]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-prefetch.c
2010-05-25 Christian Borntraeger <borntraeger@de.ibm.com>
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "output.h"
28 #include "diagnostic.h"
29 #include "tree-pretty-print.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "tree-pass.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "hashtab.h"
39 #include "tree-chrec.h"
40 #include "tree-scalar-evolution.h"
41 #include "toplev.h"
42 #include "params.h"
43 #include "langhooks.h"
44 #include "tree-inline.h"
45 #include "tree-data-ref.h"
46 #include "optabs.h"
47
48 /* This pass inserts prefetch instructions to optimize cache usage during
49 accesses to arrays in loops. It processes loops sequentially and:
50
51 1) Gathers all memory references in the single loop.
52 2) For each of the references it decides when it is profitable to prefetch
53 it. To do it, we evaluate the reuse among the accesses, and determines
54 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
55 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
56 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
57 iterations of the loop that are zero modulo PREFETCH_MOD). For example
58 (assuming cache line size is 64 bytes, char has size 1 byte and there
59 is no hardware sequential prefetch):
60
61 char *a;
62 for (i = 0; i < max; i++)
63 {
64 a[255] = ...; (0)
65 a[i] = ...; (1)
66 a[i + 64] = ...; (2)
67 a[16*i] = ...; (3)
68 a[187*i] = ...; (4)
69 a[187*i + 50] = ...; (5)
70 }
71
72 (0) obviously has PREFETCH_BEFORE 1
73 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
74 location 64 iterations before it, and PREFETCH_MOD 64 (since
75 it hits the same cache line otherwise).
76 (2) has PREFETCH_MOD 64
77 (3) has PREFETCH_MOD 4
78 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
79 the cache line accessed by (4) is the same with probability only
80 7/32.
81 (5) has PREFETCH_MOD 1 as well.
82
83 Additionally, we use data dependence analysis to determine for each
84 reference the distance till the first reuse; this information is used
85 to determine the temporality of the issued prefetch instruction.
86
87 3) We determine how much ahead we need to prefetch. The number of
88 iterations needed is time to fetch / time spent in one iteration of
89 the loop. The problem is that we do not know either of these values,
90 so we just make a heuristic guess based on a magic (possibly)
91 target-specific constant and size of the loop.
92
93 4) Determine which of the references we prefetch. We take into account
94 that there is a maximum number of simultaneous prefetches (provided
95 by machine description). We prefetch as many prefetches as possible
96 while still within this bound (starting with those with lowest
97 prefetch_mod, since they are responsible for most of the cache
98 misses).
99
100 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
101 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
102 prefetching nonaccessed memory.
103 TODO -- actually implement peeling.
104
105 6) We actually emit the prefetch instructions. ??? Perhaps emit the
106 prefetch instructions with guards in cases where 5) was not sufficient
107 to satisfy the constraints?
108
109 The function is_loop_prefetching_profitable() implements a cost model
110 to determine if prefetching is profitable for a given loop. The cost
111 model has two heuristcs:
112 1. A heuristic that determines whether the given loop has enough CPU
113 ops that can be overlapped with cache missing memory ops.
114 If not, the loop won't benefit from prefetching. This is implemented
115 by requirung the ratio between the instruction count and the mem ref
116 count to be above a certain minimum.
117 2. A heuristic that disables prefetching in a loop with an unknown trip
118 count if the prefetching cost is above a certain limit. The relative
119 prefetching cost is estimated by taking the ratio between the
120 prefetch count and the total intruction count (this models the I-cache
121 cost).
122 The limits used in these heuristics are defined as parameters with
123 reasonable default values. Machine-specific default values will be
124 added later.
125
126 Some other TODO:
127 -- write and use more general reuse analysis (that could be also used
128 in other cache aimed loop optimizations)
129 -- make it behave sanely together with the prefetches given by user
130 (now we just ignore them; at the very least we should avoid
131 optimizing loops in that user put his own prefetches)
132 -- we assume cache line size alignment of arrays; this could be
133 improved. */
134
135 /* Magic constants follow. These should be replaced by machine specific
136 numbers. */
137
138 /* True if write can be prefetched by a read prefetch. */
139
140 #ifndef WRITE_CAN_USE_READ_PREFETCH
141 #define WRITE_CAN_USE_READ_PREFETCH 1
142 #endif
143
144 /* True if read can be prefetched by a write prefetch. */
145
146 #ifndef READ_CAN_USE_WRITE_PREFETCH
147 #define READ_CAN_USE_WRITE_PREFETCH 0
148 #endif
149
150 /* The size of the block loaded by a single prefetch. Usually, this is
151 the same as cache line size (at the moment, we only consider one level
152 of cache hierarchy). */
153
154 #ifndef PREFETCH_BLOCK
155 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
156 #endif
157
158 /* Do we have a forward hardware sequential prefetching? */
159
160 #ifndef HAVE_FORWARD_PREFETCH
161 #define HAVE_FORWARD_PREFETCH 0
162 #endif
163
164 /* Do we have a backward hardware sequential prefetching? */
165
166 #ifndef HAVE_BACKWARD_PREFETCH
167 #define HAVE_BACKWARD_PREFETCH 0
168 #endif
169
170 /* In some cases we are only able to determine that there is a certain
171 probability that the two accesses hit the same cache line. In this
172 case, we issue the prefetches for both of them if this probability
173 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
174
175 #ifndef ACCEPTABLE_MISS_RATE
176 #define ACCEPTABLE_MISS_RATE 50
177 #endif
178
179 #ifndef HAVE_prefetch
180 #define HAVE_prefetch 0
181 #endif
182
183 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
184 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
185
186 /* We consider a memory access nontemporal if it is not reused sooner than
187 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
188 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
189 so that we use nontemporal prefetches e.g. if single memory location
190 is accessed several times in a single iteration of the loop. */
191 #define NONTEMPORAL_FRACTION 16
192
193 /* In case we have to emit a memory fence instruction after the loop that
194 uses nontemporal stores, this defines the builtin to use. */
195
196 #ifndef FENCE_FOLLOWING_MOVNT
197 #define FENCE_FOLLOWING_MOVNT NULL_TREE
198 #endif
199
200 /* It is not profitable to prefetch when the trip count is not at
