]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-math-opts.c
re PR tree-optimization/83491 (ICE in execute_cse_reciprocals_1 at gcc/tree-ssa-math...
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 by the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115 #include "optabs-libfuncs.h"
116 #include "tree-eh.h"
117 #include "targhooks.h"
118
119 /* This structure represents one basic block that either computes a
120 division, or is a common dominator for basic block that compute a
121 division. */
122 struct occurrence {
123 /* The basic block represented by this structure. */
124 basic_block bb;
125
126 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
127 inserted in BB. */
128 tree recip_def;
129
130 /* If non-NULL, the SSA_NAME holding the definition for a squared
131 reciprocal inserted in BB. */
132 tree square_recip_def;
133
134 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
135 was inserted in BB. */
136 gimple *recip_def_stmt;
137
138 /* Pointer to a list of "struct occurrence"s for blocks dominated
139 by BB. */
140 struct occurrence *children;
141
142 /* Pointer to the next "struct occurrence"s in the list of blocks
143 sharing a common dominator. */
144 struct occurrence *next;
145
146 /* The number of divisions that are in BB before compute_merit. The
147 number of divisions that are in BB or post-dominate it after
148 compute_merit. */
149 int num_divisions;
150
151 /* True if the basic block has a division, false if it is a common
152 dominator for basic blocks that do. If it is false and trapping
153 math is active, BB is not a candidate for inserting a reciprocal. */
154 bool bb_has_division;
155 };
156
157 static struct
158 {
159 /* Number of 1.0/X ops inserted. */
160 int rdivs_inserted;
161
162 /* Number of 1.0/FUNC ops inserted. */
163 int rfuncs_inserted;
164 } reciprocal_stats;
165
166 static struct
167 {
168 /* Number of cexpi calls inserted. */
169 int inserted;
170 } sincos_stats;
171
172 static struct
173 {
174 /* Number of widening multiplication ops inserted. */
175 int widen_mults_inserted;
176
177 /* Number of integer multiply-and-accumulate ops inserted. */
178 int maccs_inserted;
179
180 /* Number of fp fused multiply-add ops inserted. */
181 int fmas_inserted;
182
183 /* Number of divmod calls inserted. */
184 int divmod_calls_inserted;
185 } widen_mul_stats;
186
187 /* The instance of "struct occurrence" representing the highest
188 interesting block in the dominator tree. */
189 static struct occurrence *occ_head;
190
191 /* Allocation pool for getting instances of "struct occurrence". */
192 static object_allocator<occurrence> *occ_pool;
193
194
195
196 /* Allocate and return a new struct occurrence for basic block BB, and
197 whose children list is headed by CHILDREN. */
198 static struct occurrence *
199 occ_new (basic_block bb, struct occurrence *children)
200 {
201 struct occurrence *occ;
202
203 bb->aux = occ = occ_pool->allocate ();
204 memset (occ, 0, sizeof (struct occurrence));
205
206 occ->bb = bb;
207 occ->children = children;
208 return occ;
209 }
210
211
212 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
213 list of "struct occurrence"s, one per basic block, having IDOM as
214 their common dominator.
215
216 We try to insert NEW_OCC as deep as possible in the tree, and we also
217 insert any other block that is a common dominator for BB and one
218 block already in the tree. */
219
220 static void
221 insert_bb (struct occurrence *new_occ, basic_block idom,
222 struct occurrence **p_head)
223 {
224 struct occurrence *occ, **p_occ;
225
226 for (p_occ = p_head; (occ = *p_occ) != NULL; )
227 {
228 basic_block bb = new_occ->bb, occ_bb = occ->bb;
229 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
230 if (dom == bb)
231 {
232 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
233 from its list. */
234 *p_occ = occ->next;
235 occ->next = new_occ->children;
236 new_occ->children = occ;
237
238 /* Try the next block (it may as well be dominated by BB). */
239 }
240
241 else if (dom == occ_bb)
242 {
243 /* OCC_BB dominates BB. Tail recurse to look deeper. */
244 insert_bb (new_occ, dom, &occ->children);
245 return;
246 }
247
248 else if (dom != idom)
249 {
250 gcc_assert (!dom->aux);
251
252 /* There is a dominator between IDOM and BB, add it and make
253 two children out of NEW_OCC and OCC. First, remove OCC from
254 its list. */
255 *p_occ = occ->next;
256 new_occ->next = occ;
257 occ->next = NULL;
258
259 /* None of the previous blocks has DOM as a dominator: if we tail
260 recursed, we would reexamine them uselessly. Just switch BB with
261 DOM, and go on looking for blocks dominated by DOM. */
262 new_occ = occ_new (dom, new_occ);
263 }
264
265 else
266 {
267 /* Nothing special, go on with the next element. */
268 p_occ = &occ->next;
269 }
270 }
271
272 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
273 new_occ->next = *p_head;
274 *p_head = new_occ;
275 }
276
277 /* Register that we found a division in BB.
278 IMPORTANCE is a measure of how much weighting to give
279 that division. Use IMPORTANCE = 2 to register a single
280 division. If the division is going to be found multiple
281 times use 1 (as it is with squares). */
282
283 static inline void
284 register_division_in (basic_block bb, int importance)
285 {
286 struct occurrence *occ;
287
288 occ = (struct occurrence *) bb->aux;
289 if (!occ)
290 {
291 occ = occ_new (bb, NULL);
292 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
293 }
294
295 occ->bb_has_division = true;
296 occ->num_divisions += importance;
297 }
298
299
300 /* Compute the number of divisions that postdominate each block in OCC and
301 its children. */
302
303 static void
304 compute_merit (struct occurrence *occ)
305 {
306 struct occurrence *occ_child;
307 basic_block dom = occ->bb;
308
309 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
310 {
311 basic_block bb;
312 if (occ_child->children)
313 compute_merit (occ_child);
314
315 if (flag_exceptions)
316 bb = single_noncomplex_succ (dom);
317 else
318 bb = dom;
319
320 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
321 occ->num_divisions += occ_child->num_divisions;
322 }
323 }
324
325
326 /* Return whether USE_STMT is a floating-point division by DEF. */
327 static inline bool
328 is_division_by (gimple *use_stmt, tree def)
329 {
330 return is_gimple_assign (use_stmt)
331 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
332 && gimple_assign_rhs2 (use_stmt) == def
333 /* Do not recognize x / x as valid division, as we are getting
334 confused later by replacing all immediate uses x in such
335 a stmt. */
336 && gimple_assign_rhs1 (use_stmt) != def;
337 }
338
339 /* Return whether USE_STMT is DEF * DEF. */
340 static inline bool
341 is_square_of (gimple *use_stmt, tree def)
342 {
343 if (gimple_code (use_stmt) == GIMPLE_ASSIGN
344 && gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
345 {
346 tree op0 = gimple_assign_rhs1 (use_stmt);
347 tree op1 = gimple_assign_rhs2 (use_stmt);
348
349 return op0 == op1 && op0 == def;
350 }
351 return 0;
352 }
353
354 /* Return whether USE_STMT is a floating-point division by
355 DEF * DEF. */
356 static inline bool
357 is_division_by_square (gimple *use_stmt, tree def)
358 {
359 if (gimple_code (use_stmt) == GIMPLE_ASSIGN
360 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
361 && gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs2 (use_stmt))
362 {
363 tree denominator = gimple_assign_rhs2 (use_stmt);
364 if (TREE_CODE (denominator) == SSA_NAME)
365 {
366 return is_square_of (SSA_NAME_DEF_STMT (denominator), def);
367 }
368 }
369 return 0;
370 }
371
372 /* Walk the subset of the dominator tree rooted at OCC, setting the
373 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
374 the given basic block. The field may be left NULL, of course,
375 if it is not possible or profitable to do the optimization.
376
377 DEF_BSI is an iterator pointing at the statement defining DEF.
378 If RECIP_DEF is set, a dominator already has a computation that can
379 be used.
380
381 If should_insert_square_recip is set, then this also inserts
382 the square of the reciprocal immediately after the definition
383 of the reciprocal. */
384
385 static void
386 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
387 tree def, tree recip_def, tree square_recip_def,
388 int should_insert_square_recip, int threshold)
389 {
390 tree type;
391 gassign *new_stmt, *new_square_stmt;
392 gimple_stmt_iterator gsi;
393 struct occurrence *occ_child;
394
395 if (!recip_def
396 && (occ->bb_has_division || !flag_trapping_math)
397 /* Divide by two as all divisions are counted twice in
398 the costing loop. */
399 && occ->num_divisions / 2 >= threshold)
400 {
401 /* Make a variable with the replacement and substitute it. */
402 type = TREE_TYPE (def);
403 recip_def = create_tmp_reg (type, "reciptmp");
404 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
405 build_one_cst (type), def);
406
407 if (should_insert_square_recip)
408 {
409 square_recip_def = create_tmp_reg (type, "powmult_reciptmp");
410 new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR,
411 recip_def, recip_def);
412 }
413
414 if (occ->bb_has_division)
415 {
416 /* Case 1: insert before an existing division. */
417 gsi = gsi_after_labels (occ->bb);
418 while (!gsi_end_p (gsi)
419 && (!is_division_by (gsi_stmt (gsi), def))
420 && (!is_division_by_square (gsi_stmt (gsi), def)))
421 gsi_next (&gsi);
422
423 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
424 }
425 else if (def_gsi && occ->bb == def_gsi->bb)
426 {
427 /* Case 2: insert right after the definition. Note that this will
428 never happen if the definition statement can throw, because in
429 that case the sole successor of the statement's basic block will
430 dominate all the uses as well. */
431 gsi = *def_gsi;
432 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
433 }
434 else
435 {
436 /* Case 3: insert in a basic block not containing defs/uses. */
437 gsi = gsi_after_labels (occ->bb);
438 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
439 }
440
441 /* Regardless of which case the reciprocal as inserted in,
442 we insert the square immediately after the reciprocal. */
443 if (should_insert_square_recip)
444 gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
445
446 reciprocal_stats.rdivs_inserted++;
447
448 occ->recip_def_stmt = new_stmt;
449 }
450
451 occ->recip_def = recip_def;
452 occ->square_recip_def = square_recip_def;
453 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
454 insert_reciprocals (def_gsi, occ_child, def, recip_def,
455 square_recip_def, should_insert_square_recip,
456 threshold);
457 }
458
459 /* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
460 Take as argument the use for (x * x). */
461 static inline void
462 replace_reciprocal_squares (use_operand_p use_p)
463 {
464 gimple *use_stmt = USE_STMT (use_p);
465 basic_block bb = gimple_bb (use_stmt);
466 struct occurrence *occ = (struct occurrence *) bb->aux;
467
468 if (optimize_bb_for_speed_p (bb) && occ->square_recip_def
469 && occ->recip_def)
470 {
471 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
472 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
473 gimple_assign_set_rhs2 (use_stmt, occ->square_recip_def);
474 SET_USE (use_p, occ->square_recip_def);
475 fold_stmt_inplace (&gsi);
476 update_stmt (use_stmt);
477 }
478 }
479
480
481 /* Replace the division at USE_P with a multiplication by the reciprocal, if
482 possible. */
483
484 static inline void
485 replace_reciprocal (use_operand_p use_p)
486 {
487 gimple *use_stmt = USE_STMT (use_p);
488 basic_block bb = gimple_bb (use_stmt);
489 struct occurrence *occ = (struct occurrence *) bb->aux;
490
491 if (optimize_bb_for_speed_p (bb)
492 && occ->recip_def && use_stmt != occ->recip_def_stmt)
493 {
494 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
495 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
496 SET_USE (use_p, occ->recip_def);
497 fold_stmt_inplace (&gsi);
498 update_stmt (use_stmt);
499 }
500 }
501
502
503 /* Free OCC and return one more "struct occurrence" to be freed. */
504
505 static struct occurrence *
506 free_bb (struct occurrence *occ)
507 {
508 struct occurrence *child, *next;
509
510 /* First get the two pointers hanging off OCC. */
511 next = occ->next;
512 child = occ->children;
513 occ->bb->aux = NULL;
514 occ_pool->remove (occ);
515
516 /* Now ensure that we don't recurse unless it is necessary. */
517 if (!child)
518 return next;
519 else
520 {
521 while (next)
522 next = free_bb (next);
523
524 return child;
525 }
526 }
527
528
529 /* Look for floating-point divisions among DEF's uses, and try to
530 replace them by multiplications with the reciprocal. Add
531 as many statements computing the reciprocal as needed.
