]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-math-opts.c
This series of patches fix PR61441.
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115
116 /* This structure represents one basic block that either computes a
117 division, or is a common dominator for basic block that compute a
118 division. */
119 struct occurrence {
120 /* The basic block represented by this structure. */
121 basic_block bb;
122
123 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
124 inserted in BB. */
125 tree recip_def;
126
127 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
128 was inserted in BB. */
129 gimple *recip_def_stmt;
130
131 /* Pointer to a list of "struct occurrence"s for blocks dominated
132 by BB. */
133 struct occurrence *children;
134
135 /* Pointer to the next "struct occurrence"s in the list of blocks
136 sharing a common dominator. */
137 struct occurrence *next;
138
139 /* The number of divisions that are in BB before compute_merit. The
140 number of divisions that are in BB or post-dominate it after
141 compute_merit. */
142 int num_divisions;
143
144 /* True if the basic block has a division, false if it is a common
145 dominator for basic blocks that do. If it is false and trapping
146 math is active, BB is not a candidate for inserting a reciprocal. */
147 bool bb_has_division;
148 };
149
150 static struct
151 {
152 /* Number of 1.0/X ops inserted. */
153 int rdivs_inserted;
154
155 /* Number of 1.0/FUNC ops inserted. */
156 int rfuncs_inserted;
157 } reciprocal_stats;
158
159 static struct
160 {
161 /* Number of cexpi calls inserted. */
162 int inserted;
163 } sincos_stats;
164
165 static struct
166 {
167 /* Number of hand-written 16-bit nop / bswaps found. */
168 int found_16bit;
169
170 /* Number of hand-written 32-bit nop / bswaps found. */
171 int found_32bit;
172
173 /* Number of hand-written 64-bit nop / bswaps found. */
174 int found_64bit;
175 } nop_stats, bswap_stats;
176
177 static struct
178 {
179 /* Number of widening multiplication ops inserted. */
180 int widen_mults_inserted;
181
182 /* Number of integer multiply-and-accumulate ops inserted. */
183 int maccs_inserted;
184
185 /* Number of fp fused multiply-add ops inserted. */
186 int fmas_inserted;
187 } widen_mul_stats;
188
189 /* The instance of "struct occurrence" representing the highest
190 interesting block in the dominator tree. */
191 static struct occurrence *occ_head;
192
193 /* Allocation pool for getting instances of "struct occurrence". */
194 static object_allocator<occurrence> *occ_pool;
195
196
197
198 /* Allocate and return a new struct occurrence for basic block BB, and
199 whose children list is headed by CHILDREN. */
200 static struct occurrence *
201 occ_new (basic_block bb, struct occurrence *children)
202 {
203 struct occurrence *occ;
204
205 bb->aux = occ = occ_pool->allocate ();
206 memset (occ, 0, sizeof (struct occurrence));
207
208 occ->bb = bb;
209 occ->children = children;
210 return occ;
211 }
212
213
214 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
215 list of "struct occurrence"s, one per basic block, having IDOM as
216 their common dominator.
217
218 We try to insert NEW_OCC as deep as possible in the tree, and we also
219 insert any other block that is a common dominator for BB and one
220 block already in the tree. */
221
222 static void
223 insert_bb (struct occurrence *new_occ, basic_block idom,
224 struct occurrence **p_head)
225 {
226 struct occurrence *occ, **p_occ;
227
228 for (p_occ = p_head; (occ = *p_occ) != NULL; )
229 {
230 basic_block bb = new_occ->bb, occ_bb = occ->bb;
231 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
232 if (dom == bb)
233 {
234 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
235 from its list. */
236 *p_occ = occ->next;
237 occ->next = new_occ->children;
238 new_occ->children = occ;
239
240 /* Try the next block (it may as well be dominated by BB). */
241 }
242
243 else if (dom == occ_bb)
244 {
245 /* OCC_BB dominates BB. Tail recurse to look deeper. */
246 insert_bb (new_occ, dom, &occ->children);
247 return;
248 }
249
250 else if (dom != idom)
251 {
252 gcc_assert (!dom->aux);
253
254 /* There is a dominator between IDOM and BB, add it and make
255 two children out of NEW_OCC and OCC. First, remove OCC from
256 its list. */
257 *p_occ = occ->next;
258 new_occ->next = occ;
259 occ->next = NULL;
260
261 /* None of the previous blocks has DOM as a dominator: if we tail
262 recursed, we would reexamine them uselessly. Just switch BB with
263 DOM, and go on looking for blocks dominated by DOM. */
264 new_occ = occ_new (dom, new_occ);
265 }
266
267 else
268 {
269 /* Nothing special, go on with the next element. */
270 p_occ = &occ->next;
271 }
272 }
273
274 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
275 new_occ->next = *p_head;
276 *p_head = new_occ;
277 }
278
279 /* Register that we found a division in BB. */
280
281 static inline void
282 register_division_in (basic_block bb)
283 {
284 struct occurrence *occ;
285
286 occ = (struct occurrence *) bb->aux;
287 if (!occ)
288 {
289 occ = occ_new (bb, NULL);
290 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
291 }
292
293 occ->bb_has_division = true;
294 occ->num_divisions++;
295 }
296
297
298 /* Compute the number of divisions that postdominate each block in OCC and
299 its children. */
300
301 static void
302 compute_merit (struct occurrence *occ)
303 {
304 struct occurrence *occ_child;
305 basic_block dom = occ->bb;
306
307 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
308 {
309 basic_block bb;
310 if (occ_child->children)
311 compute_merit (occ_child);
312
313 if (flag_exceptions)
314 bb = single_noncomplex_succ (dom);
315 else
316 bb = dom;
317
318 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
319 occ->num_divisions += occ_child->num_divisions;
320 }
321 }
322
323
324 /* Return whether USE_STMT is a floating-point division by DEF. */
325 static inline bool
326 is_division_by (gimple *use_stmt, tree def)
327 {
328 return is_gimple_assign (use_stmt)
329 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
330 && gimple_assign_rhs2 (use_stmt) == def
331 /* Do not recognize x / x as valid division, as we are getting
332 confused later by replacing all immediate uses x in such
333 a stmt. */
334 && gimple_assign_rhs1 (use_stmt) != def;
335 }
336
337 /* Walk the subset of the dominator tree rooted at OCC, setting the
338 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
339 the given basic block. The field may be left NULL, of course,
340 if it is not possible or profitable to do the optimization.
341
342 DEF_BSI is an iterator pointing at the statement defining DEF.
343 If RECIP_DEF is set, a dominator already has a computation that can
344 be used. */
345
346 static void
347 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
348 tree def, tree recip_def, int threshold)
349 {
350 tree type;
351 gassign *new_stmt;
352 gimple_stmt_iterator gsi;
353 struct occurrence *occ_child;
354
355 if (!recip_def
356 && (occ->bb_has_division || !flag_trapping_math)
357 && occ->num_divisions >= threshold)
358 {
359 /* Make a variable with the replacement and substitute it. */
360 type = TREE_TYPE (def);
361 recip_def = create_tmp_reg (type, "reciptmp");
362 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
363 build_one_cst (type), def);
364
365 if (occ->bb_has_division)
366 {
367 /* Case 1: insert before an existing division. */
368 gsi = gsi_after_labels (occ->bb);
369 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
370 gsi_next (&gsi);
371
372 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
373 }
374 else if (def_gsi && occ->bb == def_gsi->bb)
375 {
376 /* Case 2: insert right after the definition. Note that this will
377 never happen if the definition statement can throw, because in
378 that case the sole successor of the statement's basic block will
379 dominate all the uses as well. */
380 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
381 }
382 else
383 {
384 /* Case 3: insert in a basic block not containing defs/uses. */
385 gsi = gsi_after_labels (occ->bb);
386 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
387 }
388
389 reciprocal_stats.rdivs_inserted++;
390
391 occ->recip_def_stmt = new_stmt;
392 }
393
394 occ->recip_def = recip_def;
395 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
396 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
397 }
398
399
400 /* Replace the division at USE_P with a multiplication by the reciprocal, if
401 possible. */
402
403 static inline void
404 replace_reciprocal (use_operand_p use_p)
405 {
406 gimple *use_stmt = USE_STMT (use_p);
407 basic_block bb = gimple_bb (use_stmt);
408 struct occurrence *occ = (struct occurrence *) bb->aux;
409
410 if (optimize_bb_for_speed_p (bb)
411 && occ->recip_def && use_stmt != occ->recip_def_stmt)
412 {
413 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
414 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
415 SET_USE (use_p, occ->recip_def);
416 fold_stmt_inplace (&gsi);
417 update_stmt (use_stmt);
418 }
419 }
420
421
422 /* Free OCC and return one more "struct occurrence" to be freed. */
423
424 static struct occurrence *
425 free_bb (struct occurrence *occ)
426 {
427 struct occurrence *child, *next;
428
429 /* First get the two pointers hanging off OCC. */
430 next = occ->next;
431 child = occ->children;
432 occ->bb->aux = NULL;
433 occ_pool->remove (occ);
434
435 /* Now ensure that we don't recurse unless it is necessary. */
436 if (!child)
437 return next;
438 else
439 {
440 while (next)
441 next = free_bb (next);
442
443 return child;
444 }
445 }
446
447
448 /* Look for floating-point divisions among DEF's uses, and try to
449 replace them by multiplications with the reciprocal. Add
450 as many statements computing the reciprocal as needed.
451
452 DEF must be a GIMPLE register of a floating-point type. */
453
454 static void
455 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
456 {
457 use_operand_p use_p;
458 imm_use_iterator use_iter;
459 struct occurrence *occ;
460 int count = 0, threshold;
461
462 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
463
464 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
465 {
466 gimple *use_stmt = USE_STMT (use_p);
467 if (is_division_by (use_stmt, def))
468 {
469 register_division_in (gimple_bb (use_stmt));
470 count++;
471 }
472 }
473
474 /* Do the expensive part only if we can hope to optimize something. */
475 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
476 if (count >= threshold)
477 {
478 gimple *use_stmt;
479 for (occ = occ_head; occ; occ = occ->next)
480 {
481 compute_merit (occ);
482 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
483 }
484
485 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
486 {
487 if (is_division_by (use_stmt, def))
488 {
489 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
490 replace_reciprocal (use_p);
491 }
492 }
493 }
494
495 for (occ = occ_head; occ; )
496 occ = free_bb (occ);
497
498 occ_head = NULL;
499 }
500
501 /* Return an internal function that implements the reciprocal of CALL,
502 or IFN_LAST if there is no such function that the target supports. */
503
504 internal_fn
505 internal_fn_reciprocal (gcall *call)
506 {
507 internal_fn ifn;
508
509 switch (gimple_call_combined_fn (call))
510 {
511 CASE_CFN_SQRT:
512 ifn = IFN_RSQRT;
513 break;
514
515 default:
516 return IFN_LAST;
517 }
518
519 tree_pair types = direct_internal_fn_types (ifn, call);
520 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
521 return IFN_LAST;
522
523 return ifn;
524 }
525
526 /* Go through all the floating-point SSA_NAMEs, and call
527 execute_cse_reciprocals_1 on each of them. */
528 namespace {
529
530 const pass_data pass_data_cse_reciprocals =
531 {
532 GIMPLE_PASS, /* type */
533 "recip", /* name */
534 OPTGROUP_NONE, /* optinfo_flags */
535 TV_NONE, /* tv_id */
536 PROP_ssa, /* properties_required */
537 0, /* properties_provided */
538 0, /* properties_destroyed */
539 0, /* todo_flags_start */
540 TODO_update_ssa, /* todo_flags_finish */
541 };
542
543 class pass_cse_reciprocals : public gimple_opt_pass
544 {
545 public:
546 pass_cse_reciprocals (gcc::context *ctxt)
547 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
548 {}
549
550 /* opt_pass methods: */
551 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
552 virtual unsigned int execute (function *);
553
554 }; // class pass_cse_reciprocals
555
556 unsigned int
557 pass_cse_reciprocals::execute (function *fun)
558 {
559 basic_block bb;
560 tree arg;
561
562 occ_pool = new object_allocator<occurrence> ("dominators for recip");
563
564 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
565 calculate_dominance_info (CDI_DOMINATORS);
566 calculate_dominance_info (CDI_POST_DOMINATORS);
567
568 if (flag_checking)
569 FOR_EACH_BB_FN (bb, fun)
570 gcc_assert (!bb->aux);
571
572 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
573 if (FLOAT_TYPE_P (TREE_TYPE (arg))
574 && is_gimple_reg (arg))
575 {
576 tree name = ssa_default_def (fun, arg);
577 if (name)
578 execute_cse_reciprocals_1 (NULL, name);
579 }
580
581 FOR_EACH_BB_FN (bb, fun)
582 {
583 tree def;
584
585 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
586 gsi_next (&gsi))
587 {
588 gphi *phi = gsi.phi ();
589 def = PHI_RESULT (phi);
590 if (! virtual_operand_p (def)
591 && FLOAT_TYPE_P (TREE_TYPE (def)))
592 execute_cse_reciprocals_1 (NULL, def);
593 }
594
595 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
596 gsi_next (&gsi))
597 {
598 gimple *stmt = gsi_stmt (gsi);
599
600 if (gimple_has_lhs (stmt)
601 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
602 && FLOAT_TYPE_P (TREE_TYPE (def))
603 && TREE_CODE (def) == SSA_NAME)
604 execute_cse_reciprocals_1 (&gsi, def);
605 }
606
607 if (optimize_bb_for_size_p (bb))
608 continue;
609
610 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
611 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
612 gsi_next (&gsi))
613 {
614 gimple *stmt = gsi_stmt (gsi);
615
616 if (is_gimple_assign (stmt)
617 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
618 {
619 tree arg1 = gimple_assign_rhs2 (stmt);
620 gimple *stmt1;
621
622 if (TREE_CODE (arg1) != SSA_NAME)
623 continue;
624
625 stmt1 = SSA_NAME_DEF_STMT (arg1);
626
627 if (is_gimple_call (stmt1)
628 && gimple_call_lhs (stmt1))
629 {
630 bool fail;
631 imm_use_iterator ui;
632 use_operand_p use_p;
633 tree fndecl = NULL_TREE;
634
635 gcall *call = as_a <gcall *> (stmt1);
636 internal_fn ifn = internal_fn_reciprocal (call);