201 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
202 For example, in a loop with a prefetch ahead distance of 10,
203 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
204 profitable to prefetch when the trip count is greater or equal to
205 40. In that case, 30 out of the 40 iterations will benefit from
206 prefetching. */
207
208 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
209 #define TRIP_COUNT_TO_AHEAD_RATIO 4
210 #endif
211
212 /* The group of references between that reuse may occur. */
213
214 struct mem_ref_group
215 {
216 tree base; /* Base of the reference. */
217 tree step; /* Step of the reference. */
218 struct mem_ref *refs; /* References in the group. */
219 struct mem_ref_group *next; /* Next group of references. */
220 };
221
222 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
223
224 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
225
226 /* Do not generate a prefetch if the unroll factor is significantly less
227 than what is required by the prefetch. This is to avoid redundant
228 prefetches. For example, if prefetch_mod is 16 and unroll_factor is
229 1, this means prefetching requires unrolling the loop 16 times, but
230 the loop is not going to be unrolled. In this case (ratio = 16),
231 prefetching is not likely to be beneficial. */
232
233 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
234 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 8
235 #endif
236
237 /* The memory reference. */
238
239 struct mem_ref
240 {
241 gimple stmt; /* Statement in that the reference appears. */
242 tree mem; /* The reference. */
243 HOST_WIDE_INT delta; /* Constant offset of the reference. */
244 struct mem_ref_group *group; /* The group of references it belongs to. */
245 unsigned HOST_WIDE_INT prefetch_mod;
246 /* Prefetch only each PREFETCH_MOD-th
247 iteration. */
248 unsigned HOST_WIDE_INT prefetch_before;
249 /* Prefetch only first PREFETCH_BEFORE
250 iterations. */
251 unsigned reuse_distance; /* The amount of data accessed before the first
252 reuse of this value. */
253 struct mem_ref *next; /* The next reference in the group. */
254 unsigned write_p : 1; /* Is it a write? */
255 unsigned independent_p : 1; /* True if the reference is independent on
256 all other references inside the loop. */
257 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
258 unsigned storent_p : 1; /* True if we changed the store to a
259 nontemporal one. */
260 };
261
262 /* Dumps information about reference REF to FILE. */
263
264 static void
265 dump_mem_ref (FILE *file, struct mem_ref *ref)
266 {
267 fprintf (file, "Reference %p:\n", (void *) ref);
268
269 fprintf (file, " group %p (base ", (void *) ref->group);
270 print_generic_expr (file, ref->group->base, TDF_SLIM);
271 fprintf (file, ", step ");
272 if (cst_and_fits_in_hwi (ref->group->step))
273 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
274 else
275 print_generic_expr (file, ref->group->step, TDF_TREE);
276 fprintf (file, ")\n");
277
278 fprintf (file, " delta ");
279 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
280 fprintf (file, "\n");
281
282 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
283
284 fprintf (file, "\n");
285 }
286
287 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
288 exist. */
289
290 static struct mem_ref_group *
291 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
292 {
293 struct mem_ref_group *group;
294
295 for (; *groups; groups = &(*groups)->next)
296 {
297 if (operand_equal_p ((*groups)->step, step, 0)
298 && operand_equal_p ((*groups)->base, base, 0))
299 return *groups;
300
301 /* If step is an integer constant, keep the list of groups sorted
302 by decreasing step. */
303 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
304 && int_cst_value ((*groups)->step) < int_cst_value (step))
305 break;
306 }
307
308 group = XNEW (struct mem_ref_group);
309 group->base = base;
310 group->step = step;
311 group->refs = NULL;
312 group->next = *groups;
313 *groups = group;
314
315 return group;
316 }
317
318 /* Records a memory reference MEM in GROUP with offset DELTA and write status
319 WRITE_P. The reference occurs in statement STMT. */
320
321 static void
322 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
323 HOST_WIDE_INT delta, bool write_p)
324 {
325 struct mem_ref **aref;
326
327 /* Do not record the same address twice. */
328 for (aref = &group->refs; *aref; aref = &(*aref)->next)
329 {
330 /* It does not have to be possible for write reference to reuse the read
331 prefetch, or vice versa. */
332 if (!WRITE_CAN_USE_READ_PREFETCH
333 && write_p
334 && !(*aref)->write_p)
335 continue;
336 if (!READ_CAN_USE_WRITE_PREFETCH
337 && !write_p
338 && (*aref)->write_p)
339 continue;
340
341 if ((*aref)->delta == delta)
342 return;
343 }
344
345 (*aref) = XNEW (struct mem_ref);
346 (*aref)->stmt = stmt;
347 (*aref)->mem = mem;
348 (*aref)->delta = delta;
349 (*aref)->write_p = write_p;
350 (*aref)->prefetch_before = PREFETCH_ALL;
351 (*aref)->prefetch_mod = 1;
352 (*aref)->reuse_distance = 0;
353 (*aref)->issue_prefetch_p = false;
354 (*aref)->group = group;
355 (*aref)->next = NULL;
356 (*aref)->independent_p = false;
357 (*aref)->storent_p = false;
358
359 if (dump_file && (dump_flags & TDF_DETAILS))
360 dump_mem_ref (dump_file, *aref);
361 }
362
363 /* Release memory references in GROUPS. */
364
365 static void
366 release_mem_refs (struct mem_ref_group *groups)
367 {
368 struct mem_ref_group *next_g;
369 struct mem_ref *ref, *next_r;
370
371 for (; groups; groups = next_g)
372 {
373 next_g = groups->next;
374 for (ref = groups->refs; ref; ref = next_r)
375 {
376 next_r = ref->next;
377 free (ref);
378 }
379 free (groups);
380 }
381 }
382
383 /* A structure used to pass arguments to idx_analyze_ref. */
384
385 struct ar_data
386 {
387 struct loop *loop; /* Loop of the reference. */
388 gimple stmt; /* Statement of the reference. */
389 tree *step; /* Step of the memory reference. */
390 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
391 };
392
393 /* Analyzes a single INDEX of a memory reference to obtain information
394 described at analyze_ref. Callback for for_each_index. */
395
396 static bool
397 idx_analyze_ref (tree base, tree *index, void *data)
398 {
399 struct ar_data *ar_data = (struct ar_data *) data;
400 tree ibase, step, stepsize;
401 HOST_WIDE_INT idelta = 0, imult = 1;
402 affine_iv iv;
403
404 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
405 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
406 return false;
407
408 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
409 *index, &iv, true))
410 return false;
411 ibase = iv.base;
412 step = iv.step;
413
414 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
415 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
416 {
417 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
418 ibase = TREE_OPERAND (ibase, 0);
