]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-math-opts.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify-me.h"
102 #include "stor-layout.h"
103 #include "gimple-ssa.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
109 #include "expr.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "alloc-pool.h"
114 #include "target.h"
115 #include "gimple-pretty-print.h"
116
117 /* FIXME: RTL headers have to be included here for optabs. */
118 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
119 #include "expr.h" /* Because optabs.h wants sepops. */
120 #include "optabs.h"
121
122 /* This structure represents one basic block that either computes a
123 division, or is a common dominator for basic block that compute a
124 division. */
125 struct occurrence {
126 /* The basic block represented by this structure. */
127 basic_block bb;
128
129 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
130 inserted in BB. */
131 tree recip_def;
132
133 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
134 was inserted in BB. */
135 gimple recip_def_stmt;
136
137 /* Pointer to a list of "struct occurrence"s for blocks dominated
138 by BB. */
139 struct occurrence *children;
140
141 /* Pointer to the next "struct occurrence"s in the list of blocks
142 sharing a common dominator. */
143 struct occurrence *next;
144
145 /* The number of divisions that are in BB before compute_merit. The
146 number of divisions that are in BB or post-dominate it after
147 compute_merit. */
148 int num_divisions;
149
150 /* True if the basic block has a division, false if it is a common
151 dominator for basic blocks that do. If it is false and trapping
152 math is active, BB is not a candidate for inserting a reciprocal. */
153 bool bb_has_division;
154 };
155
156 static struct
157 {
158 /* Number of 1.0/X ops inserted. */
159 int rdivs_inserted;
160
161 /* Number of 1.0/FUNC ops inserted. */
162 int rfuncs_inserted;
163 } reciprocal_stats;
164
165 static struct
166 {
167 /* Number of cexpi calls inserted. */
168 int inserted;
169 } sincos_stats;
170
171 static struct
172 {
173 /* Number of hand-written 16-bit bswaps found. */
174 int found_16bit;
175
176 /* Number of hand-written 32-bit bswaps found. */
177 int found_32bit;
178
179 /* Number of hand-written 64-bit bswaps found. */
180 int found_64bit;
181 } bswap_stats;
182
183 static struct
184 {
185 /* Number of widening multiplication ops inserted. */
186 int widen_mults_inserted;
187
188 /* Number of integer multiply-and-accumulate ops inserted. */
189 int maccs_inserted;
190
191 /* Number of fp fused multiply-add ops inserted. */
192 int fmas_inserted;
193 } widen_mul_stats;
194
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence *occ_head;
198
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static alloc_pool occ_pool;
201
202
203
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence *
207 occ_new (basic_block bb, struct occurrence *children)
208 {
209 struct occurrence *occ;
210
211 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
212 memset (occ, 0, sizeof (struct occurrence));
213
214 occ->bb = bb;
215 occ->children = children;
216 return occ;
217 }
218
219
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
223
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
227
228 static void
229 insert_bb (struct occurrence *new_occ, basic_block idom,
230 struct occurrence **p_head)
231 {
232 struct occurrence *occ, **p_occ;
233
234 for (p_occ = p_head; (occ = *p_occ) != NULL; )
235 {
236 basic_block bb = new_occ->bb, occ_bb = occ->bb;
237 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
238 if (dom == bb)
239 {
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
241 from its list. */
242 *p_occ = occ->next;
243 occ->next = new_occ->children;
244 new_occ->children = occ;
245
246 /* Try the next block (it may as well be dominated by BB). */
247 }
248
249 else if (dom == occ_bb)
250 {
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ, dom, &occ->children);
253 return;
254 }
255
256 else if (dom != idom)
257 {
258 gcc_assert (!dom->aux);
259
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
262 its list. */
263 *p_occ = occ->next;
264 new_occ->next = occ;
265 occ->next = NULL;
266
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ = occ_new (dom, new_occ);
271 }
272
273 else
274 {
275 /* Nothing special, go on with the next element. */
276 p_occ = &occ->next;
277 }
278 }
279
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ->next = *p_head;
282 *p_head = new_occ;
283 }
284
285 /* Register that we found a division in BB. */
286
287 static inline void
288 register_division_in (basic_block bb)
289 {
290 struct occurrence *occ;
291
292 occ = (struct occurrence *) bb->aux;
293 if (!occ)
294 {
295 occ = occ_new (bb, NULL);
296 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
297 }
298
299 occ->bb_has_division = true;
300 occ->num_divisions++;
301 }
302
303
304 /* Compute the number of divisions that postdominate each block in OCC and
305 its children. */
306
307 static void
308 compute_merit (struct occurrence *occ)
309 {
310 struct occurrence *occ_child;
311 basic_block dom = occ->bb;
312
313 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
314 {
315 basic_block bb;
316 if (occ_child->children)
317 compute_merit (occ_child);
318
319 if (flag_exceptions)
320 bb = single_noncomplex_succ (dom);
321 else
322 bb = dom;
323
324 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
325 occ->num_divisions += occ_child->num_divisions;
326 }
327 }
328
329
330 /* Return whether USE_STMT is a floating-point division by DEF. */
331 static inline bool
332 is_division_by (gimple use_stmt, tree def)
333 {
334 return is_gimple_assign (use_stmt)
335 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
339 a stmt. */
340 && gimple_assign_rhs1 (use_stmt) != def;
341 }
342
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
347
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
350 be used. */
351
352 static void
353 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
354 tree def, tree recip_def, int threshold)
355 {
356 tree type;
357 gimple new_stmt;
358 gimple_stmt_iterator gsi;
359 struct occurrence *occ_child;
360
361 if (!recip_def
362 && (occ->bb_has_division || !flag_trapping_math)
363 && occ->num_divisions >= threshold)
364 {
365 /* Make a variable with the replacement and substitute it. */
366 type = TREE_TYPE (def);
367 recip_def = create_tmp_reg (type, "reciptmp");
368 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
369 build_one_cst (type), def);
370
371 if (occ->bb_has_division)
372 {
373 /* Case 1: insert before an existing division. */
374 gsi = gsi_after_labels (occ->bb);
375 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
376 gsi_next (&gsi);
377
378 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
379 }
380 else if (def_gsi && occ->bb == def_gsi->bb)
381 {
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
387 }
388 else
389 {
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi = gsi_after_labels (occ->bb);
392 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
393 }
394
395 reciprocal_stats.rdivs_inserted++;
396
397 occ->recip_def_stmt = new_stmt;
398 }
399
400 occ->recip_def = recip_def;
401 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
402 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
403 }
404
405
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
407 possible. */
408
409 static inline void
410 replace_reciprocal (use_operand_p use_p)
411 {
412 gimple use_stmt = USE_STMT (use_p);
413 basic_block bb = gimple_bb (use_stmt);
414 struct occurrence *occ = (struct occurrence *) bb->aux;
415
416 if (optimize_bb_for_speed_p (bb)
417 && occ->recip_def && use_stmt != occ->recip_def_stmt)
418 {
419 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
420 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
421 SET_USE (use_p, occ->recip_def);
422 fold_stmt_inplace (&gsi);
423 update_stmt (use_stmt);
424 }
425 }
426
427
428 /* Free OCC and return one more "struct occurrence" to be freed. */
429
430 static struct occurrence *
431 free_bb (struct occurrence *occ)
432 {
433 struct occurrence *child, *next;
434
435 /* First get the two pointers hanging off OCC. */
436 next = occ->next;
437 child = occ->children;
438 occ->bb->aux = NULL;
439 pool_free (occ_pool, occ);
440
441 /* Now ensure that we don't recurse unless it is necessary. */
442 if (!child)
443 return next;
444 else
445 {
446 while (next)
447 next = free_bb (next);
448
449 return child;
450 }
451 }
452
453
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
457
458 DEF must be a GIMPLE register of a floating-point type. */
459
460 static void
461 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
462 {
463 use_operand_p use_p;
464 imm_use_iterator use_iter;
465 struct occurrence *occ;
466 int count = 0, threshold;
467
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
469
470 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
471 {
472 gimple use_stmt = USE_STMT (use_p);
473 if (is_division_by (use_stmt, def))
474 {
475 register_division_in (gimple_bb (use_stmt));
476 count++;
477 }
478 }
479
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
482 if (count >= threshold)
483 {
484 gimple use_stmt;
485 for (occ = occ_head; occ; occ = occ->next)
486 {
487 compute_merit (occ);
488 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
489 }
490
491 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
492 {
493 if (is_division_by (use_stmt, def))
494 {
495 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
496 replace_reciprocal (use_p);
497 }
498 }
499 }
500
501 for (occ = occ_head; occ; )
502 occ = free_bb (occ);
503
504 occ_head = NULL;
505 }
506
507 static bool
508 gate_cse_reciprocals (void)
509 {
510 return optimize && flag_reciprocal_math;
511 }
512
513 /* Go through all the floating-point SSA_NAMEs, and call
514 execute_cse_reciprocals_1 on each of them. */
515 static unsigned int
516 execute_cse_reciprocals (void)
517 {
518 basic_block bb;
519 tree arg;
520
521 occ_pool = create_alloc_pool ("dominators for recip",
522 sizeof (struct occurrence),
523 n_basic_blocks_for_fn (cfun) / 3 + 1);
524
525 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
526 calculate_dominance_info (CDI_DOMINATORS);
527 calculate_dominance_info (CDI_POST_DOMINATORS);
528
529 #ifdef ENABLE_CHECKING
530 FOR_EACH_BB_FN (bb, cfun)
531 gcc_assert (!bb->aux);
532 #endif
533
534 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
535 if (FLOAT_TYPE_P (TREE_TYPE (arg))
536 && is_gimple_reg (arg))
537 {
538 tree name = ssa_default_def (cfun, arg);
539 if (name)
540 execute_cse_reciprocals_1 (NULL, name);
541 }
542
