]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-prefetch.c
* tree-scalar-evolution.c (scev_const_prop): Add arguments to
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "varray.h"
37 #include "expr.h"
38 #include "tree-pass.h"
39 #include "ggc.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "hashtab.h"
43 #include "tree-chrec.h"
44 #include "tree-scalar-evolution.h"
45 #include "toplev.h"
46 #include "params.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-data-ref.h"
50 #include "optabs.h"
51
52 /* This pass inserts prefetch instructions to optimize cache usage during
53 accesses to arrays in loops. It processes loops sequentially and:
54
55 1) Gathers all memory references in the single loop.
56 2) For each of the references it decides when it is profitable to prefetch
57 it. To do it, we evaluate the reuse among the accesses, and determines
58 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61 iterations of the loop that are zero modulo PREFETCH_MOD). For example
62 (assuming cache line size is 64 bytes, char has size 1 byte and there
63 is no hardware sequential prefetch):
64
65 char *a;
66 for (i = 0; i < max; i++)
67 {
68 a[255] = ...; (0)
69 a[i] = ...; (1)
70 a[i + 64] = ...; (2)
71 a[16*i] = ...; (3)
72 a[187*i] = ...; (4)
73 a[187*i + 50] = ...; (5)
74 }
75
76 (0) obviously has PREFETCH_BEFORE 1
77 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78 location 64 iterations before it, and PREFETCH_MOD 64 (since
79 it hits the same cache line otherwise).
80 (2) has PREFETCH_MOD 64
81 (3) has PREFETCH_MOD 4
82 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
83 the cache line accessed by (4) is the same with probability only
84 7/32.
85 (5) has PREFETCH_MOD 1 as well.
86
87 Additionally, we use data dependence analysis to determine for each
88 reference the distance till the first reuse; this information is used
89 to determine the temporality of the issued prefetch instruction.
90
91 3) We determine how much ahead we need to prefetch. The number of
92 iterations needed is time to fetch / time spent in one iteration of
93 the loop. The problem is that we do not know either of these values,
94 so we just make a heuristic guess based on a magic (possibly)
95 target-specific constant and size of the loop.
96
97 4) Determine which of the references we prefetch. We take into account
98 that there is a maximum number of simultaneous prefetches (provided
99 by machine description). We prefetch as many prefetches as possible
100 while still within this bound (starting with those with lowest
101 prefetch_mod, since they are responsible for most of the cache
102 misses).
103
104 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106 prefetching nonaccessed memory.
107 TODO -- actually implement peeling.
108
109 6) We actually emit the prefetch instructions. ??? Perhaps emit the
110 prefetch instructions with guards in cases where 5) was not sufficient
111 to satisfy the constraints?
112
113 Some other TODO:
114 -- write and use more general reuse analysis (that could be also used
115 in other cache aimed loop optimizations)
116 -- make it behave sanely together with the prefetches given by user
117 (now we just ignore them; at the very least we should avoid
118 optimizing loops in that user put his own prefetches)
119 -- we assume cache line size alignment of arrays; this could be
120 improved. */
121
122 /* Magic constants follow. These should be replaced by machine specific
123 numbers. */
124
125 /* True if write can be prefetched by a read prefetch. */
126
127 #ifndef WRITE_CAN_USE_READ_PREFETCH
128 #define WRITE_CAN_USE_READ_PREFETCH 1
129 #endif
130
131 /* True if read can be prefetched by a write prefetch. */
132
133 #ifndef READ_CAN_USE_WRITE_PREFETCH
134 #define READ_CAN_USE_WRITE_PREFETCH 0
135 #endif
136
137 /* The size of the block loaded by a single prefetch. Usually, this is
138 the same as cache line size (at the moment, we only consider one level
139 of cache hierarchy). */
140
141 #ifndef PREFETCH_BLOCK
142 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
143 #endif
144
145 /* Do we have a forward hardware sequential prefetching? */
146
147 #ifndef HAVE_FORWARD_PREFETCH
148 #define HAVE_FORWARD_PREFETCH 0
149 #endif
150
151 /* Do we have a backward hardware sequential prefetching? */
152
153 #ifndef HAVE_BACKWARD_PREFETCH
154 #define HAVE_BACKWARD_PREFETCH 0
155 #endif
156
157 /* In some cases we are only able to determine that there is a certain
158 probability that the two accesses hit the same cache line. In this
159 case, we issue the prefetches for both of them if this probability
160 is less then (1000 - ACCEPTABLE_MISS_RATE) promile. */
161
162 #ifndef ACCEPTABLE_MISS_RATE
163 #define ACCEPTABLE_MISS_RATE 50
164 #endif
165
166 #ifndef HAVE_prefetch
167 #define HAVE_prefetch 0
168 #endif
169
170 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * L1_CACHE_LINE_SIZE))
171 /* TODO: Add parameter to specify L2 cache size. */
172 #define L2_CACHE_SIZE_BYTES (8 * L1_CACHE_SIZE_BYTES)
173
174 /* We consider a memory access nontemporal if it is not reused sooner than
175 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
176 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
177 so that we use nontemporal prefetches e.g. if single memory location
178 is accessed several times in a single iteration of the loop. */
179 #define NONTEMPORAL_FRACTION 16
180
181 /* In case we have to emit a memory fence instruction after the loop that
182 uses nontemporal stores, this defines the builtin to use. */
183
184 #ifndef FENCE_FOLLOWING_MOVNT
185 #define FENCE_FOLLOWING_MOVNT NULL_TREE
186 #endif
187
188 /* The group of references between that reuse may occur. */
189
190 struct mem_ref_group
191 {
192 tree base; /* Base of the reference. */
193 HOST_WIDE_INT step; /* Step of the reference. */
194 struct mem_ref *refs; /* References in the group. */
195 struct mem_ref_group *next; /* Next group of references. */
196 };
197
198 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
199
200 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
201
202 /* The memory reference. */
203
204 struct mem_ref
205 {