419 }
420 if (cst_and_fits_in_hwi (ibase))
421 {
422 idelta += int_cst_value (ibase);
423 ibase = build_int_cst (TREE_TYPE (ibase), 0);
424 }
425
426 if (TREE_CODE (base) == ARRAY_REF)
427 {
428 stepsize = array_ref_element_size (base);
429 if (!cst_and_fits_in_hwi (stepsize))
430 return false;
431 imult = int_cst_value (stepsize);
432 step = fold_build2 (MULT_EXPR, sizetype,
433 fold_convert (sizetype, step),
434 fold_convert (sizetype, stepsize));
435 idelta *= imult;
436 }
437
438 if (*ar_data->step == NULL_TREE)
439 *ar_data->step = step;
440 else
441 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
442 fold_convert (sizetype, *ar_data->step),
443 fold_convert (sizetype, step));
444 *ar_data->delta += idelta;
445 *index = ibase;
446
447 return true;
448 }
449
450 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
451 STEP are integer constants and iter is number of iterations of LOOP. The
452 reference occurs in statement STMT. Strips nonaddressable component
453 references from REF_P. */
454
455 static bool
456 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
457 tree *step, HOST_WIDE_INT *delta,
458 gimple stmt)
459 {
460 struct ar_data ar_data;
461 tree off;
462 HOST_WIDE_INT bit_offset;
463 tree ref = *ref_p;
464
465 *step = NULL_TREE;
466 *delta = 0;
467
468 /* First strip off the component references. Ignore bitfields. */
469 if (TREE_CODE (ref) == COMPONENT_REF
470 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
471 ref = TREE_OPERAND (ref, 0);
472
473 *ref_p = ref;
474
475 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
476 {
477 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
478 bit_offset = TREE_INT_CST_LOW (off);
479 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
480
481 *delta += bit_offset / BITS_PER_UNIT;
482 }
483
484 *base = unshare_expr (ref);
485 ar_data.loop = loop;
486 ar_data.stmt = stmt;
487 ar_data.step = step;
488 ar_data.delta = delta;
489 return for_each_index (base, idx_analyze_ref, &ar_data);
490 }
491
492 /* Record a memory reference REF to the list REFS. The reference occurs in
493 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
494 reference was recorded, false otherwise. */
495
496 static bool
497 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
498 tree ref, bool write_p, gimple stmt)
499 {
500 tree base, step;
501 HOST_WIDE_INT delta;
502 struct mem_ref_group *agrp;
503
504 if (get_base_address (ref) == NULL)
505 return false;
506
507 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
508 return false;
509 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
510 if (step == NULL_TREE)
511 return false;
512
513 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
514 are integer constants. */
515 agrp = find_or_create_group (refs, base, step);
516 record_ref (agrp, stmt, ref, delta, write_p);
517
518 return true;
519 }
520
521 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
522 true if there are no other memory references inside the loop. */
523
524 static struct mem_ref_group *
525 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
526 {
527 basic_block *body = get_loop_body_in_dom_order (loop);
528 basic_block bb;
529 unsigned i;
530 gimple_stmt_iterator bsi;
531 gimple stmt;
532 tree lhs, rhs;
533 struct mem_ref_group *refs = NULL;
534
535 *no_other_refs = true;
536 *ref_count = 0;
537
538 /* Scan the loop body in order, so that the former references precede the
539 later ones. */
540 for (i = 0; i < loop->num_nodes; i++)
541 {
542 bb = body[i];
543 if (bb->loop_father != loop)
544 continue;
545
546 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
547 {
548 stmt = gsi_stmt (bsi);
549
550 if (gimple_code (stmt) != GIMPLE_ASSIGN)
551 {
552 if (gimple_vuse (stmt)
553 || (is_gimple_call (stmt)
554 && !(gimple_call_flags (stmt) & ECF_CONST)))
555 *no_other_refs = false;
556 continue;
557 }
558
559 lhs = gimple_assign_lhs (stmt);
560 rhs = gimple_assign_rhs1 (stmt);
561
562 if (REFERENCE_CLASS_P (rhs))
563 {
564 *no_other_refs &= gather_memory_references_ref (loop, &refs,
565 rhs, false, stmt);
566 *ref_count += 1;
567 }
568 if (REFERENCE_CLASS_P (lhs))
569 {
570 *no_other_refs &= gather_memory_references_ref (loop, &refs,
571 lhs, true, stmt);
572 *ref_count += 1;
573 }
574 }
575 }
576 free (body);
577
578 return refs;
579 }
580
581 /* Prune the prefetch candidate REF using the self-reuse. */
582
583 static void
584 prune_ref_by_self_reuse (struct mem_ref *ref)
585 {
586 HOST_WIDE_INT step;
587 bool backward;
588
589 /* If the step size is non constant, we cannot calculate prefetch_mod. */
590 if (!cst_and_fits_in_hwi (ref->group->step))
591 return;
592
593 step = int_cst_value (ref->group->step);
594
595 backward = step < 0;
596
597 if (step == 0)
598 {
599 /* Prefetch references to invariant address just once. */
600 ref->prefetch_before = 1;
601 return;
602 }
603
604 if (backward)
605 step = -step;
606
607 if (step > PREFETCH_BLOCK)
608 return;
609
610 if ((backward && HAVE_BACKWARD_PREFETCH)
611 || (!backward && HAVE_FORWARD_PREFETCH))
612 {
613 ref->prefetch_before = 1;
614 return;
615 }
616
617 ref->prefetch_mod = PREFETCH_BLOCK / step;
618 }
619
620 /* Divides X by BY, rounding down. */
621
622 static HOST_WIDE_INT
623 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
624 {
625 gcc_assert (by > 0);
626
627 if (x >= 0)
628 return x / by;
629 else
630 return (x + by - 1) / by;
631 }
632
633 /* Given a CACHE_LINE_SIZE and two inductive memory references
634 with a common STEP greater than CACHE_LINE_SIZE and an address
635 difference DELTA, compute the probability that they will fall
636 in different cache lines. DISTINCT_ITERS is the number of
637 distinct iterations after which the pattern repeats itself.
638 ALIGN_UNIT is the unit of alignment in bytes. */
639
640 static int
641 compute_miss_rate (unsigned HOST_WIDE_INT cache_line_size,
642 HOST_WIDE_INT step, HOST_WIDE_INT delta,
643 unsigned HOST_WIDE_INT distinct_iters,
644 int align_unit)
645 {
646 unsigned align, iter;
647 int total_positions, miss_positions, miss_rate;
648 int address1, address2, cache_line1, cache_line2;
649
650 total_positions = 0;
651 miss_positions = 0;
652
653 /* Iterate through all possible alignments of the first
654 memory reference within its cache line. */
655 for (align = 0; align < cache_line_size; align += align_unit)
656
657 /* Iterate through all distinct iterations. */
658 for (iter = 0; iter < distinct_iters; iter++)
659 {
660 address1 = align + step * iter;
661 address2 = address1 + delta;
662 cache_line1 = address1 / cache_line_size;
663 cache_line2 = address2 / cache_line_size;
664 total_positions += 1;
665 if (cache_line1 != cache_line2)
666 miss_positions += 1;
667 }
668 miss_rate = 1000 * miss_positions / total_positions;
669 return miss_rate;
670 }
671
672 /* Prune the prefetch candidate REF using the reuse with BY.
