]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-math-opts.c
alias.c: Remove unused headers.
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113
114 /* This structure represents one basic block that either computes a
115 division, or is a common dominator for basic block that compute a
116 division. */
117 struct occurrence {
118 /* The basic block represented by this structure. */
119 basic_block bb;
120
121 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
122 inserted in BB. */
123 tree recip_def;
124
125 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
126 was inserted in BB. */
127 gimple *recip_def_stmt;
128
129 /* Pointer to a list of "struct occurrence"s for blocks dominated
130 by BB. */
131 struct occurrence *children;
132
133 /* Pointer to the next "struct occurrence"s in the list of blocks
134 sharing a common dominator. */
135 struct occurrence *next;
136
137 /* The number of divisions that are in BB before compute_merit. The
138 number of divisions that are in BB or post-dominate it after
139 compute_merit. */
140 int num_divisions;
141
142 /* True if the basic block has a division, false if it is a common
143 dominator for basic blocks that do. If it is false and trapping
144 math is active, BB is not a candidate for inserting a reciprocal. */
145 bool bb_has_division;
146 };
147
148 static struct
149 {
150 /* Number of 1.0/X ops inserted. */
151 int rdivs_inserted;
152
153 /* Number of 1.0/FUNC ops inserted. */
154 int rfuncs_inserted;
155 } reciprocal_stats;
156
157 static struct
158 {
159 /* Number of cexpi calls inserted. */
160 int inserted;
161 } sincos_stats;
162
163 static struct
164 {
165 /* Number of hand-written 16-bit nop / bswaps found. */
166 int found_16bit;
167
168 /* Number of hand-written 32-bit nop / bswaps found. */
169 int found_32bit;
170
171 /* Number of hand-written 64-bit nop / bswaps found. */
172 int found_64bit;
173 } nop_stats, bswap_stats;
174
175 static struct
176 {
177 /* Number of widening multiplication ops inserted. */
178 int widen_mults_inserted;
179
180 /* Number of integer multiply-and-accumulate ops inserted. */
181 int maccs_inserted;
182
183 /* Number of fp fused multiply-add ops inserted. */
184 int fmas_inserted;
185 } widen_mul_stats;
186
187 /* The instance of "struct occurrence" representing the highest
188 interesting block in the dominator tree. */
189 static struct occurrence *occ_head;
190
191 /* Allocation pool for getting instances of "struct occurrence". */
192 static object_allocator<occurrence> *occ_pool;
193
194
195
196 /* Allocate and return a new struct occurrence for basic block BB, and
197 whose children list is headed by CHILDREN. */
198 static struct occurrence *
199 occ_new (basic_block bb, struct occurrence *children)
200 {
201 struct occurrence *occ;
202
203 bb->aux = occ = occ_pool->allocate ();
204 memset (occ, 0, sizeof (struct occurrence));
205
206 occ->bb = bb;
207 occ->children = children;
208 return occ;
209 }
210
211
212 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
213 list of "struct occurrence"s, one per basic block, having IDOM as
214 their common dominator.
215
216 We try to insert NEW_OCC as deep as possible in the tree, and we also
217 insert any other block that is a common dominator for BB and one
218 block already in the tree. */
219
220 static void
221 insert_bb (struct occurrence *new_occ, basic_block idom,
222 struct occurrence **p_head)
223 {
224 struct occurrence *occ, **p_occ;
225
226 for (p_occ = p_head; (occ = *p_occ) != NULL; )
227 {
228 basic_block bb = new_occ->bb, occ_bb = occ->bb;
229 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
230 if (dom == bb)
231 {
232 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
233 from its list. */
234 *p_occ = occ->next;
235 occ->next = new_occ->children;
236 new_occ->children = occ;
237
238 /* Try the next block (it may as well be dominated by BB). */
239 }
240
241 else if (dom == occ_bb)
242 {
243 /* OCC_BB dominates BB. Tail recurse to look deeper. */
244 insert_bb (new_occ, dom, &occ->children);
245 return;
246 }
247
248 else if (dom != idom)
249 {
250 gcc_assert (!dom->aux);
251
252 /* There is a dominator between IDOM and BB, add it and make
253 two children out of NEW_OCC and OCC. First, remove OCC from
254 its list. */
255 *p_occ = occ->next;
256 new_occ->next = occ;
257 occ->next = NULL;
258
259 /* None of the previous blocks has DOM as a dominator: if we tail
260 recursed, we would reexamine them uselessly. Just switch BB with
261 DOM, and go on looking for blocks dominated by DOM. */
262 new_occ = occ_new (dom, new_occ);
263 }
264
265 else
266 {
267 /* Nothing special, go on with the next element. */
268 p_occ = &occ->next;
269 }
270 }
271
272 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
273 new_occ->next = *p_head;
274 *p_head = new_occ;
275 }
276
277 /* Register that we found a division in BB. */
278
279 static inline void
280 register_division_in (basic_block bb)
281 {
282 struct occurrence *occ;
283
284 occ = (struct occurrence *) bb->aux;
285 if (!occ)
286 {
287 occ = occ_new (bb, NULL);
288 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
289 }
290
291 occ->bb_has_division = true;
292 occ->num_divisions++;
293 }
294
295
296 /* Compute the number of divisions that postdominate each block in OCC and
297 its children. */
298
299 static void
300 compute_merit (struct occurrence *occ)
301 {
302 struct occurrence *occ_child;
303 basic_block dom = occ->bb;
304
305 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
306 {
307 basic_block bb;
308 if (occ_child->children)
309 compute_merit (occ_child);
310
311 if (flag_exceptions)
312 bb = single_noncomplex_succ (dom);
313 else
314 bb = dom;
315
316 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
317 occ->num_divisions += occ_child->num_divisions;
318 }
319 }
320
321
322 /* Return whether USE_STMT is a floating-point division by DEF. */
323 static inline bool
324 is_division_by (gimple *use_stmt, tree def)
325 {
326 return is_gimple_assign (use_stmt)
327 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
328 && gimple_assign_rhs2 (use_stmt) == def
329 /* Do not recognize x / x as valid division, as we are getting
330 confused later by replacing all immediate uses x in such
331 a stmt. */
332 && gimple_assign_rhs1 (use_stmt) != def;
333 }
334
335 /* Walk the subset of the dominator tree rooted at OCC, setting the
336 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
337 the given basic block. The field may be left NULL, of course,
338 if it is not possible or profitable to do the optimization.
