iv->step)
497 {
498 fprintf (file, " base ");
499 print_generic_expr (file, iv->base, TDF_SLIM);
500 fprintf (file, "\n");
501
502 fprintf (file, " step ");
503 print_generic_expr (file, iv->step, TDF_SLIM);
504 fprintf (file, "\n");
505 }
506 else
507 {
508 fprintf (file, " invariant ");
509 print_generic_expr (file, iv->base, TDF_SLIM);
510 fprintf (file, "\n");
511 }
512
513 if (iv->base_object)
514 {
515 fprintf (file, " base object ");
516 print_generic_expr (file, iv->base_object, TDF_SLIM);
517 fprintf (file, "\n");
518 }
519
520 if (iv->biv_p)
521 fprintf (file, " is a biv\n");
522 }
523
524 /* Dumps information about the USE to FILE. */
525
526 void
527 dump_use (FILE *file, struct iv_use *use)
528 {
529 fprintf (file, "use %d\n", use->id);
530
531 switch (use->type)
532 {
533 case USE_NONLINEAR_EXPR:
534 fprintf (file, " generic\n");
535 break;
536
537 case USE_ADDRESS:
538 fprintf (file, " address\n");
539 break;
540
541 case USE_COMPARE:
542 fprintf (file, " compare\n");
543 break;
544
545 default:
546 gcc_unreachable ();
547 }
548
549 fprintf (file, " in statement ");
550 print_gimple_stmt (file, use->stmt, 0, 0);
551 fprintf (file, "\n");
552
553 fprintf (file, " at position ");
554 if (use->op_p)
555 print_generic_expr (file, *use->op_p, TDF_SLIM);
556 fprintf (file, "\n");
557
558 dump_iv (file, use->iv);
559
560 if (use->related_cands)
561 {
562 fprintf (file, " related candidates ");
563 dump_bitmap (file, use->related_cands);
564 }
565 }
566
567 /* Dumps information about the uses to FILE. */
568
569 void
570 dump_uses (FILE *file, struct ivopts_data *data)
571 {
572 unsigned i;
573 struct iv_use *use;
574
575 for (i = 0; i < n_iv_uses (data); i++)
576 {
577 use = iv_use (data, i);
578
579 dump_use (file, use);
580 fprintf (file, "\n");
581 }
582 }
583
584 /* Dumps information about induction variable candidate CAND to FILE. */
585
586 void
587 dump_cand (FILE *file, struct iv_cand *cand)
588 {
589 struct iv *iv = cand->iv;
590
591 fprintf (file, "candidate %d%s\n",
592 cand->id, cand->important ? " (important)" : "");
593
594 if (cand->depends_on)
595 {
596 fprintf (file, " depends on ");
597 dump_bitmap (file, cand->depends_on);
598 }
599
600 if (!iv)
601 {
602 fprintf (file, " final value replacement\n");
603 return;
604 }
605
606 if (cand->var_before)
607 {
608 fprintf (file, " var_before ");
609 print_generic_expr (file, cand->var_before, TDF_SLIM);
610 fprintf (file, "\n");
611 }
612 if (cand->var_after)
613 {
614 fprintf (file, " var_after ");
615 print_generic_expr (file, cand->var_after, TDF_SLIM);
616 fprintf (file, "\n");
617 }
618
619 switch (cand->pos)
620 {
621 case IP_NORMAL:
622 fprintf (file, " incremented before exit test\n");
623 break;
624
625 case IP_BEFORE_USE:
626 fprintf (file, " incremented before use %d\n", cand->ainc_use->id);
627 break;
628
629 case IP_AFTER_USE:
630 fprintf (file, " incremented after use %d\n", cand->ainc_use->id);
631 break;
632
633 case IP_END:
634 fprintf (file, " incremented at end\n");
635 break;
636
637 case IP_ORIGINAL:
638 fprintf (file, " original biv\n");
639 break;
640 }
641
642 dump_iv (file, iv);
643 }
644
645 /* Returns the info for ssa version VER. */
646
647 static inline struct version_info *
648 ver_info (struct ivopts_data *data, unsigned ver)
649 {
650 return data->version_info + ver;
651 }
652
653 /* Returns the info for ssa name NAME. */
654
655 static inline struct version_info *
656 name_info (struct ivopts_data *data, tree name)
657 {
658 return ver_info (data, SSA_NAME_VERSION (name));
659 }
660
661 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
662 emitted in LOOP. */
663
664 static bool
665 stmt_after_ip_normal_pos (struct loop *loop, gimple stmt)
666 {
667 basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
668
669 gcc_assert (bb);
670
671 if (sbb == loop->latch)
672 return true;
673
674 if (sbb != bb)
675 return false;
676
677 return stmt == last_stmt (bb);
678 }
679
680 /* Returns true if STMT if after the place where the original induction
681 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
682 if the positions are identical. */
683
684 static bool
685 stmt_after_inc_pos (struct iv_cand *cand, gimple stmt, bool true_if_equal)
686 {
687 basic_block cand_bb = gimple_bb (cand->incremented_at);
688 basic_block stmt_bb = gimple_bb (stmt);
689
690 if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
691 return false;
692
693 if (stmt_bb != cand_bb)
694 return true;
695
696 if (true_if_equal
697 && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
698 return true;
699 return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
700 }
701
702 /* Returns true if STMT if after the place where the induction variable
703 CAND is incremented in LOOP. */
704
705 static bool
706 stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple stmt)
707 {
708 switch (cand->pos)
709 {
710 case IP_END:
711 return false;
712
713 case IP_NORMAL:
714 return stmt_after_ip_normal_pos (loop, stmt);
715
716 case IP_ORIGINAL:
717 case IP_AFTER_USE:
718 return stmt_after_inc_pos (cand, stmt, false);
719
720 case IP_BEFORE_USE:
721 return stmt_after_inc_pos (cand, stmt, true);
722
723 default:
724 gcc_unreachable ();
725 }
726 }
727
728 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
729
730 static bool
731 abnormal_ssa_name_p (tree exp)
732 {
733 if (!exp)
734 return false;
735
736 if (TREE_CODE (exp) != SSA_NAME)
737 return false;
738
739 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
740 }
741
742 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
743 abnormal phi node. Callback for for_each_index. */
744
745 static bool
746 idx_contains_abnormal_ssa_name_p (tree base, tree *index,
747 void *data ATTRIBUTE_UNUSED)
748 {
749 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
750 {
751 if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
752 return false;
753 if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
754 return false;
755 }
756
757 return !abnormal_ssa_name_p (*index);
758 }
759
760 /* Returns true if EXPR contains a ssa name that occurs in an
761 abnormal phi node. */
762
763 bool
764 contains_abnormal_ssa_name_p (tree expr)
765 {
766 enum tree_code code;
767 enum tree_code_class codeclass;
768
769 if (!expr)
770 return false;
771
772 code = TREE_CODE (expr);
773 codeclass = TREE_CODE_CLASS (code);
774
775 if (code == SSA_NAME)
776 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
777
778 if (code == INTEGER_CST
779 || is_gimple_min_invariant (expr))
780 return false;
781
782 if (code == ADDR_EXPR)
783 return !for_each_index (&TREE_OPERAND (expr, 0),
784 idx_contains_abnormal_ssa_name_p,
785 NULL);
786
787 if (code == COND_EXPR)
788 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
789 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
790 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
791
792 switch (codeclass)
793 {
794 case tcc_binary:
795 case tcc_comparison:
796 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
797 return true;
798
799 /* Fallthru. */
800 case tcc_unary:
801 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
802 return true;
803
804 break;
805
806 default:
807 gcc_unreachable ();
808 }
809
810 return false;
811 }
812
813 /* Returns the structure describing number of iterations determined from
814 EXIT of DATA->current_loop, or NULL if something goes wrong. */
815
816 static struct tree_niter_desc *
817 niter_for_exit (struct ivopts_data *data, edge exit)
818 {
819 struct tree_niter_desc *desc;
820 tree_niter_desc **slot;
821
822 if (!data->niters)
823 {
824 data->niters = new hash_map<edge, tree_niter_desc *>;
825 slot = NULL;
826 }
827 else
828 slot = data->niters->get (exit);
829
830 if (!slot)
831 {
832 /* Try to determine number of iterations. We cannot safely work with ssa
833 names that appear in phi nodes on abnormal edges, so that we do not
834 create overlapping life ranges for them (PR 27283). */
835 desc = XNEW (struct tree_niter_desc);
836 if (!number_of_iterations_exit (data->current_loop,
837 exit, desc, true)
838 || contains_abnormal_ssa_name_p (desc->niter))
839 {
840 XDELETE (desc);
841 desc = NULL;
842 }
843 data->niters->put (exit, desc);
844 }
845 else
846 desc = *slot;
847
848 return desc;
849 }
850
851 /* Returns the structure describing number of iterations determined from
852 single dominating exit of DATA->current_loop, or NULL if something
853 goes wrong. */
854
855 static struct tree_niter_desc *
856 niter_for_single_dom_exit (struct ivopts_data *data)
857 {
858 edge exit = single_dom_exit (data->current_loop);
859
860 if (!exit)
861 return NULL;
862
863 return niter_for_exit (data, exit);
864 }
865
866 /* Initializes data structures used by the iv optimization pass, stored
867 in DATA. */
868
869 static void
870 tree_ssa_iv_optimize_init (struct ivopts_data *data)
871 {
872 data->version_info_size = 2 * num_ssa_names;
873 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
874 data->relevant = BITMAP_ALLOC (NULL);
875 data->important_candidates = BITMAP_ALLOC (NULL);
876 data->max_inv_id = 0;
877 data->niters = NULL;
878 data->iv_uses.create (20);
879 data->iv_candidates.create (20);
880 data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10);
881 data->inv_expr_id = 0;
882 data->name_expansion_cache = NULL;
883 decl_rtl_to_reset.create (20);
884 }
885
886 /* Returns a memory object to that EXPR points. In case we are able to
887 determine that it does not point to any such object, NULL is returned. */
888
889 static tree
890 determine_base_object (tree expr)
891 {
892 enum tree_code code = TREE_CODE (expr);
893 tree base, obj;
894
895 /* If this is a pointer casted to any type, we need to determine
896 the base object for the pointer; so handle conversions before
897 throwing away non-pointer expressions. */
898 if (CONVERT_EXPR_P (expr))
899 return determine_base_object (TREE_OPERAND (expr, 0));
900
901 if (!POINTER_TYPE_P (TREE_TYPE (expr)))
902 return NULL_TREE;
903
904 switch (code)
905 {
906 case INTEGER_CST:
907 return NULL_TREE;
908
909 case ADDR_EXPR:
910 obj = TREE_OPERAND (expr, 0);
911 base = get_base_address (obj);
912
913 if (!base)
914 return expr;
915
916 if (TREE_CODE (base) == MEM_REF)
917 return determine_base_object (TREE_OPERAND (base, 0));
918
919 return fold_convert (ptr_type_node,
920 build_fold_addr_expr (base));
921
922 case POINTER_PLUS_EXPR:
923 return determine_base_object (TREE_OPERAND (expr, 0));
924
925 case PLUS_EXPR:
926 case MINUS_EXPR:
927 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
928 gcc_unreachable ();
929
930 default:
931 return fold_convert (ptr_type_node, expr);
932 }
933 }
934
935 /* Return true if address expression with non-DECL_P operand appears
936 in EXPR. */
937
938 static bool
939 contain_complex_addr_expr (tree expr)
940 {
941 bool res = false;
942
943 STRIP_NOPS (expr);
944 switch (TREE_CODE (expr))
945 {
946 case POINTER_PLUS_EXPR:
947 case PLUS_EXPR:
948 case MINUS_EXPR:
949 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0));
950 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1));
951 break;
952
953 case ADDR_EXPR:
954 return (!DECL_P (TREE_OPERAND (expr, 0)));
955
956 default:
957 return false;
958 }
959
960 return res;
961 }
962
963 /* Allocates an induction variable with given initial value BASE and step STEP
964 for loop LOOP. */
965
966 static struct iv *
967 alloc_iv (tree base, tree step)
968 {
969 tree expr = base;
970 struct iv *iv = XCNEW (struct iv);
971 gcc_assert (step != NULL_TREE);
972
973 /* Lower address expression in base except ones with DECL_P as operand.
974 By doing this:
975 1) More accurate cost can be computed for address expressions;
976 2) Duplicate candidates won't be created for bases in different
977 forms, like &a[0] and &a. */
978 STRIP_NOPS (expr);
979 if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0)))
980 || contain_complex_addr_expr (expr))
981 {
982 aff_tree comb;
983 tree_to_aff_combination (expr, TREE_TYPE (base), &comb);
984 base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
985 }
986
987 iv->base = base;
988 iv->base_object = determine_base_object (base);
989 iv->step = step;
990 iv->biv_p = false;
991 iv->have_use_for = false;
992 iv->use_id = 0;
993 iv->ssa_name = NULL_TREE;
994
995 return iv;
996 }
997
998 /* Sets STEP and BASE for induction variable IV. */
999
1000 static void
1001 set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
1002 {
1003 struct version_info *info = name_info (data, iv);
1004
1005 gcc_assert (!info->iv);
1006
1007 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
1008 info->iv = alloc_iv (base, step);
1009 info->iv->ssa_name = iv;
1010 }
1011
1012 /* Finds induction variable declaration for VAR. */
1013
1014 static struct iv *
1015 get_iv (struct ivopts_data *data, tree var)
1016 {
1017 basic_block bb;
1018 tree type = TREE_TYPE (var);
1019
1020 if (!POINTER_TYPE_P (type)
1021 && !INTEGRAL_TYPE_P (type))
1022 return NULL;
1023
1024 if (!name_info (data, var)->iv)
1025 {
1026 bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1027
1028 if (!bb
1029 || !flow_bb_inside_loop_p (data->current_loop, bb))
1030 set_iv (data, var, var, build_int_cst (type, 0));
1031 }
1032
1033 return name_info (data, var)->iv;
1034 }
1035
1036 /* Determines the step of a biv defined in PHI. Returns NULL if PHI does
1037 not define a simple affine biv with nonzero step. */
1038
1039 static tree
1040 determine_biv_step (gimple phi)
1041 {
1042 struct loop *loop = gimple_bb (phi)->loop_father;
1043 tree name = PHI_RESULT (phi);
1044 affine_iv iv;
1045
1046 if (virtual_operand_p (name))
1047 return NULL_TREE;
1048
1049 if (!simple_iv (loop, loop, name, &iv, true))
1050 return NULL_TREE;
1051
1052 return integer_zerop (iv.step) ? NULL_TREE : iv.step;
1053 }
1054
1055 /* Finds basic ivs. */
1056
1057 static bool
1058 find_bivs (struct ivopts_data *data)
1059 {
1060 gimple phi;
1061 tree step, type, base;
1062 bool found = false;
1063 struct loop *loop = data->current_loop;
1064 gimple_stmt_iterator psi;
1065
1066 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1067 {
1068 phi = gsi_stmt (psi);
1069
1070 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
1071 continue;
1072
1073 step = determine_biv_step (phi);
1074 if (!step)
1075 continue;
1076
1077 base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1078 base = expand_simple_operations (base);
1079 if (contains_abnormal_ssa_name_p (base)
1080 || contains_abnormal_ssa_name_p (step))
1081 continue;
1082
1083 type = TREE_TYPE (PHI_RESULT (phi));
1084 base = fold_convert (type, base);
1085 if (step)
1086 {
1087 if (POINTER_TYPE_P (type))
1088 step = convert_to_ptrofftype (step);
1089 else
1090 step = fold_convert (type, step);
1091 }
1092
1093 set_iv (data, PHI_RESULT (phi), base, step);
1094 found = true;
1095 }
1096
1097 return found;
1098 }
1099
1100 /* Marks basic ivs. */
1101
1102 static void
1103 mark_bivs (struct ivopts_data *data)
1104 {
1105 gimple phi, def;
1106 tree var;
1107 struct iv *iv, *incr_iv;
1108 struct loop *loop = data->current_loop;
1109 basic_block incr_bb;
1110 gimple_stmt_iterator psi;
1111
1112 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1113 {
1114 phi = gsi_stmt (psi);
1115
1116 iv = get_iv (data, PHI_RESULT (phi));
1117 if (!iv)
1118 continue;
1119
1120 var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1121 def = SSA_NAME_DEF_STMT (var);
1122 /* Don't mark iv peeled from other one as biv. */
1123 if (def
1124 && gimple_code (def) == GIMPLE_PHI
1125 && gimple_bb (def) == loop->header)
1126 continue;
1127
1128 incr_iv = get_iv (data, var);
1129 if (!incr_iv)
1130 continue;
1131
1132 /* If the increment is in the subloop, ignore it. */
1133 incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1134 if (incr_bb->loop_father != data->current_loop
1135 || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
1136 continue;
1137
1138 iv->biv_p = true;
1139 incr_iv->biv_p = true;
1140 }
1141 }
1142
1143 /* Checks whether STMT defines a linear induction variable and stores its
1144 parameters to IV. */
1145
1146 static bool
1147 find_givs_in_stmt_scev (struct ivopts_data *data, gimple stmt, affine_iv *iv)
1148 {
1149 tree lhs;
1150 struct loop *loop = data->current_loop;
1151
1152 iv->base = NULL_TREE;
1153 iv->step = NULL_TREE;
1154
1155 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1156 return false;
1157
1158 lhs = gimple_assign_lhs (stmt);
1159 if (TREE_CODE (lhs) != SSA_NAME)
1160 return false;
1161
1162 if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
1163 return false;
1164 iv->base = expand_simple_operations (iv->base);
1165
1166 if (contains_abnormal_ssa_name_p (iv->base)
1167 || contains_abnormal_ssa_name_p (iv->step))
1168 return false;
1169
1170 /* If STMT could throw, then do not consider STMT as defining a GIV.
1171 While this will suppress optimizations, we can not safely delete this
1172 GIV and associated statements, even if it appears it is not used. */
1173 if (stmt_could_throw_p (stmt))
1174 return false;
1175
1176 return true;
1177 }
1178
1179 /* Finds general ivs in statement STMT. */
1180
1181 static void
1182 find_givs_in_stmt (struct ivopts_data *data, gimple stmt)
1183 {
1184 affine_iv iv;
1185
1186 if (!find_givs_in_stmt_scev (data, stmt, &iv))
1187 return;
1188
1189 set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step);
1190 }
1191
1192 /* Finds general ivs in basic block BB. */
1193
1194 static void
1195 find_givs_in_bb (struct ivopts_data *data, basic_block bb)
1196 {
1197 gimple_stmt_iterator bsi;
1198
1199 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1200 find_givs_in_stmt (data, gsi_stmt (bsi));
1201 }
1202
1203 /* Finds general ivs. */
1204
1205 static void
1206 find_givs (struct ivopts_data *data)
1207 {
1208 struct loop *loop = data->current_loop;
1209 basic_block *body = get_loop_body_in_dom_order (loop);
1210 unsigned i;
1211
1212 for (i = 0; i < loop->num_nodes; i++)
1213 find_givs_in_bb (data, body[i]);
1214 free (body);
1215 }
1216
1217 /* For each ssa name defined in LOOP determines whether it is an induction
1218 variable and if so, its initial value and step. */
1219
1220 static bool
1221 find_induction_variables (struct ivopts_data *data)
1222 {
1223 unsigned i;
1224 bitmap_iterator bi;
1225
1226 if (!find_bivs (data))
1227 return false;
1228
1229 find_givs (data);
1230 mark_bivs (data);
1231
1232 if (dump_file && (dump_flags & TDF_DETAILS))
1233 {
1234 struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
1235
1236 if (niter)
1237 {
1238 fprintf (dump_file, " number of iterations ");
1239 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1240 if (!integer_zerop (niter->may_be_zero))
1241 {
1242 fprintf (dump_file, "; zero if ");
1243 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1244 }
1245 fprintf (dump_file, "\n\n");
1246 };
1247
1248 fprintf (dump_file, "Induction variables:\n\n");
1249
1250 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1251 {
1252 if (ver_info (data, i)->iv)
1253 dump_iv (dump_file, ver_info (data, i)->iv);
1254 }
1255 }
1256
1257 return true;
1258 }
1259
1260 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
1261
1262 static struct iv_use *
1263 record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
1264 gimple stmt, enum use_type use_type)
1265 {
1266 struct iv_use *use = XCNEW (struct iv_use);
1267
1268 use->id = n_iv_uses (data);
1269 use->type = use_type;
1270 use->iv = iv;
1271 use->stmt = stmt;
1272 use->op_p = use_p;
1273 use->related_cands = BITMAP_ALLOC (NULL);
1274
1275 /* To avoid showing ssa name in the dumps, if it was not reset by the
1276 caller. */
1277 iv->ssa_name = NULL_TREE;
1278
1279 if (dump_file && (dump_flags & TDF_DETAILS))
1280 dump_use (dump_file, use);
1281
1282 data->iv_uses.safe_push (use);
1283
1284 return use;
1285 }
1286
1287 /* Checks whether OP is a loop-level invariant and if so, records it.
1288 NONLINEAR_USE is true if the invariant is used in a way we do not
1289 handle specially. */
1290
1291 static void
1292 record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
1293 {
1294 basic_block bb;
1295 struct version_info *info;
1296
1297 if (TREE_CODE (op) != SSA_NAME
1298 || virtual_operand_p (op))
1299 return;
1300
1301 bb = gimple_bb (SSA_NAME_DEF_STMT (op));
1302 if (bb
1303 && flow_bb_inside_loop_p (data->current_loop, bb))
1304 return;
1305
1306 info = name_info (data, op);
1307 info->name = op;
1308 info->has_nonlin_use |= nonlinear_use;
1309 if (!info->inv_id)
1310 info->inv_id = ++data->max_inv_id;
1311 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
1312 }
1313
1314 /* Checks whether the use OP is interesting and if so, records it. */
1315
1316 static struct iv_use *
1317 find_interesting_uses_op (struct ivopts_data *data, tree op)
1318 {
1319 struct iv *iv;
1320 struct iv *civ;
1321 gimple stmt;
1322 struct iv_use *use;
1323
1324 if (TREE_CODE (op) != SSA_NAME)
1325 return NULL;
1326
1327 iv = get_iv (data, op);
1328 if (!iv)
1329 return NULL;
1330
1331 if (iv->have_use_for)
1332 {
1333 use = iv_use (data, iv->use_id);
1334
1335 gcc_assert (use->type == USE_NONLINEAR_EXPR);
1336 return use;
1337 }
1338
1339 if (integer_zerop (iv->step))
1340 {
1341 record_invariant (data, op, true);
1342 return NULL;
1343 }
1344 iv->have_use_for = true;
1345
1346 civ = XNEW (struct iv);
1347 *civ = *iv;
1348
1349 stmt = SSA_NAME_DEF_STMT (op);
1350 gcc_assert (gimple_code (stmt) == GIMPLE_PHI
1351 || is_gimple_assign (stmt));
1352
1353 use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
1354 iv->use_id = use->id;
1355
1356 return use;
1357 }
1358
1359 /* Given a condition in statement STMT, checks whether it is a compare
1360 of an induction variable and an invariant. If this is the case,
1361 CONTROL_VAR is set to location of the iv, BOUND to the location of
1362 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1363 induction variable descriptions, and true is returned. If this is not
1364 the case, CONTROL_VAR and BOUND are set to the arguments of the
1365 condition and false is returned. */
1366
1367 static bool
1368 extract_cond_operands (struct ivopts_data *data, gimple stmt,
1369 tree **control_var, tree **bound,
1370 struct iv **iv_var, struct iv **iv_bound)
1371 {
1372 /* The objects returned when COND has constant operands. */
1373 static struct iv const_iv;
1374 static tree zero;
1375 tree *op0 = &zero, *op1 = &zero, *tmp_op;
1376 struct iv *iv0 = &const_iv, *iv1 = &const_iv, *tmp_iv;
1377 bool ret = false;
1378
1379 if (gimple_code (stmt) == GIMPLE_COND)
1380 {
1381 op0 = gimple_cond_lhs_ptr (stmt);
1382 op1 = gimple_cond_rhs_ptr (stmt);
1383 }
1384 else
1385 {
1386 op0 = gimple_assign_rhs1_ptr (stmt);
1387 op1 = gimple_assign_rhs2_ptr (stmt);
1388 }
1389
1390 zero = integer_zero_node;
1391 const_iv.step = integer_zero_node;
1392
1393 if (TREE_CODE (*op0) == SSA_NAME)
1394 iv0 = get_iv (data, *op0);
1395 if (TREE_CODE (*op1) == SSA_NAME)
1396 iv1 = get_iv (data, *op1);
1397
1398 /* Exactly one of the compared values must be an iv, and the other one must
1399 be an invariant. */
1400 if (!iv0 || !iv1)
1401 goto end;
1402
1403 if (integer_zerop (iv0->step))
1404 {
1405 /* Control variable may be on the other side. */
1406 tmp_op = op0; op0 = op1; op1 = tmp_op;
1407 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
1408 }
1409 ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
1410
1411 end:
1412 if (control_var)
1413 *control_var = op0;;
1414 if (iv_var)
1415 *iv_var = iv0;;
1416 if (bound)
1417 *bound = op1;
1418 if (iv_bound)
1419 *iv_bound = iv1;
1420
1421 return ret;
1422 }
1423
1424 /* Checks whether the condition in STMT is interesting and if so,
1425 records it. */
1426
1427 static void
1428 find_interesting_uses_cond (struct ivopts_data *data, gimple stmt)
1429 {
1430 tree *var_p, *bound_p;
1431 struct iv *var_iv, *civ;
1432
1433 if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
1434 {
1435 find_interesting_uses_op (data, *var_p);
1436 find_interesting_uses_op (data, *bound_p);
1437 return;
1438 }
1439
1440 civ = XNEW (struct iv);
1441 *civ = *var_iv;
1442 record_use (data, NULL, civ, stmt, USE_COMPARE);
1443 }
1444
1445 /* Returns the outermost loop EXPR is obviously invariant in
1446 relative to the loop LOOP, i.e. if all its operands are defined
1447 outside of the returned loop. Returns NULL if EXPR is not
1448 even obviously invariant in LOOP. */
1449
1450 struct loop *
1451 outermost_invariant_loop_for_expr (struct loop *loop, tree expr)
1452 {
1453 basic_block def_bb;
1454 unsigned i, len;
1455
1456 if (is_gimple_min_invariant (expr))
1457 return current_loops->tree_root;
1458
1459 if (TREE_CODE (expr) == SSA_NAME)
1460 {
1461 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1462 if (def_bb)
1463 {
1464 if (flow_bb_inside_loop_p (loop, def_bb))
1465 return NULL;
1466 return superloop_at_depth (loop,
1467 loop_depth (def_bb->loop_father) + 1);
1468 }
1469
1470 return current_loops->tree_root;
1471 }
1472
1473 if (!EXPR_P (expr))
1474 return NULL;
1475
1476 unsigned maxdepth = 0;
1477 len = TREE_OPERAND_LENGTH (expr);
1478 for (i = 0; i < len; i++)
1479 {
1480 struct loop *ivloop;
1481 if (!TREE_OPERAND (expr, i))
1482 continue;
1483
1484 ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
1485 if (!ivloop)
1486 return NULL;
1487 maxdepth = MAX (maxdepth, loop_depth (ivloop));
1488 }
1489
1490 return superloop_at_depth (loop, maxdepth);
1491 }
1492
1493 /* Returns true if expression EXPR is obviously invariant in LOOP,
1494 i.e. if all its operands are defined outside of the LOOP. LOOP
1495 should not be the function body. */
1496
1497 bool
1498 expr_invariant_in_loop_p (struct loop *loop, tree expr)
1499 {
1500 basic_block def_bb;
1501 unsigned i, len;
1502
1503 gcc_assert (loop_depth (loop) > 0);
1504
1505 if (is_gimple_min_invariant (expr))
1506 return true;
1507
1508 if (TREE_CODE (expr) == SSA_NAME)
1509 {
1510 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1511 if (def_bb
1512 && flow_bb_inside_loop_p (loop, def_bb))
1513 return false;
1514
1515 return true;
1516 }
1517
1518 if (!EXPR_P (expr))
1519 return false;
1520
1521 len = TREE_OPERAND_LENGTH (expr);
1522 for (i = 0; i < len; i++)
1523 if (TREE_OPERAND (expr, i)
1524 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
1525 return false;
1526
1527 return true;
1528 }
1529
1530 /* Cumulates the steps of indices into DATA and replaces their values with the
1531 initial ones. Returns false when the value of the index cannot be determined.
