]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-prefetch.c
sh.c: Do not include algorithm.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "tm_p.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "hard-reg-set.h"
33 #include "input.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "basic-block.h"
38 #include "tree-pretty-print.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-expr.h"
42 #include "is-a.h"
43 #include "gimple.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-ssa.h"
48 #include "tree-ssa-loop-ivopts.h"
49 #include "tree-ssa-loop-manip.h"
50 #include "tree-ssa-loop-niter.h"
51 #include "tree-ssa-loop.h"
52 #include "tree-into-ssa.h"
53 #include "cfgloop.h"
54 #include "tree-pass.h"
55 #include "insn-config.h"
56 #include "tree-chrec.h"
57 #include "tree-scalar-evolution.h"
58 #include "diagnostic-core.h"
59 #include "params.h"
60 #include "langhooks.h"
61 #include "tree-inline.h"
62 #include "tree-data-ref.h"
63
64
65 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
66 between the GIMPLE and RTL worlds. */
67 #include "expr.h"
68 #include "insn-codes.h"
69 #include "optabs.h"
70 #include "recog.h"
71
72 /* This pass inserts prefetch instructions to optimize cache usage during
73 accesses to arrays in loops. It processes loops sequentially and:
74
75 1) Gathers all memory references in the single loop.
76 2) For each of the references it decides when it is profitable to prefetch
77 it. To do it, we evaluate the reuse among the accesses, and determines
78 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
79 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
80 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
81 iterations of the loop that are zero modulo PREFETCH_MOD). For example
82 (assuming cache line size is 64 bytes, char has size 1 byte and there
83 is no hardware sequential prefetch):
84
85 char *a;
86 for (i = 0; i < max; i++)
87 {
88 a[255] = ...; (0)
89 a[i] = ...; (1)
90 a[i + 64] = ...; (2)
91 a[16*i] = ...; (3)
92 a[187*i] = ...; (4)
93 a[187*i + 50] = ...; (5)
94 }
95
96 (0) obviously has PREFETCH_BEFORE 1
97 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
98 location 64 iterations before it, and PREFETCH_MOD 64 (since
99 it hits the same cache line otherwise).
100 (2) has PREFETCH_MOD 64
101 (3) has PREFETCH_MOD 4
102 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
103 the cache line accessed by (5) is the same with probability only
104 7/32.
105 (5) has PREFETCH_MOD 1 as well.
106
107 Additionally, we use data dependence analysis to determine for each
108 reference the distance till the first reuse; this information is used
109 to determine the temporality of the issued prefetch instruction.
110
111 3) We determine how much ahead we need to prefetch. The number of
112 iterations needed is time to fetch / time spent in one iteration of
113 the loop. The problem is that we do not know either of these values,
114 so we just make a heuristic guess based on a magic (possibly)
115 target-specific constant and size of the loop.
116
117 4) Determine which of the references we prefetch. We take into account
118 that there is a maximum number of simultaneous prefetches (provided
119 by machine description). We prefetch as many prefetches as possible
120 while still within this bound (starting with those with lowest
121 prefetch_mod, since they are responsible for most of the cache
122 misses).
123
124 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
125 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
126 prefetching nonaccessed memory.
127 TODO -- actually implement peeling.
128
129 6) We actually emit the prefetch instructions. ??? Perhaps emit the
130 prefetch instructions with guards in cases where 5) was not sufficient
131 to satisfy the constraints?
132
133 A cost model is implemented to determine whether or not prefetching is
134 profitable for a given loop. The cost model has three heuristics:
135
136 1. Function trip_count_to_ahead_ratio_too_small_p implements a
137 heuristic that determines whether or not the loop has too few
138 iterations (compared to ahead). Prefetching is not likely to be
139 beneficial if the trip count to ahead ratio is below a certain
140 minimum.
141
142 2. Function mem_ref_count_reasonable_p implements a heuristic that
143 determines whether the given loop has enough CPU ops that can be
144 overlapped with cache missing memory ops. If not, the loop
145 won't benefit from prefetching. In the implementation,
146 prefetching is not considered beneficial if the ratio between
147 the instruction count and the mem ref count is below a certain
148 minimum.
149
150 3. Function insn_to_prefetch_ratio_too_small_p implements a
151 heuristic that disables prefetching in a loop if the prefetching
152 cost is above a certain limit. The relative prefetching cost is
153 estimated by taking the ratio between the prefetch count and the
154 total intruction count (this models the I-cache cost).
155
156 The limits used in these heuristics are defined as parameters with
157 reasonable default values. Machine-specific default values will be
158 added later.
159
160 Some other TODO:
161 -- write and use more general reuse analysis (that could be also used
162 in other cache aimed loop optimizations)
163 -- make it behave sanely together with the prefetches given by user
164 (now we just ignore them; at the very least we should avoid
165 optimizing loops in that user put his own prefetches)
166 -- we assume cache line size alignment of arrays; this could be
167 improved. */
168
169 /* Magic constants follow. These should be replaced by machine specific
170 numbers. */
171
172 /* True if write can be prefetched by a read prefetch. */
173
174 #ifndef WRITE_CAN_USE_READ_PREFETCH
175 #define WRITE_CAN_USE_READ_PREFETCH 1
176 #endif
177
178 /* True if read can be prefetched by a write prefetch. */
179
180 #ifndef READ_CAN_USE_WRITE_PREFETCH
181 #define READ_CAN_USE_WRITE_PREFETCH 0
182 #endif
183
184 /* The size of the block loaded by a single prefetch. Usually, this is
185 the same as cache line size (at the moment, we only consider one level
186 of cache hierarchy). */
187
188 #ifndef PREFETCH_BLOCK
189 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
190 #endif
191
192 /* Do we have a forward hardware sequential prefetching? */
193
194 #ifndef HAVE_FORWARD_PREFETCH
195 #define HAVE_FORWARD_PREFETCH 0
196 #endif
197
198 /* Do we have a backward hardware sequential prefetching? */
199
200 #ifndef HAVE_BACKWARD_PREFETCH
201 #define HAVE_BACKWARD_PREFETCH 0
202 #endif
203
204 /* In some cases we are only able to determine that there is a certain
205 probability that the two accesses hit the same cache line. In this
206 case, we issue the prefetches for both of them if this probability
207 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
208
209 #ifndef ACCEPTABLE_MISS_RATE
210 #define ACCEPTABLE_MISS_RATE 50
211 #endif
212
213 #ifndef HAVE_prefetch
214 #define HAVE_prefetch 0
215 #endif
216
217 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
218 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
219
220 /* We consider a memory access nontemporal if it is not reused sooner than
221 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
222 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
223 so that we use nontemporal prefetches e.g. if single memory location
224 is accessed several times in a single iteration of the loop. */
225 #define NONTEMPORAL_FRACTION 16
226
227 /* In case we have to emit a memory fence instruction after the loop that
228 uses nontemporal stores, this defines the builtin to use. */
229
230 #ifndef FENCE_FOLLOWING_MOVNT
231 #define FENCE_FOLLOWING_MOVNT NULL_TREE
232 #endif
233
234 /* It is not profitable to prefetch when the trip count is not at
235 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
236 For example, in a loop with a prefetch ahead distance of 10,
237 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
238 profitable to prefetch when the trip count is greater or equal to
239 40. In that case, 30 out of the 40 iterations will benefit from
240 prefetching. */
241
242 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
243 #define TRIP_COUNT_TO_AHEAD_RATIO 4