339
340 DEF_BSI is an iterator pointing at the statement defining DEF.
341 If RECIP_DEF is set, a dominator already has a computation that can
342 be used. */
343
344 static void
345 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
346 tree def, tree recip_def, int threshold)
347 {
348 tree type;
349 gassign *new_stmt;
350 gimple_stmt_iterator gsi;
351 struct occurrence *occ_child;
352
353 if (!recip_def
354 && (occ->bb_has_division || !flag_trapping_math)
355 && occ->num_divisions >= threshold)
356 {
357 /* Make a variable with the replacement and substitute it. */
358 type = TREE_TYPE (def);
359 recip_def = create_tmp_reg (type, "reciptmp");
360 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
361 build_one_cst (type), def);
362
363 if (occ->bb_has_division)
364 {
365 /* Case 1: insert before an existing division. */
366 gsi = gsi_after_labels (occ->bb);
367 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
368 gsi_next (&gsi);
369
370 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
371 }
372 else if (def_gsi && occ->bb == def_gsi->bb)
373 {
374 /* Case 2: insert right after the definition. Note that this will
375 never happen if the definition statement can throw, because in
376 that case the sole successor of the statement's basic block will
377 dominate all the uses as well. */
378 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
379 }
380 else
381 {
382 /* Case 3: insert in a basic block not containing defs/uses. */
383 gsi = gsi_after_labels (occ->bb);
384 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
385 }
386
387 reciprocal_stats.rdivs_inserted++;
388
389 occ->recip_def_stmt = new_stmt;
390 }
391
392 occ->recip_def = recip_def;
393 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
394 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
395 }
396
397
398 /* Replace the division at USE_P with a multiplication by the reciprocal, if
399 possible. */
400
401 static inline void
402 replace_reciprocal (use_operand_p use_p)
403 {
404 gimple *use_stmt = USE_STMT (use_p);
405 basic_block bb = gimple_bb (use_stmt);
406 struct occurrence *occ = (struct occurrence *) bb->aux;
407
408 if (optimize_bb_for_speed_p (bb)
409 && occ->recip_def && use_stmt != occ->recip_def_stmt)
410 {
411 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
412 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
413 SET_USE (use_p, occ->recip_def);
414 fold_stmt_inplace (&gsi);
415 update_stmt (use_stmt);
416 }
417 }
418
419
420 /* Free OCC and return one more "struct occurrence" to be freed. */
421
422 static struct occurrence *
423 free_bb (struct occurrence *occ)
424 {
425 struct occurrence *child, *next;
426
427 /* First get the two pointers hanging off OCC. */
428 next = occ->next;
429 child = occ->children;
430 occ->bb->aux = NULL;
431 occ_pool->remove (occ);
432
433 /* Now ensure that we don't recurse unless it is necessary. */
434 if (!child)
435 return next;
436 else
437 {
438 while (next)
439 next = free_bb (next);
440
441 return child;
442 }
443 }
444
445
446 /* Look for floating-point divisions among DEF's uses, and try to
447 replace them by multiplications with the reciprocal. Add
448 as many statements computing the reciprocal as needed.
449
450 DEF must be a GIMPLE register of a floating-point type. */
451
452 static void
453 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
454 {
455 use_operand_p use_p;
456 imm_use_iterator use_iter;
457 struct occurrence *occ;
458 int count = 0, threshold;
459
460 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
461
462 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
463 {
464 gimple *use_stmt = USE_STMT (use_p);
465 if (is_division_by (use_stmt, def))
466 {
467 register_division_in (gimple_bb (use_stmt));
468 count++;
469 }
470 }
471
472 /* Do the expensive part only if we can hope to optimize something. */
473 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
474 if (count >= threshold)
475 {
476 gimple *use_stmt;
477 for (occ = occ_head; occ; occ = occ->next)
478 {
479 compute_merit (occ);
480 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
481 }
482
483 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
484 {
485 if (is_division_by (use_stmt, def))
486 {
487 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
488 replace_reciprocal (use_p);
489 }
490 }
491 }
492
493 for (occ = occ_head; occ; )
494 occ = free_bb (occ);
495
496 occ_head = NULL;
497 }
498
499 /* Go through all the floating-point SSA_NAMEs, and call
500 execute_cse_reciprocals_1 on each of them. */
501 namespace {
502
503 const pass_data pass_data_cse_reciprocals =
504 {
505 GIMPLE_PASS, /* type */
506 "recip", /* name */
507 OPTGROUP_NONE, /* optinfo_flags */
508 TV_NONE, /* tv_id */
509 PROP_ssa, /* properties_required */
510 0, /* properties_provided */
511 0, /* properties_destroyed */
512 0, /* todo_flags_start */
513 TODO_update_ssa, /* todo_flags_finish */
514 };
515
516 class pass_cse_reciprocals : public gimple_opt_pass
517 {
518 public:
519 pass_cse_reciprocals (gcc::context *ctxt)
520 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
521 {}
522
523 /* opt_pass methods: */
524 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
525 virtual unsigned int execute (function *);
526
527 }; // class pass_cse_reciprocals
528
529 unsigned int
530 pass_cse_reciprocals::execute (function *fun)
531 {
532 basic_block bb;
533 tree arg;
534
535 occ_pool = new object_allocator<occurrence> ("dominators for recip");
536
537 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
538 calculate_dominance_info (CDI_DOMINATORS);
539 calculate_dominance_info (CDI_POST_DOMINATORS);
540
541 if (flag_checking)
542 FOR_EACH_BB_FN (bb, fun)
543 gcc_assert (!bb->aux);
544
545 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
546 if (FLOAT_TYPE_P (TREE_TYPE (arg))
547 && is_gimple_reg (arg))
548 {
549 tree name = ssa_default_def (fun, arg);
550 if (name)
551 execute_cse_reciprocals_1 (NULL, name);
552 }
553
554 FOR_EACH_BB_FN (bb, fun)
555 {
556 tree def;
557
558 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
559 gsi_next (&gsi))
560 {
561 gphi *phi = gsi.phi ();
562 def = PHI_RESULT (phi);
563 if (! virtual_operand_p (def)
564 && FLOAT_TYPE_P (TREE_TYPE (def)))
565 execute_cse_reciprocals_1 (NULL, def);
566 }
567
568 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
569 gsi_next (&gsi))
570 {
571 gimple *stmt = gsi_stmt (gsi);
572
573 if (gimple_has_lhs (stmt)
574 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
575 && FLOAT_TYPE_P (TREE_TYPE (def))
576 && TREE_CODE (def) == SSA_NAME)
577 execute_cse_reciprocals_1 (&gsi, def);
578 }
579
580 if (optimize_bb_for_size_p (bb))
581 continue;
582
583 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
584 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
585 gsi_next (&gsi))
586 {
587 gimple *stmt = gsi_stmt (gsi);
588 tree fndecl;
589
590 if (is_gimple_assign (stmt)
591 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
592 {
593 tree arg1 = gimple_assign_rhs2 (stmt);
594 gimple *stmt1;
595
596 if (TREE_CODE (arg1) != SSA_NAME)
597 continue;
598
599 stmt1 = SSA_NAME_DEF_STMT (arg1);
600
601 if (is_gimple_call (stmt1)
602 && gimple_call_lhs (stmt1)
603 && (fndecl = gimple_call_fndecl (stmt1))
604 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
605 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
606 {
607 enum built_in_function code;
608 bool md_code, fail;
609 imm_use_iterator ui;
610 use_operand_p use_p;
611
612 code = DECL_FUNCTION_CODE (fndecl);
613 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
614
615 fndecl = targetm.builtin_reciprocal (code, md_code, false);
616 if (!fndecl)
617 continue;
618
619 /* Check that all uses of the SSA name are divisions,
620 otherwise replacing the defining statement will do
621 the wrong thing. */
622 fail = false;
623 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
624 {
625 gimple *stmt2 = USE_STMT (use_p);
626 if (is_gimple_debug (stmt2))
627 continue;
628 if (!is_gimple_assign (stmt2)
629 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
630 || gimple_assign_rhs1 (stmt2) == arg1
631 || gimple_assign_rhs2 (stmt2) != arg1)
632 {
633 fail = true;
634 break;
635 }
636 }
637 if (fail)
638 continue;
639
640 gimple_replace_ssa_lhs (stmt1, arg1);
641 gimple_call_set_fndecl (stmt1, fndecl);
642 update_stmt (stmt1);
643 reciprocal_stats.rfuncs_inserted++;
644
645 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
646 {
647 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
648 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
649 fold_stmt_inplace (&gsi);
650 update_stmt (stmt);
651 }
652 }
653 }
654 }
655 }
656
657 statistics_counter_event (fun, "reciprocal divs inserted",
658 reciprocal_stats.rdivs_inserted);
659 statistics_counter_event (fun, "reciprocal functions inserted",
660 reciprocal_stats.rfuncs_inserted);
661
662 free_dominance_info (CDI_DOMINATORS);
663 free_dominance_info (CDI_POST_DOMINATORS);
664 delete occ_pool;
665 return 0;
666 }
667
668 } // anon namespace
669
670 gimple_opt_pass *
671 make_pass_cse_reciprocals (gcc::context *ctxt)
672 {
673 return new pass_cse_reciprocals (ctxt);
674 }
675
676 /* Records an occurrence at statement USE_STMT in the vector of trees
677 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
678 is not yet initialized. Returns true if the occurrence was pushed on
679 the vector. Adjusts *TOP_BB to be the basic block dominating all
680 statements in the vector. */
681
682 static bool
683 maybe_record_sincos (vec<gimple *> *stmts,
684 basic_block *top_bb, gimple *use_stmt)
685 {
686 basic_block use_bb = gimple_bb (use_stmt);
687 if (*top_bb
688 && (*top_bb == use_bb
689 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
690 stmts->safe_push (use_stmt);
691 else if (!*top_bb
692 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
693 {
694 stmts->safe_push (use_stmt);
695 *top_bb = use_bb;
696 }
697 else
698 return false;
699
700 return true;
701 }
702
703 /* Look for sin, cos and cexpi calls with the same argument NAME and
704 create a single call to cexpi CSEing the result in this case.
