]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-prefetch.c
* output.h (__gcc_host_wide_int__): Move to hwint.h.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "tree-pretty-print.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "timevar.h"
32 #include "cfgloop.h"
33 #include "tree-pass.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "hashtab.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "diagnostic-core.h"
40 #include "params.h"
41 #include "langhooks.h"
42 #include "tree-inline.h"
43 #include "tree-data-ref.h"
44
45
46 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
47 between the GIMPLE and RTL worlds. */
48 #include "expr.h"
49 #include "optabs.h"
50
51 /* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
53
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
63
64 char *a;
65 for (i = 0; i < max; i++)
66 {
67 a[255] = ...; (0)
68 a[i] = ...; (1)
69 a[i + 64] = ...; (2)
70 a[16*i] = ...; (3)
71 a[187*i] = ...; (4)
72 a[187*i + 50] = ...; (5)
73 }
74
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (5) is the same with probability only
83 7/32.
84 (5) has PREFETCH_MOD 1 as well.
85
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
89
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
95
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
101 misses).
102
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
107
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
111
112 A cost model is implemented to determine whether or not prefetching is
113 profitable for a given loop. The cost model has three heuristics:
114
115 1. Function trip_count_to_ahead_ratio_too_small_p implements a
116 heuristic that determines whether or not the loop has too few
117 iterations (compared to ahead). Prefetching is not likely to be
118 beneficial if the trip count to ahead ratio is below a certain
119 minimum.
120
121 2. Function mem_ref_count_reasonable_p implements a heuristic that
122 determines whether the given loop has enough CPU ops that can be
123 overlapped with cache missing memory ops. If not, the loop
124 won't benefit from prefetching. In the implementation,
125 prefetching is not considered beneficial if the ratio between
126 the instruction count and the mem ref count is below a certain
127 minimum.
128
129 3. Function insn_to_prefetch_ratio_too_small_p implements a
130 heuristic that disables prefetching in a loop if the prefetching
131 cost is above a certain limit. The relative prefetching cost is
132 estimated by taking the ratio between the prefetch count and the
133 total intruction count (this models the I-cache cost).
134
135 The limits used in these heuristics are defined as parameters with
136 reasonable default values. Machine-specific default values will be
137 added later.
138
139 Some other TODO:
140 -- write and use more general reuse analysis (that could be also used
141 in other cache aimed loop optimizations)
142 -- make it behave sanely together with the prefetches given by user
143 (now we just ignore them; at the very least we should avoid
144 optimizing loops in that user put his own prefetches)
145 -- we assume cache line size alignment of arrays; this could be
146 improved. */
147
148 /* Magic constants follow. These should be replaced by machine specific
149 numbers. */
150
151 /* True if write can be prefetched by a read prefetch. */
152
153 #ifndef WRITE_CAN_USE_READ_PREFETCH
154 #define WRITE_CAN_USE_READ_PREFETCH 1
155 #endif
156
157 /* True if read can be prefetched by a write prefetch. */
158
159 #ifndef READ_CAN_USE_WRITE_PREFETCH
160 #define READ_CAN_USE_WRITE_PREFETCH 0
161 #endif
162
163 /* The size of the block loaded by a single prefetch. Usually, this is
164 the same as cache line size (at the moment, we only consider one level
165 of cache hierarchy). */
166
167 #ifndef PREFETCH_BLOCK
168 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
169 #endif
170
171 /* Do we have a forward hardware sequential prefetching? */
172
173 #ifndef HAVE_FORWARD_PREFETCH
174 #define HAVE_FORWARD_PREFETCH 0
175 #endif
176
177 /* Do we have a backward hardware sequential prefetching? */
178
179 #ifndef HAVE_BACKWARD_PREFETCH
180 #define HAVE_BACKWARD_PREFETCH 0
181 #endif
182
183 /* In some cases we are only able to determine that there is a certain
184 probability that the two accesses hit the same cache line. In this
185 case, we issue the prefetches for both of them if this probability
186 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
187
188 #ifndef ACCEPTABLE_MISS_RATE
189 #define ACCEPTABLE_MISS_RATE 50
190 #endif
191
192 #ifndef HAVE_prefetch
193 #define HAVE_prefetch 0
194 #endif
195
196 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
197 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
198
199 /* We consider a memory access nontemporal if it is not reused sooner than
200 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
201 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
202 so that we use nontemporal prefetches e.g. if single memory location
203 is accessed several times in a single iteration of the loop. */
204 #define NONTEMPORAL_FRACTION 16
205
206 /* In case we have to emit a memory fence instruction after the loop that
207 uses nontemporal stores, this defines the builtin to use. */
208
209 #ifndef FENCE_FOLLOWING_MOVNT
210 #define FENCE_FOLLOWING_MOVNT NULL_TREE
211 #endif
212
213 /* It is not profitable to prefetch when the trip count is not at
214 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
215 For example, in a loop with a prefetch ahead distance of 10,
216 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
217 profitable to prefetch when the trip count is greater or equal to
218 40. In that case, 30 out of the 40 iterations will benefit from
219 prefetching. */
220
221 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
222 #define TRIP_COUNT_TO_AHEAD_RATIO 4
223 #endif
224
225 /* The group of references between that reuse may occur. */
226
227 struct mem_ref_group
228 {
229 tree base; /* Base of the reference. */
230 tree step; /* Step of the reference. */
231 struct mem_ref *refs; /* References in the group. */
232 struct mem_ref_group *next; /* Next group of references. */
233 };
234
235 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
236
237 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
238
239 /* Do not generate a prefetch if the unroll factor is significantly less
240 than what is required by the prefetch. This is to avoid redundant
241 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
242 2, prefetching requires unrolling the loop 16 times, but
243 the loop is actually unrolled twice. In this case (ratio = 8),
244 prefetching is not likely to be beneficial. */
245
246 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
247 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
248 #endif
249
250 /* Some of the prefetch computations have quadratic complexity. We want to