244 #endif
245
246 /* The group of references between that reuse may occur. */
247
248 struct mem_ref_group
249 {
250 tree base; /* Base of the reference. */
251 tree step; /* Step of the reference. */
252 struct mem_ref *refs; /* References in the group. */
253 struct mem_ref_group *next; /* Next group of references. */
254 };
255
256 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
257
258 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
259
260 /* Do not generate a prefetch if the unroll factor is significantly less
261 than what is required by the prefetch. This is to avoid redundant
262 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
263 2, prefetching requires unrolling the loop 16 times, but
264 the loop is actually unrolled twice. In this case (ratio = 8),
265 prefetching is not likely to be beneficial. */
266
267 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
268 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
269 #endif
270
271 /* Some of the prefetch computations have quadratic complexity. We want to
272 avoid huge compile times and, therefore, want to limit the amount of
273 memory references per loop where we consider prefetching. */
274
275 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
276 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
277 #endif
278
279 /* The memory reference. */
280
281 struct mem_ref
282 {
283 gimple stmt; /* Statement in that the reference appears. */
284 tree mem; /* The reference. */
285 HOST_WIDE_INT delta; /* Constant offset of the reference. */
286 struct mem_ref_group *group; /* The group of references it belongs to. */
287 unsigned HOST_WIDE_INT prefetch_mod;
288 /* Prefetch only each PREFETCH_MOD-th
289 iteration. */
290 unsigned HOST_WIDE_INT prefetch_before;
291 /* Prefetch only first PREFETCH_BEFORE
292 iterations. */
293 unsigned reuse_distance; /* The amount of data accessed before the first
294 reuse of this value. */
295 struct mem_ref *next; /* The next reference in the group. */
296 unsigned write_p : 1; /* Is it a write? */
297 unsigned independent_p : 1; /* True if the reference is independent on
298 all other references inside the loop. */
299 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
300 unsigned storent_p : 1; /* True if we changed the store to a
301 nontemporal one. */
302 };
303
304 /* Dumps information about memory reference */
305 static void
306 dump_mem_details (FILE *file, tree base, tree step,
307 HOST_WIDE_INT delta, bool write_p)
308 {
309 fprintf (file, "(base ");
310 print_generic_expr (file, base, TDF_SLIM);
311 fprintf (file, ", step ");
312 if (cst_and_fits_in_hwi (step))
313 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
314 else
315 print_generic_expr (file, step, TDF_TREE);
316 fprintf (file, ")\n");
317 fprintf (file, " delta ");
318 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
319 fprintf (file, "\n");
320 fprintf (file, " %s\n", write_p ? "write" : "read");
321 fprintf (file, "\n");
322 }
323
324 /* Dumps information about reference REF to FILE. */
325
326 static void
327 dump_mem_ref (FILE *file, struct mem_ref *ref)
328 {
329 fprintf (file, "Reference %p:\n", (void *) ref);
330
331 fprintf (file, " group %p ", (void *) ref->group);
332
333 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
334 ref->write_p);
335 }
336
337 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
338 exist. */
339
340 static struct mem_ref_group *
341 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
342 {
343 struct mem_ref_group *group;
344
345 for (; *groups; groups = &(*groups)->next)
346 {
347 if (operand_equal_p ((*groups)->step, step, 0)
348 && operand_equal_p ((*groups)->base, base, 0))
349 return *groups;
350
351 /* If step is an integer constant, keep the list of groups sorted
352 by decreasing step. */
353 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
354 && int_cst_value ((*groups)->step) < int_cst_value (step))
355 break;
356 }
357
358 group = XNEW (struct mem_ref_group);
359 group->base = base;
360 group->step = step;
361 group->refs = NULL;
362 group->next = *groups;
363 *groups = group;
364
365 return group;
366 }
367
368 /* Records a memory reference MEM in GROUP with offset DELTA and write status
369 WRITE_P. The reference occurs in statement STMT. */
370
371 static void
372 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
373 HOST_WIDE_INT delta, bool write_p)
374 {
375 struct mem_ref **aref;
376
377 /* Do not record the same address twice. */
378 for (aref = &group->refs; *aref; aref = &(*aref)->next)
379 {
380 /* It does not have to be possible for write reference to reuse the read
381 prefetch, or vice versa. */
382 if (!WRITE_CAN_USE_READ_PREFETCH
383 && write_p
384 && !(*aref)->write_p)
385 continue;
386 if (!READ_CAN_USE_WRITE_PREFETCH
387 && !write_p
388 && (*aref)->write_p)
389 continue;
390
391 if ((*aref)->delta == delta)
392 return;
393 }
394
395 (*aref) = XNEW (struct mem_ref);
396 (*aref)->stmt = stmt;
397 (*aref)->mem = mem;
398 (*aref)->delta = delta;
399 (*aref)->write_p = write_p;
400 (*aref)->prefetch_before = PREFETCH_ALL;
401 (*aref)->prefetch_mod = 1;
402 (*aref)->reuse_distance = 0;
403 (*aref)->issue_prefetch_p = false;
404 (*aref)->group = group;
405 (*aref)->next = NULL;
406 (*aref)->independent_p = false;
407 (*aref)->storent_p = false;
408
409 if (dump_file && (dump_flags & TDF_DETAILS))
410 dump_mem_ref (dump_file, *aref);
411 }
412
413 /* Release memory references in GROUPS. */
414
415 static void
416 release_mem_refs (struct mem_ref_group *groups)
417 {
418 struct mem_ref_group *next_g;
419 struct mem_ref *ref, *next_r;
420
421 for (; groups; groups = next_g)
422 {
423 next_g = groups->next;
424 for (ref = groups->refs; ref; ref = next_r)
425 {
426 next_r = ref->next;
427 free (ref);
428 }
429 free (groups);
430 }
431 }
432
433 /* A structure used to pass arguments to idx_analyze_ref. */
434
435 struct ar_data
436 {
437 struct loop *loop; /* Loop of the reference. */
438 gimple stmt; /* Statement of the reference. */
439 tree *step; /* Step of the memory reference. */
440 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
441 };
442
443 /* Analyzes a single INDEX of a memory reference to obtain information
444 described at analyze_ref. Callback for for_each_index. */
445
446 static bool
447 idx_analyze_ref (tree base, tree *index, void *data)
448 {
449 struct ar_data *ar_data = (struct ar_data *) data;
450 tree ibase, step, stepsize;
451 HOST_WIDE_INT idelta = 0, imult = 1;
452 affine_iv iv;
453
454 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
455 *index, &iv, true))
456 return false;
457 ibase = iv.base;
458 step = iv.step;
459
460 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
461 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
462 {
463 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
464 ibase = TREE_OPERAND (ibase, 0);
465 }
466 if (cst_and_fits_in_hwi (ibase))
467 {
468 idelta += int_cst_value (ibase);
469 ibase = build_int_cst (TREE_TYPE (ibase), 0);
470 }
471
472 if (TREE_CODE (base) == ARRAY_REF)
473 {
474 stepsize = array_ref_element_size (base);
475 if (!cst_and_fits_in_hwi (stepsize))
476 return false;
477 imult = int_cst_value (stepsize);
478 step = fold_build2 (MULT_EXPR, sizetype,
479 fold_convert (sizetype, step),
480 fold_convert (sizetype, stepsize));
481 idelta *= imult;
482 }
483
484 if (*ar_data->step == NULL_TREE)
485 *ar_data->step = step;
486 else
487 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
488 fold_convert (sizetype, *ar_data->step),
489 fold_convert (sizetype, step));
490 *ar_data->delta += idelta;
491 *index = ibase;
492
493 return true;
494 }
495
496 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
497 STEP are integer constants and iter is number of iterations of LOOP. The
498 reference occurs in statement STMT. Strips nonaddressable component
499 references from REF_P. */
500
501 static bool
502 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
503 tree *step, HOST_WIDE_INT *delta,
504 gimple stmt)
505 {
506 struct ar_data ar_data;
507 tree off;
508 HOST_WIDE_INT bit_offset;
509 tree ref = *ref_p;
510
511 *step = NULL_TREE;
512 *delta = 0;
513
514 /* First strip off the component references. Ignore bitfields.