532
533 DEF must be a GIMPLE register of a floating-point type. */
534
535 static void
536 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
537 {
538 use_operand_p use_p, square_use_p;
539 imm_use_iterator use_iter, square_use_iter;
540 tree square_def;
541 struct occurrence *occ;
542 int count = 0;
543 int threshold;
544 int square_recip_count = 0;
545 int sqrt_recip_count = 0;
546
547 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def)
548 && TREE_CODE (def) == SSA_NAME);
549 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
550
551 /* If DEF is a square (x * x), count the number of divisions by x.
552 If there are more divisions by x than by (DEF * DEF), prefer to optimize
553 the reciprocal of x instead of DEF. This improves cases like:
554 def = x * x
555 t0 = a / def
556 t1 = b / def
557 t2 = c / x
558 Reciprocal optimization of x results in 1 division rather than 2 or 3. */
559 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
560
561 if (is_gimple_assign (def_stmt)
562 && gimple_assign_rhs_code (def_stmt) == MULT_EXPR
563 && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
564 && gimple_assign_rhs1 (def_stmt) == gimple_assign_rhs2 (def_stmt))
565 {
566 tree op0 = gimple_assign_rhs1 (def_stmt);
567
568 FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0)
569 {
570 gimple *use_stmt = USE_STMT (use_p);
571 if (is_division_by (use_stmt, op0))
572 sqrt_recip_count++;
573 }
574 }
575
576 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
577 {
578 gimple *use_stmt = USE_STMT (use_p);
579 if (is_division_by (use_stmt, def))
580 {
581 register_division_in (gimple_bb (use_stmt), 2);
582 count++;
583 }
584
585 if (is_square_of (use_stmt, def))
586 {
587 square_def = gimple_assign_lhs (use_stmt);
588 FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def)
589 {
590 gimple *square_use_stmt = USE_STMT (square_use_p);
591 if (is_division_by (square_use_stmt, square_def))
592 {
593 /* This is executed twice for each division by a square. */
594 register_division_in (gimple_bb (square_use_stmt), 1);
595 square_recip_count++;
596 }
597 }
598 }
599 }
600
601 /* Square reciprocals were counted twice above. */
602 square_recip_count /= 2;
603
604 /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x). */
605 if (sqrt_recip_count > square_recip_count)
606 return;
607
608 /* Do the expensive part only if we can hope to optimize something. */
609 if (count + square_recip_count >= threshold && count >= 1)
610 {
611 gimple *use_stmt;
612 for (occ = occ_head; occ; occ = occ->next)
613 {
614 compute_merit (occ);
615 insert_reciprocals (def_gsi, occ, def, NULL, NULL,
616 square_recip_count, threshold);
617 }
618
619 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
620 {
621 if (is_division_by (use_stmt, def))
622 {
623 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
624 replace_reciprocal (use_p);
625 }
626 else if (square_recip_count > 0 && is_square_of (use_stmt, def))
627 {
628 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
629 {
630 /* Find all uses of the square that are divisions and
631 * replace them by multiplications with the inverse. */
632 imm_use_iterator square_iterator;
633 gimple *powmult_use_stmt = USE_STMT (use_p);
634 tree powmult_def_name = gimple_assign_lhs (powmult_use_stmt);
635
636 FOR_EACH_IMM_USE_STMT (powmult_use_stmt,
637 square_iterator, powmult_def_name)
638 FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator)
639 {
640 gimple *powmult_use_stmt = USE_STMT (square_use_p);
641 if (is_division_by (powmult_use_stmt, powmult_def_name))
642 replace_reciprocal_squares (square_use_p);
643 }
644 }
645 }
646 }
647 }
648
649 for (occ = occ_head; occ; )
650 occ = free_bb (occ);
651
652 occ_head = NULL;
653 }
654
655 /* Return an internal function that implements the reciprocal of CALL,
656 or IFN_LAST if there is no such function that the target supports. */
657
658 internal_fn
659 internal_fn_reciprocal (gcall *call)
660 {
661 internal_fn ifn;
662
663 switch (gimple_call_combined_fn (call))
664 {
665 CASE_CFN_SQRT:
666 CASE_CFN_SQRT_FN:
667 ifn = IFN_RSQRT;
668 break;
669
670 default:
671 return IFN_LAST;
672 }
673
674 tree_pair types = direct_internal_fn_types (ifn, call);
675 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
676 return IFN_LAST;
677
678 return ifn;
679 }
680
681 /* Go through all the floating-point SSA_NAMEs, and call
682 execute_cse_reciprocals_1 on each of them. */
683 namespace {
684
685 const pass_data pass_data_cse_reciprocals =
686 {
687 GIMPLE_PASS, /* type */
688 "recip", /* name */
689 OPTGROUP_NONE, /* optinfo_flags */
690 TV_TREE_RECIP, /* tv_id */
691 PROP_ssa, /* properties_required */
692 0, /* properties_provided */
693 0, /* properties_destroyed */
694 0, /* todo_flags_start */
695 TODO_update_ssa, /* todo_flags_finish */
696 };
697
698 class pass_cse_reciprocals : public gimple_opt_pass
699 {
700 public:
701 pass_cse_reciprocals (gcc::context *ctxt)
702 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
703 {}
704
705 /* opt_pass methods: */
706 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
707 virtual unsigned int execute (function *);
708
709 }; // class pass_cse_reciprocals
710
711 unsigned int
712 pass_cse_reciprocals::execute (function *fun)
713 {
714 basic_block bb;
715 tree arg;
716
717 occ_pool = new object_allocator<occurrence> ("dominators for recip");
718
719 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
720 calculate_dominance_info (CDI_DOMINATORS);
721 calculate_dominance_info (CDI_POST_DOMINATORS);
722
723 if (flag_checking)
724 FOR_EACH_BB_FN (bb, fun)
725 gcc_assert (!bb->aux);
726
727 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
728 if (FLOAT_TYPE_P (TREE_TYPE (arg))
729 && is_gimple_reg (arg))
730 {
731 tree name = ssa_default_def (fun, arg);
732 if (name)
733 execute_cse_reciprocals_1 (NULL, name);
734 }
735
736 FOR_EACH_BB_FN (bb, fun)
737 {
738 tree def;
739
740 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
741 gsi_next (&gsi))
742 {
743 gphi *phi = gsi.phi ();
744 def = PHI_RESULT (phi);
745 if (! virtual_operand_p (def)
746 && FLOAT_TYPE_P (TREE_TYPE (def)))
747 execute_cse_reciprocals_1 (NULL, def);
748 }
749
750 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
751 gsi_next (&gsi))
752 {
753 gimple *stmt = gsi_stmt (gsi);
754
755 if (gimple_has_lhs (stmt)
756 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
757 && FLOAT_TYPE_P (TREE_TYPE (def))
758 && TREE_CODE (def) == SSA_NAME)
759 execute_cse_reciprocals_1 (&gsi, def);
760 }
761
762 if (optimize_bb_for_size_p (bb))
763 continue;
764
765 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
766 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
767 gsi_next (&gsi))
768 {
769 gimple *stmt = gsi_stmt (gsi);
770
771 if (is_gimple_assign (stmt)
772 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
773 {
774 tree arg1 = gimple_assign_rhs2 (stmt);
775 gimple *stmt1;
776
777 if (TREE_CODE (arg1) != SSA_NAME)
778 continue;
779
780 stmt1 = SSA_NAME_DEF_STMT (arg1);
781
782 if (is_gimple_call (stmt1)
783 && gimple_call_lhs (stmt1))
784 {
785 bool fail;
786 imm_use_iterator ui;
787 use_operand_p use_p;
788 tree fndecl = NULL_TREE;
789
790 gcall *call = as_a <gcall *> (stmt1);
791 internal_fn ifn = internal_fn_reciprocal (call);
792 if (ifn == IFN_LAST)
793 {
794 fndecl = gimple_call_fndecl (call);
795 if (!fndecl
796 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
797 continue;
798 fndecl = targetm.builtin_reciprocal (fndecl);
799 if (!fndecl)
800 continue;
801 }
802
803 /* Check that all uses of the SSA name are divisions,
804 otherwise replacing the defining statement will do
805 the wrong thing. */
806 fail = false;
807 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
808 {
809 gimple *stmt2 = USE_STMT (use_p);
810 if (is_gimple_debug (stmt2))
811 continue;
812 if (!is_gimple_assign (stmt2)
813 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
814 || gimple_assign_rhs1 (stmt2) == arg1
815 || gimple_assign_rhs2 (stmt2) != arg1)
816 {
817 fail = true;
818 break;
819 }
820 }
821 if (fail)
822 continue;
823
824 gimple_replace_ssa_lhs (call, arg1);
825 if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
826 {
827 auto_vec<tree, 4> args;
828 for (unsigned int i = 0;
829 i < gimple_call_num_args (call); i++)
830 args.safe_push (gimple_call_arg (call, i));
831 gcall *stmt2;
832 if (ifn == IFN_LAST)
833 stmt2 = gimple_build_call_vec (fndecl, args);
834 else
835 stmt2 = gimple_build_call_internal_vec (ifn, args);
836 gimple_call_set_lhs (stmt2, arg1);
837 if (gimple_vdef (call))
838 {
839 gimple_set_vdef (stmt2, gimple_vdef (call));
840 SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
841 }
842 gimple_call_set_nothrow (stmt2,
843 gimple_call_nothrow_p (call));
844 gimple_set_vuse (stmt2, gimple_vuse (call));
845 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
846 gsi_replace (&gsi2, stmt2, true);
847 }
848 else
849 {
850 if (ifn == IFN_LAST)
851 gimple_call_set_fndecl (call, fndecl);
852 else
853 gimple_call_set_internal_fn (call, ifn);
854 update_stmt (call);
855 }
856 reciprocal_stats.rfuncs_inserted++;
857
858 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
859 {
860 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
861 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
862 fold_stmt_inplace (&gsi);
863 update_stmt (stmt);
864 }
865 }
866 }
867 }
868 }
869
870 statistics_counter_event (fun, "reciprocal divs inserted",
871 reciprocal_stats.rdivs_inserted);
872 statistics_counter_event (fun, "reciprocal functions inserted",
873 reciprocal_stats.rfuncs_inserted);
874
875 free_dominance_info (CDI_DOMINATORS);
876 free_dominance_info (CDI_POST_DOMINATORS);
877 delete occ_pool;
878 return 0;
879 }
880
881 } // anon namespace
882
883 gimple_opt_pass *
884 make_pass_cse_reciprocals (gcc::context *ctxt)
885 {
886 return new pass_cse_reciprocals (ctxt);
887 }
888
889 /* Records an occurrence at statement USE_STMT in the vector of trees
890 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
891 is not yet initialized. Returns true if the occurrence was pushed on
892 the vector. Adjusts *TOP_BB to be the basic block dominating all
893 statements in the vector. */
894
895 static bool
896 maybe_record_sincos (vec<gimple *> *stmts,
897 basic_block *top_bb, gimple *use_stmt)
898 {
899 basic_block use_bb = gimple_bb (use_stmt);
900 if (*top_bb
901 && (*top_bb == use_bb
902 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
903 stmts->safe_push (use_stmt);
904 else if (!*top_bb
905 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
906 {
907 stmts->safe_push (use_stmt);
908 *top_bb = use_bb;
909 }
910 else
911 return false;
912
913 return true;
914 }
915
916 /* Look for sin, cos and cexpi calls with the same argument NAME and
917 create a single call to cexpi CSEing the result in this case.
