]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-manip.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-manip.c
1 /* High-level loop manipulation functions.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple.h"
28 #include "gimplify.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "gimple-ssa.h"
32 #include "tree-cfg.h"
33 #include "tree-phinodes.h"
34 #include "ssa-iterators.h"
35 #include "stringpool.h"
36 #include "tree-ssanames.h"
37 #include "tree-ssa-loop-ivopts.h"
38 #include "tree-ssa-loop-manip.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "tree-into-ssa.h"
42 #include "tree-ssa.h"
43 #include "dumpfile.h"
44 #include "gimple-pretty-print.h"
45 #include "cfgloop.h"
46 #include "tree-pass.h" /* ??? for TODO_update_ssa but this isn't a pass. */
47 #include "tree-scalar-evolution.h"
48 #include "params.h"
49 #include "tree-inline.h"
50 #include "langhooks.h"
51
52 /* All bitmaps for rewriting into loop-closed SSA go on this obstack,
53 so that we can free them all at once. */
54 static bitmap_obstack loop_renamer_obstack;
55
56 /* Creates an induction variable with value BASE + STEP * iteration in LOOP.
57 It is expected that neither BASE nor STEP are shared with other expressions
58 (unless the sharing rules allow this). Use VAR as a base var_decl for it
59 (if NULL, a new temporary will be created). The increment will occur at
60 INCR_POS (after it if AFTER is true, before it otherwise). INCR_POS and
61 AFTER can be computed using standard_iv_increment_position. The ssa versions
62 of the variable before and after increment will be stored in VAR_BEFORE and
63 VAR_AFTER (unless they are NULL). */
64
65 void
66 create_iv (tree base, tree step, tree var, struct loop *loop,
67 gimple_stmt_iterator *incr_pos, bool after,
68 tree *var_before, tree *var_after)
69 {
70 gimple stmt;
71 tree initial, step1;
72 gimple_seq stmts;
73 tree vb, va;
74 enum tree_code incr_op = PLUS_EXPR;
75 edge pe = loop_preheader_edge (loop);
76
77 if (var != NULL_TREE)
78 {
79 vb = make_ssa_name (var, NULL);
80 va = make_ssa_name (var, NULL);
81 }
82 else
83 {
84 vb = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
85 va = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
86 }
87 if (var_before)
88 *var_before = vb;
89 if (var_after)
90 *var_after = va;
91
92 /* For easier readability of the created code, produce MINUS_EXPRs
93 when suitable. */
94 if (TREE_CODE (step) == INTEGER_CST)
95 {
96 if (TYPE_UNSIGNED (TREE_TYPE (step)))
97 {
98 step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
99 if (tree_int_cst_lt (step1, step))
100 {
101 incr_op = MINUS_EXPR;
102 step = step1;
103 }
104 }
105 else
106 {
107 bool ovf;
108
109 if (!tree_expr_nonnegative_warnv_p (step, &ovf)
110 && may_negate_without_overflow_p (step))
111 {
112 incr_op = MINUS_EXPR;
113 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
114 }
115 }
116 }
117 if (POINTER_TYPE_P (TREE_TYPE (base)))
118 {
119 if (TREE_CODE (base) == ADDR_EXPR)
120 mark_addressable (TREE_OPERAND (base, 0));
121 step = convert_to_ptrofftype (step);
122 if (incr_op == MINUS_EXPR)
123 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
124 incr_op = POINTER_PLUS_EXPR;
125 }
126 /* Gimplify the step if necessary. We put the computations in front of the
127 loop (i.e. the step should be loop invariant). */
128 step = force_gimple_operand (step, &stmts, true, NULL_TREE);
129 if (stmts)
130 gsi_insert_seq_on_edge_immediate (pe, stmts);
131
132 stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
133 if (after)
134 gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
135 else
136 gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
137
138 initial = force_gimple_operand (base, &stmts, true, var);
139 if (stmts)
140 gsi_insert_seq_on_edge_immediate (pe, stmts);
141
142 stmt = create_phi_node (vb, loop->header);
143 add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
144 add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
145 }
146
147 /* Return the innermost superloop LOOP of USE_LOOP that is a superloop of
148 both DEF_LOOP and USE_LOOP. */
149
150 static inline struct loop *
151 find_sibling_superloop (struct loop *use_loop, struct loop *def_loop)
152 {
153 unsigned ud = loop_depth (use_loop);
154 unsigned dd = loop_depth (def_loop);
155 gcc_assert (ud > 0 && dd > 0);
156 if (ud > dd)
157 use_loop = superloop_at_depth (use_loop, dd);
158 if (ud < dd)
159 def_loop = superloop_at_depth (def_loop, ud);
160 while (loop_outer (use_loop) != loop_outer (def_loop))
161 {
162 use_loop = loop_outer (use_loop);
163 def_loop = loop_outer (def_loop);
164 gcc_assert (use_loop && def_loop);
165 }
166 return use_loop;
167 }
168
169 /* DEF_BB is a basic block containing a DEF that needs rewriting into
170 loop-closed SSA form. USE_BLOCKS is the set of basic blocks containing
171 uses of DEF that "escape" from the loop containing DEF_BB (i.e. blocks in
172 USE_BLOCKS are dominated by DEF_BB but not in the loop father of DEF_B).
173 ALL_EXITS[I] is the set of all basic blocks that exit loop I.
174
175 Compute the subset of LOOP_EXITS that exit the loop containing DEF_BB
176 or one of its loop fathers, in which DEF is live. This set is returned
177 in the bitmap LIVE_EXITS.