515 Also strip off the real and imagine parts of a complex, so that
516 they can have the same base. */
517 if (TREE_CODE (ref) == REALPART_EXPR
518 || TREE_CODE (ref) == IMAGPART_EXPR
519 || (TREE_CODE (ref) == COMPONENT_REF
520 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
521 {
522 if (TREE_CODE (ref) == IMAGPART_EXPR)
523 *delta += int_size_in_bytes (TREE_TYPE (ref));
524 ref = TREE_OPERAND (ref, 0);
525 }
526
527 *ref_p = ref;
528
529 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
530 {
531 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
532 bit_offset = TREE_INT_CST_LOW (off);
533 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
534
535 *delta += bit_offset / BITS_PER_UNIT;
536 }
537
538 *base = unshare_expr (ref);
539 ar_data.loop = loop;
540 ar_data.stmt = stmt;
541 ar_data.step = step;
542 ar_data.delta = delta;
543 return for_each_index (base, idx_analyze_ref, &ar_data);
544 }
545
546 /* Record a memory reference REF to the list REFS. The reference occurs in
547 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
548 reference was recorded, false otherwise. */
549
550 static bool
551 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
552 tree ref, bool write_p, gimple stmt)
553 {
554 tree base, step;
555 HOST_WIDE_INT delta;
556 struct mem_ref_group *agrp;
557
558 if (get_base_address (ref) == NULL)
559 return false;
560
561 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
562 return false;
563 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
564 if (step == NULL_TREE)
565 return false;
566
567 /* Stop if the address of BASE could not be taken. */
568 if (may_be_nonaddressable_p (base))
569 return false;
570
571 /* Limit non-constant step prefetching only to the innermost loops and
572 only when the step is loop invariant in the entire loop nest. */
573 if (!cst_and_fits_in_hwi (step))
574 {
575 if (loop->inner != NULL)
576 {
577 if (dump_file && (dump_flags & TDF_DETAILS))
578 {
579 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
580 print_generic_expr (dump_file, ref, TDF_TREE);
581 fprintf (dump_file,":");
582 dump_mem_details (dump_file, base, step, delta, write_p);
583 fprintf (dump_file,
584 "Ignoring %p, non-constant step prefetching is "
585 "limited to inner most loops \n",
586 (void *) ref);
587 }
588 return false;
589 }
590 else
591 {
592 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
593 {
594 if (dump_file && (dump_flags & TDF_DETAILS))
595 {
596 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
597 print_generic_expr (dump_file, ref, TDF_TREE);
598 fprintf (dump_file,":");
599 dump_mem_details (dump_file, base, step, delta, write_p);
600 fprintf (dump_file,
601 "Not prefetching, ignoring %p due to "
602 "loop variant step\n",
603 (void *) ref);
604 }
605 return false;
606 }
607 }
608 }
609
610 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
611 are integer constants. */
612 agrp = find_or_create_group (refs, base, step);
613 record_ref (agrp, stmt, ref, delta, write_p);
614
615 return true;
616 }
617
618 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
619 true if there are no other memory references inside the loop. */
620
621 static struct mem_ref_group *
622 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
623 {
624 basic_block *body = get_loop_body_in_dom_order (loop);
625 basic_block bb;
626 unsigned i;
627 gimple_stmt_iterator bsi;
628 gimple stmt;
629 tree lhs, rhs;
630 struct mem_ref_group *refs = NULL;
631
632 *no_other_refs = true;
633 *ref_count = 0;
634
635 /* Scan the loop body in order, so that the former references precede the
636 later ones. */
637 for (i = 0; i < loop->num_nodes; i++)
638 {
639 bb = body[i];
640 if (bb->loop_father != loop)
641 continue;
642
643 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
644 {
645 stmt = gsi_stmt (bsi);
646
647 if (gimple_code (stmt) != GIMPLE_ASSIGN)
648 {
649 if (gimple_vuse (stmt)
650 || (is_gimple_call (stmt)
651 && !(gimple_call_flags (stmt) & ECF_CONST)))
652 *no_other_refs = false;
653 continue;
654 }
655
656 lhs = gimple_assign_lhs (stmt);
657 rhs = gimple_assign_rhs1 (stmt);
658
659 if (REFERENCE_CLASS_P (rhs))
660 {
661 *no_other_refs &= gather_memory_references_ref (loop, &refs,
662 rhs, false, stmt);
663 *ref_count += 1;
664 }
665 if (REFERENCE_CLASS_P (lhs))
666 {
667 *no_other_refs &= gather_memory_references_ref (loop, &refs,
668 lhs, true, stmt);
669 *ref_count += 1;
670 }
671 }
672 }
673 free (body);
674
675 return refs;
676 }
677
678 /* Prune the prefetch candidate REF using the self-reuse. */
679
680 static void
681 prune_ref_by_self_reuse (struct mem_ref *ref)
682 {
683 HOST_WIDE_INT step;
684 bool backward;
685
686 /* If the step size is non constant, we cannot calculate prefetch_mod. */
687 if (!cst_and_fits_in_hwi (ref->group->step))
688 return;
689
690 step = int_cst_value (ref->group->step);
691
692 backward = step < 0;
693
694 if (step == 0)
695 {
696 /* Prefetch references to invariant address just once. */
697 ref->prefetch_before = 1;
698 return;
699 }
700
701 if (backward)
702 step = -step;
703
704 if (step > PREFETCH_BLOCK)
705 return;
706
707 if ((backward && HAVE_BACKWARD_PREFETCH)
708 || (!backward && HAVE_FORWARD_PREFETCH))
709 {
710 ref->prefetch_before = 1;
711 return;
712 }
713
714 ref->prefetch_mod = PREFETCH_BLOCK / step;
715 }
716
717 /* Divides X by BY, rounding down. */
718
719 static HOST_WIDE_INT
720 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
721 {
722 gcc_assert (by > 0);
723
724 if (x >= 0)
725 return x / by;
726 else
727 return (x + by - 1) / by;
728 }
729
730 /* Given a CACHE_LINE_SIZE and two inductive memory references
731 with a common STEP greater than CACHE_LINE_SIZE and an address
732 difference DELTA, compute the probability that they will fall
733 in different cache lines. Return true if the computed miss rate
734 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
735 number of distinct iterations after which the pattern repeats itself.
736 ALIGN_UNIT is the unit of alignment in bytes. */
737
738 static bool
739 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
740 HOST_WIDE_INT step, HOST_WIDE_INT delta,
741 unsigned HOST_WIDE_INT distinct_iters,
742 int align_unit)
743 {
744 unsigned align, iter;
745 int total_positions, miss_positions, max_allowed_miss_positions;
746 int address1, address2, cache_line1, cache_line2;
747
748 /* It always misses if delta is greater than or equal to the cache
749 line size. */
750 if (delta >= (HOST_WIDE_INT) cache_line_size)
751 return false;
752
753 miss_positions = 0;
754 total_positions = (cache_line_size / align_unit) * distinct_iters;
755 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
756
757 /* Iterate through all possible alignments of the first
758 memory reference within its cache line. */
759 for (align = 0; align < cache_line_size; align += align_unit)
760
761 /* Iterate through all distinct iterations. */
762 for (iter = 0; iter < distinct_iters; iter++)
763 {
764 address1 = align + step * iter;
765 address2 = address1 + delta;
766 cache_line1 = address1 / cache_line_size;
767 cache_line2 = address2 / cache_line_size;
768 if (cache_line1 != cache_line2)
769 {
770 miss_positions += 1;
771 if (miss_positions > max_allowed_miss_positions)
772 return false;
773 }
774 }
775 return true;
776 }
777
778 /* Prune the prefetch candidate REF using the reuse with BY.