206 tree stmt; /* Statement in that the reference appears. */
207 tree mem; /* The reference. */
208 HOST_WIDE_INT delta; /* Constant offset of the reference. */
209 struct mem_ref_group *group; /* The group of references it belongs to. */
210 unsigned HOST_WIDE_INT prefetch_mod;
211 /* Prefetch only each PREFETCH_MOD-th
212 iteration. */
213 unsigned HOST_WIDE_INT prefetch_before;
214 /* Prefetch only first PREFETCH_BEFORE
215 iterations. */
216 unsigned reuse_distance; /* The amount of data accessed before the first
217 reuse of this value. */
218 struct mem_ref *next; /* The next reference in the group. */
219 unsigned write_p : 1; /* Is it a write? */
220 unsigned independent_p : 1; /* True if the reference is independent on
221 all other references inside the loop. */
222 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
223 unsigned storent_p : 1; /* True if we changed the store to a
224 nontemporal one. */
225 };
226
227 /* Dumps information about reference REF to FILE. */
228
229 static void
230 dump_mem_ref (FILE *file, struct mem_ref *ref)
231 {
232 fprintf (file, "Reference %p:\n", (void *) ref);
233
234 fprintf (file, " group %p (base ", (void *) ref->group);
235 print_generic_expr (file, ref->group->base, TDF_SLIM);
236 fprintf (file, ", step ");
237 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
238 fprintf (file, ")\n");
239
240 fprintf (file, " delta ");
241 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
242 fprintf (file, "\n");
243
244 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
245
246 fprintf (file, "\n");
247 }
248
249 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
250 exist. */
251
252 static struct mem_ref_group *
253 find_or_create_group (struct mem_ref_group **groups, tree base,
254 HOST_WIDE_INT step)
255 {
256 struct mem_ref_group *group;
257
258 for (; *groups; groups = &(*groups)->next)
259 {
260 if ((*groups)->step == step
261 && operand_equal_p ((*groups)->base, base, 0))
262 return *groups;
263
264 /* Keep the list of groups sorted by decreasing step. */
265 if ((*groups)->step < step)
266 break;
267 }
268
269 group = XNEW (struct mem_ref_group);
270 group->base = base;
271 group->step = step;
272 group->refs = NULL;
273 group->next = *groups;
274 *groups = group;
275
276 return group;
277 }
278
279 /* Records a memory reference MEM in GROUP with offset DELTA and write status
280 WRITE_P. The reference occurs in statement STMT. */
281
282 static void
283 record_ref (struct mem_ref_group *group, tree stmt, tree mem,
284 HOST_WIDE_INT delta, bool write_p)
285 {
286 struct mem_ref **aref;
287
288 /* Do not record the same address twice. */
289 for (aref = &group->refs; *aref; aref = &(*aref)->next)
290 {
291 /* It does not have to be possible for write reference to reuse the read
292 prefetch, or vice versa. */
293 if (!WRITE_CAN_USE_READ_PREFETCH
294 && write_p
295 && !(*aref)->write_p)
296 continue;
297 if (!READ_CAN_USE_WRITE_PREFETCH
298 && !write_p
299 && (*aref)->write_p)
300 continue;
301
302 if ((*aref)->delta == delta)
303 return;
304 }
305
306 (*aref) = XNEW (struct mem_ref);
307 (*aref)->stmt = stmt;
308 (*aref)->mem = mem;
309 (*aref)->delta = delta;
310 (*aref)->write_p = write_p;
311 (*aref)->prefetch_before = PREFETCH_ALL;
312 (*aref)->prefetch_mod = 1;
313 (*aref)->reuse_distance = 0;
314 (*aref)->issue_prefetch_p = false;
315 (*aref)->group = group;
316 (*aref)->next = NULL;
317 (*aref)->independent_p = false;
318 (*aref)->storent_p = false;
319
320 if (dump_file && (dump_flags & TDF_DETAILS))
321 dump_mem_ref (dump_file, *aref);
322 }
323
324 /* Release memory references in GROUPS. */
325
326 static void
327 release_mem_refs (struct mem_ref_group *groups)
328 {
329 struct mem_ref_group *next_g;
330 struct mem_ref *ref, *next_r;
331
332 for (; groups; groups = next_g)
333 {
334 next_g = groups->next;
335 for (ref = groups->refs; ref; ref = next_r)
336 {
337 next_r = ref->next;
338 free (ref);
339 }
340 free (groups);
341 }
342 }
343
344 /* A structure used to pass arguments to idx_analyze_ref. */
345
346 struct ar_data
347 {
348 struct loop *loop; /* Loop of the reference. */
349 tree stmt; /* Statement of the reference. */
350 HOST_WIDE_INT *step; /* Step of the memory reference. */
351 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
352 };
353
354 /* Analyzes a single INDEX of a memory reference to obtain information
355 described at analyze_ref. Callback for for_each_index. */
356
357 static bool
358 idx_analyze_ref (tree base, tree *index, void *data)
359 {
360 struct ar_data *ar_data = (struct ar_data *) data;
361 tree ibase, step, stepsize;
362 HOST_WIDE_INT istep, idelta = 0, imult = 1;
363 affine_iv iv;
364
365 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
366 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
367 return false;
368
369 if (!simple_iv (ar_data->loop, ar_data->stmt, *index, &iv, false))
370 return false;
371 ibase = iv.base;
372 step = iv.step;
373
374 if (!cst_and_fits_in_hwi (step))
375 return false;
376 istep = int_cst_value (step);
377
378 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
379 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
380 {
381 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
382 ibase = TREE_OPERAND (ibase, 0);
383 }
384 if (cst_and_fits_in_hwi (ibase))
385 {
386 idelta += int_cst_value (ibase);
387 ibase = build_int_cst (TREE_TYPE (ibase), 0);
388 }
389
390 if (TREE_CODE (base) == ARRAY_REF)
391 {
392 stepsize = array_ref_element_size (base);
393 if (!cst_and_fits_in_hwi (stepsize))
394 return false;
395 imult = int_cst_value (stepsize);
396
397 istep *= imult;
398 idelta *= imult;
399 }
400
401 *ar_data->step += istep;
402 *ar_data->delta += idelta;
403 *index = ibase;
404
405 return true;
406 }
407
408 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
409 STEP are integer constants and iter is number of iterations of LOOP. The
410 reference occurs in statement STMT. Strips nonaddressable component
411 references from REF_P. */
412
413 static bool
414 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
415 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
416 tree stmt)
417 {
418 struct ar_data ar_data;
419 tree off;