178
179 Instead of computing the complete livein set of the def, we use the loop
180 nesting tree as a form of poor man's structure analysis. This greatly
181 speeds up the analysis, which is important because this function may be
182 called on all SSA names that need rewriting, one at a time. */
183
184 static void
185 compute_live_loop_exits (bitmap live_exits, bitmap use_blocks,
186 bitmap *loop_exits, basic_block def_bb)
187 {
188 unsigned i;
189 bitmap_iterator bi;
190 vec<basic_block> worklist;
191 struct loop *def_loop = def_bb->loop_father;
192 unsigned def_loop_depth = loop_depth (def_loop);
193 bitmap def_loop_exits;
194
195 /* Normally the work list size is bounded by the number of basic
196 blocks in the largest loop. We don't know this number, but we
197 can be fairly sure that it will be relatively small. */
198 worklist.create (MAX (8, n_basic_blocks_for_fn (cfun) / 128));
199
200 EXECUTE_IF_SET_IN_BITMAP (use_blocks, 0, i, bi)
201 {
202 basic_block use_bb = BASIC_BLOCK (i);
203 struct loop *use_loop = use_bb->loop_father;
204 gcc_checking_assert (def_loop != use_loop
205 && ! flow_loop_nested_p (def_loop, use_loop));
206 if (! flow_loop_nested_p (use_loop, def_loop))
207 use_bb = find_sibling_superloop (use_loop, def_loop)->header;
208 if (bitmap_set_bit (live_exits, use_bb->index))
209 worklist.safe_push (use_bb);
210 }
211
212 /* Iterate until the worklist is empty. */
213 while (! worklist.is_empty ())
214 {
215 edge e;
216 edge_iterator ei;
217
218 /* Pull a block off the worklist. */
219 basic_block bb = worklist.pop ();
220
221 /* Make sure we have at least enough room in the work list
222 for all predecessors of this block. */
223 worklist.reserve (EDGE_COUNT (bb->preds));
224
225 /* For each predecessor block. */
226 FOR_EACH_EDGE (e, ei, bb->preds)
227 {
228 basic_block pred = e->src;
229 struct loop *pred_loop = pred->loop_father;
230 unsigned pred_loop_depth = loop_depth (pred_loop);
231 bool pred_visited;
232
233 /* We should have met DEF_BB along the way. */
234 gcc_assert (pred != ENTRY_BLOCK_PTR);
235
236 if (pred_loop_depth >= def_loop_depth)
237 {
238 if (pred_loop_depth > def_loop_depth)
239 pred_loop = superloop_at_depth (pred_loop, def_loop_depth);
240 /* If we've reached DEF_LOOP, our train ends here. */
241 if (pred_loop == def_loop)
242 continue;
243 }
244 else if (! flow_loop_nested_p (pred_loop, def_loop))
245 pred = find_sibling_superloop (pred_loop, def_loop)->header;
246
247 /* Add PRED to the LIVEIN set. PRED_VISITED is true if
248 we had already added PRED to LIVEIN before. */
249 pred_visited = !bitmap_set_bit (live_exits, pred->index);
250
251 /* If we have visited PRED before, don't add it to the worklist.
252 If BB dominates PRED, then we're probably looking at a loop.
253 We're only interested in looking up in the dominance tree
254 because DEF_BB dominates all the uses. */
255 if (pred_visited || dominated_by_p (CDI_DOMINATORS, pred, bb))
256 continue;
257
258 worklist.quick_push (pred);
259 }
260 }
261 worklist.release ();
262
263 def_loop_exits = BITMAP_ALLOC (&loop_renamer_obstack);
264 for (struct loop *loop = def_loop;
265 loop != current_loops->tree_root;
266 loop = loop_outer (loop))
267 bitmap_ior_into (def_loop_exits, loop_exits[loop->num]);
268 bitmap_and_into (live_exits, def_loop_exits);
269 BITMAP_FREE (def_loop_exits);
270 }
271
272 /* Add a loop-closing PHI for VAR in basic block EXIT. */
273
274 static void
275 add_exit_phi (basic_block exit, tree var)
276 {
277 gimple phi;
278 edge e;
279 edge_iterator ei;
280
281 #ifdef ENABLE_CHECKING
282 /* Check that at least one of the edges entering the EXIT block exits
283 the loop, or a superloop of that loop, that VAR is defined in. */
284 gimple def_stmt = SSA_NAME_DEF_STMT (var);
285 basic_block def_bb = gimple_bb (def_stmt);
286 FOR_EACH_EDGE (e, ei, exit->preds)
287 {
288 struct loop *aloop = find_common_loop (def_bb->loop_father,
289 e->src->loop_father);
290 if (!flow_bb_inside_loop_p (aloop, e->dest))
291 break;
292 }
293
294 gcc_checking_assert (e);
295 #endif
296
297 phi = create_phi_node (NULL_TREE, exit);
298 create_new_def_for (var, phi, gimple_phi_result_ptr (phi));
299 FOR_EACH_EDGE (e, ei, exit->preds)
300 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
301
302 if (dump_file && (dump_flags & TDF_DETAILS))
303 {
304 fprintf (dump_file, ";; Created LCSSA PHI: ");
305 print_gimple_stmt (dump_file, phi, 0, dump_flags);
306 }
307 }
308
309 /* Add exit phis for VAR that is used in LIVEIN.
310 Exits of the loops are stored in LOOP_EXITS. */
311
312 static void
313 add_exit_phis_var (tree var, bitmap use_blocks, bitmap *loop_exits)
314 {
315 unsigned index;
316 bitmap_iterator bi;
317 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
318 bitmap live_exits = BITMAP_ALLOC (&loop_renamer_obstack);
319
320 gcc_checking_assert (! bitmap_bit_p (use_blocks, def_bb->index));
321
322 compute_live_loop_exits (live_exits, use_blocks, loop_exits, def_bb);
323
324 EXECUTE_IF_SET_IN_BITMAP (live_exits, 0, index, bi)
325 {
326 add_exit_phi (BASIC_BLOCK (index), var);
327 }
328
329 BITMAP_FREE (live_exits);
330 }
331
332 /* Add exit phis for the names marked in NAMES_TO_RENAME.