251 avoid huge compile times and, therefore, want to limit the amount of
252 memory references per loop where we consider prefetching. */
253
254 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
255 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
256 #endif
257
258 /* The memory reference. */
259
260 struct mem_ref
261 {
262 gimple stmt; /* Statement in that the reference appears. */
263 tree mem; /* The reference. */
264 HOST_WIDE_INT delta; /* Constant offset of the reference. */
265 struct mem_ref_group *group; /* The group of references it belongs to. */
266 unsigned HOST_WIDE_INT prefetch_mod;
267 /* Prefetch only each PREFETCH_MOD-th
268 iteration. */
269 unsigned HOST_WIDE_INT prefetch_before;
270 /* Prefetch only first PREFETCH_BEFORE
271 iterations. */
272 unsigned reuse_distance; /* The amount of data accessed before the first
273 reuse of this value. */
274 struct mem_ref *next; /* The next reference in the group. */
275 unsigned write_p : 1; /* Is it a write? */
276 unsigned independent_p : 1; /* True if the reference is independent on
277 all other references inside the loop. */
278 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
279 unsigned storent_p : 1; /* True if we changed the store to a
280 nontemporal one. */
281 };
282
283 /* Dumps information about reference REF to FILE. */
284
285 static void
286 dump_mem_ref (FILE *file, struct mem_ref *ref)
287 {
288 fprintf (file, "Reference %p:\n", (void *) ref);
289
290 fprintf (file, " group %p (base ", (void *) ref->group);
291 print_generic_expr (file, ref->group->base, TDF_SLIM);
292 fprintf (file, ", step ");
293 if (cst_and_fits_in_hwi (ref->group->step))
294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
295 else
296 print_generic_expr (file, ref->group->step, TDF_TREE);
297 fprintf (file, ")\n");
298
299 fprintf (file, " delta ");
300 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
301 fprintf (file, "\n");
302
303 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
304
305 fprintf (file, "\n");
306 }
307
308 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
309 exist. */
310
311 static struct mem_ref_group *
312 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
313 {
314 struct mem_ref_group *group;
315
316 for (; *groups; groups = &(*groups)->next)
317 {
318 if (operand_equal_p ((*groups)->step, step, 0)
319 && operand_equal_p ((*groups)->base, base, 0))
320 return *groups;
321
322 /* If step is an integer constant, keep the list of groups sorted
323 by decreasing step. */
324 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
325 && int_cst_value ((*groups)->step) < int_cst_value (step))
326 break;
327 }
328
329 group = XNEW (struct mem_ref_group);
330 group->base = base;
331 group->step = step;
332 group->refs = NULL;
333 group->next = *groups;
334 *groups = group;
335
336 return group;
337 }
338
339 /* Records a memory reference MEM in GROUP with offset DELTA and write status
340 WRITE_P. The reference occurs in statement STMT. */
341
342 static void
343 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
344 HOST_WIDE_INT delta, bool write_p)
345 {
346 struct mem_ref **aref;
347
348 /* Do not record the same address twice. */
349 for (aref = &group->refs; *aref; aref = &(*aref)->next)
350 {
351 /* It does not have to be possible for write reference to reuse the read
352 prefetch, or vice versa. */
353 if (!WRITE_CAN_USE_READ_PREFETCH
354 && write_p
355 && !(*aref)->write_p)
356 continue;
357 if (!READ_CAN_USE_WRITE_PREFETCH
358 && !write_p
359 && (*aref)->write_p)
360 continue;
361
362 if ((*aref)->delta == delta)
363 return;
364 }
365
366 (*aref) = XNEW (struct mem_ref);
367 (*aref)->stmt = stmt;
368 (*aref)->mem = mem;
369 (*aref)->delta = delta;
370 (*aref)->write_p = write_p;
371 (*aref)->prefetch_before = PREFETCH_ALL;
372 (*aref)->prefetch_mod = 1;
373 (*aref)->reuse_distance = 0;
374 (*aref)->issue_prefetch_p = false;
375 (*aref)->group = group;
376 (*aref)->next = NULL;
377 (*aref)->independent_p = false;
378 (*aref)->storent_p = false;
379
380 if (dump_file && (dump_flags & TDF_DETAILS))
381 dump_mem_ref (dump_file, *aref);
382 }
383
384 /* Release memory references in GROUPS. */
385
386 static void
387 release_mem_refs (struct mem_ref_group *groups)
388 {
389 struct mem_ref_group *next_g;
390 struct mem_ref *ref, *next_r;
391
392 for (; groups; groups = next_g)
393 {
394 next_g = groups->next;
395 for (ref = groups->refs; ref; ref = next_r)
396 {
397 next_r = ref->next;
398 free (ref);
399 }
400 free (groups);
401 }
402 }
403
404 /* A structure used to pass arguments to idx_analyze_ref. */
405
406 struct ar_data
407 {
408 struct loop *loop; /* Loop of the reference. */
409 gimple stmt; /* Statement of the reference. */
410 tree *step; /* Step of the memory reference. */
411 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
412 };
413
414 /* Analyzes a single INDEX of a memory reference to obtain information
415 described at analyze_ref. Callback for for_each_index. */
416
417 static bool
418 idx_analyze_ref (tree base, tree *index, void *data)
419 {
420 struct ar_data *ar_data = (struct ar_data *) data;
421 tree ibase, step, stepsize;
422 HOST_WIDE_INT idelta = 0, imult = 1;
423 affine_iv iv;
424
425 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
426 *index, &iv, true))
427 return false;
428 ibase = iv.base;
429 step = iv.step;
430
431 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
432 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
433 {
434 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
435 ibase = TREE_OPERAND (ibase, 0);
436 }
437 if (cst_and_fits_in_hwi (ibase))
438 {
439 idelta += int_cst_value (ibase);
440 ibase = build_int_cst (TREE_TYPE (ibase), 0);
441 }
442
443 if (TREE_CODE (base) == ARRAY_REF)
444 {
445 stepsize = array_ref_element_size (base);
446 if (!cst_and_fits_in_hwi (stepsize))
447 return false;
448 imult = int_cst_value (stepsize);
449 step = fold_build2 (MULT_EXPR, sizetype,
450 fold_convert (sizetype, step),
451 fold_convert (sizetype, stepsize));
452 idelta *= imult;
453 }
454
455 if (*ar_data->step == NULL_TREE)
456 *ar_data->step = step;
457 else
458 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
459 fold_convert (sizetype, *ar_data->step),
460 fold_convert (sizetype, step));
461 *ar_data->delta += idelta;
462 *index = ibase;
463
464 return true;
465 }
466
467 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
468 STEP are integer constants and iter is number of iterations of LOOP. The
469 reference occurs in statement STMT. Strips nonaddressable component
470 references from REF_P. */
471
472 static bool
473 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
474 tree *step, HOST_WIDE_INT *delta,
475 gimple stmt)
476 {
477 struct ar_data ar_data;
478 tree off;
479 HOST_WIDE_INT bit_offset;
480 tree ref = *ref_p;
481
482 *step = NULL_TREE;
483 *delta = 0;
484
485 /* First strip off the component references. Ignore bitfields.