705 We first walk over all immediate uses of the argument collecting
706 statements that we can CSE in a vector and in a second pass replace
707 the statement rhs with a REALPART or IMAGPART expression on the
708 result of the cexpi call we insert before the use statement that
709 dominates all other candidates. */
710
711 static bool
712 execute_cse_sincos_1 (tree name)
713 {
714 gimple_stmt_iterator gsi;
715 imm_use_iterator use_iter;
716 tree fndecl, res, type;
717 gimple *def_stmt, *use_stmt, *stmt;
718 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
719 auto_vec<gimple *> stmts;
720 basic_block top_bb = NULL;
721 int i;
722 bool cfg_changed = false;
723
724 type = TREE_TYPE (name);
725 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
726 {
727 if (gimple_code (use_stmt) != GIMPLE_CALL
728 || !gimple_call_lhs (use_stmt)
729 || !(fndecl = gimple_call_fndecl (use_stmt))
730 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
731 continue;
732
733 switch (DECL_FUNCTION_CODE (fndecl))
734 {
735 CASE_FLT_FN (BUILT_IN_COS):
736 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
737 break;
738
739 CASE_FLT_FN (BUILT_IN_SIN):
740 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
741 break;
742
743 CASE_FLT_FN (BUILT_IN_CEXPI):
744 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
745 break;
746
747 default:;
748 }
749 }
750
751 if (seen_cos + seen_sin + seen_cexpi <= 1)
752 return false;
753
754 /* Simply insert cexpi at the beginning of top_bb but not earlier than
755 the name def statement. */
756 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
757 if (!fndecl)
758 return false;
759 stmt = gimple_build_call (fndecl, 1, name);
760 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
761 gimple_call_set_lhs (stmt, res);
762
763 def_stmt = SSA_NAME_DEF_STMT (name);
764 if (!SSA_NAME_IS_DEFAULT_DEF (name)
765 && gimple_code (def_stmt) != GIMPLE_PHI
766 && gimple_bb (def_stmt) == top_bb)
767 {
768 gsi = gsi_for_stmt (def_stmt);
769 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
770 }
771 else
772 {
773 gsi = gsi_after_labels (top_bb);
774 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
775 }
776 sincos_stats.inserted++;
777
778 /* And adjust the recorded old call sites. */
779 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
780 {
781 tree rhs = NULL;
782 fndecl = gimple_call_fndecl (use_stmt);
783
784 switch (DECL_FUNCTION_CODE (fndecl))
785 {
786 CASE_FLT_FN (BUILT_IN_COS):
787 rhs = fold_build1 (REALPART_EXPR, type, res);
788 break;
789
790 CASE_FLT_FN (BUILT_IN_SIN):
791 rhs = fold_build1 (IMAGPART_EXPR, type, res);
792 break;
793
794 CASE_FLT_FN (BUILT_IN_CEXPI):
795 rhs = res;
796 break;
797
798 default:;
799 gcc_unreachable ();
800 }
801
802 /* Replace call with a copy. */
803 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
804
805 gsi = gsi_for_stmt (use_stmt);
806 gsi_replace (&gsi, stmt, true);
807 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
808 cfg_changed = true;
809 }
810
811 return cfg_changed;
812 }
813
814 /* To evaluate powi(x,n), the floating point value x raised to the
815 constant integer exponent n, we use a hybrid algorithm that
816 combines the "window method" with look-up tables. For an
817 introduction to exponentiation algorithms and "addition chains",
818 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
819 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
820 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
821 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
822
823 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
824 multiplications to inline before calling the system library's pow
825 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
826 so this default never requires calling pow, powf or powl. */
827
828 #ifndef POWI_MAX_MULTS
829 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
830 #endif
831
832 /* The size of the "optimal power tree" lookup table. All
833 exponents less than this value are simply looked up in the
834 powi_table below. This threshold is also used to size the
835 cache of pseudo registers that hold intermediate results. */
836 #define POWI_TABLE_SIZE 256
837
838 /* The size, in bits of the window, used in the "window method"
839 exponentiation algorithm. This is equivalent to a radix of
840 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
841 #define POWI_WINDOW_SIZE 3
842
843 /* The following table is an efficient representation of an
844 "optimal power tree". For each value, i, the corresponding
845 value, j, in the table states than an optimal evaluation
846 sequence for calculating pow(x,i) can be found by evaluating
847 pow(x,j)*pow(x,i-j). An optimal power tree for the first
848 100 integers is given in Knuth's "Seminumerical algorithms". */
849
850 static const unsigned char powi_table[POWI_TABLE_SIZE] =
851 {
852 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
853 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
854 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
855 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
856 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
857 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
858 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
859 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
860 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
861 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
862 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
863 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
864 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
865 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
866 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
867 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
868 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
869 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
870 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
871 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
872 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
873 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
874 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
875 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
876 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
877 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
878 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
879 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
880 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
881 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
882 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
883 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
884 };
885
886
887 /* Return the number of multiplications required to calculate
888 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
889 subroutine of powi_cost. CACHE is an array indicating
890 which exponents have already been calculated. */
891
892 static int
893 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
894 {
895 /* If we've already calculated this exponent, then this evaluation
896 doesn't require any additional multiplications. */
897 if (cache[n])
898 return 0;
899
900 cache[n] = true;
901 return powi_lookup_cost (n - powi_table[n], cache)
902 + powi_lookup_cost (powi_table[n], cache) + 1;
903 }
904
905 /* Return the number of multiplications required to calculate
906 powi(x,n) for an arbitrary x, given the exponent N. This
907 function needs to be kept in sync with powi_as_mults below. */
908
909 static int
910 powi_cost (HOST_WIDE_INT n)
911 {