333 Exits of the loops are stored in EXITS. Sets of blocks where the ssa
334 names are used are stored in USE_BLOCKS. */
335
336 static void
337 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap *loop_exits)
338 {
339 unsigned i;
340 bitmap_iterator bi;
341
342 EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
343 {
344 add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
345 }
346 }
347
348 /* Fill the array of bitmaps LOOP_EXITS with all loop exit edge targets. */
349
350 static void
351 get_loops_exits (bitmap *loop_exits)
352 {
353 loop_iterator li;
354 struct loop *loop;
355 unsigned j;
356 edge e;
357
358 FOR_EACH_LOOP (li, loop, 0)
359 {
360 vec<edge> exit_edges = get_loop_exit_edges (loop);
361 loop_exits[loop->num] = BITMAP_ALLOC (&loop_renamer_obstack);
362 FOR_EACH_VEC_ELT (exit_edges, j, e)
363 bitmap_set_bit (loop_exits[loop->num], e->dest->index);
364 exit_edges.release ();
365 }
366 }
367
368 /* For USE in BB, if it is used outside of the loop it is defined in,
369 mark it for rewrite. Record basic block BB where it is used
370 to USE_BLOCKS. Record the ssa name index to NEED_PHIS bitmap. */
371
372 static void
373 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
374 bitmap need_phis)
375 {
376 unsigned ver;
377 basic_block def_bb;
378 struct loop *def_loop;
379
380 if (TREE_CODE (use) != SSA_NAME)
381 return;
382
383 ver = SSA_NAME_VERSION (use);
384 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
385 if (!def_bb)
386 return;
387 def_loop = def_bb->loop_father;
388
389 /* If the definition is not inside a loop, it is not interesting. */
390 if (!loop_outer (def_loop))
391 return;
392
393 /* If the use is not outside of the loop it is defined in, it is not
394 interesting. */
395 if (flow_bb_inside_loop_p (def_loop, bb))
396 return;
397
398 /* If we're seeing VER for the first time, we still have to allocate
399 a bitmap for its uses. */
400 if (bitmap_set_bit (need_phis, ver))
401 use_blocks[ver] = BITMAP_ALLOC (&loop_renamer_obstack);
402 bitmap_set_bit (use_blocks[ver], bb->index);
403 }
404
405 /* For uses in STMT, mark names that are used outside of the loop they are
406 defined to rewrite. Record the set of blocks in that the ssa
407 names are defined to USE_BLOCKS and the ssa names themselves to
408 NEED_PHIS. */
409
410 static void
411 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
412 {
413 ssa_op_iter iter;
414 tree var;
415 basic_block bb = gimple_bb (stmt);
416
417 if (is_gimple_debug (stmt))
418 return;
419
420 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
421 find_uses_to_rename_use (bb, var, use_blocks, need_phis);
422 }
423
424 /* Marks names that are used in BB and outside of the loop they are
425 defined in for rewrite. Records the set of blocks in that the ssa
426 names are defined to USE_BLOCKS. Record the SSA names that will
427 need exit PHIs in NEED_PHIS. */
428
429 static void
430 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
431 {
432 gimple_stmt_iterator bsi;
433 edge e;
434 edge_iterator ei;
435
436 FOR_EACH_EDGE (e, ei, bb->succs)
437 for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
438 {
439 gimple phi = gsi_stmt (bsi);
440 if (! virtual_operand_p (gimple_phi_result (phi)))
441 find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (phi, e),
442 use_blocks, need_phis);
443 }
444
445 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
446 find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
447 }
448
449 /* Marks names that are used outside of the loop they are defined in
450 for rewrite. Records the set of blocks in that the ssa
451 names are defined to USE_BLOCKS. If CHANGED_BBS is not NULL,
452 scan only blocks in this set. */
453
454 static void
455 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
456 {
457 basic_block bb;
458 unsigned index;
459 bitmap_iterator bi;
460
461 if (changed_bbs)
462 EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
463 find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis);
464 else
465 FOR_EACH_BB (bb)
466 find_uses_to_rename_bb (bb, use_blocks, need_phis);
467 }
468
469 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
470 phi nodes to ensure that no variable is used outside the loop it is
471 defined in.
472
473 This strengthening of the basic ssa form has several advantages:
474
475 1) Updating it during unrolling/peeling/versioning is trivial, since
476 we do not need to care about the uses outside of the loop.
477 The same applies to virtual operands which are also rewritten into
478 loop closed SSA form. Note that virtual operands are always live
479 until function exit.
480 2) The behavior of all uses of an induction variable is the same.
481 Without this, you need to distinguish the case when the variable
482 is used outside of the loop it is defined in, for example
483
484 for (i = 0; i < 100; i++)
485 {
486 for (j = 0; j < 100; j++)
487 {
488 k = i + j;
489 use1 (k);
490 }
491 use2 (k);
492 }
493
494 Looking from the outer loop with the normal SSA form, the first use of k
495 is not well-behaved, while the second one is an induction variable with
496 base 99 and step 1.
497
498 If CHANGED_BBS is not NULL, we look for uses outside loops only in
499 the basic blocks in this set.