918 We first walk over all immediate uses of the argument collecting
919 statements that we can CSE in a vector and in a second pass replace
920 the statement rhs with a REALPART or IMAGPART expression on the
921 result of the cexpi call we insert before the use statement that
922 dominates all other candidates. */
923
924 static bool
925 execute_cse_sincos_1 (tree name)
926 {
927 gimple_stmt_iterator gsi;
928 imm_use_iterator use_iter;
929 tree fndecl, res, type;
930 gimple *def_stmt, *use_stmt, *stmt;
931 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
932 auto_vec<gimple *> stmts;
933 basic_block top_bb = NULL;
934 int i;
935 bool cfg_changed = false;
936
937 type = TREE_TYPE (name);
938 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
939 {
940 if (gimple_code (use_stmt) != GIMPLE_CALL
941 || !gimple_call_lhs (use_stmt))
942 continue;
943
944 switch (gimple_call_combined_fn (use_stmt))
945 {
946 CASE_CFN_COS:
947 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
948 break;
949
950 CASE_CFN_SIN:
951 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
952 break;
953
954 CASE_CFN_CEXPI:
955 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
956 break;
957
958 default:;
959 }
960 }
961
962 if (seen_cos + seen_sin + seen_cexpi <= 1)
963 return false;
964
965 /* Simply insert cexpi at the beginning of top_bb but not earlier than
966 the name def statement. */
967 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
968 if (!fndecl)
969 return false;
970 stmt = gimple_build_call (fndecl, 1, name);
971 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
972 gimple_call_set_lhs (stmt, res);
973
974 def_stmt = SSA_NAME_DEF_STMT (name);
975 if (!SSA_NAME_IS_DEFAULT_DEF (name)
976 && gimple_code (def_stmt) != GIMPLE_PHI
977 && gimple_bb (def_stmt) == top_bb)
978 {
979 gsi = gsi_for_stmt (def_stmt);
980 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
981 }
982 else
983 {
984 gsi = gsi_after_labels (top_bb);
985 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
986 }
987 sincos_stats.inserted++;
988
989 /* And adjust the recorded old call sites. */
990 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
991 {
992 tree rhs = NULL;
993
994 switch (gimple_call_combined_fn (use_stmt))
995 {
996 CASE_CFN_COS:
997 rhs = fold_build1 (REALPART_EXPR, type, res);
998 break;
999
1000 CASE_CFN_SIN:
1001 rhs = fold_build1 (IMAGPART_EXPR, type, res);
1002 break;
1003
1004 CASE_CFN_CEXPI:
1005 rhs = res;
1006 break;
1007
1008 default:;
1009 gcc_unreachable ();
1010 }
1011
1012 /* Replace call with a copy. */
1013 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
1014
1015 gsi = gsi_for_stmt (use_stmt);
1016 gsi_replace (&gsi, stmt, true);
1017 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
1018 cfg_changed = true;
1019 }
1020
1021 return cfg_changed;
1022 }
1023
1024 /* To evaluate powi(x,n), the floating point value x raised to the
1025 constant integer exponent n, we use a hybrid algorithm that
1026 combines the "window method" with look-up tables. For an
1027 introduction to exponentiation algorithms and "addition chains",
1028 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
1029 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
1030 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
1031 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
1032
1033 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
1034 multiplications to inline before calling the system library's pow
1035 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
1036 so this default never requires calling pow, powf or powl. */
1037
1038 #ifndef POWI_MAX_MULTS
1039 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
1040 #endif
1041
1042 /* The size of the "optimal power tree" lookup table. All
1043 exponents less than this value are simply looked up in the
1044 powi_table below. This threshold is also used to size the
1045 cache of pseudo registers that hold intermediate results. */
1046 #define POWI_TABLE_SIZE 256
1047
1048 /* The size, in bits of the window, used in the "window method"
1049 exponentiation algorithm. This is equivalent to a radix of
1050 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
1051 #define POWI_WINDOW_SIZE 3
1052
1053 /* The following table is an efficient representation of an
1054 "optimal power tree". For each value, i, the corresponding
1055 value, j, in the table states than an optimal evaluation
1056 sequence for calculating pow(x,i) can be found by evaluating
1057 pow(x,j)*pow(x,i-j). An optimal power tree for the first
1058 100 integers is given in Knuth's "Seminumerical algorithms". */
1059
1060 static const unsigned char powi_table[POWI_TABLE_SIZE] =
1061 {
1062 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
1063 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
1064 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
1065 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
1066 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
1067 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
1068 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
1069 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
1070 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
1071 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
1072 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
1073 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
1074 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
1075 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
1076 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
1077 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
1078 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
1079 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
1080 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
1081 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
1082 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
1083 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
1084 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
1085 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
1086 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
1087 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
1088 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
1089 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
1090 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
1091 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
1092 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
1093 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
1094 };
1095
1096
1097 /* Return the number of multiplications required to calculate
1098 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
1099 subroutine of powi_cost. CACHE is an array indicating
1100 which exponents have already been calculated. */
1101
1102 static int
1103 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
1104 {
1105 /* If we've already calculated this exponent, then this evaluation
1106 doesn't require any additional multiplications. */
1107 if (cache[n])
1108 return 0;
1109
1110 cache[n] = true;
1111 return powi_lookup_cost (n - powi_table[n], cache)
1112 + powi_lookup_cost (powi_table[n], cache) + 1;
1113 }
1114
1115 /* Return the number of multiplications required to calculate
1116 powi(x,n) for an arbitrary x, given the exponent N. This
1117 function needs to be kept in sync with powi_as_mults below. */
1118
1119 static int
1120 powi_cost (HOST_WIDE_INT n)
1121 {
1122 bool cache[POWI_TABLE_SIZE];
1123 unsigned HOST_WIDE_INT digit;
1124 unsigned HOST_WIDE_INT val;
1125 int result;
1126
1127 if (n == 0)
1128 return 0;
1129
1130 /* Ignore the reciprocal when calculating the cost. */
1131 val = (n < 0) ? -n : n;
1132
1133 /* Initialize the exponent cache. */
1134 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
1135 cache[1] = true;
1136
1137 result = 0;
1138
1139 while (val >= POWI_TABLE_SIZE)
1140 {
1141 if (val & 1)
1142 {
1143 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
1144 result += powi_lookup_cost (digit, cache)
1145 + POWI_WINDOW_SIZE + 1;
1146 val >>= POWI_WINDOW_SIZE;
1147 }
1148 else
1149 {
1150 val >>= 1;
1151 result++;
1152 }
1153 }
1154
1155 return result + powi_lookup_cost (val, cache);
1156 }
1157
1158 /* Recursive subroutine of powi_as_mults. This function takes the
1159 array, CACHE, of already calculated exponents and an exponent N and
1160 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1161
1162 static tree
1163 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1164 HOST_WIDE_INT n, tree *cache)
1165 {
1166 tree op0, op1, ssa_target;
1167 unsigned HOST_WIDE_INT digit;
1168 gassign *mult_stmt;
1169
1170 if (n < POWI_TABLE_SIZE && cache[n])
1171 return cache[n];
1172
1173 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1174
1175 if (n < POWI_TABLE_SIZE)
1176 {
1177 cache[n] = ssa_target;
1178 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1179 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1180 }
1181 else if (n & 1)
1182 {
1183 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1184 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1185 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1186 }
1187 else
1188 {
1189 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1190 op1 = op0;
1191 }
1192
1193 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1194 gimple_set_location (mult_stmt, loc);
1195 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1196
1197 return ssa_target;
1198 }
1199
1200 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1201 This function needs to be kept in sync with powi_cost above. */
1202
1203 static tree
1204 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1205 tree arg0, HOST_WIDE_INT n)
1206 {
1207 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1208 gassign *div_stmt;
1209 tree target;
1210
1211 if (n == 0)
1212 return build_real (type, dconst1);
1213
1214 memset (cache, 0, sizeof (cache));
1215 cache[1] = arg0;
1216
1217 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1218 if (n >= 0)
1219 return result;
1220
1221 /* If the original exponent was negative, reciprocate the result. */
1222 target = make_temp_ssa_name (type, NULL, "powmult");
1223 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1224 build_real (type, dconst1), result);
1225 gimple_set_location (div_stmt, loc);
1226 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1227
1228 return target;
1229 }
1230
1231 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1232 location info LOC. If the arguments are appropriate, create an
1233 equivalent sequence of statements prior to GSI using an optimal
1234 number of multiplications, and return an expession holding the
1235 result. */
1236
1237 static tree
1238 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1239 tree arg0, HOST_WIDE_INT n)
1240 {
1241 /* Avoid largest negative number. */
1242 if (n != -n
1243 && ((n >= -1 && n <= 2)
1244 || (optimize_function_for_speed_p (cfun)
1245 && powi_cost (n) <= POWI_MAX_MULTS)))
1246 return powi_as_mults (gsi, loc, arg0, n);
1247
1248 return NULL_TREE;
1249 }
1250
1251 /* Build a gimple call statement that calls FN with argument ARG.
1252 Set the lhs of the call statement to a fresh SSA name. Insert the
1253 statement prior to GSI's current position, and return the fresh
1254 SSA name. */
1255
1256 static tree
1257 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1258 tree fn, tree arg)
1259 {
1260 gcall *call_stmt;
1261 tree ssa_target;
1262
1263 call_stmt = gimple_build_call (fn, 1, arg);
1264 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1265 gimple_set_lhs (call_stmt, ssa_target);
1266 gimple_set_location (call_stmt, loc);
1267 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1268
1269 return ssa_target;
1270 }
1271
1272 /* Build a gimple binary operation with the given CODE and arguments
1273 ARG0, ARG1, assigning the result to a new SSA name for variable
1274 TARGET. Insert the statement prior to GSI's current position, and
1275 return the fresh SSA name.*/
1276
1277 static tree
1278 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1279 const char *name, enum tree_code code,
1280 tree arg0, tree arg1)
1281 {
1282 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1283 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1284 gimple_set_location (stmt, loc);
1285 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1286 return result;
1287 }
1288
1289 /* Build a gimple reference operation with the given CODE and argument
1290 ARG, assigning the result to a new SSA name of TYPE with NAME.
1291 Insert the statement prior to GSI's current position, and return
1292 the fresh SSA name. */
1293
1294 static inline tree
1295 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1296 const char *name, enum tree_code code, tree arg0)
1297 {
1298 tree result = make_temp_ssa_name (type, NULL, name);
1299 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1300 gimple_set_location (stmt, loc);
1301 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1302 return result;
1303 }
1304
1305 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1306 prior to GSI's current position, and return the fresh SSA name. */
1307
1308 static tree
1309 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1310 tree type, tree val)
1311 {
1312 tree result = make_ssa_name (type);
1313 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1314 gimple_set_location (stmt, loc);
1315 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1316 return result;
1317 }
1318
1319 struct pow_synth_sqrt_info
1320 {
1321 bool *factors;
1322 unsigned int deepest;
1323 unsigned int num_mults;
1324 };
1325
1326 /* Return true iff the real value C can be represented as a
1327 sum of powers of 0.5 up to N. That is:
1328 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1329 Record in INFO the various parameters of the synthesis algorithm such
1330 as the factors a[i], the maximum 0.5 power and the number of
1331 multiplications that will be required. */
1332
1333 bool
1334 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1335 struct pow_synth_sqrt_info *info)
1336 {
1337 REAL_VALUE_TYPE factor = dconsthalf;
1338 REAL_VALUE_TYPE remainder = c;
1339
1340 info->deepest = 0;
1341 info->num_mults = 0;
1342 memset (info->factors, 0, n * sizeof (bool));
1343
1344 for (unsigned i = 0; i < n; i++)
1345 {
1346 REAL_VALUE_TYPE res;
1347
1348 /* If something inexact happened bail out now. */
1349 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1350 return false;
1351
1352 /* We have hit zero. The number is representable as a sum
1353 of powers of 0.5. */
1354 if (real_equal (&res, &dconst0))
1355 {
1356 info->factors[i] = true;
1357 info->deepest = i + 1;
1358 return true;
1359 }
1360 else if (!REAL_VALUE_NEGATIVE (res))
1361 {
1362 remainder = res;
1363 info->factors[i] = true;
1364 info->num_mults++;
1365 }
1366 else
1367 info->factors[i] = false;
1368
1369 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1370 }
1371 return false;
1372 }
1373
1374 /* Return the tree corresponding to FN being applied
1375 to ARG N times at GSI and LOC.