637 if (ifn == IFN_LAST)
638 {
639 fndecl = gimple_call_fndecl (call);
640 if (!fndecl
641 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
642 continue;
643 fndecl = targetm.builtin_reciprocal (fndecl);
644 if (!fndecl)
645 continue;
646 }
647
648 /* Check that all uses of the SSA name are divisions,
649 otherwise replacing the defining statement will do
650 the wrong thing. */
651 fail = false;
652 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
653 {
654 gimple *stmt2 = USE_STMT (use_p);
655 if (is_gimple_debug (stmt2))
656 continue;
657 if (!is_gimple_assign (stmt2)
658 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
659 || gimple_assign_rhs1 (stmt2) == arg1
660 || gimple_assign_rhs2 (stmt2) != arg1)
661 {
662 fail = true;
663 break;
664 }
665 }
666 if (fail)
667 continue;
668
669 gimple_replace_ssa_lhs (call, arg1);
670 if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
671 {
672 auto_vec<tree, 4> args;
673 for (unsigned int i = 0;
674 i < gimple_call_num_args (call); i++)
675 args.safe_push (gimple_call_arg (call, i));
676 gcall *stmt2;
677 if (ifn == IFN_LAST)
678 stmt2 = gimple_build_call_vec (fndecl, args);
679 else
680 stmt2 = gimple_build_call_internal_vec (ifn, args);
681 gimple_call_set_lhs (stmt2, arg1);
682 if (gimple_vdef (call))
683 {
684 gimple_set_vdef (stmt2, gimple_vdef (call));
685 SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
686 }
687 gimple_set_vuse (stmt2, gimple_vuse (call));
688 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
689 gsi_replace (&gsi2, stmt2, true);
690 }
691 else
692 {
693 if (ifn == IFN_LAST)
694 gimple_call_set_fndecl (call, fndecl);
695 else
696 gimple_call_set_internal_fn (call, ifn);
697 update_stmt (call);
698 }
699 reciprocal_stats.rfuncs_inserted++;
700
701 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
702 {
703 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
704 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
705 fold_stmt_inplace (&gsi);
706 update_stmt (stmt);
707 }
708 }
709 }
710 }
711 }
712
713 statistics_counter_event (fun, "reciprocal divs inserted",
714 reciprocal_stats.rdivs_inserted);
715 statistics_counter_event (fun, "reciprocal functions inserted",
716 reciprocal_stats.rfuncs_inserted);
717
718 free_dominance_info (CDI_DOMINATORS);
719 free_dominance_info (CDI_POST_DOMINATORS);
720 delete occ_pool;
721 return 0;
722 }
723
724 } // anon namespace
725
726 gimple_opt_pass *
727 make_pass_cse_reciprocals (gcc::context *ctxt)
728 {
729 return new pass_cse_reciprocals (ctxt);
730 }
731
732 /* Records an occurrence at statement USE_STMT in the vector of trees
733 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
734 is not yet initialized. Returns true if the occurrence was pushed on
735 the vector. Adjusts *TOP_BB to be the basic block dominating all
736 statements in the vector. */
737
738 static bool
739 maybe_record_sincos (vec<gimple *> *stmts,
740 basic_block *top_bb, gimple *use_stmt)
741 {
742 basic_block use_bb = gimple_bb (use_stmt);
743 if (*top_bb
744 && (*top_bb == use_bb
745 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
746 stmts->safe_push (use_stmt);
747 else if (!*top_bb
748 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
749 {
750 stmts->safe_push (use_stmt);
751 *top_bb = use_bb;
752 }
753 else
754 return false;
755
756 return true;
757 }
758
759 /* Look for sin, cos and cexpi calls with the same argument NAME and
760 create a single call to cexpi CSEing the result in this case.
761 We first walk over all immediate uses of the argument collecting
762 statements that we can CSE in a vector and in a second pass replace
763 the statement rhs with a REALPART or IMAGPART expression on the
764 result of the cexpi call we insert before the use statement that
765 dominates all other candidates. */
766
767 static bool
768 execute_cse_sincos_1 (tree name)
769 {
770 gimple_stmt_iterator gsi;
771 imm_use_iterator use_iter;
772 tree fndecl, res, type;
773 gimple *def_stmt, *use_stmt, *stmt;
774 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
775 auto_vec<gimple *> stmts;
776 basic_block top_bb = NULL;
777 int i;
778 bool cfg_changed = false;
779
780 type = TREE_TYPE (name);
781 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
782 {
783 if (gimple_code (use_stmt) != GIMPLE_CALL
784 || !gimple_call_lhs (use_stmt))
785 continue;
786
787 switch (gimple_call_combined_fn (use_stmt))
788 {
789 CASE_CFN_COS:
790 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
791 break;
792
793 CASE_CFN_SIN:
794 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
795 break;
796
797 CASE_CFN_CEXPI:
798 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
799 break;
800
801 default:;
802 }
803 }
804
805 if (seen_cos + seen_sin + seen_cexpi <= 1)
806 return false;
807
808 /* Simply insert cexpi at the beginning of top_bb but not earlier than
809 the name def statement. */
810 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
811 if (!fndecl)
812 return false;
813 stmt = gimple_build_call (fndecl, 1, name);
814 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
815 gimple_call_set_lhs (stmt, res);
816
817 def_stmt = SSA_NAME_DEF_STMT (name);
818 if (!SSA_NAME_IS_DEFAULT_DEF (name)
819 && gimple_code (def_stmt) != GIMPLE_PHI
820 && gimple_bb (def_stmt) == top_bb)
821 {
822 gsi = gsi_for_stmt (def_stmt);
823 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
824 }
825 else
826 {
827 gsi = gsi_after_labels (top_bb);
828 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
829 }
830 sincos_stats.inserted++;
831
832 /* And adjust the recorded old call sites. */
833 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
834 {
835 tree rhs = NULL;
836
837 switch (gimple_call_combined_fn (use_stmt))
838 {
839 CASE_CFN_COS:
840 rhs = fold_build1 (REALPART_EXPR, type, res);
841 break;
842
843 CASE_CFN_SIN:
844 rhs = fold_build1 (IMAGPART_EXPR, type, res);
845 break;
846
847 CASE_CFN_CEXPI:
848 rhs = res;
849 break;
850
851 default:;
852 gcc_unreachable ();
853 }
854
855 /* Replace call with a copy. */
856 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
857
858 gsi = gsi_for_stmt (use_stmt);
859 gsi_replace (&gsi, stmt, true);
860 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
861 cfg_changed = true;
862 }
863
864 return cfg_changed;
865 }
866
867 /* To evaluate powi(x,n), the floating point value x raised to the
868 constant integer exponent n, we use a hybrid algorithm that
869 combines the "window method" with look-up tables. For an
870 introduction to exponentiation algorithms and "addition chains",
871 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
872 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
873 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
874 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
875
876 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
877 multiplications to inline before calling the system library's pow
878 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
879 so this default never requires calling pow, powf or powl. */
880
881 #ifndef POWI_MAX_MULTS
882 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
883 #endif
884
885 /* The size of the "optimal power tree" lookup table. All
886 exponents less than this value are simply looked up in the
887 powi_table below. This threshold is also used to size the
888 cache of pseudo registers that hold intermediate results. */
889 #define POWI_TABLE_SIZE 256
890
891 /* The size, in bits of the window, used in the "window method"
892 exponentiation algorithm. This is equivalent to a radix of
893 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
894 #define POWI_WINDOW_SIZE 3
895
896 /* The following table is an efficient representation of an
897 "optimal power tree". For each value, i, the corresponding
898 value, j, in the table states than an optimal evaluation
899 sequence for calculating pow(x,i) can be found by evaluating
900 pow(x,j)*pow(x,i-j). An optimal power tree for the first
901 100 integers is given in Knuth's "Seminumerical algorithms". */
902
903 static const unsigned char powi_table[POWI_TABLE_SIZE] =
904 {
905 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
906 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
907 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
908 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
909 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
910 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
911 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
912 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
913 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
914 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
915 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
916 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
917 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
918 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
919 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
920 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
921 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
922 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
923 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
924 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
925 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
926 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
927 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
928 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
929 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
930 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
931 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
932 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
933 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
934 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
935 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
936 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
937 };
938
939
940 /* Return the number of multiplications required to calculate
941 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
942 subroutine of powi_cost. CACHE is an array indicating
943 which exponents have already been calculated. */
944
945 static int
946 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
947 {
948 /* If we've already calculated this exponent, then this evaluation
949 doesn't require any additional multiplications. */
950 if (cache[n])
951 return 0;
952
953 cache[n] = true;
954 return powi_lookup_cost (n - powi_table[n], cache)
955 + powi_lookup_cost (powi_table[n], cache) + 1;
956 }
957
958 /* Return the number of multiplications required to calculate
959 powi(x,n) for an arbitrary x, given the exponent N. This
960 function needs to be kept in sync with powi_as_mults below. */
961
962 static int
963 powi_cost (HOST_WIDE_INT n)
964 {
965 bool cache[POWI_TABLE_SIZE];
966 unsigned HOST_WIDE_INT digit;
967 unsigned HOST_WIDE_INT val;
968 int result;
969
970 if (n == 0)
971 return 0;
972
973 /* Ignore the reciprocal when calculating the cost. */
974 val = (n < 0) ? -n : n;
975
976 /* Initialize the exponent cache. */
977 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
978 cache[1] = true;
979
980 result = 0;
981
982 while (val >= POWI_TABLE_SIZE)
983 {
984 if (val & 1)
985 {
986 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
987 result += powi_lookup_cost (digit, cache)
988 + POWI_WINDOW_SIZE + 1;
989 val >>= POWI_WINDOW_SIZE;
990 }
991 else
992 {
993 val >>= 1;
994 result++;
995 }
996 }
997
998 return result + powi_lookup_cost (val, cache);
999 }
1000
1001 /* Recursive subroutine of powi_as_mults. This function takes the
1002 array, CACHE, of already calculated exponents and an exponent N and
1003 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1004
1005 static tree
1006 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1007 HOST_WIDE_INT n, tree *cache)
1008 {
1009 tree op0, op1, ssa_target;
1010 unsigned HOST_WIDE_INT digit;
1011 gassign *mult_stmt;
1012
1013 if (n < POWI_TABLE_SIZE && cache[n])
1014 return cache[n];
1015
1016 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1017
1018 if (n < POWI_TABLE_SIZE)
1019 {
1020 cache[n] = ssa_target;
1021 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1022 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1023 }
1024 else if (n & 1)
1025 {
1026 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1027 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1028 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1029 }
1030 else
1031 {
1032 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1033 op1 = op0;
1034 }
1035
1036 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1037 gimple_set_location (mult_stmt, loc);
1038 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1039
1040 return ssa_target;
1041 }
1042
1043 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1044 This function needs to be kept in sync with powi_cost above. */
1045
1046 static tree
1047 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1048 tree arg0, HOST_WIDE_INT n)
1049 {
1050 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1051 gassign *div_stmt;
1052 tree target;
1053
1054 if (n == 0)
1055 return build_real (type, dconst1);
1056
1057 memset (cache, 0, sizeof (cache));
1058 cache[1] = arg0;
1059
1060 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1061 if (n >= 0)
1062 return result;
1063
1064 /* If the original exponent was negative, reciprocate the result. */
1065 target = make_temp_ssa_name (type, NULL, "powmult");
1066 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1067 build_real (type, dconst1), result);
1068 gimple_set_location (div_stmt, loc);
1069 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1070
1071 return target;
1072 }
1073
1074 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1075 location info LOC. If the arguments are appropriate, create an
1076 equivalent sequence of statements prior to GSI using an optimal
1077 number of multiplications, and return an expession holding the
1078 result. */
1079
1080 static tree
1081 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1082 tree arg0, HOST_WIDE_INT n)
1083 {
1084 /* Avoid largest negative number. */
1085 if (n != -n
1086 && ((n >= -1 && n <= 2)
1087 || (optimize_function_for_speed_p (cfun)
1088 && powi_cost (n) <= POWI_MAX_MULTS)))
1089 return powi_as_mults (gsi, loc, arg0, n);
1090
1091 return NULL_TREE;
1092 }
1093
1094 /* Build a gimple call statement that calls FN with argument ARG.