500
501 UPDATE_FLAG is used in the call to update_ssa. See
502 TODO_update_ssa* for documentation. */
503
504 void
505 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
506 {
507 bitmap *use_blocks;
508 bitmap names_to_rename;
509
510 loops_state_set (LOOP_CLOSED_SSA);
511 if (number_of_loops (cfun) <= 1)
512 return;
513
514 /* If the pass has caused the SSA form to be out-of-date, update it
515 now. */
516 update_ssa (update_flag);
517
518 bitmap_obstack_initialize (&loop_renamer_obstack);
519
520 names_to_rename = BITMAP_ALLOC (&loop_renamer_obstack);
521
522 /* Uses of names to rename. We don't have to initialize this array,
523 because we know that we will only have entries for the SSA names
524 in NAMES_TO_RENAME. */
525 use_blocks = XNEWVEC (bitmap, num_ssa_names);
526
527 /* Find the uses outside loops. */
528 find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
529
530 if (!bitmap_empty_p (names_to_rename))
531 {
532 /* An array of bitmaps where LOOP_EXITS[I] is the set of basic blocks
533 that are the destination of an edge exiting loop number I. */
534 bitmap *loop_exits = XNEWVEC (bitmap, number_of_loops (cfun));
535 get_loops_exits (loop_exits);
536
537 /* Add the PHI nodes on exits of the loops for the names we need to
538 rewrite. */
539 add_exit_phis (names_to_rename, use_blocks, loop_exits);
540
541 free (loop_exits);
542
543 /* Fix up all the names found to be used outside their original
544 loops. */
545 update_ssa (TODO_update_ssa);
546 }
547
548 bitmap_obstack_release (&loop_renamer_obstack);
549 free (use_blocks);
550 }
551
552 /* Check invariants of the loop closed ssa form for the USE in BB. */
553
554 static void
555 check_loop_closed_ssa_use (basic_block bb, tree use)
556 {
557 gimple def;
558 basic_block def_bb;
559
560 if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
561 return;
562
563 def = SSA_NAME_DEF_STMT (use);
564 def_bb = gimple_bb (def);
565 gcc_assert (!def_bb
566 || flow_bb_inside_loop_p (def_bb->loop_father, bb));
567 }
568
569 /* Checks invariants of loop closed ssa form in statement STMT in BB. */
570
571 static void
572 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
573 {
574 ssa_op_iter iter;
575 tree var;
576
577 if (is_gimple_debug (stmt))
578 return;
579
580 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
581 check_loop_closed_ssa_use (bb, var);
582 }
583
584 /* Checks that invariants of the loop closed ssa form are preserved.
585 Call verify_ssa when VERIFY_SSA_P is true. */
586
587 DEBUG_FUNCTION void
588 verify_loop_closed_ssa (bool verify_ssa_p)
589 {
590 basic_block bb;
591 gimple_stmt_iterator bsi;
592 gimple phi;
593 edge e;
594 edge_iterator ei;
595
596 if (number_of_loops (cfun) <= 1)
597 return;
598
599 if (verify_ssa_p)
600 verify_ssa (false);
601
602 timevar_push (TV_VERIFY_LOOP_CLOSED);
603
604 FOR_EACH_BB (bb)
605 {
606 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
607 {
608 phi = gsi_stmt (bsi);
609 FOR_EACH_EDGE (e, ei, bb->preds)
610 check_loop_closed_ssa_use (e->src,
611 PHI_ARG_DEF_FROM_EDGE (phi, e));
612 }
613
614 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
615 check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
616 }
617
618 timevar_pop (TV_VERIFY_LOOP_CLOSED);
619 }
620
621 /* Split loop exit edge EXIT. The things are a bit complicated by a need to
622 preserve the loop closed ssa form. The newly created block is returned. */
623
624 basic_block
625 split_loop_exit_edge (edge exit)
626 {
627 basic_block dest = exit->dest;
628 basic_block bb = split_edge (exit);
629 gimple phi, new_phi;
630 tree new_name, name;
631 use_operand_p op_p;
632 gimple_stmt_iterator psi;
633 source_location locus;
634
635 for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
636 {
637 phi = gsi_stmt (psi);
638 op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
639 locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
640
641 name = USE_FROM_PTR (op_p);
642
643 /* If the argument of the PHI node is a constant, we do not need
644 to keep it inside loop. */
645 if (TREE_CODE (name) != SSA_NAME)
646 continue;
647
648 /* Otherwise create an auxiliary phi node that will copy the value
649 of the SSA name out of the loop. */
650 new_name = duplicate_ssa_name (name, NULL);
651 new_phi = create_phi_node (new_name, bb);
652 add_phi_arg (new_phi, name, exit, locus);
653 SET_USE (op_p, new_name);
654 }
655
656 return bb;
657 }
658
659 /* Returns the basic block in that statements should be emitted for induction
660 variables incremented at the end of the LOOP. */
661
662 basic_block
663 ip_end_pos (struct loop *loop)
664 {
665 return loop->latch;
666 }
667
668 /* Returns the basic block in that statements should be emitted for induction
669 variables incremented just before exit condition of a LOOP. */
670
671 basic_block
672 ip_normal_pos (struct loop *loop)
673 {
674 gimple last;
675 basic_block bb;
676 edge exit;
677
678 if (!single_pred_p (loop->latch))
679 return NULL;
680
681 bb = single_pred (loop->latch);
682 last = last_stmt (bb);
683 if (!last
684 || gimple_code (last) != GIMPLE_COND)
685 return NULL;
686
687 exit = EDGE_SUCC (bb, 0);
688 if (exit->dest == loop->latch)
689 exit = EDGE_SUCC (bb, 1);
690
691 if (flow_bb_inside_loop_p (loop, exit->dest))
692 return NULL;
693
694 return bb;
695 }
696
697 /* Stores the standard position for induction variable increment in LOOP
698 (just before the exit condition if it is available and latch block is empty,
699 end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if
700 the increment should be inserted after *BSI. */
701
702 void
703 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
704 bool *insert_after)
705 {
706 basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
707 gimple last = last_stmt (latch);
708
709 if (!bb
710 || (last && gimple_code (last) != GIMPLE_LABEL))
711 {
712 *bsi = gsi_last_bb (latch);
713 *insert_after = true;
714 }
715 else
716 {
717 *bsi = gsi_last_bb (bb);
718 *insert_after = false;
719 }
720 }
721
722 /* Copies phi node arguments for duplicated blocks. The index of the first
723 duplicated block is FIRST_NEW_BLOCK. */
724
725 static void
726 copy_phi_node_args (unsigned first_new_block)
727 {
728 unsigned i;
729
730 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
731 BASIC_BLOCK (i)->flags |= BB_DUPLICATED;
732
733 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
734 add_phi_args_after_copy_bb (BASIC_BLOCK (i));
735
736 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
737 BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED;
738 }
739
740
741 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
742 updates the PHI nodes at start of the copied region. In order to
743 achieve this, only loops whose exits all lead to the same location
744 are handled.