1532 Callback for for_each_index. */
1533
1534 struct ifs_ivopts_data
1535 {
1536 struct ivopts_data *ivopts_data;
1537 gimple stmt;
1538 tree step;
1539 };
1540
1541 static bool
1542 idx_find_step (tree base, tree *idx, void *data)
1543 {
1544 struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
1545 struct iv *iv;
1546 tree step, iv_base, iv_step, lbound, off;
1547 struct loop *loop = dta->ivopts_data->current_loop;
1548
1549 /* If base is a component ref, require that the offset of the reference
1550 be invariant. */
1551 if (TREE_CODE (base) == COMPONENT_REF)
1552 {
1553 off = component_ref_field_offset (base);
1554 return expr_invariant_in_loop_p (loop, off);
1555 }
1556
1557 /* If base is array, first check whether we will be able to move the
1558 reference out of the loop (in order to take its address in strength
1559 reduction). In order for this to work we need both lower bound
1560 and step to be loop invariants. */
1561 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1562 {
1563 /* Moreover, for a range, the size needs to be invariant as well. */
1564 if (TREE_CODE (base) == ARRAY_RANGE_REF
1565 && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
1566 return false;
1567
1568 step = array_ref_element_size (base);
1569 lbound = array_ref_low_bound (base);
1570
1571 if (!expr_invariant_in_loop_p (loop, step)
1572 || !expr_invariant_in_loop_p (loop, lbound))
1573 return false;
1574 }
1575
1576 if (TREE_CODE (*idx) != SSA_NAME)
1577 return true;
1578
1579 iv = get_iv (dta->ivopts_data, *idx);
1580 if (!iv)
1581 return false;
1582
1583 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1584 *&x[0], which is not folded and does not trigger the
1585 ARRAY_REF path below. */
1586 *idx = iv->base;
1587
1588 if (integer_zerop (iv->step))
1589 return true;
1590
1591 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1592 {
1593 step = array_ref_element_size (base);
1594
1595 /* We only handle addresses whose step is an integer constant. */
1596 if (TREE_CODE (step) != INTEGER_CST)
1597 return false;
1598 }
1599 else
1600 /* The step for pointer arithmetics already is 1 byte. */
1601 step = size_one_node;
1602
1603 iv_base = iv->base;
1604 iv_step = iv->step;
1605 if (!convert_affine_scev (dta->ivopts_data->current_loop,
1606 sizetype, &iv_base, &iv_step, dta->stmt,
1607 false))
1608 {
1609 /* The index might wrap. */
1610 return false;
1611 }
1612
1613 step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
1614 dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
1615
1616 return true;
1617 }
1618
1619 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1620 object is passed to it in DATA. */
1621
1622 static bool
1623 idx_record_use (tree base, tree *idx,
1624 void *vdata)
1625 {
1626 struct ivopts_data *data = (struct ivopts_data *) vdata;
1627 find_interesting_uses_op (data, *idx);
1628 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1629 {
1630 find_interesting_uses_op (data, array_ref_element_size (base));
1631 find_interesting_uses_op (data, array_ref_low_bound (base));
1632 }
1633 return true;
1634 }
1635
1636 /* If we can prove that TOP = cst * BOT for some constant cst,
1637 store cst to MUL and return true. Otherwise return false.
1638 The returned value is always sign-extended, regardless of the
1639 signedness of TOP and BOT. */
1640
1641 static bool
1642 constant_multiple_of (tree top, tree bot, widest_int *mul)
1643 {
1644 tree mby;
1645 enum tree_code code;
1646 unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
1647 widest_int res, p0, p1;
1648
1649 STRIP_NOPS (top);
1650 STRIP_NOPS (bot);
1651
1652 if (operand_equal_p (top, bot, 0))
1653 {
1654 *mul = 1;
1655 return true;
1656 }
1657
1658 code = TREE_CODE (top);
1659 switch (code)
1660 {
1661 case MULT_EXPR:
1662 mby = TREE_OPERAND (top, 1);
1663 if (TREE_CODE (mby) != INTEGER_CST)
1664 return false;
1665
1666 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
1667 return false;
1668
1669 *mul = wi::sext (res * wi::to_widest (mby), precision);
1670 return true;
1671
1672 case PLUS_EXPR:
1673 case MINUS_EXPR:
1674 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
1675 || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
1676 return false;
1677
1678 if (code == MINUS_EXPR)
1679 p1 = -p1;
1680 *mul = wi::sext (p0 + p1, precision);
1681 return true;
1682
1683 case INTEGER_CST:
1684 if (TREE_CODE (bot) != INTEGER_CST)
1685 return false;
1686
1687 p0 = widest_int::from (top, SIGNED);
1688 p1 = widest_int::from (bot, SIGNED);
1689 if (p1 == 0)
1690 return false;
1691 *mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision);
1692 return res == 0;
1693
1694 default:
1695 return false;
1696 }
1697 }
1698
1699 /* Return true if memory reference REF with step STEP may be unaligned. */
1700
1701 static bool
1702 may_be_unaligned_p (tree ref, tree step)
1703 {
1704 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1705 thus they are not misaligned. */
1706 if (TREE_CODE (ref) == TARGET_MEM_REF)
1707 return false;
1708
1709 unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
1710 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align)
1711 align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref)));
1712
1713 unsigned HOST_WIDE_INT bitpos;
1714 unsigned int ref_align;
1715 get_object_alignment_1 (ref, &ref_align, &bitpos);
1716 if (ref_align < align
1717 || (bitpos % align) != 0
1718 || (bitpos % BITS_PER_UNIT) != 0)
1719 return true;
1720
1721 unsigned int trailing_zeros = tree_ctz (step);
1722 if (trailing_zeros < HOST_BITS_PER_INT
1723 && (1U << trailing_zeros) * BITS_PER_UNIT < align)
1724 return true;
1725
1726 return false;
1727 }
1728
1729 /* Return true if EXPR may be non-addressable. */
1730
1731 bool
1732 may_be_nonaddressable_p (tree expr)
1733 {
1734 switch (TREE_CODE (expr))
1735 {
1736 case TARGET_MEM_REF:
1737 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1738 target, thus they are always addressable. */
1739 return false;
1740
1741 case COMPONENT_REF:
1742 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
1743 || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
1744
1745 case VIEW_CONVERT_EXPR:
1746 /* This kind of view-conversions may wrap non-addressable objects
1747 and make them look addressable. After some processing the
1748 non-addressability may be uncovered again, causing ADDR_EXPRs
1749 of inappropriate objects to be built. */
1750 if (is_gimple_reg (TREE_OPERAND (expr, 0))
1751 || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
1752 return true;
1753
1754 /* ... fall through ... */
1755
1756 case ARRAY_REF:
1757 case ARRAY_RANGE_REF:
1758 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
1759
1760 CASE_CONVERT:
1761 return true;
1762
1763 default:
1764 break;
1765 }
1766
1767 return false;
1768 }
1769
1770 /* Finds addresses in *OP_P inside STMT. */
1771
1772 static void
1773 find_interesting_uses_address (struct ivopts_data *data, gimple stmt, tree *op_p)
1774 {
1775 tree base = *op_p, step = size_zero_node;
1776 struct iv *civ;
1777 struct ifs_ivopts_data ifs_ivopts_data;
1778
1779 /* Do not play with volatile memory references. A bit too conservative,
1780 perhaps, but safe. */
1781 if (gimple_has_volatile_ops (stmt))
1782 goto fail;
1783
1784 /* Ignore bitfields for now. Not really something terribly complicated
1785 to handle. TODO. */
1786 if (TREE_CODE (base) == BIT_FIELD_REF)
1787 goto fail;
1788
1789 base = unshare_expr (base);
1790
1791 if (TREE_CODE (base) == TARGET_MEM_REF)
1792 {
1793 tree type = build_pointer_type (TREE_TYPE (base));
1794 tree astep;
1795
1796 if (TMR_BASE (base)
1797 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
1798 {
1799 civ = get_iv (data, TMR_BASE (base));
1800 if (!civ)
1801 goto fail;
1802
1803 TMR_BASE (base) = civ->base;
1804 step = civ->step;
1805 }
1806 if (TMR_INDEX2 (base)
1807 && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
1808 {
1809 civ = get_iv (data, TMR_INDEX2 (base));
1810 if (!civ)
1811 goto fail;
1812
1813 TMR_INDEX2 (base) = civ->base;
1814 step = civ->step;
1815 }
1816 if (TMR_INDEX (base)
1817 && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
1818 {
1819 civ = get_iv (data, TMR_INDEX (base));
1820 if (!civ)
1821 goto fail;
1822
1823 TMR_INDEX (base) = civ->base;
1824 astep = civ->step;
1825
1826 if (astep)
1827 {
1828 if (TMR_STEP (base))
1829 astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
1830
1831 step = fold_build2 (PLUS_EXPR, type, step, astep);
1832 }
1833 }
1834
1835 if (integer_zerop (step))
1836 goto fail;
1837 base = tree_mem_ref_addr (type, base);
1838 }
1839 else
1840 {
1841 ifs_ivopts_data.ivopts_data = data;
1842 ifs_ivopts_data.stmt = stmt;
1843 ifs_ivopts_data.step = size_zero_node;
1844 if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
1845 || integer_zerop (ifs_ivopts_data.step))
1846 goto fail;
1847 step = ifs_ivopts_data.step;
1848
1849 /* Check that the base expression is addressable. This needs
1850 to be done after substituting bases of IVs into it. */
1851 if (may_be_nonaddressable_p (base))
1852 goto fail;
1853
1854 /* Moreover, on strict alignment platforms, check that it is
1855 sufficiently aligned. */
1856 if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
1857 goto fail;
1858
1859 base = build_fold_addr_expr (base);
1860
1861 /* Substituting bases of IVs into the base expression might
1862 have caused folding opportunities. */
1863 if (TREE_CODE (base) == ADDR_EXPR)
1864 {
1865 tree *ref = &TREE_OPERAND (base, 0);
1866 while (handled_component_p (*ref))
1867 ref = &TREE_OPERAND (*ref, 0);
1868 if (TREE_CODE (*ref) == MEM_REF)
1869 {
1870 tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
1871 TREE_OPERAND (*ref, 0),
1872 TREE_OPERAND (*ref, 1));
1873 if (tem)
1874 *ref = tem;
1875 }
1876 }
1877 }
1878
1879 civ = alloc_iv (base, step);
1880 record_use (data, op_p, civ, stmt, USE_ADDRESS);
1881 return;
1882
1883 fail:
1884 for_each_index (op_p, idx_record_use, data);
1885 }
1886
1887 /* Finds and records invariants used in STMT. */
1888
1889 static void
1890 find_invariants_stmt (struct ivopts_data *data, gimple stmt)
1891 {
1892 ssa_op_iter iter;
1893 use_operand_p use_p;
1894 tree op;
1895
1896 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
1897 {
1898 op = USE_FROM_PTR (use_p);
1899 record_invariant (data, op, false);
1900 }
1901 }
1902
1903 /* Finds interesting uses of induction variables in the statement STMT. */
1904
1905 static void
1906 find_interesting_uses_stmt (struct ivopts_data *data, gimple stmt)
1907 {
1908 struct iv *iv;
1909 tree op, *lhs, *rhs;
1910 ssa_op_iter iter;
1911 use_operand_p use_p;
1912 enum tree_code code;
1913
1914 find_invariants_stmt (data, stmt);
1915
1916 if (gimple_code (stmt) == GIMPLE_COND)
1917 {
1918 find_interesting_uses_cond (data, stmt);
1919 return;
1920 }
1921
1922 if (is_gimple_assign (stmt))
1923 {
1924 lhs = gimple_assign_lhs_ptr (stmt);
1925 rhs = gimple_assign_rhs1_ptr (stmt);
1926
1927 if (TREE_CODE (*lhs) == SSA_NAME)
1928 {
1929 /* If the statement defines an induction variable, the uses are not
1930 interesting by themselves. */
1931
1932 iv = get_iv (data, *lhs);
1933
1934 if (iv && !integer_zerop (iv->step))
1935 return;
1936 }
1937
1938 code = gimple_assign_rhs_code (stmt);
1939 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
1940 && (REFERENCE_CLASS_P (*rhs)
1941 || is_gimple_val (*rhs)))
1942 {
1943 if (REFERENCE_CLASS_P (*rhs))
1944 find_interesting_uses_address (data, stmt, rhs);
1945 else
1946 find_interesting_uses_op (data, *rhs);
1947
1948 if (REFERENCE_CLASS_P (*lhs))
1949 find_interesting_uses_address (data, stmt, lhs);
1950 return;
1951 }
1952 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1953 {
1954 find_interesting_uses_cond (data, stmt);
1955 return;
1956 }
1957
1958 /* TODO -- we should also handle address uses of type
1959
1960 memory = call (whatever);
1961
1962 and
1963
1964 call (memory). */
1965 }
1966
1967 if (gimple_code (stmt) == GIMPLE_PHI
1968 && gimple_bb (stmt) == data->current_loop->header)
1969 {
1970 iv = get_iv (data, PHI_RESULT (stmt));
1971
1972 if (iv && !integer_zerop (iv->step))
1973 return;
1974 }
1975
1976 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
1977 {
1978 op = USE_FROM_PTR (use_p);
1979
1980 if (TREE_CODE (op) != SSA_NAME)
1981 continue;
1982
1983 iv = get_iv (data, op);
1984 if (!iv)
1985 continue;
1986
1987 find_interesting_uses_op (data, op);
1988 }
1989 }
1990
1991 /* Finds interesting uses of induction variables outside of loops
1992 on loop exit edge EXIT. */
1993
1994 static void
1995 find_interesting_uses_outside (struct ivopts_data *data, edge exit)
1996 {
1997 gimple phi;
1998 gimple_stmt_iterator psi;
1999 tree def;
2000
2001 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2002 {
2003 phi = gsi_stmt (psi);
2004 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2005 if (!virtual_operand_p (def))
2006 find_interesting_uses_op (data, def);
2007 }
2008 }
2009
2010 /* Finds uses of the induction variables that are interesting. */
2011
2012 static void
2013 find_interesting_uses (struct ivopts_data *data)
2014 {
2015 basic_block bb;
2016 gimple_stmt_iterator bsi;
2017 basic_block *body = get_loop_body (data->current_loop);
2018 unsigned i;
2019 struct version_info *info;
2020 edge e;
2021
2022 if (dump_file && (dump_flags & TDF_DETAILS))
2023 fprintf (dump_file, "Uses:\n\n");
2024
2025 for (i = 0; i < data->current_loop->num_nodes; i++)
2026 {
2027 edge_iterator ei;
2028 bb = body[i];
2029
2030 FOR_EACH_EDGE (e, ei, bb->succs)
2031 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2032 && !flow_bb_inside_loop_p (data->current_loop, e->dest))
2033 find_interesting_uses_outside (data, e);
2034
2035 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2036 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2037 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2038 if (!is_gimple_debug (gsi_stmt (bsi)))
2039 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2040 }
2041
2042 if (dump_file && (dump_flags & TDF_DETAILS))
2043 {
2044 bitmap_iterator bi;
2045
2046 fprintf (dump_file, "\n");
2047
2048 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
2049 {
2050 info = ver_info (data, i);
2051 if (info->inv_id)
2052 {
2053 fprintf (dump_file, " ");
2054 print_generic_expr (dump_file, info->name, TDF_SLIM);
2055 fprintf (dump_file, " is invariant (%d)%s\n",
2056 info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
2057 }
2058 }
2059
2060 fprintf (dump_file, "\n");
2061 }
2062
2063 free (body);
2064 }
2065
2066 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2067 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2068 we are at the top-level of the processed address. */
2069
2070 static tree
2071 strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
2072 HOST_WIDE_INT *offset)
2073 {
2074 tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
2075 enum tree_code code;
2076 tree type, orig_type = TREE_TYPE (expr);
2077 HOST_WIDE_INT off0, off1, st;
2078 tree orig_expr = expr;
2079
2080 STRIP_NOPS (expr);
2081
2082 type = TREE_TYPE (expr);
2083 code = TREE_CODE (expr);
2084 *offset = 0;
2085
2086 switch (code)
2087 {
2088 case INTEGER_CST:
2089 if (!cst_and_fits_in_hwi (expr)
2090 || integer_zerop (expr))
2091 return orig_expr;
2092
2093 *offset = int_cst_value (expr);
2094 return build_int_cst (orig_type, 0);
2095
2096 case POINTER_PLUS_EXPR:
2097 case PLUS_EXPR:
2098 case MINUS_EXPR:
2099 op0 = TREE_OPERAND (expr, 0);
2100 op1 = TREE_OPERAND (expr, 1);
2101
2102 op0 = strip_offset_1 (op0, false, false, &off0);
2103 op1 = strip_offset_1 (op1, false, false, &off1);
2104
2105 *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
2106 if (op0 == TREE_OPERAND (expr, 0)
2107 && op1 == TREE_OPERAND (expr, 1))
2108 return orig_expr;
2109
2110 if (integer_zerop (op1))
2111 expr = op0;
2112 else if (integer_zerop (op0))
2113 {
2114 if (code == MINUS_EXPR)
2115 expr = fold_build1 (NEGATE_EXPR, type, op1);
2116 else
2117 expr = op1;
2118 }
2119 else
2120 expr = fold_build2 (code, type, op0, op1);
2121
2122 return fold_convert (orig_type, expr);
2123
2124 case MULT_EXPR:
2125 op1 = TREE_OPERAND (expr, 1);
2126 if (!cst_and_fits_in_hwi (op1))
2127 return orig_expr;
2128
2129 op0 = TREE_OPERAND (expr, 0);
2130 op0 = strip_offset_1 (op0, false, false, &off0);
2131 if (op0 == TREE_OPERAND (expr, 0))
2132 return orig_expr;
2133
2134 *offset = off0 * int_cst_value (op1);
2135 if (integer_zerop (op0))
2136 expr = op0;
2137 else
2138 expr = fold_build2 (MULT_EXPR, type, op0, op1);
2139
2140 return fold_convert (orig_type, expr);
2141
2142 case ARRAY_REF:
2143 case ARRAY_RANGE_REF:
2144 if (!inside_addr)
2145 return orig_expr;
2146
2147 step = array_ref_element_size (expr);
2148 if (!cst_and_fits_in_hwi (step))
2149 break;
2150
2151 st = int_cst_value (step);
2152 op1 = TREE_OPERAND (expr, 1);
2153 op1 = strip_offset_1 (op1, false, false, &off1);
2154 *offset = off1 * st;
2155
2156 if (top_compref
2157 && integer_zerop (op1))
2158 {
2159 /* Strip the component reference completely. */
2160 op0 = TREE_OPERAND (expr, 0);
2161 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2162 *offset += off0;
2163 return op0;
2164 }
2165 break;
2166
2167 case COMPONENT_REF:
2168 {
2169 tree field;
2170
2171 if (!inside_addr)
2172 return orig_expr;
2173
2174 tmp = component_ref_field_offset (expr);
2175 field = TREE_OPERAND (expr, 1);
2176 if (top_compref
2177 && cst_and_fits_in_hwi (tmp)
2178 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
2179 {
2180 HOST_WIDE_INT boffset, abs_off;
2181
2182 /* Strip the component reference completely. */
2183 op0 = TREE_OPERAND (expr, 0);
2184 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2185 boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
2186 abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
2187 if (boffset < 0)
2188 abs_off = -abs_off;
2189
2190 *offset = off0 + int_cst_value (tmp) + abs_off;
2191 return op0;
2192 }
2193 }
2194 break;
2195
2196 case ADDR_EXPR:
2197 op0 = TREE_OPERAND (expr, 0);
2198 op0 = strip_offset_1 (op0, true, true, &off0);
2199 *offset += off0;
2200
2201 if (op0 == TREE_OPERAND (expr, 0))
2202 return orig_expr;
2203
2204 expr = build_fold_addr_expr (op0);
2205 return fold_convert (orig_type, expr);
2206
2207 case MEM_REF:
2208 /* ??? Offset operand? */
2209 inside_addr = false;
2210 break;
2211
2212 default:
2213 return orig_expr;
2214 }
2215
2216 /* Default handling of expressions for that we want to recurse into
2217 the first operand. */
2218 op0 = TREE_OPERAND (expr, 0);
2219 op0 = strip_offset_1 (op0, inside_addr, false, &off0);
2220 *offset += off0;
2221
2222 if (op0 == TREE_OPERAND (expr, 0)
2223 && (!op1 || op1 == TREE_OPERAND (expr, 1)))
2224 return orig_expr;
2225
2226 expr = copy_node (expr);
2227 TREE_OPERAND (expr, 0) = op0;
2228 if (op1)
2229 TREE_OPERAND (expr, 1) = op1;
2230
2231 /* Inside address, we might strip the top level component references,
2232 thus changing type of the expression. Handling of ADDR_EXPR
2233 will fix that. */
2234 expr = fold_convert (orig_type, expr);
2235
2236 return expr;
2237 }
2238
2239 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2240
2241 static tree
2242 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
2243 {
2244 HOST_WIDE_INT off;
2245 tree core = strip_offset_1 (expr, false, false, &off);
2246 *offset = off;
2247 return core;
2248 }
2249
2250 /* Returns variant of TYPE that can be used as base for different uses.