779 If BY_IS_BEFORE is true, BY is before REF in the loop. */
780
781 static void
782 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
783 bool by_is_before)
784 {
785 HOST_WIDE_INT step;
786 bool backward;
787 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
788 HOST_WIDE_INT delta = delta_b - delta_r;
789 HOST_WIDE_INT hit_from;
790 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
791 HOST_WIDE_INT reduced_step;
792 unsigned HOST_WIDE_INT reduced_prefetch_block;
793 tree ref_type;
794 int align_unit;
795
796 /* If the step is non constant we cannot calculate prefetch_before. */
797 if (!cst_and_fits_in_hwi (ref->group->step)) {
798 return;
799 }
800
801 step = int_cst_value (ref->group->step);
802
803 backward = step < 0;
804
805
806 if (delta == 0)
807 {
808 /* If the references has the same address, only prefetch the
809 former. */
810 if (by_is_before)
811 ref->prefetch_before = 0;
812
813 return;
814 }
815
816 if (!step)
817 {
818 /* If the reference addresses are invariant and fall into the
819 same cache line, prefetch just the first one. */
820 if (!by_is_before)
821 return;
822
823 if (ddown (ref->delta, PREFETCH_BLOCK)
824 != ddown (by->delta, PREFETCH_BLOCK))
825 return;
826
827 ref->prefetch_before = 0;
828 return;
829 }
830
831 /* Only prune the reference that is behind in the array. */
832 if (backward)
833 {
834 if (delta > 0)
835 return;
836
837 /* Transform the data so that we may assume that the accesses
838 are forward. */
839 delta = - delta;
840 step = -step;
841 delta_r = PREFETCH_BLOCK - 1 - delta_r;
842 delta_b = PREFETCH_BLOCK - 1 - delta_b;
843 }
844 else
845 {
846 if (delta < 0)
847 return;
848 }
849
850 /* Check whether the two references are likely to hit the same cache
851 line, and how distant the iterations in that it occurs are from
852 each other. */
853
854 if (step <= PREFETCH_BLOCK)
855 {
856 /* The accesses are sure to meet. Let us check when. */
857 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
858 prefetch_before = (hit_from - delta_r + step - 1) / step;
859
860 /* Do not reduce prefetch_before if we meet beyond cache size. */
861 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
862 prefetch_before = PREFETCH_ALL;
863 if (prefetch_before < ref->prefetch_before)
864 ref->prefetch_before = prefetch_before;
865
866 return;
867 }
868
869 /* A more complicated case with step > prefetch_block. First reduce
870 the ratio between the step and the cache line size to its simplest
871 terms. The resulting denominator will then represent the number of
872 distinct iterations after which each address will go back to its
873 initial location within the cache line. This computation assumes
874 that PREFETCH_BLOCK is a power of two. */
875 prefetch_block = PREFETCH_BLOCK;
876 reduced_prefetch_block = prefetch_block;
877 reduced_step = step;
878 while ((reduced_step & 1) == 0
879 && reduced_prefetch_block > 1)
880 {
881 reduced_step >>= 1;
882 reduced_prefetch_block >>= 1;
883 }
884
885 prefetch_before = delta / step;
886 delta %= step;
887 ref_type = TREE_TYPE (ref->mem);
888 align_unit = TYPE_ALIGN (ref_type) / 8;
889 if (is_miss_rate_acceptable (prefetch_block, step, delta,
890 reduced_prefetch_block, align_unit))
891 {
892 /* Do not reduce prefetch_before if we meet beyond cache size. */
893 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
894 prefetch_before = PREFETCH_ALL;
895 if (prefetch_before < ref->prefetch_before)
896 ref->prefetch_before = prefetch_before;
897
898 return;
899 }
900
901 /* Try also the following iteration. */
902 prefetch_before++;
903 delta = step - delta;
904 if (is_miss_rate_acceptable (prefetch_block, step, delta,
905 reduced_prefetch_block, align_unit))
906 {
907 if (prefetch_before < ref->prefetch_before)
908 ref->prefetch_before = prefetch_before;
909
910 return;
911 }
912
913 /* The ref probably does not reuse by. */
914 return;
915 }
916
917 /* Prune the prefetch candidate REF using the reuses with other references
918 in REFS. */
919
920 static void
921 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
922 {
923 struct mem_ref *prune_by;
924 bool before = true;
925
926 prune_ref_by_self_reuse (ref);
927
928 for (prune_by = refs; prune_by; prune_by = prune_by->next)
929 {
930 if (prune_by == ref)
931 {
932 before = false;
933 continue;
934 }
935
936 if (!WRITE_CAN_USE_READ_PREFETCH
937 && ref->write_p
938 && !prune_by->write_p)
939 continue;
940 if (!READ_CAN_USE_WRITE_PREFETCH
941 && !ref->write_p
942 && prune_by->write_p)
943 continue;
944
945 prune_ref_by_group_reuse (ref, prune_by, before);
946 }
947 }
948
949 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
950
951 static void
952 prune_group_by_reuse (struct mem_ref_group *group)
953 {
954 struct mem_ref *ref_pruned;
955
956 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
957 {
958 prune_ref_by_reuse (ref_pruned, group->refs);
959
960 if (dump_file && (dump_flags & TDF_DETAILS))
961 {
962 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
963
964 if (ref_pruned->prefetch_before == PREFETCH_ALL
965 && ref_pruned->prefetch_mod == 1)
966 fprintf (dump_file, " no restrictions");
967 else if (ref_pruned->prefetch_before == 0)
968 fprintf (dump_file, " do not prefetch");
969 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
970 fprintf (dump_file, " prefetch once");
971 else
972 {
973 if (ref_pruned->prefetch_before != PREFETCH_ALL)
974 {
975 fprintf (dump_file, " prefetch before ");
976 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
977 ref_pruned->prefetch_before);
978 }
979 if (ref_pruned->prefetch_mod != 1)
980 {
981 fprintf (dump_file, " prefetch mod ");
982 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
983 ref_pruned->prefetch_mod);
984 }
985 }
986 fprintf (dump_file, "\n");
987 }
988 }
989 }
990
991 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
992
993 static void
994 prune_by_reuse (struct mem_ref_group *groups)
995 {
996 for (; groups; groups = groups->next)
997 prune_group_by_reuse (groups);
998 }
999
1000 /* Returns true if we should issue prefetch for REF. */
1001
1002 static bool
1003 should_issue_prefetch_p (struct mem_ref *ref)
1004 {
1005 /* For now do not issue prefetches for only first few of the
1006 iterations. */
1007 if (ref->prefetch_before != PREFETCH_ALL)
1008 {
1009 if (dump_file && (dump_flags & TDF_DETAILS))
1010 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1011 (void *) ref);
1012 return false;
1013 }
1014
1015 /* Do not prefetch nontemporal stores. */
1016 if (ref->storent_p)
1017 {
1018 if (dump_file && (dump_flags & TDF_DETAILS))
1019 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1020 return false;
1021 }
1022
1023 return true;
1024 }
1025
1026 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1027 AHEAD is the number of iterations to prefetch ahead (which corresponds
1028 to the number of simultaneous instances of one prefetch running at a
1029 time). UNROLL_FACTOR is the factor by that the loop is going to be
1030 unrolled. Returns true if there is anything to prefetch. */
1031
1032 static bool
1033 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1034 unsigned ahead)
1035 {
1036 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1037 unsigned slots_per_prefetch;
1038 struct mem_ref *ref;
1039 bool any = false;
1040
1041 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1042 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1043
1044 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1045 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1046 it will need a prefetch slot. */
1047 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1048 if (dump_file && (dump_flags & TDF_DETAILS))
1049 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1050 slots_per_prefetch);
1051
1052 /* For now we just take memory references one by one and issue
1053 prefetches for as many as possible. The groups are sorted
1054 starting with the largest step, since the references with
1055 large step are more likely to cause many cache misses. */
1056
1057 for (; groups; groups = groups->next)
1058 for (ref = groups->refs; ref; ref = ref->next)
1059 {
1060 if (!should_issue_prefetch_p (ref))
1061 continue;
1062
1063 /* The loop is far from being sufficiently unrolled for this
1064 prefetch. Do not generate prefetch to avoid many redudant
1065 prefetches. */
1066 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1067 continue;
1068
1069 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1070 and we unroll the loop UNROLL_FACTOR times, we need to insert
1071 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1072 iteration. */
1073 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1074 / ref->prefetch_mod);
1075 prefetch_slots = n_prefetches * slots_per_prefetch;
1076
1077 /* If more than half of the prefetches would be lost anyway, do not
1078 issue the prefetch. */
1079 if (2 * remaining_prefetch_slots < prefetch_slots)
1080 continue;
1081
1082 ref->issue_prefetch_p = true;
1083
1084 if (remaining_prefetch_slots <= prefetch_slots)
1085 return true;
1086 remaining_prefetch_slots -= prefetch_slots;
1087 any = true;
1088 }
1089
1090 return any;
1091 }
1092
1093 /* Return TRUE if no prefetch is going to be generated in the given
1094 GROUPS. */
1095
1096 static bool
1097 nothing_to_prefetch_p (struct mem_ref_group *groups)
1098 {
1099 struct mem_ref *ref;
1100
1101 for (; groups; groups = groups->next)
1102 for (ref = groups->refs; ref; ref = ref->next)
1103 if (should_issue_prefetch_p (ref))
1104 return false;
1105
1106 return true;
1107 }
1108
1109 /* Estimate the number of prefetches in the given GROUPS.