745
746 Notice that we do not completely update the SSA web after
747 duplication. The caller is responsible for calling update_ssa
748 after the loop has been duplicated. */
749
750 bool
751 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
752 unsigned int ndupl, sbitmap wont_exit,
753 edge orig, vec<edge> *to_remove,
754 int flags)
755 {
756 unsigned first_new_block;
757
758 if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
759 return false;
760 if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
761 return false;
762
763 #ifdef ENABLE_CHECKING
764 /* ??? This forces needless update_ssa calls after processing each
765 loop instead of just once after processing all loops. We should
766 instead verify that loop-closed SSA form is up-to-date for LOOP
767 only (and possibly SSA form). For now just skip verifying if
768 there are to-be renamed variables. */
769 if (!need_ssa_update_p (cfun)
770 && loops_state_satisfies_p (LOOP_CLOSED_SSA))
771 verify_loop_closed_ssa (true);
772 #endif
773
774 first_new_block = last_basic_block;
775 if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
776 orig, to_remove, flags))
777 return false;
778
779 /* Readd the removed phi args for e. */
780 flush_pending_stmts (e);
781
782 /* Copy the phi node arguments. */
783 copy_phi_node_args (first_new_block);
784
785 scev_reset ();
786
787 return true;
788 }
789
790 /* Returns true if we can unroll LOOP FACTOR times. Number
791 of iterations of the loop is returned in NITER. */
792
793 bool
794 can_unroll_loop_p (struct loop *loop, unsigned factor,
795 struct tree_niter_desc *niter)
796 {
797 edge exit;
798
799 /* Check whether unrolling is possible. We only want to unroll loops
800 for that we are able to determine number of iterations. We also
801 want to split the extra iterations of the loop from its end,
802 therefore we require that the loop has precisely one
803 exit. */
804
805 exit = single_dom_exit (loop);
806 if (!exit)
807 return false;
808
809 if (!number_of_iterations_exit (loop, exit, niter, false)
810 || niter->cmp == ERROR_MARK
811 /* Scalar evolutions analysis might have copy propagated
812 the abnormal ssa names into these expressions, hence
813 emitting the computations based on them during loop
814 unrolling might create overlapping life ranges for
815 them, and failures in out-of-ssa. */
816 || contains_abnormal_ssa_name_p (niter->may_be_zero)
817 || contains_abnormal_ssa_name_p (niter->control.base)
818 || contains_abnormal_ssa_name_p (niter->control.step)
819 || contains_abnormal_ssa_name_p (niter->bound))
820 return false;
821
822 /* And of course, we must be able to duplicate the loop. */
823 if (!can_duplicate_loop_p (loop))
824 return false;
825
826 /* The final loop should be small enough. */
827 if (tree_num_loop_insns (loop, &eni_size_weights) * factor
828 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
829 return false;
830
831 return true;
832 }
833
834 /* Determines the conditions that control execution of LOOP unrolled FACTOR
835 times. DESC is number of iterations of LOOP. ENTER_COND is set to
836 condition that must be true if the main loop can be entered.
837 EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
838 how the exit from the unrolled loop should be controlled. */
839
840 static void
841 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
842 unsigned factor, tree *enter_cond,
843 tree *exit_base, tree *exit_step,
844 enum tree_code *exit_cmp, tree *exit_bound)
845 {
846 gimple_seq stmts;
847 tree base = desc->control.base;
848 tree step = desc->control.step;
849 tree bound = desc->bound;
850 tree type = TREE_TYPE (step);
851 tree bigstep, delta;
852 tree min = lower_bound_in_type (type, type);
853 tree max = upper_bound_in_type (type, type);
854 enum tree_code cmp = desc->cmp;
855 tree cond = boolean_true_node, assum;
856
857 /* For pointers, do the arithmetics in the type of step. */
858 base = fold_convert (type, base);
859 bound = fold_convert (type, bound);
860
861 *enter_cond = boolean_false_node;
862 *exit_base = NULL_TREE;
863 *exit_step = NULL_TREE;
864 *exit_cmp = ERROR_MARK;
865 *exit_bound = NULL_TREE;
866 gcc_assert (cmp != ERROR_MARK);
867
868 /* We only need to be correct when we answer question
869 "Do at least FACTOR more iterations remain?" in the unrolled loop.
870 Thus, transforming BASE + STEP * i <> BOUND to
871 BASE + STEP * i < BOUND is ok. */
872 if (cmp == NE_EXPR)
873 {
874 if (tree_int_cst_sign_bit (step))
875 cmp = GT_EXPR;
876 else
877 cmp = LT_EXPR;
878 }
879 else if (cmp == LT_EXPR)
880 {
881 gcc_assert (!tree_int_cst_sign_bit (step));
882 }
883 else if (cmp == GT_EXPR)
884 {
885 gcc_assert (tree_int_cst_sign_bit (step));
886 }
887 else
888 gcc_unreachable ();
889
890 /* The main body of the loop may be entered iff:
891
892 1) desc->may_be_zero is false.
893 2) it is possible to check that there are at least FACTOR iterations
894 of the loop, i.e., BOUND - step * FACTOR does not overflow.