543 FOR_EACH_BB_FN (bb, cfun)
544 {
545 gimple_stmt_iterator gsi;
546 gimple phi;
547 tree def;
548
549 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
550 {
551 phi = gsi_stmt (gsi);
552 def = PHI_RESULT (phi);
553 if (! virtual_operand_p (def)
554 && FLOAT_TYPE_P (TREE_TYPE (def)))
555 execute_cse_reciprocals_1 (NULL, def);
556 }
557
558 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
559 {
560 gimple stmt = gsi_stmt (gsi);
561
562 if (gimple_has_lhs (stmt)
563 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
564 && FLOAT_TYPE_P (TREE_TYPE (def))
565 && TREE_CODE (def) == SSA_NAME)
566 execute_cse_reciprocals_1 (&gsi, def);
567 }
568
569 if (optimize_bb_for_size_p (bb))
570 continue;
571
572 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
573 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
574 {
575 gimple stmt = gsi_stmt (gsi);
576 tree fndecl;
577
578 if (is_gimple_assign (stmt)
579 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
580 {
581 tree arg1 = gimple_assign_rhs2 (stmt);
582 gimple stmt1;
583
584 if (TREE_CODE (arg1) != SSA_NAME)
585 continue;
586
587 stmt1 = SSA_NAME_DEF_STMT (arg1);
588
589 if (is_gimple_call (stmt1)
590 && gimple_call_lhs (stmt1)
591 && (fndecl = gimple_call_fndecl (stmt1))
592 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
593 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
594 {
595 enum built_in_function code;
596 bool md_code, fail;
597 imm_use_iterator ui;
598 use_operand_p use_p;
599
600 code = DECL_FUNCTION_CODE (fndecl);
601 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
602
603 fndecl = targetm.builtin_reciprocal (code, md_code, false);
604 if (!fndecl)
605 continue;
606
607 /* Check that all uses of the SSA name are divisions,
608 otherwise replacing the defining statement will do
609 the wrong thing. */
610 fail = false;
611 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
612 {
613 gimple stmt2 = USE_STMT (use_p);
614 if (is_gimple_debug (stmt2))
615 continue;
616 if (!is_gimple_assign (stmt2)
617 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
618 || gimple_assign_rhs1 (stmt2) == arg1
619 || gimple_assign_rhs2 (stmt2) != arg1)
620 {
621 fail = true;
622 break;
623 }
624 }
625 if (fail)
626 continue;
627
628 gimple_replace_ssa_lhs (stmt1, arg1);
629 gimple_call_set_fndecl (stmt1, fndecl);
630 update_stmt (stmt1);
631 reciprocal_stats.rfuncs_inserted++;
632
633 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
634 {
635 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
636 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
637 fold_stmt_inplace (&gsi);
638 update_stmt (stmt);
639 }
640 }
641 }
642 }
643 }
644
645 statistics_counter_event (cfun, "reciprocal divs inserted",
646 reciprocal_stats.rdivs_inserted);
647 statistics_counter_event (cfun, "reciprocal functions inserted",
648 reciprocal_stats.rfuncs_inserted);
649
650 free_dominance_info (CDI_DOMINATORS);
651 free_dominance_info (CDI_POST_DOMINATORS);
652 free_alloc_pool (occ_pool);
653 return 0;
654 }
655
656 namespace {
657
658 const pass_data pass_data_cse_reciprocals =
659 {
660 GIMPLE_PASS, /* type */
661 "recip", /* name */
662 OPTGROUP_NONE, /* optinfo_flags */
663 true, /* has_gate */
664 true, /* has_execute */
665 TV_NONE, /* tv_id */
666 PROP_ssa, /* properties_required */
667 0, /* properties_provided */
668 0, /* properties_destroyed */
669 0, /* todo_flags_start */
670 ( TODO_update_ssa | TODO_verify_ssa
671 | TODO_verify_stmts ), /* todo_flags_finish */
672 };
673
674 class pass_cse_reciprocals : public gimple_opt_pass
675 {
676 public:
677 pass_cse_reciprocals (gcc::context *ctxt)
678 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
679 {}
680
681 /* opt_pass methods: */
682 bool gate () { return gate_cse_reciprocals (); }
683 unsigned int execute () { return execute_cse_reciprocals (); }
684
685 }; // class pass_cse_reciprocals
686
687 } // anon namespace
688
689 gimple_opt_pass *
690 make_pass_cse_reciprocals (gcc::context *ctxt)
691 {
692 return new pass_cse_reciprocals (ctxt);
693 }
694
695 /* Records an occurrence at statement USE_STMT in the vector of trees
696 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
697 is not yet initialized. Returns true if the occurrence was pushed on
698 the vector. Adjusts *TOP_BB to be the basic block dominating all
699 statements in the vector. */
700
701 static bool
702 maybe_record_sincos (vec<gimple> *stmts,
703 basic_block *top_bb, gimple use_stmt)
704 {
705 basic_block use_bb = gimple_bb (use_stmt);
706 if (*top_bb
707 && (*top_bb == use_bb
708 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
709 stmts->safe_push (use_stmt);
710 else if (!*top_bb
711 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
712 {
713 stmts->safe_push (use_stmt);
714 *top_bb = use_bb;
715 }
716 else
717 return false;
718
719 return true;
720 }
721
722 /* Look for sin, cos and cexpi calls with the same argument NAME and
723 create a single call to cexpi CSEing the result in this case.
724 We first walk over all immediate uses of the argument collecting
725 statements that we can CSE in a vector and in a second pass replace
726 the statement rhs with a REALPART or IMAGPART expression on the
727 result of the cexpi call we insert before the use statement that
728 dominates all other candidates. */
729
730 static bool
731 execute_cse_sincos_1 (tree name)
732 {
733 gimple_stmt_iterator gsi;
734 imm_use_iterator use_iter;
735 tree fndecl, res, type;
736 gimple def_stmt, use_stmt, stmt;
737 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
738 vec<gimple> stmts = vNULL;
739 basic_block top_bb = NULL;
740 int i;
741 bool cfg_changed = false;
742
743 type = TREE_TYPE (name);
744 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
745 {
746 if (gimple_code (use_stmt) != GIMPLE_CALL
747 || !gimple_call_lhs (use_stmt)
748 || !(fndecl = gimple_call_fndecl (use_stmt))
749 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
750 continue;
751
752 switch (DECL_FUNCTION_CODE (fndecl))
753 {
754 CASE_FLT_FN (BUILT_IN_COS):
755 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
756 break;
757
758 CASE_FLT_FN (BUILT_IN_SIN):
759 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
760 break;
761
762 CASE_FLT_FN (BUILT_IN_CEXPI):
763 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
764 break;
765
766 default:;
767 }
768 }
769
770 if (seen_cos + seen_sin + seen_cexpi <= 1)
771 {
772 stmts.release ();
773 return false;
774 }
775
776 /* Simply insert cexpi at the beginning of top_bb but not earlier than
777 the name def statement. */
778 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
779 if (!fndecl)
780 return false;
781 stmt = gimple_build_call (fndecl, 1, name);
782 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
783 gimple_call_set_lhs (stmt, res);
784
785 def_stmt = SSA_NAME_DEF_STMT (name);
786 if (!SSA_NAME_IS_DEFAULT_DEF (name)
787 && gimple_code (def_stmt) != GIMPLE_PHI
788 && gimple_bb (def_stmt) == top_bb)
789 {
790 gsi = gsi_for_stmt (def_stmt);
791 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
792 }
793 else
794 {
795 gsi = gsi_after_labels (top_bb);
796 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
797 }
798 sincos_stats.inserted++;
799
800 /* And adjust the recorded old call sites. */
801 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
802 {
803 tree rhs = NULL;
804 fndecl = gimple_call_fndecl (use_stmt);
805
806 switch (DECL_FUNCTION_CODE (fndecl))
807 {
808 CASE_FLT_FN (BUILT_IN_COS):
809 rhs = fold_build1 (REALPART_EXPR, type, res);
810 break;
811
812 CASE_FLT_FN (BUILT_IN_SIN):
813 rhs = fold_build1 (IMAGPART_EXPR, type, res);
814 break;
815
816 CASE_FLT_FN (BUILT_IN_CEXPI):
817 rhs = res;
818 break;
819
820 default:;
821 gcc_unreachable ();
822 }
823
824 /* Replace call with a copy. */
825 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
826
827 gsi = gsi_for_stmt (use_stmt);
828 gsi_replace (&gsi, stmt, true);
829 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
830 cfg_changed = true;
831 }
832
833 stmts.release ();
834
835 return cfg_changed;
836 }
837
838 /* To evaluate powi(x,n), the floating point value x raised to the
839 constant integer exponent n, we use a hybrid algorithm that
840 combines the "window method" with look-up tables. For an
841 introduction to exponentiation algorithms and "addition chains",
842 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
843 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
844 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
845 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
846
847 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
848 multiplications to inline before calling the system library's pow
849 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
850 so this default never requires calling pow, powf or powl. */
851
852 #ifndef POWI_MAX_MULTS
853 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
854 #endif
855
856 /* The size of the "optimal power tree" lookup table. All
857 exponents less than this value are simply looked up in the
858 powi_table below. This threshold is also used to size the
859 cache of pseudo registers that hold intermediate results. */
860 #define POWI_TABLE_SIZE 256
861
862 /* The size, in bits of the window, used in the "window method"
863 exponentiation algorithm. This is equivalent to a radix of
864 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
865 #define POWI_WINDOW_SIZE 3
866
867 /* The following table is an efficient representation of an
868 "optimal power tree". For each value, i, the corresponding
869 value, j, in the table states than an optimal evaluation
870 sequence for calculating pow(x,i) can be found by evaluating
871 pow(x,j)*pow(x,i-j). An optimal power tree for the first
872 100 integers is given in Knuth's "Seminumerical algorithms". */
873
874 static const unsigned char powi_table[POWI_TABLE_SIZE] =
875 {
876 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
877 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
878 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
879 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
880 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
881 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
882 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
883 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
884 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
885 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
886 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
887 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
888 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
889 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