1110 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1111
1112 static int
1113 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1114 {
1115 struct mem_ref *ref;
1116 unsigned n_prefetches;
1117 int prefetch_count = 0;
1118
1119 for (; groups; groups = groups->next)
1120 for (ref = groups->refs; ref; ref = ref->next)
1121 if (should_issue_prefetch_p (ref))
1122 {
1123 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1124 / ref->prefetch_mod);
1125 prefetch_count += n_prefetches;
1126 }
1127
1128 return prefetch_count;
1129 }
1130
1131 /* Issue prefetches for the reference REF into loop as decided before.
1132 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1133 is the factor by which LOOP was unrolled. */
1134
1135 static void
1136 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1137 {
1138 HOST_WIDE_INT delta;
1139 tree addr, addr_base, write_p, local, forward;
1140 gimple prefetch;
1141 gimple_stmt_iterator bsi;
1142 unsigned n_prefetches, ap;
1143 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1147 nontemporal ? " nontemporal" : "",
1148 (void *) ref);
1149
1150 bsi = gsi_for_stmt (ref->stmt);
1151
1152 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1153 / ref->prefetch_mod);
1154 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1155 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1156 true, NULL, true, GSI_SAME_STMT);
1157 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1158 local = nontemporal ? integer_zero_node : integer_three_node;
1159
1160 for (ap = 0; ap < n_prefetches; ap++)
1161 {
1162 if (cst_and_fits_in_hwi (ref->group->step))
1163 {
1164 /* Determine the address to prefetch. */
1165 delta = (ahead + ap * ref->prefetch_mod) *
1166 int_cst_value (ref->group->step);
1167 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1168 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1169 true, GSI_SAME_STMT);
1170 }
1171 else
1172 {
1173 /* The step size is non-constant but loop-invariant. We use the
1174 heuristic to simply prefetch ahead iterations ahead. */
1175 forward = fold_build2 (MULT_EXPR, sizetype,
1176 fold_convert (sizetype, ref->group->step),
1177 fold_convert (sizetype, size_int (ahead)));
1178 addr = fold_build_pointer_plus (addr_base, forward);
1179 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1180 NULL, true, GSI_SAME_STMT);
1181 }
1182 /* Create the prefetch instruction. */
1183 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1184 3, addr, write_p, local);
1185 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1186 }
1187 }
1188
1189 /* Issue prefetches for the references in GROUPS into loop as decided before.
1190 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1191 factor by that LOOP was unrolled. */
1192
1193 static void
1194 issue_prefetches (struct mem_ref_group *groups,
1195 unsigned unroll_factor, unsigned ahead)
1196 {
1197 struct mem_ref *ref;
1198
1199 for (; groups; groups = groups->next)
1200 for (ref = groups->refs; ref; ref = ref->next)
1201 if (ref->issue_prefetch_p)
1202 issue_prefetch_ref (ref, unroll_factor, ahead);
1203 }
1204
1205 /* Returns true if REF is a memory write for that a nontemporal store insn
1206 can be used. */
1207
1208 static bool
1209 nontemporal_store_p (struct mem_ref *ref)
1210 {
1211 machine_mode mode;
1212 enum insn_code code;
1213
1214 /* REF must be a write that is not reused. We require it to be independent
1215 on all other memory references in the loop, as the nontemporal stores may
1216 be reordered with respect to other memory references. */
1217 if (!ref->write_p
1218 || !ref->independent_p
1219 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1220 return false;
1221
1222 /* Check that we have the storent instruction for the mode. */
1223 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1224 if (mode == BLKmode)
1225 return false;
1226
1227 code = optab_handler (storent_optab, mode);
1228 return code != CODE_FOR_nothing;
1229 }
1230
1231 /* If REF is a nontemporal store, we mark the corresponding modify statement
1232 and return true. Otherwise, we return false. */
1233
1234 static bool
1235 mark_nontemporal_store (struct mem_ref *ref)
1236 {
1237 if (!nontemporal_store_p (ref))
1238 return false;
1239
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1241 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1242 (void *) ref);
1243
1244 gimple_assign_set_nontemporal_move (ref->stmt, true);
1245 ref->storent_p = true;
1246
1247 return true;
1248 }
1249
1250 /* Issue a memory fence instruction after LOOP. */
1251
1252 static void
1253 emit_mfence_after_loop (struct loop *loop)
1254 {
1255 vec<edge> exits = get_loop_exit_edges (loop);
1256 edge exit;
1257 gimple call;
1258 gimple_stmt_iterator bsi;
1259 unsigned i;
1260
1261 FOR_EACH_VEC_ELT (exits, i, exit)
1262 {
1263 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1264
1265 if (!single_pred_p (exit->dest)
1266 /* If possible, we prefer not to insert the fence on other paths
1267 in cfg. */
1268 && !(exit->flags & EDGE_ABNORMAL))
1269 split_loop_exit_edge (exit);
1270 bsi = gsi_after_labels (exit->dest);
1271
1272 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1273 }
1274
1275 exits.release ();
1276 update_ssa (TODO_update_ssa_only_virtuals);
1277 }
1278
1279 /* Returns true if we can use storent in loop, false otherwise. */
1280
1281 static bool
1282 may_use_storent_in_loop_p (struct loop *loop)
1283 {
1284 bool ret = true;
1285
1286 if (loop->inner != NULL)
1287 return false;
1288
1289 /* If we must issue a mfence insn after using storent, check that there
1290 is a suitable place for it at each of the loop exits. */
1291 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1292 {
1293 vec<edge> exits = get_loop_exit_edges (loop);
1294 unsigned i;
1295 edge exit;
1296
1297 FOR_EACH_VEC_ELT (exits, i, exit)
1298 if ((exit->flags & EDGE_ABNORMAL)
1299 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1300 ret = false;
1301
1302 exits.release ();
1303 }
1304
1305 return ret;
1306 }
1307
1308 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1309 references in the loop. */
1310
1311 static void
1312 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1313 {
1314 struct mem_ref *ref;
1315 bool any = false;
1316
1317 if (!may_use_storent_in_loop_p (loop))
1318 return;
1319
1320 for (; groups; groups = groups->next)
1321 for (ref = groups->refs; ref; ref = ref->next)
1322 any |= mark_nontemporal_store (ref);
1323
1324 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1325 emit_mfence_after_loop (loop);
1326 }
1327
1328 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1329 this is the case, fill in DESC by the description of number of
1330 iterations. */
1331
1332 static bool
1333 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1334 unsigned factor)
1335 {
1336 if (!can_unroll_loop_p (loop, factor, desc))
1337 return false;
1338
1339 /* We only consider loops without control flow for unrolling. This is not
1340 a hard restriction -- tree_unroll_loop works with arbitrary loops
1341 as well; but the unrolling/prefetching is usually more profitable for
1342 loops consisting of a single basic block, and we want to limit the
1343 code growth. */
1344 if (loop->num_nodes > 2)
1345 return false;
1346
1347 return true;
1348 }
1349
1350 /* Determine the coefficient by that unroll LOOP, from the information
1351 contained in the list of memory references REFS. Description of
1352 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1353 insns of the LOOP. EST_NITER is the estimated number of iterations of