420 HOST_WIDE_INT bit_offset;
421 tree ref = *ref_p;
422
423 *step = 0;
424 *delta = 0;
425
426 /* First strip off the component references. Ignore bitfields. */
427 if (TREE_CODE (ref) == COMPONENT_REF
428 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
429 ref = TREE_OPERAND (ref, 0);
430
431 *ref_p = ref;
432
433 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
434 {
435 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
436 bit_offset = TREE_INT_CST_LOW (off);
437 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
438
439 *delta += bit_offset / BITS_PER_UNIT;
440 }
441
442 *base = unshare_expr (ref);
443 ar_data.loop = loop;
444 ar_data.stmt = stmt;
445 ar_data.step = step;
446 ar_data.delta = delta;
447 return for_each_index (base, idx_analyze_ref, &ar_data);
448 }
449
450 /* Record a memory reference REF to the list REFS. The reference occurs in
451 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
452 reference was recorded, false otherwise. */
453
454 static bool
455 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
456 tree ref, bool write_p, tree stmt)
457 {
458 tree base;
459 HOST_WIDE_INT step, delta;
460 struct mem_ref_group *agrp;
461
462 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
463 return false;
464
465 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
466 are integer constants. */
467 agrp = find_or_create_group (refs, base, step);
468 record_ref (agrp, stmt, ref, delta, write_p);
469
470 return true;
471 }
472
473 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
474 true if there are no other memory references inside the loop. */
475
476 static struct mem_ref_group *
477 gather_memory_references (struct loop *loop, bool *no_other_refs)
478 {
479 basic_block *body = get_loop_body_in_dom_order (loop);
480 basic_block bb;
481 unsigned i;
482 block_stmt_iterator bsi;
483 tree stmt, lhs, rhs, call;
484 struct mem_ref_group *refs = NULL;
485
486 *no_other_refs = true;
487
488 /* Scan the loop body in order, so that the former references precede the
489 later ones. */
490 for (i = 0; i < loop->num_nodes; i++)
491 {
492 bb = body[i];
493 if (bb->loop_father != loop)
494 continue;
495
496 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
497 {
498 stmt = bsi_stmt (bsi);
499 call = get_call_expr_in (stmt);
500 if (call && !(call_expr_flags (call) & ECF_CONST))
501 *no_other_refs = false;
502
503 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
504 {
505 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
506 *no_other_refs = false;
507 continue;
508 }
509
510 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
511 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
512
513 if (REFERENCE_CLASS_P (rhs))
514 *no_other_refs &= gather_memory_references_ref (loop, &refs,
515 rhs, false, stmt);
516 if (REFERENCE_CLASS_P (lhs))
517 *no_other_refs &= gather_memory_references_ref (loop, &refs,
518 lhs, true, stmt);
519 }
520 }
521 free (body);
522
523 return refs;
524 }
525
526 /* Prune the prefetch candidate REF using the self-reuse. */
527
528 static void
529 prune_ref_by_self_reuse (struct mem_ref *ref)
530 {
531 HOST_WIDE_INT step = ref->group->step;
532 bool backward = step < 0;
533
534 if (step == 0)
535 {
536 /* Prefetch references to invariant address just once. */
537 ref->prefetch_before = 1;
538 return;
539 }
540
541 if (backward)
542 step = -step;
543
544 if (step > PREFETCH_BLOCK)
545 return;
546
547 if ((backward && HAVE_BACKWARD_PREFETCH)
548 || (!backward && HAVE_FORWARD_PREFETCH))
549 {
550 ref->prefetch_before = 1;
551 return;
552 }
553
554 ref->prefetch_mod = PREFETCH_BLOCK / step;
555 }
556
557 /* Divides X by BY, rounding down. */
558
559 static HOST_WIDE_INT
560 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
561 {
562 gcc_assert (by > 0);
563
564 if (x >= 0)
565 return x / by;
566 else
567 return (x + by - 1) / by;
568 }
569
570 /* Prune the prefetch candidate REF using the reuse with BY.
571 If BY_IS_BEFORE is true, BY is before REF in the loop. */
572
573 static void
574 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
575 bool by_is_before)
576 {
577 HOST_WIDE_INT step = ref->group->step;
578 bool backward = step < 0;
579 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
580 HOST_WIDE_INT delta = delta_b - delta_r;
581 HOST_WIDE_INT hit_from;
582 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
583
584 if (delta == 0)
585 {
586 /* If the references has the same address, only prefetch the
587 former. */
588 if (by_is_before)
589 ref->prefetch_before = 0;
590
591 return;
592 }
593
594 if (!step)
595 {
596 /* If the reference addresses are invariant and fall into the
597 same cache line, prefetch just the first one. */
598 if (!by_is_before)
599 return;
600
601 if (ddown (ref->delta, PREFETCH_BLOCK)
602 != ddown (by->delta, PREFETCH_BLOCK))
603 return;
604
605 ref->prefetch_before = 0;
606 return;
607 }
608
609 /* Only prune the reference that is behind in the array. */
610 if (backward)
611 {
612 if (delta > 0)
613 return;
614
615 /* Transform the data so that we may assume that the accesses
616 are forward. */
617 delta = - delta;
618 step = -step;
619 delta_r = PREFETCH_BLOCK - 1 - delta_r;
620 delta_b = PREFETCH_BLOCK - 1 - delta_b;
621 }
622 else
623 {
624 if (delta < 0)
625 return;
626 }
627
628 /* Check whether the two references are likely to hit the same cache
629 line, and how distant the iterations in that it occurs are from
630 each other. */
631
632 if (step <= PREFETCH_BLOCK)
633 {
634 /* The accesses are sure to meet. Let us check when. */
635 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
636 prefetch_before = (hit_from - delta_r + step - 1) / step;
637
638 if (prefetch_before < ref->prefetch_before)
639 ref->prefetch_before = prefetch_before;
640
641 return;
642 }
643
644 /* A more complicated case. First let us ensure that size of cache line
645 and step are coprime (here we assume that PREFETCH_BLOCK is a power
646 of two. */
647 prefetch_block = PREFETCH_BLOCK;
648 while ((step & 1) == 0
649 && prefetch_block > 1)
650 {
651 step >>= 1;
652 prefetch_block >>= 1;
653 delta >>= 1;
654 }
655
656 /* Now step > prefetch_block, and step and prefetch_block are coprime.