2251 We return unsigned type with the same precision, which avoids problems
2252 with overflows. */
2253
2254 static tree
2255 generic_type_for (tree type)
2256 {
2257 if (POINTER_TYPE_P (type))
2258 return unsigned_type_for (type);
2259
2260 if (TYPE_UNSIGNED (type))
2261 return type;
2262
2263 return unsigned_type_for (type);
2264 }
2265
2266 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2267 the bitmap to that we should store it. */
2268
2269 static struct ivopts_data *fd_ivopts_data;
2270 static tree
2271 find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
2272 {
2273 bitmap *depends_on = (bitmap *) data;
2274 struct version_info *info;
2275
2276 if (TREE_CODE (*expr_p) != SSA_NAME)
2277 return NULL_TREE;
2278 info = name_info (fd_ivopts_data, *expr_p);
2279
2280 if (!info->inv_id || info->has_nonlin_use)
2281 return NULL_TREE;
2282
2283 if (!*depends_on)
2284 *depends_on = BITMAP_ALLOC (NULL);
2285 bitmap_set_bit (*depends_on, info->inv_id);
2286
2287 return NULL_TREE;
2288 }
2289
2290 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2291 position to POS. If USE is not NULL, the candidate is set as related to
2292 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2293 replacement of the final value of the iv by a direct computation. */
2294
2295 static struct iv_cand *
2296 add_candidate_1 (struct ivopts_data *data,
2297 tree base, tree step, bool important, enum iv_position pos,
2298 struct iv_use *use, gimple incremented_at)
2299 {
2300 unsigned i;
2301 struct iv_cand *cand = NULL;
2302 tree type, orig_type;
2303
2304 /* For non-original variables, make sure their values are computed in a type
2305 that does not invoke undefined behavior on overflows (since in general,
2306 we cannot prove that these induction variables are non-wrapping). */
2307 if (pos != IP_ORIGINAL)
2308 {
2309 orig_type = TREE_TYPE (base);
2310 type = generic_type_for (orig_type);
2311 if (type != orig_type)
2312 {
2313 base = fold_convert (type, base);
2314 step = fold_convert (type, step);
2315 }
2316 }
2317
2318 for (i = 0; i < n_iv_cands (data); i++)
2319 {
2320 cand = iv_cand (data, i);
2321
2322 if (cand->pos != pos)
2323 continue;
2324
2325 if (cand->incremented_at != incremented_at
2326 || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2327 && cand->ainc_use != use))
2328 continue;
2329
2330 if (!cand->iv)
2331 {
2332 if (!base && !step)
2333 break;
2334
2335 continue;
2336 }
2337
2338 if (!base && !step)
2339 continue;
2340
2341 if (operand_equal_p (base, cand->iv->base, 0)
2342 && operand_equal_p (step, cand->iv->step, 0)
2343 && (TYPE_PRECISION (TREE_TYPE (base))
2344 == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
2345 break;
2346 }
2347
2348 if (i == n_iv_cands (data))
2349 {
2350 cand = XCNEW (struct iv_cand);
2351 cand->id = i;
2352
2353 if (!base && !step)
2354 cand->iv = NULL;
2355 else
2356 cand->iv = alloc_iv (base, step);
2357
2358 cand->pos = pos;
2359 if (pos != IP_ORIGINAL && cand->iv)
2360 {
2361 cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
2362 cand->var_after = cand->var_before;
2363 }
2364 cand->important = important;
2365 cand->incremented_at = incremented_at;
2366 data->iv_candidates.safe_push (cand);
2367
2368 if (step
2369 && TREE_CODE (step) != INTEGER_CST)
2370 {
2371 fd_ivopts_data = data;
2372 walk_tree (&step, find_depends, &cand->depends_on, NULL);
2373 }
2374
2375 if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2376 cand->ainc_use = use;
2377 else
2378 cand->ainc_use = NULL;
2379
2380 if (dump_file && (dump_flags & TDF_DETAILS))
2381 dump_cand (dump_file, cand);
2382 }
2383
2384 if (important && !cand->important)
2385 {
2386 cand->important = true;
2387 if (dump_file && (dump_flags & TDF_DETAILS))
2388 fprintf (dump_file, "Candidate %d is important\n", cand->id);
2389 }
2390
2391 if (use)
2392 {
2393 bitmap_set_bit (use->related_cands, i);
2394 if (dump_file && (dump_flags & TDF_DETAILS))
2395 fprintf (dump_file, "Candidate %d is related to use %d\n",
2396 cand->id, use->id);
2397 }
2398
2399 return cand;
2400 }
2401
2402 /* Returns true if incrementing the induction variable at the end of the LOOP
2403 is allowed.
2404
2405 The purpose is to avoid splitting latch edge with a biv increment, thus
2406 creating a jump, possibly confusing other optimization passes and leaving
2407 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2408 is not available (so we do not have a better alternative), or if the latch
2409 edge is already nonempty. */
2410
2411 static bool
2412 allow_ip_end_pos_p (struct loop *loop)
2413 {
2414 if (!ip_normal_pos (loop))
2415 return true;
2416
2417 if (!empty_block_p (ip_end_pos (loop)))
2418 return true;
2419
2420 return false;
2421 }
2422
2423 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2424 Important field is set to IMPORTANT. */
2425
2426 static void
2427 add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
2428 bool important, struct iv_use *use)
2429 {
2430 basic_block use_bb = gimple_bb (use->stmt);
2431 enum machine_mode mem_mode;
2432 unsigned HOST_WIDE_INT cstepi;
2433
2434 /* If we insert the increment in any position other than the standard
2435 ones, we must ensure that it is incremented once per iteration.
2436 It must not be in an inner nested loop, or one side of an if
2437 statement. */
2438 if (use_bb->loop_father != data->current_loop
2439 || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
2440 || stmt_could_throw_p (use->stmt)
2441 || !cst_and_fits_in_hwi (step))
2442 return;
2443
2444 cstepi = int_cst_value (step);
2445
2446 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
2447 if (((USE_LOAD_PRE_INCREMENT (mem_mode)
2448 || USE_STORE_PRE_INCREMENT (mem_mode))
2449 && GET_MODE_SIZE (mem_mode) == cstepi)
2450 || ((USE_LOAD_PRE_DECREMENT (mem_mode)
2451 || USE_STORE_PRE_DECREMENT (mem_mode))
2452 && GET_MODE_SIZE (mem_mode) == -cstepi))
2453 {
2454 enum tree_code code = MINUS_EXPR;
2455 tree new_base;
2456 tree new_step = step;
2457
2458 if (POINTER_TYPE_P (TREE_TYPE (base)))
2459 {
2460 new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
2461 code = POINTER_PLUS_EXPR;
2462 }
2463 else
2464 new_step = fold_convert (TREE_TYPE (base), new_step);
2465 new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
2466 add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
2467 use->stmt);
2468 }
2469 if (((USE_LOAD_POST_INCREMENT (mem_mode)
2470 || USE_STORE_POST_INCREMENT (mem_mode))
2471 && GET_MODE_SIZE (mem_mode) == cstepi)
2472 || ((USE_LOAD_POST_DECREMENT (mem_mode)
2473 || USE_STORE_POST_DECREMENT (mem_mode))
2474 && GET_MODE_SIZE (mem_mode) == -cstepi))
2475 {
2476 add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
2477 use->stmt);
2478 }
2479 }
2480
2481 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2482 position to POS. If USE is not NULL, the candidate is set as related to
2483 it. The candidate computation is scheduled on all available positions. */
2484
2485 static void
2486 add_candidate (struct ivopts_data *data,
2487 tree base, tree step, bool important, struct iv_use *use)
2488 {
2489 if (ip_normal_pos (data->current_loop))
2490 add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL);
2491 if (ip_end_pos (data->current_loop)
2492 && allow_ip_end_pos_p (data->current_loop))
2493 add_candidate_1 (data, base, step, important, IP_END, use, NULL);
2494
2495 if (use != NULL && use->type == USE_ADDRESS)
2496 add_autoinc_candidates (data, base, step, important, use);
2497 }
2498
2499 /* Adds standard iv candidates. */
2500
2501 static void
2502 add_standard_iv_candidates (struct ivopts_data *data)
2503 {
2504 add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
2505
2506 /* The same for a double-integer type if it is still fast enough. */
2507 if (TYPE_PRECISION
2508 (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
2509 && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
2510 add_candidate (data, build_int_cst (long_integer_type_node, 0),
2511 build_int_cst (long_integer_type_node, 1), true, NULL);
2512
2513 /* The same for a double-integer type if it is still fast enough. */
2514 if (TYPE_PRECISION
2515 (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
2516 && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
2517 add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
2518 build_int_cst (long_long_integer_type_node, 1), true, NULL);
2519 }
2520
2521
2522 /* Adds candidates bases on the old induction variable IV. */
2523
2524 static void
2525 add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
2526 {
2527 gimple phi;
2528 tree def;
2529 struct iv_cand *cand;
2530
2531 add_candidate (data, iv->base, iv->step, true, NULL);
2532
2533 /* The same, but with initial value zero. */
2534 if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
2535 add_candidate (data, size_int (0), iv->step, true, NULL);
2536 else
2537 add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
2538 iv->step, true, NULL);
2539
2540 phi = SSA_NAME_DEF_STMT (iv->ssa_name);
2541 if (gimple_code (phi) == GIMPLE_PHI)
2542 {
2543 /* Additionally record the possibility of leaving the original iv
2544 untouched. */
2545 def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
2546 /* Don't add candidate if it's from another PHI node because
2547 it's an affine iv appearing in the form of PEELED_CHREC. */
2548 phi = SSA_NAME_DEF_STMT (def);
2549 if (gimple_code (phi) != GIMPLE_PHI)
2550 {
2551 cand = add_candidate_1 (data,
2552 iv->base, iv->step, true, IP_ORIGINAL, NULL,
2553 SSA_NAME_DEF_STMT (def));
2554 cand->var_before = iv->ssa_name;
2555 cand->var_after = def;
2556 }
2557 else
2558 gcc_assert (gimple_bb (phi) == data->current_loop->header);
2559 }
2560 }
2561
2562 /* Adds candidates based on the old induction variables. */
2563
2564 static void
2565 add_old_ivs_candidates (struct ivopts_data *data)
2566 {
2567 unsigned i;
2568 struct iv *iv;
2569 bitmap_iterator bi;
2570
2571 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
2572 {
2573 iv = ver_info (data, i)->iv;
2574 if (iv && iv->biv_p && !integer_zerop (iv->step))
2575 add_old_iv_candidates (data, iv);
2576 }
2577 }
2578
2579 /* Adds candidates based on the value of the induction variable IV and USE. */
2580
2581 static void
2582 add_iv_value_candidates (struct ivopts_data *data,
2583 struct iv *iv, struct iv_use *use)
2584 {
2585 unsigned HOST_WIDE_INT offset;
2586 tree base;
2587 tree basetype;
2588
2589 add_candidate (data, iv->base, iv->step, false, use);
2590
2591 /* The same, but with initial value zero. Make such variable important,
2592 since it is generic enough so that possibly many uses may be based
2593 on it. */
2594 basetype = TREE_TYPE (iv->base);
2595 if (POINTER_TYPE_P (basetype))
2596 basetype = sizetype;
2597 add_candidate (data, build_int_cst (basetype, 0),
2598 iv->step, true, use);
2599
2600 /* Third, try removing the constant offset. Make sure to even
2601 add a candidate for &a[0] vs. (T *)&a. */
2602 base = strip_offset (iv->base, &offset);
2603 if (offset
2604 || base != iv->base)
2605 add_candidate (data, base, iv->step, false, use);
2606 }
2607
2608 /* Adds candidates based on the uses. */
2609
2610 static void
2611 add_derived_ivs_candidates (struct ivopts_data *data)
2612 {
2613 unsigned i;
2614
2615 for (i = 0; i < n_iv_uses (data); i++)
2616 {
2617 struct iv_use *use = iv_use (data, i);
2618
2619 if (!use)
2620 continue;
2621
2622 switch (use->type)
2623 {
2624 case USE_NONLINEAR_EXPR:
2625 case USE_COMPARE:
2626 case USE_ADDRESS:
2627 /* Just add the ivs based on the value of the iv used here. */
2628 add_iv_value_candidates (data, use->iv, use);
2629 break;
2630
2631 default:
2632 gcc_unreachable ();
2633 }
2634 }
2635 }
2636
2637 /* Record important candidates and add them to related_cands bitmaps
2638 if needed. */
2639
2640 static void
2641 record_important_candidates (struct ivopts_data *data)
2642 {
2643 unsigned i;
2644 struct iv_use *use;
2645
2646 for (i = 0; i < n_iv_cands (data); i++)
2647 {
2648 struct iv_cand *cand = iv_cand (data, i);
2649
2650 if (cand->important)
2651 bitmap_set_bit (data->important_candidates, i);
2652 }
2653
2654 data->consider_all_candidates = (n_iv_cands (data)
2655 <= CONSIDER_ALL_CANDIDATES_BOUND);
2656
2657 if (data->consider_all_candidates)
2658 {
2659 /* We will not need "related_cands" bitmaps in this case,
2660 so release them to decrease peak memory consumption. */
2661 for (i = 0; i < n_iv_uses (data); i++)
2662 {
2663 use = iv_use (data, i);
2664 BITMAP_FREE (use->related_cands);
2665 }
2666 }
2667 else
2668 {
2669 /* Add important candidates to the related_cands bitmaps. */
2670 for (i = 0; i < n_iv_uses (data); i++)
2671 bitmap_ior_into (iv_use (data, i)->related_cands,
2672 data->important_candidates);
2673 }
2674 }
2675
2676 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2677 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2678 we allocate a simple list to every use. */
2679
2680 static void
2681 alloc_use_cost_map (struct ivopts_data *data)
2682 {
2683 unsigned i, size, s;
2684
2685 for (i = 0; i < n_iv_uses (data); i++)
2686 {
2687 struct iv_use *use = iv_use (data, i);
2688
2689 if (data->consider_all_candidates)
2690 size = n_iv_cands (data);
2691 else
2692 {
2693 s = bitmap_count_bits (use->related_cands);
2694
2695 /* Round up to the power of two, so that moduling by it is fast. */
2696 size = s ? (1 << ceil_log2 (s)) : 1;
2697 }
2698
2699 use->n_map_members = size;
2700 use->cost_map = XCNEWVEC (struct cost_pair, size);
2701 }
2702 }
2703
2704 /* Returns description of computation cost of expression whose runtime
2705 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
2706
2707 static comp_cost
2708 new_cost (unsigned runtime, unsigned complexity)
2709 {
2710 comp_cost cost;
2711
2712 cost.cost = runtime;
2713 cost.complexity = complexity;
2714
2715 return cost;
2716 }
2717
2718 /* Adds costs COST1 and COST2. */
2719
2720 static comp_cost
2721 add_costs (comp_cost cost1, comp_cost cost2)
2722 {
2723 cost1.cost += cost2.cost;
2724 cost1.complexity += cost2.complexity;
2725
2726 return cost1;
2727 }
2728 /* Subtracts costs COST1 and COST2. */
2729
2730 static comp_cost
2731 sub_costs (comp_cost cost1, comp_cost cost2)
2732 {
2733 cost1.cost -= cost2.cost;
2734 cost1.complexity -= cost2.complexity;
2735
2736 return cost1;
2737 }
2738
2739 /* Returns a negative number if COST1 < COST2, a positive number if
2740 COST1 > COST2, and 0 if COST1 = COST2. */
2741
2742 static int
2743 compare_costs (comp_cost cost1, comp_cost cost2)
2744 {
2745 if (cost1.cost == cost2.cost)
2746 return cost1.complexity - cost2.complexity;
2747
2748 return cost1.cost - cost2.cost;
2749 }
2750
2751 /* Returns true if COST is infinite. */
2752
2753 static bool
2754 infinite_cost_p (comp_cost cost)
2755 {
2756 return cost.cost == INFTY;
2757 }
2758
2759 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
2760 on invariants DEPENDS_ON and that the value used in expressing it
2761 is VALUE, and in case of iv elimination the comparison operator is COMP. */
2762
2763 static void
2764 set_use_iv_cost (struct ivopts_data *data,
2765 struct iv_use *use, struct iv_cand *cand,
2766 comp_cost cost, bitmap depends_on, tree value,
2767 enum tree_code comp, int inv_expr_id)
2768 {
2769 unsigned i, s;
2770
2771 if (infinite_cost_p (cost))
2772 {
2773 BITMAP_FREE (depends_on);
2774 return;
2775 }
2776
2777 if (data->consider_all_candidates)
2778 {
2779 use->cost_map[cand->id].cand = cand;
2780 use->cost_map[cand->id].cost = cost;
2781 use->cost_map[cand->id].depends_on = depends_on;
2782 use->cost_map[cand->id].value = value;
2783 use->cost_map[cand->id].comp = comp;
2784 use->cost_map[cand->id].inv_expr_id = inv_expr_id;
2785 return;
2786 }
2787
2788 /* n_map_members is a power of two, so this computes modulo. */
2789 s = cand->id & (use->n_map_members - 1);
2790 for (i = s; i < use->n_map_members; i++)
2791 if (!use->cost_map[i].cand)
2792 goto found;
2793 for (i = 0; i < s; i++)
2794 if (!use->cost_map[i].cand)
2795 goto found;
2796
2797 gcc_unreachable ();
2798
2799 found:
2800 use->cost_map[i].cand = cand;
2801 use->cost_map[i].cost = cost;
2802 use->cost_map[i].depends_on = depends_on;
2803 use->cost_map[i].value = value;
2804 use->cost_map[i].comp = comp;
2805 use->cost_map[i].inv_expr_id = inv_expr_id;
2806 }
2807
2808 /* Gets cost of (USE, CANDIDATE) pair. */
2809
2810 static struct cost_pair *
2811 get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
2812 struct iv_cand *cand)
2813 {
2814 unsigned i, s;
2815 struct cost_pair *ret;
2816
2817 if (!cand)
2818 return NULL;
2819
2820 if (data->consider_all_candidates)
2821 {
2822 ret = use->cost_map + cand->id;
2823 if (!ret->cand)
2824 return NULL;
2825
2826 return ret;
2827 }
2828
2829 /* n_map_members is a power of two, so this computes modulo. */
2830 s = cand->id & (use->n_map_members - 1);
2831 for (i = s; i < use->n_map_members; i++)
2832 if (use->cost_map[i].cand == cand)
2833 return use->cost_map + i;
2834 else if (use->cost_map[i].cand == NULL)
2835 return NULL;
2836 for (i = 0; i < s; i++)
2837 if (use->cost_map[i].cand == cand)
2838 return use->cost_map + i;
2839 else if (use->cost_map[i].cand == NULL)
2840 return NULL;
2841
2842 return NULL;
2843 }
2844
2845 /* Returns estimate on cost of computing SEQ. */
2846
2847 static unsigned
2848 seq_cost (rtx_insn *seq, bool speed)
2849 {
2850 unsigned cost = 0;
2851 rtx set;
2852
2853 for (; seq; seq = NEXT_INSN (seq))
2854 {
2855 set = single_set (seq);
2856 if (set)
2857 cost += set_src_cost (SET_SRC (set), speed);
2858 else
2859 cost++;
2860 }
2861
2862 return cost;
2863 }
2864
2865 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
2866 static rtx
2867 produce_memory_decl_rtl (tree obj, int *regno)
2868 {
2869 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
2870 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2871 rtx x;
2872
2873 gcc_assert (obj);
2874 if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
2875 {
2876 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
2877 x = gen_rtx_SYMBOL_REF (address_mode, name);
2878 SET_SYMBOL_REF_DECL (x, obj);
2879 x = gen_rtx_MEM (DECL_MODE (obj), x);
2880 set_mem_addr_space (x, as);
2881 targetm.encode_section_info (obj, x, true);
2882 }
2883 else
2884 {
2885 x = gen_raw_REG (address_mode, (*regno)++);
2886 x = gen_rtx_MEM (DECL_MODE (obj), x);
2887 set_mem_addr_space (x, as);
2888 }
2889
2890 return x;
2891 }
2892
2893 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
2894 walk_tree. DATA contains the actual fake register number. */
2895
2896 static tree
2897 prepare_decl_rtl (tree *expr_p, int *ws, void *data)
2898 {
2899 tree obj = NULL_TREE;
2900 rtx x = NULL_RTX;
2901 int *regno = (int *) data;
2902
2903 switch (TREE_CODE (*expr_p))
2904 {
2905 case ADDR_EXPR:
2906 for (expr_p = &TREE_OPERAND (*expr_p, 0);
2907 handled_component_p (*expr_p);
2908 expr_p = &TREE_OPERAND (*expr_p, 0))
2909 continue;
2910 obj = *expr_p;
2911 if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
2912 x = produce_memory_decl_rtl (obj, regno);
2913 break;
2914
2915 case SSA_NAME:
2916 *ws = 0;
2917 obj = SSA_NAME_VAR (*expr_p);
2918 /* Defer handling of anonymous SSA_NAMEs to the expander. */
2919 if (!obj)
2920 return NULL_TREE;
2921 if (!DECL_RTL_SET_P (obj))
2922 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
2923 break;
2924
2925 case VAR_DECL:
2926 case PARM_DECL:
2927 case RESULT_DECL:
2928 *ws = 0;
2929 obj = *expr_p;
2930
2931 if (DECL_RTL_SET_P (obj))
2932 break;
2933
2934 if (DECL_MODE (obj) == BLKmode)
2935 x = produce_memory_decl_rtl (obj, regno);
2936 else
2937 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
2938
2939 break;
2940
2941 default:
2942 break;
2943 }
2944
2945 if (x)
2946 {
2947 decl_rtl_to_reset.safe_push (obj);
2948 SET_DECL_RTL (obj, x);
2949 }
2950
2951 return NULL_TREE;
2952 }
2953
2954 /* Determines cost of the computation of EXPR. */
2955
2956 static unsigned
2957 computation_cost (tree expr, bool speed)
2958 {
2959 rtx_insn *seq;
2960 rtx rslt;
2961 tree type = TREE_TYPE (expr);
2962 unsigned cost;
2963 /* Avoid using hard regs in ways which may be unsupported. */
2964 int regno = LAST_VIRTUAL_REGISTER + 1;
2965 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2966 enum node_frequency real_frequency = node->frequency;
2967
2968 node->frequency = NODE_FREQUENCY_NORMAL;
2969 crtl->maybe_hot_insn_p = speed;
2970 walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
2971 start_sequence ();
2972 rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
2973 seq = get_insns ();
2974 end_sequence ();
2975 default_rtl_profile ();
2976 node->frequency = real_frequency;
2977
2978 cost = seq_cost (seq, speed);
2979 if (MEM_P (rslt))
2980 cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
2981 TYPE_ADDR_SPACE (type), speed);
2982 else if (!REG_P (rslt))
2983 cost += set_src_cost (rslt, speed);
2984
2985 return cost;
2986 }
2987
2988 /* Returns variable containing the value of candidate CAND at statement AT. */
2989
2990 static tree
2991 var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple stmt)
2992 {
2993 if (stmt_after_increment (loop, cand, stmt))
2994 return cand->var_after;
2995 else
2996 return cand->var_before;
2997 }
2998
2999 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3000 same precision that is at least as wide as the precision of TYPE, stores
3001 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3002 type of A and B. */
3003
3004 static tree
3005 determine_common_wider_type (tree *a, tree *b)
3006 {
3007 tree wider_type = NULL;
3008 tree suba, subb;
3009 tree atype = TREE_TYPE (*a);
3010
3011 if (CONVERT_EXPR_P (*a))
3012 {
3013 suba = TREE_OPERAND (*a, 0);
3014 wider_type = TREE_TYPE (suba);
3015 if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
3016 return atype;
3017 }
3018 else
3019 return atype;
3020
3021 if (CONVERT_EXPR_P (*b))
3022 {
3023 subb = TREE_OPERAND (*b, 0);
3024 if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
3025 return atype;
3026 }
3027 else
3028 return atype;
3029
3030 *a = suba;
3031 *b = subb;
3032 return wider_type;
3033 }
3034
3035 /* Determines the expression by that USE is expressed from induction variable
3036 CAND at statement AT in LOOP. The expression is stored in a decomposed
3037 form into AFF. Returns false if USE cannot be expressed using CAND. */
3038
3039 static bool
3040 get_computation_aff (struct loop *loop,
3041 struct iv_use *use, struct iv_cand *cand, gimple at,
3042 struct aff_tree *aff)
3043 {
3044 tree ubase = use->iv->base;
3045 tree ustep = use->iv->step;
3046 tree cbase = cand->iv->base;
3047 tree cstep = cand->iv->step, cstep_common;
3048 tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
3049 tree common_type, var;
3050 tree uutype;
3051 aff_tree cbase_aff, var_aff;
3052 widest_int rat;
3053
3054 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
3055 {
3056 /* We do not have a precision to express the values of use. */
3057 return false;
3058 }
3059
3060 var = var_at_stmt (loop, cand, at);
3061 uutype = unsigned_type_for (utype);
3062
3063 /* If the conversion is not noop, perform it. */
3064 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
3065 {
3066 cstep = fold_convert (uutype, cstep);
3067 cbase = fold_convert (uutype, cbase);
3068 var = fold_convert (uutype, var);
3069 }
3070
3071 if (!constant_multiple_of (ustep, cstep, &rat))
3072 return false;
3073
3074 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3075 type, we achieve better folding by computing their difference in this
3076 wider type, and cast the result to UUTYPE. We do not need to worry about
3077 overflows, as all the arithmetics will in the end be performed in UUTYPE
3078 anyway. */
3079 common_type = determine_common_wider_type (&ubase, &cbase);
3080
3081 /* use = ubase - ratio * cbase + ratio * var. */
3082 tree_to_aff_combination (ubase, common_type, aff);
3083 tree_to_aff_combination (cbase, common_type, &cbase_aff);
3084 tree_to_aff_combination (var, uutype, &var_aff);
3085
3086 /* We need to shift the value if we are after the increment. */
3087 if (stmt_after_increment (loop, cand, at))
3088 {
3089 aff_tree cstep_aff;
3090
3091 if (common_type != uutype)
3092 cstep_common = fold_convert (common_type, cstep);
3093 else
3094 cstep_common = cstep;
3095
3096 tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
3097 aff_combination_add (&cbase_aff, &cstep_aff);
3098 }
3099
3100 aff_combination_scale (&cbase_aff, -rat);
3101 aff_combination_add (aff, &cbase_aff);
3102 if (common_type != uutype)
3103 aff_combination_convert (aff, uutype);
3104
3105 aff_combination_scale (&var_aff, rat);
3106 aff_combination_add (aff, &var_aff);
3107
3108 return true;
3109 }
3110
3111 /* Return the type of USE. */
3112
3113 static tree
3114 get_use_type (struct iv_use *use)
3115 {
3116 tree base_type = TREE_TYPE (use->iv->base);
3117 tree type;
3118
3119 if (use->type == USE_ADDRESS)
3120 {
3121 /* The base_type may be a void pointer. Create a pointer type based on
3122 the mem_ref instead. */
3123 type = build_pointer_type (TREE_TYPE (*use->op_p));
3124 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
3125 == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
3126 }
3127 else
3128 type = base_type;
3129
3130 return type;
3131 }
3132
3133 /* Determines the expression by that USE is expressed from induction variable
3134 CAND at statement AT in LOOP. The computation is unshared. */
3135
3136 static tree
3137 get_computation_at (struct loop *loop,
3138 struct iv_use *use, struct iv_cand *cand, gimple at)
3139 {
3140 aff_tree aff;
3141 tree type = get_use_type (use);
3142
3143 if (!get_computation_aff (loop, use, cand, at, &aff))
3144 return NULL_TREE;
3145 unshare_aff_combination (&aff);
3146 return fold_convert (type, aff_combination_to_tree (&aff));
3147 }
3148
3149 /* Determines the expression by that USE is expressed from induction variable
3150 CAND in LOOP. The computation is unshared. */
3151
3152 static tree
3153 get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
3154 {
3155 return get_computation_at (loop, use, cand, use->stmt);
3156 }
3157
3158 /* Adjust the cost COST for being in loop setup rather than loop body.