486 Also strip off the real and imagine parts of a complex, so that
487 they can have the same base. */
488 if (TREE_CODE (ref) == REALPART_EXPR
489 || TREE_CODE (ref) == IMAGPART_EXPR
490 || (TREE_CODE (ref) == COMPONENT_REF
491 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
492 {
493 if (TREE_CODE (ref) == IMAGPART_EXPR)
494 *delta += int_size_in_bytes (TREE_TYPE (ref));
495 ref = TREE_OPERAND (ref, 0);
496 }
497
498 *ref_p = ref;
499
500 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
501 {
502 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
503 bit_offset = TREE_INT_CST_LOW (off);
504 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
505
506 *delta += bit_offset / BITS_PER_UNIT;
507 }
508
509 *base = unshare_expr (ref);
510 ar_data.loop = loop;
511 ar_data.stmt = stmt;
512 ar_data.step = step;
513 ar_data.delta = delta;
514 return for_each_index (base, idx_analyze_ref, &ar_data);
515 }
516
517 /* Record a memory reference REF to the list REFS. The reference occurs in
518 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
519 reference was recorded, false otherwise. */
520
521 static bool
522 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
523 tree ref, bool write_p, gimple stmt)
524 {
525 tree base, step;
526 HOST_WIDE_INT delta;
527 struct mem_ref_group *agrp;
528
529 if (get_base_address (ref) == NULL)
530 return false;
531
532 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
533 return false;
534 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
535 if (step == NULL_TREE)
536 return false;
537
538 /* Stop if the address of BASE could not be taken. */
539 if (may_be_nonaddressable_p (base))
540 return false;
541
542 /* Limit non-constant step prefetching only to the innermost loops. */
543 if (!cst_and_fits_in_hwi (step) && loop->inner != NULL)
544 return false;
545
546 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
547 are integer constants. */
548 agrp = find_or_create_group (refs, base, step);
549 record_ref (agrp, stmt, ref, delta, write_p);
550
551 return true;
552 }
553
554 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
555 true if there are no other memory references inside the loop. */
556
557 static struct mem_ref_group *
558 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
559 {
560 basic_block *body = get_loop_body_in_dom_order (loop);
561 basic_block bb;
562 unsigned i;
563 gimple_stmt_iterator bsi;
564 gimple stmt;
565 tree lhs, rhs;
566 struct mem_ref_group *refs = NULL;
567
568 *no_other_refs = true;
569 *ref_count = 0;
570
571 /* Scan the loop body in order, so that the former references precede the
572 later ones. */
573 for (i = 0; i < loop->num_nodes; i++)
574 {
575 bb = body[i];
576 if (bb->loop_father != loop)
577 continue;
578
579 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
580 {
581 stmt = gsi_stmt (bsi);
582
583 if (gimple_code (stmt) != GIMPLE_ASSIGN)
584 {
585 if (gimple_vuse (stmt)
586 || (is_gimple_call (stmt)
587 && !(gimple_call_flags (stmt) & ECF_CONST)))
588 *no_other_refs = false;
589 continue;
590 }
591
592 lhs = gimple_assign_lhs (stmt);
593 rhs = gimple_assign_rhs1 (stmt);
594
595 if (REFERENCE_CLASS_P (rhs))
596 {
597 *no_other_refs &= gather_memory_references_ref (loop, &refs,
598 rhs, false, stmt);
599 *ref_count += 1;
600 }
601 if (REFERENCE_CLASS_P (lhs))
602 {
603 *no_other_refs &= gather_memory_references_ref (loop, &refs,
604 lhs, true, stmt);
605 *ref_count += 1;
606 }
607 }
608 }
609 free (body);
610
611 return refs;
612 }
613
614 /* Prune the prefetch candidate REF using the self-reuse. */
615
616 static void
617 prune_ref_by_self_reuse (struct mem_ref *ref)
618 {
619 HOST_WIDE_INT step;
620 bool backward;
621
622 /* If the step size is non constant, we cannot calculate prefetch_mod. */
623 if (!cst_and_fits_in_hwi (ref->group->step))
624 return;
625
626 step = int_cst_value (ref->group->step);
627
628 backward = step < 0;
629
630 if (step == 0)
631 {
632 /* Prefetch references to invariant address just once. */
633 ref->prefetch_before = 1;
634 return;
635 }
636
637 if (backward)
638 step = -step;
639
640 if (step > PREFETCH_BLOCK)
641 return;
642
643 if ((backward && HAVE_BACKWARD_PREFETCH)
644 || (!backward && HAVE_FORWARD_PREFETCH))
645 {
646 ref->prefetch_before = 1;
647 return;
648 }
649
650 ref->prefetch_mod = PREFETCH_BLOCK / step;
651 }
652
653 /* Divides X by BY, rounding down. */
654
655 static HOST_WIDE_INT
656 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
657 {
658 gcc_assert (by > 0);
659
660 if (x >= 0)
661 return x / by;
662 else
663 return (x + by - 1) / by;
664 }
665
666 /* Given a CACHE_LINE_SIZE and two inductive memory references
667 with a common STEP greater than CACHE_LINE_SIZE and an address
668 difference DELTA, compute the probability that they will fall
669 in different cache lines. Return true if the computed miss rate
670 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
671 number of distinct iterations after which the pattern repeats itself.
672 ALIGN_UNIT is the unit of alignment in bytes. */
673
674 static bool
675 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
676 HOST_WIDE_INT step, HOST_WIDE_INT delta,
677 unsigned HOST_WIDE_INT distinct_iters,
678 int align_unit)
679 {
680 unsigned align, iter;
681 int total_positions, miss_positions, max_allowed_miss_positions;
682 int address1, address2, cache_line1, cache_line2;
683
684 /* It always misses if delta is greater than or equal to the cache
685 line size. */
686 if (delta >= (HOST_WIDE_INT) cache_line_size)
687 return false;
688
689 miss_positions = 0;
690 total_positions = (cache_line_size / align_unit) * distinct_iters;
691 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
692
693 /* Iterate through all possible alignments of the first
694 memory reference within its cache line. */
695 for (align = 0; align < cache_line_size; align += align_unit)
696
697 /* Iterate through all distinct iterations. */
698 for (iter = 0; iter < distinct_iters; iter++)
699 {
700 address1 = align + step * iter;
701 address2 = address1 + delta;
702 cache_line1 = address1 / cache_line_size;
703 cache_line2 = address2 / cache_line_size;
704 if (cache_line1 != cache_line2)
705 {
706 miss_positions += 1;
707 if (miss_positions > max_allowed_miss_positions)
708 return false;
709 }
710 }
711 return true;
712 }
713
714 /* Prune the prefetch candidate REF using the reuse with BY.