895 3) # of iterations is at least FACTOR */
896
897 if (!integer_zerop (desc->may_be_zero))
898 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
899 invert_truthvalue (desc->may_be_zero),
900 cond);
901
902 bigstep = fold_build2 (MULT_EXPR, type, step,
903 build_int_cst_type (type, factor));
904 delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
905 if (cmp == LT_EXPR)
906 assum = fold_build2 (GE_EXPR, boolean_type_node,
907 bound,
908 fold_build2 (PLUS_EXPR, type, min, delta));
909 else
910 assum = fold_build2 (LE_EXPR, boolean_type_node,
911 bound,
912 fold_build2 (PLUS_EXPR, type, max, delta));
913 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
914
915 bound = fold_build2 (MINUS_EXPR, type, bound, delta);
916 assum = fold_build2 (cmp, boolean_type_node, base, bound);
917 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
918
919 cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
920 if (stmts)
921 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
922 /* cond now may be a gimple comparison, which would be OK, but also any
923 other gimple rhs (say a && b). In this case we need to force it to
924 operand. */
925 if (!is_gimple_condexpr (cond))
926 {
927 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
928 if (stmts)
929 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
930 }
931 *enter_cond = cond;
932
933 base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
934 if (stmts)
935 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
936 bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
937 if (stmts)
938 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
939
940 *exit_base = base;
941 *exit_step = bigstep;
942 *exit_cmp = cmp;
943 *exit_bound = bound;
944 }
945
946 /* Scales the frequencies of all basic blocks in LOOP that are strictly
947 dominated by BB by NUM/DEN. */
948
949 static void
950 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
951 int num, int den)
952 {
953 basic_block son;
954
955 if (den == 0)
956 return;
957
958 for (son = first_dom_son (CDI_DOMINATORS, bb);
959 son;
960 son = next_dom_son (CDI_DOMINATORS, son))
961 {
962 if (!flow_bb_inside_loop_p (loop, son))
963 continue;
964 scale_bbs_frequencies_int (&son, 1, num, den);
965 scale_dominated_blocks_in_loop (loop, son, num, den);
966 }
967 }
968
969 /* Unroll LOOP FACTOR times. DESC describes number of iterations of LOOP.
970 EXIT is the exit of the loop to that DESC corresponds.
971
972 If N is number of iterations of the loop and MAY_BE_ZERO is the condition
973 under that loop exits in the first iteration even if N != 0,
974
975 while (1)
976 {
977 x = phi (init, next);
978
979 pre;
980 if (st)
981 break;
982 post;
983 }
984
985 becomes (with possibly the exit conditions formulated a bit differently,
986 avoiding the need to create a new iv):
987
988 if (MAY_BE_ZERO || N < FACTOR)
989 goto rest;
990
991 do
992 {
993 x = phi (init, next);
994
995 pre;
996 post;
997 pre;
998 post;
999 ...
1000 pre;
1001 post;
1002 N -= FACTOR;
1003
1004 } while (N >= FACTOR);
1005
1006 rest:
1007 init' = phi (init, x);
1008
1009 while (1)
1010 {
1011 x = phi (init', next);
1012
1013 pre;
1014 if (st)
1015 break;
1016 post;
1017 }
1018
1019 Before the loop is unrolled, TRANSFORM is called for it (only for the
1020 unrolled loop, but not for its versioned copy). DATA is passed to
1021 TRANSFORM. */
1022
1023 /* Probability in % that the unrolled loop is entered. Just a guess. */
1024 #define PROB_UNROLLED_LOOP_ENTERED 90
1025
1026 void
1027 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
1028 edge exit, struct tree_niter_desc *desc,
1029 transform_callback transform,
1030 void *data)
1031 {
1032 gimple exit_if;
1033 tree ctr_before, ctr_after;
1034 tree enter_main_cond, exit_base, exit_step, exit_bound;
1035 enum tree_code exit_cmp;
1036 gimple phi_old_loop, phi_new_loop, phi_rest;
1037 gimple_stmt_iterator psi_old_loop, psi_new_loop;
1038 tree init, next, new_init;
1039 struct loop *new_loop;
1040 basic_block rest, exit_bb;
1041 edge old_entry, new_entry, old_latch, precond_edge, new_exit;
1042 edge new_nonexit, e;
1043 gimple_stmt_iterator bsi;
1044 use_operand_p op;
1045 bool ok;
1046 unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
1047 unsigned new_est_niter, i, prob;
1048 unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1049 sbitmap wont_exit;
1050 vec<edge> to_remove = vNULL;
1051
1052 est_niter = expected_loop_iterations (loop);
1053 determine_exit_conditions (loop, desc, factor,
1054 &enter_main_cond, &exit_base, &exit_step,
1055 &exit_cmp, &exit_bound);
1056
1057 /* Let us assume that the unrolled loop is quite likely to be entered. */
1058 if (integer_nonzerop (enter_main_cond))
1059 prob_entry = REG_BR_PROB_BASE;
1060 else
1061 prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
1062
1063 /* The values for scales should keep profile consistent, and somewhat close
1064 to correct.