912 bool cache[POWI_TABLE_SIZE];
913 unsigned HOST_WIDE_INT digit;
914 unsigned HOST_WIDE_INT val;
915 int result;
916
917 if (n == 0)
918 return 0;
919
920 /* Ignore the reciprocal when calculating the cost. */
921 val = (n < 0) ? -n : n;
922
923 /* Initialize the exponent cache. */
924 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
925 cache[1] = true;
926
927 result = 0;
928
929 while (val >= POWI_TABLE_SIZE)
930 {
931 if (val & 1)
932 {
933 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
934 result += powi_lookup_cost (digit, cache)
935 + POWI_WINDOW_SIZE + 1;
936 val >>= POWI_WINDOW_SIZE;
937 }
938 else
939 {
940 val >>= 1;
941 result++;
942 }
943 }
944
945 return result + powi_lookup_cost (val, cache);
946 }
947
948 /* Recursive subroutine of powi_as_mults. This function takes the
949 array, CACHE, of already calculated exponents and an exponent N and
950 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
951
952 static tree
953 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
954 HOST_WIDE_INT n, tree *cache)
955 {
956 tree op0, op1, ssa_target;
957 unsigned HOST_WIDE_INT digit;
958 gassign *mult_stmt;
959
960 if (n < POWI_TABLE_SIZE && cache[n])
961 return cache[n];
962
963 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
964
965 if (n < POWI_TABLE_SIZE)
966 {
967 cache[n] = ssa_target;
968 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
969 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
970 }
971 else if (n & 1)
972 {
973 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
974 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
975 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
976 }
977 else
978 {
979 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
980 op1 = op0;
981 }
982
983 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
984 gimple_set_location (mult_stmt, loc);
985 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
986
987 return ssa_target;
988 }
989
990 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
991 This function needs to be kept in sync with powi_cost above. */
992
993 static tree
994 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
995 tree arg0, HOST_WIDE_INT n)
996 {
997 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
998 gassign *div_stmt;
999 tree target;
1000
1001 if (n == 0)
1002 return build_real (type, dconst1);
1003
1004 memset (cache, 0, sizeof (cache));
1005 cache[1] = arg0;
1006
1007 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1008 if (n >= 0)
1009 return result;
1010
1011 /* If the original exponent was negative, reciprocate the result. */
1012 target = make_temp_ssa_name (type, NULL, "powmult");
1013 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1014 build_real (type, dconst1), result);
1015 gimple_set_location (div_stmt, loc);
1016 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1017
1018 return target;
1019 }
1020
1021 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1022 location info LOC. If the arguments are appropriate, create an
1023 equivalent sequence of statements prior to GSI using an optimal
1024 number of multiplications, and return an expession holding the
1025 result. */
1026
1027 static tree
1028 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1029 tree arg0, HOST_WIDE_INT n)
1030 {
1031 /* Avoid largest negative number. */
1032 if (n != -n
1033 && ((n >= -1 && n <= 2)
1034 || (optimize_function_for_speed_p (cfun)
1035 && powi_cost (n) <= POWI_MAX_MULTS)))
1036 return powi_as_mults (gsi, loc, arg0, n);
1037
1038 return NULL_TREE;
1039 }
1040
1041 /* Build a gimple call statement that calls FN with argument ARG.
1042 Set the lhs of the call statement to a fresh SSA name. Insert the
1043 statement prior to GSI's current position, and return the fresh
1044 SSA name. */
1045
1046 static tree
1047 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1048 tree fn, tree arg)
1049 {
1050 gcall *call_stmt;
1051 tree ssa_target;
1052
1053 call_stmt = gimple_build_call (fn, 1, arg);
1054 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1055 gimple_set_lhs (call_stmt, ssa_target);
1056 gimple_set_location (call_stmt, loc);
1057 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1058
1059 return ssa_target;
1060 }
1061
1062 /* Build a gimple binary operation with the given CODE and arguments
1063 ARG0, ARG1, assigning the result to a new SSA name for variable
1064 TARGET. Insert the statement prior to GSI's current position, and
1065 return the fresh SSA name.*/
1066
1067 static tree
1068 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1069 const char *name, enum tree_code code,
1070 tree arg0, tree arg1)
1071 {
1072 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1073 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1074 gimple_set_location (stmt, loc);
1075 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1076 return result;
1077 }
1078
1079 /* Build a gimple reference operation with the given CODE and argument
1080 ARG, assigning the result to a new SSA name of TYPE with NAME.
1081 Insert the statement prior to GSI's current position, and return
1082 the fresh SSA name. */
1083
1084 static inline tree
1085 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1086 const char *name, enum tree_code code, tree arg0)
1087 {
1088 tree result = make_temp_ssa_name (type, NULL, name);
1089 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1090 gimple_set_location (stmt, loc);
1091 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1092 return result;
1093 }
1094
1095 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1096 prior to GSI's current position, and return the fresh SSA name. */
1097
1098 static tree
1099 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1100 tree type, tree val)
1101 {
1102 tree result = make_ssa_name (type);
1103 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1104 gimple_set_location (stmt, loc);
1105 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1106 return result;
1107 }
1108
1109 struct pow_synth_sqrt_info
1110 {
1111 bool *factors;
1112 unsigned int deepest;
1113 unsigned int num_mults;
1114 };
1115
1116 /* Return true iff the real value C can be represented as a
1117 sum of powers of 0.5 up to N. That is:
1118 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1119 Record in INFO the various parameters of the synthesis algorithm such
1120 as the factors a[i], the maximum 0.5 power and the number of
1121 multiplications that will be required. */
1122
1123 bool
1124 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1125 struct pow_synth_sqrt_info *info)
1126 {
1127 REAL_VALUE_TYPE factor = dconsthalf;
1128 REAL_VALUE_TYPE remainder = c;
1129
1130 info->deepest = 0;
1131 info->num_mults = 0;
1132 memset (info->factors, 0, n * sizeof (bool));
1133
1134 for (unsigned i = 0; i < n; i++)
1135 {
1136 REAL_VALUE_TYPE res;
1137
1138 /* If something inexact happened bail out now. */
1139 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1140 return false;
1141
1142 /* We have hit zero. The number is representable as a sum
1143 of powers of 0.5. */
1144 if (real_equal (&res, &dconst0))
1145 {
1146 info->factors[i] = true;
1147 info->deepest = i + 1;
1148 return true;
1149 }
1150 else if (!REAL_VALUE_NEGATIVE (res))
1151 {
1152 remainder = res;
1153 info->factors[i] = true;
1154 info->num_mults++;
1155 }
1156 else
1157 info->factors[i] = false;
1158
1159 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1160 }
1161 return false;
1162 }
1163
1164 /* Return the tree corresponding to FN being applied
1165 to ARG N times at GSI and LOC.