715 If BY_IS_BEFORE is true, BY is before REF in the loop. */
716
717 static void
718 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
719 bool by_is_before)
720 {
721 HOST_WIDE_INT step;
722 bool backward;
723 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
724 HOST_WIDE_INT delta = delta_b - delta_r;
725 HOST_WIDE_INT hit_from;
726 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
727 HOST_WIDE_INT reduced_step;
728 unsigned HOST_WIDE_INT reduced_prefetch_block;
729 tree ref_type;
730 int align_unit;
731
732 /* If the step is non constant we cannot calculate prefetch_before. */
733 if (!cst_and_fits_in_hwi (ref->group->step)) {
734 return;
735 }
736
737 step = int_cst_value (ref->group->step);
738
739 backward = step < 0;
740
741
742 if (delta == 0)
743 {
744 /* If the references has the same address, only prefetch the
745 former. */
746 if (by_is_before)
747 ref->prefetch_before = 0;
748
749 return;
750 }
751
752 if (!step)
753 {
754 /* If the reference addresses are invariant and fall into the
755 same cache line, prefetch just the first one. */
756 if (!by_is_before)
757 return;
758
759 if (ddown (ref->delta, PREFETCH_BLOCK)
760 != ddown (by->delta, PREFETCH_BLOCK))
761 return;
762
763 ref->prefetch_before = 0;
764 return;
765 }
766
767 /* Only prune the reference that is behind in the array. */
768 if (backward)
769 {
770 if (delta > 0)
771 return;
772
773 /* Transform the data so that we may assume that the accesses
774 are forward. */
775 delta = - delta;
776 step = -step;
777 delta_r = PREFETCH_BLOCK - 1 - delta_r;
778 delta_b = PREFETCH_BLOCK - 1 - delta_b;
779 }
780 else
781 {
782 if (delta < 0)
783 return;
784 }
785
786 /* Check whether the two references are likely to hit the same cache
787 line, and how distant the iterations in that it occurs are from
788 each other. */
789
790 if (step <= PREFETCH_BLOCK)
791 {
792 /* The accesses are sure to meet. Let us check when. */
793 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
794 prefetch_before = (hit_from - delta_r + step - 1) / step;
795
796 /* Do not reduce prefetch_before if we meet beyond cache size. */
797 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
798 prefetch_before = PREFETCH_ALL;
799 if (prefetch_before < ref->prefetch_before)
800 ref->prefetch_before = prefetch_before;
801
802 return;
803 }
804
805 /* A more complicated case with step > prefetch_block. First reduce
806 the ratio between the step and the cache line size to its simplest
807 terms. The resulting denominator will then represent the number of
808 distinct iterations after which each address will go back to its
809 initial location within the cache line. This computation assumes
810 that PREFETCH_BLOCK is a power of two. */
811 prefetch_block = PREFETCH_BLOCK;
812 reduced_prefetch_block = prefetch_block;
813 reduced_step = step;
814 while ((reduced_step & 1) == 0
815 && reduced_prefetch_block > 1)
816 {
817 reduced_step >>= 1;
818 reduced_prefetch_block >>= 1;
819 }
820
821 prefetch_before = delta / step;
822 delta %= step;
823 ref_type = TREE_TYPE (ref->mem);
824 align_unit = TYPE_ALIGN (ref_type) / 8;
825 if (is_miss_rate_acceptable (prefetch_block, step, delta,
826 reduced_prefetch_block, align_unit))
827 {
828 /* Do not reduce prefetch_before if we meet beyond cache size. */
829 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
830 prefetch_before = PREFETCH_ALL;
831 if (prefetch_before < ref->prefetch_before)
832 ref->prefetch_before = prefetch_before;
833
834 return;
835 }
836
837 /* Try also the following iteration. */
838 prefetch_before++;
839 delta = step - delta;
840 if (is_miss_rate_acceptable (prefetch_block, step, delta,
841 reduced_prefetch_block, align_unit))
842 {
843 if (prefetch_before < ref->prefetch_before)
844 ref->prefetch_before = prefetch_before;
845
846 return;
847 }
848
849 /* The ref probably does not reuse by. */
850 return;
851 }
852
853 /* Prune the prefetch candidate REF using the reuses with other references
854 in REFS. */
855
856 static void
857 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
858 {
859 struct mem_ref *prune_by;
860 bool before = true;
861
862 prune_ref_by_self_reuse (ref);
863
864 for (prune_by = refs; prune_by; prune_by = prune_by->next)
865 {
866 if (prune_by == ref)
867 {
868 before = false;
869 continue;
870 }
871
872 if (!WRITE_CAN_USE_READ_PREFETCH
873 && ref->write_p
874 && !prune_by->write_p)
875 continue;
876 if (!READ_CAN_USE_WRITE_PREFETCH
877 && !ref->write_p
878 && prune_by->write_p)
879 continue;
880
881 prune_ref_by_group_reuse (ref, prune_by, before);
882 }
883 }
884
885 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
886
887 static void
888 prune_group_by_reuse (struct mem_ref_group *group)
889 {
890 struct mem_ref *ref_pruned;
891
892 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
893 {
894 prune_ref_by_reuse (ref_pruned, group->refs);
895
896 if (dump_file && (dump_flags & TDF_DETAILS))
897 {
898 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
899
900 if (ref_pruned->prefetch_before == PREFETCH_ALL
901 && ref_pruned->prefetch_mod == 1)
902 fprintf (dump_file, " no restrictions");
903 else if (ref_pruned->prefetch_before == 0)
904 fprintf (dump_file, " do not prefetch");
905 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
906 fprintf (dump_file, " prefetch once");
907 else
908 {
909 if (ref_pruned->prefetch_before != PREFETCH_ALL)
910 {
911 fprintf (dump_file, " prefetch before ");
912 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
913 ref_pruned->prefetch_before);
914 }
915 if (ref_pruned->prefetch_mod != 1)
916 {
917 fprintf (dump_file, " prefetch mod ");
918 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
919 ref_pruned->prefetch_mod);
920 }
921 }
922 fprintf (dump_file, "\n");
923 }
924 }
925 }
926
927 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
928
929 static void
930 prune_by_reuse (struct mem_ref_group *groups)
931 {
932 for (; groups; groups = groups->next)
933 prune_group_by_reuse (groups);
934 }
935
936 /* Returns true if we should issue prefetch for REF. */
937
938 static bool
939 should_issue_prefetch_p (struct mem_ref *ref)
940 {
941 /* For now do not issue prefetches for only first few of the
942 iterations. */
943 if (ref->prefetch_before != PREFETCH_ALL)
944 {
945 if (dump_file && (dump_flags & TDF_DETAILS))
946 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
947 (void *) ref);
948 return false;
949 }
950
951 /* Do not prefetch nontemporal stores. */
952 if (ref->storent_p)
953 {
954 if (dump_file && (dump_flags & TDF_DETAILS))
955 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
956 return false;
957 }
958
959 return true;
960 }
961
962 /* Decide which of the prefetch candidates in GROUPS to prefetch.
963 AHEAD is the number of iterations to prefetch ahead (which corresponds
964 to the number of simultaneous instances of one prefetch running at a
965 time). UNROLL_FACTOR is the factor by that the loop is going to be
966 unrolled. Returns true if there is anything to prefetch. */
967
968 static bool
969 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
970 unsigned ahead)
971 {
972 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
973 unsigned slots_per_prefetch;
974 struct mem_ref *ref;
975 bool any = false;
976
977 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
978 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
979
980 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
981 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
982 it will need a prefetch slot. */
983 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
986 slots_per_prefetch);
987
988 /* For now we just take memory references one by one and issue
989 prefetches for as many as possible. The groups are sorted
990 starting with the largest step, since the references with
991 large step are more likely to cause many cache misses. */
992
993 for (; groups; groups = groups->next)
994 for (ref = groups->refs; ref; ref = ref->next)
995 {
996 if (!should_issue_prefetch_p (ref))
997 continue;
998
999 /* The loop is far from being sufficiently unrolled for this
1000 prefetch. Do not generate prefetch to avoid many redudant
1001 prefetches. */
1002 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1003 continue;
1004
1005 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1006 and we unroll the loop UNROLL_FACTOR times, we need to insert
1007 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1008 iteration. */
1009 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1010 / ref->prefetch_mod);
1011 prefetch_slots = n_prefetches * slots_per_prefetch;
1012
1013 /* If more than half of the prefetches would be lost anyway, do not
1014 issue the prefetch. */
1015 if (2 * remaining_prefetch_slots < prefetch_slots)
1016 continue;
1017
1018 ref->issue_prefetch_p = true;
1019
1020 if (remaining_prefetch_slots <= prefetch_slots)
1021 return true;
1022 remaining_prefetch_slots -= prefetch_slots;
1023 any = true;
1024 }
1025
1026 return any;
1027 }
1028
1029 /* Return TRUE if no prefetch is going to be generated in the given
1030 GROUPS. */
1031
1032 static bool
1033 nothing_to_prefetch_p (struct mem_ref_group *groups)
1034 {
1035 struct mem_ref *ref;
1036
1037 for (; groups; groups = groups->next)
1038 for (ref = groups->refs; ref; ref = ref->next)
1039 if (should_issue_prefetch_p (ref))
1040 return false;
1041
1042 return true;
1043 }
1044
1045 /* Estimate the number of prefetches in the given GROUPS.