1095 Set the lhs of the call statement to a fresh SSA name. Insert the
1096 statement prior to GSI's current position, and return the fresh
1097 SSA name. */
1098
1099 static tree
1100 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1101 tree fn, tree arg)
1102 {
1103 gcall *call_stmt;
1104 tree ssa_target;
1105
1106 call_stmt = gimple_build_call (fn, 1, arg);
1107 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1108 gimple_set_lhs (call_stmt, ssa_target);
1109 gimple_set_location (call_stmt, loc);
1110 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1111
1112 return ssa_target;
1113 }
1114
1115 /* Build a gimple binary operation with the given CODE and arguments
1116 ARG0, ARG1, assigning the result to a new SSA name for variable
1117 TARGET. Insert the statement prior to GSI's current position, and
1118 return the fresh SSA name.*/
1119
1120 static tree
1121 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1122 const char *name, enum tree_code code,
1123 tree arg0, tree arg1)
1124 {
1125 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1126 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1127 gimple_set_location (stmt, loc);
1128 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1129 return result;
1130 }
1131
1132 /* Build a gimple reference operation with the given CODE and argument
1133 ARG, assigning the result to a new SSA name of TYPE with NAME.
1134 Insert the statement prior to GSI's current position, and return
1135 the fresh SSA name. */
1136
1137 static inline tree
1138 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1139 const char *name, enum tree_code code, tree arg0)
1140 {
1141 tree result = make_temp_ssa_name (type, NULL, name);
1142 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1143 gimple_set_location (stmt, loc);
1144 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1145 return result;
1146 }
1147
1148 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1149 prior to GSI's current position, and return the fresh SSA name. */
1150
1151 static tree
1152 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1153 tree type, tree val)
1154 {
1155 tree result = make_ssa_name (type);
1156 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1157 gimple_set_location (stmt, loc);
1158 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1159 return result;
1160 }
1161
1162 struct pow_synth_sqrt_info
1163 {
1164 bool *factors;
1165 unsigned int deepest;
1166 unsigned int num_mults;
1167 };
1168
1169 /* Return true iff the real value C can be represented as a
1170 sum of powers of 0.5 up to N. That is:
1171 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1172 Record in INFO the various parameters of the synthesis algorithm such
1173 as the factors a[i], the maximum 0.5 power and the number of
1174 multiplications that will be required. */
1175
1176 bool
1177 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1178 struct pow_synth_sqrt_info *info)
1179 {
1180 REAL_VALUE_TYPE factor = dconsthalf;
1181 REAL_VALUE_TYPE remainder = c;
1182
1183 info->deepest = 0;
1184 info->num_mults = 0;
1185 memset (info->factors, 0, n * sizeof (bool));
1186
1187 for (unsigned i = 0; i < n; i++)
1188 {
1189 REAL_VALUE_TYPE res;
1190
1191 /* If something inexact happened bail out now. */
1192 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1193 return false;
1194
1195 /* We have hit zero. The number is representable as a sum
1196 of powers of 0.5. */
1197 if (real_equal (&res, &dconst0))
1198 {
1199 info->factors[i] = true;
1200 info->deepest = i + 1;
1201 return true;
1202 }
1203 else if (!REAL_VALUE_NEGATIVE (res))
1204 {
1205 remainder = res;
1206 info->factors[i] = true;
1207 info->num_mults++;
1208 }
1209 else
1210 info->factors[i] = false;
1211
1212 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1213 }
1214 return false;
1215 }
1216
1217 /* Return the tree corresponding to FN being applied
1218 to ARG N times at GSI and LOC.
1219 Look up previous results from CACHE if need be.
1220 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1221
1222 static tree
1223 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1224 tree fn, location_t loc, tree *cache)
1225 {
1226 tree res = cache[n];
1227 if (!res)
1228 {
1229 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1230 res = build_and_insert_call (gsi, loc, fn, prev);
1231 cache[n] = res;
1232 }
1233
1234 return res;
1235 }
1236
1237 /* Print to STREAM the repeated application of function FNAME to ARG
1238 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1239 "foo (foo (x))". */
1240
1241 static void
1242 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1243 unsigned int n)
1244 {
1245 if (n == 0)
1246 fprintf (stream, "%s", arg);
1247 else
1248 {
1249 fprintf (stream, "%s (", fname);
1250 print_nested_fn (stream, fname, arg, n - 1);
1251 fprintf (stream, ")");
1252 }
1253 }
1254
1255 /* Print to STREAM the fractional sequence of sqrt chains
1256 applied to ARG, described by INFO. Used for the dump file. */
1257
1258 static void
1259 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1260 struct pow_synth_sqrt_info *info)
1261 {
1262 for (unsigned int i = 0; i < info->deepest; i++)
1263 {
1264 bool is_set = info->factors[i];
1265 if (is_set)
1266 {
1267 print_nested_fn (stream, "sqrt", arg, i + 1);
1268 if (i != info->deepest - 1)
1269 fprintf (stream, " * ");
1270 }
1271 }
1272 }
1273
1274 /* Print to STREAM a representation of raising ARG to an integer
1275 power N. Used for the dump file. */
1276
1277 static void
1278 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1279 {
1280 if (n > 1)
1281 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1282 else if (n == 1)
1283 fprintf (stream, "%s", arg);
1284 }
1285
1286 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1287 square roots. Place at GSI and LOC. Limit the maximum depth
1288 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1289 result of the expanded sequence or NULL_TREE if the expansion failed.
1290
1291 This routine assumes that ARG1 is a real number with a fractional part
1292 (the integer exponent case will have been handled earlier in
1293 gimple_expand_builtin_pow).
1294
1295 For ARG1 > 0.0:
1296 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1297 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1298 FRAC_PART == ARG1 - WHOLE_PART:
1299 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1300 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1301 if it can be expressed as such, that is if FRAC_PART satisfies:
1302 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1303 where integer a[i] is either 0 or 1.
1304
1305 Example:
1306 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1307 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1308
1309 For ARG1 < 0.0 there are two approaches:
1310 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1311 is calculated as above.
1312
1313 Example:
1314 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1315 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1316
1317 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1318 FRAC_PART := ARG1 - WHOLE_PART
1319 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1320 Example:
1321 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1322 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1323
1324 For ARG1 < 0.0 we choose between (A) and (B) depending on
1325 how many multiplications we'd have to do.
1326 So, for the example in (B): POW (x, -5.875), if we were to
1327 follow algorithm (A) we would produce:
1328 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1329 which contains more multiplications than approach (B).
1330
1331 Hopefully, this approach will eliminate potentially expensive POW library
1332 calls when unsafe floating point math is enabled and allow the compiler to
1333 further optimise the multiplies, square roots and divides produced by this
1334 function. */
1335
1336 static tree
1337 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1338 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1339 {
1340 tree type = TREE_TYPE (arg0);
1341 machine_mode mode = TYPE_MODE (type);
1342 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1343 bool one_over = true;
1344
1345 if (!sqrtfn)
1346 return NULL_TREE;
1347
1348 if (TREE_CODE (arg1) != REAL_CST)
1349 return NULL_TREE;
1350
1351 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1352
1353 gcc_assert (max_depth > 0);
1354 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1355
1356 struct pow_synth_sqrt_info synth_info;
1357 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1358 synth_info.deepest = 0;
1359 synth_info.num_mults = 0;
1360
1361 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1362 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1363
1364 /* The whole and fractional parts of exp. */
1365 REAL_VALUE_TYPE whole_part;
1366 REAL_VALUE_TYPE frac_part;
1367
1368 real_floor (&whole_part, mode, &exp);
1369 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1370
1371
1372 REAL_VALUE_TYPE ceil_whole = dconst0;
1373 REAL_VALUE_TYPE ceil_fract = dconst0;
1374
1375 if (neg_exp)
1376 {
1377 real_ceil (&ceil_whole, mode, &exp);
1378 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1379 }
1380
1381 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1382 return NULL_TREE;
1383
1384 /* Check whether it's more profitable to not use 1.0 / ... */
1385 if (neg_exp)
1386 {
1387 struct pow_synth_sqrt_info alt_synth_info;
1388 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1389 alt_synth_info.deepest = 0;
1390 alt_synth_info.num_mults = 0;
1391
1392 if (representable_as_half_series_p (ceil_fract, max_depth,
1393 &alt_synth_info)
1394 && alt_synth_info.deepest <= synth_info.deepest
1395 && alt_synth_info.num_mults < synth_info.num_mults)
1396 {
1397 whole_part = ceil_whole;
1398 frac_part = ceil_fract;
1399 synth_info.deepest = alt_synth_info.deepest;
1400 synth_info.num_mults = alt_synth_info.num_mults;
1401 memcpy (synth_info.factors, alt_synth_info.factors,
1402 (max_depth + 1) * sizeof (bool));
1403 one_over = false;
1404 }
1405 }
1406
1407 HOST_WIDE_INT n = real_to_integer (&whole_part);
1408 REAL_VALUE_TYPE cint;
1409 real_from_integer (&cint, VOIDmode, n, SIGNED);
1410
1411 if (!real_identical (&whole_part, &cint))
1412 return NULL_TREE;
1413
1414 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1415 return NULL_TREE;
1416
1417 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1418
1419 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1420
1421 /* Calculate the integer part of the exponent. */
1422 if (n > 1)
1423 {
1424 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1425 if (!integer_res)
1426 return NULL_TREE;
1427 }
1428
1429 if (dump_file)
1430 {
1431 char string[64];
1432
1433 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1434 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1435
1436 if (neg_exp)
1437 {
1438 if (one_over)
1439 {
1440 fprintf (dump_file, "1.0 / (");
1441 dump_integer_part (dump_file, "x", n);
1442 if (n > 0)
1443 fprintf (dump_file, " * ");
1444 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1445 fprintf (dump_file, ")");
1446 }
1447 else
1448 {
1449 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1450 fprintf (dump_file, " / (");
1451 dump_integer_part (dump_file, "x", n);
1452 fprintf (dump_file, ")");
1453 }
1454 }
1455 else
1456 {
1457 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1458 if (n > 0)
1459 fprintf (dump_file, " * ");
1460 dump_integer_part (dump_file, "x", n);
1461 }
1462
1463 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1464 }
1465
1466
1467 tree fract_res = NULL_TREE;
1468 cache[0] = arg0;
1469
1470 /* Calculate the fractional part of the exponent. */
1471 for (unsigned i = 0; i < synth_info.deepest; i++)
1472 {
1473 if (synth_info.factors[i])
1474 {
1475 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1476
1477 if (!fract_res)
1478 fract_res = sqrt_chain;
1479
1480 else
1481 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1482 fract_res, sqrt_chain);
1483 }
1484 }
1485
1486 tree res = NULL_TREE;
1487
1488 if (neg_exp)
1489 {
1490 if (one_over)
1491 {
1492 if (n > 0)
1493 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1494 fract_res, integer_res);
1495 else
1496 res = fract_res;
1497
1498 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1499 build_real (type, dconst1), res);
1500 }
1501 else
1502 {
1503 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1504 fract_res, integer_res);
1505 }
1506 }
1507 else
1508 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1509 fract_res, integer_res);
1510 return res;
1511 }
1512
1513 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1514 with location info LOC. If possible, create an equivalent and
1515 less expensive sequence of statements prior to GSI, and return an
1516 expession holding the result. */
1517
1518 static tree
1519 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1520 tree arg0, tree arg1)
1521 {
1522 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1523 REAL_VALUE_TYPE c2, dconst3;
1524 HOST_WIDE_INT n;
1525 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1526 machine_mode mode;
1527 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1528 bool hw_sqrt_exists, c_is_int, c2_is_int;
1529
1530 dconst1_4 = dconst1;
1531 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1532
1533 /* If the exponent isn't a constant, there's nothing of interest
1534 to be done. */
1535 if (TREE_CODE (arg1) != REAL_CST)
1536 return NULL_TREE;
1537
1538 /* Don't perform the operation if flag_signaling_nans is on
1539 and the operand is a signaling NaN. */
1540 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1541 && (REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1542 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1543 return NULL_TREE;
1544
1545 /* If the exponent is equivalent to an integer, expand to an optimal
1546 multiplication sequence when profitable. */
1547 c = TREE_REAL_CST (arg1);
1548 n = real_to_integer (&c);
1549 real_from_integer (&cint, VOIDmode, n, SIGNED);
1550 c_is_int = real_identical (&c, &cint);
1551
1552 if (c_is_int
1553 && ((n >= -1 && n <= 2)
1554 || (flag_unsafe_math_optimizations
1555 && speed_p
1556 && powi_cost (n) <= POWI_MAX_MULTS)))
1557 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1558
1559 /* Attempt various optimizations using sqrt and cbrt. */
1560 type = TREE_TYPE (arg0);
1561 mode = TYPE_MODE (type);
1562 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1563
1564 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1565 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1566 sqrt(-0) = -0. */
1567 if (sqrtfn
1568 && real_equal (&c, &dconsthalf)
1569 && !HONOR_SIGNED_ZEROS (mode))
1570 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1571
1572 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1573
1574 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1575 optimizations since 1./3. is not exactly representable. If x
1576 is negative and finite, the correct value of pow(x,1./3.) is
1577 a NaN with the "invalid" exception raised, because the value
1578 of 1./3. actually has an even denominator. The correct value
1579 of cbrt(x) is a negative real value. */
1580 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1581 dconst1_3 = real_value_truncate (mode, dconst_third ());
1582
1583 if (flag_unsafe_math_optimizations
1584 && cbrtfn
1585 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1586 && real_equal (&c, &dconst1_3))
1587 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1588
1589 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1590 if we don't have a hardware sqrt insn. */
1591 dconst1_6 = dconst1_3;
1592 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1593
1594 if (flag_unsafe_math_optimizations
1595 && sqrtfn
1596 && cbrtfn
1597 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1598 && speed_p
1599 && hw_sqrt_exists
1600 && real_equal (&c, &dconst1_6))
1601 {
1602 /* sqrt(x) */
1603 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1604
1605 /* cbrt(sqrt(x)) */
1606 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1607 }
1608
1609
1610 /* Attempt to expand the POW as a product of square root chains.