3159 If we're optimizing for space, the loop setup overhead is constant;
3160 if we're optimizing for speed, amortize it over the per-iteration cost. */
3161 static unsigned
3162 adjust_setup_cost (struct ivopts_data *data, unsigned cost)
3163 {
3164 if (cost == INFTY)
3165 return cost;
3166 else if (optimize_loop_for_speed_p (data->current_loop))
3167 return cost / avg_loop_niter (data->current_loop);
3168 else
3169 return cost;
3170 }
3171
3172 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3173 validity for a memory reference accessing memory of mode MODE in
3174 address space AS. */
3175
3176
3177 bool
3178 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, enum machine_mode mode,
3179 addr_space_t as)
3180 {
3181 #define MAX_RATIO 128
3182 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
3183 static vec<sbitmap> valid_mult_list;
3184 sbitmap valid_mult;
3185
3186 if (data_index >= valid_mult_list.length ())
3187 valid_mult_list.safe_grow_cleared (data_index + 1);
3188
3189 valid_mult = valid_mult_list[data_index];
3190 if (!valid_mult)
3191 {
3192 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
3193 rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3194 rtx reg2 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
3195 rtx addr, scaled;
3196 HOST_WIDE_INT i;
3197
3198 valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
3199 bitmap_clear (valid_mult);
3200 scaled = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
3201 addr = gen_rtx_fmt_ee (PLUS, address_mode, scaled, reg2);
3202 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3203 {
3204 XEXP (scaled, 1) = gen_int_mode (i, address_mode);
3205 if (memory_address_addr_space_p (mode, addr, as)
3206 || memory_address_addr_space_p (mode, scaled, as))
3207 bitmap_set_bit (valid_mult, i + MAX_RATIO);
3208 }
3209
3210 if (dump_file && (dump_flags & TDF_DETAILS))
3211 {
3212 fprintf (dump_file, " allowed multipliers:");
3213 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3214 if (bitmap_bit_p (valid_mult, i + MAX_RATIO))
3215 fprintf (dump_file, " %d", (int) i);
3216 fprintf (dump_file, "\n");
3217 fprintf (dump_file, "\n");
3218 }
3219
3220 valid_mult_list[data_index] = valid_mult;
3221 }
3222
3223 if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
3224 return false;
3225
3226 return bitmap_bit_p (valid_mult, ratio + MAX_RATIO);
3227 }
3228
3229 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3230 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3231 variable is omitted. Compute the cost for a memory reference that accesses
3232 a memory location of mode MEM_MODE in address space AS.
3233
3234 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3235 size of MEM_MODE / RATIO) is available. To make this determination, we
3236 look at the size of the increment to be made, which is given in CSTEP.
3237 CSTEP may be zero if the step is unknown.
3238 STMT_AFTER_INC is true iff the statement we're looking at is after the
3239 increment of the original biv.
3240
3241 TODO -- there must be some better way. This all is quite crude. */
3242
3243 enum ainc_type
3244 {
3245 AINC_PRE_INC, /* Pre increment. */
3246 AINC_PRE_DEC, /* Pre decrement. */
3247 AINC_POST_INC, /* Post increment. */
3248 AINC_POST_DEC, /* Post decrement. */
3249 AINC_NONE /* Also the number of auto increment types. */
3250 };
3251
3252 typedef struct address_cost_data_s
3253 {
3254 HOST_WIDE_INT min_offset, max_offset;
3255 unsigned costs[2][2][2][2];
3256 unsigned ainc_costs[AINC_NONE];
3257 } *address_cost_data;
3258
3259
3260 static comp_cost
3261 get_address_cost (bool symbol_present, bool var_present,
3262 unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
3263 HOST_WIDE_INT cstep, enum machine_mode mem_mode,
3264 addr_space_t as, bool speed,
3265 bool stmt_after_inc, bool *may_autoinc)
3266 {
3267 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
3268 static vec<address_cost_data> address_cost_data_list;
3269 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
3270 address_cost_data data;
3271 static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
3272 static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
3273 unsigned cost, acost, complexity;
3274 enum ainc_type autoinc_type;
3275 bool offset_p, ratio_p, autoinc;
3276 HOST_WIDE_INT s_offset, autoinc_offset, msize;
3277 unsigned HOST_WIDE_INT mask;
3278 unsigned bits;
3279
3280 if (data_index >= address_cost_data_list.length ())
3281 address_cost_data_list.safe_grow_cleared (data_index + 1);
3282
3283 data = address_cost_data_list[data_index];
3284 if (!data)
3285 {
3286 HOST_WIDE_INT i;
3287 HOST_WIDE_INT rat, off = 0;
3288 int old_cse_not_expected, width;
3289 unsigned sym_p, var_p, off_p, rat_p, add_c;
3290 rtx_insn *seq;
3291 rtx addr, base;
3292 rtx reg0, reg1;
3293
3294 data = (address_cost_data) xcalloc (1, sizeof (*data));
3295
3296 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3297
3298 width = GET_MODE_BITSIZE (address_mode) - 1;
3299 if (width > (HOST_BITS_PER_WIDE_INT - 1))
3300 width = HOST_BITS_PER_WIDE_INT - 1;
3301 addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
3302
3303 for (i = width; i >= 0; i--)
3304 {
3305 off = -((unsigned HOST_WIDE_INT) 1 << i);
3306 XEXP (addr, 1) = gen_int_mode (off, address_mode);
3307 if (memory_address_addr_space_p (mem_mode, addr, as))
3308 break;
3309 }
3310 data->min_offset = (i == -1? 0 : off);
3311
3312 for (i = width; i >= 0; i--)
3313 {
3314 off = ((unsigned HOST_WIDE_INT) 1 << i) - 1;
3315 XEXP (addr, 1) = gen_int_mode (off, address_mode);
3316 if (memory_address_addr_space_p (mem_mode, addr, as))
3317 break;
3318 /* For some TARGET, like ARM THUMB1, the offset should be nature
3319 aligned. Try an aligned offset if address_mode is not QImode. */
3320 off = (address_mode == QImode)
3321 ? 0
3322 : ((unsigned HOST_WIDE_INT) 1 << i)
3323 - GET_MODE_SIZE (address_mode);
3324 if (off > 0)
3325 {
3326 XEXP (addr, 1) = gen_int_mode (off, address_mode);
3327 if (memory_address_addr_space_p (mem_mode, addr, as))
3328 break;
3329 }
3330 }
3331 if (i == -1)
3332 off = 0;
3333 data->max_offset = off;
3334
3335 if (dump_file && (dump_flags & TDF_DETAILS))
3336 {
3337 fprintf (dump_file, "get_address_cost:\n");
3338 fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
3339 GET_MODE_NAME (mem_mode),
3340 data->min_offset);
3341 fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
3342 GET_MODE_NAME (mem_mode),
3343 data->max_offset);
3344 }
3345
3346 rat = 1;
3347 for (i = 2; i <= MAX_RATIO; i++)
3348 if (multiplier_allowed_in_address_p (i, mem_mode, as))
3349 {
3350 rat = i;
3351 break;
3352 }
3353
3354 /* Compute the cost of various addressing modes. */
3355 acost = 0;
3356 reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3357 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
3358
3359 if (USE_LOAD_PRE_DECREMENT (mem_mode)
3360 || USE_STORE_PRE_DECREMENT (mem_mode))
3361 {
3362 addr = gen_rtx_PRE_DEC (address_mode, reg0);
3363 has_predec[mem_mode]
3364 = memory_address_addr_space_p (mem_mode, addr, as);
3365
3366 if (has_predec[mem_mode])
3367 data->ainc_costs[AINC_PRE_DEC]
3368 = address_cost (addr, mem_mode, as, speed);
3369 }
3370 if (USE_LOAD_POST_DECREMENT (mem_mode)
3371 || USE_STORE_POST_DECREMENT (mem_mode))
3372 {
3373 addr = gen_rtx_POST_DEC (address_mode, reg0);
3374 has_postdec[mem_mode]
3375 = memory_address_addr_space_p (mem_mode, addr, as);
3376
3377 if (has_postdec[mem_mode])
3378 data->ainc_costs[AINC_POST_DEC]
3379 = address_cost (addr, mem_mode, as, speed);
3380 }
3381 if (USE_LOAD_PRE_INCREMENT (mem_mode)
3382 || USE_STORE_PRE_DECREMENT (mem_mode))
3383 {
3384 addr = gen_rtx_PRE_INC (address_mode, reg0);
3385 has_preinc[mem_mode]
3386 = memory_address_addr_space_p (mem_mode, addr, as);
3387
3388 if (has_preinc[mem_mode])
3389 data->ainc_costs[AINC_PRE_INC]
3390 = address_cost (addr, mem_mode, as, speed);
3391 }
3392 if (USE_LOAD_POST_INCREMENT (mem_mode)
3393 || USE_STORE_POST_INCREMENT (mem_mode))
3394 {
3395 addr = gen_rtx_POST_INC (address_mode, reg0);
3396 has_postinc[mem_mode]
3397 = memory_address_addr_space_p (mem_mode, addr, as);
3398
3399 if (has_postinc[mem_mode])
3400 data->ainc_costs[AINC_POST_INC]
3401 = address_cost (addr, mem_mode, as, speed);
3402 }
3403 for (i = 0; i < 16; i++)
3404 {
3405 sym_p = i & 1;
3406 var_p = (i >> 1) & 1;
3407 off_p = (i >> 2) & 1;
3408 rat_p = (i >> 3) & 1;
3409
3410 addr = reg0;
3411 if (rat_p)
3412 addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
3413 gen_int_mode (rat, address_mode));
3414
3415 if (var_p)
3416 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
3417
3418 if (sym_p)
3419 {
3420 base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
3421 /* ??? We can run into trouble with some backends by presenting
3422 it with symbols which haven't been properly passed through
3423 targetm.encode_section_info. By setting the local bit, we
3424 enhance the probability of things working. */
3425 SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
3426
3427 if (off_p)
3428 base = gen_rtx_fmt_e (CONST, address_mode,
3429 gen_rtx_fmt_ee
3430 (PLUS, address_mode, base,
3431 gen_int_mode (off, address_mode)));
3432 }
3433 else if (off_p)
3434 base = gen_int_mode (off, address_mode);
3435 else
3436 base = NULL_RTX;
3437
3438 if (base)
3439 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
3440
3441 start_sequence ();
3442 /* To avoid splitting addressing modes, pretend that no cse will
3443 follow. */
3444 old_cse_not_expected = cse_not_expected;
3445 cse_not_expected = true;
3446 addr = memory_address_addr_space (mem_mode, addr, as);
3447 cse_not_expected = old_cse_not_expected;
3448 seq = get_insns ();
3449 end_sequence ();
3450
3451 acost = seq_cost (seq, speed);
3452 acost += address_cost (addr, mem_mode, as, speed);
3453
3454 if (!acost)
3455 acost = 1;
3456 data->costs[sym_p][var_p][off_p][rat_p] = acost;
3457 }
3458
3459 /* On some targets, it is quite expensive to load symbol to a register,
3460 which makes addresses that contain symbols look much more expensive.
3461 However, the symbol will have to be loaded in any case before the
3462 loop (and quite likely we have it in register already), so it does not
3463 make much sense to penalize them too heavily. So make some final
3464 tweaks for the SYMBOL_PRESENT modes:
3465
3466 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3467 var is cheaper, use this mode with small penalty.
3468 If VAR_PRESENT is true, try whether the mode with
3469 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3470 if this is the case, use it. */
3471 add_c = add_cost (speed, address_mode);
3472 for (i = 0; i < 8; i++)
3473 {
3474 var_p = i & 1;
3475 off_p = (i >> 1) & 1;
3476 rat_p = (i >> 2) & 1;
3477
3478 acost = data->costs[0][1][off_p][rat_p] + 1;
3479 if (var_p)
3480 acost += add_c;
3481
3482 if (acost < data->costs[1][var_p][off_p][rat_p])
3483 data->costs[1][var_p][off_p][rat_p] = acost;
3484 }
3485
3486 if (dump_file && (dump_flags & TDF_DETAILS))
3487 {
3488 fprintf (dump_file, "Address costs:\n");
3489
3490 for (i = 0; i < 16; i++)
3491 {
3492 sym_p = i & 1;
3493 var_p = (i >> 1) & 1;
3494 off_p = (i >> 2) & 1;
3495 rat_p = (i >> 3) & 1;
3496
3497 fprintf (dump_file, " ");
3498 if (sym_p)
3499 fprintf (dump_file, "sym + ");
3500 if (var_p)
3501 fprintf (dump_file, "var + ");
3502 if (off_p)
3503 fprintf (dump_file, "cst + ");
3504 if (rat_p)
3505 fprintf (dump_file, "rat * ");
3506
3507 acost = data->costs[sym_p][var_p][off_p][rat_p];
3508 fprintf (dump_file, "index costs %d\n", acost);
3509 }
3510 if (has_predec[mem_mode] || has_postdec[mem_mode]
3511 || has_preinc[mem_mode] || has_postinc[mem_mode])
3512 fprintf (dump_file, " May include autoinc/dec\n");
3513 fprintf (dump_file, "\n");
3514 }
3515
3516 address_cost_data_list[data_index] = data;
3517 }
3518
3519 bits = GET_MODE_BITSIZE (address_mode);
3520 mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
3521 offset &= mask;
3522 if ((offset >> (bits - 1) & 1))
3523 offset |= ~mask;
3524 s_offset = offset;
3525
3526 autoinc = false;
3527 autoinc_type = AINC_NONE;
3528 msize = GET_MODE_SIZE (mem_mode);
3529 autoinc_offset = offset;
3530 if (stmt_after_inc)
3531 autoinc_offset += ratio * cstep;
3532 if (symbol_present || var_present || ratio != 1)
3533 autoinc = false;
3534 else
3535 {
3536 if (has_postinc[mem_mode] && autoinc_offset == 0
3537 && msize == cstep)
3538 autoinc_type = AINC_POST_INC;
3539 else if (has_postdec[mem_mode] && autoinc_offset == 0
3540 && msize == -cstep)
3541 autoinc_type = AINC_POST_DEC;
3542 else if (has_preinc[mem_mode] && autoinc_offset == msize
3543 && msize == cstep)
3544 autoinc_type = AINC_PRE_INC;
3545 else if (has_predec[mem_mode] && autoinc_offset == -msize
3546 && msize == -cstep)
3547 autoinc_type = AINC_PRE_DEC;
3548
3549 if (autoinc_type != AINC_NONE)
3550 autoinc = true;
3551 }
3552
3553 cost = 0;
3554 offset_p = (s_offset != 0
3555 && data->min_offset <= s_offset
3556 && s_offset <= data->max_offset);
3557 ratio_p = (ratio != 1
3558 && multiplier_allowed_in_address_p (ratio, mem_mode, as));
3559
3560 if (ratio != 1 && !ratio_p)
3561 cost += mult_by_coeff_cost (ratio, address_mode, speed);
3562
3563 if (s_offset && !offset_p && !symbol_present)
3564 cost += add_cost (speed, address_mode);
3565
3566 if (may_autoinc)
3567 *may_autoinc = autoinc;
3568 if (autoinc)
3569 acost = data->ainc_costs[autoinc_type];
3570 else
3571 acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
3572 complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
3573 return new_cost (cost + acost, complexity);
3574 }
3575
3576 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3577 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3578 calculating the operands of EXPR. Returns true if successful, and returns
3579 the cost in COST. */
3580
3581 static bool
3582 get_shiftadd_cost (tree expr, enum machine_mode mode, comp_cost cost0,
3583 comp_cost cost1, tree mult, bool speed, comp_cost *cost)
3584 {
3585 comp_cost res;
3586 tree op1 = TREE_OPERAND (expr, 1);
3587 tree cst = TREE_OPERAND (mult, 1);
3588 tree multop = TREE_OPERAND (mult, 0);
3589 int m = exact_log2 (int_cst_value (cst));
3590 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
3591 int sa_cost;
3592 bool equal_p = false;
3593
3594 if (!(m >= 0 && m < maxm))
3595 return false;
3596
3597 if (operand_equal_p (op1, mult, 0))
3598 equal_p = true;
3599
3600 sa_cost = (TREE_CODE (expr) != MINUS_EXPR
3601 ? shiftadd_cost (speed, mode, m)
3602 : (equal_p
3603 ? shiftsub1_cost (speed, mode, m)
3604 : shiftsub0_cost (speed, mode, m)));
3605 res = new_cost (sa_cost, 0);
3606 res = add_costs (res, equal_p ? cost0 : cost1);
3607
3608 STRIP_NOPS (multop);
3609 if (!is_gimple_val (multop))
3610 res = add_costs (res, force_expr_to_var_cost (multop, speed));
3611
3612 *cost = res;
3613 return true;
3614 }
3615
3616 /* Estimates cost of forcing expression EXPR into a variable. */
3617
3618 static comp_cost
3619 force_expr_to_var_cost (tree expr, bool speed)
3620 {
3621 static bool costs_initialized = false;
3622 static unsigned integer_cost [2];
3623 static unsigned symbol_cost [2];
3624 static unsigned address_cost [2];
3625 tree op0, op1;
3626 comp_cost cost0, cost1, cost;
3627 enum machine_mode mode;
3628
3629 if (!costs_initialized)
3630 {
3631 tree type = build_pointer_type (integer_type_node);
3632 tree var, addr;
3633 rtx x;
3634 int i;
3635
3636 var = create_tmp_var_raw (integer_type_node, "test_var");
3637 TREE_STATIC (var) = 1;
3638 x = produce_memory_decl_rtl (var, NULL);
3639 SET_DECL_RTL (var, x);
3640
3641 addr = build1 (ADDR_EXPR, type, var);
3642
3643
3644 for (i = 0; i < 2; i++)
3645 {
3646 integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
3647 2000), i);
3648
3649 symbol_cost[i] = computation_cost (addr, i) + 1;
3650
3651 address_cost[i]
3652 = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
3653 if (dump_file && (dump_flags & TDF_DETAILS))
3654 {
3655 fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
3656 fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
3657 fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
3658 fprintf (dump_file, " address %d\n", (int) address_cost[i]);
3659 fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
3660 fprintf (dump_file, "\n");
3661 }
3662 }
3663
3664 costs_initialized = true;
3665 }
3666
3667 STRIP_NOPS (expr);
3668
3669 if (SSA_VAR_P (expr))
3670 return no_cost;
3671
3672 if (is_gimple_min_invariant (expr))
3673 {
3674 if (TREE_CODE (expr) == INTEGER_CST)
3675 return new_cost (integer_cost [speed], 0);
3676
3677 if (TREE_CODE (expr) == ADDR_EXPR)
3678 {
3679 tree obj = TREE_OPERAND (expr, 0);
3680
3681 if (TREE_CODE (obj) == VAR_DECL
3682 || TREE_CODE (obj) == PARM_DECL
3683 || TREE_CODE (obj) == RESULT_DECL)
3684 return new_cost (symbol_cost [speed], 0);
3685 }
3686
3687 return new_cost (address_cost [speed], 0);
3688 }
3689
3690 switch (TREE_CODE (expr))
3691 {
3692 case POINTER_PLUS_EXPR:
3693 case PLUS_EXPR:
3694 case MINUS_EXPR:
3695 case MULT_EXPR:
3696 op0 = TREE_OPERAND (expr, 0);
3697 op1 = TREE_OPERAND (expr, 1);
3698 STRIP_NOPS (op0);
3699 STRIP_NOPS (op1);
3700 break;
3701
3702 CASE_CONVERT:
3703 case NEGATE_EXPR:
3704 op0 = TREE_OPERAND (expr, 0);
3705 STRIP_NOPS (op0);
3706 op1 = NULL_TREE;
3707 break;
3708
3709 default:
3710 /* Just an arbitrary value, FIXME. */
3711 return new_cost (target_spill_cost[speed], 0);
3712 }
3713
3714 if (op0 == NULL_TREE
3715 || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
3716 cost0 = no_cost;
3717 else
3718 cost0 = force_expr_to_var_cost (op0, speed);
3719
3720 if (op1 == NULL_TREE
3721 || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
3722 cost1 = no_cost;
3723 else
3724 cost1 = force_expr_to_var_cost (op1, speed);
3725
3726 mode = TYPE_MODE (TREE_TYPE (expr));
3727 switch (TREE_CODE (expr))
3728 {
3729 case POINTER_PLUS_EXPR:
3730 case PLUS_EXPR:
3731 case MINUS_EXPR:
3732 case NEGATE_EXPR:
3733 cost = new_cost (add_cost (speed, mode), 0);
3734 if (TREE_CODE (expr) != NEGATE_EXPR)
3735 {
3736 tree mult = NULL_TREE;
3737 comp_cost sa_cost;
3738 if (TREE_CODE (op1) == MULT_EXPR)
3739 mult = op1;
3740 else if (TREE_CODE (op0) == MULT_EXPR)
3741 mult = op0;
3742
3743 if (mult != NULL_TREE
3744 && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
3745 && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
3746 speed, &sa_cost))
3747 return sa_cost;
3748 }
3749 break;
3750
3751 CASE_CONVERT:
3752 {
3753 tree inner_mode, outer_mode;
3754 outer_mode = TREE_TYPE (expr);
3755 inner_mode = TREE_TYPE (op0);
3756 cost = new_cost (convert_cost (TYPE_MODE (outer_mode),
3757 TYPE_MODE (inner_mode), speed), 0);
3758 }
3759 break;
3760
3761 case MULT_EXPR:
3762 if (cst_and_fits_in_hwi (op0))
3763 cost = new_cost (mult_by_coeff_cost (int_cst_value (op0),
3764 mode, speed), 0);
3765 else if (cst_and_fits_in_hwi (op1))
3766 cost = new_cost (mult_by_coeff_cost (int_cst_value (op1),
3767 mode, speed), 0);
3768 else
3769 return new_cost (target_spill_cost [speed], 0);
3770 break;
3771
3772 default:
3773 gcc_unreachable ();
3774 }
3775
3776 cost = add_costs (cost, cost0);
3777 cost = add_costs (cost, cost1);
3778
3779 /* Bound the cost by target_spill_cost. The parts of complicated
3780 computations often are either loop invariant or at least can
3781 be shared between several iv uses, so letting this grow without
3782 limits would not give reasonable results. */
3783 if (cost.cost > (int) target_spill_cost [speed])
3784 cost.cost = target_spill_cost [speed];
3785
3786 return cost;
3787 }
3788
3789 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
3790 invariants the computation depends on. */
3791
3792 static comp_cost
3793 force_var_cost (struct ivopts_data *data,
3794 tree expr, bitmap *depends_on)
3795 {
3796 if (depends_on)
3797 {
3798 fd_ivopts_data = data;
3799 walk_tree (&expr, find_depends, depends_on, NULL);
3800 }
3801
3802 return force_expr_to_var_cost (expr, data->speed);
3803 }
3804
3805 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
3806 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
3807 to false if the corresponding part is missing. DEPENDS_ON is a set of the
3808 invariants the computation depends on. */
3809
3810 static comp_cost
3811 split_address_cost (struct ivopts_data *data,
3812 tree addr, bool *symbol_present, bool *var_present,