1046 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1047
1048 static int
1049 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1050 {
1051 struct mem_ref *ref;
1052 unsigned n_prefetches;
1053 int prefetch_count = 0;
1054
1055 for (; groups; groups = groups->next)
1056 for (ref = groups->refs; ref; ref = ref->next)
1057 if (should_issue_prefetch_p (ref))
1058 {
1059 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1060 / ref->prefetch_mod);
1061 prefetch_count += n_prefetches;
1062 }
1063
1064 return prefetch_count;
1065 }
1066
1067 /* Issue prefetches for the reference REF into loop as decided before.
1068 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1069 is the factor by which LOOP was unrolled. */
1070
1071 static void
1072 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1073 {
1074 HOST_WIDE_INT delta;
1075 tree addr, addr_base, write_p, local, forward;
1076 gimple prefetch;
1077 gimple_stmt_iterator bsi;
1078 unsigned n_prefetches, ap;
1079 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1080
1081 if (dump_file && (dump_flags & TDF_DETAILS))
1082 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1083 nontemporal ? " nontemporal" : "",
1084 (void *) ref);
1085
1086 bsi = gsi_for_stmt (ref->stmt);
1087
1088 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1089 / ref->prefetch_mod);
1090 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1091 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1092 true, NULL, true, GSI_SAME_STMT);
1093 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1094 local = nontemporal ? integer_zero_node : integer_three_node;
1095
1096 for (ap = 0; ap < n_prefetches; ap++)
1097 {
1098 if (cst_and_fits_in_hwi (ref->group->step))
1099 {
1100 /* Determine the address to prefetch. */
1101 delta = (ahead + ap * ref->prefetch_mod) *
1102 int_cst_value (ref->group->step);
1103 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1104 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1105 true, GSI_SAME_STMT);
1106 }
1107 else
1108 {
1109 /* The step size is non-constant but loop-invariant. We use the
1110 heuristic to simply prefetch ahead iterations ahead. */
1111 forward = fold_build2 (MULT_EXPR, sizetype,
1112 fold_convert (sizetype, ref->group->step),
1113 fold_convert (sizetype, size_int (ahead)));
1114 addr = fold_build_pointer_plus (addr_base, forward);
1115 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1116 NULL, true, GSI_SAME_STMT);
1117 }
1118 /* Create the prefetch instruction. */
1119 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1120 3, addr, write_p, local);
1121 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1122 }
1123 }
1124
1125 /* Issue prefetches for the references in GROUPS into loop as decided before.
1126 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1127 factor by that LOOP was unrolled. */
1128
1129 static void
1130 issue_prefetches (struct mem_ref_group *groups,
1131 unsigned unroll_factor, unsigned ahead)
1132 {
1133 struct mem_ref *ref;
1134
1135 for (; groups; groups = groups->next)
1136 for (ref = groups->refs; ref; ref = ref->next)
1137 if (ref->issue_prefetch_p)
1138 issue_prefetch_ref (ref, unroll_factor, ahead);
1139 }
1140
1141 /* Returns true if REF is a memory write for that a nontemporal store insn
1142 can be used. */
1143
1144 static bool
1145 nontemporal_store_p (struct mem_ref *ref)
1146 {
1147 enum machine_mode mode;
1148 enum insn_code code;
1149
1150 /* REF must be a write that is not reused. We require it to be independent
1151 on all other memory references in the loop, as the nontemporal stores may
1152 be reordered with respect to other memory references. */
1153 if (!ref->write_p
1154 || !ref->independent_p
1155 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1156 return false;
1157
1158 /* Check that we have the storent instruction for the mode. */
1159 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1160 if (mode == BLKmode)
1161 return false;
1162
1163 code = optab_handler (storent_optab, mode);
1164 return code != CODE_FOR_nothing;
1165 }
1166
1167 /* If REF is a nontemporal store, we mark the corresponding modify statement
1168 and return true. Otherwise, we return false. */
1169
1170 static bool
1171 mark_nontemporal_store (struct mem_ref *ref)
1172 {
1173 if (!nontemporal_store_p (ref))
1174 return false;
1175
1176 if (dump_file && (dump_flags & TDF_DETAILS))
1177 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1178 (void *) ref);
1179
1180 gimple_assign_set_nontemporal_move (ref->stmt, true);
1181 ref->storent_p = true;
1182
1183 return true;
1184 }
1185
1186 /* Issue a memory fence instruction after LOOP. */
1187
1188 static void
1189 emit_mfence_after_loop (struct loop *loop)
1190 {
1191 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1192 edge exit;
1193 gimple call;
1194 gimple_stmt_iterator bsi;
1195 unsigned i;
1196
1197 FOR_EACH_VEC_ELT (edge, exits, i, exit)
1198 {
1199 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1200
1201 if (!single_pred_p (exit->dest)
1202 /* If possible, we prefer not to insert the fence on other paths
1203 in cfg. */
1204 && !(exit->flags & EDGE_ABNORMAL))
1205 split_loop_exit_edge (exit);
1206 bsi = gsi_after_labels (exit->dest);
1207
1208 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1209 mark_virtual_ops_for_renaming (call);
1210 }
1211
1212 VEC_free (edge, heap, exits);
1213 update_ssa (TODO_update_ssa_only_virtuals);
1214 }
1215
1216 /* Returns true if we can use storent in loop, false otherwise. */
1217
1218 static bool
1219 may_use_storent_in_loop_p (struct loop *loop)
1220 {
1221 bool ret = true;
1222
1223 if (loop->inner != NULL)
1224 return false;
1225
1226 /* If we must issue a mfence insn after using storent, check that there
1227 is a suitable place for it at each of the loop exits. */
1228 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1229 {
1230 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1231 unsigned i;
1232 edge exit;
1233
1234 FOR_EACH_VEC_ELT (edge, exits, i, exit)
1235 if ((exit->flags & EDGE_ABNORMAL)
1236 && exit->dest == EXIT_BLOCK_PTR)
1237 ret = false;
1238
1239 VEC_free (edge, heap, exits);
1240 }
1241
1242 return ret;
1243 }
1244
1245 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1246 references in the loop. */
1247
1248 static void
1249 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1250 {
1251 struct mem_ref *ref;
1252 bool any = false;
1253
1254 if (!may_use_storent_in_loop_p (loop))
1255 return;
1256
1257 for (; groups; groups = groups->next)
1258 for (ref = groups->refs; ref; ref = ref->next)
1259 any |= mark_nontemporal_store (ref);
1260
1261 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1262 emit_mfence_after_loop (loop);
1263 }
1264
1265 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1266 this is the case, fill in DESC by the description of number of
1267 iterations. */
1268
1269 static bool
1270 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1271 unsigned factor)
1272 {
1273 if (!can_unroll_loop_p (loop, factor, desc))
1274 return false;
1275
1276 /* We only consider loops without control flow for unrolling. This is not
1277 a hard restriction -- tree_unroll_loop works with arbitrary loops
1278 as well; but the unrolling/prefetching is usually more profitable for
1279 loops consisting of a single basic block, and we want to limit the
1280 code growth. */
1281 if (loop->num_nodes > 2)
1282 return false;
1283
1284 return true;
1285 }
1286
1287 /* Determine the coefficient by that unroll LOOP, from the information
1288 contained in the list of memory references REFS. Description of