1166 Look up previous results from CACHE if need be.
1167 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1168
1169 static tree
1170 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1171 tree fn, location_t loc, tree *cache)
1172 {
1173 tree res = cache[n];
1174 if (!res)
1175 {
1176 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1177 res = build_and_insert_call (gsi, loc, fn, prev);
1178 cache[n] = res;
1179 }
1180
1181 return res;
1182 }
1183
1184 /* Print to STREAM the repeated application of function FNAME to ARG
1185 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1186 "foo (foo (x))". */
1187
1188 static void
1189 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1190 unsigned int n)
1191 {
1192 if (n == 0)
1193 fprintf (stream, "%s", arg);
1194 else
1195 {
1196 fprintf (stream, "%s (", fname);
1197 print_nested_fn (stream, fname, arg, n - 1);
1198 fprintf (stream, ")");
1199 }
1200 }
1201
1202 /* Print to STREAM the fractional sequence of sqrt chains
1203 applied to ARG, described by INFO. Used for the dump file. */
1204
1205 static void
1206 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1207 struct pow_synth_sqrt_info *info)
1208 {
1209 for (unsigned int i = 0; i < info->deepest; i++)
1210 {
1211 bool is_set = info->factors[i];
1212 if (is_set)
1213 {
1214 print_nested_fn (stream, "sqrt", arg, i + 1);
1215 if (i != info->deepest - 1)
1216 fprintf (stream, " * ");
1217 }
1218 }
1219 }
1220
1221 /* Print to STREAM a representation of raising ARG to an integer
1222 power N. Used for the dump file. */
1223
1224 static void
1225 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1226 {
1227 if (n > 1)
1228 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1229 else if (n == 1)
1230 fprintf (stream, "%s", arg);
1231 }
1232
1233 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1234 square roots. Place at GSI and LOC. Limit the maximum depth
1235 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1236 result of the expanded sequence or NULL_TREE if the expansion failed.
1237
1238 This routine assumes that ARG1 is a real number with a fractional part
1239 (the integer exponent case will have been handled earlier in
1240 gimple_expand_builtin_pow).
1241
1242 For ARG1 > 0.0:
1243 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1244 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1245 FRAC_PART == ARG1 - WHOLE_PART:
1246 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1247 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1248 if it can be expressed as such, that is if FRAC_PART satisfies:
1249 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1250 where integer a[i] is either 0 or 1.
1251
1252 Example:
1253 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1254 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1255
1256 For ARG1 < 0.0 there are two approaches:
1257 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1258 is calculated as above.
1259
1260 Example:
1261 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1262 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1263
1264 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1265 FRAC_PART := ARG1 - WHOLE_PART
1266 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1267 Example:
1268 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1269 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1270
1271 For ARG1 < 0.0 we choose between (A) and (B) depending on
1272 how many multiplications we'd have to do.
1273 So, for the example in (B): POW (x, -5.875), if we were to
1274 follow algorithm (A) we would produce:
1275 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1276 which contains more multiplications than approach (B).
1277
1278 Hopefully, this approach will eliminate potentially expensive POW library
1279 calls when unsafe floating point math is enabled and allow the compiler to
1280 further optimise the multiplies, square roots and divides produced by this
1281 function. */
1282
1283 static tree
1284 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1285 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1286 {
1287 tree type = TREE_TYPE (arg0);
1288 machine_mode mode = TYPE_MODE (type);
1289 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1290 bool one_over = true;
1291
1292 if (!sqrtfn)
1293 return NULL_TREE;
1294
1295 if (TREE_CODE (arg1) != REAL_CST)
1296 return NULL_TREE;
1297
1298 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1299
1300 gcc_assert (max_depth > 0);
1301 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1302
1303 struct pow_synth_sqrt_info synth_info;
1304 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1305 synth_info.deepest = 0;
1306 synth_info.num_mults = 0;
1307
1308 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1309 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1310
1311 /* The whole and fractional parts of exp. */
1312 REAL_VALUE_TYPE whole_part;
1313 REAL_VALUE_TYPE frac_part;
1314
1315 real_floor (&whole_part, mode, &exp);
1316 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1317
1318
1319 REAL_VALUE_TYPE ceil_whole = dconst0;
1320 REAL_VALUE_TYPE ceil_fract = dconst0;
1321
1322 if (neg_exp)
1323 {
1324 real_ceil (&ceil_whole, mode, &exp);
1325 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1326 }
1327
1328 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1329 return NULL_TREE;
1330
1331 /* Check whether it's more profitable to not use 1.0 / ... */
1332 if (neg_exp)
1333 {
1334 struct pow_synth_sqrt_info alt_synth_info;
1335 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1336 alt_synth_info.deepest = 0;
1337 alt_synth_info.num_mults = 0;
1338
1339 if (representable_as_half_series_p (ceil_fract, max_depth,
1340 &alt_synth_info)
1341 && alt_synth_info.deepest <= synth_info.deepest
1342 && alt_synth_info.num_mults < synth_info.num_mults)
1343 {
1344 whole_part = ceil_whole;
1345 frac_part = ceil_fract;
1346 synth_info.deepest = alt_synth_info.deepest;
1347 synth_info.num_mults = alt_synth_info.num_mults;
1348 memcpy (synth_info.factors, alt_synth_info.factors,
1349 (max_depth + 1) * sizeof (bool));
1350 one_over = false;
1351 }
1352 }
1353
1354 HOST_WIDE_INT n = real_to_integer (&whole_part);
1355 REAL_VALUE_TYPE cint;
1356 real_from_integer (&cint, VOIDmode, n, SIGNED);
1357
1358 if (!real_identical (&whole_part, &cint))
1359 return NULL_TREE;
1360
1361 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1362 return NULL_TREE;
1363
1364 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1365
1366 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1367
1368 /* Calculate the integer part of the exponent. */
1369 if (n > 1)
1370 {
1371 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1372 if (!integer_res)
1373 return NULL_TREE;
1374 }
1375
1376 if (dump_file)
1377 {
1378 char string[64];
1379
1380 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1381 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1382
1383 if (neg_exp)
1384 {
1385 if (one_over)
1386 {
1387 fprintf (dump_file, "1.0 / (");
1388 dump_integer_part (dump_file, "x", n);
1389 if (n > 0)
1390 fprintf (dump_file, " * ");
1391 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1392 fprintf (dump_file, ")");
1393 }
1394 else
1395 {
1396 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1397 fprintf (dump_file, " / (");
1398 dump_integer_part (dump_file, "x", n);
1399 fprintf (dump_file, ")");
1400 }
1401 }
1402 else
1403 {
1404 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1405 if (n > 0)