1065
1066 TODO: The current value of SCALE_REST makes it appear that the loop that
1067 is created by splitting the remaining iterations of the unrolled loop is
1068 executed the same number of times as the original loop, and with the same
1069 frequencies, which is obviously wrong. This does not appear to cause
1070 problems, so we do not bother with fixing it for now. To make the profile
1071 correct, we would need to change the probability of the exit edge of the
1072 loop, and recompute the distribution of frequencies in its body because
1073 of this change (scale the frequencies of blocks before and after the exit
1074 by appropriate factors). */
1075 scale_unrolled = prob_entry;
1076 scale_rest = REG_BR_PROB_BASE;
1077
1078 new_loop = loop_version (loop, enter_main_cond, NULL,
1079 prob_entry, scale_unrolled, scale_rest, true);
1080 gcc_assert (new_loop != NULL);
1081 update_ssa (TODO_update_ssa);
1082
1083 /* Determine the probability of the exit edge of the unrolled loop. */
1084 new_est_niter = est_niter / factor;
1085
1086 /* Without profile feedback, loops for that we do not know a better estimate
1087 are assumed to roll 10 times. When we unroll such loop, it appears to
1088 roll too little, and it may even seem to be cold. To avoid this, we
1089 ensure that the created loop appears to roll at least 5 times (but at
1090 most as many times as before unrolling). */
1091 if (new_est_niter < 5)
1092 {
1093 if (est_niter < 5)
1094 new_est_niter = est_niter;
1095 else
1096 new_est_niter = 5;
1097 }
1098
1099 /* Prepare the cfg and update the phi nodes. Move the loop exit to the
1100 loop latch (and make its condition dummy, for the moment). */
1101 rest = loop_preheader_edge (new_loop)->src;
1102 precond_edge = single_pred_edge (rest);
1103 split_edge (loop_latch_edge (loop));
1104 exit_bb = single_pred (loop->latch);
1105
1106 /* Since the exit edge will be removed, the frequency of all the blocks
1107 in the loop that are dominated by it must be scaled by
1108 1 / (1 - exit->probability). */
1109 scale_dominated_blocks_in_loop (loop, exit->src,
1110 REG_BR_PROB_BASE,
1111 REG_BR_PROB_BASE - exit->probability);
1112
1113 bsi = gsi_last_bb (exit_bb);
1114 exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
1115 integer_zero_node,
1116 NULL_TREE, NULL_TREE);
1117
1118 gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
1119 new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
1120 rescan_loop_exit (new_exit, true, false);
1121
1122 /* Set the probability of new exit to the same of the old one. Fix
1123 the frequency of the latch block, by scaling it back by
1124 1 - exit->probability. */
1125 new_exit->count = exit->count;
1126 new_exit->probability = exit->probability;
1127 new_nonexit = single_pred_edge (loop->latch);
1128 new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
1129 new_nonexit->flags = EDGE_TRUE_VALUE;
1130 new_nonexit->count -= exit->count;
1131 if (new_nonexit->count < 0)
1132 new_nonexit->count = 0;
1133 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1134 REG_BR_PROB_BASE);
1135
1136 old_entry = loop_preheader_edge (loop);
1137 new_entry = loop_preheader_edge (new_loop);
1138 old_latch = loop_latch_edge (loop);
1139 for (psi_old_loop = gsi_start_phis (loop->header),
1140 psi_new_loop = gsi_start_phis (new_loop->header);
1141 !gsi_end_p (psi_old_loop);
1142 gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
1143 {
1144 phi_old_loop = gsi_stmt (psi_old_loop);
1145 phi_new_loop = gsi_stmt (psi_new_loop);
1146
1147 init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
1148 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
1149 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
1150 next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
1151
1152 /* Prefer using original variable as a base for the new ssa name.
1153 This is necessary for virtual ops, and useful in order to avoid
1154 losing debug info for real ops. */
1155 if (TREE_CODE (next) == SSA_NAME
1156 && useless_type_conversion_p (TREE_TYPE (next),
1157 TREE_TYPE (init)))
1158 new_init = copy_ssa_name (next, NULL);
1159 else if (TREE_CODE (init) == SSA_NAME
1160 && useless_type_conversion_p (TREE_TYPE (init),
1161 TREE_TYPE (next)))
1162 new_init = copy_ssa_name (init, NULL);
1163 else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
1164 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, "unrinittmp");
1165 else
1166 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, "unrinittmp");
1167
1168 phi_rest = create_phi_node (new_init, rest);
1169
1170 add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
1171 add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
1172 SET_USE (op, new_init);
1173 }
1174
1175 remove_path (exit);
1176
1177 /* Transform the loop. */
1178 if (transform)
1179 (*transform) (loop, data);
1180
1181 /* Unroll the loop and remove the exits in all iterations except for the
1182 last one. */
1183 wont_exit = sbitmap_alloc (factor);
1184 bitmap_ones (wont_exit);
1185 bitmap_clear_bit (wont_exit, factor - 1);
1186
1187 ok = gimple_duplicate_loop_to_header_edge
1188 (loop, loop_latch_edge (loop), factor - 1,
1189 wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
1190 free (wont_exit);
1191 gcc_assert (ok);
1192
1193 FOR_EACH_VEC_ELT (to_remove, i, e)
1194 {
1195 ok = remove_path (e);
1196 gcc_assert (ok);
1197 }
1198 to_remove.release ();
1199 update_ssa (TODO_update_ssa);
1200
1201 /* Ensure that the frequencies in the loop match the new estimated
1202 number of iterations, and change the probability of the new
1203 exit edge. */
1204 freq_h = loop->header->frequency;
1205 freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
1206 if (freq_h != 0)
1207 scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
1208
1209 exit_bb = single_pred (loop->latch);
1210 new_exit = find_edge (exit_bb, rest);
1211 new_exit->count = loop_preheader_edge (loop)->count;
1212 new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
1213
1214 rest->count += new_exit->count;