1354 the loop, or -1 if no estimate is available. */
1355
1356 static unsigned
1357 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1358 unsigned ninsns, struct tree_niter_desc *desc,
1359 HOST_WIDE_INT est_niter)
1360 {
1361 unsigned upper_bound;
1362 unsigned nfactor, factor, mod_constraint;
1363 struct mem_ref_group *agp;
1364 struct mem_ref *ref;
1365
1366 /* First check whether the loop is not too large to unroll. We ignore
1367 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1368 from unrolling them enough to make exactly one cache line covered by each
1369 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1370 us from unrolling the loops too many times in cases where we only expect
1371 gains from better scheduling and decreasing loop overhead, which is not
1372 the case here. */
1373 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1374
1375 /* If we unrolled the loop more times than it iterates, the unrolled version
1376 of the loop would be never entered. */
1377 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1378 upper_bound = est_niter;
1379
1380 if (upper_bound <= 1)
1381 return 1;
1382
1383 /* Choose the factor so that we may prefetch each cache just once,
1384 but bound the unrolling by UPPER_BOUND. */
1385 factor = 1;
1386 for (agp = refs; agp; agp = agp->next)
1387 for (ref = agp->refs; ref; ref = ref->next)
1388 if (should_issue_prefetch_p (ref))
1389 {
1390 mod_constraint = ref->prefetch_mod;
1391 nfactor = least_common_multiple (mod_constraint, factor);
1392 if (nfactor <= upper_bound)
1393 factor = nfactor;
1394 }
1395
1396 if (!should_unroll_loop_p (loop, desc, factor))
1397 return 1;
1398
1399 return factor;
1400 }
1401
1402 /* Returns the total volume of the memory references REFS, taking into account
1403 reuses in the innermost loop and cache line size. TODO -- we should also
1404 take into account reuses across the iterations of the loops in the loop
1405 nest. */
1406
1407 static unsigned
1408 volume_of_references (struct mem_ref_group *refs)
1409 {
1410 unsigned volume = 0;
1411 struct mem_ref_group *gr;
1412 struct mem_ref *ref;
1413
1414 for (gr = refs; gr; gr = gr->next)
1415 for (ref = gr->refs; ref; ref = ref->next)
1416 {
1417 /* Almost always reuses another value? */
1418 if (ref->prefetch_before != PREFETCH_ALL)
1419 continue;
1420
1421 /* If several iterations access the same cache line, use the size of
1422 the line divided by this number. Otherwise, a cache line is
1423 accessed in each iteration. TODO -- in the latter case, we should
1424 take the size of the reference into account, rounding it up on cache
1425 line size multiple. */
1426 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1427 }
1428 return volume;
1429 }
1430
1431 /* Returns the volume of memory references accessed across VEC iterations of
1432 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1433 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1434
1435 static unsigned
1436 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1437 {
1438 unsigned i;
1439
1440 for (i = 0; i < n; i++)
1441 if (vec[i] != 0)
1442 break;
1443
1444 if (i == n)
1445 return 0;
1446
1447 gcc_assert (vec[i] > 0);
1448
1449 /* We ignore the parts of the distance vector in subloops, since usually
1450 the numbers of iterations are much smaller. */
1451 return loop_sizes[i] * vec[i];
1452 }
1453
1454 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1455 at the position corresponding to the loop of the step. N is the depth
1456 of the considered loop nest, and, LOOP is its innermost loop. */
1457
1458 static void
1459 add_subscript_strides (tree access_fn, unsigned stride,
1460 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1461 {
1462 struct loop *aloop;
1463 tree step;
1464 HOST_WIDE_INT astep;
1465 unsigned min_depth = loop_depth (loop) - n;
1466
1467 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1468 {
1469 aloop = get_chrec_loop (access_fn);
1470 step = CHREC_RIGHT (access_fn);
1471 access_fn = CHREC_LEFT (access_fn);
1472
1473 if ((unsigned) loop_depth (aloop) <= min_depth)
1474 continue;
1475
1476 if (tree_fits_shwi_p (step))
1477 astep = tree_to_shwi (step);
1478 else
1479 astep = L1_CACHE_LINE_SIZE;
1480
1481 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1482
1483 }
1484 }
1485
1486 /* Returns the volume of memory references accessed between two consecutive
1487 self-reuses of the reference DR. We consider the subscripts of DR in N
1488 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1489 loops. LOOP is the innermost loop of the current loop nest. */
1490
1491 static unsigned
1492 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1493 struct loop *loop)
1494 {
1495 tree stride, access_fn;
1496 HOST_WIDE_INT *strides, astride;
1497 vec<tree> access_fns;
1498 tree ref = DR_REF (dr);
1499 unsigned i, ret = ~0u;
1500
1501 /* In the following example:
1502
1503 for (i = 0; i < N; i++)
1504 for (j = 0; j < N; j++)
1505 use (a[j][i]);
1506 the same cache line is accessed each N steps (except if the change from
1507 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1508 we cannot rely purely on the results of the data dependence analysis.
1509
1510 Instead, we compute the stride of the reference in each loop, and consider
1511 the innermost loop in that the stride is less than cache size. */
1512
1513 strides = XCNEWVEC (HOST_WIDE_INT, n);
1514 access_fns = DR_ACCESS_FNS (dr);
1515
1516 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1517 {
1518 /* Keep track of the reference corresponding to the subscript, so that we
1519 know its stride. */
1520 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1521 ref = TREE_OPERAND (ref, 0);
1522
1523 if (TREE_CODE (ref) == ARRAY_REF)
1524 {
1525 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1526 if (tree_fits_uhwi_p (stride))
1527 astride = tree_to_uhwi (stride);
1528 else
1529 astride = L1_CACHE_LINE_SIZE;
1530
1531 ref = TREE_OPERAND (ref, 0);
1532 }
1533 else
1534 astride = 1;
1535
1536 add_subscript_strides (access_fn, astride, strides, n, loop);
1537 }
1538
1539 for (i = n; i-- > 0; )
1540 {
1541 unsigned HOST_WIDE_INT s;
1542
1543 s = strides[i] < 0 ? -strides[i] : strides[i];
1544
1545 if (s < (unsigned) L1_CACHE_LINE_SIZE
1546 && (loop_sizes[i]
1547 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1548 {
1549 ret = loop_sizes[i];
1550 break;
1551 }
1552 }
1553
1554 free (strides);
1555 return ret;
1556 }
1557
1558 /* Determines the distance till the first reuse of each reference in REFS
1559 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1560 memory references in the loop. Return false if the analysis fails. */
1561
1562 static bool
1563 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1564 bool no_other_refs)
1565 {
1566 struct loop *nest, *aloop;
1567 vec<data_reference_p> datarefs = vNULL;
1568 vec<ddr_p> dependences = vNULL;
1569 struct mem_ref_group *gr;
1570 struct mem_ref *ref, *refb;
1571 vec<loop_p> vloops = vNULL;
1572 unsigned *loop_data_size;
1573 unsigned i, j, n;
1574 unsigned volume, dist, adist;
1575 HOST_WIDE_INT vol;
1576 data_reference_p dr;
1577 ddr_p dep;
1578
1579 if (loop->inner)
1580 return true;
1581
1582 /* Find the outermost loop of the loop nest of loop (we require that
1583 there are no sibling loops inside the nest). */
1584 nest = loop;
1585 while (1)
1586 {
1587 aloop = loop_outer (nest);
1588
1589 if (aloop == current_loops->tree_root
1590 || aloop->inner->next)
1591 break;
1592
1593 nest = aloop;
1594 }
1595
1596 /* For each loop, determine the amount of data accessed in each iteration.