1406 fprintf (dump_file, " * ");
1407 dump_integer_part (dump_file, "x", n);
1408 }
1409
1410 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1411 }
1412
1413
1414 tree fract_res = NULL_TREE;
1415 cache[0] = arg0;
1416
1417 /* Calculate the fractional part of the exponent. */
1418 for (unsigned i = 0; i < synth_info.deepest; i++)
1419 {
1420 if (synth_info.factors[i])
1421 {
1422 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1423
1424 if (!fract_res)
1425 fract_res = sqrt_chain;
1426
1427 else
1428 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1429 fract_res, sqrt_chain);
1430 }
1431 }
1432
1433 tree res = NULL_TREE;
1434
1435 if (neg_exp)
1436 {
1437 if (one_over)
1438 {
1439 if (n > 0)
1440 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1441 fract_res, integer_res);
1442 else
1443 res = fract_res;
1444
1445 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1446 build_real (type, dconst1), res);
1447 }
1448 else
1449 {
1450 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1451 fract_res, integer_res);
1452 }
1453 }
1454 else
1455 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1456 fract_res, integer_res);
1457 return res;
1458 }
1459
1460 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1461 with location info LOC. If possible, create an equivalent and
1462 less expensive sequence of statements prior to GSI, and return an
1463 expession holding the result. */
1464
1465 static tree
1466 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1467 tree arg0, tree arg1)
1468 {
1469 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1470 REAL_VALUE_TYPE c2, dconst3;
1471 HOST_WIDE_INT n;
1472 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1473 machine_mode mode;
1474 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1475 bool hw_sqrt_exists, c_is_int, c2_is_int;
1476
1477 dconst1_4 = dconst1;
1478 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1479
1480 /* If the exponent isn't a constant, there's nothing of interest
1481 to be done. */
1482 if (TREE_CODE (arg1) != REAL_CST)
1483 return NULL_TREE;
1484
1485 /* If the exponent is equivalent to an integer, expand to an optimal
1486 multiplication sequence when profitable. */
1487 c = TREE_REAL_CST (arg1);
1488 n = real_to_integer (&c);
1489 real_from_integer (&cint, VOIDmode, n, SIGNED);
1490 c_is_int = real_identical (&c, &cint);
1491
1492 if (c_is_int
1493 && ((n >= -1 && n <= 2)
1494 || (flag_unsafe_math_optimizations
1495 && speed_p
1496 && powi_cost (n) <= POWI_MAX_MULTS)))
1497 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1498
1499 /* Attempt various optimizations using sqrt and cbrt. */
1500 type = TREE_TYPE (arg0);
1501 mode = TYPE_MODE (type);
1502 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1503
1504 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1505 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1506 sqrt(-0) = -0. */
1507 if (sqrtfn
1508 && real_equal (&c, &dconsthalf)
1509 && !HONOR_SIGNED_ZEROS (mode))
1510 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1511
1512 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1513
1514 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1515 optimizations since 1./3. is not exactly representable. If x
1516 is negative and finite, the correct value of pow(x,1./3.) is
1517 a NaN with the "invalid" exception raised, because the value
1518 of 1./3. actually has an even denominator. The correct value
1519 of cbrt(x) is a negative real value. */
1520 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1521 dconst1_3 = real_value_truncate (mode, dconst_third ());
1522
1523 if (flag_unsafe_math_optimizations
1524 && cbrtfn
1525 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1526 && real_equal (&c, &dconst1_3))
1527 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1528
1529 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1530 if we don't have a hardware sqrt insn. */
1531 dconst1_6 = dconst1_3;
1532 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1533
1534 if (flag_unsafe_math_optimizations
1535 && sqrtfn
1536 && cbrtfn
1537 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1538 && speed_p
1539 && hw_sqrt_exists
1540 && real_equal (&c, &dconst1_6))
1541 {
1542 /* sqrt(x) */
1543 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1544
1545 /* cbrt(sqrt(x)) */
1546 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1547 }
1548
1549
1550 /* Attempt to expand the POW as a product of square root chains.
1551 Expand the 0.25 case even when otpimising for size. */
1552 if (flag_unsafe_math_optimizations
1553 && sqrtfn
1554 && hw_sqrt_exists
1555 && (speed_p || real_equal (&c, &dconst1_4))
1556 && !HONOR_SIGNED_ZEROS (mode))
1557 {
1558 unsigned int max_depth = speed_p
1559 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1560 : 2;
1561
1562 tree expand_with_sqrts
1563 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1564
1565 if (expand_with_sqrts)
1566 return expand_with_sqrts;
1567 }
1568
1569 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1570 n = real_to_integer (&c2);
1571 real_from_integer (&cint, VOIDmode, n, SIGNED);
1572 c2_is_int = real_identical (&c2, &cint);
1573
1574 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1575
1576 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1577 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1578
1579 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1580 different from pow(x, 1./3.) due to rounding and behavior with
1581 negative x, we need to constrain this transformation to unsafe
1582 math and positive x or finite math. */
1583 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1584 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1585 real_round (&c2, mode, &c2);
1586 n = real_to_integer (&c2);
1587 real_from_integer (&cint, VOIDmode, n, SIGNED);
1588 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1589 real_convert (&c2, mode, &c2);
1590
1591 if (flag_unsafe_math_optimizations
1592 && cbrtfn
1593 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1594 && real_identical (&c2, &c)
1595 && !c2_is_int
1596 && optimize_function_for_speed_p (cfun)
1597 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1598 {
1599 tree powi_x_ndiv3 = NULL_TREE;
1600
1601 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1602 possible or profitable, give up. Skip the degenerate case when
1603 abs(n) < 3, where the result is always 1. */
1604 if (absu_hwi (n) >= 3)
1605 {
1606 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1607 abs_hwi (n / 3));
1608 if (!powi_x_ndiv3)
1609 return NULL_TREE;
1610 }
1611
1612 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1613 as that creates an unnecessary variable. Instead, just produce
1614 either cbrt(x) or cbrt(x) * cbrt(x). */
1615 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1616
1617 if (absu_hwi (n) % 3 == 1)
1618 powi_cbrt_x = cbrt_x;
1619 else
1620 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1621 cbrt_x, cbrt_x);
1622
1623 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1624 if (absu_hwi (n) < 3)
1625 result = powi_cbrt_x;
1626 else
1627 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1628 powi_x_ndiv3, powi_cbrt_x);
1629
1630 /* If n is negative, reciprocate the result. */
1631 if (n < 0)
1632 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1633 build_real (type, dconst1), result);
1634
1635 return result;
1636 }
1637
1638 /* No optimizations succeeded. */
1639 return NULL_TREE;
1640 }
1641