1376 Look up previous results from CACHE if need be.
1377 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1378
1379 static tree
1380 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1381 tree fn, location_t loc, tree *cache)
1382 {
1383 tree res = cache[n];
1384 if (!res)
1385 {
1386 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1387 res = build_and_insert_call (gsi, loc, fn, prev);
1388 cache[n] = res;
1389 }
1390
1391 return res;
1392 }
1393
1394 /* Print to STREAM the repeated application of function FNAME to ARG
1395 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1396 "foo (foo (x))". */
1397
1398 static void
1399 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1400 unsigned int n)
1401 {
1402 if (n == 0)
1403 fprintf (stream, "%s", arg);
1404 else
1405 {
1406 fprintf (stream, "%s (", fname);
1407 print_nested_fn (stream, fname, arg, n - 1);
1408 fprintf (stream, ")");
1409 }
1410 }
1411
1412 /* Print to STREAM the fractional sequence of sqrt chains
1413 applied to ARG, described by INFO. Used for the dump file. */
1414
1415 static void
1416 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1417 struct pow_synth_sqrt_info *info)
1418 {
1419 for (unsigned int i = 0; i < info->deepest; i++)
1420 {
1421 bool is_set = info->factors[i];
1422 if (is_set)
1423 {
1424 print_nested_fn (stream, "sqrt", arg, i + 1);
1425 if (i != info->deepest - 1)
1426 fprintf (stream, " * ");
1427 }
1428 }
1429 }
1430
1431 /* Print to STREAM a representation of raising ARG to an integer
1432 power N. Used for the dump file. */
1433
1434 static void
1435 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1436 {
1437 if (n > 1)
1438 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1439 else if (n == 1)
1440 fprintf (stream, "%s", arg);
1441 }
1442
1443 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1444 square roots. Place at GSI and LOC. Limit the maximum depth
1445 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1446 result of the expanded sequence or NULL_TREE if the expansion failed.
1447
1448 This routine assumes that ARG1 is a real number with a fractional part
1449 (the integer exponent case will have been handled earlier in
1450 gimple_expand_builtin_pow).
1451
1452 For ARG1 > 0.0:
1453 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1454 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1455 FRAC_PART == ARG1 - WHOLE_PART:
1456 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1457 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1458 if it can be expressed as such, that is if FRAC_PART satisfies:
1459 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1460 where integer a[i] is either 0 or 1.
1461
1462 Example:
1463 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1464 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1465
1466 For ARG1 < 0.0 there are two approaches:
1467 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1468 is calculated as above.
1469
1470 Example:
1471 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1472 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1473
1474 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1475 FRAC_PART := ARG1 - WHOLE_PART
1476 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1477 Example:
1478 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1479 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1480
1481 For ARG1 < 0.0 we choose between (A) and (B) depending on
1482 how many multiplications we'd have to do.
1483 So, for the example in (B): POW (x, -5.875), if we were to
1484 follow algorithm (A) we would produce:
1485 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1486 which contains more multiplications than approach (B).
1487
1488 Hopefully, this approach will eliminate potentially expensive POW library
1489 calls when unsafe floating point math is enabled and allow the compiler to
1490 further optimise the multiplies, square roots and divides produced by this
1491 function. */
1492
1493 static tree
1494 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1495 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1496 {
1497 tree type = TREE_TYPE (arg0);
1498 machine_mode mode = TYPE_MODE (type);
1499 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1500 bool one_over = true;
1501
1502 if (!sqrtfn)
1503 return NULL_TREE;
1504
1505 if (TREE_CODE (arg1) != REAL_CST)
1506 return NULL_TREE;
1507
1508 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1509
1510 gcc_assert (max_depth > 0);
1511 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1512
1513 struct pow_synth_sqrt_info synth_info;
1514 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1515 synth_info.deepest = 0;
1516 synth_info.num_mults = 0;
1517
1518 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1519 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1520
1521 /* The whole and fractional parts of exp. */
1522 REAL_VALUE_TYPE whole_part;
1523 REAL_VALUE_TYPE frac_part;
1524
1525 real_floor (&whole_part, mode, &exp);
1526 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1527
1528
1529 REAL_VALUE_TYPE ceil_whole = dconst0;
1530 REAL_VALUE_TYPE ceil_fract = dconst0;
1531
1532 if (neg_exp)
1533 {
1534 real_ceil (&ceil_whole, mode, &exp);
1535 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1536 }
1537
1538 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1539 return NULL_TREE;
1540
1541 /* Check whether it's more profitable to not use 1.0 / ... */
1542 if (neg_exp)
1543 {
1544 struct pow_synth_sqrt_info alt_synth_info;
1545 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1546 alt_synth_info.deepest = 0;
1547 alt_synth_info.num_mults = 0;
1548
1549 if (representable_as_half_series_p (ceil_fract, max_depth,
1550 &alt_synth_info)
1551 && alt_synth_info.deepest <= synth_info.deepest
1552 && alt_synth_info.num_mults < synth_info.num_mults)
1553 {
1554 whole_part = ceil_whole;
1555 frac_part = ceil_fract;
1556 synth_info.deepest = alt_synth_info.deepest;
1557 synth_info.num_mults = alt_synth_info.num_mults;
1558 memcpy (synth_info.factors, alt_synth_info.factors,
1559 (max_depth + 1) * sizeof (bool));
1560 one_over = false;
1561 }
1562 }
1563
1564 HOST_WIDE_INT n = real_to_integer (&whole_part);
1565 REAL_VALUE_TYPE cint;
1566 real_from_integer (&cint, VOIDmode, n, SIGNED);
1567
1568 if (!real_identical (&whole_part, &cint))
1569 return NULL_TREE;
1570
1571 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1572 return NULL_TREE;
1573
1574 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1575
1576 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1577
1578 /* Calculate the integer part of the exponent. */
1579 if (n > 1)
1580 {
1581 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1582 if (!integer_res)
1583 return NULL_TREE;
1584 }
1585
1586 if (dump_file)
1587 {
1588 char string[64];
1589
1590 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1591 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1592
1593 if (neg_exp)
1594 {
1595 if (one_over)
1596 {
1597 fprintf (dump_file, "1.0 / (");
1598 dump_integer_part (dump_file, "x", n);
1599 if (n > 0)
1600 fprintf (dump_file, " * ");
1601 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1602 fprintf (dump_file, ")");
1603 }
1604 else
1605 {
1606 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1607 fprintf (dump_file, " / (");
1608 dump_integer_part (dump_file, "x", n);
1609 fprintf (dump_file, ")");
1610 }
1611 }
1612 else
1613 {
1614 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1615 if (n > 0)
1616 fprintf (dump_file, " * ");
1617 dump_integer_part (dump_file, "x", n);
1618 }
1619
1620 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1621 }
1622
1623
1624 tree fract_res = NULL_TREE;
1625 cache[0] = arg0;
1626
1627 /* Calculate the fractional part of the exponent. */
1628 for (unsigned i = 0; i < synth_info.deepest; i++)
1629 {
1630 if (synth_info.factors[i])
1631 {
1632 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1633
1634 if (!fract_res)
1635 fract_res = sqrt_chain;
1636
1637 else
1638 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1639 fract_res, sqrt_chain);
1640 }
1641 }
1642
1643 tree res = NULL_TREE;
1644
1645 if (neg_exp)
1646 {
1647 if (one_over)
1648 {
1649 if (n > 0)
1650 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1651 fract_res, integer_res);
1652 else
1653 res = fract_res;
1654
1655 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1656 build_real (type, dconst1), res);
1657 }
1658 else
1659 {
1660 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1661 fract_res, integer_res);
1662 }
1663 }
1664 else
1665 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1666 fract_res, integer_res);
1667 return res;
1668 }
1669
1670 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1671 with location info LOC. If possible, create an equivalent and
1672 less expensive sequence of statements prior to GSI, and return an
1673 expession holding the result. */
1674
1675 static tree
1676 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1677 tree arg0, tree arg1)
1678 {
1679 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1680 REAL_VALUE_TYPE c2, dconst3;
1681 HOST_WIDE_INT n;
1682 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1683 machine_mode mode;
1684 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1685 bool hw_sqrt_exists, c_is_int, c2_is_int;
1686
1687 dconst1_4 = dconst1;
1688 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1689
1690 /* If the exponent isn't a constant, there's nothing of interest
1691 to be done. */
1692 if (TREE_CODE (arg1) != REAL_CST)
1693 return NULL_TREE;
1694
1695 /* Don't perform the operation if flag_signaling_nans is on
1696 and the operand is a signaling NaN. */
1697 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1698 && ((TREE_CODE (arg0) == REAL_CST
1699 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
1700 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1701 return NULL_TREE;
1702
1703 /* If the exponent is equivalent to an integer, expand to an optimal
1704 multiplication sequence when profitable. */
1705 c = TREE_REAL_CST (arg1);
1706 n = real_to_integer (&c);
1707 real_from_integer (&cint, VOIDmode, n, SIGNED);
1708 c_is_int = real_identical (&c, &cint);
1709
1710 if (c_is_int
1711 && ((n >= -1 && n <= 2)
1712 || (flag_unsafe_math_optimizations
1713 && speed_p
1714 && powi_cost (n) <= POWI_MAX_MULTS)))
1715 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1716
1717 /* Attempt various optimizations using sqrt and cbrt. */
1718 type = TREE_TYPE (arg0);
1719 mode = TYPE_MODE (type);
1720 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1721
1722 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1723 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1724 sqrt(-0) = -0. */
1725 if (sqrtfn
1726 && real_equal (&c, &dconsthalf)
1727 && !HONOR_SIGNED_ZEROS (mode))
1728 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1729
1730 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1731
1732 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1733 optimizations since 1./3. is not exactly representable. If x
1734 is negative and finite, the correct value of pow(x,1./3.) is
1735 a NaN with the "invalid" exception raised, because the value
1736 of 1./3. actually has an even denominator. The correct value
1737 of cbrt(x) is a negative real value. */
1738 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1739 dconst1_3 = real_value_truncate (mode, dconst_third ());
1740
1741 if (flag_unsafe_math_optimizations
1742 && cbrtfn
1743 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1744 && real_equal (&c, &dconst1_3))
1745 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1746
1747 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1748 if we don't have a hardware sqrt insn. */
1749 dconst1_6 = dconst1_3;
1750 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1751
1752 if (flag_unsafe_math_optimizations
1753 && sqrtfn
1754 && cbrtfn
1755 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1756 && speed_p
1757 && hw_sqrt_exists
1758 && real_equal (&c, &dconst1_6))
1759 {
1760 /* sqrt(x) */
1761 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1762
1763 /* cbrt(sqrt(x)) */
1764 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1765 }
1766
1767
1768 /* Attempt to expand the POW as a product of square root chains.