1597 We use this to estimate whether the reference is evicted from the
1598 cache before its reuse. */
1599 find_loop_nest (nest, &vloops);
1600 n = vloops.length ();
1601 loop_data_size = XNEWVEC (unsigned, n);
1602 volume = volume_of_references (refs);
1603 i = n;
1604 while (i-- != 0)
1605 {
1606 loop_data_size[i] = volume;
1607 /* Bound the volume by the L2 cache size, since above this bound,
1608 all dependence distances are equivalent. */
1609 if (volume > L2_CACHE_SIZE_BYTES)
1610 continue;
1611
1612 aloop = vloops[i];
1613 vol = estimated_stmt_executions_int (aloop);
1614 if (vol == -1)
1615 vol = expected_loop_iterations (aloop);
1616 volume *= vol;
1617 }
1618
1619 /* Prepare the references in the form suitable for data dependence
1620 analysis. We ignore unanalyzable data references (the results
1621 are used just as a heuristics to estimate temporality of the
1622 references, hence we do not need to worry about correctness). */
1623 for (gr = refs; gr; gr = gr->next)
1624 for (ref = gr->refs; ref; ref = ref->next)
1625 {
1626 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1627 ref->mem, ref->stmt, !ref->write_p);
1628
1629 if (dr)
1630 {
1631 ref->reuse_distance = volume;
1632 dr->aux = ref;
1633 datarefs.safe_push (dr);
1634 }
1635 else
1636 no_other_refs = false;
1637 }
1638
1639 FOR_EACH_VEC_ELT (datarefs, i, dr)
1640 {
1641 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1642 ref = (struct mem_ref *) dr->aux;
1643 if (ref->reuse_distance > dist)
1644 ref->reuse_distance = dist;
1645
1646 if (no_other_refs)
1647 ref->independent_p = true;
1648 }
1649
1650 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1651 return false;
1652
1653 FOR_EACH_VEC_ELT (dependences, i, dep)
1654 {
1655 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1656 continue;
1657
1658 ref = (struct mem_ref *) DDR_A (dep)->aux;
1659 refb = (struct mem_ref *) DDR_B (dep)->aux;
1660
1661 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1662 || DDR_NUM_DIST_VECTS (dep) == 0)
1663 {
1664 /* If the dependence cannot be analyzed, assume that there might be
1665 a reuse. */
1666 dist = 0;
1667
1668 ref->independent_p = false;
1669 refb->independent_p = false;
1670 }
1671 else
1672 {
1673 /* The distance vectors are normalized to be always lexicographically
1674 positive, hence we cannot tell just from them whether DDR_A comes
1675 before DDR_B or vice versa. However, it is not important,
1676 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1677 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1678 in cache (and marking it as nontemporal would not affect
1679 anything). */
1680
1681 dist = volume;
1682 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1683 {
1684 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1685 loop_data_size, n);
1686
1687 /* If this is a dependence in the innermost loop (i.e., the
1688 distances in all superloops are zero) and it is not
1689 the trivial self-dependence with distance zero, record that
1690 the references are not completely independent. */
1691 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1692 && (ref != refb
1693 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1694 {
1695 ref->independent_p = false;
1696 refb->independent_p = false;
1697 }
1698
1699 /* Ignore accesses closer than
1700 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1701 so that we use nontemporal prefetches e.g. if single memory
1702 location is accessed several times in a single iteration of
1703 the loop. */
1704 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1705 continue;
1706
1707 if (adist < dist)
1708 dist = adist;
1709 }
1710 }
1711
1712 if (ref->reuse_distance > dist)
1713 ref->reuse_distance = dist;
1714 if (refb->reuse_distance > dist)
1715 refb->reuse_distance = dist;
1716 }
1717
1718 free_dependence_relations (dependences);
1719 free_data_refs (datarefs);
1720 free (loop_data_size);
1721
1722 if (dump_file && (dump_flags & TDF_DETAILS))
1723 {
1724 fprintf (dump_file, "Reuse distances:\n");
1725 for (gr = refs; gr; gr = gr->next)
1726 for (ref = gr->refs; ref; ref = ref->next)
1727 fprintf (dump_file, " ref %p distance %u\n",
1728 (void *) ref, ref->reuse_distance);
1729 }
1730
1731 return true;
1732 }
1733
1734 /* Determine whether or not the trip count to ahead ratio is too small based
1735 on prefitablility consideration.
1736 AHEAD: the iteration ahead distance,
1737 EST_NITER: the estimated trip count. */
1738
1739 static bool
1740 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1741 {
1742 /* Assume trip count to ahead ratio is big enough if the trip count could not
1743 be estimated at compile time. */
1744 if (est_niter < 0)
1745 return false;
1746
1747 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1748 {
1749 if (dump_file && (dump_flags & TDF_DETAILS))
1750 fprintf (dump_file,
1751 "Not prefetching -- loop estimated to roll only %d times\n",
1752 (int) est_niter);
1753 return true;
1754 }
1755
1756 return false;
1757 }
1758
1759 /* Determine whether or not the number of memory references in the loop is
1760 reasonable based on the profitablity and compilation time considerations.
1761 NINSNS: estimated number of instructions in the loop,
1762 MEM_REF_COUNT: total number of memory references in the loop. */
1763
1764 static bool
1765 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1766 {
1767 int insn_to_mem_ratio;
1768
1769 if (mem_ref_count == 0)
1770 return false;
1771
1772 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1773 (compute_all_dependences) have high costs based on quadratic complexity.
1774 To avoid huge compilation time, we give up prefetching if mem_ref_count
1775 is too large. */
1776 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1777 return false;
1778
1779 /* Prefetching improves performance by overlapping cache missing
1780 memory accesses with CPU operations. If the loop does not have
1781 enough CPU operations to overlap with memory operations, prefetching
1782 won't give a significant benefit. One approximate way of checking
1783 this is to require the ratio of instructions to memory references to
1784 be above a certain limit. This approximation works well in practice.
1785 TODO: Implement a more precise computation by estimating the time
1786 for each CPU or memory op in the loop. Time estimates for memory ops
1787 should account for cache misses. */
1788 insn_to_mem_ratio = ninsns / mem_ref_count;
1789
1790 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1791 {
1792 if (dump_file && (dump_flags & TDF_DETAILS))
1793 fprintf (dump_file,
1794 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1795 insn_to_mem_ratio);
1796 return false;
1797 }
1798
1799 return true;
1800 }
1801
1802 /* Determine whether or not the instruction to prefetch ratio in the loop is
1803 too small based on the profitablity consideration.
1804 NINSNS: estimated number of instructions in the loop,
1805 PREFETCH_COUNT: an estimate of the number of prefetches,
1806 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1807
1808 static bool
1809 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1810 unsigned unroll_factor)
1811 {
1812 int insn_to_prefetch_ratio;
1813
1814 /* Prefetching most likely causes performance degradation when the instruction
1815 to prefetch ratio is too small. Too many prefetch instructions in a loop
1816 may reduce the I-cache performance.