1642 /* ARG is the argument to a cabs builtin call in GSI with location info
1643 LOC. Create a sequence of statements prior to GSI that calculates
1644 sqrt(R*R + I*I), where R and I are the real and imaginary components
1645 of ARG, respectively. Return an expression holding the result. */
1646
1647 static tree
1648 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1649 {
1650 tree real_part, imag_part, addend1, addend2, sum, result;
1651 tree type = TREE_TYPE (TREE_TYPE (arg));
1652 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1653 machine_mode mode = TYPE_MODE (type);
1654
1655 if (!flag_unsafe_math_optimizations
1656 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1657 || !sqrtfn
1658 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1659 return NULL_TREE;
1660
1661 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1662 REALPART_EXPR, arg);
1663 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1664 real_part, real_part);
1665 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1666 IMAGPART_EXPR, arg);
1667 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1668 imag_part, imag_part);
1669 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1670 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1671
1672 return result;
1673 }
1674
1675 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1676 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1677 an optimal number of multiplies, when n is a constant. */
1678
1679 namespace {
1680
1681 const pass_data pass_data_cse_sincos =
1682 {
1683 GIMPLE_PASS, /* type */
1684 "sincos", /* name */
1685 OPTGROUP_NONE, /* optinfo_flags */
1686 TV_NONE, /* tv_id */
1687 PROP_ssa, /* properties_required */
1688 PROP_gimple_opt_math, /* properties_provided */
1689 0, /* properties_destroyed */
1690 0, /* todo_flags_start */
1691 TODO_update_ssa, /* todo_flags_finish */
1692 };
1693
1694 class pass_cse_sincos : public gimple_opt_pass
1695 {
1696 public:
1697 pass_cse_sincos (gcc::context *ctxt)
1698 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1699 {}
1700
1701 /* opt_pass methods: */
1702 virtual bool gate (function *)
1703 {
1704 /* We no longer require either sincos or cexp, since powi expansion
1705 piggybacks on this pass. */
1706 return optimize;
1707 }
1708
1709 virtual unsigned int execute (function *);
1710
1711 }; // class pass_cse_sincos
1712
1713 unsigned int
1714 pass_cse_sincos::execute (function *fun)
1715 {
1716 basic_block bb;
1717 bool cfg_changed = false;
1718
1719 calculate_dominance_info (CDI_DOMINATORS);
1720 memset (&sincos_stats, 0, sizeof (sincos_stats));
1721
1722 FOR_EACH_BB_FN (bb, fun)
1723 {
1724 gimple_stmt_iterator gsi;
1725 bool cleanup_eh = false;
1726
1727 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1728 {
1729 gimple *stmt = gsi_stmt (gsi);
1730 tree fndecl;
1731
1732 /* Only the last stmt in a bb could throw, no need to call
1733 gimple_purge_dead_eh_edges if we change something in the middle
1734 of a basic block. */
1735 cleanup_eh = false;
1736
1737 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
1738 && gimple_call_lhs (stmt))
1739 {
1740 tree arg, arg0, arg1, result;
1741 HOST_WIDE_INT n;
1742 location_t loc;
1743
1744 fndecl = gimple_call_fndecl (stmt);
1745 switch (DECL_FUNCTION_CODE (fndecl))
1746 {
1747 CASE_FLT_FN (BUILT_IN_COS):
1748 CASE_FLT_FN (BUILT_IN_SIN):
1749 CASE_FLT_FN (BUILT_IN_CEXPI):
1750 /* Make sure we have either sincos or cexp. */
1751 if (!targetm.libc_has_function (function_c99_math_complex)
1752 && !targetm.libc_has_function (function_sincos))
1753 break;
1754
1755 arg = gimple_call_arg (stmt, 0);
1756 if (TREE_CODE (arg) == SSA_NAME)
1757 cfg_changed |= execute_cse_sincos_1 (arg);
1758 break;
1759
1760 CASE_FLT_FN (BUILT_IN_POW):
1761 arg0 = gimple_call_arg (stmt, 0);
1762 arg1 = gimple_call_arg (stmt, 1);
1763
1764 loc = gimple_location (stmt);
1765 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1766
1767 if (result)
1768 {
1769 tree lhs = gimple_get_lhs (stmt);
1770 gassign *new_stmt = gimple_build_assign (lhs, result);
1771 gimple_set_location (new_stmt, loc);
1772 unlink_stmt_vdef (stmt);
1773 gsi_replace (&gsi, new_stmt, true);
1774 cleanup_eh = true;
1775 if (gimple_vdef (stmt))
1776 release_ssa_name (gimple_vdef (stmt));
1777 }
1778 break;
1779
1780 CASE_FLT_FN (BUILT_IN_POWI):
1781 arg0 = gimple_call_arg (stmt, 0);
1782 arg1 = gimple_call_arg (stmt, 1);
1783 loc = gimple_location (stmt);
1784
1785 if (real_minus_onep (arg0))
1786 {
1787 tree t0, t1, cond, one, minus_one;
1788 gassign *stmt;
1789
1790 t0 = TREE_TYPE (arg0);
1791 t1 = TREE_TYPE (arg1);
1792 one = build_real (t0, dconst1);
1793 minus_one = build_real (t0, dconstm1);
1794
1795 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1796 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1797 arg1, build_int_cst (t1, 1));
1798 gimple_set_location (stmt, loc);
1799 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1800
1801 result = make_temp_ssa_name (t0, NULL, "powi");
1802 stmt = gimple_build_assign (result, COND_EXPR, cond,
1803 minus_one, one);
1804 gimple_set_location (stmt, loc);
1805 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1806 }
1807 else
1808 {
1809 if (!tree_fits_shwi_p (arg1))
1810 break;
1811
1812 n = tree_to_shwi (arg1);
1813 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1814 }
1815
1816 if (result)
1817 {
1818 tree lhs = gimple_get_lhs (stmt);
1819 gassign *new_stmt = gimple_build_assign (lhs, result);
1820 gimple_set_location (new_stmt, loc);
1821 unlink_stmt_vdef (stmt);
1822 gsi_replace (&gsi, new_stmt, true);
1823 cleanup_eh = true;
1824 if (gimple_vdef (stmt))
1825 release_ssa_name (gimple_vdef (stmt));
1826 }
1827 break;
1828
1829 CASE_FLT_FN (BUILT_IN_CABS):
1830 arg0 = gimple_call_arg (stmt, 0);
1831 loc = gimple_location (stmt);
1832 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1833
1834 if (result)
1835 {
1836 tree lhs = gimple_get_lhs (stmt);
1837 gassign *new_stmt = gimple_build_assign (lhs, result);
1838 gimple_set_location (new_stmt, loc);
1839 unlink_stmt_vdef (stmt);
1840 gsi_replace (&gsi, new_stmt, true);
1841 cleanup_eh = true;
1842 if (gimple_vdef (stmt))
1843 release_ssa_name (gimple_vdef (stmt));
1844 }
1845 break;
1846
1847 default:;
1848 }
1849 }
1850 }
1851 if (cleanup_eh)
1852 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1853 }
1854
1855 statistics_counter_event (fun, "sincos statements inserted",
1856 sincos_stats.inserted);
1857
1858 return cfg_changed ? TODO_cleanup_cfg : 0;
1859 }
1860
1861 } // anon namespace
1862
1863 gimple_opt_pass *
1864 make_pass_cse_sincos (gcc::context *ctxt)
1865 {
1866 return new pass_cse_sincos (ctxt);
1867 }
1868
1869 /* A symbolic number is used to detect byte permutation and selection
1870 patterns. Therefore the field N contains an artificial number
1871 consisting of octet sized markers:
1872
1873 0 - target byte has the value 0
1874 FF - target byte has an unknown value (eg. due to sign extension)
1875 1..size - marker value is the target byte index minus one.
1876
1877 To detect permutations on memory sources (arrays and structures), a symbolic
1878 number is also associated a base address (the array or structure the load is
1879 made from), an offset from the base address and a range which gives the
1880 difference between the highest and lowest accessed memory location to make
1881 such a symbolic number. The range is thus different from size which reflects
1882 the size of the type of current expression. Note that for non memory source,
1883 range holds the same value as size.