657 Determine the probability that the accesses hit the same cache line. */
658
659 prefetch_before = delta / step;
660 delta %= step;
661 if ((unsigned HOST_WIDE_INT) delta
662 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
663 {
664 if (prefetch_before < ref->prefetch_before)
665 ref->prefetch_before = prefetch_before;
666
667 return;
668 }
669
670 /* Try also the following iteration. */
671 prefetch_before++;
672 delta = step - delta;
673 if ((unsigned HOST_WIDE_INT) delta
674 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
675 {
676 if (prefetch_before < ref->prefetch_before)
677 ref->prefetch_before = prefetch_before;
678
679 return;
680 }
681
682 /* The ref probably does not reuse by. */
683 return;
684 }
685
686 /* Prune the prefetch candidate REF using the reuses with other references
687 in REFS. */
688
689 static void
690 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
691 {
692 struct mem_ref *prune_by;
693 bool before = true;
694
695 prune_ref_by_self_reuse (ref);
696
697 for (prune_by = refs; prune_by; prune_by = prune_by->next)
698 {
699 if (prune_by == ref)
700 {
701 before = false;
702 continue;
703 }
704
705 if (!WRITE_CAN_USE_READ_PREFETCH
706 && ref->write_p
707 && !prune_by->write_p)
708 continue;
709 if (!READ_CAN_USE_WRITE_PREFETCH
710 && !ref->write_p
711 && prune_by->write_p)
712 continue;
713
714 prune_ref_by_group_reuse (ref, prune_by, before);
715 }
716 }
717
718 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
719
720 static void
721 prune_group_by_reuse (struct mem_ref_group *group)
722 {
723 struct mem_ref *ref_pruned;
724
725 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
726 {
727 prune_ref_by_reuse (ref_pruned, group->refs);
728
729 if (dump_file && (dump_flags & TDF_DETAILS))
730 {
731 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
732
733 if (ref_pruned->prefetch_before == PREFETCH_ALL
734 && ref_pruned->prefetch_mod == 1)
735 fprintf (dump_file, " no restrictions");
736 else if (ref_pruned->prefetch_before == 0)
737 fprintf (dump_file, " do not prefetch");
738 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
739 fprintf (dump_file, " prefetch once");
740 else
741 {
742 if (ref_pruned->prefetch_before != PREFETCH_ALL)
743 {
744 fprintf (dump_file, " prefetch before ");
745 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
746 ref_pruned->prefetch_before);
747 }
748 if (ref_pruned->prefetch_mod != 1)
749 {
750 fprintf (dump_file, " prefetch mod ");
751 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
752 ref_pruned->prefetch_mod);
753 }
754 }
755 fprintf (dump_file, "\n");
756 }
757 }
758 }
759
760 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
761
762 static void
763 prune_by_reuse (struct mem_ref_group *groups)
764 {
765 for (; groups; groups = groups->next)
766 prune_group_by_reuse (groups);
767 }
768
769 /* Returns true if we should issue prefetch for REF. */
770
771 static bool
772 should_issue_prefetch_p (struct mem_ref *ref)
773 {
774 /* For now do not issue prefetches for only first few of the
775 iterations. */
776 if (ref->prefetch_before != PREFETCH_ALL)
777 return false;
778
779 /* Do not prefetch nontemporal stores. */
780 if (ref->storent_p)
781 return false;
782
783 return true;
784 }
785
786 /* Decide which of the prefetch candidates in GROUPS to prefetch.
787 AHEAD is the number of iterations to prefetch ahead (which corresponds
788 to the number of simultaneous instances of one prefetch running at a
789 time). UNROLL_FACTOR is the factor by that the loop is going to be
790 unrolled. Returns true if there is anything to prefetch. */
791
792 static bool
793 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
794 unsigned ahead)
795 {
796 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
797 unsigned slots_per_prefetch;
798 struct mem_ref *ref;
799 bool any = false;
800
801 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
802 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
803
804 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
805 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
806 it will need a prefetch slot. */
807 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
808 if (dump_file && (dump_flags & TDF_DETAILS))
809 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
810 slots_per_prefetch);
811
812 /* For now we just take memory references one by one and issue
813 prefetches for as many as possible. The groups are sorted
814 starting with the largest step, since the references with
815 large step are more likely to cause many cache misses. */
816
817 for (; groups; groups = groups->next)
818 for (ref = groups->refs; ref; ref = ref->next)
819 {
820 if (!should_issue_prefetch_p (ref))
821 continue;
822
823 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
824 and we unroll the loop UNROLL_FACTOR times, we need to insert
825 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
826 iteration. */
827 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
828 / ref->prefetch_mod);
829 prefetch_slots = n_prefetches * slots_per_prefetch;
830
831 /* If more than half of the prefetches would be lost anyway, do not
832 issue the prefetch. */
833 if (2 * remaining_prefetch_slots < prefetch_slots)
834 continue;
835
836 ref->issue_prefetch_p = true;
837
838 if (remaining_prefetch_slots <= prefetch_slots)
839 return true;
840 remaining_prefetch_slots -= prefetch_slots;
841 any = true;
842 }
843
844 return any;
845 }
846
847 /* Determine whether there is any reference suitable for prefetching
848 in GROUPS. */
849
850 static bool
851 anything_to_prefetch_p (struct mem_ref_group *groups)
852 {
853 struct mem_ref *ref;
854
855 for (; groups; groups = groups->next)
856 for (ref = groups->refs; ref; ref = ref->next)
857 if (should_issue_prefetch_p (ref))
858 return true;
859
860 return false;
861 }
862
863 /* Issue prefetches for the reference REF into loop as decided before.