1289 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1290 insns of the LOOP. EST_NITER is the estimated number of iterations of
1291 the loop, or -1 if no estimate is available. */
1292
1293 static unsigned
1294 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1295 unsigned ninsns, struct tree_niter_desc *desc,
1296 HOST_WIDE_INT est_niter)
1297 {
1298 unsigned upper_bound;
1299 unsigned nfactor, factor, mod_constraint;
1300 struct mem_ref_group *agp;
1301 struct mem_ref *ref;
1302
1303 /* First check whether the loop is not too large to unroll. We ignore
1304 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1305 from unrolling them enough to make exactly one cache line covered by each
1306 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1307 us from unrolling the loops too many times in cases where we only expect
1308 gains from better scheduling and decreasing loop overhead, which is not
1309 the case here. */
1310 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1311
1312 /* If we unrolled the loop more times than it iterates, the unrolled version
1313 of the loop would be never entered. */
1314 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1315 upper_bound = est_niter;
1316
1317 if (upper_bound <= 1)
1318 return 1;
1319
1320 /* Choose the factor so that we may prefetch each cache just once,
1321 but bound the unrolling by UPPER_BOUND. */
1322 factor = 1;
1323 for (agp = refs; agp; agp = agp->next)
1324 for (ref = agp->refs; ref; ref = ref->next)
1325 if (should_issue_prefetch_p (ref))
1326 {
1327 mod_constraint = ref->prefetch_mod;
1328 nfactor = least_common_multiple (mod_constraint, factor);
1329 if (nfactor <= upper_bound)
1330 factor = nfactor;
1331 }
1332
1333 if (!should_unroll_loop_p (loop, desc, factor))
1334 return 1;
1335
1336 return factor;
1337 }
1338
1339 /* Returns the total volume of the memory references REFS, taking into account
1340 reuses in the innermost loop and cache line size. TODO -- we should also
1341 take into account reuses across the iterations of the loops in the loop
1342 nest. */
1343
1344 static unsigned
1345 volume_of_references (struct mem_ref_group *refs)
1346 {
1347 unsigned volume = 0;
1348 struct mem_ref_group *gr;
1349 struct mem_ref *ref;
1350
1351 for (gr = refs; gr; gr = gr->next)
1352 for (ref = gr->refs; ref; ref = ref->next)
1353 {
1354 /* Almost always reuses another value? */
1355 if (ref->prefetch_before != PREFETCH_ALL)
1356 continue;
1357
1358 /* If several iterations access the same cache line, use the size of
1359 the line divided by this number. Otherwise, a cache line is
1360 accessed in each iteration. TODO -- in the latter case, we should
1361 take the size of the reference into account, rounding it up on cache
1362 line size multiple. */
1363 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1364 }
1365 return volume;
1366 }
1367
1368 /* Returns the volume of memory references accessed across VEC iterations of
1369 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1370 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1371
1372 static unsigned
1373 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1374 {
1375 unsigned i;
1376
1377 for (i = 0; i < n; i++)
1378 if (vec[i] != 0)
1379 break;
1380
1381 if (i == n)
1382 return 0;
1383
1384 gcc_assert (vec[i] > 0);
1385
1386 /* We ignore the parts of the distance vector in subloops, since usually
1387 the numbers of iterations are much smaller. */
1388 return loop_sizes[i] * vec[i];
1389 }
1390
1391 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1392 at the position corresponding to the loop of the step. N is the depth
1393 of the considered loop nest, and, LOOP is its innermost loop. */
1394
1395 static void
1396 add_subscript_strides (tree access_fn, unsigned stride,
1397 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1398 {
1399 struct loop *aloop;
1400 tree step;
1401 HOST_WIDE_INT astep;
1402 unsigned min_depth = loop_depth (loop) - n;
1403
1404 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1405 {
1406 aloop = get_chrec_loop (access_fn);
1407 step = CHREC_RIGHT (access_fn);
1408 access_fn = CHREC_LEFT (access_fn);
1409
1410 if ((unsigned) loop_depth (aloop) <= min_depth)
1411 continue;
1412
1413 if (host_integerp (step, 0))
1414 astep = tree_low_cst (step, 0);
1415 else
1416 astep = L1_CACHE_LINE_SIZE;
1417
1418 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1419
1420 }
1421 }
1422
1423 /* Returns the volume of memory references accessed between two consecutive
1424 self-reuses of the reference DR. We consider the subscripts of DR in N
1425 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1426 loops. LOOP is the innermost loop of the current loop nest. */
1427
1428 static unsigned
1429 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1430 struct loop *loop)
1431 {
1432 tree stride, access_fn;
1433 HOST_WIDE_INT *strides, astride;
1434 VEC (tree, heap) *access_fns;
1435 tree ref = DR_REF (dr);
1436 unsigned i, ret = ~0u;
1437
1438 /* In the following example:
1439
1440 for (i = 0; i < N; i++)
1441 for (j = 0; j < N; j++)
1442 use (a[j][i]);
1443 the same cache line is accessed each N steps (except if the change from
1444 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1445 we cannot rely purely on the results of the data dependence analysis.
1446
1447 Instead, we compute the stride of the reference in each loop, and consider
1448 the innermost loop in that the stride is less than cache size. */
1449
1450 strides = XCNEWVEC (HOST_WIDE_INT, n);
1451 access_fns = DR_ACCESS_FNS (dr);
1452
1453 FOR_EACH_VEC_ELT (tree, access_fns, i, access_fn)
1454 {
1455 /* Keep track of the reference corresponding to the subscript, so that we
1456 know its stride. */
1457 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1458 ref = TREE_OPERAND (ref, 0);
1459
1460 if (TREE_CODE (ref) == ARRAY_REF)
1461 {
1462 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1463 if (host_integerp (stride, 1))
1464 astride = tree_low_cst (stride, 1);
1465 else
1466 astride = L1_CACHE_LINE_SIZE;
1467
1468 ref = TREE_OPERAND (ref, 0);
1469 }
1470 else
1471 astride = 1;
1472
1473 add_subscript_strides (access_fn, astride, strides, n, loop);
1474 }
1475
1476 for (i = n; i-- > 0; )
1477 {
1478 unsigned HOST_WIDE_INT s;
1479
1480 s = strides[i] < 0 ? -strides[i] : strides[i];
1481
1482 if (s < (unsigned) L1_CACHE_LINE_SIZE
1483 && (loop_sizes[i]
1484 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1485 {
1486 ret = loop_sizes[i];
1487 break;
1488 }
1489 }
1490
1491 free (strides);
1492 return ret;
1493 }
1494
1495 /* Determines the distance till the first reuse of each reference in REFS
1496 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1497 memory references in the loop. Return false if the analysis fails. */
1498
1499 static bool
1500 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1501 bool no_other_refs)
1502 {
1503 struct loop *nest, *aloop;
1504 VEC (data_reference_p, heap) *datarefs = NULL;
1505 VEC (ddr_p, heap) *dependences = NULL;
1506 struct mem_ref_group *gr;
1507 struct mem_ref *ref, *refb;
1508 VEC (loop_p, heap) *vloops = NULL;
1509 unsigned *loop_data_size;
1510 unsigned i, j, n;
1511 unsigned volume, dist, adist;
1512 HOST_WIDE_INT vol;
1513 data_reference_p dr;
1514 ddr_p dep;
1515
1516 if (loop->inner)
1517 return true;
1518
1519 /* Find the outermost loop of the loop nest of loop (we require that
1520 there are no sibling loops inside the nest). */
1521 nest = loop;
1522 while (1)
1523 {
1524 aloop = loop_outer (nest);
1525
1526 if (aloop == current_loops->tree_root
1527 || aloop->inner->next)
1528 break;
1529
1530 nest = aloop;
1531 }
1532
1533 /* For each loop, determine the amount of data accessed in each iteration.