3813 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
3814 {
3815 tree core;
3816 HOST_WIDE_INT bitsize;
3817 HOST_WIDE_INT bitpos;
3818 tree toffset;
3819 enum machine_mode mode;
3820 int unsignedp, volatilep;
3821
3822 core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
3823 &unsignedp, &volatilep, false);
3824
3825 if (toffset != 0
3826 || bitpos % BITS_PER_UNIT != 0
3827 || TREE_CODE (core) != VAR_DECL)
3828 {
3829 *symbol_present = false;
3830 *var_present = true;
3831 fd_ivopts_data = data;
3832 walk_tree (&addr, find_depends, depends_on, NULL);
3833 return new_cost (target_spill_cost[data->speed], 0);
3834 }
3835
3836 *offset += bitpos / BITS_PER_UNIT;
3837 if (TREE_STATIC (core)
3838 || DECL_EXTERNAL (core))
3839 {
3840 *symbol_present = true;
3841 *var_present = false;
3842 return no_cost;
3843 }
3844
3845 *symbol_present = false;
3846 *var_present = true;
3847 return no_cost;
3848 }
3849
3850 /* Estimates cost of expressing difference of addresses E1 - E2 as
3851 var + symbol + offset. The value of offset is added to OFFSET,
3852 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3853 part is missing. DEPENDS_ON is a set of the invariants the computation
3854 depends on. */
3855
3856 static comp_cost
3857 ptr_difference_cost (struct ivopts_data *data,
3858 tree e1, tree e2, bool *symbol_present, bool *var_present,
3859 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
3860 {
3861 HOST_WIDE_INT diff = 0;
3862 aff_tree aff_e1, aff_e2;
3863 tree type;
3864
3865 gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
3866
3867 if (ptr_difference_const (e1, e2, &diff))
3868 {
3869 *offset += diff;
3870 *symbol_present = false;
3871 *var_present = false;
3872 return no_cost;
3873 }
3874
3875 if (integer_zerop (e2))
3876 return split_address_cost (data, TREE_OPERAND (e1, 0),
3877 symbol_present, var_present, offset, depends_on);
3878
3879 *symbol_present = false;
3880 *var_present = true;
3881
3882 type = signed_type_for (TREE_TYPE (e1));
3883 tree_to_aff_combination (e1, type, &aff_e1);
3884 tree_to_aff_combination (e2, type, &aff_e2);
3885 aff_combination_scale (&aff_e2, -1);
3886 aff_combination_add (&aff_e1, &aff_e2);
3887
3888 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
3889 }
3890
3891 /* Estimates cost of expressing difference E1 - E2 as
3892 var + symbol + offset. The value of offset is added to OFFSET,
3893 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3894 part is missing. DEPENDS_ON is a set of the invariants the computation
3895 depends on. */
3896
3897 static comp_cost
3898 difference_cost (struct ivopts_data *data,
3899 tree e1, tree e2, bool *symbol_present, bool *var_present,
3900 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
3901 {
3902 enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
3903 unsigned HOST_WIDE_INT off1, off2;
3904 aff_tree aff_e1, aff_e2;
3905 tree type;
3906
3907 e1 = strip_offset (e1, &off1);
3908 e2 = strip_offset (e2, &off2);
3909 *offset += off1 - off2;
3910
3911 STRIP_NOPS (e1);
3912 STRIP_NOPS (e2);
3913
3914 if (TREE_CODE (e1) == ADDR_EXPR)
3915 return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
3916 offset, depends_on);
3917 *symbol_present = false;
3918
3919 if (operand_equal_p (e1, e2, 0))
3920 {
3921 *var_present = false;
3922 return no_cost;
3923 }
3924
3925 *var_present = true;
3926
3927 if (integer_zerop (e2))
3928 return force_var_cost (data, e1, depends_on);
3929
3930 if (integer_zerop (e1))
3931 {
3932 comp_cost cost = force_var_cost (data, e2, depends_on);
3933 cost.cost += mult_by_coeff_cost (-1, mode, data->speed);
3934 return cost;
3935 }
3936
3937 type = signed_type_for (TREE_TYPE (e1));
3938 tree_to_aff_combination (e1, type, &aff_e1);
3939 tree_to_aff_combination (e2, type, &aff_e2);
3940 aff_combination_scale (&aff_e2, -1);
3941 aff_combination_add (&aff_e1, &aff_e2);
3942
3943 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
3944 }
3945
3946 /* Returns true if AFF1 and AFF2 are identical. */
3947
3948 static bool
3949 compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
3950 {
3951 unsigned i;
3952
3953 if (aff1->n != aff2->n)
3954 return false;
3955
3956 for (i = 0; i < aff1->n; i++)
3957 {
3958 if (aff1->elts[i].coef != aff2->elts[i].coef)
3959 return false;
3960
3961 if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
3962 return false;
3963 }
3964 return true;
3965 }
3966
3967 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
3968
3969 static int
3970 get_expr_id (struct ivopts_data *data, tree expr)
3971 {
3972 struct iv_inv_expr_ent ent;
3973 struct iv_inv_expr_ent **slot;
3974
3975 ent.expr = expr;
3976 ent.hash = iterative_hash_expr (expr, 0);
3977 slot = data->inv_expr_tab->find_slot (&ent, INSERT);
3978 if (*slot)
3979 return (*slot)->id;
3980
3981 *slot = XNEW (struct iv_inv_expr_ent);
3982 (*slot)->expr = expr;
3983 (*slot)->hash = ent.hash;
3984 (*slot)->id = data->inv_expr_id++;
3985 return (*slot)->id;
3986 }
3987
3988 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
3989 requires a new compiler generated temporary. Returns -1 otherwise.
3990 ADDRESS_P is a flag indicating if the expression is for address
3991 computation. */
3992
3993 static int
3994 get_loop_invariant_expr_id (struct ivopts_data *data, tree ubase,
3995 tree cbase, HOST_WIDE_INT ratio,
3996 bool address_p)
3997 {
3998 aff_tree ubase_aff, cbase_aff;
3999 tree expr, ub, cb;
4000
4001 STRIP_NOPS (ubase);
4002 STRIP_NOPS (cbase);
4003 ub = ubase;
4004 cb = cbase;
4005
4006 if ((TREE_CODE (ubase) == INTEGER_CST)
4007 && (TREE_CODE (cbase) == INTEGER_CST))
4008 return -1;
4009
4010 /* Strips the constant part. */
4011 if (TREE_CODE (ubase) == PLUS_EXPR
4012 || TREE_CODE (ubase) == MINUS_EXPR
4013 || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
4014 {
4015 if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
4016 ubase = TREE_OPERAND (ubase, 0);
4017 }
4018
4019 /* Strips the constant part. */
4020 if (TREE_CODE (cbase) == PLUS_EXPR
4021 || TREE_CODE (cbase) == MINUS_EXPR
4022 || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
4023 {
4024 if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
4025 cbase = TREE_OPERAND (cbase, 0);
4026 }
4027
4028 if (address_p)
4029 {
4030 if (((TREE_CODE (ubase) == SSA_NAME)
4031 || (TREE_CODE (ubase) == ADDR_EXPR
4032 && is_gimple_min_invariant (ubase)))
4033 && (TREE_CODE (cbase) == INTEGER_CST))
4034 return -1;
4035
4036 if (((TREE_CODE (cbase) == SSA_NAME)
4037 || (TREE_CODE (cbase) == ADDR_EXPR
4038 && is_gimple_min_invariant (cbase)))
4039 && (TREE_CODE (ubase) == INTEGER_CST))
4040 return -1;
4041 }
4042
4043 if (ratio == 1)
4044 {
4045 if (operand_equal_p (ubase, cbase, 0))
4046 return -1;
4047
4048 if (TREE_CODE (ubase) == ADDR_EXPR
4049 && TREE_CODE (cbase) == ADDR_EXPR)
4050 {
4051 tree usym, csym;
4052
4053 usym = TREE_OPERAND (ubase, 0);
4054 csym = TREE_OPERAND (cbase, 0);
4055 if (TREE_CODE (usym) == ARRAY_REF)
4056 {
4057 tree ind = TREE_OPERAND (usym, 1);
4058 if (TREE_CODE (ind) == INTEGER_CST
4059 && tree_fits_shwi_p (ind)
4060 && tree_to_shwi (ind) == 0)
4061 usym = TREE_OPERAND (usym, 0);
4062 }
4063 if (TREE_CODE (csym) == ARRAY_REF)
4064 {
4065 tree ind = TREE_OPERAND (csym, 1);
4066 if (TREE_CODE (ind) == INTEGER_CST
4067 && tree_fits_shwi_p (ind)
4068 && tree_to_shwi (ind) == 0)
4069 csym = TREE_OPERAND (csym, 0);
4070 }
4071 if (operand_equal_p (usym, csym, 0))
4072 return -1;
4073 }
4074 /* Now do more complex comparison */
4075 tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
4076 tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
4077 if (compare_aff_trees (&ubase_aff, &cbase_aff))
4078 return -1;
4079 }
4080
4081 tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
4082 tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
4083
4084 aff_combination_scale (&cbase_aff, -1 * ratio);
4085 aff_combination_add (&ubase_aff, &cbase_aff);
4086 expr = aff_combination_to_tree (&ubase_aff);
4087 return get_expr_id (data, expr);
4088 }
4089
4090
4091
4092 /* Determines the cost of the computation by that USE is expressed
4093 from induction variable CAND. If ADDRESS_P is true, we just need
4094 to create an address from it, otherwise we want to get it into
4095 register. A set of invariants we depend on is stored in
4096 DEPENDS_ON. AT is the statement at that the value is computed.
4097 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4098 addressing is likely. */
4099
4100 static comp_cost
4101 get_computation_cost_at (struct ivopts_data *data,
4102 struct iv_use *use, struct iv_cand *cand,
4103 bool address_p, bitmap *depends_on, gimple at,
4104 bool *can_autoinc,
4105 int *inv_expr_id)
4106 {
4107 tree ubase = use->iv->base, ustep = use->iv->step;
4108 tree cbase, cstep;
4109 tree utype = TREE_TYPE (ubase), ctype;
4110 unsigned HOST_WIDE_INT cstepi, offset = 0;
4111 HOST_WIDE_INT ratio, aratio;
4112 bool var_present, symbol_present, stmt_is_after_inc;
4113 comp_cost cost;
4114 widest_int rat;
4115 bool speed = optimize_bb_for_speed_p (gimple_bb (at));
4116 enum machine_mode mem_mode = (address_p
4117 ? TYPE_MODE (TREE_TYPE (*use->op_p))
4118 : VOIDmode);
4119
4120 *depends_on = NULL;
4121
4122 /* Only consider real candidates. */
4123 if (!cand->iv)
4124 return infinite_cost;
4125
4126 cbase = cand->iv->base;
4127 cstep = cand->iv->step;
4128 ctype = TREE_TYPE (cbase);
4129
4130 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
4131 {
4132 /* We do not have a precision to express the values of use. */
4133 return infinite_cost;
4134 }
4135
4136 if (address_p
4137 || (use->iv->base_object
4138 && cand->iv->base_object
4139 && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
4140 && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
4141 {
4142 /* Do not try to express address of an object with computation based
4143 on address of a different object. This may cause problems in rtl
4144 level alias analysis (that does not expect this to be happening,
4145 as this is illegal in C), and would be unlikely to be useful
4146 anyway. */
4147 if (use->iv->base_object
4148 && cand->iv->base_object
4149 && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
4150 return infinite_cost;
4151 }
4152
4153 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
4154 {
4155 /* TODO -- add direct handling of this case. */
4156 goto fallback;
4157 }
4158
4159 /* CSTEPI is removed from the offset in case statement is after the
4160 increment. If the step is not constant, we use zero instead.
4161 This is a bit imprecise (there is the extra addition), but
4162 redundancy elimination is likely to transform the code so that
4163 it uses value of the variable before increment anyway,
4164 so it is not that much unrealistic. */
4165 if (cst_and_fits_in_hwi (cstep))
4166 cstepi = int_cst_value (cstep);
4167 else
4168 cstepi = 0;
4169
4170 if (!constant_multiple_of (ustep, cstep, &rat))
4171 return infinite_cost;
4172
4173 if (wi::fits_shwi_p (rat))
4174 ratio = rat.to_shwi ();
4175 else
4176 return infinite_cost;
4177
4178 STRIP_NOPS (cbase);
4179 ctype = TREE_TYPE (cbase);
4180
4181 stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
4182
4183 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4184 or ratio == 1, it is better to handle this like
4185
4186 ubase - ratio * cbase + ratio * var
4187
4188 (also holds in the case ratio == -1, TODO. */
4189
4190 if (cst_and_fits_in_hwi (cbase))
4191 {
4192 offset = - ratio * int_cst_value (cbase);
4193 cost = difference_cost (data,
4194 ubase, build_int_cst (utype, 0),
4195 &symbol_present, &var_present, &offset,
4196 depends_on);
4197 cost.cost /= avg_loop_niter (data->current_loop);
4198 }
4199 else if (ratio == 1)
4200 {
4201 tree real_cbase = cbase;
4202
4203 /* Check to see if any adjustment is needed. */
4204 if (cstepi == 0 && stmt_is_after_inc)
4205 {
4206 aff_tree real_cbase_aff;
4207 aff_tree cstep_aff;
4208
4209 tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
4210 &real_cbase_aff);
4211 tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
4212
4213 aff_combination_add (&real_cbase_aff, &cstep_aff);
4214 real_cbase = aff_combination_to_tree (&real_cbase_aff);
4215 }
4216
4217 cost = difference_cost (data,
4218 ubase, real_cbase,
4219 &symbol_present, &var_present, &offset,
4220 depends_on);
4221 cost.cost /= avg_loop_niter (data->current_loop);
4222 }
4223 else if (address_p
4224 && !POINTER_TYPE_P (ctype)
4225 && multiplier_allowed_in_address_p
4226 (ratio, mem_mode,
4227 TYPE_ADDR_SPACE (TREE_TYPE (utype))))
4228 {
4229 cbase
4230 = fold_build2 (MULT_EXPR, ctype, cbase, build_int_cst (ctype, ratio));
4231 cost = difference_cost (data,
4232 ubase, cbase,
4233 &symbol_present, &var_present, &offset,
4234 depends_on);
4235 cost.cost /= avg_loop_niter (data->current_loop);
4236 }
4237 else
4238 {
4239 cost = force_var_cost (data, cbase, depends_on);
4240 cost = add_costs (cost,
4241 difference_cost (data,
4242 ubase, build_int_cst (utype, 0),
4243 &symbol_present, &var_present,
4244 &offset, depends_on));
4245 cost.cost /= avg_loop_niter (data->current_loop);
4246 cost.cost += add_cost (data->speed, TYPE_MODE (ctype));
4247 }
4248
4249 if (inv_expr_id)
4250 {
4251 *inv_expr_id =
4252 get_loop_invariant_expr_id (data, ubase, cbase, ratio, address_p);
4253 /* Clear depends on. */
4254 if (*inv_expr_id != -1 && depends_on && *depends_on)
4255 bitmap_clear (*depends_on);
4256 }
4257
4258 /* If we are after the increment, the value of the candidate is higher by
4259 one iteration. */
4260 if (stmt_is_after_inc)
4261 offset -= ratio * cstepi;
4262
4263 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4264 (symbol/var1/const parts may be omitted). If we are looking for an
4265 address, find the cost of addressing this. */
4266 if (address_p)
4267 return add_costs (cost,
4268 get_address_cost (symbol_present, var_present,
4269 offset, ratio, cstepi,
4270 mem_mode,
4271 TYPE_ADDR_SPACE (TREE_TYPE (utype)),
4272 speed, stmt_is_after_inc,
4273 can_autoinc));
4274
4275 /* Otherwise estimate the costs for computing the expression. */
4276 if (!symbol_present && !var_present && !offset)
4277 {
4278 if (ratio != 1)
4279 cost.cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
4280 return cost;
4281 }
4282
4283 /* Symbol + offset should be compile-time computable so consider that they
4284 are added once to the variable, if present. */
4285 if (var_present && (symbol_present || offset))
4286 cost.cost += adjust_setup_cost (data,
4287 add_cost (speed, TYPE_MODE (ctype)));
4288
4289 /* Having offset does not affect runtime cost in case it is added to
4290 symbol, but it increases complexity. */
4291 if (offset)
4292 cost.complexity++;
4293
4294 cost.cost += add_cost (speed, TYPE_MODE (ctype));
4295
4296 aratio = ratio > 0 ? ratio : -ratio;
4297 if (aratio != 1)
4298 cost.cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
4299 return cost;
4300
4301 fallback:
4302 if (can_autoinc)
4303 *can_autoinc = false;
4304
4305 {
4306 /* Just get the expression, expand it and measure the cost. */
4307 tree comp = get_computation_at (data->current_loop, use, cand, at);
4308
4309 if (!comp)
4310 return infinite_cost;
4311
4312 if (address_p)
4313 comp = build_simple_mem_ref (comp);
4314
4315 return new_cost (computation_cost (comp, speed), 0);
4316 }
4317 }
4318
4319 /* Determines the cost of the computation by that USE is expressed
4320 from induction variable CAND. If ADDRESS_P is true, we just need
4321 to create an address from it, otherwise we want to get it into
4322 register. A set of invariants we depend on is stored in
4323 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4324 autoinc addressing is likely. */
4325
4326 static comp_cost
4327 get_computation_cost (struct ivopts_data *data,
4328 struct iv_use *use, struct iv_cand *cand,
4329 bool address_p, bitmap *depends_on,
4330 bool *can_autoinc, int *inv_expr_id)
4331 {
4332 return get_computation_cost_at (data,
4333 use, cand, address_p, depends_on, use->stmt,
4334 can_autoinc, inv_expr_id);
4335 }
4336
4337 /* Determines cost of basing replacement of USE on CAND in a generic
4338 expression. */
4339
4340 static bool
4341 determine_use_iv_cost_generic (struct ivopts_data *data,
4342 struct iv_use *use, struct iv_cand *cand)
4343 {
4344 bitmap depends_on;
4345 comp_cost cost;
4346 int inv_expr_id = -1;
4347
4348 /* The simple case first -- if we need to express value of the preserved
4349 original biv, the cost is 0. This also prevents us from counting the
4350 cost of increment twice -- once at this use and once in the cost of
4351 the candidate. */
4352 if (cand->pos == IP_ORIGINAL
4353 && cand->incremented_at == use->stmt)
4354 {
4355 set_use_iv_cost (data, use, cand, no_cost, NULL, NULL_TREE,
4356 ERROR_MARK, -1);
4357 return true;
4358 }
4359
4360 cost = get_computation_cost (data, use, cand, false, &depends_on,
4361 NULL, &inv_expr_id);
4362
4363 set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
4364 inv_expr_id);
4365
4366 return !infinite_cost_p (cost);
4367 }
4368
4369 /* Determines cost of basing replacement of USE on CAND in an address. */
4370
4371 static bool
4372 determine_use_iv_cost_address (struct ivopts_data *data,
4373 struct iv_use *use, struct iv_cand *cand)
4374 {
4375 bitmap depends_on;
4376 bool can_autoinc;
4377 int inv_expr_id = -1;
4378 comp_cost cost = get_computation_cost (data, use, cand, true, &depends_on,
4379 &can_autoinc, &inv_expr_id);
4380
4381 if (cand->ainc_use == use)
4382 {
4383 if (can_autoinc)
4384 cost.cost -= cand->cost_step;
4385 /* If we generated the candidate solely for exploiting autoincrement
4386 opportunities, and it turns out it can't be used, set the cost to
4387 infinity to make sure we ignore it. */
4388 else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
4389 cost = infinite_cost;
4390 }
4391 set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
4392 inv_expr_id);
4393
4394 return !infinite_cost_p (cost);
4395 }
4396
4397 /* Computes value of candidate CAND at position AT in iteration NITER, and
4398 stores it to VAL. */
4399
4400 static void
4401 cand_value_at (struct loop *loop, struct iv_cand *cand, gimple at, tree niter,
4402 aff_tree *val)
4403 {
4404 aff_tree step, delta, nit;
4405 struct iv *iv = cand->iv;
4406 tree type = TREE_TYPE (iv->base);
4407 tree steptype = type;
4408 if (POINTER_TYPE_P (type))
4409 steptype = sizetype;
4410 steptype = unsigned_type_for (type);
4411
4412 tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step);
4413 aff_combination_convert (&step, steptype);
4414 tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
4415 aff_combination_convert (&nit, steptype);
4416 aff_combination_mult (&nit, &step, &delta);
4417 if (stmt_after_increment (loop, cand, at))
4418 aff_combination_add (&delta, &step);
4419
4420 tree_to_aff_combination (iv->base, type, val);
4421 if (!POINTER_TYPE_P (type))
4422 aff_combination_convert (val, steptype);
4423 aff_combination_add (val, &delta);
4424 }
4425
4426 /* Returns period of induction variable iv. */
4427
4428 static tree
4429 iv_period (struct iv *iv)
4430 {
4431 tree step = iv->step, period, type;
4432 tree pow2div;
4433
4434 gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
4435
4436 type = unsigned_type_for (TREE_TYPE (step));
4437 /* Period of the iv is lcm (step, type_range)/step -1,
4438 i.e., N*type_range/step - 1. Since type range is power
4439 of two, N == (step >> num_of_ending_zeros_binary (step),
4440 so the final result is
4441
4442 (type_range >> num_of_ending_zeros_binary (step)) - 1
4443
4444 */
4445 pow2div = num_ending_zeros (step);
4446
4447 period = build_low_bits_mask (type,
4448 (TYPE_PRECISION (type)
4449 - tree_to_uhwi (pow2div)));
4450
4451 return period;
4452 }
4453
4454 /* Returns the comparison operator used when eliminating the iv USE. */
4455
4456 static enum tree_code
4457 iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
4458 {
4459 struct loop *loop = data->current_loop;
4460 basic_block ex_bb;
4461 edge exit;
4462
4463 ex_bb = gimple_bb (use->stmt);
4464 exit = EDGE_SUCC (ex_bb, 0);
4465 if (flow_bb_inside_loop_p (loop, exit->dest))
4466 exit = EDGE_SUCC (ex_bb, 1);
4467
4468 return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
4469 }
4470
4471 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4472 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4473 calculation is performed in non-wrapping type.