890 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
891 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
892 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
893 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
894 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
895 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
896 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
897 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
898 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
899 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
900 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
901 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
902 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
903 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
904 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
905 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
906 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
907 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
908 };
909
910
911 /* Return the number of multiplications required to calculate
912 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
913 subroutine of powi_cost. CACHE is an array indicating
914 which exponents have already been calculated. */
915
916 static int
917 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
918 {
919 /* If we've already calculated this exponent, then this evaluation
920 doesn't require any additional multiplications. */
921 if (cache[n])
922 return 0;
923
924 cache[n] = true;
925 return powi_lookup_cost (n - powi_table[n], cache)
926 + powi_lookup_cost (powi_table[n], cache) + 1;
927 }
928
929 /* Return the number of multiplications required to calculate
930 powi(x,n) for an arbitrary x, given the exponent N. This
931 function needs to be kept in sync with powi_as_mults below. */
932
933 static int
934 powi_cost (HOST_WIDE_INT n)
935 {
936 bool cache[POWI_TABLE_SIZE];
937 unsigned HOST_WIDE_INT digit;
938 unsigned HOST_WIDE_INT val;
939 int result;
940
941 if (n == 0)
942 return 0;
943
944 /* Ignore the reciprocal when calculating the cost. */
945 val = (n < 0) ? -n : n;
946
947 /* Initialize the exponent cache. */
948 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
949 cache[1] = true;
950
951 result = 0;
952
953 while (val >= POWI_TABLE_SIZE)
954 {
955 if (val & 1)
956 {
957 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
958 result += powi_lookup_cost (digit, cache)
959 + POWI_WINDOW_SIZE + 1;
960 val >>= POWI_WINDOW_SIZE;
961 }
962 else
963 {
964 val >>= 1;
965 result++;
966 }
967 }
968
969 return result + powi_lookup_cost (val, cache);
970 }
971
972 /* Recursive subroutine of powi_as_mults. This function takes the
973 array, CACHE, of already calculated exponents and an exponent N and
974 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
975
976 static tree
977 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
978 HOST_WIDE_INT n, tree *cache)
979 {
980 tree op0, op1, ssa_target;
981 unsigned HOST_WIDE_INT digit;
982 gimple mult_stmt;
983
984 if (n < POWI_TABLE_SIZE && cache[n])
985 return cache[n];
986
987 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
988
989 if (n < POWI_TABLE_SIZE)
990 {
991 cache[n] = ssa_target;
992 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
994 }
995 else if (n & 1)
996 {
997 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
998 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1000 }
1001 else
1002 {
1003 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1004 op1 = op0;
1005 }
1006
1007 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1008 gimple_set_location (mult_stmt, loc);
1009 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1010
1011 return ssa_target;
1012 }
1013
1014 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1015 This function needs to be kept in sync with powi_cost above. */
1016
1017 static tree
1018 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1020 {
1021 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1022 gimple div_stmt;
1023 tree target;
1024
1025 if (n == 0)
1026 return build_real (type, dconst1);
1027
1028 memset (cache, 0, sizeof (cache));
1029 cache[1] = arg0;
1030
1031 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1032 if (n >= 0)
1033 return result;
1034
1035 /* If the original exponent was negative, reciprocate the result. */
1036 target = make_temp_ssa_name (type, NULL, "powmult");
1037 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1038 build_real (type, dconst1),
1039 result);
1040 gimple_set_location (div_stmt, loc);
1041 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1042
1043 return target;
1044 }
1045
1046 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1047 location info LOC. If the arguments are appropriate, create an
1048 equivalent sequence of statements prior to GSI using an optimal
1049 number of multiplications, and return an expession holding the
1050 result. */
1051
1052 static tree
1053 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1054 tree arg0, HOST_WIDE_INT n)
1055 {
1056 /* Avoid largest negative number. */
1057 if (n != -n
1058 && ((n >= -1 && n <= 2)
1059 || (optimize_function_for_speed_p (cfun)
1060 && powi_cost (n) <= POWI_MAX_MULTS)))
1061 return powi_as_mults (gsi, loc, arg0, n);
1062
1063 return NULL_TREE;
1064 }
1065
1066 /* Build a gimple call statement that calls FN with argument ARG.
1067 Set the lhs of the call statement to a fresh SSA name. Insert the
1068 statement prior to GSI's current position, and return the fresh
1069 SSA name. */
1070
1071 static tree
1072 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1073 tree fn, tree arg)
1074 {
1075 gimple call_stmt;
1076 tree ssa_target;
1077
1078 call_stmt = gimple_build_call (fn, 1, arg);
1079 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1080 gimple_set_lhs (call_stmt, ssa_target);
1081 gimple_set_location (call_stmt, loc);
1082 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1083
1084 return ssa_target;
1085 }
1086
1087 /* Build a gimple binary operation with the given CODE and arguments
1088 ARG0, ARG1, assigning the result to a new SSA name for variable
1089 TARGET. Insert the statement prior to GSI's current position, and
1090 return the fresh SSA name.*/
1091
1092 static tree
1093 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1094 const char *name, enum tree_code code,
1095 tree arg0, tree arg1)
1096 {
1097 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1098 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1099 gimple_set_location (stmt, loc);
1100 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1101 return result;
1102 }
1103
1104 /* Build a gimple reference operation with the given CODE and argument
1105 ARG, assigning the result to a new SSA name of TYPE with NAME.
1106 Insert the statement prior to GSI's current position, and return
1107 the fresh SSA name. */
1108
1109 static inline tree
1110 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1111 const char *name, enum tree_code code, tree arg0)
1112 {
1113 tree result = make_temp_ssa_name (type, NULL, name);
1114 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1115 gimple_set_location (stmt, loc);
1116 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1117 return result;
1118 }
1119
1120 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1121 prior to GSI's current position, and return the fresh SSA name. */
1122
1123 static tree
1124 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1125 tree type, tree val)
1126 {
1127 tree result = make_ssa_name (type, NULL);
1128 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1129 gimple_set_location (stmt, loc);
1130 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1131 return result;
1132 }
1133
1134 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1135 with location info LOC. If possible, create an equivalent and
1136 less expensive sequence of statements prior to GSI, and return an
1137 expession holding the result. */
1138
1139 static tree
1140 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1141 tree arg0, tree arg1)
1142 {
1143 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1144 REAL_VALUE_TYPE c2, dconst3;
1145 HOST_WIDE_INT n;
1146 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1147 enum machine_mode mode;
1148 bool hw_sqrt_exists, c_is_int, c2_is_int;
1149
1150 /* If the exponent isn't a constant, there's nothing of interest
1151 to be done. */
1152 if (TREE_CODE (arg1) != REAL_CST)
1153 return NULL_TREE;
1154
1155 /* If the exponent is equivalent to an integer, expand to an optimal
1156 multiplication sequence when profitable. */
1157 c = TREE_REAL_CST (arg1);
1158 n = real_to_integer (&c);
1159 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1160 c_is_int = real_identical (&c, &cint);
1161
1162 if (c_is_int
1163 && ((n >= -1 && n <= 2)
1164 || (flag_unsafe_math_optimizations
1165 && optimize_insn_for_speed_p ()
1166 && powi_cost (n) <= POWI_MAX_MULTS)))
1167 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1168
1169 /* Attempt various optimizations using sqrt and cbrt. */
1170 type = TREE_TYPE (arg0);
1171 mode = TYPE_MODE (type);
1172 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1173
1174 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1175 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1176 sqrt(-0) = -0. */
1177 if (sqrtfn
1178 && REAL_VALUES_EQUAL (c, dconsthalf)
1179 && !HONOR_SIGNED_ZEROS (mode))
1180 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1181
1182 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1183 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1184 so do this optimization even if -Os. Don't do this optimization
1185 if we don't have a hardware sqrt insn. */
1186 dconst1_4 = dconst1;
1187 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1188 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1189
1190 if (flag_unsafe_math_optimizations
1191 && sqrtfn
1192 && REAL_VALUES_EQUAL (c, dconst1_4)
1193 && hw_sqrt_exists)
1194 {
1195 /* sqrt(x) */
1196 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1197
1198 /* sqrt(sqrt(x)) */
1199 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1200 }
1201
1202 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1203 optimizing for space. Don't do this optimization if we don't have
1204 a hardware sqrt insn. */
1205 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1206 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1207
1208 if (flag_unsafe_math_optimizations
1209 && sqrtfn
1210 && optimize_function_for_speed_p (cfun)
1211 && REAL_VALUES_EQUAL (c, dconst3_4)
1212 && hw_sqrt_exists)