1534 We use this to estimate whether the reference is evicted from the
1535 cache before its reuse. */
1536 find_loop_nest (nest, &vloops);
1537 n = VEC_length (loop_p, vloops);
1538 loop_data_size = XNEWVEC (unsigned, n);
1539 volume = volume_of_references (refs);
1540 i = n;
1541 while (i-- != 0)
1542 {
1543 loop_data_size[i] = volume;
1544 /* Bound the volume by the L2 cache size, since above this bound,
1545 all dependence distances are equivalent. */
1546 if (volume > L2_CACHE_SIZE_BYTES)
1547 continue;
1548
1549 aloop = VEC_index (loop_p, vloops, i);
1550 vol = estimated_stmt_executions_int (aloop);
1551 if (vol == -1)
1552 vol = expected_loop_iterations (aloop);
1553 volume *= vol;
1554 }
1555
1556 /* Prepare the references in the form suitable for data dependence
1557 analysis. We ignore unanalyzable data references (the results
1558 are used just as a heuristics to estimate temporality of the
1559 references, hence we do not need to worry about correctness). */
1560 for (gr = refs; gr; gr = gr->next)
1561 for (ref = gr->refs; ref; ref = ref->next)
1562 {
1563 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1564 ref->mem, ref->stmt, !ref->write_p);
1565
1566 if (dr)
1567 {
1568 ref->reuse_distance = volume;
1569 dr->aux = ref;
1570 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1571 }
1572 else
1573 no_other_refs = false;
1574 }
1575
1576 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
1577 {
1578 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1579 ref = (struct mem_ref *) dr->aux;
1580 if (ref->reuse_distance > dist)
1581 ref->reuse_distance = dist;
1582
1583 if (no_other_refs)
1584 ref->independent_p = true;
1585 }
1586
1587 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1588 return false;
1589
1590 FOR_EACH_VEC_ELT (ddr_p, dependences, i, dep)
1591 {
1592 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1593 continue;
1594
1595 ref = (struct mem_ref *) DDR_A (dep)->aux;
1596 refb = (struct mem_ref *) DDR_B (dep)->aux;
1597
1598 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1599 || DDR_NUM_DIST_VECTS (dep) == 0)
1600 {
1601 /* If the dependence cannot be analyzed, assume that there might be
1602 a reuse. */
1603 dist = 0;
1604
1605 ref->independent_p = false;
1606 refb->independent_p = false;
1607 }
1608 else
1609 {
1610 /* The distance vectors are normalized to be always lexicographically
1611 positive, hence we cannot tell just from them whether DDR_A comes
1612 before DDR_B or vice versa. However, it is not important,
1613 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1614 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1615 in cache (and marking it as nontemporal would not affect
1616 anything). */
1617
1618 dist = volume;
1619 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1620 {
1621 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1622 loop_data_size, n);
1623
1624 /* If this is a dependence in the innermost loop (i.e., the
1625 distances in all superloops are zero) and it is not
1626 the trivial self-dependence with distance zero, record that
1627 the references are not completely independent. */
1628 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1629 && (ref != refb
1630 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1631 {
1632 ref->independent_p = false;
1633 refb->independent_p = false;
1634 }
1635
1636 /* Ignore accesses closer than
1637 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1638 so that we use nontemporal prefetches e.g. if single memory
1639 location is accessed several times in a single iteration of
1640 the loop. */
1641 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1642 continue;
1643
1644 if (adist < dist)
1645 dist = adist;
1646 }
1647 }
1648
1649 if (ref->reuse_distance > dist)
1650 ref->reuse_distance = dist;
1651 if (refb->reuse_distance > dist)
1652 refb->reuse_distance = dist;
1653 }
1654
1655 free_dependence_relations (dependences);
1656 free_data_refs (datarefs);
1657 free (loop_data_size);
1658
1659 if (dump_file && (dump_flags & TDF_DETAILS))
1660 {
1661 fprintf (dump_file, "Reuse distances:\n");
1662 for (gr = refs; gr; gr = gr->next)
1663 for (ref = gr->refs; ref; ref = ref->next)
1664 fprintf (dump_file, " ref %p distance %u\n",
1665 (void *) ref, ref->reuse_distance);
1666 }
1667
1668 return true;
1669 }
1670
1671 /* Determine whether or not the trip count to ahead ratio is too small based
1672 on prefitablility consideration.
1673 AHEAD: the iteration ahead distance,
1674 EST_NITER: the estimated trip count. */
1675
1676 static bool
1677 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1678 {
1679 /* Assume trip count to ahead ratio is big enough if the trip count could not
1680 be estimated at compile time. */
1681 if (est_niter < 0)
1682 return false;
1683
1684 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1685 {
1686 if (dump_file && (dump_flags & TDF_DETAILS))
1687 fprintf (dump_file,
1688 "Not prefetching -- loop estimated to roll only %d times\n",
1689 (int) est_niter);
1690 return true;
1691 }
1692
1693 return false;
1694 }
1695
1696 /* Determine whether or not the number of memory references in the loop is
1697 reasonable based on the profitablity and compilation time considerations.
1698 NINSNS: estimated number of instructions in the loop,
1699 MEM_REF_COUNT: total number of memory references in the loop. */
1700
1701 static bool
1702 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1703 {
1704 int insn_to_mem_ratio;
1705
1706 if (mem_ref_count == 0)
1707 return false;
1708
1709 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1710 (compute_all_dependences) have high costs based on quadratic complexity.
1711 To avoid huge compilation time, we give up prefetching if mem_ref_count
1712 is too large. */
1713 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1714 return false;
1715
1716 /* Prefetching improves performance by overlapping cache missing
1717 memory accesses with CPU operations. If the loop does not have
1718 enough CPU operations to overlap with memory operations, prefetching
1719 won't give a significant benefit. One approximate way of checking
1720 this is to require the ratio of instructions to memory references to
1721 be above a certain limit. This approximation works well in practice.