4474
4475 TODO: More generally, we could test for the situation that
4476 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4477 This would require knowing the sign of OFFSET. */
4478
4479 static bool
4480 difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset)
4481 {
4482 enum tree_code code;
4483 tree e1, e2;
4484 aff_tree aff_e1, aff_e2, aff_offset;
4485
4486 if (!nowrap_type_p (TREE_TYPE (base)))
4487 return false;
4488
4489 base = expand_simple_operations (base);
4490
4491 if (TREE_CODE (base) == SSA_NAME)
4492 {
4493 gimple stmt = SSA_NAME_DEF_STMT (base);
4494
4495 if (gimple_code (stmt) != GIMPLE_ASSIGN)
4496 return false;
4497
4498 code = gimple_assign_rhs_code (stmt);
4499 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
4500 return false;
4501
4502 e1 = gimple_assign_rhs1 (stmt);
4503 e2 = gimple_assign_rhs2 (stmt);
4504 }
4505 else
4506 {
4507 code = TREE_CODE (base);
4508 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
4509 return false;
4510 e1 = TREE_OPERAND (base, 0);
4511 e2 = TREE_OPERAND (base, 1);
4512 }
4513
4514 /* Use affine expansion as deeper inspection to prove the equality. */
4515 tree_to_aff_combination_expand (e2, TREE_TYPE (e2),
4516 &aff_e2, &data->name_expansion_cache);
4517 tree_to_aff_combination_expand (offset, TREE_TYPE (offset),
4518 &aff_offset, &data->name_expansion_cache);
4519 aff_combination_scale (&aff_offset, -1);
4520 switch (code)
4521 {
4522 case PLUS_EXPR:
4523 aff_combination_add (&aff_e2, &aff_offset);
4524 if (aff_combination_zero_p (&aff_e2))
4525 return true;
4526
4527 tree_to_aff_combination_expand (e1, TREE_TYPE (e1),
4528 &aff_e1, &data->name_expansion_cache);
4529 aff_combination_add (&aff_e1, &aff_offset);
4530 return aff_combination_zero_p (&aff_e1);
4531
4532 case POINTER_PLUS_EXPR:
4533 aff_combination_add (&aff_e2, &aff_offset);
4534 return aff_combination_zero_p (&aff_e2);
4535
4536 default:
4537 return false;
4538 }
4539 }
4540
4541 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4542 comparison with CAND. NITER describes the number of iterations of
4543 the loops. If successful, the comparison in COMP_P is altered accordingly.
4544
4545 We aim to handle the following situation:
4546
4547 sometype *base, *p;
4548 int a, b, i;
4549
4550 i = a;
4551 p = p_0 = base + a;
4552
4553 do
4554 {
4555 bla (*p);
4556 p++;
4557 i++;
4558 }
4559 while (i < b);
4560
4561 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4562 We aim to optimize this to
4563
4564 p = p_0 = base + a;
4565 do
4566 {
4567 bla (*p);
4568 p++;
4569 }
4570 while (p < p_0 - a + b);
4571
4572 This preserves the correctness, since the pointer arithmetics does not
4573 overflow. More precisely:
4574
4575 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4576 overflow in computing it or the values of p.
4577 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4578 overflow. To prove this, we use the fact that p_0 = base + a. */
4579
4580 static bool
4581 iv_elimination_compare_lt (struct ivopts_data *data,
4582 struct iv_cand *cand, enum tree_code *comp_p,
4583 struct tree_niter_desc *niter)
4584 {
4585 tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
4586 struct aff_tree nit, tmpa, tmpb;
4587 enum tree_code comp;
4588 HOST_WIDE_INT step;
4589
4590 /* We need to know that the candidate induction variable does not overflow.
4591 While more complex analysis may be used to prove this, for now just
4592 check that the variable appears in the original program and that it
4593 is computed in a type that guarantees no overflows. */
4594 cand_type = TREE_TYPE (cand->iv->base);
4595 if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
4596 return false;
4597
4598 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4599 the calculation of the BOUND could overflow, making the comparison
4600 invalid. */
4601 if (!data->loop_single_exit_p)
4602 return false;
4603
4604 /* We need to be able to decide whether candidate is increasing or decreasing
4605 in order to choose the right comparison operator. */
4606 if (!cst_and_fits_in_hwi (cand->iv->step))
4607 return false;
4608 step = int_cst_value (cand->iv->step);
4609
4610 /* Check that the number of iterations matches the expected pattern:
4611 a + 1 > b ? 0 : b - a - 1. */
4612 mbz = niter->may_be_zero;
4613 if (TREE_CODE (mbz) == GT_EXPR)
4614 {
4615 /* Handle a + 1 > b. */
4616 tree op0 = TREE_OPERAND (mbz, 0);
4617 if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
4618 {
4619 a = TREE_OPERAND (op0, 0);
4620 b = TREE_OPERAND (mbz, 1);
4621 }
4622 else
4623 return false;
4624 }
4625 else if (TREE_CODE (mbz) == LT_EXPR)
4626 {
4627 tree op1 = TREE_OPERAND (mbz, 1);
4628
4629 /* Handle b < a + 1. */
4630 if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
4631 {
4632 a = TREE_OPERAND (op1, 0);
4633 b = TREE_OPERAND (mbz, 0);
4634 }
4635 else
4636 return false;
4637 }
4638 else
4639 return false;
4640
4641 /* Expected number of iterations is B - A - 1. Check that it matches
4642 the actual number, i.e., that B - A - NITER = 1. */
4643 tree_to_aff_combination (niter->niter, nit_type, &nit);
4644 tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
4645 tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
4646 aff_combination_scale (&nit, -1);
4647 aff_combination_scale (&tmpa, -1);
4648 aff_combination_add (&tmpb, &tmpa);
4649 aff_combination_add (&tmpb, &nit);
4650 if (tmpb.n != 0 || tmpb.offset != 1)
4651 return false;
4652
4653 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4654 overflow. */
4655 offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
4656 cand->iv->step,
4657 fold_convert (TREE_TYPE (cand->iv->step), a));
4658 if (!difference_cannot_overflow_p (data, cand->iv->base, offset))
4659 return false;
4660
4661 /* Determine the new comparison operator. */
4662 comp = step < 0 ? GT_EXPR : LT_EXPR;
4663 if (*comp_p == NE_EXPR)
4664 *comp_p = comp;
4665 else if (*comp_p == EQ_EXPR)
4666 *comp_p = invert_tree_comparison (comp, false);
4667 else
4668 gcc_unreachable ();
4669
4670 return true;
4671 }
4672
4673 /* Check whether it is possible to express the condition in USE by comparison
4674 of candidate CAND. If so, store the value compared with to BOUND, and the
4675 comparison operator to COMP. */
4676
4677 static bool
4678 may_eliminate_iv (struct ivopts_data *data,
4679 struct iv_use *use, struct iv_cand *cand, tree *bound,
4680 enum tree_code *comp)
4681 {
4682 basic_block ex_bb;
4683 edge exit;
4684 tree period;
4685 struct loop *loop = data->current_loop;
4686 aff_tree bnd;
4687 struct tree_niter_desc *desc = NULL;
4688
4689 if (TREE_CODE (cand->iv->step) != INTEGER_CST)
4690 return false;
4691
4692 /* For now works only for exits that dominate the loop latch.
4693 TODO: extend to other conditions inside loop body. */
4694 ex_bb = gimple_bb (use->stmt);
4695 if (use->stmt != last_stmt (ex_bb)
4696 || gimple_code (use->stmt) != GIMPLE_COND
4697 || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
4698 return false;
4699
4700 exit = EDGE_SUCC (ex_bb, 0);
4701 if (flow_bb_inside_loop_p (loop, exit->dest))
4702 exit = EDGE_SUCC (ex_bb, 1);
4703 if (flow_bb_inside_loop_p (loop, exit->dest))
4704 return false;
4705
4706 desc = niter_for_exit (data, exit);
4707 if (!desc)
4708 return false;
4709
4710 /* Determine whether we can use the variable to test the exit condition.
4711 This is the case iff the period of the induction variable is greater
4712 than the number of iterations for which the exit condition is true. */
4713 period = iv_period (cand->iv);
4714
4715 /* If the number of iterations is constant, compare against it directly. */
4716 if (TREE_CODE (desc->niter) == INTEGER_CST)
4717 {
4718 /* See cand_value_at. */
4719 if (stmt_after_increment (loop, cand, use->stmt))
4720 {
4721 if (!tree_int_cst_lt (desc->niter, period))
4722 return false;
4723 }
4724 else
4725 {
4726 if (tree_int_cst_lt (period, desc->niter))
4727 return false;
4728 }
4729 }
4730
4731 /* If not, and if this is the only possible exit of the loop, see whether
4732 we can get a conservative estimate on the number of iterations of the
4733 entire loop and compare against that instead. */
4734 else
4735 {
4736 widest_int period_value, max_niter;
4737
4738 max_niter = desc->max;
4739 if (stmt_after_increment (loop, cand, use->stmt))
4740 max_niter += 1;
4741 period_value = wi::to_widest (period);
4742 if (wi::gtu_p (max_niter, period_value))
4743 {
4744 /* See if we can take advantage of inferred loop bound information. */
4745 if (data->loop_single_exit_p)
4746 {
4747 if (!max_loop_iterations (loop, &max_niter))
4748 return false;
4749 /* The loop bound is already adjusted by adding 1. */
4750 if (wi::gtu_p (max_niter, period_value))
4751 return false;
4752 }
4753 else
4754 return false;
4755 }
4756 }
4757
4758 cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
4759
4760 *bound = fold_convert (TREE_TYPE (cand->iv->base),
4761 aff_combination_to_tree (&bnd));
4762 *comp = iv_elimination_compare (data, use);
4763
4764 /* It is unlikely that computing the number of iterations using division
4765 would be more profitable than keeping the original induction variable. */
4766 if (expression_expensive_p (*bound))
4767 return false;
4768
4769 /* Sometimes, it is possible to handle the situation that the number of
4770 iterations may be zero unless additional assumtions by using <
4771 instead of != in the exit condition.
4772
4773 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
4774 base the exit condition on it. However, that is often too
4775 expensive. */
4776 if (!integer_zerop (desc->may_be_zero))
4777 return iv_elimination_compare_lt (data, cand, comp, desc);
4778
4779 return true;
4780 }
4781
4782 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
4783 be copied, if is is used in the loop body and DATA->body_includes_call. */
4784
4785 static int
4786 parm_decl_cost (struct ivopts_data *data, tree bound)
4787 {
4788 tree sbound = bound;
4789 STRIP_NOPS (sbound);
4790
4791 if (TREE_CODE (sbound) == SSA_NAME
4792 && SSA_NAME_IS_DEFAULT_DEF (sbound)
4793 && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
4794 && data->body_includes_call)
4795 return COSTS_N_INSNS (1);
4796
4797 return 0;
4798 }
4799
4800 /* Determines cost of basing replacement of USE on CAND in a condition. */
4801
4802 static bool
4803 determine_use_iv_cost_condition (struct ivopts_data *data,
4804 struct iv_use *use, struct iv_cand *cand)
4805 {
4806 tree bound = NULL_TREE;
4807 struct iv *cmp_iv;
4808 bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
4809 comp_cost elim_cost, express_cost, cost, bound_cost;
4810 bool ok;
4811 int elim_inv_expr_id = -1, express_inv_expr_id = -1, inv_expr_id;
4812 tree *control_var, *bound_cst;
4813 enum tree_code comp = ERROR_MARK;
4814
4815 /* Only consider real candidates. */
4816 if (!cand->iv)
4817 {
4818 set_use_iv_cost (data, use, cand, infinite_cost, NULL, NULL_TREE,
4819 ERROR_MARK, -1);
4820 return false;
4821 }
4822
4823 /* Try iv elimination. */
4824 if (may_eliminate_iv (data, use, cand, &bound, &comp))
4825 {
4826 elim_cost = force_var_cost (data, bound, &depends_on_elim);
4827 if (elim_cost.cost == 0)
4828 elim_cost.cost = parm_decl_cost (data, bound);
4829 else if (TREE_CODE (bound) == INTEGER_CST)
4830 elim_cost.cost = 0;
4831 /* If we replace a loop condition 'i < n' with 'p < base + n',
4832 depends_on_elim will have 'base' and 'n' set, which implies
4833 that both 'base' and 'n' will be live during the loop. More likely,
4834 'base + n' will be loop invariant, resulting in only one live value
4835 during the loop. So in that case we clear depends_on_elim and set
4836 elim_inv_expr_id instead. */
4837 if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
4838 {
4839 elim_inv_expr_id = get_expr_id (data, bound);
4840 bitmap_clear (depends_on_elim);
4841 }
4842 /* The bound is a loop invariant, so it will be only computed
4843 once. */
4844 elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
4845 }
4846 else
4847 elim_cost = infinite_cost;
4848
4849 /* Try expressing the original giv. If it is compared with an invariant,
4850 note that we cannot get rid of it. */
4851 ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
4852 NULL, &cmp_iv);
4853 gcc_assert (ok);
4854
4855 /* When the condition is a comparison of the candidate IV against
4856 zero, prefer this IV.
4857
4858 TODO: The constant that we're subtracting from the cost should
4859 be target-dependent. This information should be added to the
4860 target costs for each backend. */
4861 if (!infinite_cost_p (elim_cost) /* Do not try to decrease infinite! */
4862 && integer_zerop (*bound_cst)
4863 && (operand_equal_p (*control_var, cand->var_after, 0)
4864 || operand_equal_p (*control_var, cand->var_before, 0)))
4865 elim_cost.cost -= 1;
4866
4867 express_cost = get_computation_cost (data, use, cand, false,
4868 &depends_on_express, NULL,
4869 &express_inv_expr_id);
4870 fd_ivopts_data = data;
4871 walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
4872
4873 /* Count the cost of the original bound as well. */
4874 bound_cost = force_var_cost (data, *bound_cst, NULL);
4875 if (bound_cost.cost == 0)
4876 bound_cost.cost = parm_decl_cost (data, *bound_cst);
4877 else if (TREE_CODE (*bound_cst) == INTEGER_CST)
4878 bound_cost.cost = 0;
4879 express_cost.cost += bound_cost.cost;
4880
4881 /* Choose the better approach, preferring the eliminated IV. */
4882 if (compare_costs (elim_cost, express_cost) <= 0)
4883 {
4884 cost = elim_cost;
4885 depends_on = depends_on_elim;
4886 depends_on_elim = NULL;
4887 inv_expr_id = elim_inv_expr_id;
4888 }
4889 else
4890 {
4891 cost = express_cost;
4892 depends_on = depends_on_express;
4893 depends_on_express = NULL;
4894 bound = NULL_TREE;
4895 comp = ERROR_MARK;
4896 inv_expr_id = express_inv_expr_id;
4897 }
4898
4899 set_use_iv_cost (data, use, cand, cost, depends_on, bound, comp, inv_expr_id);
4900
4901 if (depends_on_elim)
4902 BITMAP_FREE (depends_on_elim);
4903 if (depends_on_express)
4904 BITMAP_FREE (depends_on_express);
4905
4906 return !infinite_cost_p (cost);
4907 }
4908
4909 /* Determines cost of basing replacement of USE on CAND. Returns false
4910 if USE cannot be based on CAND. */
4911
4912 static bool
4913 determine_use_iv_cost (struct ivopts_data *data,
4914 struct iv_use *use, struct iv_cand *cand)
4915 {
4916 switch (use->type)
4917 {
4918 case USE_NONLINEAR_EXPR:
4919 return determine_use_iv_cost_generic (data, use, cand);
4920
4921 case USE_ADDRESS:
4922 return determine_use_iv_cost_address (data, use, cand);
4923
4924 case USE_COMPARE:
4925 return determine_use_iv_cost_condition (data, use, cand);
4926
4927 default:
4928 gcc_unreachable ();
4929 }
4930 }
4931
4932 /* Return true if get_computation_cost indicates that autoincrement is
4933 a possibility for the pair of USE and CAND, false otherwise. */
4934
4935 static bool
4936 autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
4937 struct iv_cand *cand)
4938 {
4939 bitmap depends_on;
4940 bool can_autoinc;
4941 comp_cost cost;
4942
4943 if (use->type != USE_ADDRESS)
4944 return false;
4945
4946 cost = get_computation_cost (data, use, cand, true, &depends_on,
4947 &can_autoinc, NULL);
4948
4949 BITMAP_FREE (depends_on);
4950
4951 return !infinite_cost_p (cost) && can_autoinc;
4952 }
4953
4954 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
4955 use that allows autoincrement, and set their AINC_USE if possible. */
4956
4957 static void
4958 set_autoinc_for_original_candidates (struct ivopts_data *data)
4959 {
4960 unsigned i, j;
4961
4962 for (i = 0; i < n_iv_cands (data); i++)
4963 {
4964 struct iv_cand *cand = iv_cand (data, i);
4965 struct iv_use *closest_before = NULL;
4966 struct iv_use *closest_after = NULL;
4967 if (cand->pos != IP_ORIGINAL)
4968 continue;
4969
4970 for (j = 0; j < n_iv_uses (data); j++)
4971 {
4972 struct iv_use *use = iv_use (data, j);
4973 unsigned uid = gimple_uid (use->stmt);
4974
4975 if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
4976 continue;
4977
4978 if (uid < gimple_uid (cand->incremented_at)
4979 && (closest_before == NULL
4980 || uid > gimple_uid (closest_before->stmt)))
4981 closest_before = use;
4982
4983 if (uid > gimple_uid (cand->incremented_at)
4984 && (closest_after == NULL
4985 || uid < gimple_uid (closest_after->stmt)))
4986 closest_after = use;
4987 }
4988
4989 if (closest_before != NULL
4990 && autoinc_possible_for_pair (data, closest_before, cand))
4991 cand->ainc_use = closest_before;
4992 else if (closest_after != NULL
4993 && autoinc_possible_for_pair (data, closest_after, cand))
4994 cand->ainc_use = closest_after;
4995 }
4996 }
4997
4998 /* Finds the candidates for the induction variables. */
4999
5000 static void
5001 find_iv_candidates (struct ivopts_data *data)
5002 {
5003 /* Add commonly used ivs. */
5004 add_standard_iv_candidates (data);
5005
5006 /* Add old induction variables. */
5007 add_old_ivs_candidates (data);
5008
5009 /* Add induction variables derived from uses. */
5010 add_derived_ivs_candidates (data);
5011
5012 set_autoinc_for_original_candidates (data);
5013
5014 /* Record the important candidates. */
5015 record_important_candidates (data);
5016 }
5017
5018 /* Determines costs of basing the use of the iv on an iv candidate. */
5019
5020 static void
5021 determine_use_iv_costs (struct ivopts_data *data)
5022 {
5023 unsigned i, j;
5024 struct iv_use *use;
5025 struct iv_cand *cand;
5026 bitmap to_clear = BITMAP_ALLOC (NULL);
5027
5028 alloc_use_cost_map (data);
5029
5030 for (i = 0; i < n_iv_uses (data); i++)
5031 {
5032 use = iv_use (data, i);
5033
5034 if (data->consider_all_candidates)
5035 {
5036 for (j = 0; j < n_iv_cands (data); j++)
5037 {
5038 cand = iv_cand (data, j);
5039 determine_use_iv_cost (data, use, cand);
5040 }
5041 }
5042 else
5043 {
5044 bitmap_iterator bi;
5045
5046 EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
5047 {
5048 cand = iv_cand (data, j);
5049 if (!determine_use_iv_cost (data, use, cand))
5050 bitmap_set_bit (to_clear, j);
5051 }
5052
5053 /* Remove the candidates for that the cost is infinite from
5054 the list of related candidates. */
5055 bitmap_and_compl_into (use->related_cands, to_clear);
5056 bitmap_clear (to_clear);
5057 }
5058 }
5059
5060 BITMAP_FREE (to_clear);
5061
5062 if (dump_file && (dump_flags & TDF_DETAILS))
5063 {
5064 fprintf (dump_file, "Use-candidate costs:\n");
5065
5066 for (i = 0; i < n_iv_uses (data); i++)
5067 {
5068 use = iv_use (data, i);
5069
5070 fprintf (dump_file, "Use %d:\n", i);
5071 fprintf (dump_file, " cand\tcost\tcompl.\tdepends on\n");
5072 for (j = 0; j < use->n_map_members; j++)
5073 {
5074 if (!use->cost_map[j].cand
5075 || infinite_cost_p (use->cost_map[j].cost))
5076 continue;
5077
5078 fprintf (dump_file, " %d\t%d\t%d\t",
5079 use->cost_map[j].cand->id,
5080 use->cost_map[j].cost.cost,
5081 use->cost_map[j].cost.complexity);
5082 if (use->cost_map[j].depends_on)
5083 bitmap_print (dump_file,
5084 use->cost_map[j].depends_on, "","");
5085 if (use->cost_map[j].inv_expr_id != -1)
5086 fprintf (dump_file, " inv_expr:%d", use->cost_map[j].inv_expr_id);
5087 fprintf (dump_file, "\n");
5088 }
5089
5090 fprintf (dump_file, "\n");
5091 }
5092 fprintf (dump_file, "\n");
5093 }
5094 }
5095
5096 /* Determines cost of the candidate CAND. */
5097
5098 static void
5099 determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
5100 {
5101 comp_cost cost_base;
5102 unsigned cost, cost_step;
5103 tree base;
5104
5105 if (!cand->iv)
5106 {
5107 cand->cost = 0;
5108 return;
5109 }
5110
5111 /* There are two costs associated with the candidate -- its increment
5112 and its initialization. The second is almost negligible for any loop
5113 that rolls enough, so we take it just very little into account. */
5114
5115 base = cand->iv->base;
5116 cost_base = force_var_cost (data, base, NULL);
5117 /* It will be exceptional that the iv register happens to be initialized with
5118 the proper value at no cost. In general, there will at least be a regcopy
5119 or a const set. */
5120 if (cost_base.cost == 0)
5121 cost_base.cost = COSTS_N_INSNS (1);
5122 cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
5123
5124 cost = cost_step + adjust_setup_cost (data, cost_base.cost);
5125
5126 /* Prefer the original ivs unless we may gain something by replacing it.