1611 Expand the 0.25 case even when otpimising for size. */
1612 if (flag_unsafe_math_optimizations
1613 && sqrtfn
1614 && hw_sqrt_exists
1615 && (speed_p || real_equal (&c, &dconst1_4))
1616 && !HONOR_SIGNED_ZEROS (mode))
1617 {
1618 unsigned int max_depth = speed_p
1619 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1620 : 2;
1621
1622 tree expand_with_sqrts
1623 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1624
1625 if (expand_with_sqrts)
1626 return expand_with_sqrts;
1627 }
1628
1629 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1630 n = real_to_integer (&c2);
1631 real_from_integer (&cint, VOIDmode, n, SIGNED);
1632 c2_is_int = real_identical (&c2, &cint);
1633
1634 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1635
1636 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1637 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1638
1639 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1640 different from pow(x, 1./3.) due to rounding and behavior with
1641 negative x, we need to constrain this transformation to unsafe
1642 math and positive x or finite math. */
1643 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1644 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1645 real_round (&c2, mode, &c2);
1646 n = real_to_integer (&c2);
1647 real_from_integer (&cint, VOIDmode, n, SIGNED);
1648 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1649 real_convert (&c2, mode, &c2);
1650
1651 if (flag_unsafe_math_optimizations
1652 && cbrtfn
1653 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1654 && real_identical (&c2, &c)
1655 && !c2_is_int
1656 && optimize_function_for_speed_p (cfun)
1657 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1658 {
1659 tree powi_x_ndiv3 = NULL_TREE;
1660
1661 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1662 possible or profitable, give up. Skip the degenerate case when
1663 abs(n) < 3, where the result is always 1. */
1664 if (absu_hwi (n) >= 3)
1665 {
1666 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1667 abs_hwi (n / 3));
1668 if (!powi_x_ndiv3)
1669 return NULL_TREE;
1670 }
1671
1672 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1673 as that creates an unnecessary variable. Instead, just produce
1674 either cbrt(x) or cbrt(x) * cbrt(x). */
1675 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1676
1677 if (absu_hwi (n) % 3 == 1)
1678 powi_cbrt_x = cbrt_x;
1679 else
1680 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1681 cbrt_x, cbrt_x);
1682
1683 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1684 if (absu_hwi (n) < 3)
1685 result = powi_cbrt_x;
1686 else
1687 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1688 powi_x_ndiv3, powi_cbrt_x);
1689
1690 /* If n is negative, reciprocate the result. */
1691 if (n < 0)
1692 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1693 build_real (type, dconst1), result);
1694
1695 return result;
1696 }
1697
1698 /* No optimizations succeeded. */
1699 return NULL_TREE;
1700 }
1701
1702 /* ARG is the argument to a cabs builtin call in GSI with location info
1703 LOC. Create a sequence of statements prior to GSI that calculates
1704 sqrt(R*R + I*I), where R and I are the real and imaginary components
1705 of ARG, respectively. Return an expression holding the result. */
1706
1707 static tree
1708 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1709 {
1710 tree real_part, imag_part, addend1, addend2, sum, result;
1711 tree type = TREE_TYPE (TREE_TYPE (arg));
1712 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1713 machine_mode mode = TYPE_MODE (type);
1714
1715 if (!flag_unsafe_math_optimizations
1716 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1717 || !sqrtfn
1718 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1719 return NULL_TREE;
1720
1721 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1722 REALPART_EXPR, arg);
1723 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1724 real_part, real_part);
1725 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1726 IMAGPART_EXPR, arg);
1727 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1728 imag_part, imag_part);
1729 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1730 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1731
1732 return result;
1733 }
1734
1735 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1736 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1737 an optimal number of multiplies, when n is a constant. */
1738
1739 namespace {
1740
1741 const pass_data pass_data_cse_sincos =
1742 {
1743 GIMPLE_PASS, /* type */
1744 "sincos", /* name */
1745 OPTGROUP_NONE, /* optinfo_flags */
1746 TV_NONE, /* tv_id */
1747 PROP_ssa, /* properties_required */
1748 PROP_gimple_opt_math, /* properties_provided */
1749 0, /* properties_destroyed */
1750 0, /* todo_flags_start */
1751 TODO_update_ssa, /* todo_flags_finish */
1752 };
1753
1754 class pass_cse_sincos : public gimple_opt_pass
1755 {
1756 public:
1757 pass_cse_sincos (gcc::context *ctxt)
1758 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1759 {}
1760
1761 /* opt_pass methods: */
1762 virtual bool gate (function *)
1763 {
1764 /* We no longer require either sincos or cexp, since powi expansion
1765 piggybacks on this pass. */
1766 return optimize;
1767 }
1768
1769 virtual unsigned int execute (function *);
1770
1771 }; // class pass_cse_sincos
1772
1773 unsigned int
1774 pass_cse_sincos::execute (function *fun)
1775 {
1776 basic_block bb;
1777 bool cfg_changed = false;
1778
1779 calculate_dominance_info (CDI_DOMINATORS);
1780 memset (&sincos_stats, 0, sizeof (sincos_stats));
1781
1782 FOR_EACH_BB_FN (bb, fun)
1783 {
1784 gimple_stmt_iterator gsi;
1785 bool cleanup_eh = false;
1786
1787 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1788 {
1789 gimple *stmt = gsi_stmt (gsi);
1790
1791 /* Only the last stmt in a bb could throw, no need to call
1792 gimple_purge_dead_eh_edges if we change something in the middle
1793 of a basic block. */
1794 cleanup_eh = false;
1795
1796 if (is_gimple_call (stmt)
1797 && gimple_call_lhs (stmt))
1798 {
1799 tree arg, arg0, arg1, result;
1800 HOST_WIDE_INT n;
1801 location_t loc;
1802
1803 switch (gimple_call_combined_fn (stmt))
1804 {
1805 CASE_CFN_COS:
1806 CASE_CFN_SIN:
1807 CASE_CFN_CEXPI:
1808 /* Make sure we have either sincos or cexp. */
1809 if (!targetm.libc_has_function (function_c99_math_complex)
1810 && !targetm.libc_has_function (function_sincos))
1811 break;
1812
1813 arg = gimple_call_arg (stmt, 0);
1814 if (TREE_CODE (arg) == SSA_NAME)
1815 cfg_changed |= execute_cse_sincos_1 (arg);
1816 break;
1817
1818 CASE_CFN_POW:
1819 arg0 = gimple_call_arg (stmt, 0);
1820 arg1 = gimple_call_arg (stmt, 1);
1821
1822 loc = gimple_location (stmt);
1823 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1824
1825 if (result)
1826 {
1827 tree lhs = gimple_get_lhs (stmt);
1828 gassign *new_stmt = gimple_build_assign (lhs, result);
1829 gimple_set_location (new_stmt, loc);
1830 unlink_stmt_vdef (stmt);
1831 gsi_replace (&gsi, new_stmt, true);
1832 cleanup_eh = true;
1833 if (gimple_vdef (stmt))
1834 release_ssa_name (gimple_vdef (stmt));
1835 }
1836 break;
1837
1838 CASE_CFN_POWI:
1839 arg0 = gimple_call_arg (stmt, 0);
1840 arg1 = gimple_call_arg (stmt, 1);
1841 loc = gimple_location (stmt);
1842
1843 if (real_minus_onep (arg0))
1844 {
1845 tree t0, t1, cond, one, minus_one;
1846 gassign *stmt;
1847
1848 t0 = TREE_TYPE (arg0);
1849 t1 = TREE_TYPE (arg1);
1850 one = build_real (t0, dconst1);
1851 minus_one = build_real (t0, dconstm1);
1852
1853 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1854 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1855 arg1, build_int_cst (t1, 1));
1856 gimple_set_location (stmt, loc);
1857 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1858
1859 result = make_temp_ssa_name (t0, NULL, "powi");
1860 stmt = gimple_build_assign (result, COND_EXPR, cond,
1861 minus_one, one);
1862 gimple_set_location (stmt, loc);
1863 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1864 }
1865 else
1866 {
1867 if (!tree_fits_shwi_p (arg1))
1868 break;
1869
1870 n = tree_to_shwi (arg1);
1871 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1872 }
1873
1874 if (result)
1875 {
1876 tree lhs = gimple_get_lhs (stmt);
1877 gassign *new_stmt = gimple_build_assign (lhs, result);
1878 gimple_set_location (new_stmt, loc);
1879 unlink_stmt_vdef (stmt);
1880 gsi_replace (&gsi, new_stmt, true);
1881 cleanup_eh = true;
1882 if (gimple_vdef (stmt))
1883 release_ssa_name (gimple_vdef (stmt));
1884 }
1885 break;
1886
1887 CASE_CFN_CABS:
1888 arg0 = gimple_call_arg (stmt, 0);
1889 loc = gimple_location (stmt);
1890 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1891
1892 if (result)
1893 {
1894 tree lhs = gimple_get_lhs (stmt);
1895 gassign *new_stmt = gimple_build_assign (lhs, result);
1896 gimple_set_location (new_stmt, loc);
1897 unlink_stmt_vdef (stmt);
1898 gsi_replace (&gsi, new_stmt, true);
1899 cleanup_eh = true;
1900 if (gimple_vdef (stmt))
1901 release_ssa_name (gimple_vdef (stmt));
1902 }
1903 break;
1904
1905 default:;
1906 }
1907 }
1908 }
1909 if (cleanup_eh)
1910 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1911 }
1912
1913 statistics_counter_event (fun, "sincos statements inserted",
1914 sincos_stats.inserted);
1915
1916 return cfg_changed ? TODO_cleanup_cfg : 0;
1917 }
1918
1919 } // anon namespace
1920
1921 gimple_opt_pass *
1922 make_pass_cse_sincos (gcc::context *ctxt)
1923 {
1924 return new pass_cse_sincos (ctxt);
1925 }
1926
1927 /* A symbolic number is used to detect byte permutation and selection
1928 patterns. Therefore the field N contains an artificial number
1929 consisting of octet sized markers:
1930
1931 0 - target byte has the value 0
1932 FF - target byte has an unknown value (eg. due to sign extension)
1933 1..size - marker value is the target byte index minus one.
1934
1935 To detect permutations on memory sources (arrays and structures), a symbolic
1936 number is also associated a base address (the array or structure the load is
1937 made from), an offset from the base address and a range which gives the
1938 difference between the highest and lowest accessed memory location to make
1939 such a symbolic number. The range is thus different from size which reflects
1940 the size of the type of current expression. Note that for non memory source,
1941 range holds the same value as size.