673 If BY_IS_BEFORE is true, BY is before REF in the loop. */
674
675 static void
676 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
677 bool by_is_before)
678 {
679 HOST_WIDE_INT step;
680 bool backward;
681 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
682 HOST_WIDE_INT delta = delta_b - delta_r;
683 HOST_WIDE_INT hit_from;
684 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
685 int miss_rate;
686 HOST_WIDE_INT reduced_step;
687 unsigned HOST_WIDE_INT reduced_prefetch_block;
688 tree ref_type;
689 int align_unit;
690
691 /* If the step is non constant we cannot calculate prefetch_before. */
692 if (!cst_and_fits_in_hwi (ref->group->step)) {
693 return;
694 }
695
696 step = int_cst_value (ref->group->step);
697
698 backward = step < 0;
699
700
701 if (delta == 0)
702 {
703 /* If the references has the same address, only prefetch the
704 former. */
705 if (by_is_before)
706 ref->prefetch_before = 0;
707
708 return;
709 }
710
711 if (!step)
712 {
713 /* If the reference addresses are invariant and fall into the
714 same cache line, prefetch just the first one. */
715 if (!by_is_before)
716 return;
717
718 if (ddown (ref->delta, PREFETCH_BLOCK)
719 != ddown (by->delta, PREFETCH_BLOCK))
720 return;
721
722 ref->prefetch_before = 0;
723 return;
724 }
725
726 /* Only prune the reference that is behind in the array. */
727 if (backward)
728 {
729 if (delta > 0)
730 return;
731
732 /* Transform the data so that we may assume that the accesses
733 are forward. */
734 delta = - delta;
735 step = -step;
736 delta_r = PREFETCH_BLOCK - 1 - delta_r;
737 delta_b = PREFETCH_BLOCK - 1 - delta_b;
738 }
739 else
740 {
741 if (delta < 0)
742 return;
743 }
744
745 /* Check whether the two references are likely to hit the same cache
746 line, and how distant the iterations in that it occurs are from
747 each other. */
748
749 if (step <= PREFETCH_BLOCK)
750 {
751 /* The accesses are sure to meet. Let us check when. */
752 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
753 prefetch_before = (hit_from - delta_r + step - 1) / step;
754
755 /* Do not reduce prefetch_before if we meet beyond cache size. */
756 if (prefetch_before > (unsigned) abs (L2_CACHE_SIZE_BYTES / step))
757 prefetch_before = PREFETCH_ALL;
758 if (prefetch_before < ref->prefetch_before)
759 ref->prefetch_before = prefetch_before;
760
761 return;
762 }
763
764 /* A more complicated case with step > prefetch_block. First reduce
765 the ratio between the step and the cache line size to its simplest
766 terms. The resulting denominator will then represent the number of
767 distinct iterations after which each address will go back to its
768 initial location within the cache line. This computation assumes
769 that PREFETCH_BLOCK is a power of two. */
770 prefetch_block = PREFETCH_BLOCK;
771 reduced_prefetch_block = prefetch_block;
772 reduced_step = step;
773 while ((reduced_step & 1) == 0
774 && reduced_prefetch_block > 1)
775 {
776 reduced_step >>= 1;
777 reduced_prefetch_block >>= 1;
778 }
779
780 prefetch_before = delta / step;
781 delta %= step;
782 ref_type = TREE_TYPE (ref->mem);
783 align_unit = TYPE_ALIGN (ref_type) / 8;
784 miss_rate = compute_miss_rate(prefetch_block, step, delta,
785 reduced_prefetch_block, align_unit);
786 if (miss_rate <= ACCEPTABLE_MISS_RATE)
787 {
788 /* Do not reduce prefetch_before if we meet beyond cache size. */
789 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
790 prefetch_before = PREFETCH_ALL;
791 if (prefetch_before < ref->prefetch_before)
792 ref->prefetch_before = prefetch_before;
793
794 return;
795 }
796
797 /* Try also the following iteration. */
798 prefetch_before++;
799 delta = step - delta;
800 miss_rate = compute_miss_rate(prefetch_block, step, delta,
801 reduced_prefetch_block, align_unit);
802 if (miss_rate <= ACCEPTABLE_MISS_RATE)
803 {
804 if (prefetch_before < ref->prefetch_before)
805 ref->prefetch_before = prefetch_before;
806
807 return;
808 }
809
810 /* The ref probably does not reuse by. */
811 return;
812 }
813
814 /* Prune the prefetch candidate REF using the reuses with other references
815 in REFS. */
816
817 static void
818 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
819 {
820 struct mem_ref *prune_by;
821 bool before = true;
822
823 prune_ref_by_self_reuse (ref);
824
825 for (prune_by = refs; prune_by; prune_by = prune_by->next)
826 {
827 if (prune_by == ref)
828 {
829 before = false;
830 continue;
831 }
832
833 if (!WRITE_CAN_USE_READ_PREFETCH
834 && ref->write_p
835 && !prune_by->write_p)
836 continue;
837 if (!READ_CAN_USE_WRITE_PREFETCH
838 && !ref->write_p
839 && prune_by->write_p)
840 continue;
841
842 prune_ref_by_group_reuse (ref, prune_by, before);
843 }
844 }
845
846 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
847
848 static void
849 prune_group_by_reuse (struct mem_ref_group *group)
850 {
851 struct mem_ref *ref_pruned;
852
853 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
854 {
855 prune_ref_by_reuse (ref_pruned, group->refs);
856
857 if (dump_file && (dump_flags & TDF_DETAILS))
858 {
859 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
860
861 if (ref_pruned->prefetch_before == PREFETCH_ALL
862 && ref_pruned->prefetch_mod == 1)
863 fprintf (dump_file, " no restrictions");
864 else if (ref_pruned->prefetch_before == 0)
865 fprintf (dump_file, " do not prefetch");
866 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
867 fprintf (dump_file, " prefetch once");
868 else
869 {
870 if (ref_pruned->prefetch_before != PREFETCH_ALL)
871 {
872 fprintf (dump_file, " prefetch before ");
873 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
874 ref_pruned->prefetch_before);
875 }
876 if (ref_pruned->prefetch_mod != 1)
877 {
878 fprintf (dump_file, " prefetch mod ");
879 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
880 ref_pruned->prefetch_mod);
881 }
882 }
883 fprintf (dump_file, "\n");
884 }
885 }
886 }
887
888 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
889
890 static void
891 prune_by_reuse (struct mem_ref_group *groups)
892 {
893 for (; groups; groups = groups->next)
894 prune_group_by_reuse (groups);
895 }
896
897 /* Returns true if we should issue prefetch for REF. */
898
899 static bool
900 should_issue_prefetch_p (struct mem_ref *ref)
901 {
902 /* For now do not issue prefetches for only first few of the
903 iterations. */
904 if (ref->prefetch_before != PREFETCH_ALL)
905 {
906 if (dump_file && (dump_flags & TDF_DETAILS))
907 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
908 (void *) ref);
909 return false;
910 }
911
912 /* Do not prefetch nontemporal stores. */
913 if (ref->storent_p)
914 {
915 if (dump_file && (dump_flags & TDF_DETAILS))
916 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
917 return false;
918 }
919
920 return true;
921 }
922
923 /* Decide which of the prefetch candidates in GROUPS to prefetch.