1722 TODO: Implement a more precise computation by estimating the time
1723 for each CPU or memory op in the loop. Time estimates for memory ops
1724 should account for cache misses. */
1725 insn_to_mem_ratio = ninsns / mem_ref_count;
1726
1727 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1728 {
1729 if (dump_file && (dump_flags & TDF_DETAILS))
1730 fprintf (dump_file,
1731 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1732 insn_to_mem_ratio);
1733 return false;
1734 }
1735
1736 return true;
1737 }
1738
1739 /* Determine whether or not the instruction to prefetch ratio in the loop is
1740 too small based on the profitablity consideration.
1741 NINSNS: estimated number of instructions in the loop,
1742 PREFETCH_COUNT: an estimate of the number of prefetches,
1743 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1744
1745 static bool
1746 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1747 unsigned unroll_factor)
1748 {
1749 int insn_to_prefetch_ratio;
1750
1751 /* Prefetching most likely causes performance degradation when the instruction
1752 to prefetch ratio is too small. Too many prefetch instructions in a loop
1753 may reduce the I-cache performance.
1754 (unroll_factor * ninsns) is used to estimate the number of instructions in
1755 the unrolled loop. This implementation is a bit simplistic -- the number
1756 of issued prefetch instructions is also affected by unrolling. So,
1757 prefetch_mod and the unroll factor should be taken into account when
1758 determining prefetch_count. Also, the number of insns of the unrolled
1759 loop will usually be significantly smaller than the number of insns of the
1760 original loop * unroll_factor (at least the induction variable increases
1761 and the exit branches will get eliminated), so it might be better to use
1762 tree_estimate_loop_size + estimated_unrolled_size. */
1763 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1764 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1765 {
1766 if (dump_file && (dump_flags & TDF_DETAILS))
1767 fprintf (dump_file,
1768 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1769 insn_to_prefetch_ratio);
1770 return true;
1771 }
1772
1773 return false;
1774 }
1775
1776
1777 /* Issue prefetch instructions for array references in LOOP. Returns
1778 true if the LOOP was unrolled. */
1779
1780 static bool
1781 loop_prefetch_arrays (struct loop *loop)
1782 {
1783 struct mem_ref_group *refs;
1784 unsigned ahead, ninsns, time, unroll_factor;
1785 HOST_WIDE_INT est_niter;
1786 struct tree_niter_desc desc;
1787 bool unrolled = false, no_other_refs;
1788 unsigned prefetch_count;
1789 unsigned mem_ref_count;
1790
1791 if (optimize_loop_nest_for_size_p (loop))
1792 {
1793 if (dump_file && (dump_flags & TDF_DETAILS))
1794 fprintf (dump_file, " ignored (cold area)\n");
1795 return false;
1796 }
1797
1798 /* FIXME: the time should be weighted by the probabilities of the blocks in
1799 the loop body. */
1800 time = tree_num_loop_insns (loop, &eni_time_weights);
1801 if (time == 0)
1802 return false;
1803
1804 ahead = (PREFETCH_LATENCY + time - 1) / time;
1805 est_niter = estimated_stmt_executions_int (loop);
1806 if (est_niter == -1)
1807 est_niter = max_stmt_executions_int (loop);
1808
1809 /* Prefetching is not likely to be profitable if the trip count to ahead
1810 ratio is too small. */
1811 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1812 return false;
1813
1814 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1815
1816 /* Step 1: gather the memory references. */
1817 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1818
1819 /* Give up prefetching if the number of memory references in the
1820 loop is not reasonable based on profitablity and compilation time
1821 considerations. */
1822 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1823 goto fail;
1824
1825 /* Step 2: estimate the reuse effects. */
1826 prune_by_reuse (refs);
1827
1828 if (nothing_to_prefetch_p (refs))
1829 goto fail;
1830
1831 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1832 goto fail;
1833
1834 /* Step 3: determine unroll factor. */
1835 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1836 est_niter);
1837
1838 /* Estimate prefetch count for the unrolled loop. */
1839 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1840 if (prefetch_count == 0)
1841 goto fail;
1842
1843 if (dump_file && (dump_flags & TDF_DETAILS))
1844 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1845 HOST_WIDE_INT_PRINT_DEC "\n"
1846 "insn count %d, mem ref count %d, prefetch count %d\n",
1847 ahead, unroll_factor, est_niter,
1848 ninsns, mem_ref_count, prefetch_count);
1849
1850 /* Prefetching is not likely to be profitable if the instruction to prefetch
1851 ratio is too small. */
1852 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1853 unroll_factor))
1854 goto fail;
1855
1856 mark_nontemporal_stores (loop, refs);
1857
1858 /* Step 4: what to prefetch? */
1859 if (!schedule_prefetches (refs, unroll_factor, ahead))
1860 goto fail;
1861
1862 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1863 iterations so that we do not issue superfluous prefetches. */
1864 if (unroll_factor != 1)
1865 {
1866 tree_unroll_loop (loop, unroll_factor,
1867 single_dom_exit (loop), &desc);
1868 unrolled = true;
1869 }
1870
1871 /* Step 6: issue the prefetches. */
1872 issue_prefetches (refs, unroll_factor, ahead);
1873
1874 fail:
1875 release_mem_refs (refs);
1876 return unrolled;
1877 }
1878
1879 /* Issue prefetch instructions for array references in loops. */
1880
1881 unsigned int
1882 tree_ssa_prefetch_arrays (void)
1883 {
1884 loop_iterator li;
1885 struct loop *loop;
1886 bool unrolled = false;
1887 int todo_flags = 0;
1888
1889 if (!HAVE_prefetch
1890 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1891 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1892 of processor costs and i486 does not have prefetch, but
1893 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1894 || PREFETCH_BLOCK == 0)
1895 return 0;
1896
1897 if (dump_file && (dump_flags & TDF_DETAILS))
1898 {
1899 fprintf (dump_file, "Prefetching parameters:\n");
1900 fprintf (dump_file, " simultaneous prefetches: %d\n",
1901 SIMULTANEOUS_PREFETCHES);
1902 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1903 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1904 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1905 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1906 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1907 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1908 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1909 MIN_INSN_TO_PREFETCH_RATIO);
1910 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1911 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1912 fprintf (dump_file, "\n");
1913 }
1914
1915 initialize_original_copy_tables ();
1916
1917 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1918 {
1919 tree type = build_function_type_list (void_type_node,
1920 const_ptr_type_node, NULL_TREE);
1921 tree decl = add_builtin_function ("__builtin_prefetch", type,
1922 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1923 NULL, NULL_TREE);
1924 DECL_IS_NOVOPS (decl) = true;
1925 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1926 }
1927
1928 /* We assume that size of cache line is a power of two, so verify this
1929 here. */
1930 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1931
1932 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1933 {
1934 if (dump_file && (dump_flags & TDF_DETAILS))
1935 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1936
1937 unrolled |= loop_prefetch_arrays (loop);
1938
1939 if (dump_file && (dump_flags & TDF_DETAILS))
1940 fprintf (dump_file, "\n\n");
1941 }
1942
1943 if (unrolled)
1944 {
1945 scev_reset ();
1946 todo_flags |= TODO_cleanup_cfg;
1947 }
1948
1949 free_original_copy_tables ();
1950 return todo_flags;
1951 }