1942
1943 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1944 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1945 still have a size of 2 but this time a range of 1. */
1946
1947 struct symbolic_number {
1948 uint64_t n;
1949 tree type;
1950 tree base_addr;
1951 tree offset;
1952 HOST_WIDE_INT bytepos;
1953 tree alias_set;
1954 tree vuse;
1955 unsigned HOST_WIDE_INT range;
1956 };
1957
1958 #define BITS_PER_MARKER 8
1959 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1960 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1961 #define HEAD_MARKER(n, size) \
1962 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1963
1964 /* The number which the find_bswap_or_nop_1 result should match in
1965 order to have a nop. The number is masked according to the size of
1966 the symbolic number before using it. */
1967 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1968 (uint64_t)0x08070605 << 32 | 0x04030201)
1969
1970 /* The number which the find_bswap_or_nop_1 result should match in
1971 order to have a byte swap. The number is masked according to the
1972 size of the symbolic number before using it. */
1973 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1974 (uint64_t)0x01020304 << 32 | 0x05060708)
1975
1976 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1977 number N. Return false if the requested operation is not permitted
1978 on a symbolic number. */
1979
1980 static inline bool
1981 do_shift_rotate (enum tree_code code,
1982 struct symbolic_number *n,
1983 int count)
1984 {
1985 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1986 unsigned head_marker;
1987
1988 if (count % BITS_PER_UNIT != 0)
1989 return false;
1990 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1991
1992 /* Zero out the extra bits of N in order to avoid them being shifted
1993 into the significant bits. */
1994 if (size < 64 / BITS_PER_MARKER)
1995 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1996
1997 switch (code)
1998 {
1999 case LSHIFT_EXPR:
2000 n->n <<= count;
2001 break;
2002 case RSHIFT_EXPR:
2003 head_marker = HEAD_MARKER (n->n, size);
2004 n->n >>= count;
2005 /* Arithmetic shift of signed type: result is dependent on the value. */
2006 if (!TYPE_UNSIGNED (n->type) && head_marker)
2007 for (i = 0; i < count / BITS_PER_MARKER; i++)
2008 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2009 << ((size - 1 - i) * BITS_PER_MARKER);
2010 break;
2011 case LROTATE_EXPR:
2012 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
2013 break;
2014 case RROTATE_EXPR:
2015 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
2016 break;
2017 default:
2018 return false;
2019 }
2020 /* Zero unused bits for size. */
2021 if (size < 64 / BITS_PER_MARKER)
2022 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2023 return true;
2024 }
2025
2026 /* Perform sanity checking for the symbolic number N and the gimple
2027 statement STMT. */
2028
2029 static inline bool
2030 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
2031 {
2032 tree lhs_type;
2033
2034 lhs_type = gimple_expr_type (stmt);
2035
2036 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
2037 return false;
2038
2039 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
2040 return false;
2041
2042 return true;
2043 }
2044
2045 /* Initialize the symbolic number N for the bswap pass from the base element
2046 SRC manipulated by the bitwise OR expression. */
2047
2048 static bool
2049 init_symbolic_number (struct symbolic_number *n, tree src)
2050 {
2051 int size;
2052
2053 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
2054
2055 /* Set up the symbolic number N by setting each byte to a value between 1 and
2056 the byte size of rhs1. The highest order byte is set to n->size and the
2057 lowest order byte to 1. */
2058 n->type = TREE_TYPE (src);
2059 size = TYPE_PRECISION (n->type);
2060 if (size % BITS_PER_UNIT != 0)
2061 return false;
2062 size /= BITS_PER_UNIT;
2063 if (size > 64 / BITS_PER_MARKER)
2064 return false;
2065 n->range = size;
2066 n->n = CMPNOP;
2067
2068 if (size < 64 / BITS_PER_MARKER)
2069 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2070
2071 return true;
2072 }
2073
2074 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2075 the answer. If so, REF is that memory source and the base of the memory area
2076 accessed and the offset of the access from that base are recorded in N. */
2077
2078 bool
2079 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
2080 {
2081 /* Leaf node is an array or component ref. Memorize its base and
2082 offset from base to compare to other such leaf node. */
2083 HOST_WIDE_INT bitsize, bitpos;
2084 machine_mode mode;
2085 int unsignedp, reversep, volatilep;
2086 tree offset, base_addr;
2087
2088 /* Not prepared to handle PDP endian. */
2089 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2090 return false;
2091
2092 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2093 return false;
2094
2095 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2096 &unsignedp, &reversep, &volatilep, false);
2097
2098 if (TREE_CODE (base_addr) == MEM_REF)
2099 {
2100 offset_int bit_offset = 0;
2101 tree off = TREE_OPERAND (base_addr, 1);
2102
2103 if (!integer_zerop (off))
2104 {
2105 offset_int boff, coff = mem_ref_offset (base_addr);
2106 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2107 bit_offset += boff;
2108 }
2109
2110 base_addr = TREE_OPERAND (base_addr, 0);
2111
2112 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2113 if (wi::neg_p (bit_offset))
2114 {
2115 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2116 offset_int tem = bit_offset.and_not (mask);
2117 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2118 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2119 bit_offset -= tem;
2120 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
2121 if (offset)
2122 offset = size_binop (PLUS_EXPR, offset,
2123 wide_int_to_tree (sizetype, tem));
2124 else
2125 offset = wide_int_to_tree (sizetype, tem);
2126 }
2127
2128 bitpos += bit_offset.to_shwi ();
2129 }
2130
2131 if (bitpos % BITS_PER_UNIT)
2132 return false;
2133 if (bitsize % BITS_PER_UNIT)
2134 return false;
2135 if (reversep)
2136 return false;
2137
2138 if (!init_symbolic_number (n, ref))
2139 return false;
2140 n->base_addr = base_addr;
2141 n->offset = offset;
2142 n->bytepos = bitpos / BITS_PER_UNIT;
2143 n->alias_set = reference_alias_ptr_type (ref);
2144 n->vuse = gimple_vuse (stmt);
2145 return true;
2146 }
2147
2148 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2149 symbolic number N1 and N2 whose source statements are respectively
2150 SOURCE_STMT1 and SOURCE_STMT2. */
2151
2152 static gimple *
2153 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
2154 gimple *source_stmt2, struct symbolic_number *n2,
2155 struct symbolic_number *n)
2156 {
2157 int i, size;
2158 uint64_t mask;
2159 gimple *source_stmt;
2160 struct symbolic_number *n_start;
2161
2162 /* Sources are different, cancel bswap if they are not memory location with
2163 the same base (array, structure, ...). */
2164 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2165 {
2166 uint64_t inc;
2167 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2168 struct symbolic_number *toinc_n_ptr, *n_end;
2169
2170 if (!n1->base_addr || !n2->base_addr
2171 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2172 return NULL;
2173
2174 if (!n1->offset != !n2->offset
2175 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2176 return NULL;
2177
2178 if (n1->bytepos < n2->bytepos)
2179 {
2180 n_start = n1;
2181 start_sub = n2->bytepos - n1->bytepos;
2182 source_stmt = source_stmt1;
2183 }
2184 else
2185 {
2186 n_start = n2;
2187 start_sub = n1->bytepos - n2->bytepos;
2188 source_stmt = source_stmt2;
2189 }
2190
2191 /* Find the highest address at which a load is performed and
2192 compute related info. */
2193 end1 = n1->bytepos + (n1->range - 1);
2194 end2 = n2->bytepos + (n2->range - 1);
2195 if (end1 < end2)
2196 {
2197 end = end2;
2198 end_sub = end2 - end1;
2199 }
2200 else
2201 {
2202 end = end1;
2203 end_sub = end1 - end2;
2204 }
2205 n_end = (end2 > end1) ? n2 : n1;
2206
2207 /* Find symbolic number whose lsb is the most significant. */
2208 if (BYTES_BIG_ENDIAN)
2209 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2210 else
2211 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2212
2213 n->range = end - n_start->bytepos + 1;
2214
2215 /* Check that the range of memory covered can be represented by
2216 a symbolic number. */
2217 if (n->range > 64 / BITS_PER_MARKER)
2218 return NULL;
2219
2220 /* Reinterpret byte marks in symbolic number holding the value of
2221 bigger weight according to target endianness. */
2222 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2223 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2224 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2225 {
2226 unsigned marker
2227 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2228 if (marker && marker != MARKER_BYTE_UNKNOWN)
2229 toinc_n_ptr->n += inc;
2230 }
2231 }
2232 else
2233 {
2234 n->range = n1->range;
2235 n_start = n1;
2236 source_stmt = source_stmt1;
2237 }
2238
2239 if (!n1->alias_set
2240 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2241 n->alias_set = n1->alias_set;
2242 else
2243 n->alias_set = ptr_type_node;
2244 n->vuse = n_start->vuse;
2245 n->base_addr = n_start->base_addr;
2246 n->offset = n_start->offset;
2247 n->bytepos = n_start->bytepos;
2248 n->type = n_start->type;
2249 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2250
2251 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2252 {
2253 uint64_t masked1, masked2;
2254
2255 masked1 = n1->n & mask;
2256 masked2 = n2->n & mask;
2257 if (masked1 && masked2 && masked1 != masked2)
2258 return NULL;
2259 }
2260 n->n = n1->n | n2->n;
2261
2262 return source_stmt;
2263 }
2264
2265 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2266 the operation given by the rhs of STMT on the result. If the operation
2267 could successfully be executed the function returns a gimple stmt whose
2268 rhs's first tree is the expression of the source operand and NULL
2269 otherwise. */
2270
2271 static gimple *
2272 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
2273 {
2274 enum tree_code code;
2275 tree rhs1, rhs2 = NULL;
2276 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
2277 enum gimple_rhs_class rhs_class;
2278
2279 if (!limit || !is_gimple_assign (stmt))
2280 return NULL;
2281
2282 rhs1 = gimple_assign_rhs1 (stmt);
2283
2284 if (find_bswap_or_nop_load (stmt, rhs1, n))
2285 return stmt;
2286
2287 if (TREE_CODE (rhs1) != SSA_NAME)
2288 return NULL;
2289
2290 code = gimple_assign_rhs_code (stmt);
2291 rhs_class = gimple_assign_rhs_class (stmt);
2292 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2293
2294 if (rhs_class == GIMPLE_BINARY_RHS)
2295 rhs2 = gimple_assign_rhs2 (stmt);
2296
2297 /* Handle unary rhs and binary rhs with integer constants as second
2298 operand. */
2299
2300 if (rhs_class == GIMPLE_UNARY_RHS
2301 || (rhs_class == GIMPLE_BINARY_RHS
2302 && TREE_CODE (rhs2) == INTEGER_CST))
2303 {
2304 if (code != BIT_AND_EXPR
2305 && code != LSHIFT_EXPR
2306 && code != RSHIFT_EXPR
2307 && code != LROTATE_EXPR
2308 && code != RROTATE_EXPR
2309 && !CONVERT_EXPR_CODE_P (code))
2310 return NULL;
2311
2312 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2313
2314 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2315 we have to initialize the symbolic number. */
2316 if (!source_stmt1)
2317 {
2318 if (gimple_assign_load_p (stmt)
2319 || !init_symbolic_number (n, rhs1))
2320 return NULL;
2321 source_stmt1 = stmt;
2322 }
2323
2324 switch (code)
2325 {
2326 case BIT_AND_EXPR:
2327 {
2328 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2329 uint64_t val = int_cst_value (rhs2), mask = 0;
2330 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2331
2332 /* Only constants masking full bytes are allowed. */
2333 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2334 if ((val & tmp) != 0 && (val & tmp) != tmp)
2335 return NULL;
2336 else if (val & tmp)
2337 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2338
2339 n->n &= mask;
2340 }
2341 break;
2342 case LSHIFT_EXPR:
2343 case RSHIFT_EXPR:
2344 case LROTATE_EXPR:
2345 case RROTATE_EXPR:
2346 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2347 return NULL;
2348 break;
2349 CASE_CONVERT:
2350 {
2351 int i, type_size, old_type_size;
2352 tree type;
2353
2354 type = gimple_expr_type (stmt);
2355 type_size = TYPE_PRECISION (type);
2356 if (type_size % BITS_PER_UNIT != 0)
2357 return NULL;
2358 type_size /= BITS_PER_UNIT;
2359 if (type_size > 64 / BITS_PER_MARKER)
2360 return NULL;
2361
2362 /* Sign extension: result is dependent on the value. */
2363 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2364 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2365 && HEAD_MARKER (n->n, old_type_size))
2366 for (i = 0; i < type_size - old_type_size; i++)
2367 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2368 << ((type_size - 1 - i) * BITS_PER_MARKER);
2369
2370 if (type_size < 64 / BITS_PER_MARKER)
2371 {
2372 /* If STMT casts to a smaller type mask out the bits not
2373 belonging to the target type. */
2374 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2375 }
2376 n->type = type;
2377 if (!n->base_addr)
2378 n->range = type_size;
2379 }
2380 break;
2381 default:
2382 return NULL;
2383 };
2384 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2385 }
2386
2387 /* Handle binary rhs. */
2388
2389 if (rhs_class == GIMPLE_BINARY_RHS)
2390 {
2391 struct symbolic_number n1, n2;
2392 gimple *source_stmt, *source_stmt2;
2393
2394 if (code != BIT_IOR_EXPR)
2395 return NULL;
2396
2397 if (TREE_CODE (rhs2) != SSA_NAME)
2398 return NULL;
2399
2400 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2401
2402 switch (code)
2403 {
2404 case BIT_IOR_EXPR:
2405 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2406
2407 if (!source_stmt1)
2408 return NULL;
2409
2410 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2411
2412 if (!source_stmt2)
2413 return NULL;
2414
2415 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2416 return NULL;
2417
2418 if (!n1.vuse != !n2.vuse
2419 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2420 return NULL;
2421
2422 source_stmt
2423 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2424
2425 if (!source_stmt)
2426 return NULL;
2427
2428 if (!verify_symbolic_number_p (n, stmt))
2429 return NULL;
2430
2431 break;
2432 default:
2433 return NULL;
2434 }
2435 return source_stmt;
2436 }
2437 return NULL;
2438 }
2439
2440 /* Check if STMT completes a bswap implementation or a read in a given
2441 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2442 accordingly. It also sets N to represent the kind of operations
2443 performed: size of the resulting expression and whether it works on
2444 a memory source, and if so alias-set and vuse. At last, the
2445 function returns a stmt whose rhs's first tree is the source
2446 expression. */
2447
2448 static gimple *
2449 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
2450 {
2451 /* The number which the find_bswap_or_nop_1 result should match in order
2452 to have a full byte swap. The number is shifted to the right
2453 according to the size of the symbolic number before using it. */
2454 uint64_t cmpxchg = CMPXCHG;
2455 uint64_t cmpnop = CMPNOP;
2456
2457 gimple *source_stmt;
2458 int limit;
2459
2460 /* The last parameter determines the depth search limit. It usually
2461 correlates directly to the number n of bytes to be touched. We
2462 increase that number by log2(n) + 1 here in order to also
2463 cover signed -> unsigned conversions of the src operand as can be seen
2464 in libgcc, and for initial shift/and operation of the src operand. */
2465 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2466 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2467 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2468
2469 if (!source_stmt)
2470 return NULL;
2471
2472 /* Find real size of result (highest non-zero byte). */
2473 if (n->base_addr)
2474 {
2475 int rsize;
2476 uint64_t tmpn;
2477
2478 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2479 n->range = rsize;
2480 }
2481
2482 /* Zero out the extra bits of N and CMP*. */
2483 if (n->range < (int) sizeof (int64_t))
2484 {
2485 uint64_t mask;
2486
2487 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2488 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2489 cmpnop &= mask;
2490 }
2491
2492 /* A complete byte swap should make the symbolic number to start with
2493 the largest digit in the highest order byte. Unchanged symbolic
2494 number indicates a read with same endianness as target architecture. */
2495 if (n->n == cmpnop)
2496 *bswap = false;
2497 else if (n->n == cmpxchg)
2498 *bswap = true;
2499 else
2500 return NULL;
2501
2502 /* Useless bit manipulation performed by code. */
2503 if (!n->base_addr && n->n == cmpnop)
2504 return NULL;
2505
2506 n->range *= BITS_PER_UNIT;
2507 return source_stmt;
2508 }
2509
2510 namespace {
2511
2512 const pass_data pass_data_optimize_bswap =
2513 {
2514 GIMPLE_PASS, /* type */
2515 "bswap", /* name */
2516 OPTGROUP_NONE, /* optinfo_flags */
2517 TV_NONE, /* tv_id */
2518 PROP_ssa, /* properties_required */
2519 0, /* properties_provided */
2520 0, /* properties_destroyed */
2521 0, /* todo_flags_start */
2522 0, /* todo_flags_finish */
2523 };
2524
2525 class pass_optimize_bswap : public gimple_opt_pass
2526 {
2527 public:
2528 pass_optimize_bswap (gcc::context *ctxt)
2529 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2530 {}
2531
2532 /* opt_pass methods: */
2533 virtual bool gate (function *)
2534 {
2535 return flag_expensive_optimizations && optimize;
2536 }
2537
2538 virtual unsigned int execute (function *);
2539
2540 }; // class pass_optimize_bswap
2541
2542 /* Perform the bswap optimization: replace the expression computed in the rhs
2543 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2544 Which of these alternatives replace the rhs is given by N->base_addr (non
2545 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2546 load to perform are also given in N while the builtin bswap invoke is given
2547 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2548 load statements involved to construct the rhs in CUR_STMT and N->range gives
2549 the size of the rhs expression for maintaining some statistics.