924 AHEAD is the number of iterations to prefetch ahead (which corresponds
925 to the number of simultaneous instances of one prefetch running at a
926 time). UNROLL_FACTOR is the factor by that the loop is going to be
927 unrolled. Returns true if there is anything to prefetch. */
928
929 static bool
930 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
931 unsigned ahead)
932 {
933 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
934 unsigned slots_per_prefetch;
935 struct mem_ref *ref;
936 bool any = false;
937
938 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
939 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
940
941 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
942 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
943 it will need a prefetch slot. */
944 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
945 if (dump_file && (dump_flags & TDF_DETAILS))
946 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
947 slots_per_prefetch);
948
949 /* For now we just take memory references one by one and issue
950 prefetches for as many as possible. The groups are sorted
951 starting with the largest step, since the references with
952 large step are more likely to cause many cache misses. */
953
954 for (; groups; groups = groups->next)
955 for (ref = groups->refs; ref; ref = ref->next)
956 {
957 if (!should_issue_prefetch_p (ref))
958 continue;
959
960 /* The loop is far from being sufficiently unrolled for this
961 prefetch. Do not generate prefetch to avoid many redudant
962 prefetches. */
963 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
964 continue;
965
966 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
967 and we unroll the loop UNROLL_FACTOR times, we need to insert
968 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
969 iteration. */
970 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
971 / ref->prefetch_mod);
972 prefetch_slots = n_prefetches * slots_per_prefetch;
973
974 /* If more than half of the prefetches would be lost anyway, do not
975 issue the prefetch. */
976 if (2 * remaining_prefetch_slots < prefetch_slots)
977 continue;
978
979 ref->issue_prefetch_p = true;
980
981 if (remaining_prefetch_slots <= prefetch_slots)
982 return true;
983 remaining_prefetch_slots -= prefetch_slots;
984 any = true;
985 }
986
987 return any;
988 }
989
990 /* Estimate the number of prefetches in the given GROUPS. */
991
992 static int
993 estimate_prefetch_count (struct mem_ref_group *groups)
994 {
995 struct mem_ref *ref;
996 int prefetch_count = 0;
997
998 for (; groups; groups = groups->next)
999 for (ref = groups->refs; ref; ref = ref->next)
1000 if (should_issue_prefetch_p (ref))
1001 prefetch_count++;
1002
1003 return prefetch_count;
1004 }
1005
1006 /* Issue prefetches for the reference REF into loop as decided before.
1007 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1008 is the factor by which LOOP was unrolled. */
1009
1010 static void
1011 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1012 {
1013 HOST_WIDE_INT delta;
1014 tree addr, addr_base, write_p, local, forward;
1015 gimple prefetch;
1016 gimple_stmt_iterator bsi;
1017 unsigned n_prefetches, ap;
1018 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1019
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1021 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1022 nontemporal ? " nontemporal" : "",
1023 (void *) ref);
1024
1025 bsi = gsi_for_stmt (ref->stmt);
1026
1027 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1028 / ref->prefetch_mod);
1029 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1030 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1031 true, NULL, true, GSI_SAME_STMT);
1032 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1033 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
1034
1035 for (ap = 0; ap < n_prefetches; ap++)
1036 {
1037 if (cst_and_fits_in_hwi (ref->group->step))
1038 {
1039 /* Determine the address to prefetch. */
1040 delta = (ahead + ap * ref->prefetch_mod) *
1041 int_cst_value (ref->group->step);
1042 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
1043 addr_base, size_int (delta));
1044 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1045 true, GSI_SAME_STMT);
1046 }
1047 else
1048 {
1049 /* The step size is non-constant but loop-invariant. We use the
1050 heuristic to simply prefetch ahead iterations ahead. */
1051 forward = fold_build2 (MULT_EXPR, sizetype,
1052 fold_convert (sizetype, ref->group->step),
1053 fold_convert (sizetype, size_int (ahead)));
1054 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, addr_base,
1055 forward);
1056 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1057 NULL, true, GSI_SAME_STMT);
1058 }
1059 /* Create the prefetch instruction. */
1060 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
1061 3, addr, write_p, local);
1062 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1063 }
1064 }
1065
1066 /* Issue prefetches for the references in GROUPS into loop as decided before.
1067 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1068 factor by that LOOP was unrolled. */
1069
1070 static void
1071 issue_prefetches (struct mem_ref_group *groups,
1072 unsigned unroll_factor, unsigned ahead)
1073 {
1074 struct mem_ref *ref;
1075
1076 for (; groups; groups = groups->next)
1077 for (ref = groups->refs; ref; ref = ref->next)
1078 if (ref->issue_prefetch_p)
1079 issue_prefetch_ref (ref, unroll_factor, ahead);
1080 }
1081
1082 /* Returns true if REF is a memory write for that a nontemporal store insn
1083 can be used. */
1084
1085 static bool
1086 nontemporal_store_p (struct mem_ref *ref)
1087 {
1088 enum machine_mode mode;
1089 enum insn_code code;
1090
1091 /* REF must be a write that is not reused. We require it to be independent
1092 on all other memory references in the loop, as the nontemporal stores may
1093 be reordered with respect to other memory references. */
1094 if (!ref->write_p
1095 || !ref->independent_p
1096 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1097 return false;
1098
1099 /* Check that we have the storent instruction for the mode. */
1100 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1101 if (mode == BLKmode)
1102 return false;
1103
1104 code = optab_handler (storent_optab, mode)->insn_code;
1105 return code != CODE_FOR_nothing;
1106 }
1107
1108 /* If REF is a nontemporal store, we mark the corresponding modify statement
1109 and return true. Otherwise, we return false. */
1110
1111 static bool
1112 mark_nontemporal_store (struct mem_ref *ref)
1113 {
1114 if (!nontemporal_store_p (ref))
1115 return false;
1116
1117 if (dump_file && (dump_flags & TDF_DETAILS))
1118 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1119 (void *) ref);
1120
1121 gimple_assign_set_nontemporal_move (ref->stmt, true);
1122 ref->storent_p = true;
1123
1124 return true;
1125 }
1126
1127 /* Issue a memory fence instruction after LOOP. */
1128
1129 static void
1130 emit_mfence_after_loop (struct loop *loop)
1131 {
1132 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1133 edge exit;
1134 gimple call;
1135 gimple_stmt_iterator bsi;
1136 unsigned i;
1137
1138 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1139 {
1140 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1141
1142 if (!single_pred_p (exit->dest)
1143 /* If possible, we prefer not to insert the fence on other paths
1144 in cfg. */
1145 && !(exit->flags & EDGE_ABNORMAL))
1146 split_loop_exit_edge (exit);
1147 bsi = gsi_after_labels (exit->dest);
1148
1149 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1150 mark_virtual_ops_for_renaming (call);