1213 {
1214 /* sqrt(x) */
1215 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1216
1217 /* sqrt(sqrt(x)) */
1218 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1219
1220 /* sqrt(x) * sqrt(sqrt(x)) */
1221 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1222 sqrt_arg0, sqrt_sqrt);
1223 }
1224
1225 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1226 optimizations since 1./3. is not exactly representable. If x
1227 is negative and finite, the correct value of pow(x,1./3.) is
1228 a NaN with the "invalid" exception raised, because the value
1229 of 1./3. actually has an even denominator. The correct value
1230 of cbrt(x) is a negative real value. */
1231 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1232 dconst1_3 = real_value_truncate (mode, dconst_third ());
1233
1234 if (flag_unsafe_math_optimizations
1235 && cbrtfn
1236 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1237 && REAL_VALUES_EQUAL (c, dconst1_3))
1238 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1239
1240 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1241 if we don't have a hardware sqrt insn. */
1242 dconst1_6 = dconst1_3;
1243 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1244
1245 if (flag_unsafe_math_optimizations
1246 && sqrtfn
1247 && cbrtfn
1248 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1249 && optimize_function_for_speed_p (cfun)
1250 && hw_sqrt_exists
1251 && REAL_VALUES_EQUAL (c, dconst1_6))
1252 {
1253 /* sqrt(x) */
1254 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1255
1256 /* cbrt(sqrt(x)) */
1257 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1258 }
1259
1260 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1261 and c not an integer, into
1262
1263 sqrt(x) * powi(x, n/2), n > 0;
1264 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1265
1266 Do not calculate the powi factor when n/2 = 0. */
1267 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1268 n = real_to_integer (&c2);
1269 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1270 c2_is_int = real_identical (&c2, &cint);
1271
1272 if (flag_unsafe_math_optimizations
1273 && sqrtfn
1274 && c2_is_int
1275 && !c_is_int
1276 && optimize_function_for_speed_p (cfun))
1277 {
1278 tree powi_x_ndiv2 = NULL_TREE;
1279
1280 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1281 possible or profitable, give up. Skip the degenerate case when
1282 n is 1 or -1, where the result is always 1. */
1283 if (absu_hwi (n) != 1)
1284 {
1285 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1286 abs_hwi (n / 2));
1287 if (!powi_x_ndiv2)
1288 return NULL_TREE;
1289 }
1290
1291 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1292 result of the optimal multiply sequence just calculated. */
1293 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1294
1295 if (absu_hwi (n) == 1)
1296 result = sqrt_arg0;
1297 else
1298 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1299 sqrt_arg0, powi_x_ndiv2);
1300
1301 /* If n is negative, reciprocate the result. */
1302 if (n < 0)
1303 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1304 build_real (type, dconst1), result);
1305 return result;
1306 }
1307
1308 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1309
1310 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1311 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1312
1313 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1314 different from pow(x, 1./3.) due to rounding and behavior with
1315 negative x, we need to constrain this transformation to unsafe
1316 math and positive x or finite math. */
1317 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1318 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1319 real_round (&c2, mode, &c2);
1320 n = real_to_integer (&c2);
1321 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1322 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1323 real_convert (&c2, mode, &c2);
1324
1325 if (flag_unsafe_math_optimizations
1326 && cbrtfn
1327 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1328 && real_identical (&c2, &c)
1329 && !c2_is_int
1330 && optimize_function_for_speed_p (cfun)
1331 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1332 {
1333 tree powi_x_ndiv3 = NULL_TREE;
1334
1335 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1336 possible or profitable, give up. Skip the degenerate case when
1337 abs(n) < 3, where the result is always 1. */
1338 if (absu_hwi (n) >= 3)
1339 {
1340 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1341 abs_hwi (n / 3));
1342 if (!powi_x_ndiv3)
1343 return NULL_TREE;
1344 }
1345
1346 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1347 as that creates an unnecessary variable. Instead, just produce
1348 either cbrt(x) or cbrt(x) * cbrt(x). */
1349 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1350
1351 if (absu_hwi (n) % 3 == 1)
1352 powi_cbrt_x = cbrt_x;
1353 else
1354 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 cbrt_x, cbrt_x);
1356
1357 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1358 if (absu_hwi (n) < 3)
1359 result = powi_cbrt_x;
1360 else
1361 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1362 powi_x_ndiv3, powi_cbrt_x);
1363
1364 /* If n is negative, reciprocate the result. */
1365 if (n < 0)
1366 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1367 build_real (type, dconst1), result);
1368
1369 return result;
1370 }
1371
1372 /* No optimizations succeeded. */
1373 return NULL_TREE;
1374 }
1375
1376 /* ARG is the argument to a cabs builtin call in GSI with location info
1377 LOC. Create a sequence of statements prior to GSI that calculates
1378 sqrt(R*R + I*I), where R and I are the real and imaginary components
1379 of ARG, respectively. Return an expression holding the result. */
1380
1381 static tree
1382 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1383 {
1384 tree real_part, imag_part, addend1, addend2, sum, result;
1385 tree type = TREE_TYPE (TREE_TYPE (arg));
1386 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1387 enum machine_mode mode = TYPE_MODE (type);
1388
1389 if (!flag_unsafe_math_optimizations
1390 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1391 || !sqrtfn
1392 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1393 return NULL_TREE;
1394
1395 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1396 REALPART_EXPR, arg);
1397 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1398 real_part, real_part);
1399 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1400 IMAGPART_EXPR, arg);
1401 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1402 imag_part, imag_part);
1403 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1404 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1405
1406 return result;
1407 }
1408
1409 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1410 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1411 an optimal number of multiplies, when n is a constant. */
1412
1413 static unsigned int
1414 execute_cse_sincos (void)
1415 {
1416 basic_block bb;
1417 bool cfg_changed = false;
1418
1419 calculate_dominance_info (CDI_DOMINATORS);
1420 memset (&sincos_stats, 0, sizeof (sincos_stats));
1421
1422 FOR_EACH_BB_FN (bb, cfun)
1423 {
1424 gimple_stmt_iterator gsi;
1425 bool cleanup_eh = false;
1426
1427 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1428 {
1429 gimple stmt = gsi_stmt (gsi);
1430 tree fndecl;
1431
1432 /* Only the last stmt in a bb could throw, no need to call
1433 gimple_purge_dead_eh_edges if we change something in the middle
1434 of a basic block. */
1435 cleanup_eh = false;
1436
1437 if (is_gimple_call (stmt)
1438 && gimple_call_lhs (stmt)
1439 && (fndecl = gimple_call_fndecl (stmt))
1440 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1441 {
1442 tree arg, arg0, arg1, result;
1443 HOST_WIDE_INT n;
1444 location_t loc;
1445
1446 switch (DECL_FUNCTION_CODE (fndecl))
1447 {
1448 CASE_FLT_FN (BUILT_IN_COS):
1449 CASE_FLT_FN (BUILT_IN_SIN):
1450 CASE_FLT_FN (BUILT_IN_CEXPI):
1451 /* Make sure we have either sincos or cexp. */
1452 if (!targetm.libc_has_function (function_c99_math_complex)
1453 && !targetm.libc_has_function (function_sincos))
1454 break;
1455
1456 arg = gimple_call_arg (stmt, 0);
1457 if (TREE_CODE (arg) == SSA_NAME)
1458 cfg_changed |= execute_cse_sincos_1 (arg);
1459 break;
1460
1461 CASE_FLT_FN (BUILT_IN_POW):
1462 arg0 = gimple_call_arg (stmt, 0);
1463 arg1 = gimple_call_arg (stmt, 1);
1464
1465 loc = gimple_location (stmt);
1466 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1467
1468 if (result)
1469 {
1470 tree lhs = gimple_get_lhs (stmt);
1471 gimple new_stmt = gimple_build_assign (lhs, result);
1472 gimple_set_location (new_stmt, loc);
1473 unlink_stmt_vdef (stmt);
1474 gsi_replace (&gsi, new_stmt, true);
1475 cleanup_eh = true;
1476 if (gimple_vdef (stmt))
1477 release_ssa_name (gimple_vdef (stmt));
1478 }
1479 break;
1480
1481 CASE_FLT_FN (BUILT_IN_POWI):
1482 arg0 = gimple_call_arg (stmt, 0);
1483 arg1 = gimple_call_arg (stmt, 1);
1484 loc = gimple_location (stmt);
1485
1486 if (real_minus_onep (arg0))
1487 {
1488 tree t0, t1, cond, one, minus_one;
1489 gimple stmt;
1490
1491 t0 = TREE_TYPE (arg0);
1492 t1 = TREE_TYPE (arg1);
1493 one = build_real (t0, dconst1);
1494 minus_one = build_real (t0, dconstm1);
1495
1496 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1497 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1498 arg1,
1499 build_int_cst (t1,
1500 1));
1501 gimple_set_location (stmt, loc);
1502 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1503
1504 result = make_temp_ssa_name (t0, NULL, "powi");
1505 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1506 cond,
1507 minus_one, one);
1508 gimple_set_location (stmt, loc);
1509 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1510 }
1511 else
1512 {
1513 if (!tree_fits_shwi_p (arg1))
1514 break;
1515
1516 n = tree_to_shwi (arg1);
1517 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1518 }
1519
1520 if (result)
1521 {
1522 tree lhs = gimple_get_lhs (stmt);
1523 gimple new_stmt = gimple_build_assign (lhs, result);
1524 gimple_set_location (new_stmt, loc);
1525 unlink_stmt_vdef (stmt);
1526 gsi_replace (&gsi, new_stmt, true);
1527 cleanup_eh = true;
1528 if (gimple_vdef (stmt))
1529 release_ssa_name (gimple_vdef (stmt));
1530 }
1531 break;
1532
1533 CASE_FLT_FN (BUILT_IN_CABS):
1534 arg0 = gimple_call_arg (stmt, 0);
1535 loc = gimple_location (stmt);
1536 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1537
1538 if (result)
1539 {
1540 tree lhs = gimple_get_lhs (stmt);
1541 gimple new_stmt = gimple_build_assign (lhs, result);
1542 gimple_set_location (new_stmt, loc);
1543 unlink_stmt_vdef (stmt);