2550
2551 Note that if the replacement involve a load, CUR_STMT is moved just after
2552 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2553 changing of basic block. */
2554
2555 static bool
2556 bswap_replace (gimple *cur_stmt, gimple *src_stmt, tree fndecl,
2557 tree bswap_type, tree load_type, struct symbolic_number *n,
2558 bool bswap)
2559 {
2560 gimple_stmt_iterator gsi;
2561 tree src, tmp, tgt;
2562 gimple *bswap_stmt;
2563
2564 gsi = gsi_for_stmt (cur_stmt);
2565 src = gimple_assign_rhs1 (src_stmt);
2566 tgt = gimple_assign_lhs (cur_stmt);
2567
2568 /* Need to load the value from memory first. */
2569 if (n->base_addr)
2570 {
2571 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2572 tree addr_expr, addr_tmp, val_expr, val_tmp;
2573 tree load_offset_ptr, aligned_load_type;
2574 gimple *addr_stmt, *load_stmt;
2575 unsigned align;
2576 HOST_WIDE_INT load_offset = 0;
2577
2578 align = get_object_alignment (src);
2579 /* If the new access is smaller than the original one, we need
2580 to perform big endian adjustment. */
2581 if (BYTES_BIG_ENDIAN)
2582 {
2583 HOST_WIDE_INT bitsize, bitpos;
2584 machine_mode mode;
2585 int unsignedp, reversep, volatilep;
2586 tree offset;
2587
2588 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2589 &unsignedp, &reversep, &volatilep, false);
2590 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2591 {
2592 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2593 unsigned HOST_WIDE_INT l
2594 = (load_offset * BITS_PER_UNIT) & (align - 1);
2595 if (l)
2596 align = l & -l;
2597 }
2598 }
2599
2600 if (bswap
2601 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2602 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2603 return false;
2604
2605 /* Move cur_stmt just before one of the load of the original
2606 to ensure it has the same VUSE. See PR61517 for what could
2607 go wrong. */
2608 gsi_move_before (&gsi, &gsi_ins);
2609 gsi = gsi_for_stmt (cur_stmt);
2610
2611 /* Compute address to load from and cast according to the size
2612 of the load. */
2613 addr_expr = build_fold_addr_expr (unshare_expr (src));
2614 if (is_gimple_mem_ref_addr (addr_expr))
2615 addr_tmp = addr_expr;
2616 else
2617 {
2618 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2619 "load_src");
2620 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2621 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2622 }
2623
2624 /* Perform the load. */
2625 aligned_load_type = load_type;
2626 if (align < TYPE_ALIGN (load_type))
2627 aligned_load_type = build_aligned_type (load_type, align);
2628 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2629 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2630 load_offset_ptr);
2631
2632 if (!bswap)
2633 {
2634 if (n->range == 16)
2635 nop_stats.found_16bit++;
2636 else if (n->range == 32)
2637 nop_stats.found_32bit++;
2638 else
2639 {
2640 gcc_assert (n->range == 64);
2641 nop_stats.found_64bit++;
2642 }
2643
2644 /* Convert the result of load if necessary. */
2645 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2646 {
2647 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2648 "load_dst");
2649 load_stmt = gimple_build_assign (val_tmp, val_expr);
2650 gimple_set_vuse (load_stmt, n->vuse);
2651 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2652 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2653 }
2654 else
2655 {
2656 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2657 gimple_set_vuse (cur_stmt, n->vuse);
2658 }
2659 update_stmt (cur_stmt);
2660
2661 if (dump_file)
2662 {
2663 fprintf (dump_file,
2664 "%d bit load in target endianness found at: ",
2665 (int) n->range);
2666 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2667 }
2668 return true;
2669 }
2670 else
2671 {
2672 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2673 load_stmt = gimple_build_assign (val_tmp, val_expr);
2674 gimple_set_vuse (load_stmt, n->vuse);
2675 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2676 }
2677 src = val_tmp;
2678 }
2679
2680 if (n->range == 16)
2681 bswap_stats.found_16bit++;
2682 else if (n->range == 32)
2683 bswap_stats.found_32bit++;
2684 else
2685 {
2686 gcc_assert (n->range == 64);
2687 bswap_stats.found_64bit++;
2688 }
2689
2690 tmp = src;
2691
2692 /* Convert the src expression if necessary. */
2693 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2694 {
2695 gimple *convert_stmt;
2696
2697 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2698 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2699 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2700 }
2701
2702 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2703 are considered as rotation of 2N bit values by N bits is generally not
2704 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2705 gives 0x03040102 while a bswap for that value is 0x04030201. */
2706 if (bswap && n->range == 16)
2707 {
2708 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2709 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2710 bswap_stmt = gimple_build_assign (NULL, src);
2711 }
2712 else
2713 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2714
2715 tmp = tgt;
2716
2717 /* Convert the result if necessary. */
2718 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2719 {
2720 gimple *convert_stmt;
2721
2722 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2723 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2724 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2725 }
2726
2727 gimple_set_lhs (bswap_stmt, tmp);
2728
2729 if (dump_file)
2730 {
2731 fprintf (dump_file, "%d bit bswap implementation found at: ",
2732 (int) n->range);
2733 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2734 }
2735
2736 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2737 gsi_remove (&gsi, true);
2738 return true;
2739 }
2740
2741 /* Find manual byte swap implementations as well as load in a given
2742 endianness. Byte swaps are turned into a bswap builtin invokation
2743 while endian loads are converted to bswap builtin invokation or
2744 simple load according to the target endianness. */
2745
2746 unsigned int
2747 pass_optimize_bswap::execute (function *fun)
2748 {
2749 basic_block bb;
2750 bool bswap32_p, bswap64_p;
2751 bool changed = false;
2752 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2753
2754 if (BITS_PER_UNIT != 8)
2755 return 0;
2756
2757 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2758 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2759 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2760 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2761 || (bswap32_p && word_mode == SImode)));
2762
2763 /* Determine the argument type of the builtins. The code later on
2764 assumes that the return and argument type are the same. */
2765 if (bswap32_p)
2766 {
2767 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2768 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2769 }
2770
2771 if (bswap64_p)
2772 {
2773 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2774 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2775 }
2776
2777 memset (&nop_stats, 0, sizeof (nop_stats));
2778 memset (&bswap_stats, 0, sizeof (bswap_stats));
2779
2780 FOR_EACH_BB_FN (bb, fun)
2781 {
2782 gimple_stmt_iterator gsi;
2783
2784 /* We do a reverse scan for bswap patterns to make sure we get the
2785 widest match. As bswap pattern matching doesn't handle previously
2786 inserted smaller bswap replacements as sub-patterns, the wider
2787 variant wouldn't be detected. */
2788 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2789 {
2790 gimple *src_stmt, *cur_stmt = gsi_stmt (gsi);
2791 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2792 enum tree_code code;
2793 struct symbolic_number n;
2794 bool bswap;
2795
2796 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2797 might be moved to a different basic block by bswap_replace and gsi
2798 must not points to it if that's the case. Moving the gsi_prev
2799 there make sure that gsi points to the statement previous to
2800 cur_stmt while still making sure that all statements are
2801 considered in this basic block. */
2802 gsi_prev (&gsi);
2803
2804 if (!is_gimple_assign (cur_stmt))
2805 continue;
2806
2807 code = gimple_assign_rhs_code (cur_stmt);
2808 switch (code)
2809 {
2810 case LROTATE_EXPR:
2811 case RROTATE_EXPR:
2812 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2813 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2814 % BITS_PER_UNIT)
2815 continue;
2816 /* Fall through. */
2817 case BIT_IOR_EXPR:
2818 break;
2819 default:
2820 continue;
2821 }
2822
2823 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2824
2825 if (!src_stmt)
2826 continue;
2827
2828 switch (n.range)
2829 {
2830 case 16:
2831 /* Already in canonical form, nothing to do. */
2832 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2833 continue;
2834 load_type = bswap_type = uint16_type_node;
2835 break;
2836 case 32:
2837 load_type = uint32_type_node;
2838 if (bswap32_p)
2839 {
2840 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2841 bswap_type = bswap32_type;
2842 }
2843 break;
2844 case 64:
2845 load_type = uint64_type_node;
2846 if (bswap64_p)
2847 {
2848 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2849 bswap_type = bswap64_type;
2850 }
2851 break;
2852 default:
2853 continue;
2854 }
2855
2856 if (bswap && !fndecl && n.range != 16)
2857 continue;
2858
2859 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2860 &n, bswap))
2861 changed = true;
2862 }
2863 }
2864
2865 statistics_counter_event (fun, "16-bit nop implementations found",
2866 nop_stats.found_16bit);
2867 statistics_counter_event (fun, "32-bit nop implementations found",
2868 nop_stats.found_32bit);
2869 statistics_counter_event (fun, "64-bit nop implementations found",
2870 nop_stats.found_64bit);
2871 statistics_counter_event (fun, "16-bit bswap implementations found",
2872 bswap_stats.found_16bit);
2873 statistics_counter_event (fun, "32-bit bswap implementations found",
2874 bswap_stats.found_32bit);
2875 statistics_counter_event (fun, "64-bit bswap implementations found",
2876 bswap_stats.found_64bit);
2877
2878 return (changed ? TODO_update_ssa : 0);
2879 }
2880
2881 } // anon namespace
2882
2883 gimple_opt_pass *
2884 make_pass_optimize_bswap (gcc::context *ctxt)
2885 {
2886 return new pass_optimize_bswap (ctxt);
2887 }
2888
2889 /* Return true if stmt is a type conversion operation that can be stripped
2890 when used in a widening multiply operation. */
2891 static bool
2892 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2893 {
2894 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2895
2896 if (TREE_CODE (result_type) == INTEGER_TYPE)
2897 {
2898 tree op_type;
2899 tree inner_op_type;
2900
2901 if (!CONVERT_EXPR_CODE_P (rhs_code))
2902 return false;
2903
2904 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2905
2906 /* If the type of OP has the same precision as the result, then
2907 we can strip this conversion. The multiply operation will be
2908 selected to create the correct extension as a by-product. */
2909 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2910 return true;
2911
2912 /* We can also strip a conversion if it preserves the signed-ness of
2913 the operation and doesn't narrow the range. */
2914 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2915
2916 /* If the inner-most type is unsigned, then we can strip any
2917 intermediate widening operation. If it's signed, then the
2918 intermediate widening operation must also be signed. */
2919 if ((TYPE_UNSIGNED (inner_op_type)
2920 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2921 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2922 return true;
2923
2924 return false;
2925 }
2926
2927 return rhs_code == FIXED_CONVERT_EXPR;
2928 }
2929
2930 /* Return true if RHS is a suitable operand for a widening multiplication,
2931 assuming a target type of TYPE.