1151 }
1152
1153 VEC_free (edge, heap, exits);
1154 update_ssa (TODO_update_ssa_only_virtuals);
1155 }
1156
1157 /* Returns true if we can use storent in loop, false otherwise. */
1158
1159 static bool
1160 may_use_storent_in_loop_p (struct loop *loop)
1161 {
1162 bool ret = true;
1163
1164 if (loop->inner != NULL)
1165 return false;
1166
1167 /* If we must issue a mfence insn after using storent, check that there
1168 is a suitable place for it at each of the loop exits. */
1169 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1170 {
1171 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1172 unsigned i;
1173 edge exit;
1174
1175 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1176 if ((exit->flags & EDGE_ABNORMAL)
1177 && exit->dest == EXIT_BLOCK_PTR)
1178 ret = false;
1179
1180 VEC_free (edge, heap, exits);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1187 references in the loop. */
1188
1189 static void
1190 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1191 {
1192 struct mem_ref *ref;
1193 bool any = false;
1194
1195 if (!may_use_storent_in_loop_p (loop))
1196 return;
1197
1198 for (; groups; groups = groups->next)
1199 for (ref = groups->refs; ref; ref = ref->next)
1200 any |= mark_nontemporal_store (ref);
1201
1202 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1203 emit_mfence_after_loop (loop);
1204 }
1205
1206 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1207 this is the case, fill in DESC by the description of number of
1208 iterations. */
1209
1210 static bool
1211 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1212 unsigned factor)
1213 {
1214 if (!can_unroll_loop_p (loop, factor, desc))
1215 return false;
1216
1217 /* We only consider loops without control flow for unrolling. This is not
1218 a hard restriction -- tree_unroll_loop works with arbitrary loops
1219 as well; but the unrolling/prefetching is usually more profitable for
1220 loops consisting of a single basic block, and we want to limit the
1221 code growth. */
1222 if (loop->num_nodes > 2)
1223 return false;
1224
1225 return true;
1226 }
1227
1228 /* Determine the coefficient by that unroll LOOP, from the information
1229 contained in the list of memory references REFS. Description of
1230 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1231 insns of the LOOP. EST_NITER is the estimated number of iterations of
1232 the loop, or -1 if no estimate is available. */
1233
1234 static unsigned
1235 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1236 unsigned ninsns, struct tree_niter_desc *desc,
1237 HOST_WIDE_INT est_niter)
1238 {
1239 unsigned upper_bound;
1240 unsigned nfactor, factor, mod_constraint;
1241 struct mem_ref_group *agp;
1242 struct mem_ref *ref;
1243
1244 /* First check whether the loop is not too large to unroll. We ignore
1245 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1246 from unrolling them enough to make exactly one cache line covered by each
1247 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1248 us from unrolling the loops too many times in cases where we only expect
1249 gains from better scheduling and decreasing loop overhead, which is not
1250 the case here. */
1251 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1252
1253 /* If we unrolled the loop more times than it iterates, the unrolled version
1254 of the loop would be never entered. */
1255 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1256 upper_bound = est_niter;
1257
1258 if (upper_bound <= 1)
1259 return 1;
1260
1261 /* Choose the factor so that we may prefetch each cache just once,
1262 but bound the unrolling by UPPER_BOUND. */
1263 factor = 1;
1264 for (agp = refs; agp; agp = agp->next)
1265 for (ref = agp->refs; ref; ref = ref->next)
1266 if (should_issue_prefetch_p (ref))
1267 {
1268 mod_constraint = ref->prefetch_mod;
1269 nfactor = least_common_multiple (mod_constraint, factor);
1270 if (nfactor <= upper_bound)
1271 factor = nfactor;
1272 }
1273
1274 if (!should_unroll_loop_p (loop, desc, factor))
1275 return 1;
1276
1277 return factor;
1278 }
1279
1280 /* Returns the total volume of the memory references REFS, taking into account
1281 reuses in the innermost loop and cache line size. TODO -- we should also
1282 take into account reuses across the iterations of the loops in the loop
1283 nest. */
1284
1285 static unsigned
1286 volume_of_references (struct mem_ref_group *refs)
1287 {
1288 unsigned volume = 0;
1289 struct mem_ref_group *gr;
1290 struct mem_ref *ref;
1291
1292 for (gr = refs; gr; gr = gr->next)
1293 for (ref = gr->refs; ref; ref = ref->next)
1294 {
1295 /* Almost always reuses another value? */
1296 if (ref->prefetch_before != PREFETCH_ALL)
1297 continue;
1298
1299 /* If several iterations access the same cache line, use the size of
1300 the line divided by this number. Otherwise, a cache line is
1301 accessed in each iteration. TODO -- in the latter case, we should
1302 take the size of the reference into account, rounding it up on cache
1303 line size multiple. */
1304 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1305 }
1306 return volume;
1307 }
1308
1309 /* Returns the volume of memory references accessed across VEC iterations of
1310 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1311 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1312
1313 static unsigned
1314 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1315 {
1316 unsigned i;
1317
1318 for (i = 0; i < n; i++)
1319 if (vec[i] != 0)
1320 break;
1321
1322 if (i == n)
1323 return 0;
1324
1325 gcc_assert (vec[i] > 0);
1326
1327 /* We ignore the parts of the distance vector in subloops, since usually
1328 the numbers of iterations are much smaller. */
1329 return loop_sizes[i] * vec[i];
1330 }
1331
1332 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1333 at the position corresponding to the loop of the step. N is the depth
1334 of the considered loop nest, and, LOOP is its innermost loop. */
1335
1336 static void
1337 add_subscript_strides (tree access_fn, unsigned stride,
1338 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1339 {
1340 struct loop *aloop;
1341 tree step;
1342 HOST_WIDE_INT astep;
1343 unsigned min_depth = loop_depth (loop) - n;
1344
1345 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1346 {
1347 aloop = get_chrec_loop (access_fn);
1348 step = CHREC_RIGHT (access_fn);
1349 access_fn = CHREC_LEFT (access_fn);
1350
1351 if ((unsigned) loop_depth (aloop) <= min_depth)
1352 continue;
1353
1354 if (host_integerp (step, 0))
1355 astep = tree_low_cst (step, 0);
1356 else
1357 astep = L1_CACHE_LINE_SIZE;
1358
1359 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1360
1361 }
1362 }
1363
1364 /* Returns the volume of memory references accessed between two consecutive
1365 self-reuses of the reference DR. We consider the subscripts of DR in N
1366 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1367 loops. LOOP is the innermost loop of the current loop nest. */
1368
1369 static unsigned
1370 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1371 struct loop *loop)
1372 {
1373 tree stride, access_fn;
1374 HOST_WIDE_INT *strides, astride;
1375 VEC (tree, heap) *access_fns;
1376 tree ref = DR_REF (dr);
1377 unsigned i, ret = ~0u;
1378
1379 /* In the following example:
1380
1381 for (i = 0; i < N; i++)
1382 for (j = 0; j < N; j++)
1383 use (a[j][i]);
1384 the same cache line is accessed each N steps (except if the change from
1385 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1386 we cannot rely purely on the results of the data dependence analysis.