1215 rest->frequency += EDGE_FREQUENCY (new_exit);
1216
1217 new_nonexit = single_pred_edge (loop->latch);
1218 prob = new_nonexit->probability;
1219 new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
1220 new_nonexit->count = exit_bb->count - new_exit->count;
1221 if (new_nonexit->count < 0)
1222 new_nonexit->count = 0;
1223 if (prob > 0)
1224 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1225 prob);
1226
1227 /* Finally create the new counter for number of iterations and add the new
1228 exit instruction. */
1229 bsi = gsi_last_nondebug_bb (exit_bb);
1230 exit_if = gsi_stmt (bsi);
1231 create_iv (exit_base, exit_step, NULL_TREE, loop,
1232 &bsi, false, &ctr_before, &ctr_after);
1233 gimple_cond_set_code (exit_if, exit_cmp);
1234 gimple_cond_set_lhs (exit_if, ctr_after);
1235 gimple_cond_set_rhs (exit_if, exit_bound);
1236 update_stmt (exit_if);
1237
1238 #ifdef ENABLE_CHECKING
1239 verify_flow_info ();
1240 verify_loop_structure ();
1241 verify_loop_closed_ssa (true);
1242 #endif
1243 }
1244
1245 /* Wrapper over tree_transform_and_unroll_loop for case we do not
1246 want to transform the loop before unrolling. The meaning
1247 of the arguments is the same as for tree_transform_and_unroll_loop. */
1248
1249 void
1250 tree_unroll_loop (struct loop *loop, unsigned factor,
1251 edge exit, struct tree_niter_desc *desc)
1252 {
1253 tree_transform_and_unroll_loop (loop, factor, exit, desc,
1254 NULL, NULL);
1255 }
1256
1257 /* Rewrite the phi node at position PSI in function of the main
1258 induction variable MAIN_IV and insert the generated code at GSI. */
1259
1260 static void
1261 rewrite_phi_with_iv (loop_p loop,
1262 gimple_stmt_iterator *psi,
1263 gimple_stmt_iterator *gsi,
1264 tree main_iv)
1265 {
1266 affine_iv iv;
1267 gimple stmt, phi = gsi_stmt (*psi);
1268 tree atype, mtype, val, res = PHI_RESULT (phi);
1269
1270 if (virtual_operand_p (res) || res == main_iv)
1271 {
1272 gsi_next (psi);
1273 return;
1274 }
1275
1276 if (!simple_iv (loop, loop, res, &iv, true))
1277 {
1278 gsi_next (psi);
1279 return;
1280 }
1281
1282 remove_phi_node (psi, false);
1283
1284 atype = TREE_TYPE (res);
1285 mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1286 val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1287 fold_convert (mtype, main_iv));
1288 val = fold_build2 (POINTER_TYPE_P (atype)
1289 ? POINTER_PLUS_EXPR : PLUS_EXPR,
1290 atype, unshare_expr (iv.base), val);
1291 val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
1292 GSI_SAME_STMT);
1293 stmt = gimple_build_assign (res, val);
1294 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1295 }
1296
1297 /* Rewrite all the phi nodes of LOOP in function of the main induction
1298 variable MAIN_IV. */
1299
1300 static void
1301 rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
1302 {
1303 unsigned i;
1304 basic_block *bbs = get_loop_body_in_dom_order (loop);
1305 gimple_stmt_iterator psi;
1306
1307 for (i = 0; i < loop->num_nodes; i++)
1308 {
1309 basic_block bb = bbs[i];
1310 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1311
1312 if (bb->loop_father != loop)
1313 continue;
1314
1315 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
1316 rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
1317 }
1318
1319 free (bbs);
1320 }
1321
1322 /* Bases all the induction variables in LOOP on a single induction
1323 variable (unsigned with base 0 and step 1), whose final value is
1324 compared with *NIT. When the IV type precision has to be larger
1325 than *NIT type precision, *NIT is converted to the larger type, the
1326 conversion code is inserted before the loop, and *NIT is updated to
1327 the new definition. When BUMP_IN_LATCH is true, the induction
1328 variable is incremented in the loop latch, otherwise it is
1329 incremented in the loop header. Return the induction variable that
1330 was created. */
1331
1332 tree
1333 canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
1334 {
1335 unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1336 unsigned original_precision = precision;
1337 tree type, var_before;
1338 gimple_stmt_iterator gsi, psi;
1339 gimple stmt;
1340 edge exit = single_dom_exit (loop);
1341 gimple_seq stmts;
1342 enum machine_mode mode;
1343 bool unsigned_p = false;
1344
1345 for (psi = gsi_start_phis (loop->header);
1346 !gsi_end_p (psi); gsi_next (&psi))
1347 {
1348 gimple phi = gsi_stmt (psi);
1349 tree res = PHI_RESULT (phi);
1350 bool uns;
1351
1352 type = TREE_TYPE (res);
1353 if (virtual_operand_p (res)
1354 || (!INTEGRAL_TYPE_P (type)
1355 && !POINTER_TYPE_P (type))
1356 || TYPE_PRECISION (type) < precision)
1357 continue;
1358
1359 uns = POINTER_TYPE_P (type) | TYPE_UNSIGNED (type);
1360
1361 if (TYPE_PRECISION (type) > precision)
1362 unsigned_p = uns;
1363 else
1364 unsigned_p |= uns;
1365
1366 precision = TYPE_PRECISION (type);
1367 }
1368
1369 mode = smallest_mode_for_size (precision, MODE_INT);
1370 precision = GET_MODE_PRECISION (mode);
1371 type = build_nonstandard_integer_type (precision, unsigned_p);
1372
1373 if (original_precision != precision)
1374 {
1375 *nit = fold_convert (type, *nit);
1376 *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1377 if (stmts)
1378 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1379 }
1380
1381 if (bump_in_latch)
1382 gsi = gsi_last_bb (loop->latch);
1383 else
1384 gsi = gsi_last_nondebug_bb (loop->header);
1385 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1386 loop, &gsi, bump_in_latch, &var_before, NULL);
1387
1388 rewrite_all_phi_nodes_with_iv (loop, var_before);
1389
1390 stmt = last_stmt (exit->src);
1391 /* Make the loop exit if the control condition is not satisfied. */
1392 if (exit->flags & EDGE_TRUE_VALUE)
1393 {
1394 edge te, fe;
1395
1396 extract_true_false_edges_from_block (exit->src, &te, &fe);
1397 te->flags = EDGE_FALSE_VALUE;
1398 fe->flags = EDGE_TRUE_VALUE;
1399 }
1400 gimple_cond_set_code (stmt, LT_EXPR);
1401 gimple_cond_set_lhs (stmt, var_before);
1402 gimple_cond_set_rhs (stmt, *nit);
1403 update_stmt (stmt);
1404
1405 return var_before;
1406 }