1817 (unroll_factor * ninsns) is used to estimate the number of instructions in
1818 the unrolled loop. This implementation is a bit simplistic -- the number
1819 of issued prefetch instructions is also affected by unrolling. So,
1820 prefetch_mod and the unroll factor should be taken into account when
1821 determining prefetch_count. Also, the number of insns of the unrolled
1822 loop will usually be significantly smaller than the number of insns of the
1823 original loop * unroll_factor (at least the induction variable increases
1824 and the exit branches will get eliminated), so it might be better to use
1825 tree_estimate_loop_size + estimated_unrolled_size. */
1826 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1827 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1828 {
1829 if (dump_file && (dump_flags & TDF_DETAILS))
1830 fprintf (dump_file,
1831 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1832 insn_to_prefetch_ratio);
1833 return true;
1834 }
1835
1836 return false;
1837 }
1838
1839
1840 /* Issue prefetch instructions for array references in LOOP. Returns
1841 true if the LOOP was unrolled. */
1842
1843 static bool
1844 loop_prefetch_arrays (struct loop *loop)
1845 {
1846 struct mem_ref_group *refs;
1847 unsigned ahead, ninsns, time, unroll_factor;
1848 HOST_WIDE_INT est_niter;
1849 struct tree_niter_desc desc;
1850 bool unrolled = false, no_other_refs;
1851 unsigned prefetch_count;
1852 unsigned mem_ref_count;
1853
1854 if (optimize_loop_nest_for_size_p (loop))
1855 {
1856 if (dump_file && (dump_flags & TDF_DETAILS))
1857 fprintf (dump_file, " ignored (cold area)\n");
1858 return false;
1859 }
1860
1861 /* FIXME: the time should be weighted by the probabilities of the blocks in
1862 the loop body. */
1863 time = tree_num_loop_insns (loop, &eni_time_weights);
1864 if (time == 0)
1865 return false;
1866
1867 ahead = (PREFETCH_LATENCY + time - 1) / time;
1868 est_niter = estimated_stmt_executions_int (loop);
1869 if (est_niter == -1)
1870 est_niter = max_stmt_executions_int (loop);
1871
1872 /* Prefetching is not likely to be profitable if the trip count to ahead
1873 ratio is too small. */
1874 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1875 return false;
1876
1877 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1878
1879 /* Step 1: gather the memory references. */
1880 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1881
1882 /* Give up prefetching if the number of memory references in the
1883 loop is not reasonable based on profitablity and compilation time
1884 considerations. */
1885 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1886 goto fail;
1887
1888 /* Step 2: estimate the reuse effects. */
1889 prune_by_reuse (refs);
1890
1891 if (nothing_to_prefetch_p (refs))
1892 goto fail;
1893
1894 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1895 goto fail;
1896
1897 /* Step 3: determine unroll factor. */
1898 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1899 est_niter);
1900
1901 /* Estimate prefetch count for the unrolled loop. */
1902 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1903 if (prefetch_count == 0)
1904 goto fail;
1905
1906 if (dump_file && (dump_flags & TDF_DETAILS))
1907 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1908 HOST_WIDE_INT_PRINT_DEC "\n"
1909 "insn count %d, mem ref count %d, prefetch count %d\n",
1910 ahead, unroll_factor, est_niter,
1911 ninsns, mem_ref_count, prefetch_count);
1912
1913 /* Prefetching is not likely to be profitable if the instruction to prefetch
1914 ratio is too small. */
1915 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1916 unroll_factor))
1917 goto fail;
1918
1919 mark_nontemporal_stores (loop, refs);
1920
1921 /* Step 4: what to prefetch? */
1922 if (!schedule_prefetches (refs, unroll_factor, ahead))
1923 goto fail;
1924
1925 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1926 iterations so that we do not issue superfluous prefetches. */
1927 if (unroll_factor != 1)
1928 {
1929 tree_unroll_loop (loop, unroll_factor,
1930 single_dom_exit (loop), &desc);
1931 unrolled = true;
1932 }
1933
1934 /* Step 6: issue the prefetches. */
1935 issue_prefetches (refs, unroll_factor, ahead);
1936
1937 fail:
1938 release_mem_refs (refs);
1939 return unrolled;
1940 }
1941
1942 /* Issue prefetch instructions for array references in loops. */
1943
1944 unsigned int
1945 tree_ssa_prefetch_arrays (void)
1946 {
1947 struct loop *loop;
1948 bool unrolled = false;
1949 int todo_flags = 0;
1950
1951 if (!HAVE_prefetch
1952 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1953 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1954 of processor costs and i486 does not have prefetch, but
1955 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1956 || PREFETCH_BLOCK == 0)
1957 return 0;
1958
1959 if (dump_file && (dump_flags & TDF_DETAILS))
1960 {
1961 fprintf (dump_file, "Prefetching parameters:\n");
1962 fprintf (dump_file, " simultaneous prefetches: %d\n",
1963 SIMULTANEOUS_PREFETCHES);
1964 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1965 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1966 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1967 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1968 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1969 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1970 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1971 MIN_INSN_TO_PREFETCH_RATIO);
1972 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1973 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1974 fprintf (dump_file, "\n");
1975 }
1976
1977 initialize_original_copy_tables ();
1978
1979 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1980 {
1981 tree type = build_function_type_list (void_type_node,
1982 const_ptr_type_node, NULL_TREE);
1983 tree decl = add_builtin_function ("__builtin_prefetch", type,
1984 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1985 NULL, NULL_TREE);
1986 DECL_IS_NOVOPS (decl) = true;
1987 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1988 }
1989
1990 /* We assume that size of cache line is a power of two, so verify this
1991 here. */
1992 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1993
1994 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1995 {
1996 if (dump_file && (dump_flags & TDF_DETAILS))
1997 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1998
1999 unrolled |= loop_prefetch_arrays (loop);
2000
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2002 fprintf (dump_file, "\n\n");
2003 }
2004
2005 if (unrolled)
2006 {
2007 scev_reset ();
2008 todo_flags |= TODO_cleanup_cfg;
2009 }
2010
2011 free_original_copy_tables ();
2012 return todo_flags;
2013 }
2014
2015 /* Prefetching. */
2016
2017 namespace {
2018
2019 const pass_data pass_data_loop_prefetch =
2020 {
2021 GIMPLE_PASS, /* type */
2022 "aprefetch", /* name */
2023 OPTGROUP_LOOP, /* optinfo_flags */
2024 TV_TREE_PREFETCH, /* tv_id */
2025 ( PROP_cfg | PROP_ssa ), /* properties_required */
2026 0, /* properties_provided */
2027 0, /* properties_destroyed */
2028 0, /* todo_flags_start */
2029 0, /* todo_flags_finish */
2030 };
2031
2032 class pass_loop_prefetch : public gimple_opt_pass
2033 {
2034 public:
2035 pass_loop_prefetch (gcc::context *ctxt)
2036 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2037 {}
2038
2039 /* opt_pass methods: */
2040 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
2041 virtual unsigned int execute (function *);
2042
2043 }; // class pass_loop_prefetch
2044
2045 unsigned int
2046 pass_loop_prefetch::execute (function *fun)
2047 {
2048 if (number_of_loops (fun) <= 1)
2049 return 0;
2050
2051 return tree_ssa_prefetch_arrays ();
2052 }
2053
2054 } // anon namespace
2055
2056 gimple_opt_pass *
2057 make_pass_loop_prefetch (gcc::context *ctxt)
2058 {
2059 return new pass_loop_prefetch (ctxt);
2060 }
2061
2062