864 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
865 is the factor by which LOOP was unrolled. */
866
867 static void
868 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
869 {
870 HOST_WIDE_INT delta;
871 tree addr, addr_base, prefetch, write_p, local;
872 block_stmt_iterator bsi;
873 unsigned n_prefetches, ap;
874 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
875
876 if (dump_file && (dump_flags & TDF_DETAILS))
877 fprintf (dump_file, "Issued%s prefetch for %p.\n",
878 nontemporal ? " nontemporal" : "",
879 (void *) ref);
880
881 bsi = bsi_for_stmt (ref->stmt);
882
883 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
884 / ref->prefetch_mod);
885 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
886 addr_base = force_gimple_operand_bsi (&bsi, unshare_expr (addr_base),
887 true, NULL, true, BSI_SAME_STMT);
888 write_p = ref->write_p ? integer_one_node : integer_zero_node;
889 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
890
891 for (ap = 0; ap < n_prefetches; ap++)
892 {
893 /* Determine the address to prefetch. */
894 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
895 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
896 addr_base, size_int (delta));
897 addr = force_gimple_operand_bsi (&bsi, unshare_expr (addr), true, NULL,
898 true, BSI_SAME_STMT);
899
900 /* Create the prefetch instruction. */
901 prefetch = build_call_expr (built_in_decls[BUILT_IN_PREFETCH],
902 3, addr, write_p, local);
903 bsi_insert_before (&bsi, prefetch, BSI_SAME_STMT);
904 }
905 }
906
907 /* Issue prefetches for the references in GROUPS into loop as decided before.
908 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
909 factor by that LOOP was unrolled. */
910
911 static void
912 issue_prefetches (struct mem_ref_group *groups,
913 unsigned unroll_factor, unsigned ahead)
914 {
915 struct mem_ref *ref;
916
917 for (; groups; groups = groups->next)
918 for (ref = groups->refs; ref; ref = ref->next)
919 if (ref->issue_prefetch_p)
920 issue_prefetch_ref (ref, unroll_factor, ahead);
921 }
922
923 /* Returns true if REF is a memory write for that a nontemporal store insn
924 can be used. */
925
926 static bool
927 nontemporal_store_p (struct mem_ref *ref)
928 {
929 enum machine_mode mode;
930 enum insn_code code;
931
932 /* REF must be a write that is not reused. We require it to be independent
933 on all other memory references in the loop, as the nontemporal stores may
934 be reordered with respect to other memory references. */
935 if (!ref->write_p
936 || !ref->independent_p
937 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
938 return false;
939
940 /* Check that we have the storent instruction for the mode. */
941 mode = TYPE_MODE (TREE_TYPE (ref->mem));
942 if (mode == BLKmode)
943 return false;
944
945 code = storent_optab->handlers[mode].insn_code;
946 return code != CODE_FOR_nothing;
947 }
948
949 /* If REF is a nontemporal store, we mark the corresponding modify statement
950 and return true. Otherwise, we return false. */
951
952 static bool
953 mark_nontemporal_store (struct mem_ref *ref)
954 {
955 if (!nontemporal_store_p (ref))
956 return false;
957
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
960 (void *) ref);
961
962 MOVE_NONTEMPORAL (ref->stmt) = true;
963 ref->storent_p = true;
964
965 return true;
966 }
967
968 /* Issue a memory fence instruction after LOOP. */
969
970 static void
971 emit_mfence_after_loop (struct loop *loop)
972 {
973 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
974 edge exit;
975 tree call;
976 block_stmt_iterator bsi;
977 unsigned i;
978
979 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
980 {
981 call = build_function_call_expr (FENCE_FOLLOWING_MOVNT, NULL_TREE);
982
983 if (!single_pred_p (exit->dest)
984 /* If possible, we prefer not to insert the fence on other paths
985 in cfg. */
986 && !(exit->flags & EDGE_ABNORMAL))
987 split_loop_exit_edge (exit);
988 bsi = bsi_after_labels (exit->dest);
989
990 bsi_insert_before (&bsi, call, BSI_NEW_STMT);
991 mark_virtual_ops_for_renaming (call);
992 }
993
994 VEC_free (edge, heap, exits);
995 update_ssa (TODO_update_ssa_only_virtuals);
996 }
997
998 /* Returns true if we can use storent in loop, false otherwise. */
999
1000 static bool
1001 may_use_storent_in_loop_p (struct loop *loop)
1002 {
1003 bool ret = true;
1004
1005 if (loop->inner != NULL)
1006 return false;
1007
1008 /* If we must issue a mfence insn after using storent, check that there
1009 is a suitable place for it at each of the loop exits. */
1010 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1011 {
1012 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1013 unsigned i;
1014 edge exit;
1015
1016 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1017 if ((exit->flags & EDGE_ABNORMAL)
1018 && exit->dest == EXIT_BLOCK_PTR)
1019 ret = false;
1020
1021 VEC_free (edge, heap, exits);
1022 }
1023
1024 return ret;
1025 }
1026
1027 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1028 references in the loop. */
1029
1030 static void
1031 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1032 {
1033 struct mem_ref *ref;
1034 bool any = false;
1035
1036 if (!may_use_storent_in_loop_p (loop))
1037 return;
1038
1039 for (; groups; groups = groups->next)
1040 for (ref = groups->refs; ref; ref = ref->next)
1041 any |= mark_nontemporal_store (ref);
1042
1043 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1044 emit_mfence_after_loop (loop);
1045 }
1046
1047 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1048 this is the case, fill in DESC by the description of number of
1049 iterations. */
1050
1051 static bool
1052 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1053 unsigned factor)
1054 {
1055 if (!can_unroll_loop_p (loop, factor, desc))
1056 return false;
1057