1769 Expand the 0.25 case even when otpimising for size. */
1770 if (flag_unsafe_math_optimizations
1771 && sqrtfn
1772 && hw_sqrt_exists
1773 && (speed_p || real_equal (&c, &dconst1_4))
1774 && !HONOR_SIGNED_ZEROS (mode))
1775 {
1776 unsigned int max_depth = speed_p
1777 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1778 : 2;
1779
1780 tree expand_with_sqrts
1781 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1782
1783 if (expand_with_sqrts)
1784 return expand_with_sqrts;
1785 }
1786
1787 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1788 n = real_to_integer (&c2);
1789 real_from_integer (&cint, VOIDmode, n, SIGNED);
1790 c2_is_int = real_identical (&c2, &cint);
1791
1792 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1793
1794 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1795 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1796
1797 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1798 different from pow(x, 1./3.) due to rounding and behavior with
1799 negative x, we need to constrain this transformation to unsafe
1800 math and positive x or finite math. */
1801 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1802 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1803 real_round (&c2, mode, &c2);
1804 n = real_to_integer (&c2);
1805 real_from_integer (&cint, VOIDmode, n, SIGNED);
1806 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1807 real_convert (&c2, mode, &c2);
1808
1809 if (flag_unsafe_math_optimizations
1810 && cbrtfn
1811 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1812 && real_identical (&c2, &c)
1813 && !c2_is_int
1814 && optimize_function_for_speed_p (cfun)
1815 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1816 {
1817 tree powi_x_ndiv3 = NULL_TREE;
1818
1819 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1820 possible or profitable, give up. Skip the degenerate case when
1821 abs(n) < 3, where the result is always 1. */
1822 if (absu_hwi (n) >= 3)
1823 {
1824 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1825 abs_hwi (n / 3));
1826 if (!powi_x_ndiv3)
1827 return NULL_TREE;
1828 }
1829
1830 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1831 as that creates an unnecessary variable. Instead, just produce
1832 either cbrt(x) or cbrt(x) * cbrt(x). */
1833 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1834
1835 if (absu_hwi (n) % 3 == 1)
1836 powi_cbrt_x = cbrt_x;
1837 else
1838 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1839 cbrt_x, cbrt_x);
1840
1841 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1842 if (absu_hwi (n) < 3)
1843 result = powi_cbrt_x;
1844 else
1845 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1846 powi_x_ndiv3, powi_cbrt_x);
1847
1848 /* If n is negative, reciprocate the result. */
1849 if (n < 0)
1850 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1851 build_real (type, dconst1), result);
1852
1853 return result;
1854 }
1855
1856 /* No optimizations succeeded. */
1857 return NULL_TREE;
1858 }
1859
1860 /* ARG is the argument to a cabs builtin call in GSI with location info
1861 LOC. Create a sequence of statements prior to GSI that calculates
1862 sqrt(R*R + I*I), where R and I are the real and imaginary components
1863 of ARG, respectively. Return an expression holding the result. */
1864
1865 static tree
1866 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1867 {
1868 tree real_part, imag_part, addend1, addend2, sum, result;
1869 tree type = TREE_TYPE (TREE_TYPE (arg));
1870 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1871 machine_mode mode = TYPE_MODE (type);
1872
1873 if (!flag_unsafe_math_optimizations
1874 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1875 || !sqrtfn
1876 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1877 return NULL_TREE;
1878
1879 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1880 REALPART_EXPR, arg);
1881 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1882 real_part, real_part);
1883 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1884 IMAGPART_EXPR, arg);
1885 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1886 imag_part, imag_part);
1887 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1888 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1889
1890 return result;
1891 }
1892
1893 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1894 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1895 an optimal number of multiplies, when n is a constant. */
1896
1897 namespace {
1898
1899 const pass_data pass_data_cse_sincos =
1900 {
1901 GIMPLE_PASS, /* type */
1902 "sincos", /* name */
1903 OPTGROUP_NONE, /* optinfo_flags */
1904 TV_TREE_SINCOS, /* tv_id */
1905 PROP_ssa, /* properties_required */
1906 PROP_gimple_opt_math, /* properties_provided */
1907 0, /* properties_destroyed */
1908 0, /* todo_flags_start */
1909 TODO_update_ssa, /* todo_flags_finish */
1910 };
1911
1912 class pass_cse_sincos : public gimple_opt_pass
1913 {
1914 public:
1915 pass_cse_sincos (gcc::context *ctxt)
1916 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1917 {}
1918
1919 /* opt_pass methods: */
1920 virtual bool gate (function *)
1921 {
1922 /* We no longer require either sincos or cexp, since powi expansion
1923 piggybacks on this pass. */
1924 return optimize;
1925 }
1926
1927 virtual unsigned int execute (function *);
1928
1929 }; // class pass_cse_sincos
1930
1931 unsigned int
1932 pass_cse_sincos::execute (function *fun)
1933 {
1934 basic_block bb;
1935 bool cfg_changed = false;
1936
1937 calculate_dominance_info (CDI_DOMINATORS);
1938 memset (&sincos_stats, 0, sizeof (sincos_stats));
1939
1940 FOR_EACH_BB_FN (bb, fun)
1941 {
1942 gimple_stmt_iterator gsi;
1943 bool cleanup_eh = false;
1944
1945 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1946 {
1947 gimple *stmt = gsi_stmt (gsi);
1948
1949 /* Only the last stmt in a bb could throw, no need to call
1950 gimple_purge_dead_eh_edges if we change something in the middle
1951 of a basic block. */
1952 cleanup_eh = false;
1953
1954 if (is_gimple_call (stmt)
1955 && gimple_call_lhs (stmt))
1956 {
1957 tree arg, arg0, arg1, result;
1958 HOST_WIDE_INT n;
1959 location_t loc;
1960
1961 switch (gimple_call_combined_fn (stmt))
1962 {
1963 CASE_CFN_COS:
1964 CASE_CFN_SIN:
1965 CASE_CFN_CEXPI:
1966 /* Make sure we have either sincos or cexp. */
1967 if (!targetm.libc_has_function (function_c99_math_complex)
1968 && !targetm.libc_has_function (function_sincos))
1969 break;
1970
1971 arg = gimple_call_arg (stmt, 0);
1972 if (TREE_CODE (arg) == SSA_NAME)
1973 cfg_changed |= execute_cse_sincos_1 (arg);
1974 break;
1975
1976 CASE_CFN_POW:
1977 arg0 = gimple_call_arg (stmt, 0);
1978 arg1 = gimple_call_arg (stmt, 1);
1979
1980 loc = gimple_location (stmt);
1981 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1982
1983 if (result)
1984 {
1985 tree lhs = gimple_get_lhs (stmt);
1986 gassign *new_stmt = gimple_build_assign (lhs, result);
1987 gimple_set_location (new_stmt, loc);
1988 unlink_stmt_vdef (stmt);
1989 gsi_replace (&gsi, new_stmt, true);
1990 cleanup_eh = true;
1991 if (gimple_vdef (stmt))
1992 release_ssa_name (gimple_vdef (stmt));
1993 }
1994 break;
1995
1996 CASE_CFN_POWI:
1997 arg0 = gimple_call_arg (stmt, 0);
1998 arg1 = gimple_call_arg (stmt, 1);
1999 loc = gimple_location (stmt);
2000
2001 if (real_minus_onep (arg0))
2002 {
2003 tree t0, t1, cond, one, minus_one;
2004 gassign *stmt;
2005
2006 t0 = TREE_TYPE (arg0);
2007 t1 = TREE_TYPE (arg1);
2008 one = build_real (t0, dconst1);
2009 minus_one = build_real (t0, dconstm1);
2010
2011 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
2012 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
2013 arg1, build_int_cst (t1, 1));
2014 gimple_set_location (stmt, loc);
2015 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2016
2017 result = make_temp_ssa_name (t0, NULL, "powi");
2018 stmt = gimple_build_assign (result, COND_EXPR, cond,
2019 minus_one, one);
2020 gimple_set_location (stmt, loc);
2021 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2022 }
2023 else
2024 {
2025 if (!tree_fits_shwi_p (arg1))
2026 break;
2027
2028 n = tree_to_shwi (arg1);
2029 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
2030 }
2031
2032 if (result)
2033 {
2034 tree lhs = gimple_get_lhs (stmt);
2035 gassign *new_stmt = gimple_build_assign (lhs, result);
2036 gimple_set_location (new_stmt, loc);
2037 unlink_stmt_vdef (stmt);
2038 gsi_replace (&gsi, new_stmt, true);
2039 cleanup_eh = true;
2040 if (gimple_vdef (stmt))
2041 release_ssa_name (gimple_vdef (stmt));
2042 }
2043 break;
2044
2045 CASE_CFN_CABS:
2046 arg0 = gimple_call_arg (stmt, 0);
2047 loc = gimple_location (stmt);
2048 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
2049
2050 if (result)
2051 {
2052 tree lhs = gimple_get_lhs (stmt);
2053 gassign *new_stmt = gimple_build_assign (lhs, result);
2054 gimple_set_location (new_stmt, loc);
2055 unlink_stmt_vdef (stmt);
2056 gsi_replace (&gsi, new_stmt, true);
2057 cleanup_eh = true;
2058 if (gimple_vdef (stmt))
2059 release_ssa_name (gimple_vdef (stmt));
2060 }
2061 break;
2062
2063 default:;
2064 }
2065 }
2066 }
2067 if (cleanup_eh)
2068 cfg_changed |= gimple_purge_dead_eh_edges (bb);
2069 }
2070
2071 statistics_counter_event (fun, "sincos statements inserted",
2072 sincos_stats.inserted);
2073
2074 return cfg_changed ? TODO_cleanup_cfg : 0;
2075 }
2076
2077 } // anon namespace
2078
2079 gimple_opt_pass *
2080 make_pass_cse_sincos (gcc::context *ctxt)
2081 {
2082 return new pass_cse_sincos (ctxt);
2083 }
2084
2085 /* Return true if stmt is a type conversion operation that can be stripped
2086 when used in a widening multiply operation. */
2087 static bool
2088 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2089 {
2090 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2091
2092 if (TREE_CODE (result_type) == INTEGER_TYPE)
2093 {
2094 tree op_type;
2095 tree inner_op_type;
2096
2097 if (!CONVERT_EXPR_CODE_P (rhs_code))
2098 return false;
2099
2100 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2101
2102 /* If the type of OP has the same precision as the result, then
2103 we can strip this conversion. The multiply operation will be
2104 selected to create the correct extension as a by-product. */
2105 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2106 return true;
2107
2108 /* We can also strip a conversion if it preserves the signed-ness of
2109 the operation and doesn't narrow the range. */
2110 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2111
2112 /* If the inner-most type is unsigned, then we can strip any
2113 intermediate widening operation. If it's signed, then the
2114 intermediate widening operation must also be signed. */
2115 if ((TYPE_UNSIGNED (inner_op_type)
2116 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2117 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2118 return true;
2119
2120 return false;
2121 }
2122
2123 return rhs_code == FIXED_CONVERT_EXPR;
2124 }
2125
2126 /* Return true if RHS is a suitable operand for a widening multiplication,
2127 assuming a target type of TYPE.