2932 There are two cases:
2933
2934 - RHS makes some value at least twice as wide. Store that value
2935 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2936
2937 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2938 but leave *TYPE_OUT untouched. */
2939
2940 static bool
2941 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2942 tree *new_rhs_out)
2943 {
2944 gimple *stmt;
2945 tree type1, rhs1;
2946
2947 if (TREE_CODE (rhs) == SSA_NAME)
2948 {
2949 stmt = SSA_NAME_DEF_STMT (rhs);
2950 if (is_gimple_assign (stmt))
2951 {
2952 if (! widening_mult_conversion_strippable_p (type, stmt))
2953 rhs1 = rhs;
2954 else
2955 {
2956 rhs1 = gimple_assign_rhs1 (stmt);
2957
2958 if (TREE_CODE (rhs1) == INTEGER_CST)
2959 {
2960 *new_rhs_out = rhs1;
2961 *type_out = NULL;
2962 return true;
2963 }
2964 }
2965 }
2966 else
2967 rhs1 = rhs;
2968
2969 type1 = TREE_TYPE (rhs1);
2970
2971 if (TREE_CODE (type1) != TREE_CODE (type)
2972 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2973 return false;
2974
2975 *new_rhs_out = rhs1;
2976 *type_out = type1;
2977 return true;
2978 }
2979
2980 if (TREE_CODE (rhs) == INTEGER_CST)
2981 {
2982 *new_rhs_out = rhs;
2983 *type_out = NULL;
2984 return true;
2985 }
2986
2987 return false;
2988 }
2989
2990 /* Return true if STMT performs a widening multiplication, assuming the
2991 output type is TYPE. If so, store the unwidened types of the operands
2992 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2993 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2994 and *TYPE2_OUT would give the operands of the multiplication. */
2995
2996 static bool
2997 is_widening_mult_p (gimple *stmt,
2998 tree *type1_out, tree *rhs1_out,
2999 tree *type2_out, tree *rhs2_out)
3000 {
3001 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3002
3003 if (TREE_CODE (type) != INTEGER_TYPE
3004 && TREE_CODE (type) != FIXED_POINT_TYPE)
3005 return false;
3006
3007 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
3008 rhs1_out))
3009 return false;
3010
3011 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
3012 rhs2_out))
3013 return false;
3014
3015 if (*type1_out == NULL)
3016 {
3017 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
3018 return false;
3019 *type1_out = *type2_out;
3020 }
3021
3022 if (*type2_out == NULL)
3023 {
3024 if (!int_fits_type_p (*rhs2_out, *type1_out))
3025 return false;
3026 *type2_out = *type1_out;
3027 }
3028
3029 /* Ensure that the larger of the two operands comes first. */
3030 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
3031 {
3032 std::swap (*type1_out, *type2_out);
3033 std::swap (*rhs1_out, *rhs2_out);
3034 }
3035
3036 return true;
3037 }
3038
3039 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3040 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3041 value is true iff we converted the statement. */
3042
3043 static bool
3044 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
3045 {
3046 tree lhs, rhs1, rhs2, type, type1, type2;
3047 enum insn_code handler;
3048 machine_mode to_mode, from_mode, actual_mode;
3049 optab op;
3050 int actual_precision;
3051 location_t loc = gimple_location (stmt);
3052 bool from_unsigned1, from_unsigned2;
3053
3054 lhs = gimple_assign_lhs (stmt);
3055 type = TREE_TYPE (lhs);
3056 if (TREE_CODE (type) != INTEGER_TYPE)
3057 return false;
3058
3059 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3060 return false;
3061
3062 to_mode = TYPE_MODE (type);
3063 from_mode = TYPE_MODE (type1);
3064 from_unsigned1 = TYPE_UNSIGNED (type1);
3065 from_unsigned2 = TYPE_UNSIGNED (type2);
3066
3067 if (from_unsigned1 && from_unsigned2)
3068 op = umul_widen_optab;
3069 else if (!from_unsigned1 && !from_unsigned2)
3070 op = smul_widen_optab;
3071 else
3072 op = usmul_widen_optab;
3073
3074 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3075 0, &actual_mode);
3076
3077 if (handler == CODE_FOR_nothing)
3078 {
3079 if (op != smul_widen_optab)
3080 {
3081 /* We can use a signed multiply with unsigned types as long as
3082 there is a wider mode to use, or it is the smaller of the two
3083 types that is unsigned. Note that type1 >= type2, always. */
3084 if ((TYPE_UNSIGNED (type1)
3085 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3086 || (TYPE_UNSIGNED (type2)
3087 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3088 {
3089 from_mode = GET_MODE_WIDER_MODE (from_mode);
3090 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3091 return false;
3092 }
3093
3094 op = smul_widen_optab;
3095 handler = find_widening_optab_handler_and_mode (op, to_mode,
3096 from_mode, 0,
3097 &actual_mode);
3098
3099 if (handler == CODE_FOR_nothing)
3100 return false;
3101
3102 from_unsigned1 = from_unsigned2 = false;
3103 }
3104 else
3105 return false;
3106 }
3107
3108 /* Ensure that the inputs to the handler are in the correct precison
3109 for the opcode. This will be the full mode size. */
3110 actual_precision = GET_MODE_PRECISION (actual_mode);
3111 if (2 * actual_precision > TYPE_PRECISION (type))
3112 return false;
3113 if (actual_precision != TYPE_PRECISION (type1)
3114 || from_unsigned1 != TYPE_UNSIGNED (type1))
3115 rhs1 = build_and_insert_cast (gsi, loc,
3116 build_nonstandard_integer_type
3117 (actual_precision, from_unsigned1), rhs1);
3118 if (actual_precision != TYPE_PRECISION (type2)
3119 || from_unsigned2 != TYPE_UNSIGNED (type2))
3120 rhs2 = build_and_insert_cast (gsi, loc,
3121 build_nonstandard_integer_type
3122 (actual_precision, from_unsigned2), rhs2);
3123
3124 /* Handle constants. */
3125 if (TREE_CODE (rhs1) == INTEGER_CST)
3126 rhs1 = fold_convert (type1, rhs1);
3127 if (TREE_CODE (rhs2) == INTEGER_CST)
3128 rhs2 = fold_convert (type2, rhs2);
3129
3130 gimple_assign_set_rhs1 (stmt, rhs1);
3131 gimple_assign_set_rhs2 (stmt, rhs2);
3132 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3133 update_stmt (stmt);
3134 widen_mul_stats.widen_mults_inserted++;
3135 return true;
3136 }
3137
3138 /* Process a single gimple statement STMT, which is found at the
3139 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3140 rhs (given by CODE), and try to convert it into a
3141 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3142 is true iff we converted the statement. */
3143
3144 static bool
3145 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
3146 enum tree_code code)
3147 {
3148 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
3149 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
3150 tree type, type1, type2, optype;
3151 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3152 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3153 optab this_optab;
3154 enum tree_code wmult_code;
3155 enum insn_code handler;
3156 machine_mode to_mode, from_mode, actual_mode;
3157 location_t loc = gimple_location (stmt);
3158 int actual_precision;
3159 bool from_unsigned1, from_unsigned2;
3160
3161 lhs = gimple_assign_lhs (stmt);
3162 type = TREE_TYPE (lhs);
3163 if (TREE_CODE (type) != INTEGER_TYPE
3164 && TREE_CODE (type) != FIXED_POINT_TYPE)
3165 return false;
3166
3167 if (code == MINUS_EXPR)
3168 wmult_code = WIDEN_MULT_MINUS_EXPR;
3169 else
3170 wmult_code = WIDEN_MULT_PLUS_EXPR;
3171
3172 rhs1 = gimple_assign_rhs1 (stmt);
3173 rhs2 = gimple_assign_rhs2 (stmt);
3174
3175 if (TREE_CODE (rhs1) == SSA_NAME)
3176 {
3177 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3178 if (is_gimple_assign (rhs1_stmt))
3179 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3180 }
3181
3182 if (TREE_CODE (rhs2) == SSA_NAME)
3183 {
3184 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3185 if (is_gimple_assign (rhs2_stmt))
3186 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3187 }
3188
3189 /* Allow for one conversion statement between the multiply
3190 and addition/subtraction statement. If there are more than
3191 one conversions then we assume they would invalidate this
3192 transformation. If that's not the case then they should have
3193 been folded before now. */
3194 if (CONVERT_EXPR_CODE_P (rhs1_code))
3195 {
3196 conv1_stmt = rhs1_stmt;
3197 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3198 if (TREE_CODE (rhs1) == SSA_NAME)
3199 {
3200 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3201 if (is_gimple_assign (rhs1_stmt))
3202 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3203 }
3204 else
3205 return false;
3206 }
3207 if (CONVERT_EXPR_CODE_P (rhs2_code))
3208 {
3209 conv2_stmt = rhs2_stmt;
3210 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3211 if (TREE_CODE (rhs2) == SSA_NAME)
3212 {
3213 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3214 if (is_gimple_assign (rhs2_stmt))
3215 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3216 }
3217 else
3218 return false;
3219 }
3220
3221 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3222 is_widening_mult_p, but we still need the rhs returns.
3223
3224 It might also appear that it would be sufficient to use the existing
3225 operands of the widening multiply, but that would limit the choice of
3226 multiply-and-accumulate instructions.
3227
3228 If the widened-multiplication result has more than one uses, it is
3229 probably wiser not to do the conversion. */
3230 if (code == PLUS_EXPR
3231 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3232 {
3233 if (!has_single_use (rhs1)
3234 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3235 &type2, &mult_rhs2))
3236 return false;
3237 add_rhs = rhs2;
3238 conv_stmt = conv1_stmt;
3239 }
3240 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3241 {
3242 if (!has_single_use (rhs2)
3243 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3244 &type2, &mult_rhs2))
3245 return false;
3246 add_rhs = rhs1;
3247 conv_stmt = conv2_stmt;
3248 }
3249 else
3250 return false;
3251
3252 to_mode = TYPE_MODE (type);
3253 from_mode = TYPE_MODE (type1);
3254 from_unsigned1 = TYPE_UNSIGNED (type1);
3255 from_unsigned2 = TYPE_UNSIGNED (type2);
3256 optype = type1;
3257
3258 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3259 if (from_unsigned1 != from_unsigned2)
3260 {
3261 if (!INTEGRAL_TYPE_P (type))
3262 return false;
3263 /* We can use a signed multiply with unsigned types as long as
3264 there is a wider mode to use, or it is the smaller of the two
3265 types that is unsigned. Note that type1 >= type2, always. */
3266 if ((from_unsigned1
3267 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3268 || (from_unsigned2
3269 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3270 {
3271 from_mode = GET_MODE_WIDER_MODE (from_mode);
3272 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3273 return false;
3274 }
3275
3276 from_unsigned1 = from_unsigned2 = false;
3277 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3278 false);
3279 }
3280
3281 /* If there was a conversion between the multiply and addition
3282 then we need to make sure it fits a multiply-and-accumulate.
3283 The should be a single mode change which does not change the
3284 value. */
3285 if (conv_stmt)
3286 {
3287 /* We use the original, unmodified data types for this. */
3288 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3289 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3290 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3291 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3292
3293 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3294 {
3295 /* Conversion is a truncate. */
3296 if (TYPE_PRECISION (to_type) < data_size)
3297 return false;
3298 }
3299 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3300 {
3301 /* Conversion is an extend. Check it's the right sort. */
3302 if (TYPE_UNSIGNED (from_type) != is_unsigned
3303 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3304 return false;
3305 }
3306 /* else convert is a no-op for our purposes. */
3307 }
3308
3309 /* Verify that the machine can perform a widening multiply
3310 accumulate in this mode/signedness combination, otherwise
3311 this transformation is likely to pessimize code. */
3312 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3313 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3314 from_mode, 0, &actual_mode);
3315
3316 if (handler == CODE_FOR_nothing)
3317 return false;
3318
3319 /* Ensure that the inputs to the handler are in the correct precison
3320 for the opcode. This will be the full mode size. */
3321 actual_precision = GET_MODE_PRECISION (actual_mode);
3322 if (actual_precision != TYPE_PRECISION (type1)
3323 || from_unsigned1 != TYPE_UNSIGNED (type1))
3324 mult_rhs1 = build_and_insert_cast (gsi, loc,
3325 build_nonstandard_integer_type
3326 (actual_precision, from_unsigned1),
3327 mult_rhs1);
3328 if (actual_precision != TYPE_PRECISION (type2)
3329 || from_unsigned2 != TYPE_UNSIGNED (type2))
3330 mult_rhs2 = build_and_insert_cast (gsi, loc,
3331 build_nonstandard_integer_type
3332 (actual_precision, from_unsigned2),
3333 mult_rhs2);
3334
3335 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3336 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3337
3338 /* Handle constants. */
3339 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3340 mult_rhs1 = fold_convert (type1, mult_rhs1);
3341 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3342 mult_rhs2 = fold_convert (type2, mult_rhs2);
3343
3344 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3345 add_rhs);
3346 update_stmt (gsi_stmt (*gsi));
3347 widen_mul_stats.maccs_inserted++;
3348 return true;
3349 }
3350
3351 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3352 with uses in additions and subtractions to form fused multiply-add
3353 operations. Returns true if successful and MUL_STMT should be removed. */
3354
3355 static bool
3356 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
3357 {
3358 tree mul_result = gimple_get_lhs (mul_stmt);
3359 tree type = TREE_TYPE (mul_result);
3360 gimple *use_stmt, *neguse_stmt;
3361 gassign *fma_stmt;
3362 use_operand_p use_p;
3363 imm_use_iterator imm_iter;
3364
3365 if (FLOAT_TYPE_P (type)
3366 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3367 return false;
3368
3369 /* We don't want to do bitfield reduction ops. */
3370 if (INTEGRAL_TYPE_P (type)
3371 && (TYPE_PRECISION (type)
3372 != GET_MODE_PRECISION (TYPE_MODE (type))))
3373 return false;
3374
3375 /* If the target doesn't support it, don't generate it. We assume that
3376 if fma isn't available then fms, fnma or fnms are not either. */
3377 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3378 return false;
3379
3380 /* If the multiplication has zero uses, it is kept around probably because
3381 of -fnon-call-exceptions. Don't optimize it away in that case,
3382 it is DCE job. */
3383 if (has_zero_uses (mul_result))
3384 return false;
3385
3386 /* Make sure that the multiplication statement becomes dead after
3387 the transformation, thus that all uses are transformed to FMAs.
3388 This means we assume that an FMA operation has the same cost
3389 as an addition. */
3390 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3391 {
3392 enum tree_code use_code;
3393 tree result = mul_result;
3394 bool negate_p = false;
3395
3396 use_stmt = USE_STMT (use_p);
3397
3398 if (is_gimple_debug (use_stmt))
3399 continue;
3400
3401 /* For now restrict this operations to single basic blocks. In theory
3402 we would want to support sinking the multiplication in
3403 m = a*b;
3404 if ()
3405 ma = m + c;
3406 else
3407 d = m;
3408 to form a fma in the then block and sink the multiplication to the
3409 else block. */
3410 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3411 return false;
3412
3413 if (!is_gimple_assign (use_stmt))
3414 return false;
3415
3416 use_code = gimple_assign_rhs_code (use_stmt);
3417
3418 /* A negate on the multiplication leads to FNMA. */
3419 if (use_code == NEGATE_EXPR)
3420 {
3421 ssa_op_iter iter;
3422 use_operand_p usep;
3423
3424 result = gimple_assign_lhs (use_stmt);
3425
3426 /* Make sure the negate statement becomes dead with this
3427 single transformation. */
3428 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3429 &use_p, &neguse_stmt))
3430 return false;
3431
3432 /* Make sure the multiplication isn't also used on that stmt. */
3433 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3434 if (USE_FROM_PTR (usep) == mul_result)
3435 return false;
3436
3437 /* Re-validate. */
3438 use_stmt = neguse_stmt;
3439 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3440 return false;
3441 if (!is_gimple_assign (use_stmt))
3442 return false;
3443
3444 use_code = gimple_assign_rhs_code (use_stmt);
3445 negate_p = true;
3446 }
3447
3448 switch (use_code)
3449 {
3450 case MINUS_EXPR:
3451 if (gimple_assign_rhs2 (use_stmt) == result)
3452 negate_p = !negate_p;
3453 break;
3454 case PLUS_EXPR:
3455 break;
3456 default:
3457 /* FMA can only be formed from PLUS and MINUS. */
3458 return false;
3459 }
3460
3461 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3462 by a MULT_EXPR that we'll visit later, we might be able to
3463 get a more profitable match with fnma.