1058 /* We only consider loops without control flow for unrolling. This is not
1059 a hard restriction -- tree_unroll_loop works with arbitrary loops
1060 as well; but the unrolling/prefetching is usually more profitable for
1061 loops consisting of a single basic block, and we want to limit the
1062 code growth. */
1063 if (loop->num_nodes > 2)
1064 return false;
1065
1066 return true;
1067 }
1068
1069 /* Determine the coefficient by that unroll LOOP, from the information
1070 contained in the list of memory references REFS. Description of
1071 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1072 insns of the LOOP. EST_NITER is the estimated number of iterations of
1073 the loop, or -1 if no estimate is available. */
1074
1075 static unsigned
1076 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1077 unsigned ninsns, struct tree_niter_desc *desc,
1078 HOST_WIDE_INT est_niter)
1079 {
1080 unsigned upper_bound;
1081 unsigned nfactor, factor, mod_constraint;
1082 struct mem_ref_group *agp;
1083 struct mem_ref *ref;
1084
1085 /* First check whether the loop is not too large to unroll. We ignore
1086 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1087 from unrolling them enough to make exactly one cache line covered by each
1088 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1089 us from unrolling the loops too many times in cases where we only expect
1090 gains from better scheduling and decreasing loop overhead, which is not
1091 the case here. */
1092 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1093
1094 /* If we unrolled the loop more times than it iterates, the unrolled version
1095 of the loop would be never entered. */
1096 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1097 upper_bound = est_niter;
1098
1099 if (upper_bound <= 1)
1100 return 1;
1101
1102 /* Choose the factor so that we may prefetch each cache just once,
1103 but bound the unrolling by UPPER_BOUND. */
1104 factor = 1;
1105 for (agp = refs; agp; agp = agp->next)
1106 for (ref = agp->refs; ref; ref = ref->next)
1107 if (should_issue_prefetch_p (ref))
1108 {
1109 mod_constraint = ref->prefetch_mod;
1110 nfactor = least_common_multiple (mod_constraint, factor);
1111 if (nfactor <= upper_bound)
1112 factor = nfactor;
1113 }
1114
1115 if (!should_unroll_loop_p (loop, desc, factor))
1116 return 1;
1117
1118 return factor;
1119 }
1120
1121 /* Returns the total volume of the memory references REFS, taking into account
1122 reuses in the innermost loop and cache line size. TODO -- we should also
1123 take into account reuses across the iterations of the loops in the loop
1124 nest. */
1125
1126 static unsigned
1127 volume_of_references (struct mem_ref_group *refs)
1128 {
1129 unsigned volume = 0;
1130 struct mem_ref_group *gr;
1131 struct mem_ref *ref;
1132
1133 for (gr = refs; gr; gr = gr->next)
1134 for (ref = gr->refs; ref; ref = ref->next)
1135 {
1136 /* Almost always reuses another value? */
1137 if (ref->prefetch_before != PREFETCH_ALL)
1138 continue;
1139
1140 /* If several iterations access the same cache line, use the size of
1141 the line divided by this number. Otherwise, a cache line is
1142 accessed in each iteration. TODO -- in the latter case, we should
1143 take the size of the reference into account, rounding it up on cache
1144 line size multiple. */
1145 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1146 }
1147 return volume;
1148 }
1149
1150 /* Returns the volume of memory references accessed across VEC iterations of
1151 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1152 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1153
1154 static unsigned
1155 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1156 {
1157 unsigned i;
1158
1159 for (i = 0; i < n; i++)
1160 if (vec[i] != 0)
1161 break;
1162
1163 if (i == n)
1164 return 0;
1165
1166 gcc_assert (vec[i] > 0);
1167
1168 /* We ignore the parts of the distance vector in subloops, since usually
1169 the numbers of iterations are much smaller. */
1170 return loop_sizes[i] * vec[i];
1171 }
1172
1173 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1174 at the position corresponding to the loop of the step. N is the depth
1175 of the considered loop nest, and, LOOP is its innermost loop. */
1176
1177 static void
1178 add_subscript_strides (tree access_fn, unsigned stride,
1179 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1180 {
1181 struct loop *aloop;
1182 tree step;
1183 HOST_WIDE_INT astep;
1184 unsigned min_depth = loop_depth (loop) - n;
1185
1186 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1187 {
1188 aloop = get_chrec_loop (access_fn);
1189 step = CHREC_RIGHT (access_fn);
1190 access_fn = CHREC_LEFT (access_fn);
1191
1192 if ((unsigned) loop_depth (aloop) <= min_depth)
1193 continue;
1194
1195 if (host_integerp (step, 0))
1196 astep = tree_low_cst (step, 0);
1197 else
1198 astep = L1_CACHE_LINE_SIZE;
1199
1200 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1201
1202 }
1203 }
1204
1205 /* Returns the volume of memory references accessed between two consecutive
1206 self-reuses of the reference DR. We consider the subscripts of DR in N
1207 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1208 loops. LOOP is the innermost loop of the current loop nest. */
1209
1210 static unsigned
1211 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1212 struct loop *loop)
1213 {
1214 tree stride, access_fn;
1215 HOST_WIDE_INT *strides, astride;
1216 VEC (tree, heap) *access_fns;
1217 tree ref = DR_REF (dr);
1218 unsigned i, ret = ~0u;
1219
1220 /* In the following example:
1221
1222 for (i = 0; i < N; i++)
1223 for (j = 0; j < N; j++)
1224 use (a[j][i]);
1225 the same cache line is accessed each N steps (except if the change from
1226 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1227 we cannot rely purely on the results of the data dependence analysis.