2128 There are two cases:
2129
2130 - RHS makes some value at least twice as wide. Store that value
2131 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2132
2133 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2134 but leave *TYPE_OUT untouched. */
2135
2136 static bool
2137 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2138 tree *new_rhs_out)
2139 {
2140 gimple *stmt;
2141 tree type1, rhs1;
2142
2143 if (TREE_CODE (rhs) == SSA_NAME)
2144 {
2145 stmt = SSA_NAME_DEF_STMT (rhs);
2146 if (is_gimple_assign (stmt))
2147 {
2148 if (! widening_mult_conversion_strippable_p (type, stmt))
2149 rhs1 = rhs;
2150 else
2151 {
2152 rhs1 = gimple_assign_rhs1 (stmt);
2153
2154 if (TREE_CODE (rhs1) == INTEGER_CST)
2155 {
2156 *new_rhs_out = rhs1;
2157 *type_out = NULL;
2158 return true;
2159 }
2160 }
2161 }
2162 else
2163 rhs1 = rhs;
2164
2165 type1 = TREE_TYPE (rhs1);
2166
2167 if (TREE_CODE (type1) != TREE_CODE (type)
2168 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2169 return false;
2170
2171 *new_rhs_out = rhs1;
2172 *type_out = type1;
2173 return true;
2174 }
2175
2176 if (TREE_CODE (rhs) == INTEGER_CST)
2177 {
2178 *new_rhs_out = rhs;
2179 *type_out = NULL;
2180 return true;
2181 }
2182
2183 return false;
2184 }
2185
2186 /* Return true if STMT performs a widening multiplication, assuming the
2187 output type is TYPE. If so, store the unwidened types of the operands
2188 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2189 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2190 and *TYPE2_OUT would give the operands of the multiplication. */
2191
2192 static bool
2193 is_widening_mult_p (gimple *stmt,
2194 tree *type1_out, tree *rhs1_out,
2195 tree *type2_out, tree *rhs2_out)
2196 {
2197 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2198
2199 if (TREE_CODE (type) != INTEGER_TYPE
2200 && TREE_CODE (type) != FIXED_POINT_TYPE)
2201 return false;
2202
2203 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2204 rhs1_out))
2205 return false;
2206
2207 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2208 rhs2_out))
2209 return false;
2210
2211 if (*type1_out == NULL)
2212 {
2213 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2214 return false;
2215 *type1_out = *type2_out;
2216 }
2217
2218 if (*type2_out == NULL)
2219 {
2220 if (!int_fits_type_p (*rhs2_out, *type1_out))
2221 return false;
2222 *type2_out = *type1_out;
2223 }
2224
2225 /* Ensure that the larger of the two operands comes first. */
2226 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2227 {
2228 std::swap (*type1_out, *type2_out);
2229 std::swap (*rhs1_out, *rhs2_out);
2230 }
2231
2232 return true;
2233 }
2234
2235 /* Check to see if the CALL statement is an invocation of copysign
2236 with 1. being the first argument. */
2237 static bool
2238 is_copysign_call_with_1 (gimple *call)
2239 {
2240 gcall *c = dyn_cast <gcall *> (call);
2241 if (! c)
2242 return false;
2243
2244 enum combined_fn code = gimple_call_combined_fn (c);
2245
2246 if (code == CFN_LAST)
2247 return false;
2248
2249 if (builtin_fn_p (code))
2250 {
2251 switch (as_builtin_fn (code))
2252 {
2253 CASE_FLT_FN (BUILT_IN_COPYSIGN):
2254 CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
2255 return real_onep (gimple_call_arg (c, 0));
2256 default:
2257 return false;
2258 }
2259 }
2260
2261 if (internal_fn_p (code))
2262 {
2263 switch (as_internal_fn (code))
2264 {
2265 case IFN_COPYSIGN:
2266 return real_onep (gimple_call_arg (c, 0));
2267 default:
2268 return false;
2269 }
2270 }
2271
2272 return false;
2273 }
2274
2275 /* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
2276 This only happens when the the xorsign optab is defined, if the
2277 pattern is not a xorsign pattern or if expansion fails FALSE is
2278 returned, otherwise TRUE is returned. */
2279 static bool
2280 convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi)
2281 {
2282 tree treeop0, treeop1, lhs, type;
2283 location_t loc = gimple_location (stmt);
2284 lhs = gimple_assign_lhs (stmt);
2285 treeop0 = gimple_assign_rhs1 (stmt);
2286 treeop1 = gimple_assign_rhs2 (stmt);
2287 type = TREE_TYPE (lhs);
2288 machine_mode mode = TYPE_MODE (type);
2289
2290 if (HONOR_SNANS (type))
2291 return false;
2292
2293 if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME)
2294 {
2295 gimple *call0 = SSA_NAME_DEF_STMT (treeop0);
2296 if (!has_single_use (treeop0) || !is_copysign_call_with_1 (call0))
2297 {
2298 call0 = SSA_NAME_DEF_STMT (treeop1);
2299 if (!has_single_use (treeop1) || !is_copysign_call_with_1 (call0))
2300 return false;
2301
2302 treeop1 = treeop0;
2303 }
2304 if (optab_handler (xorsign_optab, mode) == CODE_FOR_nothing)
2305 return false;
2306
2307 gcall *c = as_a<gcall*> (call0);
2308 treeop0 = gimple_call_arg (c, 1);
2309
2310 gcall *call_stmt
2311 = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0);
2312 gimple_set_lhs (call_stmt, lhs);
2313 gimple_set_location (call_stmt, loc);
2314 gsi_replace (gsi, call_stmt, true);
2315 return true;
2316 }
2317
2318 return false;
2319 }
2320
2321 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2322 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2323 value is true iff we converted the statement. */
2324
2325 static bool
2326 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
2327 {
2328 tree lhs, rhs1, rhs2, type, type1, type2;
2329 enum insn_code handler;
2330 scalar_int_mode to_mode, from_mode, actual_mode;
2331 optab op;
2332 int actual_precision;
2333 location_t loc = gimple_location (stmt);
2334 bool from_unsigned1, from_unsigned2;
2335
2336 lhs = gimple_assign_lhs (stmt);
2337 type = TREE_TYPE (lhs);
2338 if (TREE_CODE (type) != INTEGER_TYPE)
2339 return false;
2340
2341 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2342 return false;
2343
2344 to_mode = SCALAR_INT_TYPE_MODE (type);
2345 from_mode = SCALAR_INT_TYPE_MODE (type1);
2346 if (to_mode == from_mode)
2347 return false;
2348
2349 from_unsigned1 = TYPE_UNSIGNED (type1);
2350 from_unsigned2 = TYPE_UNSIGNED (type2);
2351
2352 if (from_unsigned1 && from_unsigned2)
2353 op = umul_widen_optab;
2354 else if (!from_unsigned1 && !from_unsigned2)
2355 op = smul_widen_optab;
2356 else
2357 op = usmul_widen_optab;
2358
2359 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2360 &actual_mode);
2361
2362 if (handler == CODE_FOR_nothing)
2363 {
2364 if (op != smul_widen_optab)
2365 {
2366 /* We can use a signed multiply with unsigned types as long as
2367 there is a wider mode to use, or it is the smaller of the two
2368 types that is unsigned. Note that type1 >= type2, always. */
2369 if ((TYPE_UNSIGNED (type1)
2370 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2371 || (TYPE_UNSIGNED (type2)
2372 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2373 {
2374 if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2375 || GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2376 return false;
2377 }
2378
2379 op = smul_widen_optab;
2380 handler = find_widening_optab_handler_and_mode (op, to_mode,
2381 from_mode,
2382 &actual_mode);
2383
2384 if (handler == CODE_FOR_nothing)
2385 return false;
2386
2387 from_unsigned1 = from_unsigned2 = false;
2388 }
2389 else
2390 return false;
2391 }
2392
2393 /* Ensure that the inputs to the handler are in the correct precison
2394 for the opcode. This will be the full mode size. */
2395 actual_precision = GET_MODE_PRECISION (actual_mode);
2396 if (2 * actual_precision > TYPE_PRECISION (type))
2397 return false;
2398 if (actual_precision != TYPE_PRECISION (type1)
2399 || from_unsigned1 != TYPE_UNSIGNED (type1))
2400 rhs1 = build_and_insert_cast (gsi, loc,
2401 build_nonstandard_integer_type
2402 (actual_precision, from_unsigned1), rhs1);
2403 if (actual_precision != TYPE_PRECISION (type2)
2404 || from_unsigned2 != TYPE_UNSIGNED (type2))
2405 rhs2 = build_and_insert_cast (gsi, loc,
2406 build_nonstandard_integer_type
2407 (actual_precision, from_unsigned2), rhs2);
2408
2409 /* Handle constants. */
2410 if (TREE_CODE (rhs1) == INTEGER_CST)
2411 rhs1 = fold_convert (type1, rhs1);
2412 if (TREE_CODE (rhs2) == INTEGER_CST)
2413 rhs2 = fold_convert (type2, rhs2);
2414
2415 gimple_assign_set_rhs1 (stmt, rhs1);
2416 gimple_assign_set_rhs2 (stmt, rhs2);
2417 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2418 update_stmt (stmt);
2419 widen_mul_stats.widen_mults_inserted++;
2420 return true;
2421 }
2422
2423 /* Process a single gimple statement STMT, which is found at the
2424 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2425 rhs (given by CODE), and try to convert it into a
2426 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2427 is true iff we converted the statement. */
2428
2429 static bool
2430 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
2431 enum tree_code code)
2432 {
2433 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
2434 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
2435 tree type, type1, type2, optype;
2436 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2437 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2438 optab this_optab;
2439 enum tree_code wmult_code;
2440 enum insn_code handler;
2441 scalar_mode to_mode, from_mode, actual_mode;
2442 location_t loc = gimple_location (stmt);
2443 int actual_precision;
2444 bool from_unsigned1, from_unsigned2;
2445
2446 lhs = gimple_assign_lhs (stmt);
2447 type = TREE_TYPE (lhs);
2448 if (TREE_CODE (type) != INTEGER_TYPE
2449 && TREE_CODE (type) != FIXED_POINT_TYPE)
2450 return false;
2451
2452 if (code == MINUS_EXPR)
2453 wmult_code = WIDEN_MULT_MINUS_EXPR;
2454 else
2455 wmult_code = WIDEN_MULT_PLUS_EXPR;
2456
2457 rhs1 = gimple_assign_rhs1 (stmt);
2458 rhs2 = gimple_assign_rhs2 (stmt);
2459
2460 if (TREE_CODE (rhs1) == SSA_NAME)
2461 {
2462 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2463 if (is_gimple_assign (rhs1_stmt))
2464 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2465 }
2466
2467 if (TREE_CODE (rhs2) == SSA_NAME)
2468 {
2469 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2470 if (is_gimple_assign (rhs2_stmt))
2471 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2472 }
2473
2474 /* Allow for one conversion statement between the multiply
2475 and addition/subtraction statement. If there are more than
2476 one conversions then we assume they would invalidate this
2477 transformation. If that's not the case then they should have
2478 been folded before now. */
2479 if (CONVERT_EXPR_CODE_P (rhs1_code))
2480 {
2481 conv1_stmt = rhs1_stmt;
2482 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2483 if (TREE_CODE (rhs1) == SSA_NAME)
2484 {
2485 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2486 if (is_gimple_assign (rhs1_stmt))
2487 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2488 }
2489 else
2490 return false;
2491 }
2492 if (CONVERT_EXPR_CODE_P (rhs2_code))
2493 {
2494 conv2_stmt = rhs2_stmt;
2495 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2496 if (TREE_CODE (rhs2) == SSA_NAME)
2497 {
2498 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2499 if (is_gimple_assign (rhs2_stmt))
2500 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2501 }
2502 else
2503 return false;
2504 }
2505
2506 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2507 is_widening_mult_p, but we still need the rhs returns.
2508
2509 It might also appear that it would be sufficient to use the existing
2510 operands of the widening multiply, but that would limit the choice of
2511 multiply-and-accumulate instructions.
2512
2513 If the widened-multiplication result has more than one uses, it is
2514 probably wiser not to do the conversion. */
2515 if (code == PLUS_EXPR
2516 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2517 {
2518 if (!has_single_use (rhs1)
2519 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2520 &type2, &mult_rhs2))
2521 return false;
2522 add_rhs = rhs2;
2523 conv_stmt = conv1_stmt;
2524 }
2525 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2526 {
2527 if (!has_single_use (rhs2)
2528 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2529 &type2, &mult_rhs2))
2530 return false;
2531 add_rhs = rhs1;
2532 conv_stmt = conv2_stmt;
2533 }
2534 else
2535 return false;
2536
2537 to_mode = SCALAR_TYPE_MODE (type);
2538 from_mode = SCALAR_TYPE_MODE (type1);
2539 if (to_mode == from_mode)
2540 return false;
2541
2542 from_unsigned1 = TYPE_UNSIGNED (type1);
2543 from_unsigned2 = TYPE_UNSIGNED (type2);
2544 optype = type1;
2545
2546 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2547 if (from_unsigned1 != from_unsigned2)
2548 {
2549 if (!INTEGRAL_TYPE_P (type))
2550 return false;
2551 /* We can use a signed multiply with unsigned types as long as
2552 there is a wider mode to use, or it is the smaller of the two
2553 types that is unsigned. Note that type1 >= type2, always. */
2554 if ((from_unsigned1
2555 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2556 || (from_unsigned2
2557 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2558 {
2559 if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2560 || GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2561 return false;
2562 }
2563
2564 from_unsigned1 = from_unsigned2 = false;
2565 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2566 false);
2567 }
2568
2569 /* If there was a conversion between the multiply and addition
2570 then we need to make sure it fits a multiply-and-accumulate.