3464 OTOH, if we don't, a negate / fma pair has likely lower latency
3465 that a mult / subtract pair. */
3466 if (use_code == MINUS_EXPR && !negate_p
3467 && gimple_assign_rhs1 (use_stmt) == result
3468 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3469 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3470 {
3471 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3472
3473 if (TREE_CODE (rhs2) == SSA_NAME)
3474 {
3475 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
3476 if (has_single_use (rhs2)
3477 && is_gimple_assign (stmt2)
3478 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3479 return false;
3480 }
3481 }
3482
3483 /* We can't handle a * b + a * b. */
3484 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3485 return false;
3486
3487 /* While it is possible to validate whether or not the exact form
3488 that we've recognized is available in the backend, the assumption
3489 is that the transformation is never a loss. For instance, suppose
3490 the target only has the plain FMA pattern available. Consider
3491 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3492 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3493 still have 3 operations, but in the FMA form the two NEGs are
3494 independent and could be run in parallel. */
3495 }
3496
3497 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3498 {
3499 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3500 enum tree_code use_code;
3501 tree addop, mulop1 = op1, result = mul_result;
3502 bool negate_p = false;
3503
3504 if (is_gimple_debug (use_stmt))
3505 continue;
3506
3507 use_code = gimple_assign_rhs_code (use_stmt);
3508 if (use_code == NEGATE_EXPR)
3509 {
3510 result = gimple_assign_lhs (use_stmt);
3511 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3512 gsi_remove (&gsi, true);
3513 release_defs (use_stmt);
3514
3515 use_stmt = neguse_stmt;
3516 gsi = gsi_for_stmt (use_stmt);
3517 use_code = gimple_assign_rhs_code (use_stmt);
3518 negate_p = true;
3519 }
3520
3521 if (gimple_assign_rhs1 (use_stmt) == result)
3522 {
3523 addop = gimple_assign_rhs2 (use_stmt);
3524 /* a * b - c -> a * b + (-c) */
3525 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3526 addop = force_gimple_operand_gsi (&gsi,
3527 build1 (NEGATE_EXPR,
3528 type, addop),
3529 true, NULL_TREE, true,
3530 GSI_SAME_STMT);
3531 }
3532 else
3533 {
3534 addop = gimple_assign_rhs1 (use_stmt);
3535 /* a - b * c -> (-b) * c + a */
3536 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3537 negate_p = !negate_p;
3538 }
3539
3540 if (negate_p)
3541 mulop1 = force_gimple_operand_gsi (&gsi,
3542 build1 (NEGATE_EXPR,
3543 type, mulop1),
3544 true, NULL_TREE, true,
3545 GSI_SAME_STMT);
3546
3547 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3548 FMA_EXPR, mulop1, op2, addop);
3549 gsi_replace (&gsi, fma_stmt, true);
3550 widen_mul_stats.fmas_inserted++;
3551 }
3552
3553 return true;
3554 }
3555
3556
3557 /* Helper function of match_uaddsub_overflow. Return 1
3558 if USE_STMT is unsigned overflow check ovf != 0 for
3559 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
3560 and 0 otherwise. */
3561
3562 static int
3563 uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
3564 {
3565 enum tree_code ccode = ERROR_MARK;
3566 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
3567 if (gimple_code (use_stmt) == GIMPLE_COND)
3568 {
3569 ccode = gimple_cond_code (use_stmt);
3570 crhs1 = gimple_cond_lhs (use_stmt);
3571 crhs2 = gimple_cond_rhs (use_stmt);
3572 }
3573 else if (is_gimple_assign (use_stmt))
3574 {
3575 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3576 {
3577 ccode = gimple_assign_rhs_code (use_stmt);
3578 crhs1 = gimple_assign_rhs1 (use_stmt);
3579 crhs2 = gimple_assign_rhs2 (use_stmt);
3580 }
3581 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
3582 {
3583 tree cond = gimple_assign_rhs1 (use_stmt);
3584 if (COMPARISON_CLASS_P (cond))
3585 {
3586 ccode = TREE_CODE (cond);
3587 crhs1 = TREE_OPERAND (cond, 0);
3588 crhs2 = TREE_OPERAND (cond, 1);
3589 }
3590 else
3591 return 0;
3592 }
3593 else
3594 return 0;
3595 }
3596 else
3597 return 0;
3598
3599 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
3600 return 0;
3601
3602 enum tree_code code = gimple_assign_rhs_code (stmt);
3603 tree lhs = gimple_assign_lhs (stmt);
3604 tree rhs1 = gimple_assign_rhs1 (stmt);
3605 tree rhs2 = gimple_assign_rhs2 (stmt);
3606
3607 switch (ccode)
3608 {
3609 case GT_EXPR:
3610 case LE_EXPR:
3611 /* r = a - b; r > a or r <= a
3612 r = a + b; a > r or a <= r or b > r or b <= r. */
3613 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
3614 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
3615 && crhs2 == lhs))
3616 return ccode == GT_EXPR ? 1 : -1;
3617 break;
3618 case LT_EXPR:
3619 case GE_EXPR:
3620 /* r = a - b; a < r or a >= r
3621 r = a + b; r < a or r >= a or r < b or r >= b. */
3622 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
3623 || (code == PLUS_EXPR && crhs1 == lhs
3624 && (crhs2 == rhs1 || crhs2 == rhs2)))
3625 return ccode == LT_EXPR ? 1 : -1;
3626 break;
3627 default:
3628 break;
3629 }
3630 return 0;
3631 }
3632
3633 /* Recognize for unsigned x
3634 x = y - z;
3635 if (x > y)
3636 where there are other uses of x and replace it with
3637 _7 = SUB_OVERFLOW (y, z);
3638 x = REALPART_EXPR <_7>;
3639 _8 = IMAGPART_EXPR <_7>;
3640 if (_8)
3641 and similarly for addition. */
3642
3643 static bool
3644 match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
3645 enum tree_code code)
3646 {
3647 tree lhs = gimple_assign_lhs (stmt);
3648 tree type = TREE_TYPE (lhs);
3649 use_operand_p use_p;
3650 imm_use_iterator iter;
3651 bool use_seen = false;
3652 bool ovf_use_seen = false;
3653 gimple *use_stmt;
3654
3655 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
3656 if (!INTEGRAL_TYPE_P (type)
3657 || !TYPE_UNSIGNED (type)
3658 || has_zero_uses (lhs)
3659 || has_single_use (lhs)
3660 || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
3661 TYPE_MODE (type)) == CODE_FOR_nothing)
3662 return false;
3663
3664 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
3665 {
3666 use_stmt = USE_STMT (use_p);
3667 if (is_gimple_debug (use_stmt))
3668 continue;
3669
3670 if (uaddsub_overflow_check_p (stmt, use_stmt))
3671 ovf_use_seen = true;
3672 else
3673 use_seen = true;
3674 if (ovf_use_seen && use_seen)
3675 break;
3676 }
3677
3678 if (!ovf_use_seen || !use_seen)
3679 return false;
3680
3681 tree ctype = build_complex_type (type);
3682 tree rhs1 = gimple_assign_rhs1 (stmt);
3683 tree rhs2 = gimple_assign_rhs2 (stmt);
3684 gcall *g = gimple_build_call_internal (code == PLUS_EXPR
3685 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
3686 2, rhs1, rhs2);
3687 tree ctmp = make_ssa_name (ctype);
3688 gimple_call_set_lhs (g, ctmp);
3689 gsi_insert_before (gsi, g, GSI_SAME_STMT);
3690 gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
3691 build1 (REALPART_EXPR, type, ctmp));
3692 gsi_replace (gsi, g2, true);
3693 tree ovf = make_ssa_name (type);
3694 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
3695 build1 (IMAGPART_EXPR, type, ctmp));
3696 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
3697
3698 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3699 {
3700 if (is_gimple_debug (use_stmt))
3701 continue;
3702
3703 int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
3704 if (ovf_use == 0)
3705 continue;
3706 if (gimple_code (use_stmt) == GIMPLE_COND)
3707 {
3708 gcond *cond_stmt = as_a <gcond *> (use_stmt);
3709 gimple_cond_set_lhs (cond_stmt, ovf);
3710 gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
3711 gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3712 }
3713 else
3714 {
3715 gcc_checking_assert (is_gimple_assign (use_stmt));
3716 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3717 {
3718 gimple_assign_set_rhs1 (use_stmt, ovf);
3719 gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3720 gimple_assign_set_rhs_code (use_stmt,
3721 ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3722 }
3723 else
3724 {
3725 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3726 == COND_EXPR);
3727 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3728 boolean_type_node, ovf,
3729 build_int_cst (type, 0));
3730 gimple_assign_set_rhs1 (use_stmt, cond);
3731 }
3732 }
3733 update_stmt (use_stmt);
3734 }
3735 return true;
3736 }
3737
3738
3739 /* Find integer multiplications where the operands are extended from
3740 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3741 where appropriate. */
3742
3743 namespace {
3744
3745 const pass_data pass_data_optimize_widening_mul =
3746 {
3747 GIMPLE_PASS, /* type */
3748 "widening_mul", /* name */
3749 OPTGROUP_NONE, /* optinfo_flags */
3750 TV_NONE, /* tv_id */
3751 PROP_ssa, /* properties_required */
3752 0, /* properties_provided */
3753 0, /* properties_destroyed */
3754 0, /* todo_flags_start */
3755 TODO_update_ssa, /* todo_flags_finish */
3756 };
3757
3758 class pass_optimize_widening_mul : public gimple_opt_pass
3759 {
3760 public:
3761 pass_optimize_widening_mul (gcc::context *ctxt)
3762 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3763 {}
3764
3765 /* opt_pass methods: */
3766 virtual bool gate (function *)
3767 {
3768 return flag_expensive_optimizations && optimize;
3769 }
3770
3771 virtual unsigned int execute (function *);
3772
3773 }; // class pass_optimize_widening_mul
3774
3775 unsigned int
3776 pass_optimize_widening_mul::execute (function *fun)
3777 {
3778 basic_block bb;
3779 bool cfg_changed = false;
3780
3781 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3782
3783 FOR_EACH_BB_FN (bb, fun)
3784 {
3785 gimple_stmt_iterator gsi;
3786
3787 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3788 {
3789 gimple *stmt = gsi_stmt (gsi);
3790 enum tree_code code;
3791
3792 if (is_gimple_assign (stmt))
3793 {
3794 code = gimple_assign_rhs_code (stmt);
3795 switch (code)
3796 {
3797 case MULT_EXPR:
3798 if (!convert_mult_to_widen (stmt, &gsi)
3799 && convert_mult_to_fma (stmt,
3800 gimple_assign_rhs1 (stmt),
3801 gimple_assign_rhs2 (stmt)))
3802 {
3803 gsi_remove (&gsi, true);
3804 release_defs (stmt);
3805 continue;
3806 }
3807 break;
3808
3809 case PLUS_EXPR:
3810 case MINUS_EXPR:
3811 if (!convert_plusminus_to_widen (&gsi, stmt, code))
3812 match_uaddsub_overflow (&gsi, stmt, code);
3813 break;
3814
3815 default:;
3816 }
3817 }
3818 else if (is_gimple_call (stmt)
3819 && gimple_call_lhs (stmt))
3820 {
3821 tree fndecl = gimple_call_fndecl (stmt);
3822 if (fndecl
3823 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3824 {
3825 switch (DECL_FUNCTION_CODE (fndecl))
3826 {
3827 case BUILT_IN_POWF:
3828 case BUILT_IN_POW:
3829 case BUILT_IN_POWL:
3830 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3831 && real_equal
3832 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3833 &dconst2)
3834 && convert_mult_to_fma (stmt,
3835 gimple_call_arg (stmt, 0),
3836 gimple_call_arg (stmt, 0)))
3837 {
3838 unlink_stmt_vdef (stmt);
3839 if (gsi_remove (&gsi, true)
3840 && gimple_purge_dead_eh_edges (bb))
3841 cfg_changed = true;
3842 release_defs (stmt);
3843 continue;
3844 }
3845 break;
3846
3847 default:;
3848 }
3849 }
3850 }
3851 gsi_next (&gsi);
3852 }
3853 }
3854
3855 statistics_counter_event (fun, "widening multiplications inserted",
3856 widen_mul_stats.widen_mults_inserted);
3857 statistics_counter_event (fun, "widening maccs inserted",
3858 widen_mul_stats.maccs_inserted);
3859 statistics_counter_event (fun, "fused multiply-adds inserted",
3860 widen_mul_stats.fmas_inserted);
3861
3862 return cfg_changed ? TODO_cleanup_cfg : 0;
3863 }
3864
3865 } // anon namespace
3866
3867 gimple_opt_pass *
3868 make_pass_optimize_widening_mul (gcc::context *ctxt)
3869 {
3870 return new pass_optimize_widening_mul (ctxt);
3871 }