1387
1388 Instead, we compute the stride of the reference in each loop, and consider
1389 the innermost loop in that the stride is less than cache size. */
1390
1391 strides = XCNEWVEC (HOST_WIDE_INT, n);
1392 access_fns = DR_ACCESS_FNS (dr);
1393
1394 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1395 {
1396 /* Keep track of the reference corresponding to the subscript, so that we
1397 know its stride. */
1398 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1399 ref = TREE_OPERAND (ref, 0);
1400
1401 if (TREE_CODE (ref) == ARRAY_REF)
1402 {
1403 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1404 if (host_integerp (stride, 1))
1405 astride = tree_low_cst (stride, 1);
1406 else
1407 astride = L1_CACHE_LINE_SIZE;
1408
1409 ref = TREE_OPERAND (ref, 0);
1410 }
1411 else
1412 astride = 1;
1413
1414 add_subscript_strides (access_fn, astride, strides, n, loop);
1415 }
1416
1417 for (i = n; i-- > 0; )
1418 {
1419 unsigned HOST_WIDE_INT s;
1420
1421 s = strides[i] < 0 ? -strides[i] : strides[i];
1422
1423 if (s < (unsigned) L1_CACHE_LINE_SIZE
1424 && (loop_sizes[i]
1425 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1426 {
1427 ret = loop_sizes[i];
1428 break;
1429 }
1430 }
1431
1432 free (strides);
1433 return ret;
1434 }
1435
1436 /* Determines the distance till the first reuse of each reference in REFS
1437 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1438 memory references in the loop. */
1439
1440 static void
1441 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1442 bool no_other_refs)
1443 {
1444 struct loop *nest, *aloop;
1445 VEC (data_reference_p, heap) *datarefs = NULL;
1446 VEC (ddr_p, heap) *dependences = NULL;
1447 struct mem_ref_group *gr;
1448 struct mem_ref *ref, *refb;
1449 VEC (loop_p, heap) *vloops = NULL;
1450 unsigned *loop_data_size;
1451 unsigned i, j, n;
1452 unsigned volume, dist, adist;
1453 HOST_WIDE_INT vol;
1454 data_reference_p dr;
1455 ddr_p dep;
1456
1457 if (loop->inner)
1458 return;
1459
1460 /* Find the outermost loop of the loop nest of loop (we require that
1461 there are no sibling loops inside the nest). */
1462 nest = loop;
1463 while (1)
1464 {
1465 aloop = loop_outer (nest);
1466
1467 if (aloop == current_loops->tree_root
1468 || aloop->inner->next)
1469 break;
1470
1471 nest = aloop;
1472 }
1473
1474 /* For each loop, determine the amount of data accessed in each iteration.
1475 We use this to estimate whether the reference is evicted from the
1476 cache before its reuse. */
1477 find_loop_nest (nest, &vloops);
1478 n = VEC_length (loop_p, vloops);
1479 loop_data_size = XNEWVEC (unsigned, n);
1480 volume = volume_of_references (refs);
1481 i = n;
1482 while (i-- != 0)
1483 {
1484 loop_data_size[i] = volume;
1485 /* Bound the volume by the L2 cache size, since above this bound,
1486 all dependence distances are equivalent. */
1487 if (volume > L2_CACHE_SIZE_BYTES)
1488 continue;
1489
1490 aloop = VEC_index (loop_p, vloops, i);
1491 vol = estimated_loop_iterations_int (aloop, false);
1492 if (vol < 0)
1493 vol = expected_loop_iterations (aloop);
1494 volume *= vol;
1495 }
1496
1497 /* Prepare the references in the form suitable for data dependence
1498 analysis. We ignore unanalyzable data references (the results
1499 are used just as a heuristics to estimate temporality of the
1500 references, hence we do not need to worry about correctness). */
1501 for (gr = refs; gr; gr = gr->next)
1502 for (ref = gr->refs; ref; ref = ref->next)
1503 {
1504 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1505
1506 if (dr)
1507 {
1508 ref->reuse_distance = volume;
1509 dr->aux = ref;
1510 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1511 }
1512 else
1513 no_other_refs = false;
1514 }
1515
1516 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1517 {
1518 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1519 ref = (struct mem_ref *) dr->aux;
1520 if (ref->reuse_distance > dist)
1521 ref->reuse_distance = dist;
1522
1523 if (no_other_refs)
1524 ref->independent_p = true;
1525 }
1526
1527 compute_all_dependences (datarefs, &dependences, vloops, true);
1528
1529 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1530 {
1531 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1532 continue;
1533
1534 ref = (struct mem_ref *) DDR_A (dep)->aux;
1535 refb = (struct mem_ref *) DDR_B (dep)->aux;
1536
1537 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1538 || DDR_NUM_DIST_VECTS (dep) == 0)
1539 {
1540 /* If the dependence cannot be analyzed, assume that there might be
1541 a reuse. */
1542 dist = 0;
1543
1544 ref->independent_p = false;
1545 refb->independent_p = false;
1546 }
1547 else
1548 {
1549 /* The distance vectors are normalized to be always lexicographically
1550 positive, hence we cannot tell just from them whether DDR_A comes
1551 before DDR_B or vice versa. However, it is not important,
1552 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1553 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1554 in cache (and marking it as nontemporal would not affect
1555 anything). */
1556
1557 dist = volume;
1558 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1559 {
1560 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1561 loop_data_size, n);
1562
1563 /* If this is a dependence in the innermost loop (i.e., the
1564 distances in all superloops are zero) and it is not
1565 the trivial self-dependence with distance zero, record that
1566 the references are not completely independent. */
1567 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1568 && (ref != refb
1569 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1570 {
1571 ref->independent_p = false;
1572 refb->independent_p = false;
1573 }
1574
1575 /* Ignore accesses closer than
1576 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1577 so that we use nontemporal prefetches e.g. if single memory
1578 location is accessed several times in a single iteration of
1579 the loop. */
1580 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1581 continue;
1582
1583 if (adist < dist)
1584 dist = adist;
1585 }
1586 }
1587
1588 if (ref->reuse_distance > dist)
1589 ref->reuse_distance = dist;
1590 if (refb->reuse_distance > dist)
1591 refb->reuse_distance = dist;
1592 }
1593
1594 free_dependence_relations (dependences);
1595 free_data_refs (datarefs);
1596 free (loop_data_size);
1597
1598 if (dump_file && (dump_flags & TDF_DETAILS))
1599 {
1600 fprintf (dump_file, "Reuse distances:\n");
1601 for (gr = refs; gr; gr = gr->next)
1602 for (ref = gr->refs; ref; ref = ref->next)
1603 fprintf (dump_file, " ref %p distance %u\n",
1604 (void *) ref, ref->reuse_distance);
1605 }
1606 }
1607
1608 /* Do a cost-benefit analysis to determine if prefetching is profitable
1609 for the current loop given the following parameters:
1610 AHEAD: the iteration ahead distance,
1611 EST_NITER: the estimated trip count,
1612 NINSNS: estimated number of instructions in the loop,
1613 PREFETCH_COUNT: an estimate of the number of prefetches
1614 MEM_REF_COUNT: total number of memory references in the loop. */
1615
1616 static bool
1617 is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
1618 unsigned ninsns, unsigned prefetch_count,
1619 unsigned mem_ref_count, unsigned unroll_factor)
1620 {
1621 int insn_to_mem_ratio, insn_to_prefetch_ratio;
1622
1623 if (mem_ref_count == 0)
1624 return false;
1625
1626 /* Prefetching improves performance by overlapping cache missing
1627 memory accesses with CPU operations. If the loop does not have
1628 enough CPU operations to overlap with memory operations, prefetching
1629 won't give a significant benefit. One approximate way of checking
1630 this is to require the ratio of instructions to memory references to
1631 be above a certain limit. This approximation works well in practice.