1544 gsi_replace (&gsi, new_stmt, true);
1545 cleanup_eh = true;
1546 if (gimple_vdef (stmt))
1547 release_ssa_name (gimple_vdef (stmt));
1548 }
1549 break;
1550
1551 default:;
1552 }
1553 }
1554 }
1555 if (cleanup_eh)
1556 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1557 }
1558
1559 statistics_counter_event (cfun, "sincos statements inserted",
1560 sincos_stats.inserted);
1561
1562 free_dominance_info (CDI_DOMINATORS);
1563 return cfg_changed ? TODO_cleanup_cfg : 0;
1564 }
1565
1566 static bool
1567 gate_cse_sincos (void)
1568 {
1569 /* We no longer require either sincos or cexp, since powi expansion
1570 piggybacks on this pass. */
1571 return optimize;
1572 }
1573
1574 namespace {
1575
1576 const pass_data pass_data_cse_sincos =
1577 {
1578 GIMPLE_PASS, /* type */
1579 "sincos", /* name */
1580 OPTGROUP_NONE, /* optinfo_flags */
1581 true, /* has_gate */
1582 true, /* has_execute */
1583 TV_NONE, /* tv_id */
1584 PROP_ssa, /* properties_required */
1585 0, /* properties_provided */
1586 0, /* properties_destroyed */
1587 0, /* todo_flags_start */
1588 ( TODO_update_ssa | TODO_verify_ssa
1589 | TODO_verify_stmts ), /* todo_flags_finish */
1590 };
1591
1592 class pass_cse_sincos : public gimple_opt_pass
1593 {
1594 public:
1595 pass_cse_sincos (gcc::context *ctxt)
1596 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1597 {}
1598
1599 /* opt_pass methods: */
1600 bool gate () { return gate_cse_sincos (); }
1601 unsigned int execute () { return execute_cse_sincos (); }
1602
1603 }; // class pass_cse_sincos
1604
1605 } // anon namespace
1606
1607 gimple_opt_pass *
1608 make_pass_cse_sincos (gcc::context *ctxt)
1609 {
1610 return new pass_cse_sincos (ctxt);
1611 }
1612
1613 /* A symbolic number is used to detect byte permutation and selection
1614 patterns. Therefore the field N contains an artificial number
1615 consisting of byte size markers:
1616
1617 0 - byte has the value 0
1618 1..size - byte contains the content of the byte
1619 number indexed with that value minus one */
1620
1621 struct symbolic_number {
1622 unsigned HOST_WIDEST_INT n;
1623 int size;
1624 };
1625
1626 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1627 number N. Return false if the requested operation is not permitted
1628 on a symbolic number. */
1629
1630 static inline bool
1631 do_shift_rotate (enum tree_code code,
1632 struct symbolic_number *n,
1633 int count)
1634 {
1635 if (count % 8 != 0)
1636 return false;
1637
1638 /* Zero out the extra bits of N in order to avoid them being shifted
1639 into the significant bits. */
1640 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1641 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1642
1643 switch (code)
1644 {
1645 case LSHIFT_EXPR:
1646 n->n <<= count;
1647 break;
1648 case RSHIFT_EXPR:
1649 n->n >>= count;
1650 break;
1651 case LROTATE_EXPR:
1652 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1653 break;
1654 case RROTATE_EXPR:
1655 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1656 break;
1657 default:
1658 return false;
1659 }
1660 /* Zero unused bits for size. */
1661 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1662 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1663 return true;
1664 }
1665
1666 /* Perform sanity checking for the symbolic number N and the gimple
1667 statement STMT. */
1668
1669 static inline bool
1670 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1671 {
1672 tree lhs_type;
1673
1674 lhs_type = gimple_expr_type (stmt);
1675
1676 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1677 return false;
1678
1679 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1680 return false;
1681
1682 return true;
1683 }
1684
1685 /* find_bswap_1 invokes itself recursively with N and tries to perform
1686 the operation given by the rhs of STMT on the result. If the
1687 operation could successfully be executed the function returns the
1688 tree expression of the source operand and NULL otherwise. */
1689
1690 static tree
1691 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1692 {
1693 enum tree_code code;
1694 tree rhs1, rhs2 = NULL;
1695 gimple rhs1_stmt, rhs2_stmt;
1696 tree source_expr1;
1697 enum gimple_rhs_class rhs_class;
1698
1699 if (!limit || !is_gimple_assign (stmt))
1700 return NULL_TREE;
1701
1702 rhs1 = gimple_assign_rhs1 (stmt);
1703
1704 if (TREE_CODE (rhs1) != SSA_NAME)
1705 return NULL_TREE;
1706
1707 code = gimple_assign_rhs_code (stmt);
1708 rhs_class = gimple_assign_rhs_class (stmt);
1709 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1710
1711 if (rhs_class == GIMPLE_BINARY_RHS)
1712 rhs2 = gimple_assign_rhs2 (stmt);
1713
1714 /* Handle unary rhs and binary rhs with integer constants as second
1715 operand. */
1716
1717 if (rhs_class == GIMPLE_UNARY_RHS
1718 || (rhs_class == GIMPLE_BINARY_RHS
1719 && TREE_CODE (rhs2) == INTEGER_CST))
1720 {
1721 if (code != BIT_AND_EXPR
1722 && code != LSHIFT_EXPR
1723 && code != RSHIFT_EXPR
1724 && code != LROTATE_EXPR
1725 && code != RROTATE_EXPR
1726 && code != NOP_EXPR
1727 && code != CONVERT_EXPR)
1728 return NULL_TREE;
1729
1730 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1731
1732 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1733 to initialize the symbolic number. */
1734 if (!source_expr1)
1735 {
1736 /* Set up the symbolic number N by setting each byte to a
1737 value between 1 and the byte size of rhs1. The highest
1738 order byte is set to n->size and the lowest order
1739 byte to 1. */
1740 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1741 if (n->size % BITS_PER_UNIT != 0)
1742 return NULL_TREE;
1743 n->size /= BITS_PER_UNIT;
1744 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1745 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1746
1747 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1748 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1749 (n->size * BITS_PER_UNIT)) - 1;
1750
1751 source_expr1 = rhs1;
1752 }
1753
1754 switch (code)
1755 {
1756 case BIT_AND_EXPR:
1757 {
1758 int i;
1759 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1760 unsigned HOST_WIDEST_INT tmp = val;
1761
1762 /* Only constants masking full bytes are allowed. */
1763 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1764 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1765 return NULL_TREE;
1766
1767 n->n &= val;
1768 }
1769 break;
1770 case LSHIFT_EXPR:
1771 case RSHIFT_EXPR:
1772 case LROTATE_EXPR:
1773 case RROTATE_EXPR:
1774 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1775 return NULL_TREE;
1776 break;
1777 CASE_CONVERT:
1778 {
1779 int type_size;
1780
1781 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1782 if (type_size % BITS_PER_UNIT != 0)
1783 return NULL_TREE;
1784
1785 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1786 {
1787 /* If STMT casts to a smaller type mask out the bits not
1788 belonging to the target type. */
1789 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1790 }
1791 n->size = type_size / BITS_PER_UNIT;
1792 }
1793 break;
1794 default:
1795 return NULL_TREE;
1796 };
1797 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1798 }
1799
1800 /* Handle binary rhs. */
1801
1802 if (rhs_class == GIMPLE_BINARY_RHS)
1803 {
1804 struct symbolic_number n1, n2;
1805 tree source_expr2;
1806
1807 if (code != BIT_IOR_EXPR)
1808 return NULL_TREE;
1809
1810 if (TREE_CODE (rhs2) != SSA_NAME)
1811 return NULL_TREE;
1812
1813 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1814
1815 switch (code)
1816 {
1817 case BIT_IOR_EXPR:
1818 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1819
1820 if (!source_expr1)
1821 return NULL_TREE;
1822
1823 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1824
1825 if (source_expr1 != source_expr2
1826 || n1.size != n2.size)
1827 return NULL_TREE;
1828
1829 n->size = n1.size;
1830 n->n = n1.n | n2.n;
1831
1832 if (!verify_symbolic_number_p (n, stmt))
1833 return NULL_TREE;
1834
1835 break;
1836 default:
1837 return NULL_TREE;
1838 }
1839 return source_expr1;
1840 }
1841 return NULL_TREE;
1842 }
1843
1844 /* Check if STMT completes a bswap implementation consisting of ORs,
1845 SHIFTs and ANDs. Return the source tree expression on which the
1846 byte swap is performed and NULL if no bswap was found. */
1847
1848 static tree
1849 find_bswap (gimple stmt)
1850 {
1851 /* The number which the find_bswap result should match in order to
1852 have a full byte swap. The number is shifted to the left according
1853 to the size of the symbolic number before using it. */
1854 unsigned HOST_WIDEST_INT cmp =
1855 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1856 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1857
1858 struct symbolic_number n;
1859 tree source_expr;
1860 int limit;
1861
1862 /* The last parameter determines the depth search limit. It usually
1863 correlates directly to the number of bytes to be touched. We
1864 increase that number by three here in order to also
1865 cover signed -> unsigned converions of the src operand as can be seen
1866 in libgcc, and for initial shift/and operation of the src operand. */
1867 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1868 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1869 source_expr = find_bswap_1 (stmt, &n, limit);
1870
1871 if (!source_expr)
1872 return NULL_TREE;
1873
1874 /* Zero out the extra bits of N and CMP. */
1875 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1876 {
1877 unsigned HOST_WIDEST_INT mask =
1878 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1879
1880 n.n &= mask;
1881 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1882 }
1883
1884 /* A complete byte swap should make the symbolic number to start
1885 with the largest digit in the highest order byte. */
1886 if (cmp != n.n)
1887 return NULL_TREE;
1888
1889 return source_expr;
1890 }
1891
1892 /* Find manual byte swap implementations and turn them into a bswap
1893 builtin invokation. */
1894
1895 static unsigned int
1896 execute_optimize_bswap (void)
1897 {
1898 basic_block bb;
1899 bool bswap16_p, bswap32_p, bswap64_p;
1900 bool changed = false;
1901 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1902
1903 if (BITS_PER_UNIT != 8)
1904 return 0;
1905
1906 if (sizeof (HOST_WIDEST_INT) < 8)
1907 return 0;
1908
1909 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1910 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1911 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1912 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1913 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1914 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1915 || (bswap32_p && word_mode == SImode)));
1916
1917 if (!bswap16_p && !bswap32_p && !bswap64_p)
1918 return 0;