1228
1229 Instead, we compute the stride of the reference in each loop, and consider
1230 the innermost loop in that the stride is less than cache size. */
1231
1232 strides = XCNEWVEC (HOST_WIDE_INT, n);
1233 access_fns = DR_ACCESS_FNS (dr);
1234
1235 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1236 {
1237 /* Keep track of the reference corresponding to the subscript, so that we
1238 know its stride. */
1239 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1240 ref = TREE_OPERAND (ref, 0);
1241
1242 if (TREE_CODE (ref) == ARRAY_REF)
1243 {
1244 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1245 if (host_integerp (stride, 1))
1246 astride = tree_low_cst (stride, 1);
1247 else
1248 astride = L1_CACHE_LINE_SIZE;
1249
1250 ref = TREE_OPERAND (ref, 0);
1251 }
1252 else
1253 astride = 1;
1254
1255 add_subscript_strides (access_fn, astride, strides, n, loop);
1256 }
1257
1258 for (i = n; i-- > 0; )
1259 {
1260 unsigned HOST_WIDE_INT s;
1261
1262 s = strides[i] < 0 ? -strides[i] : strides[i];
1263
1264 if (s < (unsigned) L1_CACHE_LINE_SIZE
1265 && (loop_sizes[i]
1266 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1267 {
1268 ret = loop_sizes[i];
1269 break;
1270 }
1271 }
1272
1273 free (strides);
1274 return ret;
1275 }
1276
1277 /* Determines the distance till the first reuse of each reference in REFS
1278 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1279 memory references in the loop. */
1280
1281 static void
1282 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1283 bool no_other_refs)
1284 {
1285 struct loop *nest, *aloop;
1286 VEC (data_reference_p, heap) *datarefs = NULL;
1287 VEC (ddr_p, heap) *dependences = NULL;
1288 struct mem_ref_group *gr;
1289 struct mem_ref *ref, *refb;
1290 VEC (loop_p, heap) *vloops = NULL;
1291 unsigned *loop_data_size;
1292 unsigned i, j, n;
1293 unsigned volume, dist, adist;
1294 HOST_WIDE_INT vol;
1295 data_reference_p dr;
1296 ddr_p dep;
1297
1298 if (loop->inner)
1299 return;
1300
1301 /* Find the outermost loop of the loop nest of loop (we require that
1302 there are no sibling loops inside the nest). */
1303 nest = loop;
1304 while (1)
1305 {
1306 aloop = loop_outer (nest);
1307
1308 if (aloop == current_loops->tree_root
1309 || aloop->inner->next)
1310 break;
1311
1312 nest = aloop;
1313 }
1314
1315 /* For each loop, determine the amount of data accessed in each iteration.
1316 We use this to estimate whether the reference is evicted from the
1317 cache before its reuse. */
1318 find_loop_nest (nest, &vloops);
1319 n = VEC_length (loop_p, vloops);
1320 loop_data_size = XNEWVEC (unsigned, n);
1321 volume = volume_of_references (refs);
1322 i = n;
1323 while (i-- != 0)
1324 {
1325 loop_data_size[i] = volume;
1326 /* Bound the volume by the L2 cache size, since above this bound,
1327 all dependence distances are equivalent. */
1328 if (volume > L2_CACHE_SIZE_BYTES)
1329 continue;
1330
1331 aloop = VEC_index (loop_p, vloops, i);
1332 vol = estimated_loop_iterations_int (aloop, false);
1333 if (vol < 0)
1334 vol = expected_loop_iterations (aloop);
1335 volume *= vol;
1336 }
1337
1338 /* Prepare the references in the form suitable for data dependence
1339 analysis. We ignore unanalyzable data references (the results
1340 are used just as a heuristics to estimate temporality of the
1341 references, hence we do not need to worry about correctness). */
1342 for (gr = refs; gr; gr = gr->next)
1343 for (ref = gr->refs; ref; ref = ref->next)
1344 {
1345 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1346
1347 if (dr)
1348 {
1349 ref->reuse_distance = volume;
1350 dr->aux = ref;
1351 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1352 }
1353 else
1354 no_other_refs = false;
1355 }
1356
1357 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1358 {
1359 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1360 ref = dr->aux;
1361 if (ref->reuse_distance > dist)
1362 ref->reuse_distance = dist;
1363
1364 if (no_other_refs)
1365 ref->independent_p = true;
1366 }
1367
1368 compute_all_dependences (datarefs, &dependences, vloops, true);
1369
1370 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1371 {
1372 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1373 continue;
1374
1375 ref = DDR_A (dep)->aux;
1376 refb = DDR_B (dep)->aux;
1377
1378 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1379 || DDR_NUM_DIST_VECTS (dep) == 0)
1380 {
1381 /* If the dependence cannot be analyzed, assume that there might be
1382 a reuse. */
1383 dist = 0;
1384
1385 ref->independent_p = false;
1386 refb->independent_p = false;
1387 }
1388 else
1389 {
1390 /* The distance vectors are normalized to be always lexicographically
1391 positive, hence we cannot tell just from them whether DDR_A comes
1392 before DDR_B or vice versa. However, it is not important,
1393 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1394 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1395 in cache (and marking it as nontemporal would not affect
1396 anything). */
1397
1398 dist = volume;
1399 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1400 {
1401 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1402 loop_data_size, n);
1403
1404 /* If this is a dependence in the innermost loop (i.e., the
1405 distances in all superloops are zero) and it is not
1406 the trivial self-dependence with distance zero, record that
1407 the references are not completely independent. */
1408 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1409 && (ref != refb
1410 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1411 {
1412 ref->independent_p = false;
1413 refb->independent_p = false;
1414 }
1415
1416 /* Ignore accesses closer than