5127 The reason is to make debugging simpler; so this is not relevant for
5128 artificial ivs created by other optimization passes. */
5129 if (cand->pos != IP_ORIGINAL
5130 || !SSA_NAME_VAR (cand->var_before)
5131 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
5132 cost++;
5133
5134 /* Prefer not to insert statements into latch unless there are some
5135 already (so that we do not create unnecessary jumps). */
5136 if (cand->pos == IP_END
5137 && empty_block_p (ip_end_pos (data->current_loop)))
5138 cost++;
5139
5140 cand->cost = cost;
5141 cand->cost_step = cost_step;
5142 }
5143
5144 /* Determines costs of computation of the candidates. */
5145
5146 static void
5147 determine_iv_costs (struct ivopts_data *data)
5148 {
5149 unsigned i;
5150
5151 if (dump_file && (dump_flags & TDF_DETAILS))
5152 {
5153 fprintf (dump_file, "Candidate costs:\n");
5154 fprintf (dump_file, " cand\tcost\n");
5155 }
5156
5157 for (i = 0; i < n_iv_cands (data); i++)
5158 {
5159 struct iv_cand *cand = iv_cand (data, i);
5160
5161 determine_iv_cost (data, cand);
5162
5163 if (dump_file && (dump_flags & TDF_DETAILS))
5164 fprintf (dump_file, " %d\t%d\n", i, cand->cost);
5165 }
5166
5167 if (dump_file && (dump_flags & TDF_DETAILS))
5168 fprintf (dump_file, "\n");
5169 }
5170
5171 /* Calculates cost for having SIZE induction variables. */
5172
5173 static unsigned
5174 ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
5175 {
5176 /* We add size to the cost, so that we prefer eliminating ivs
5177 if possible. */
5178 return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
5179 data->body_includes_call);
5180 }
5181
5182 /* For each size of the induction variable set determine the penalty. */
5183
5184 static void
5185 determine_set_costs (struct ivopts_data *data)
5186 {
5187 unsigned j, n;
5188 gimple phi;
5189 gimple_stmt_iterator psi;
5190 tree op;
5191 struct loop *loop = data->current_loop;
5192 bitmap_iterator bi;
5193
5194 if (dump_file && (dump_flags & TDF_DETAILS))
5195 {
5196 fprintf (dump_file, "Global costs:\n");
5197 fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
5198 fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
5199 fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
5200 fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
5201 }
5202
5203 n = 0;
5204 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
5205 {
5206 phi = gsi_stmt (psi);
5207 op = PHI_RESULT (phi);
5208
5209 if (virtual_operand_p (op))
5210 continue;
5211
5212 if (get_iv (data, op))
5213 continue;
5214
5215 n++;
5216 }
5217
5218 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
5219 {
5220 struct version_info *info = ver_info (data, j);
5221
5222 if (info->inv_id && info->has_nonlin_use)
5223 n++;
5224 }
5225
5226 data->regs_used = n;
5227 if (dump_file && (dump_flags & TDF_DETAILS))
5228 fprintf (dump_file, " regs_used %d\n", n);
5229
5230 if (dump_file && (dump_flags & TDF_DETAILS))
5231 {
5232 fprintf (dump_file, " cost for size:\n");
5233 fprintf (dump_file, " ivs\tcost\n");
5234 for (j = 0; j <= 2 * target_avail_regs; j++)
5235 fprintf (dump_file, " %d\t%d\n", j,
5236 ivopts_global_cost_for_size (data, j));
5237 fprintf (dump_file, "\n");
5238 }
5239 }
5240
5241 /* Returns true if A is a cheaper cost pair than B. */
5242
5243 static bool
5244 cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
5245 {
5246 int cmp;
5247
5248 if (!a)
5249 return false;
5250
5251 if (!b)
5252 return true;
5253
5254 cmp = compare_costs (a->cost, b->cost);
5255 if (cmp < 0)
5256 return true;
5257
5258 if (cmp > 0)
5259 return false;
5260
5261 /* In case the costs are the same, prefer the cheaper candidate. */
5262 if (a->cand->cost < b->cand->cost)
5263 return true;
5264
5265 return false;
5266 }
5267
5268
5269 /* Returns candidate by that USE is expressed in IVS. */
5270
5271 static struct cost_pair *
5272 iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
5273 {
5274 return ivs->cand_for_use[use->id];
5275 }
5276
5277 /* Computes the cost field of IVS structure. */
5278
5279 static void
5280 iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
5281 {
5282 comp_cost cost = ivs->cand_use_cost;
5283
5284 cost.cost += ivs->cand_cost;
5285
5286 cost.cost += ivopts_global_cost_for_size (data,
5287 ivs->n_regs + ivs->num_used_inv_expr);
5288
5289 ivs->cost = cost;
5290 }
5291
5292 /* Remove invariants in set INVS to set IVS. */
5293
5294 static void
5295 iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
5296 {
5297 bitmap_iterator bi;
5298 unsigned iid;
5299
5300 if (!invs)
5301 return;
5302
5303 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
5304 {
5305 ivs->n_invariant_uses[iid]--;
5306 if (ivs->n_invariant_uses[iid] == 0)
5307 ivs->n_regs--;
5308 }
5309 }
5310
5311 /* Set USE not to be expressed by any candidate in IVS. */
5312
5313 static void
5314 iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
5315 struct iv_use *use)
5316 {
5317 unsigned uid = use->id, cid;
5318 struct cost_pair *cp;
5319
5320 cp = ivs->cand_for_use[uid];
5321 if (!cp)
5322 return;
5323 cid = cp->cand->id;
5324
5325 ivs->bad_uses++;
5326 ivs->cand_for_use[uid] = NULL;
5327 ivs->n_cand_uses[cid]--;
5328
5329 if (ivs->n_cand_uses[cid] == 0)
5330 {
5331 bitmap_clear_bit (ivs->cands, cid);
5332 /* Do not count the pseudocandidates. */
5333 if (cp->cand->iv)
5334 ivs->n_regs--;
5335 ivs->n_cands--;
5336 ivs->cand_cost -= cp->cand->cost;
5337
5338 iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
5339 }
5340
5341 ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
5342
5343 iv_ca_set_remove_invariants (ivs, cp->depends_on);
5344
5345 if (cp->inv_expr_id != -1)
5346 {
5347 ivs->used_inv_expr[cp->inv_expr_id]--;
5348 if (ivs->used_inv_expr[cp->inv_expr_id] == 0)
5349 ivs->num_used_inv_expr--;
5350 }
5351 iv_ca_recount_cost (data, ivs);
5352 }
5353
5354 /* Add invariants in set INVS to set IVS. */
5355
5356 static void
5357 iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
5358 {
5359 bitmap_iterator bi;
5360 unsigned iid;
5361
5362 if (!invs)
5363 return;
5364
5365 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
5366 {
5367 ivs->n_invariant_uses[iid]++;
5368 if (ivs->n_invariant_uses[iid] == 1)
5369 ivs->n_regs++;
5370 }
5371 }
5372
5373 /* Set cost pair for USE in set IVS to CP. */
5374
5375 static void
5376 iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
5377 struct iv_use *use, struct cost_pair *cp)
5378 {
5379 unsigned uid = use->id, cid;
5380
5381 if (ivs->cand_for_use[uid] == cp)
5382 return;
5383
5384 if (ivs->cand_for_use[uid])
5385 iv_ca_set_no_cp (data, ivs, use);
5386
5387 if (cp)
5388 {
5389 cid = cp->cand->id;
5390
5391 ivs->bad_uses--;
5392 ivs->cand_for_use[uid] = cp;
5393 ivs->n_cand_uses[cid]++;
5394 if (ivs->n_cand_uses[cid] == 1)
5395 {
5396 bitmap_set_bit (ivs->cands, cid);
5397 /* Do not count the pseudocandidates. */
5398 if (cp->cand->iv)
5399 ivs->n_regs++;
5400 ivs->n_cands++;
5401 ivs->cand_cost += cp->cand->cost;
5402
5403 iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
5404 }
5405
5406 ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
5407 iv_ca_set_add_invariants (ivs, cp->depends_on);
5408
5409 if (cp->inv_expr_id != -1)
5410 {
5411 ivs->used_inv_expr[cp->inv_expr_id]++;
5412 if (ivs->used_inv_expr[cp->inv_expr_id] == 1)
5413 ivs->num_used_inv_expr++;
5414 }
5415 iv_ca_recount_cost (data, ivs);
5416 }
5417 }
5418
5419 /* Extend set IVS by expressing USE by some of the candidates in it
5420 if possible. Consider all important candidates if candidates in
5421 set IVS don't give any result. */
5422
5423 static void
5424 iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
5425 struct iv_use *use)
5426 {
5427 struct cost_pair *best_cp = NULL, *cp;
5428 bitmap_iterator bi;
5429 unsigned i;
5430 struct iv_cand *cand;
5431
5432 gcc_assert (ivs->upto >= use->id);
5433 ivs->upto++;
5434 ivs->bad_uses++;
5435
5436 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
5437 {
5438 cand = iv_cand (data, i);
5439 cp = get_use_iv_cost (data, use, cand);
5440 if (cheaper_cost_pair (cp, best_cp))
5441 best_cp = cp;
5442 }
5443
5444 if (best_cp == NULL)
5445 {
5446 EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
5447 {
5448 cand = iv_cand (data, i);
5449 cp = get_use_iv_cost (data, use, cand);
5450 if (cheaper_cost_pair (cp, best_cp))
5451 best_cp = cp;
5452 }
5453 }
5454
5455 iv_ca_set_cp (data, ivs, use, best_cp);
5456 }
5457
5458 /* Get cost for assignment IVS. */
5459
5460 static comp_cost
5461 iv_ca_cost (struct iv_ca *ivs)
5462 {
5463 /* This was a conditional expression but it triggered a bug in
5464 Sun C 5.5. */
5465 if (ivs->bad_uses)
5466 return infinite_cost;
5467 else
5468 return ivs->cost;
5469 }
5470
5471 /* Returns true if all dependences of CP are among invariants in IVS. */
5472
5473 static bool
5474 iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
5475 {
5476 unsigned i;
5477 bitmap_iterator bi;
5478
5479 if (!cp->depends_on)
5480 return true;
5481
5482 EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
5483 {
5484 if (ivs->n_invariant_uses[i] == 0)
5485 return false;
5486 }
5487
5488 return true;
5489 }
5490
5491 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5492 it before NEXT_CHANGE. */
5493
5494 static struct iv_ca_delta *
5495 iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
5496 struct cost_pair *new_cp, struct iv_ca_delta *next_change)
5497 {
5498 struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
5499
5500 change->use = use;
5501 change->old_cp = old_cp;
5502 change->new_cp = new_cp;
5503 change->next_change = next_change;
5504
5505 return change;
5506 }
5507
5508 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5509 are rewritten. */
5510
5511 static struct iv_ca_delta *
5512 iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
5513 {
5514 struct iv_ca_delta *last;
5515
5516 if (!l2)
5517 return l1;
5518
5519 if (!l1)
5520 return l2;
5521
5522 for (last = l1; last->next_change; last = last->next_change)
5523 continue;
5524 last->next_change = l2;
5525
5526 return l1;
5527 }
5528
5529 /* Reverse the list of changes DELTA, forming the inverse to it. */
5530
5531 static struct iv_ca_delta *
5532 iv_ca_delta_reverse (struct iv_ca_delta *delta)
5533 {
5534 struct iv_ca_delta *act, *next, *prev = NULL;
5535 struct cost_pair *tmp;
5536
5537 for (act = delta; act; act = next)
5538 {
5539 next = act->next_change;
5540 act->next_change = prev;
5541 prev = act;
5542
5543 tmp = act->old_cp;
5544 act->old_cp = act->new_cp;
5545 act->new_cp = tmp;
5546 }
5547
5548 return prev;
5549 }
5550
5551 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5552 reverted instead. */
5553
5554 static void
5555 iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
5556 struct iv_ca_delta *delta, bool forward)
5557 {
5558 struct cost_pair *from, *to;
5559 struct iv_ca_delta *act;
5560
5561 if (!forward)
5562 delta = iv_ca_delta_reverse (delta);
5563
5564 for (act = delta; act; act = act->next_change)
5565 {
5566 from = act->old_cp;
5567 to = act->new_cp;
5568 gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
5569 iv_ca_set_cp (data, ivs, act->use, to);
5570 }
5571
5572 if (!forward)
5573 iv_ca_delta_reverse (delta);
5574 }
5575
5576 /* Returns true if CAND is used in IVS. */
5577
5578 static bool
5579 iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
5580 {
5581 return ivs->n_cand_uses[cand->id] > 0;
5582 }
5583
5584 /* Returns number of induction variable candidates in the set IVS. */
5585
5586 static unsigned
5587 iv_ca_n_cands (struct iv_ca *ivs)
5588 {
5589 return ivs->n_cands;
5590 }
5591
5592 /* Free the list of changes DELTA. */
5593
5594 static void
5595 iv_ca_delta_free (struct iv_ca_delta **delta)
5596 {
5597 struct iv_ca_delta *act, *next;
5598
5599 for (act = *delta; act; act = next)
5600 {
5601 next = act->next_change;
5602 free (act);
5603 }
5604
5605 *delta = NULL;
5606 }
5607
5608 /* Allocates new iv candidates assignment. */
5609
5610 static struct iv_ca *
5611 iv_ca_new (struct ivopts_data *data)
5612 {
5613 struct iv_ca *nw = XNEW (struct iv_ca);
5614
5615 nw->upto = 0;
5616 nw->bad_uses = 0;
5617 nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
5618 nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
5619 nw->cands = BITMAP_ALLOC (NULL);
5620 nw->n_cands = 0;
5621 nw->n_regs = 0;
5622 nw->cand_use_cost = no_cost;
5623 nw->cand_cost = 0;
5624 nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
5625 nw->cost = no_cost;
5626 nw->used_inv_expr = XCNEWVEC (unsigned, data->inv_expr_id + 1);
5627 nw->num_used_inv_expr = 0;
5628
5629 return nw;
5630 }
5631
5632 /* Free memory occupied by the set IVS. */
5633
5634 static void
5635 iv_ca_free (struct iv_ca **ivs)
5636 {
5637 free ((*ivs)->cand_for_use);
5638 free ((*ivs)->n_cand_uses);
5639 BITMAP_FREE ((*ivs)->cands);
5640 free ((*ivs)->n_invariant_uses);
5641 free ((*ivs)->used_inv_expr);
5642 free (*ivs);
5643 *ivs = NULL;
5644 }
5645
5646 /* Dumps IVS to FILE. */
5647
5648 static void
5649 iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
5650 {
5651 const char *pref = " invariants ";
5652 unsigned i;
5653 comp_cost cost = iv_ca_cost (ivs);
5654
5655 fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
5656 fprintf (file, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5657 ivs->cand_cost, ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
5658 bitmap_print (file, ivs->cands, " candidates: ","\n");
5659
5660 for (i = 0; i < ivs->upto; i++)
5661 {
5662 struct iv_use *use = iv_use (data, i);
5663 struct cost_pair *cp = iv_ca_cand_for_use (ivs, use);
5664 if (cp)
5665 fprintf (file, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5666 use->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
5667 else
5668 fprintf (file, " use:%d --> ??\n", use->id);
5669 }
5670
5671 for (i = 1; i <= data->max_inv_id; i++)
5672 if (ivs->n_invariant_uses[i])
5673 {
5674 fprintf (file, "%s%d", pref, i);
5675 pref = ", ";
5676 }
5677 fprintf (file, "\n\n");
5678 }
5679
5680 /* Try changing candidate in IVS to CAND for each use. Return cost of the
5681 new set, and store differences in DELTA. Number of induction variables
5682 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
5683 the function will try to find a solution with mimimal iv candidates. */
5684
5685 static comp_cost
5686 iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
5687 struct iv_cand *cand, struct iv_ca_delta **delta,
5688 unsigned *n_ivs, bool min_ncand)
5689 {
5690 unsigned i;
5691 comp_cost cost;
5692 struct iv_use *use;
5693 struct cost_pair *old_cp, *new_cp;
5694
5695 *delta = NULL;
5696 for (i = 0; i < ivs->upto; i++)
5697 {
5698 use = iv_use (data, i);
5699 old_cp = iv_ca_cand_for_use (ivs, use);
5700
5701 if (old_cp
5702 && old_cp->cand == cand)
5703 continue;
5704
5705 new_cp = get_use_iv_cost (data, use, cand);
5706 if (!new_cp)
5707 continue;
5708
5709 if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
5710 continue;
5711
5712 if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
5713 continue;
5714
5715 *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
5716 }
5717
5718 iv_ca_delta_commit (data, ivs, *delta, true);
5719 cost = iv_ca_cost (ivs);
5720 if (n_ivs)
5721 *n_ivs = iv_ca_n_cands (ivs);
5722 iv_ca_delta_commit (data, ivs, *delta, false);
5723
5724 return cost;
5725 }
5726
5727 /* Try narrowing set IVS by removing CAND. Return the cost of
5728 the new set and store the differences in DELTA. START is
5729 the candidate with which we start narrowing. */
5730
5731 static comp_cost
5732 iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
5733 struct iv_cand *cand, struct iv_cand *start,
5734 struct iv_ca_delta **delta)
5735 {
5736 unsigned i, ci;
5737 struct iv_use *use;
5738 struct cost_pair *old_cp, *new_cp, *cp;
5739 bitmap_iterator bi;
5740 struct iv_cand *cnd;
5741 comp_cost cost, best_cost, acost;
5742
5743 *delta = NULL;
5744 for (i = 0; i < n_iv_uses (data); i++)
5745 {
5746 use = iv_use (data, i);
5747
5748 old_cp = iv_ca_cand_for_use (ivs, use);
5749 if (old_cp->cand != cand)
5750 continue;
5751
5752 best_cost = iv_ca_cost (ivs);
5753 /* Start narrowing with START. */
5754 new_cp = get_use_iv_cost (data, use, start);
5755
5756 if (data->consider_all_candidates)
5757 {
5758 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
5759 {
5760 if (ci == cand->id || (start && ci == start->id))
5761 continue;
5762
5763 cnd = iv_cand (data, ci);
5764
5765 cp = get_use_iv_cost (data, use, cnd);
5766 if (!cp)
5767 continue;
5768
5769 iv_ca_set_cp (data, ivs, use, cp);
5770 acost = iv_ca_cost (ivs);
5771
5772 if (compare_costs (acost, best_cost) < 0)
5773 {
5774 best_cost = acost;
5775 new_cp = cp;
5776 }
5777 }
5778 }
5779 else
5780 {
5781 EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
5782 {
5783 if (ci == cand->id || (start && ci == start->id))
5784 continue;
5785
5786 cnd = iv_cand (data, ci);
5787
5788 cp = get_use_iv_cost (data, use, cnd);
5789 if (!cp)
5790 continue;
5791
5792 iv_ca_set_cp (data, ivs, use, cp);
5793 acost = iv_ca_cost (ivs);
5794
5795 if (compare_costs (acost, best_cost) < 0)
5796 {
5797 best_cost = acost;
5798 new_cp = cp;
5799 }
5800 }
5801 }
5802 /* Restore to old cp for use. */
5803 iv_ca_set_cp (data, ivs, use, old_cp);
5804
5805 if (!new_cp)
5806 {
5807 iv_ca_delta_free (delta);
5808 return infinite_cost;
5809 }
5810
5811 *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
5812 }
5813
5814 iv_ca_delta_commit (data, ivs, *delta, true);
5815 cost = iv_ca_cost (ivs);
5816 iv_ca_delta_commit (data, ivs, *delta, false);
5817
5818 return cost;
5819 }
5820
5821 /* Try optimizing the set of candidates IVS by removing candidates different
5822 from to EXCEPT_CAND from it. Return cost of the new set, and store
5823 differences in DELTA. */
5824
5825 static comp_cost
5826 iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
5827 struct iv_cand *except_cand, struct iv_ca_delta **delta)
5828 {
5829 bitmap_iterator bi;
5830 struct iv_ca_delta *act_delta, *best_delta;
5831 unsigned i;
5832 comp_cost best_cost, acost;
5833 struct iv_cand *cand;
5834
5835 best_delta = NULL;
5836 best_cost = iv_ca_cost (ivs);
5837
5838 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
5839 {
5840 cand = iv_cand (data, i);
5841
5842 if (cand == except_cand)
5843 continue;
5844
5845 acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
5846
5847 if (compare_costs (acost, best_cost) < 0)
5848 {
5849 best_cost = acost;
5850 iv_ca_delta_free (&best_delta);
5851 best_delta = act_delta;
5852 }
5853 else
5854 iv_ca_delta_free (&act_delta);
5855 }
5856
5857 if (!best_delta)
5858 {
5859 *delta = NULL;
5860 return best_cost;
5861 }
5862
5863 /* Recurse to possibly remove other unnecessary ivs. */
5864 iv_ca_delta_commit (data, ivs, best_delta, true);
5865 best_cost = iv_ca_prune (data, ivs, except_cand, delta);
5866 iv_ca_delta_commit (data, ivs, best_delta, false);
5867 *delta = iv_ca_delta_join (best_delta, *delta);
5868 return best_cost;
5869 }
5870
5871 /* Tries to extend the sets IVS in the best possible way in order
5872 to express the USE. If ORIGINALP is true, prefer candidates from
5873 the original set of IVs, otherwise favor important candidates not
5874 based on any memory object. */
5875
5876 static bool
5877 try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
5878 struct iv_use *use, bool originalp)
5879 {
5880 comp_cost best_cost, act_cost;
5881 unsigned i;
5882 bitmap_iterator bi;
5883 struct iv_cand *cand;
5884 struct iv_ca_delta *best_delta = NULL, *act_delta;
5885 struct cost_pair *cp;
5886
5887 iv_ca_add_use (data, ivs, use);
5888 best_cost = iv_ca_cost (ivs);
5889 cp = iv_ca_cand_for_use (ivs, use);
5890 if (cp)
5891 {
5892 best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
5893 iv_ca_set_no_cp (data, ivs, use);
5894 }
5895
5896 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
5897 first try important candidates not based on any memory object. Only if
5898 this fails, try the specific ones. Rationale -- in loops with many
5899 variables the best choice often is to use just one generic biv. If we
5900 added here many ivs specific to the uses, the optimization algorithm later
5901 would be likely to get stuck in a local minimum, thus causing us to create
5902 too many ivs. The approach from few ivs to more seems more likely to be
5903 successful -- starting from few ivs, replacing an expensive use by a
5904 specific iv should always be a win. */
5905 EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
5906 {
5907 cand = iv_cand (data, i);
5908
5909 if (originalp && cand->pos !=IP_ORIGINAL)
5910 continue;
5911
5912 if (!originalp && cand->iv->base_object != NULL_TREE)
5913 continue;
5914
5915 if (iv_ca_cand_used_p (ivs, cand))
5916 continue;
5917
5918 cp = get_use_iv_cost (data, use, cand);
5919 if (!cp)
5920 continue;
5921
5922 iv_ca_set_cp (data, ivs, use, cp);
5923 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
5924 true);
5925 iv_ca_set_no_cp (data, ivs, use);
5926 act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
5927
5928 if (compare_costs (act_cost, best_cost) < 0)
5929 {
5930 best_cost = act_cost;
5931
5932 iv_ca_delta_free (&best_delta);
5933 best_delta = act_delta;
5934 }
5935 else
5936 iv_ca_delta_free (&act_delta);
5937 }
5938
5939 if (infinite_cost_p (best_cost))
5940 {
5941 for (i = 0; i < use->n_map_members; i++)
5942 {
5943 cp = use->cost_map + i;
5944 cand = cp->cand;
5945 if (!cand)
5946 continue;
5947
5948 /* Already tried this. */
5949 if (cand->important)
5950 {
5951 if (originalp && cand->pos == IP_ORIGINAL)
5952 continue;
5953 if (!originalp && cand->iv->base_object == NULL_TREE)
5954 continue;
5955 }
5956
5957 if (iv_ca_cand_used_p (ivs, cand))
5958 continue;
5959
5960 act_delta = NULL;
5961 iv_ca_set_cp (data, ivs, use, cp);
5962 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
5963 iv_ca_set_no_cp (data, ivs, use);
5964 act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
5965 cp, act_delta);
5966
5967 if (compare_costs (act_cost, best_cost) < 0)
5968 {
5969 best_cost = act_cost;
5970
5971 if (best_delta)
5972 iv_ca_delta_free (&best_delta);
5973 best_delta = act_delta;
5974 }
5975 else
5976 iv_ca_delta_free (&act_delta);
5977 }
5978 }
5979
5980 iv_ca_delta_commit (data, ivs, best_delta, true);
5981 iv_ca_delta_free (&best_delta);
5982
5983 return !infinite_cost_p (best_cost);
5984 }
5985
5986 /* Finds an initial assignment of candidates to uses. */
5987
5988 static struct iv_ca *
5989 get_initial_solution (struct ivopts_data *data, bool originalp)
5990 {
5991 struct iv_ca *ivs = iv_ca_new (data);
5992 unsigned i;
5993
5994 for (i = 0; i < n_iv_uses (data); i++)
5995 if (!try_add_cand_for (data, ivs, iv_use (data, i), originalp))
5996 {
5997 iv_ca_free (&ivs);
5998 return NULL;
5999 }
6000
6001 return ivs;
6002 }
6003
6004 /* Tries to improve set of induction variables IVS. */
6005
6006 static bool
6007 try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
6008 {
6009 unsigned i, n_ivs;
6010 comp_cost acost, best_cost = iv_ca_cost (ivs);
6011 struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
6012 struct iv_cand *cand;
6013
6014 /* Try extending the set of induction variables by one. */
6015 for (i = 0; i < n_iv_cands (data); i++)
6016 {
6017 cand = iv_cand (data, i);
6018
6019 if (iv_ca_cand_used_p (ivs, cand))
6020 continue;
6021
6022 acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
6023 if (!act_delta)
6024 continue;
6025
6026 /* If we successfully added the candidate and the set is small enough,
6027 try optimizing it by removing other candidates. */
6028 if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
6029 {
6030 iv_ca_delta_commit (data, ivs, act_delta, true);
6031 acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
6032 iv_ca_delta_commit (data, ivs, act_delta, false);
6033 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6034 }
6035
6036 if (compare_costs (acost, best_cost) < 0)
6037 {
6038 best_cost = acost;
6039 iv_ca_delta_free (&best_delta);
6040 best_delta = act_delta;
6041 }
6042 else
6043 iv_ca_delta_free (&act_delta);
6044 }
6045
6046 if (!best_delta)
6047 {
6048 /* Try removing the candidates from the set instead. */
6049 best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
6050
6051 /* Nothing more we can do. */
6052 if (!best_delta)
6053 return false;
6054 }
6055
6056 iv_ca_delta_commit (data, ivs, best_delta, true);
6057 gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
6058 iv_ca_delta_free (&best_delta);
6059 return true;
6060 }
6061
6062 /* Attempts to find the optimal set of induction variables. We do simple
6063 greedy heuristic -- we try to replace at most one candidate in the selected
6064 solution and remove the unused ivs while this improves the cost. */
6065
6066 static struct iv_ca *
6067 find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
6068 {
6069 struct iv_ca *set;
6070
6071 /* Get the initial solution. */
6072 set = get_initial_solution (data, originalp);
6073 if (!set)
6074 {
6075 if (dump_file && (dump_flags & TDF_DETAILS))
6076 fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
6077 return NULL;
6078 }
6079
6080 if (dump_file && (dump_flags & TDF_DETAILS))
6081 {
6082 fprintf (dump_file, "Initial set of candidates:\n");
6083 iv_ca_dump (data, dump_file, set);
6084 }
6085
6086 while (try_improve_iv_set (data, set))
6087 {
6088 if (dump_file && (dump_flags & TDF_DETAILS))
6089 {
6090 fprintf (dump_file, "Improved to:\n");
6091 iv_ca_dump (data, dump_file, set);
6092 }
6093 }
6094
6095 return set;
6096 }
6097
6098 static struct iv_ca *
6099 find_optimal_iv_set (struct ivopts_data *data)
6100 {
6101 unsigned i;
6102 struct iv_ca *set, *origset;
6103 struct iv_use *use;
6104 comp_cost cost, origcost;
6105
6106 /* Determine the cost based on a strategy that starts with original IVs,
6107 and try again using a strategy that prefers candidates not based
6108 on any IVs. */
6109 origset = find_optimal_iv_set_1 (data, true);
6110 set = find_optimal_iv_set_1 (data, false);
6111
6112 if (!origset && !set)
6113 return NULL;
6114
6115 origcost = origset ? iv_ca_cost (origset) : infinite_cost;
6116 cost = set ? iv_ca_cost (set) : infinite_cost;
6117
6118 if (dump_file && (dump_flags & TDF_DETAILS))
6119 {
6120 fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
6121 origcost.cost, origcost.complexity);
6122 fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
6123 cost.cost, cost.complexity);
6124 }
6125
6126 /* Choose the one with the best cost. */
6127 if (compare_costs (origcost, cost) <= 0)
6128 {
6129 if (set)
6130 iv_ca_free (&set);
6131 set = origset;
6132 }
6133 else if (origset)
6134 iv_ca_free (&origset);
6135
6136 for (i = 0; i < n_iv_uses (data); i++)
6137 {
6138 use = iv_use (data, i);
6139 use->selected = iv_ca_cand_for_use (set, use)->cand;
6140 }
6141
6142 return set;
6143 }
6144
6145 /* Creates a new induction variable corresponding to CAND. */
6146
6147 static void
6148 create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
6149 {
6150 gimple_stmt_iterator incr_pos;
6151 tree base;
6152 bool after = false;
6153
6154 if (!cand->iv)
6155 return;
6156
6157 switch (cand->pos)
6158 {
6159 case IP_NORMAL:
6160 incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
6161 break;
6162
6163 case IP_END:
6164 incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
6165 after = true;
6166 break;
6167
6168 case IP_AFTER_USE:
6169 after = true;
6170 /* fall through */
6171 case IP_BEFORE_USE:
6172 incr_pos = gsi_for_stmt (cand->incremented_at);
6173 break;
6174
6175 case IP_ORIGINAL:
6176 /* Mark that the iv is preserved. */
6177 name_info (data, cand->var_before)->preserve_biv = true;
6178 name_info (data, cand->var_after)->preserve_biv = true;
6179
6180 /* Rewrite the increment so that it uses var_before directly. */
6181 find_interesting_uses_op (data, cand->var_after)->selected = cand;
6182 return;
6183 }
6184
6185 gimple_add_tmp_var (cand->var_before);
6186
6187 base = unshare_expr (cand->iv->base);
6188
6189 create_iv (base, unshare_expr (cand->iv->step),
6190 cand->var_before, data->current_loop,
6191 &incr_pos, after, &cand->var_before, &cand->var_after);
6192 }
6193
6194 /* Creates new induction variables described in SET. */
6195
6196 static void
6197 create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
6198 {
6199 unsigned i;
6200 struct iv_cand *cand;
6201 bitmap_iterator bi;
6202
6203 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
6204 {
6205 cand = iv_cand (data, i);
6206 create_new_iv (data, cand);
6207 }
6208
6209 if (dump_file && (dump_flags & TDF_DETAILS))
6210 {
6211 fprintf (dump_file, "\nSelected IV set: \n");
6212 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
6213 {
6214 cand = iv_cand (data, i);
6215 dump_cand (dump_file, cand);
6216 }
6217 fprintf (dump_file, "\n");
6218 }
6219 }
6220
6221 /* Rewrites USE (definition of iv used in a nonlinear expression)
6222 using candidate CAND. */
6223
6224 static void
6225 rewrite_use_nonlinear_expr (struct ivopts_data *data,
6226 struct iv_use *use, struct iv_cand *cand)
6227 {
6228 tree comp;
6229 tree op, tgt;
6230 gimple ass;
6231 gimple_stmt_iterator bsi;
6232
6233 /* An important special case -- if we are asked to express value of
6234 the original iv by itself, just exit; there is no need to
6235 introduce a new computation (that might also need casting the
6236 variable to unsigned and back). */
6237 if (cand->pos == IP_ORIGINAL
6238 && cand->incremented_at == use->stmt)
6239 {
6240 enum tree_code stmt_code;
6241
6242 gcc_assert (is_gimple_assign (use->stmt));
6243 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
6244
6245 /* Check whether we may leave the computation unchanged.