1919
1920 /* Determine the argument type of the builtins. The code later on
1921 assumes that the return and argument type are the same. */
1922 if (bswap16_p)
1923 {
1924 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1925 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1926 }
1927
1928 if (bswap32_p)
1929 {
1930 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1931 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1932 }
1933
1934 if (bswap64_p)
1935 {
1936 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1937 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1938 }
1939
1940 memset (&bswap_stats, 0, sizeof (bswap_stats));
1941
1942 FOR_EACH_BB_FN (bb, cfun)
1943 {
1944 gimple_stmt_iterator gsi;
1945
1946 /* We do a reverse scan for bswap patterns to make sure we get the
1947 widest match. As bswap pattern matching doesn't handle
1948 previously inserted smaller bswap replacements as sub-
1949 patterns, the wider variant wouldn't be detected. */
1950 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1951 {
1952 gimple stmt = gsi_stmt (gsi);
1953 tree bswap_src, bswap_type;
1954 tree bswap_tmp;
1955 tree fndecl = NULL_TREE;
1956 int type_size;
1957 gimple call;
1958
1959 if (!is_gimple_assign (stmt)
1960 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1961 continue;
1962
1963 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1964
1965 switch (type_size)
1966 {
1967 case 16:
1968 if (bswap16_p)
1969 {
1970 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1971 bswap_type = bswap16_type;
1972 }
1973 break;
1974 case 32:
1975 if (bswap32_p)
1976 {
1977 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1978 bswap_type = bswap32_type;
1979 }
1980 break;
1981 case 64:
1982 if (bswap64_p)
1983 {
1984 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1985 bswap_type = bswap64_type;
1986 }
1987 break;
1988 default:
1989 continue;
1990 }
1991
1992 if (!fndecl)
1993 continue;
1994
1995 bswap_src = find_bswap (stmt);
1996
1997 if (!bswap_src)
1998 continue;
1999
2000 changed = true;
2001 if (type_size == 16)
2002 bswap_stats.found_16bit++;
2003 else if (type_size == 32)
2004 bswap_stats.found_32bit++;
2005 else
2006 bswap_stats.found_64bit++;
2007
2008 bswap_tmp = bswap_src;
2009
2010 /* Convert the src expression if necessary. */
2011 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2012 {
2013 gimple convert_stmt;
2014 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2015 convert_stmt = gimple_build_assign_with_ops
2016 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
2017 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2018 }
2019
2020 call = gimple_build_call (fndecl, 1, bswap_tmp);
2021
2022 bswap_tmp = gimple_assign_lhs (stmt);
2023
2024 /* Convert the result if necessary. */
2025 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2026 {
2027 gimple convert_stmt;
2028 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2029 convert_stmt = gimple_build_assign_with_ops
2030 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
2031 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2032 }
2033
2034 gimple_call_set_lhs (call, bswap_tmp);
2035
2036 if (dump_file)
2037 {
2038 fprintf (dump_file, "%d bit bswap implementation found at: ",
2039 (int)type_size);
2040 print_gimple_stmt (dump_file, stmt, 0, 0);
2041 }
2042
2043 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2044 gsi_remove (&gsi, true);
2045 }
2046 }
2047
2048 statistics_counter_event (cfun, "16-bit bswap implementations found",
2049 bswap_stats.found_16bit);
2050 statistics_counter_event (cfun, "32-bit bswap implementations found",
2051 bswap_stats.found_32bit);
2052 statistics_counter_event (cfun, "64-bit bswap implementations found",
2053 bswap_stats.found_64bit);
2054
2055 return (changed ? TODO_update_ssa | TODO_verify_ssa
2056 | TODO_verify_stmts : 0);
2057 }
2058
2059 static bool
2060 gate_optimize_bswap (void)
2061 {
2062 return flag_expensive_optimizations && optimize;
2063 }
2064
2065 namespace {
2066
2067 const pass_data pass_data_optimize_bswap =
2068 {
2069 GIMPLE_PASS, /* type */
2070 "bswap", /* name */
2071 OPTGROUP_NONE, /* optinfo_flags */
2072 true, /* has_gate */
2073 true, /* has_execute */
2074 TV_NONE, /* tv_id */
2075 PROP_ssa, /* properties_required */
2076 0, /* properties_provided */
2077 0, /* properties_destroyed */
2078 0, /* todo_flags_start */
2079 0, /* todo_flags_finish */
2080 };
2081
2082 class pass_optimize_bswap : public gimple_opt_pass
2083 {
2084 public:
2085 pass_optimize_bswap (gcc::context *ctxt)
2086 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2087 {}
2088
2089 /* opt_pass methods: */
2090 bool gate () { return gate_optimize_bswap (); }
2091 unsigned int execute () { return execute_optimize_bswap (); }
2092
2093 }; // class pass_optimize_bswap
2094
2095 } // anon namespace
2096
2097 gimple_opt_pass *
2098 make_pass_optimize_bswap (gcc::context *ctxt)
2099 {
2100 return new pass_optimize_bswap (ctxt);
2101 }
2102
2103 /* Return true if stmt is a type conversion operation that can be stripped
2104 when used in a widening multiply operation. */
2105 static bool
2106 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2107 {
2108 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2109
2110 if (TREE_CODE (result_type) == INTEGER_TYPE)
2111 {
2112 tree op_type;
2113 tree inner_op_type;
2114
2115 if (!CONVERT_EXPR_CODE_P (rhs_code))
2116 return false;
2117
2118 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2119
2120 /* If the type of OP has the same precision as the result, then
2121 we can strip this conversion. The multiply operation will be
2122 selected to create the correct extension as a by-product. */
2123 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2124 return true;
2125
2126 /* We can also strip a conversion if it preserves the signed-ness of
2127 the operation and doesn't narrow the range. */
2128 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2129
2130 /* If the inner-most type is unsigned, then we can strip any
2131 intermediate widening operation. If it's signed, then the
2132 intermediate widening operation must also be signed. */
2133 if ((TYPE_UNSIGNED (inner_op_type)
2134 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2135 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2136 return true;
2137
2138 return false;
2139 }
2140
2141 return rhs_code == FIXED_CONVERT_EXPR;
2142 }
2143
2144 /* Return true if RHS is a suitable operand for a widening multiplication,
2145 assuming a target type of TYPE.
2146 There are two cases:
2147
2148 - RHS makes some value at least twice as wide. Store that value
2149 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2150
2151 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2152 but leave *TYPE_OUT untouched. */
2153
2154 static bool
2155 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2156 tree *new_rhs_out)
2157 {
2158 gimple stmt;
2159 tree type1, rhs1;
2160
2161 if (TREE_CODE (rhs) == SSA_NAME)
2162 {
2163 stmt = SSA_NAME_DEF_STMT (rhs);
2164 if (is_gimple_assign (stmt))
2165 {
2166 if (! widening_mult_conversion_strippable_p (type, stmt))
2167 rhs1 = rhs;
2168 else
2169 {
2170 rhs1 = gimple_assign_rhs1 (stmt);
2171
2172 if (TREE_CODE (rhs1) == INTEGER_CST)
2173 {
2174 *new_rhs_out = rhs1;
2175 *type_out = NULL;
2176 return true;
2177 }
2178 }
2179 }
2180 else
2181 rhs1 = rhs;
2182
2183 type1 = TREE_TYPE (rhs1);
2184
2185 if (TREE_CODE (type1) != TREE_CODE (type)
2186 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2187 return false;
2188
2189 *new_rhs_out = rhs1;
2190 *type_out = type1;
2191 return true;
2192 }
2193
2194 if (TREE_CODE (rhs) == INTEGER_CST)
2195 {
2196 *new_rhs_out = rhs;
2197 *type_out = NULL;
2198 return true;
2199 }
2200
2201 return false;
2202 }
2203
2204 /* Return true if STMT performs a widening multiplication, assuming the
2205 output type is TYPE. If so, store the unwidened types of the operands
2206 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2207 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2208 and *TYPE2_OUT would give the operands of the multiplication. */
2209
2210 static bool
2211 is_widening_mult_p (gimple stmt,
2212 tree *type1_out, tree *rhs1_out,
2213 tree *type2_out, tree *rhs2_out)
2214 {
2215 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2216
2217 if (TREE_CODE (type) != INTEGER_TYPE
2218 && TREE_CODE (type) != FIXED_POINT_TYPE)
2219 return false;
2220
2221 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2222 rhs1_out))
2223 return false;
2224
2225 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2226 rhs2_out))
2227 return false;
2228
2229 if (*type1_out == NULL)
2230 {
2231 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2232 return false;
2233 *type1_out = *type2_out;
2234 }
2235
2236 if (*type2_out == NULL)
2237 {
2238 if (!int_fits_type_p (*rhs2_out, *type1_out))
2239 return false;
2240 *type2_out = *type1_out;
2241 }
2242
2243 /* Ensure that the larger of the two operands comes first. */
2244 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2245 {
2246 tree tmp;
2247 tmp = *type1_out;
2248 *type1_out = *type2_out;
2249 *type2_out = tmp;
2250 tmp = *rhs1_out;
2251 *rhs1_out = *rhs2_out;
2252 *rhs2_out = tmp;
2253 }
2254
2255 return true;
2256 }
2257
2258 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2259 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2260 value is true iff we converted the statement. */
2261
2262 static bool
2263 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2264 {
2265 tree lhs, rhs1, rhs2, type, type1, type2;
2266 enum insn_code handler;
2267 enum machine_mode to_mode, from_mode, actual_mode;
2268 optab op;
2269 int actual_precision;
2270 location_t loc = gimple_location (stmt);
2271 bool from_unsigned1, from_unsigned2;
2272
2273 lhs = gimple_assign_lhs (stmt);
2274 type = TREE_TYPE (lhs);
2275 if (TREE_CODE (type) != INTEGER_TYPE)
2276 return false;
2277
2278 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2279 return false;
2280
2281 to_mode = TYPE_MODE (type);
2282 from_mode = TYPE_MODE (type1);
2283 from_unsigned1 = TYPE_UNSIGNED (type1);
2284 from_unsigned2 = TYPE_UNSIGNED (type2);
2285
2286 if (from_unsigned1 && from_unsigned2)
2287 op = umul_widen_optab;
2288 else if (!from_unsigned1 && !from_unsigned2)
2289 op = smul_widen_optab;
2290 else
2291 op = usmul_widen_optab;
2292
2293 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2294 0, &actual_mode);
2295
2296 if (handler == CODE_FOR_nothing)
2297 {
2298 if (op != smul_widen_optab)
2299 {
2300 /* We can use a signed multiply with unsigned types as long as
2301 there is a wider mode to use, or it is the smaller of the two