1632 TODO: Implement a more precise computation by estimating the time
1633 for each CPU or memory op in the loop. Time estimates for memory ops
1634 should account for cache misses. */
1635 insn_to_mem_ratio = ninsns / mem_ref_count;
1636
1637 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1638 {
1639 if (dump_file && (dump_flags & TDF_DETAILS))
1640 fprintf (dump_file,
1641 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1642 insn_to_mem_ratio);
1643 return false;
1644 }
1645
1646 /* Prefetching most likely causes performance degradation when the instruction
1647 to prefetch ratio is too small. Too many prefetch instructions in a loop
1648 may reduce the I-cache performance.
1649 (unroll_factor * ninsns) is used to estimate the number of instructions in
1650 the unrolled loop. This implementation is a bit simplistic -- the number
1651 of issued prefetch instructions is also affected by unrolling. So,
1652 prefetch_mod and the unroll factor should be taken into account when
1653 determining prefetch_count. Also, the number of insns of the unrolled
1654 loop will usually be significantly smaller than the number of insns of the
1655 original loop * unroll_factor (at least the induction variable increases
1656 and the exit branches will get eliminated), so it might be better to use
1657 tree_estimate_loop_size + estimated_unrolled_size. */
1658 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1659 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1660 {
1661 if (dump_file && (dump_flags & TDF_DETAILS))
1662 fprintf (dump_file,
1663 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1664 insn_to_prefetch_ratio);
1665 return false;
1666 }
1667
1668 /* Could not do further estimation if the trip count is unknown. Just assume
1669 prefetching is profitable. Too aggressive??? */
1670 if (est_niter < 0)
1671 return true;
1672
1673 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1674 {
1675 if (dump_file && (dump_flags & TDF_DETAILS))
1676 fprintf (dump_file,
1677 "Not prefetching -- loop estimated to roll only %d times\n",
1678 (int) est_niter);
1679 return false;
1680 }
1681 return true;
1682 }
1683
1684
1685 /* Issue prefetch instructions for array references in LOOP. Returns
1686 true if the LOOP was unrolled. */
1687
1688 static bool
1689 loop_prefetch_arrays (struct loop *loop)
1690 {
1691 struct mem_ref_group *refs;
1692 unsigned ahead, ninsns, time, unroll_factor;
1693 HOST_WIDE_INT est_niter;
1694 struct tree_niter_desc desc;
1695 bool unrolled = false, no_other_refs;
1696 unsigned prefetch_count;
1697 unsigned mem_ref_count;
1698
1699 if (optimize_loop_nest_for_size_p (loop))
1700 {
1701 if (dump_file && (dump_flags & TDF_DETAILS))
1702 fprintf (dump_file, " ignored (cold area)\n");
1703 return false;
1704 }
1705
1706 /* Step 1: gather the memory references. */
1707 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1708
1709 /* Step 2: estimate the reuse effects. */
1710 prune_by_reuse (refs);
1711
1712 prefetch_count = estimate_prefetch_count (refs);
1713 if (prefetch_count == 0)
1714 goto fail;
1715
1716 determine_loop_nest_reuse (loop, refs, no_other_refs);
1717
1718 /* Step 3: determine the ahead and unroll factor. */
1719
1720 /* FIXME: the time should be weighted by the probabilities of the blocks in
1721 the loop body. */
1722 time = tree_num_loop_insns (loop, &eni_time_weights);
1723 ahead = (PREFETCH_LATENCY + time - 1) / time;
1724 est_niter = estimated_loop_iterations_int (loop, false);
1725
1726 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1727 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1728 est_niter);
1729 if (dump_file && (dump_flags & TDF_DETAILS))
1730 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1731 HOST_WIDE_INT_PRINT_DEC "\n"
1732 "insn count %d, mem ref count %d, prefetch count %d\n",
1733 ahead, unroll_factor, est_niter,
1734 ninsns, mem_ref_count, prefetch_count);
1735
1736 if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns, prefetch_count,
1737 mem_ref_count, unroll_factor))
1738 goto fail;
1739
1740 mark_nontemporal_stores (loop, refs);
1741
1742 /* Step 4: what to prefetch? */
1743 if (!schedule_prefetches (refs, unroll_factor, ahead))
1744 goto fail;
1745
1746 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1747 iterations so that we do not issue superfluous prefetches. */
1748 if (unroll_factor != 1)
1749 {
1750 tree_unroll_loop (loop, unroll_factor,
1751 single_dom_exit (loop), &desc);
1752 unrolled = true;
1753 }
1754
1755 /* Step 6: issue the prefetches. */
1756 issue_prefetches (refs, unroll_factor, ahead);
1757
1758 fail:
1759 release_mem_refs (refs);
1760 return unrolled;
1761 }
1762
1763 /* Issue prefetch instructions for array references in loops. */
1764
1765 unsigned int
1766 tree_ssa_prefetch_arrays (void)
1767 {
1768 loop_iterator li;
1769 struct loop *loop;
1770 bool unrolled = false;
1771 int todo_flags = 0;
1772
1773 if (!HAVE_prefetch
1774 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1775 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1776 of processor costs and i486 does not have prefetch, but
1777 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1778 || PREFETCH_BLOCK == 0)
1779 return 0;
1780
1781 if (dump_file && (dump_flags & TDF_DETAILS))
1782 {
1783 fprintf (dump_file, "Prefetching parameters:\n");
1784 fprintf (dump_file, " simultaneous prefetches: %d\n",
1785 SIMULTANEOUS_PREFETCHES);
1786 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1787 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1788 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1789 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1790 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1791 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1792 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1793 MIN_INSN_TO_PREFETCH_RATIO);
1794 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1795 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1796 fprintf (dump_file, "\n");
1797 }
1798
1799 initialize_original_copy_tables ();
1800
1801 if (!built_in_decls[BUILT_IN_PREFETCH])
1802 {
1803 tree type = build_function_type (void_type_node,
1804 tree_cons (NULL_TREE,
1805 const_ptr_type_node,
1806 NULL_TREE));
1807 tree decl = add_builtin_function ("__builtin_prefetch", type,
1808 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1809 NULL, NULL_TREE);
1810 DECL_IS_NOVOPS (decl) = true;
1811 built_in_decls[BUILT_IN_PREFETCH] = decl;
1812 }
1813
1814 /* We assume that size of cache line is a power of two, so verify this
1815 here. */
1816 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1817
1818 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1819 {
1820 if (dump_file && (dump_flags & TDF_DETAILS))
1821 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1822
1823 unrolled |= loop_prefetch_arrays (loop);
1824
1825 if (dump_file && (dump_flags & TDF_DETAILS))
1826 fprintf (dump_file, "\n\n");
1827 }
1828
1829 if (unrolled)
1830 {
1831 scev_reset ();
1832 todo_flags |= TODO_cleanup_cfg;
1833 }
1834
1835 free_original_copy_tables ();
1836 return todo_flags;
1837 }