6246 This is the case only if it does not rely on other
6247 computations in the loop -- otherwise, the computation
6248 we rely upon may be removed in remove_unused_ivs,
6249 thus leading to ICE. */
6250 stmt_code = gimple_assign_rhs_code (use->stmt);
6251 if (stmt_code == PLUS_EXPR
6252 || stmt_code == MINUS_EXPR
6253 || stmt_code == POINTER_PLUS_EXPR)
6254 {
6255 if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
6256 op = gimple_assign_rhs2 (use->stmt);
6257 else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
6258 op = gimple_assign_rhs1 (use->stmt);
6259 else
6260 op = NULL_TREE;
6261 }
6262 else
6263 op = NULL_TREE;
6264
6265 if (op && expr_invariant_in_loop_p (data->current_loop, op))
6266 return;
6267 }
6268
6269 comp = get_computation (data->current_loop, use, cand);
6270 gcc_assert (comp != NULL_TREE);
6271
6272 switch (gimple_code (use->stmt))
6273 {
6274 case GIMPLE_PHI:
6275 tgt = PHI_RESULT (use->stmt);
6276
6277 /* If we should keep the biv, do not replace it. */
6278 if (name_info (data, tgt)->preserve_biv)
6279 return;
6280
6281 bsi = gsi_after_labels (gimple_bb (use->stmt));
6282 break;
6283
6284 case GIMPLE_ASSIGN:
6285 tgt = gimple_assign_lhs (use->stmt);
6286 bsi = gsi_for_stmt (use->stmt);
6287 break;
6288
6289 default:
6290 gcc_unreachable ();
6291 }
6292
6293 if (!valid_gimple_rhs_p (comp)
6294 || (gimple_code (use->stmt) != GIMPLE_PHI
6295 /* We can't allow re-allocating the stmt as it might be pointed
6296 to still. */
6297 && (get_gimple_rhs_num_ops (TREE_CODE (comp))
6298 >= gimple_num_ops (gsi_stmt (bsi)))))
6299 {
6300 comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
6301 true, GSI_SAME_STMT);
6302 if (POINTER_TYPE_P (TREE_TYPE (tgt)))
6303 {
6304 duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
6305 /* As this isn't a plain copy we have to reset alignment
6306 information. */
6307 if (SSA_NAME_PTR_INFO (comp))
6308 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
6309 }
6310 }
6311
6312 if (gimple_code (use->stmt) == GIMPLE_PHI)
6313 {
6314 ass = gimple_build_assign (tgt, comp);
6315 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
6316
6317 bsi = gsi_for_stmt (use->stmt);
6318 remove_phi_node (&bsi, false);
6319 }
6320 else
6321 {
6322 gimple_assign_set_rhs_from_tree (&bsi, comp);
6323 use->stmt = gsi_stmt (bsi);
6324 }
6325 }
6326
6327 /* Performs a peephole optimization to reorder the iv update statement with
6328 a mem ref to enable instruction combining in later phases. The mem ref uses
6329 the iv value before the update, so the reordering transformation requires
6330 adjustment of the offset. CAND is the selected IV_CAND.
6331
6332 Example:
6333
6334 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6335 iv2 = iv1 + 1;
6336
6337 if (t < val) (1)
6338 goto L;
6339 goto Head;
6340
6341
6342 directly propagating t over to (1) will introduce overlapping live range
6343 thus increase register pressure. This peephole transform it into:
6344
6345
6346 iv2 = iv1 + 1;
6347 t = MEM_REF (base, iv2, 8, 8);
6348 if (t < val)
6349 goto L;
6350 goto Head;
6351 */
6352
6353 static void
6354 adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
6355 {
6356 tree var_after;
6357 gimple iv_update, stmt;
6358 basic_block bb;
6359 gimple_stmt_iterator gsi, gsi_iv;
6360
6361 if (cand->pos != IP_NORMAL)
6362 return;
6363
6364 var_after = cand->var_after;
6365 iv_update = SSA_NAME_DEF_STMT (var_after);
6366
6367 bb = gimple_bb (iv_update);
6368 gsi = gsi_last_nondebug_bb (bb);
6369 stmt = gsi_stmt (gsi);
6370
6371 /* Only handle conditional statement for now. */
6372 if (gimple_code (stmt) != GIMPLE_COND)
6373 return;
6374
6375 gsi_prev_nondebug (&gsi);
6376 stmt = gsi_stmt (gsi);
6377 if (stmt != iv_update)
6378 return;
6379
6380 gsi_prev_nondebug (&gsi);
6381 if (gsi_end_p (gsi))
6382 return;
6383
6384 stmt = gsi_stmt (gsi);
6385 if (gimple_code (stmt) != GIMPLE_ASSIGN)
6386 return;
6387
6388 if (stmt != use->stmt)
6389 return;
6390
6391 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
6392 return;
6393
6394 if (dump_file && (dump_flags & TDF_DETAILS))
6395 {
6396 fprintf (dump_file, "Reordering \n");
6397 print_gimple_stmt (dump_file, iv_update, 0, 0);
6398 print_gimple_stmt (dump_file, use->stmt, 0, 0);
6399 fprintf (dump_file, "\n");
6400 }
6401
6402 gsi = gsi_for_stmt (use->stmt);
6403 gsi_iv = gsi_for_stmt (iv_update);
6404 gsi_move_before (&gsi_iv, &gsi);
6405
6406 cand->pos = IP_BEFORE_USE;
6407 cand->incremented_at = use->stmt;
6408 }
6409
6410 /* Rewrites USE (address that is an iv) using candidate CAND. */
6411
6412 static void
6413 rewrite_use_address (struct ivopts_data *data,
6414 struct iv_use *use, struct iv_cand *cand)
6415 {
6416 aff_tree aff;
6417 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
6418 tree base_hint = NULL_TREE;
6419 tree ref, iv;
6420 bool ok;
6421
6422 adjust_iv_update_pos (cand, use);
6423 ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
6424 gcc_assert (ok);
6425 unshare_aff_combination (&aff);
6426
6427 /* To avoid undefined overflow problems, all IV candidates use unsigned
6428 integer types. The drawback is that this makes it impossible for
6429 create_mem_ref to distinguish an IV that is based on a memory object
6430 from one that represents simply an offset.
6431
6432 To work around this problem, we pass a hint to create_mem_ref that
6433 indicates which variable (if any) in aff is an IV based on a memory
6434 object. Note that we only consider the candidate. If this is not
6435 based on an object, the base of the reference is in some subexpression
6436 of the use -- but these will use pointer types, so they are recognized
6437 by the create_mem_ref heuristics anyway. */
6438 if (cand->iv->base_object)
6439 base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
6440
6441 iv = var_at_stmt (data->current_loop, cand, use->stmt);
6442 ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
6443 reference_alias_ptr_type (*use->op_p),
6444 iv, base_hint, data->speed);
6445 copy_ref_info (ref, *use->op_p);
6446 *use->op_p = ref;
6447 }
6448
6449 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6450 candidate CAND. */
6451
6452 static void
6453 rewrite_use_compare (struct ivopts_data *data,
6454 struct iv_use *use, struct iv_cand *cand)
6455 {
6456 tree comp, *var_p, op, bound;
6457 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
6458 enum tree_code compare;
6459 struct cost_pair *cp = get_use_iv_cost (data, use, cand);
6460 bool ok;
6461
6462 bound = cp->value;
6463 if (bound)
6464 {
6465 tree var = var_at_stmt (data->current_loop, cand, use->stmt);
6466 tree var_type = TREE_TYPE (var);
6467 gimple_seq stmts;
6468
6469 if (dump_file && (dump_flags & TDF_DETAILS))
6470 {
6471 fprintf (dump_file, "Replacing exit test: ");
6472 print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
6473 }
6474 compare = cp->comp;
6475 bound = unshare_expr (fold_convert (var_type, bound));
6476 op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
6477 if (stmts)
6478 gsi_insert_seq_on_edge_immediate (
6479 loop_preheader_edge (data->current_loop),
6480 stmts);
6481
6482 gimple_cond_set_lhs (use->stmt, var);
6483 gimple_cond_set_code (use->stmt, compare);
6484 gimple_cond_set_rhs (use->stmt, op);
6485 return;
6486 }
6487
6488 /* The induction variable elimination failed; just express the original
6489 giv. */
6490 comp = get_computation (data->current_loop, use, cand);
6491 gcc_assert (comp != NULL_TREE);
6492
6493 ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
6494 gcc_assert (ok);
6495
6496 *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
6497 true, GSI_SAME_STMT);
6498 }
6499
6500 /* Rewrites USE using candidate CAND. */
6501
6502 static void
6503 rewrite_use (struct ivopts_data *data, struct iv_use *use, struct iv_cand *cand)
6504 {
6505 switch (use->type)
6506 {
6507 case USE_NONLINEAR_EXPR:
6508 rewrite_use_nonlinear_expr (data, use, cand);
6509 break;
6510
6511 case USE_ADDRESS:
6512 rewrite_use_address (data, use, cand);
6513 break;
6514
6515 case USE_COMPARE:
6516 rewrite_use_compare (data, use, cand);
6517 break;
6518
6519 default:
6520 gcc_unreachable ();
6521 }
6522
6523 update_stmt (use->stmt);
6524 }
6525
6526 /* Rewrite the uses using the selected induction variables. */
6527
6528 static void
6529 rewrite_uses (struct ivopts_data *data)
6530 {
6531 unsigned i;
6532 struct iv_cand *cand;
6533 struct iv_use *use;
6534
6535 for (i = 0; i < n_iv_uses (data); i++)
6536 {
6537 use = iv_use (data, i);
6538 cand = use->selected;
6539 gcc_assert (cand);
6540
6541 rewrite_use (data, use, cand);
6542 }
6543 }
6544
6545 /* Removes the ivs that are not used after rewriting. */
6546
6547 static void
6548 remove_unused_ivs (struct ivopts_data *data)
6549 {
6550 unsigned j;
6551 bitmap_iterator bi;
6552 bitmap toremove = BITMAP_ALLOC (NULL);
6553
6554 /* Figure out an order in which to release SSA DEFs so that we don't
6555 release something that we'd have to propagate into a debug stmt
6556 afterwards. */
6557 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
6558 {
6559 struct version_info *info;
6560
6561 info = ver_info (data, j);
6562 if (info->iv
6563 && !integer_zerop (info->iv->step)
6564 && !info->inv_id
6565 && !info->iv->have_use_for
6566 && !info->preserve_biv)
6567 {
6568 bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
6569
6570 tree def = info->iv->ssa_name;
6571
6572 if (MAY_HAVE_DEBUG_STMTS && SSA_NAME_DEF_STMT (def))
6573 {
6574 imm_use_iterator imm_iter;
6575 use_operand_p use_p;
6576 gimple stmt;
6577 int count = 0;
6578
6579 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
6580 {
6581 if (!gimple_debug_bind_p (stmt))
6582 continue;
6583
6584 /* We just want to determine whether to do nothing
6585 (count == 0), to substitute the computed
6586 expression into a single use of the SSA DEF by
6587 itself (count == 1), or to use a debug temp
6588 because the SSA DEF is used multiple times or as
6589 part of a larger expression (count > 1). */
6590 count++;
6591 if (gimple_debug_bind_get_value (stmt) != def)
6592 count++;
6593
6594 if (count > 1)
6595 BREAK_FROM_IMM_USE_STMT (imm_iter);
6596 }
6597
6598 if (!count)
6599 continue;
6600
6601 struct iv_use dummy_use;
6602 struct iv_cand *best_cand = NULL, *cand;
6603 unsigned i, best_pref = 0, cand_pref;
6604
6605 memset (&dummy_use, 0, sizeof (dummy_use));
6606 dummy_use.iv = info->iv;
6607 for (i = 0; i < n_iv_uses (data) && i < 64; i++)
6608 {
6609 cand = iv_use (data, i)->selected;
6610 if (cand == best_cand)
6611 continue;
6612 cand_pref = operand_equal_p (cand->iv->step,
6613 info->iv->step, 0)
6614 ? 4 : 0;
6615 cand_pref
6616 += TYPE_MODE (TREE_TYPE (cand->iv->base))
6617 == TYPE_MODE (TREE_TYPE (info->iv->base))
6618 ? 2 : 0;
6619 cand_pref
6620 += TREE_CODE (cand->iv->base) == INTEGER_CST
6621 ? 1 : 0;
6622 if (best_cand == NULL || best_pref < cand_pref)
6623 {
6624 best_cand = cand;
6625 best_pref = cand_pref;
6626 }
6627 }
6628
6629 if (!best_cand)
6630 continue;
6631
6632 tree comp = get_computation_at (data->current_loop,
6633 &dummy_use, best_cand,
6634 SSA_NAME_DEF_STMT (def));
6635 if (!comp)
6636 continue;
6637
6638 if (count > 1)
6639 {
6640 tree vexpr = make_node (DEBUG_EXPR_DECL);
6641 DECL_ARTIFICIAL (vexpr) = 1;
6642 TREE_TYPE (vexpr) = TREE_TYPE (comp);
6643 if (SSA_NAME_VAR (def))
6644 DECL_MODE (vexpr) = DECL_MODE (SSA_NAME_VAR (def));
6645 else
6646 DECL_MODE (vexpr) = TYPE_MODE (TREE_TYPE (vexpr));
6647 gimple def_temp = gimple_build_debug_bind (vexpr, comp, NULL);
6648 gimple_stmt_iterator gsi;
6649
6650 if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
6651 gsi = gsi_after_labels (gimple_bb
6652 (SSA_NAME_DEF_STMT (def)));
6653 else
6654 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
6655
6656 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
6657 comp = vexpr;
6658 }
6659
6660 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
6661 {
6662 if (!gimple_debug_bind_p (stmt))
6663 continue;
6664
6665 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
6666 SET_USE (use_p, comp);
6667
6668 update_stmt (stmt);
6669 }
6670 }
6671 }
6672 }
6673
6674 release_defs_bitset (toremove);
6675
6676 BITMAP_FREE (toremove);
6677 }
6678
6679 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
6680 for hash_map::traverse. */
6681
6682 bool
6683 free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *)
6684 {
6685 free (value);
6686 return true;
6687 }
6688
6689 /* Frees data allocated by the optimization of a single loop. */
6690
6691 static void
6692 free_loop_data (struct ivopts_data *data)
6693 {
6694 unsigned i, j;
6695 bitmap_iterator bi;
6696 tree obj;
6697
6698 if (data->niters)
6699 {
6700 data->niters->traverse<void *, free_tree_niter_desc> (NULL);
6701 delete data->niters;
6702 data->niters = NULL;
6703 }
6704
6705 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
6706 {
6707 struct version_info *info;
6708
6709 info = ver_info (data, i);
6710 free (info->iv);
6711 info->iv = NULL;
6712 info->has_nonlin_use = false;
6713 info->preserve_biv = false;
6714 info->inv_id = 0;
6715 }
6716 bitmap_clear (data->relevant);
6717 bitmap_clear (data->important_candidates);
6718
6719 for (i = 0; i < n_iv_uses (data); i++)
6720 {
6721 struct iv_use *use = iv_use (data, i);
6722
6723 free (use->iv);
6724 BITMAP_FREE (use->related_cands);
6725 for (j = 0; j < use->n_map_members; j++)
6726 if (use->cost_map[j].depends_on)
6727 BITMAP_FREE (use->cost_map[j].depends_on);
6728 free (use->cost_map);
6729 free (use);
6730 }
6731 data->iv_uses.truncate (0);
6732
6733 for (i = 0; i < n_iv_cands (data); i++)
6734 {
6735 struct iv_cand *cand = iv_cand (data, i);
6736
6737 free (cand->iv);
6738 if (cand->depends_on)
6739 BITMAP_FREE (cand->depends_on);
6740 free (cand);
6741 }
6742 data->iv_candidates.truncate (0);
6743
6744 if (data->version_info_size < num_ssa_names)
6745 {
6746 data->version_info_size = 2 * num_ssa_names;
6747 free (data->version_info);
6748 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
6749 }
6750
6751 data->max_inv_id = 0;
6752
6753 FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
6754 SET_DECL_RTL (obj, NULL_RTX);
6755
6756 decl_rtl_to_reset.truncate (0);
6757
6758 data->inv_expr_tab->empty ();
6759 data->inv_expr_id = 0;
6760 }
6761
6762 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
6763 loop tree. */
6764
6765 static void
6766 tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
6767 {
6768 free_loop_data (data);
6769 free (data->version_info);
6770 BITMAP_FREE (data->relevant);
6771 BITMAP_FREE (data->important_candidates);
6772
6773 decl_rtl_to_reset.release ();
6774 data->iv_uses.release ();
6775 data->iv_candidates.release ();
6776 delete data->inv_expr_tab;
6777 data->inv_expr_tab = NULL;
6778 free_affine_expand_cache (&data->name_expansion_cache);
6779 }
6780
6781 /* Returns true if the loop body BODY includes any function calls. */
6782
6783 static bool
6784 loop_body_includes_call (basic_block *body, unsigned num_nodes)
6785 {
6786 gimple_stmt_iterator gsi;
6787 unsigned i;
6788
6789 for (i = 0; i < num_nodes; i++)
6790 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
6791 {
6792 gimple stmt = gsi_stmt (gsi);
6793 if (is_gimple_call (stmt)
6794 && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
6795 return true;
6796 }
6797 return false;
6798 }
6799
6800 /* Optimizes the LOOP. Returns true if anything changed. */
6801
6802 static bool
6803 tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
6804 {
6805 bool changed = false;
6806 struct iv_ca *iv_ca;
6807 edge exit = single_dom_exit (loop);
6808 basic_block *body;
6809
6810 gcc_assert (!data->niters);
6811 data->current_loop = loop;
6812 data->speed = optimize_loop_for_speed_p (loop);
6813
6814 if (dump_file && (dump_flags & TDF_DETAILS))
6815 {
6816 fprintf (dump_file, "Processing loop %d\n", loop->num);
6817
6818 if (exit)
6819 {
6820 fprintf (dump_file, " single exit %d -> %d, exit condition ",
6821 exit->src->index, exit->dest->index);
6822 print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
6823 fprintf (dump_file, "\n");
6824 }
6825
6826 fprintf (dump_file, "\n");
6827 }
6828
6829 body = get_loop_body (loop);
6830 data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
6831 renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
6832 free (body);
6833
6834 data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
6835
6836 /* For each ssa name determines whether it behaves as an induction variable
6837 in some loop. */
6838 if (!find_induction_variables (data))
6839 goto finish;
6840
6841 /* Finds interesting uses (item 1). */
6842 find_interesting_uses (data);
6843 if (n_iv_uses (data) > MAX_CONSIDERED_USES)
6844 goto finish;
6845
6846 /* Finds candidates for the induction variables (item 2). */
6847 find_iv_candidates (data);
6848
6849 /* Calculates the costs (item 3, part 1). */
6850 determine_iv_costs (data);
6851 determine_use_iv_costs (data);
6852 determine_set_costs (data);
6853
6854 /* Find the optimal set of induction variables (item 3, part 2). */
6855 iv_ca = find_optimal_iv_set (data);
6856 if (!iv_ca)
6857 goto finish;
6858 changed = true;
6859
6860 /* Create the new induction variables (item 4, part 1). */
6861 create_new_ivs (data, iv_ca);
6862 iv_ca_free (&iv_ca);
6863
6864 /* Rewrite the uses (item 4, part 2). */
6865 rewrite_uses (data);
6866
6867 /* Remove the ivs that are unused after rewriting. */
6868 remove_unused_ivs (data);
6869
6870 /* We have changed the structure of induction variables; it might happen
6871 that definitions in the scev database refer to some of them that were
6872 eliminated. */
6873 scev_reset ();
6874
6875 finish:
6876 free_loop_data (data);
6877
6878 return changed;
6879 }
6880
6881 /* Main entry point. Optimizes induction variables in loops. */
6882
6883 void
6884 tree_ssa_iv_optimize (void)
6885 {
6886 struct loop *loop;
6887 struct ivopts_data data;
6888
6889 tree_ssa_iv_optimize_init (&data);
6890
6891 /* Optimize the loops starting with the innermost ones. */
6892 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
6893 {
6894 if (dump_file && (dump_flags & TDF_DETAILS))
6895 flow_loop_dump (loop, dump_file, NULL, 1);
6896
6897 tree_ssa_iv_optimize_loop (&data, loop);
6898 }
6899
6900 tree_ssa_iv_optimize_finalize (&data);
6901 }