2302 types that is unsigned. Note that type1 >= type2, always. */
2303 if ((TYPE_UNSIGNED (type1)
2304 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2305 || (TYPE_UNSIGNED (type2)
2306 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2307 {
2308 from_mode = GET_MODE_WIDER_MODE (from_mode);
2309 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2310 return false;
2311 }
2312
2313 op = smul_widen_optab;
2314 handler = find_widening_optab_handler_and_mode (op, to_mode,
2315 from_mode, 0,
2316 &actual_mode);
2317
2318 if (handler == CODE_FOR_nothing)
2319 return false;
2320
2321 from_unsigned1 = from_unsigned2 = false;
2322 }
2323 else
2324 return false;
2325 }
2326
2327 /* Ensure that the inputs to the handler are in the correct precison
2328 for the opcode. This will be the full mode size. */
2329 actual_precision = GET_MODE_PRECISION (actual_mode);
2330 if (2 * actual_precision > TYPE_PRECISION (type))
2331 return false;
2332 if (actual_precision != TYPE_PRECISION (type1)
2333 || from_unsigned1 != TYPE_UNSIGNED (type1))
2334 rhs1 = build_and_insert_cast (gsi, loc,
2335 build_nonstandard_integer_type
2336 (actual_precision, from_unsigned1), rhs1);
2337 if (actual_precision != TYPE_PRECISION (type2)
2338 || from_unsigned2 != TYPE_UNSIGNED (type2))
2339 rhs2 = build_and_insert_cast (gsi, loc,
2340 build_nonstandard_integer_type
2341 (actual_precision, from_unsigned2), rhs2);
2342
2343 /* Handle constants. */
2344 if (TREE_CODE (rhs1) == INTEGER_CST)
2345 rhs1 = fold_convert (type1, rhs1);
2346 if (TREE_CODE (rhs2) == INTEGER_CST)
2347 rhs2 = fold_convert (type2, rhs2);
2348
2349 gimple_assign_set_rhs1 (stmt, rhs1);
2350 gimple_assign_set_rhs2 (stmt, rhs2);
2351 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2352 update_stmt (stmt);
2353 widen_mul_stats.widen_mults_inserted++;
2354 return true;
2355 }
2356
2357 /* Process a single gimple statement STMT, which is found at the
2358 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2359 rhs (given by CODE), and try to convert it into a
2360 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2361 is true iff we converted the statement. */
2362
2363 static bool
2364 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2365 enum tree_code code)
2366 {
2367 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2368 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2369 tree type, type1, type2, optype;
2370 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2371 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2372 optab this_optab;
2373 enum tree_code wmult_code;
2374 enum insn_code handler;
2375 enum machine_mode to_mode, from_mode, actual_mode;
2376 location_t loc = gimple_location (stmt);
2377 int actual_precision;
2378 bool from_unsigned1, from_unsigned2;
2379
2380 lhs = gimple_assign_lhs (stmt);
2381 type = TREE_TYPE (lhs);
2382 if (TREE_CODE (type) != INTEGER_TYPE
2383 && TREE_CODE (type) != FIXED_POINT_TYPE)
2384 return false;
2385
2386 if (code == MINUS_EXPR)
2387 wmult_code = WIDEN_MULT_MINUS_EXPR;
2388 else
2389 wmult_code = WIDEN_MULT_PLUS_EXPR;
2390
2391 rhs1 = gimple_assign_rhs1 (stmt);
2392 rhs2 = gimple_assign_rhs2 (stmt);
2393
2394 if (TREE_CODE (rhs1) == SSA_NAME)
2395 {
2396 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2397 if (is_gimple_assign (rhs1_stmt))
2398 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2399 }
2400
2401 if (TREE_CODE (rhs2) == SSA_NAME)
2402 {
2403 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2404 if (is_gimple_assign (rhs2_stmt))
2405 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2406 }
2407
2408 /* Allow for one conversion statement between the multiply
2409 and addition/subtraction statement. If there are more than
2410 one conversions then we assume they would invalidate this
2411 transformation. If that's not the case then they should have
2412 been folded before now. */
2413 if (CONVERT_EXPR_CODE_P (rhs1_code))
2414 {
2415 conv1_stmt = rhs1_stmt;
2416 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2417 if (TREE_CODE (rhs1) == SSA_NAME)
2418 {
2419 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2420 if (is_gimple_assign (rhs1_stmt))
2421 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2422 }
2423 else
2424 return false;
2425 }
2426 if (CONVERT_EXPR_CODE_P (rhs2_code))
2427 {
2428 conv2_stmt = rhs2_stmt;
2429 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2430 if (TREE_CODE (rhs2) == SSA_NAME)
2431 {
2432 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2433 if (is_gimple_assign (rhs2_stmt))
2434 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2435 }
2436 else
2437 return false;
2438 }
2439
2440 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2441 is_widening_mult_p, but we still need the rhs returns.
2442
2443 It might also appear that it would be sufficient to use the existing
2444 operands of the widening multiply, but that would limit the choice of
2445 multiply-and-accumulate instructions.
2446
2447 If the widened-multiplication result has more than one uses, it is
2448 probably wiser not to do the conversion. */
2449 if (code == PLUS_EXPR
2450 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2451 {
2452 if (!has_single_use (rhs1)
2453 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2454 &type2, &mult_rhs2))
2455 return false;
2456 add_rhs = rhs2;
2457 conv_stmt = conv1_stmt;
2458 }
2459 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2460 {
2461 if (!has_single_use (rhs2)
2462 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2463 &type2, &mult_rhs2))
2464 return false;
2465 add_rhs = rhs1;
2466 conv_stmt = conv2_stmt;
2467 }
2468 else
2469 return false;
2470
2471 to_mode = TYPE_MODE (type);
2472 from_mode = TYPE_MODE (type1);
2473 from_unsigned1 = TYPE_UNSIGNED (type1);
2474 from_unsigned2 = TYPE_UNSIGNED (type2);
2475 optype = type1;
2476
2477 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2478 if (from_unsigned1 != from_unsigned2)
2479 {
2480 if (!INTEGRAL_TYPE_P (type))
2481 return false;
2482 /* We can use a signed multiply with unsigned types as long as
2483 there is a wider mode to use, or it is the smaller of the two
2484 types that is unsigned. Note that type1 >= type2, always. */
2485 if ((from_unsigned1
2486 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2487 || (from_unsigned2
2488 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2489 {
2490 from_mode = GET_MODE_WIDER_MODE (from_mode);
2491 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2492 return false;
2493 }
2494
2495 from_unsigned1 = from_unsigned2 = false;
2496 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2497 false);
2498 }
2499
2500 /* If there was a conversion between the multiply and addition
2501 then we need to make sure it fits a multiply-and-accumulate.
2502 The should be a single mode change which does not change the
2503 value. */
2504 if (conv_stmt)
2505 {
2506 /* We use the original, unmodified data types for this. */
2507 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2508 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2509 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2510 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2511
2512 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2513 {
2514 /* Conversion is a truncate. */
2515 if (TYPE_PRECISION (to_type) < data_size)
2516 return false;
2517 }
2518 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2519 {
2520 /* Conversion is an extend. Check it's the right sort. */
2521 if (TYPE_UNSIGNED (from_type) != is_unsigned
2522 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2523 return false;
2524 }
2525 /* else convert is a no-op for our purposes. */
2526 }
2527
2528 /* Verify that the machine can perform a widening multiply
2529 accumulate in this mode/signedness combination, otherwise
2530 this transformation is likely to pessimize code. */
2531 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2532 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2533 from_mode, 0, &actual_mode);
2534
2535 if (handler == CODE_FOR_nothing)
2536 return false;
2537
2538 /* Ensure that the inputs to the handler are in the correct precison
2539 for the opcode. This will be the full mode size. */
2540 actual_precision = GET_MODE_PRECISION (actual_mode);
2541 if (actual_precision != TYPE_PRECISION (type1)
2542 || from_unsigned1 != TYPE_UNSIGNED (type1))
2543 mult_rhs1 = build_and_insert_cast (gsi, loc,
2544 build_nonstandard_integer_type
2545 (actual_precision, from_unsigned1),
2546 mult_rhs1);
2547 if (actual_precision != TYPE_PRECISION (type2)
2548 || from_unsigned2 != TYPE_UNSIGNED (type2))
2549 mult_rhs2 = build_and_insert_cast (gsi, loc,
2550 build_nonstandard_integer_type
2551 (actual_precision, from_unsigned2),
2552 mult_rhs2);
2553
2554 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2555 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2556
2557 /* Handle constants. */
2558 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2559 mult_rhs1 = fold_convert (type1, mult_rhs1);
2560 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2561 mult_rhs2 = fold_convert (type2, mult_rhs2);
2562
2563 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2564 add_rhs);
2565 update_stmt (gsi_stmt (*gsi));
2566 widen_mul_stats.maccs_inserted++;
2567 return true;
2568 }
2569
2570 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2571 with uses in additions and subtractions to form fused multiply-add
2572 operations. Returns true if successful and MUL_STMT should be removed. */
2573
2574 static bool
2575 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2576 {
2577 tree mul_result = gimple_get_lhs (mul_stmt);
2578 tree type = TREE_TYPE (mul_result);
2579 gimple use_stmt, neguse_stmt, fma_stmt;
2580 use_operand_p use_p;
2581 imm_use_iterator imm_iter;
2582
2583 if (FLOAT_TYPE_P (type)
2584 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2585 return false;
2586
2587 /* We don't want to do bitfield reduction ops. */
2588 if (INTEGRAL_TYPE_P (type)
2589 && (TYPE_PRECISION (type)
2590 != GET_MODE_PRECISION (TYPE_MODE (type))))
2591 return false;
2592
2593 /* If the target doesn't support it, don't generate it. We assume that
2594 if fma isn't available then fms, fnma or fnms are not either. */
2595 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2596 return false;
2597
2598 /* If the multiplication has zero uses, it is kept around probably because
2599 of -fnon-call-exceptions. Don't optimize it away in that case,
2600 it is DCE job. */
2601 if (has_zero_uses (mul_result))
2602 return false;
2603
2604 /* Make sure that the multiplication statement becomes dead after
2605 the transformation, thus that all uses are transformed to FMAs.