2571 The should be a single mode change which does not change the
2572 value. */
2573 if (conv_stmt)
2574 {
2575 /* We use the original, unmodified data types for this. */
2576 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2577 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2578 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2579 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2580
2581 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2582 {
2583 /* Conversion is a truncate. */
2584 if (TYPE_PRECISION (to_type) < data_size)
2585 return false;
2586 }
2587 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2588 {
2589 /* Conversion is an extend. Check it's the right sort. */
2590 if (TYPE_UNSIGNED (from_type) != is_unsigned
2591 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2592 return false;
2593 }
2594 /* else convert is a no-op for our purposes. */
2595 }
2596
2597 /* Verify that the machine can perform a widening multiply
2598 accumulate in this mode/signedness combination, otherwise
2599 this transformation is likely to pessimize code. */
2600 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2601 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2602 from_mode, &actual_mode);
2603
2604 if (handler == CODE_FOR_nothing)
2605 return false;
2606
2607 /* Ensure that the inputs to the handler are in the correct precison
2608 for the opcode. This will be the full mode size. */
2609 actual_precision = GET_MODE_PRECISION (actual_mode);
2610 if (actual_precision != TYPE_PRECISION (type1)
2611 || from_unsigned1 != TYPE_UNSIGNED (type1))
2612 mult_rhs1 = build_and_insert_cast (gsi, loc,
2613 build_nonstandard_integer_type
2614 (actual_precision, from_unsigned1),
2615 mult_rhs1);
2616 if (actual_precision != TYPE_PRECISION (type2)
2617 || from_unsigned2 != TYPE_UNSIGNED (type2))
2618 mult_rhs2 = build_and_insert_cast (gsi, loc,
2619 build_nonstandard_integer_type
2620 (actual_precision, from_unsigned2),
2621 mult_rhs2);
2622
2623 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2624 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2625
2626 /* Handle constants. */
2627 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2628 mult_rhs1 = fold_convert (type1, mult_rhs1);
2629 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2630 mult_rhs2 = fold_convert (type2, mult_rhs2);
2631
2632 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2633 add_rhs);
2634 update_stmt (gsi_stmt (*gsi));
2635 widen_mul_stats.maccs_inserted++;
2636 return true;
2637 }
2638
2639 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2640 with uses in additions and subtractions to form fused multiply-add
2641 operations. Returns true if successful and MUL_STMT should be removed. */
2642
2643 static bool
2644 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
2645 {
2646 tree mul_result = gimple_get_lhs (mul_stmt);
2647 tree type = TREE_TYPE (mul_result);
2648 gimple *use_stmt, *neguse_stmt;
2649 gassign *fma_stmt;
2650 use_operand_p use_p;
2651 imm_use_iterator imm_iter;
2652
2653 if (FLOAT_TYPE_P (type)
2654 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2655 return false;
2656
2657 /* We don't want to do bitfield reduction ops. */
2658 if (INTEGRAL_TYPE_P (type)
2659 && !type_has_mode_precision_p (type))
2660 return false;
2661
2662 /* If the target doesn't support it, don't generate it. We assume that
2663 if fma isn't available then fms, fnma or fnms are not either. */
2664 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2665 return false;
2666
2667 /* If the multiplication has zero uses, it is kept around probably because
2668 of -fnon-call-exceptions. Don't optimize it away in that case,
2669 it is DCE job. */
2670 if (has_zero_uses (mul_result))
2671 return false;
2672
2673 /* Make sure that the multiplication statement becomes dead after
2674 the transformation, thus that all uses are transformed to FMAs.
2675 This means we assume that an FMA operation has the same cost
2676 as an addition. */
2677 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2678 {
2679 enum tree_code use_code;
2680 tree result = mul_result;
2681 bool negate_p = false;
2682
2683 use_stmt = USE_STMT (use_p);
2684
2685 if (is_gimple_debug (use_stmt))
2686 continue;
2687
2688 /* For now restrict this operations to single basic blocks. In theory
2689 we would want to support sinking the multiplication in
2690 m = a*b;
2691 if ()
2692 ma = m + c;
2693 else
2694 d = m;
2695 to form a fma in the then block and sink the multiplication to the
2696 else block. */
2697 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2698 return false;
2699
2700 if (!is_gimple_assign (use_stmt))
2701 return false;
2702
2703 use_code = gimple_assign_rhs_code (use_stmt);
2704
2705 /* A negate on the multiplication leads to FNMA. */
2706 if (use_code == NEGATE_EXPR)
2707 {
2708 ssa_op_iter iter;
2709 use_operand_p usep;
2710
2711 result = gimple_assign_lhs (use_stmt);
2712
2713 /* Make sure the negate statement becomes dead with this
2714 single transformation. */
2715 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2716 &use_p, &neguse_stmt))
2717 return false;
2718
2719 /* Make sure the multiplication isn't also used on that stmt. */
2720 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2721 if (USE_FROM_PTR (usep) == mul_result)
2722 return false;
2723
2724 /* Re-validate. */
2725 use_stmt = neguse_stmt;
2726 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2727 return false;
2728 if (!is_gimple_assign (use_stmt))
2729 return false;
2730
2731 use_code = gimple_assign_rhs_code (use_stmt);
2732 negate_p = true;
2733 }
2734
2735 switch (use_code)
2736 {
2737 case MINUS_EXPR:
2738 if (gimple_assign_rhs2 (use_stmt) == result)
2739 negate_p = !negate_p;
2740 break;
2741 case PLUS_EXPR:
2742 break;
2743 default:
2744 /* FMA can only be formed from PLUS and MINUS. */
2745 return false;
2746 }
2747
2748 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2749 by a MULT_EXPR that we'll visit later, we might be able to
2750 get a more profitable match with fnma.
2751 OTOH, if we don't, a negate / fma pair has likely lower latency
2752 that a mult / subtract pair. */
2753 if (use_code == MINUS_EXPR && !negate_p
2754 && gimple_assign_rhs1 (use_stmt) == result
2755 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2756 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2757 {
2758 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2759
2760 if (TREE_CODE (rhs2) == SSA_NAME)
2761 {
2762 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
2763 if (has_single_use (rhs2)
2764 && is_gimple_assign (stmt2)
2765 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2766 return false;
2767 }
2768 }
2769
2770 /* We can't handle a * b + a * b. */
2771 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2772 return false;
2773
2774 /* While it is possible to validate whether or not the exact form
2775 that we've recognized is available in the backend, the assumption
2776 is that the transformation is never a loss. For instance, suppose
2777 the target only has the plain FMA pattern available. Consider
2778 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2779 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2780 still have 3 operations, but in the FMA form the two NEGs are
2781 independent and could be run in parallel. */
2782 }
2783
2784 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2785 {
2786 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2787 enum tree_code use_code;
2788 tree addop, mulop1 = op1, result = mul_result;
2789 bool negate_p = false;
2790
2791 if (is_gimple_debug (use_stmt))
2792 continue;
2793
2794 use_code = gimple_assign_rhs_code (use_stmt);
2795 if (use_code == NEGATE_EXPR)
2796 {
2797 result = gimple_assign_lhs (use_stmt);
2798 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2799 gsi_remove (&gsi, true);
2800 release_defs (use_stmt);
2801
2802 use_stmt = neguse_stmt;
2803 gsi = gsi_for_stmt (use_stmt);
2804 use_code = gimple_assign_rhs_code (use_stmt);
2805 negate_p = true;
2806 }
2807
2808 if (gimple_assign_rhs1 (use_stmt) == result)
2809 {
2810 addop = gimple_assign_rhs2 (use_stmt);
2811 /* a * b - c -> a * b + (-c) */
2812 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2813 addop = force_gimple_operand_gsi (&gsi,
2814 build1 (NEGATE_EXPR,
2815 type, addop),
2816 true, NULL_TREE, true,
2817 GSI_SAME_STMT);
2818 }
2819 else
2820 {
2821 addop = gimple_assign_rhs1 (use_stmt);
2822 /* a - b * c -> (-b) * c + a */
2823 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2824 negate_p = !negate_p;
2825 }
2826
2827 if (negate_p)
2828 mulop1 = force_gimple_operand_gsi (&gsi,
2829 build1 (NEGATE_EXPR,
2830 type, mulop1),
2831 true, NULL_TREE, true,
2832 GSI_SAME_STMT);
2833
2834 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
2835 FMA_EXPR, mulop1, op2, addop);
2836 gsi_replace (&gsi, fma_stmt, true);
2837 widen_mul_stats.fmas_inserted++;
2838 }
2839
2840 return true;
2841 }
2842
2843
2844 /* Helper function of match_uaddsub_overflow. Return 1
2845 if USE_STMT is unsigned overflow check ovf != 0 for
2846 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
2847 and 0 otherwise. */
2848
2849 static int
2850 uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
2851 {
2852 enum tree_code ccode = ERROR_MARK;
2853 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
2854 if (gimple_code (use_stmt) == GIMPLE_COND)
2855 {
2856 ccode = gimple_cond_code (use_stmt);
2857 crhs1 = gimple_cond_lhs (use_stmt);
2858 crhs2 = gimple_cond_rhs (use_stmt);
2859 }
2860 else if (is_gimple_assign (use_stmt))
2861 {
2862 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
2863 {
2864 ccode = gimple_assign_rhs_code (use_stmt);
2865 crhs1 = gimple_assign_rhs1 (use_stmt);
2866 crhs2 = gimple_assign_rhs2 (use_stmt);
2867 }
2868 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
2869 {
2870 tree cond = gimple_assign_rhs1 (use_stmt);
2871 if (COMPARISON_CLASS_P (cond))
2872 {
2873 ccode = TREE_CODE (cond);
2874 crhs1 = TREE_OPERAND (cond, 0);
2875 crhs2 = TREE_OPERAND (cond, 1);
2876 }
2877 else
2878 return 0;
2879 }
2880 else
2881 return 0;
2882 }
2883 else
2884 return 0;
2885
2886 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
2887 return 0;
2888
2889 enum tree_code code = gimple_assign_rhs_code (stmt);
2890 tree lhs = gimple_assign_lhs (stmt);
2891 tree rhs1 = gimple_assign_rhs1 (stmt);
2892 tree rhs2 = gimple_assign_rhs2 (stmt);
2893
2894 switch (ccode)
2895 {
2896 case GT_EXPR:
2897 case LE_EXPR:
2898 /* r = a - b; r > a or r <= a
2899 r = a + b; a > r or a <= r or b > r or b <= r. */
2900 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
2901 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
2902 && crhs2 == lhs))
2903 return ccode == GT_EXPR ? 1 : -1;
2904 break;
2905 case LT_EXPR:
2906 case GE_EXPR:
2907 /* r = a - b; a < r or a >= r
2908 r = a + b; r < a or r >= a or r < b or r >= b. */
2909 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
2910 || (code == PLUS_EXPR && crhs1 == lhs
2911 && (crhs2 == rhs1 || crhs2 == rhs2)))
2912 return ccode == LT_EXPR ? 1 : -1;
2913 break;
2914 default:
2915 break;
2916 }
2917 return 0;
2918 }
2919
2920 /* Recognize for unsigned x
2921 x = y - z;
2922 if (x > y)
2923 where there are other uses of x and replace it with
2924 _7 = SUB_OVERFLOW (y, z);
2925 x = REALPART_EXPR <_7>;
2926 _8 = IMAGPART_EXPR <_7>;
2927 if (_8)
2928 and similarly for addition. */
2929
2930 static bool
2931 match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
2932 enum tree_code code)
2933 {
2934 tree lhs = gimple_assign_lhs (stmt);
2935 tree type = TREE_TYPE (lhs);
2936 use_operand_p use_p;
2937 imm_use_iterator iter;
2938 bool use_seen = false;
2939 bool ovf_use_seen = false;
2940 gimple *use_stmt;
2941
2942 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
2943 if (!INTEGRAL_TYPE_P (type)
2944 || !TYPE_UNSIGNED (type)
2945 || has_zero_uses (lhs)
2946 || has_single_use (lhs)
2947 || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
2948 TYPE_MODE (type)) == CODE_FOR_nothing)
2949 return false;
2950
2951 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
2952 {
2953 use_stmt = USE_STMT (use_p);
2954 if (is_gimple_debug (use_stmt))
2955 continue;
2956
2957 if (uaddsub_overflow_check_p (stmt, use_stmt))
2958 ovf_use_seen = true;