1417 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1418 so that we use nontemporal prefetches e.g. if single memory
1419 location is accessed several times in a single iteration of
1420 the loop. */
1421 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1422 continue;
1423
1424 if (adist < dist)
1425 dist = adist;
1426 }
1427 }
1428
1429 if (ref->reuse_distance > dist)
1430 ref->reuse_distance = dist;
1431 if (refb->reuse_distance > dist)
1432 refb->reuse_distance = dist;
1433 }
1434
1435 free_dependence_relations (dependences);
1436 free_data_refs (datarefs);
1437 free (loop_data_size);
1438
1439 if (dump_file && (dump_flags & TDF_DETAILS))
1440 {
1441 fprintf (dump_file, "Reuse distances:\n");
1442 for (gr = refs; gr; gr = gr->next)
1443 for (ref = gr->refs; ref; ref = ref->next)
1444 fprintf (dump_file, " ref %p distance %u\n",
1445 (void *) ref, ref->reuse_distance);
1446 }
1447 }
1448
1449 /* Issue prefetch instructions for array references in LOOP. Returns
1450 true if the LOOP was unrolled. */
1451
1452 static bool
1453 loop_prefetch_arrays (struct loop *loop)
1454 {
1455 struct mem_ref_group *refs;
1456 unsigned ahead, ninsns, time, unroll_factor;
1457 HOST_WIDE_INT est_niter;
1458 struct tree_niter_desc desc;
1459 bool unrolled = false, no_other_refs;
1460
1461 if (!maybe_hot_bb_p (loop->header))
1462 {
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1464 fprintf (dump_file, " ignored (cold area)\n");
1465 return false;
1466 }
1467
1468 /* Step 1: gather the memory references. */
1469 refs = gather_memory_references (loop, &no_other_refs);
1470
1471 /* Step 2: estimate the reuse effects. */
1472 prune_by_reuse (refs);
1473
1474 if (!anything_to_prefetch_p (refs))
1475 goto fail;
1476
1477 determine_loop_nest_reuse (loop, refs, no_other_refs);
1478
1479 /* Step 3: determine the ahead and unroll factor. */
1480
1481 /* FIXME: the time should be weighted by the probabilities of the blocks in
1482 the loop body. */
1483 time = tree_num_loop_insns (loop, &eni_time_weights);
1484 ahead = (PREFETCH_LATENCY + time - 1) / time;
1485 est_niter = estimated_loop_iterations_int (loop, false);
1486
1487 /* The prefetches will run for AHEAD iterations of the original loop. Unless
1488 the loop rolls at least AHEAD times, prefetching the references does not
1489 make sense. */
1490 if (est_niter >= 0 && est_niter <= (HOST_WIDE_INT) ahead)
1491 {
1492 if (dump_file && (dump_flags & TDF_DETAILS))
1493 fprintf (dump_file,
1494 "Not prefetching -- loop estimated to roll only %d times\n",
1495 (int) est_niter);
1496 goto fail;
1497 }
1498
1499 mark_nontemporal_stores (loop, refs);
1500
1501 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1502 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1503 est_niter);
1504 if (dump_file && (dump_flags & TDF_DETAILS))
1505 fprintf (dump_file, "Ahead %d, unroll factor %d\n", ahead, unroll_factor);
1506
1507 /* Step 4: what to prefetch? */
1508 if (!schedule_prefetches (refs, unroll_factor, ahead))
1509 goto fail;
1510
1511 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1512 iterations so that we do not issue superfluous prefetches. */
1513 if (unroll_factor != 1)
1514 {
1515 tree_unroll_loop (loop, unroll_factor,
1516 single_dom_exit (loop), &desc);
1517 unrolled = true;
1518 }
1519
1520 /* Step 6: issue the prefetches. */
1521 issue_prefetches (refs, unroll_factor, ahead);
1522
1523 fail:
1524 release_mem_refs (refs);
1525 return unrolled;
1526 }
1527
1528 /* Issue prefetch instructions for array references in loops. */
1529
1530 unsigned int
1531 tree_ssa_prefetch_arrays (void)
1532 {
1533 loop_iterator li;
1534 struct loop *loop;
1535 bool unrolled = false;
1536 int todo_flags = 0;
1537
1538 if (!HAVE_prefetch
1539 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1540 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1541 of processor costs and i486 does not have prefetch, but
1542 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1543 || PREFETCH_BLOCK == 0)
1544 return 0;
1545
1546 if (dump_file && (dump_flags & TDF_DETAILS))
1547 {
1548 fprintf (dump_file, "Prefetching parameters:\n");
1549 fprintf (dump_file, " simultaneous prefetches: %d\n",
1550 SIMULTANEOUS_PREFETCHES);
1551 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1552 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1553 fprintf (dump_file, " L1 cache size: %d lines, %d bytes\n",
1554 L1_CACHE_SIZE, L1_CACHE_SIZE_BYTES);
1555 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1556 fprintf (dump_file, " L2 cache size: %d bytes\n", L2_CACHE_SIZE_BYTES);
1557 fprintf (dump_file, "\n");
1558 }
1559
1560 initialize_original_copy_tables ();
1561
1562 if (!built_in_decls[BUILT_IN_PREFETCH])
1563 {
1564 tree type = build_function_type (void_type_node,
1565 tree_cons (NULL_TREE,
1566 const_ptr_type_node,
1567 NULL_TREE));
1568 tree decl = add_builtin_function ("__builtin_prefetch", type,
1569 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1570 NULL, NULL_TREE);
1571 DECL_IS_NOVOPS (decl) = true;
1572 built_in_decls[BUILT_IN_PREFETCH] = decl;
1573 }
1574
1575 /* We assume that size of cache line is a power of two, so verify this
1576 here. */
1577 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1578
1579 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1580 {
1581 if (dump_file && (dump_flags & TDF_DETAILS))
1582 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1583
1584 unrolled |= loop_prefetch_arrays (loop);
1585
1586 if (dump_file && (dump_flags & TDF_DETAILS))
1587 fprintf (dump_file, "\n\n");
1588 }
1589
1590 if (unrolled)
1591 {
1592 scev_reset ();
1593 todo_flags |= TODO_cleanup_cfg;
1594 }
1595
1596 free_original_copy_tables ();
1597 return todo_flags;
1598 }