2606 This means we assume that an FMA operation has the same cost
2607 as an addition. */
2608 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2609 {
2610 enum tree_code use_code;
2611 tree result = mul_result;
2612 bool negate_p = false;
2613
2614 use_stmt = USE_STMT (use_p);
2615
2616 if (is_gimple_debug (use_stmt))
2617 continue;
2618
2619 /* For now restrict this operations to single basic blocks. In theory
2620 we would want to support sinking the multiplication in
2621 m = a*b;
2622 if ()
2623 ma = m + c;
2624 else
2625 d = m;
2626 to form a fma in the then block and sink the multiplication to the
2627 else block. */
2628 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2629 return false;
2630
2631 if (!is_gimple_assign (use_stmt))
2632 return false;
2633
2634 use_code = gimple_assign_rhs_code (use_stmt);
2635
2636 /* A negate on the multiplication leads to FNMA. */
2637 if (use_code == NEGATE_EXPR)
2638 {
2639 ssa_op_iter iter;
2640 use_operand_p usep;
2641
2642 result = gimple_assign_lhs (use_stmt);
2643
2644 /* Make sure the negate statement becomes dead with this
2645 single transformation. */
2646 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2647 &use_p, &neguse_stmt))
2648 return false;
2649
2650 /* Make sure the multiplication isn't also used on that stmt. */
2651 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2652 if (USE_FROM_PTR (usep) == mul_result)
2653 return false;
2654
2655 /* Re-validate. */
2656 use_stmt = neguse_stmt;
2657 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2658 return false;
2659 if (!is_gimple_assign (use_stmt))
2660 return false;
2661
2662 use_code = gimple_assign_rhs_code (use_stmt);
2663 negate_p = true;
2664 }
2665
2666 switch (use_code)
2667 {
2668 case MINUS_EXPR:
2669 if (gimple_assign_rhs2 (use_stmt) == result)
2670 negate_p = !negate_p;
2671 break;
2672 case PLUS_EXPR:
2673 break;
2674 default:
2675 /* FMA can only be formed from PLUS and MINUS. */
2676 return false;
2677 }
2678
2679 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2680 by a MULT_EXPR that we'll visit later, we might be able to
2681 get a more profitable match with fnma.
2682 OTOH, if we don't, a negate / fma pair has likely lower latency
2683 that a mult / subtract pair. */
2684 if (use_code == MINUS_EXPR && !negate_p
2685 && gimple_assign_rhs1 (use_stmt) == result
2686 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2687 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2688 {
2689 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2690
2691 if (TREE_CODE (rhs2) == SSA_NAME)
2692 {
2693 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2694 if (has_single_use (rhs2)
2695 && is_gimple_assign (stmt2)
2696 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2697 return false;
2698 }
2699 }
2700
2701 /* We can't handle a * b + a * b. */
2702 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2703 return false;
2704
2705 /* While it is possible to validate whether or not the exact form
2706 that we've recognized is available in the backend, the assumption
2707 is that the transformation is never a loss. For instance, suppose
2708 the target only has the plain FMA pattern available. Consider
2709 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2710 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2711 still have 3 operations, but in the FMA form the two NEGs are
2712 independent and could be run in parallel. */
2713 }
2714
2715 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2716 {
2717 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2718 enum tree_code use_code;
2719 tree addop, mulop1 = op1, result = mul_result;
2720 bool negate_p = false;
2721
2722 if (is_gimple_debug (use_stmt))
2723 continue;
2724
2725 use_code = gimple_assign_rhs_code (use_stmt);
2726 if (use_code == NEGATE_EXPR)
2727 {
2728 result = gimple_assign_lhs (use_stmt);
2729 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2730 gsi_remove (&gsi, true);
2731 release_defs (use_stmt);
2732
2733 use_stmt = neguse_stmt;
2734 gsi = gsi_for_stmt (use_stmt);
2735 use_code = gimple_assign_rhs_code (use_stmt);
2736 negate_p = true;
2737 }
2738
2739 if (gimple_assign_rhs1 (use_stmt) == result)
2740 {
2741 addop = gimple_assign_rhs2 (use_stmt);
2742 /* a * b - c -> a * b + (-c) */
2743 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2744 addop = force_gimple_operand_gsi (&gsi,
2745 build1 (NEGATE_EXPR,
2746 type, addop),
2747 true, NULL_TREE, true,
2748 GSI_SAME_STMT);
2749 }
2750 else
2751 {
2752 addop = gimple_assign_rhs1 (use_stmt);
2753 /* a - b * c -> (-b) * c + a */
2754 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2755 negate_p = !negate_p;
2756 }
2757
2758 if (negate_p)
2759 mulop1 = force_gimple_operand_gsi (&gsi,
2760 build1 (NEGATE_EXPR,
2761 type, mulop1),
2762 true, NULL_TREE, true,
2763 GSI_SAME_STMT);
2764
2765 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2766 gimple_assign_lhs (use_stmt),
2767 mulop1, op2,
2768 addop);
2769 gsi_replace (&gsi, fma_stmt, true);
2770 widen_mul_stats.fmas_inserted++;
2771 }
2772
2773 return true;
2774 }
2775
2776 /* Find integer multiplications where the operands are extended from
2777 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2778 where appropriate. */
2779
2780 static unsigned int
2781 execute_optimize_widening_mul (void)
2782 {
2783 basic_block bb;
2784 bool cfg_changed = false;
2785
2786 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2787
2788 FOR_EACH_BB_FN (bb, cfun)
2789 {
2790 gimple_stmt_iterator gsi;
2791
2792 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2793 {
2794 gimple stmt = gsi_stmt (gsi);
2795 enum tree_code code;
2796
2797 if (is_gimple_assign (stmt))
2798 {
2799 code = gimple_assign_rhs_code (stmt);
2800 switch (code)
2801 {
2802 case MULT_EXPR:
2803 if (!convert_mult_to_widen (stmt, &gsi)
2804 && convert_mult_to_fma (stmt,
2805 gimple_assign_rhs1 (stmt),
2806 gimple_assign_rhs2 (stmt)))
2807 {
2808 gsi_remove (&gsi, true);
2809 release_defs (stmt);
2810 continue;
2811 }
2812 break;
2813
2814 case PLUS_EXPR:
2815 case MINUS_EXPR:
2816 convert_plusminus_to_widen (&gsi, stmt, code);
2817 break;
2818
2819 default:;
2820 }
2821 }
2822 else if (is_gimple_call (stmt)
2823 && gimple_call_lhs (stmt))
2824 {
2825 tree fndecl = gimple_call_fndecl (stmt);
2826 if (fndecl
2827 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2828 {
2829 switch (DECL_FUNCTION_CODE (fndecl))
2830 {
2831 case BUILT_IN_POWF:
2832 case BUILT_IN_POW:
2833 case BUILT_IN_POWL:
2834 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2835 && REAL_VALUES_EQUAL
2836 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2837 dconst2)
2838 && convert_mult_to_fma (stmt,
2839 gimple_call_arg (stmt, 0),
2840 gimple_call_arg (stmt, 0)))
2841 {
2842 unlink_stmt_vdef (stmt);
2843 if (gsi_remove (&gsi, true)
2844 && gimple_purge_dead_eh_edges (bb))
2845 cfg_changed = true;
2846 release_defs (stmt);
2847 continue;
2848 }
2849 break;
2850
2851 default:;
2852 }
2853 }
2854 }
2855 gsi_next (&gsi);
2856 }
2857 }
2858
2859 statistics_counter_event (cfun, "widening multiplications inserted",
2860 widen_mul_stats.widen_mults_inserted);
2861 statistics_counter_event (cfun, "widening maccs inserted",
2862 widen_mul_stats.maccs_inserted);
2863 statistics_counter_event (cfun, "fused multiply-adds inserted",
2864 widen_mul_stats.fmas_inserted);
2865
2866 return cfg_changed ? TODO_cleanup_cfg : 0;
2867 }
2868
2869 static bool
2870 gate_optimize_widening_mul (void)
2871 {
2872 return flag_expensive_optimizations && optimize;
2873 }
2874
2875 namespace {
2876
2877 const pass_data pass_data_optimize_widening_mul =
2878 {
2879 GIMPLE_PASS, /* type */
2880 "widening_mul", /* name */
2881 OPTGROUP_NONE, /* optinfo_flags */
2882 true, /* has_gate */
2883 true, /* has_execute */
2884 TV_NONE, /* tv_id */
2885 PROP_ssa, /* properties_required */
2886 0, /* properties_provided */
2887 0, /* properties_destroyed */
2888 0, /* todo_flags_start */
2889 ( TODO_verify_ssa | TODO_verify_stmts
2890 | TODO_update_ssa ), /* todo_flags_finish */
2891 };
2892
2893 class pass_optimize_widening_mul : public gimple_opt_pass
2894 {
2895 public:
2896 pass_optimize_widening_mul (gcc::context *ctxt)
2897 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
2898 {}
2899
2900 /* opt_pass methods: */
2901 bool gate () { return gate_optimize_widening_mul (); }
2902 unsigned int execute () { return execute_optimize_widening_mul (); }
2903
2904 }; // class pass_optimize_widening_mul
2905
2906 } // anon namespace
2907
2908 gimple_opt_pass *
2909 make_pass_optimize_widening_mul (gcc::context *ctxt)
2910 {
2911 return new pass_optimize_widening_mul (ctxt);
2912 }