2959 else
2960 use_seen = true;
2961 if (ovf_use_seen && use_seen)
2962 break;
2963 }
2964
2965 if (!ovf_use_seen || !use_seen)
2966 return false;
2967
2968 tree ctype = build_complex_type (type);
2969 tree rhs1 = gimple_assign_rhs1 (stmt);
2970 tree rhs2 = gimple_assign_rhs2 (stmt);
2971 gcall *g = gimple_build_call_internal (code == PLUS_EXPR
2972 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
2973 2, rhs1, rhs2);
2974 tree ctmp = make_ssa_name (ctype);
2975 gimple_call_set_lhs (g, ctmp);
2976 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2977 gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
2978 build1 (REALPART_EXPR, type, ctmp));
2979 gsi_replace (gsi, g2, true);
2980 tree ovf = make_ssa_name (type);
2981 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
2982 build1 (IMAGPART_EXPR, type, ctmp));
2983 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
2984
2985 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2986 {
2987 if (is_gimple_debug (use_stmt))
2988 continue;
2989
2990 int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
2991 if (ovf_use == 0)
2992 continue;
2993 if (gimple_code (use_stmt) == GIMPLE_COND)
2994 {
2995 gcond *cond_stmt = as_a <gcond *> (use_stmt);
2996 gimple_cond_set_lhs (cond_stmt, ovf);
2997 gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
2998 gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
2999 }
3000 else
3001 {
3002 gcc_checking_assert (is_gimple_assign (use_stmt));
3003 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3004 {
3005 gimple_assign_set_rhs1 (use_stmt, ovf);
3006 gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3007 gimple_assign_set_rhs_code (use_stmt,
3008 ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3009 }
3010 else
3011 {
3012 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3013 == COND_EXPR);
3014 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3015 boolean_type_node, ovf,
3016 build_int_cst (type, 0));
3017 gimple_assign_set_rhs1 (use_stmt, cond);
3018 }
3019 }
3020 update_stmt (use_stmt);
3021 }
3022 return true;
3023 }
3024
3025 /* Return true if target has support for divmod. */
3026
3027 static bool
3028 target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode)
3029 {
3030 /* If target supports hardware divmod insn, use it for divmod. */
3031 if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing)
3032 return true;
3033
3034 /* Check if libfunc for divmod is available. */
3035 rtx libfunc = optab_libfunc (divmod_optab, mode);
3036 if (libfunc != NULL_RTX)
3037 {
3038 /* If optab_handler exists for div_optab, perhaps in a wider mode,
3039 we don't want to use the libfunc even if it exists for given mode. */
3040 machine_mode div_mode;
3041 FOR_EACH_MODE_FROM (div_mode, mode)
3042 if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing)
3043 return false;
3044
3045 return targetm.expand_divmod_libfunc != NULL;
3046 }
3047
3048 return false;
3049 }
3050
3051 /* Check if stmt is candidate for divmod transform. */
3052
3053 static bool
3054 divmod_candidate_p (gassign *stmt)
3055 {
3056 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3057 machine_mode mode = TYPE_MODE (type);
3058 optab divmod_optab, div_optab;
3059
3060 if (TYPE_UNSIGNED (type))
3061 {
3062 divmod_optab = udivmod_optab;
3063 div_optab = udiv_optab;
3064 }
3065 else
3066 {
3067 divmod_optab = sdivmod_optab;
3068 div_optab = sdiv_optab;
3069 }
3070
3071 tree op1 = gimple_assign_rhs1 (stmt);
3072 tree op2 = gimple_assign_rhs2 (stmt);
3073
3074 /* Disable the transform if either is a constant, since division-by-constant
3075 may have specialized expansion. */
3076 if (CONSTANT_CLASS_P (op1) || CONSTANT_CLASS_P (op2))
3077 return false;
3078
3079 /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
3080 expand using the [su]divv optabs. */
3081 if (TYPE_OVERFLOW_TRAPS (type))
3082 return false;
3083
3084 if (!target_supports_divmod_p (divmod_optab, div_optab, mode))
3085 return false;
3086
3087 return true;
3088 }
3089
3090 /* This function looks for:
3091 t1 = a TRUNC_DIV_EXPR b;
3092 t2 = a TRUNC_MOD_EXPR b;
3093 and transforms it to the following sequence:
3094 complex_tmp = DIVMOD (a, b);
3095 t1 = REALPART_EXPR(a);
3096 t2 = IMAGPART_EXPR(b);
3097 For conditions enabling the transform see divmod_candidate_p().
3098
3099 The pass has three parts:
3100 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
3101 other trunc_div_expr and trunc_mod_expr stmts.
3102 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
3103 to stmts vector.
3104 3) Insert DIVMOD call just before top_stmt and update entries in
3105 stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
3106 IMAGPART_EXPR for mod). */
3107
3108 static bool
3109 convert_to_divmod (gassign *stmt)
3110 {
3111 if (stmt_can_throw_internal (stmt)
3112 || !divmod_candidate_p (stmt))
3113 return false;
3114
3115 tree op1 = gimple_assign_rhs1 (stmt);
3116 tree op2 = gimple_assign_rhs2 (stmt);
3117
3118 imm_use_iterator use_iter;
3119 gimple *use_stmt;
3120 auto_vec<gimple *> stmts;
3121
3122 gimple *top_stmt = stmt;
3123 basic_block top_bb = gimple_bb (stmt);
3124
3125 /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
3126 at-least stmt and possibly other trunc_div/trunc_mod stmts
3127 having same operands as stmt. */
3128
3129 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
3130 {
3131 if (is_gimple_assign (use_stmt)
3132 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3133 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3134 && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0)
3135 && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0))
3136 {
3137 if (stmt_can_throw_internal (use_stmt))
3138 continue;
3139
3140 basic_block bb = gimple_bb (use_stmt);
3141
3142 if (bb == top_bb)
3143 {
3144 if (gimple_uid (use_stmt) < gimple_uid (top_stmt))
3145 top_stmt = use_stmt;
3146 }
3147 else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
3148 {
3149 top_bb = bb;
3150 top_stmt = use_stmt;
3151 }
3152 }
3153 }
3154
3155 tree top_op1 = gimple_assign_rhs1 (top_stmt);
3156 tree top_op2 = gimple_assign_rhs2 (top_stmt);
3157
3158 stmts.safe_push (top_stmt);
3159 bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR);
3160
3161 /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
3162 to stmts vector. The 2nd loop will always add stmt to stmts vector, since
3163 gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
3164 2nd loop ends up adding at-least single trunc_mod_expr stmt. */
3165
3166 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
3167 {
3168 if (is_gimple_assign (use_stmt)
3169 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3170 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3171 && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0)
3172 && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0))
3173 {
3174 if (use_stmt == top_stmt
3175 || stmt_can_throw_internal (use_stmt)
3176 || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb))
3177 continue;
3178
3179 stmts.safe_push (use_stmt);
3180 if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR)
3181 div_seen = true;
3182 }
3183 }
3184
3185 if (!div_seen)
3186 return false;
3187
3188 /* Part 3: Create libcall to internal fn DIVMOD:
3189 divmod_tmp = DIVMOD (op1, op2). */
3190
3191 gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
3192 tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)),
3193 call_stmt, "divmod_tmp");
3194 gimple_call_set_lhs (call_stmt, res);
3195 /* We rejected throwing statements above. */
3196 gimple_call_set_nothrow (call_stmt, true);
3197
3198 /* Insert the call before top_stmt. */
3199 gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
3200 gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);
3201
3202 widen_mul_stats.divmod_calls_inserted++;
3203
3204 /* Update all statements in stmts vector:
3205 lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
3206 lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>. */
3207
3208 for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i)
3209 {
3210 tree new_rhs;
3211
3212 switch (gimple_assign_rhs_code (use_stmt))
3213 {
3214 case TRUNC_DIV_EXPR:
3215 new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
3216 break;
3217
3218 case TRUNC_MOD_EXPR:
3219 new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
3220 break;
3221
3222 default:
3223 gcc_unreachable ();
3224 }
3225
3226 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3227 gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
3228 update_stmt (use_stmt);
3229 }
3230
3231 return true;
3232 }
3233
3234 /* Find integer multiplications where the operands are extended from
3235 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3236 where appropriate. */
3237
3238 namespace {
3239
3240 const pass_data pass_data_optimize_widening_mul =
3241 {
3242 GIMPLE_PASS, /* type */
3243 "widening_mul", /* name */
3244 OPTGROUP_NONE, /* optinfo_flags */
3245 TV_TREE_WIDEN_MUL, /* tv_id */
3246 PROP_ssa, /* properties_required */
3247 0, /* properties_provided */
3248 0, /* properties_destroyed */
3249 0, /* todo_flags_start */
3250 TODO_update_ssa, /* todo_flags_finish */
3251 };
3252
3253 class pass_optimize_widening_mul : public gimple_opt_pass
3254 {
3255 public:
3256 pass_optimize_widening_mul (gcc::context *ctxt)
3257 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3258 {}
3259
3260 /* opt_pass methods: */
3261 virtual bool gate (function *)
3262 {
3263 return flag_expensive_optimizations && optimize;
3264 }
3265
3266 virtual unsigned int execute (function *);
3267
3268 }; // class pass_optimize_widening_mul
3269
3270 unsigned int
3271 pass_optimize_widening_mul::execute (function *fun)
3272 {
3273 basic_block bb;
3274 bool cfg_changed = false;
3275
3276 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3277 calculate_dominance_info (CDI_DOMINATORS);
3278 renumber_gimple_stmt_uids ();
3279
3280 FOR_EACH_BB_FN (bb, fun)
3281 {
3282 gimple_stmt_iterator gsi;
3283
3284 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3285 {
3286 gimple *stmt = gsi_stmt (gsi);
3287 enum tree_code code;
3288
3289 if (is_gimple_assign (stmt))
3290 {
3291 code = gimple_assign_rhs_code (stmt);
3292 switch (code)
3293 {
3294 case MULT_EXPR:
3295 if (!convert_mult_to_widen (stmt, &gsi)
3296 && !convert_expand_mult_copysign (stmt, &gsi)
3297 && convert_mult_to_fma (stmt,
3298 gimple_assign_rhs1 (stmt),
3299 gimple_assign_rhs2 (stmt)))
3300 {
3301 gsi_remove (&gsi, true);
3302 release_defs (stmt);
3303 continue;
3304 }
3305 break;
3306
3307 case PLUS_EXPR:
3308 case MINUS_EXPR:
3309 if (!convert_plusminus_to_widen (&gsi, stmt, code))
3310 match_uaddsub_overflow (&gsi, stmt, code);
3311 break;
3312
3313 case TRUNC_MOD_EXPR:
3314 convert_to_divmod (as_a<gassign *> (stmt));
3315 break;
3316
3317 default:;
3318 }
3319 }
3320 else if (is_gimple_call (stmt)
3321 && gimple_call_lhs (stmt))
3322 {
3323 tree fndecl = gimple_call_fndecl (stmt);
3324 if (fndecl
3325 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3326 {
3327 switch (DECL_FUNCTION_CODE (fndecl))
3328 {
3329 case BUILT_IN_POWF:
3330 case BUILT_IN_POW:
3331 case BUILT_IN_POWL:
3332 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3333 && real_equal
3334 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3335 &dconst2)
3336 && convert_mult_to_fma (stmt,
3337 gimple_call_arg (stmt, 0),
3338 gimple_call_arg (stmt, 0)))
3339 {
3340 unlink_stmt_vdef (stmt);
3341 if (gsi_remove (&gsi, true)
3342 && gimple_purge_dead_eh_edges (bb))
3343 cfg_changed = true;
3344 release_defs (stmt);
3345 continue;
3346 }
3347 break;
3348
3349 default:;
3350 }
3351 }
3352 }
3353 gsi_next (&gsi);
3354 }
3355 }
3356
3357 statistics_counter_event (fun, "widening multiplications inserted",
3358 widen_mul_stats.widen_mults_inserted);
3359 statistics_counter_event (fun, "widening maccs inserted",
3360 widen_mul_stats.maccs_inserted);
3361 statistics_counter_event (fun, "fused multiply-adds inserted",
3362 widen_mul_stats.fmas_inserted);
3363 statistics_counter_event (fun, "divmod calls inserted",
3364 widen_mul_stats.divmod_calls_inserted);
3365
3366 return cfg_changed ? TODO_cleanup_cfg : 0;
3367 }
3368
3369 } // anon namespace
3370
3371 gimple_opt_pass *
3372 make_pass_optimize_widening_mul (gcc::context *ctxt)
3373 {
3374 return new pass_optimize_widening_mul (ctxt);
3375 }