1884
1885 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1886 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1887 still have a size of 2 but this time a range of 1. */
1888
1889 struct symbolic_number {
1890 uint64_t n;
1891 tree type;
1892 tree base_addr;
1893 tree offset;
1894 HOST_WIDE_INT bytepos;
1895 tree alias_set;
1896 tree vuse;
1897 unsigned HOST_WIDE_INT range;
1898 };
1899
1900 #define BITS_PER_MARKER 8
1901 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1902 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1903 #define HEAD_MARKER(n, size) \
1904 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1905
1906 /* The number which the find_bswap_or_nop_1 result should match in
1907 order to have a nop. The number is masked according to the size of
1908 the symbolic number before using it. */
1909 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1910 (uint64_t)0x08070605 << 32 | 0x04030201)
1911
1912 /* The number which the find_bswap_or_nop_1 result should match in
1913 order to have a byte swap. The number is masked according to the
1914 size of the symbolic number before using it. */
1915 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1916 (uint64_t)0x01020304 << 32 | 0x05060708)
1917
1918 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1919 number N. Return false if the requested operation is not permitted
1920 on a symbolic number. */
1921
1922 static inline bool
1923 do_shift_rotate (enum tree_code code,
1924 struct symbolic_number *n,
1925 int count)
1926 {
1927 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1928 unsigned head_marker;
1929
1930 if (count % BITS_PER_UNIT != 0)
1931 return false;
1932 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1933
1934 /* Zero out the extra bits of N in order to avoid them being shifted
1935 into the significant bits. */
1936 if (size < 64 / BITS_PER_MARKER)
1937 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1938
1939 switch (code)
1940 {
1941 case LSHIFT_EXPR:
1942 n->n <<= count;
1943 break;
1944 case RSHIFT_EXPR:
1945 head_marker = HEAD_MARKER (n->n, size);
1946 n->n >>= count;
1947 /* Arithmetic shift of signed type: result is dependent on the value. */
1948 if (!TYPE_UNSIGNED (n->type) && head_marker)
1949 for (i = 0; i < count / BITS_PER_MARKER; i++)
1950 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1951 << ((size - 1 - i) * BITS_PER_MARKER);
1952 break;
1953 case LROTATE_EXPR:
1954 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1955 break;
1956 case RROTATE_EXPR:
1957 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1958 break;
1959 default:
1960 return false;
1961 }
1962 /* Zero unused bits for size. */
1963 if (size < 64 / BITS_PER_MARKER)
1964 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1965 return true;
1966 }
1967
1968 /* Perform sanity checking for the symbolic number N and the gimple
1969 statement STMT. */
1970
1971 static inline bool
1972 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
1973 {
1974 tree lhs_type;
1975
1976 lhs_type = gimple_expr_type (stmt);
1977
1978 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1979 return false;
1980
1981 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1982 return false;
1983
1984 return true;
1985 }
1986
1987 /* Initialize the symbolic number N for the bswap pass from the base element
1988 SRC manipulated by the bitwise OR expression. */
1989
1990 static bool
1991 init_symbolic_number (struct symbolic_number *n, tree src)
1992 {
1993 int size;
1994
1995 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1996
1997 /* Set up the symbolic number N by setting each byte to a value between 1 and
1998 the byte size of rhs1. The highest order byte is set to n->size and the
1999 lowest order byte to 1. */
2000 n->type = TREE_TYPE (src);
2001 size = TYPE_PRECISION (n->type);
2002 if (size % BITS_PER_UNIT != 0)
2003 return false;
2004 size /= BITS_PER_UNIT;
2005 if (size > 64 / BITS_PER_MARKER)
2006 return false;
2007 n->range = size;
2008 n->n = CMPNOP;
2009
2010 if (size < 64 / BITS_PER_MARKER)
2011 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2012
2013 return true;
2014 }
2015
2016 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2017 the answer. If so, REF is that memory source and the base of the memory area
2018 accessed and the offset of the access from that base are recorded in N. */
2019
2020 bool
2021 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
2022 {
2023 /* Leaf node is an array or component ref. Memorize its base and
2024 offset from base to compare to other such leaf node. */
2025 HOST_WIDE_INT bitsize, bitpos;
2026 machine_mode mode;
2027 int unsignedp, volatilep;
2028 tree offset, base_addr;
2029
2030 /* Not prepared to handle PDP endian. */
2031 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2032 return false;
2033
2034 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2035 return false;
2036
2037 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2038 &unsignedp, &volatilep, false);
2039
2040 if (TREE_CODE (base_addr) == MEM_REF)
2041 {
2042 offset_int bit_offset = 0;
2043 tree off = TREE_OPERAND (base_addr, 1);
2044
2045 if (!integer_zerop (off))
2046 {
2047 offset_int boff, coff = mem_ref_offset (base_addr);
2048 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2049 bit_offset += boff;
2050 }
2051
2052 base_addr = TREE_OPERAND (base_addr, 0);
2053
2054 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2055 if (wi::neg_p (bit_offset))
2056 {
2057 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2058 offset_int tem = bit_offset.and_not (mask);
2059 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2060 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2061 bit_offset -= tem;
2062 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
2063 if (offset)
2064 offset = size_binop (PLUS_EXPR, offset,
2065 wide_int_to_tree (sizetype, tem));
2066 else
2067 offset = wide_int_to_tree (sizetype, tem);
2068 }
2069
2070 bitpos += bit_offset.to_shwi ();
2071 }
2072
2073 if (bitpos % BITS_PER_UNIT)
2074 return false;
2075 if (bitsize % BITS_PER_UNIT)
2076 return false;
2077
2078 if (!init_symbolic_number (n, ref))
2079 return false;
2080 n->base_addr = base_addr;
2081 n->offset = offset;
2082 n->bytepos = bitpos / BITS_PER_UNIT;
2083 n->alias_set = reference_alias_ptr_type (ref);
2084 n->vuse = gimple_vuse (stmt);
2085 return true;
2086 }
2087
2088 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2089 symbolic number N1 and N2 whose source statements are respectively
2090 SOURCE_STMT1 and SOURCE_STMT2. */
2091
2092 static gimple *
2093 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
2094 gimple *source_stmt2, struct symbolic_number *n2,
2095 struct symbolic_number *n)
2096 {
2097 int i, size;
2098 uint64_t mask;
2099 gimple *source_stmt;
2100 struct symbolic_number *n_start;
2101
2102 /* Sources are different, cancel bswap if they are not memory location with
2103 the same base (array, structure, ...). */
2104 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2105 {
2106 uint64_t inc;
2107 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2108 struct symbolic_number *toinc_n_ptr, *n_end;
2109
2110 if (!n1->base_addr || !n2->base_addr
2111 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2112 return NULL;
2113
2114 if (!n1->offset != !n2->offset
2115 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2116 return NULL;
2117
2118 if (n1->bytepos < n2->bytepos)
2119 {
2120 n_start = n1;
2121 start_sub = n2->bytepos - n1->bytepos;
2122 source_stmt = source_stmt1;
2123 }
2124 else
2125 {
2126 n_start = n2;
2127 start_sub = n1->bytepos - n2->bytepos;
2128 source_stmt = source_stmt2;
2129 }
2130
2131 /* Find the highest address at which a load is performed and
2132 compute related info. */
2133 end1 = n1->bytepos + (n1->range - 1);
2134 end2 = n2->bytepos + (n2->range - 1);
2135 if (end1 < end2)
2136 {
2137 end = end2;
2138 end_sub = end2 - end1;
2139 }
2140 else
2141 {
2142 end = end1;
2143 end_sub = end1 - end2;
2144 }
2145 n_end = (end2 > end1) ? n2 : n1;
2146
2147 /* Find symbolic number whose lsb is the most significant. */
2148 if (BYTES_BIG_ENDIAN)
2149 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2150 else
2151 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2152
2153 n->range = end - n_start->bytepos + 1;
2154
2155 /* Check that the range of memory covered can be represented by
2156 a symbolic number. */
2157 if (n->range > 64 / BITS_PER_MARKER)
2158 return NULL;
2159
2160 /* Reinterpret byte marks in symbolic number holding the value of
2161 bigger weight according to target endianness. */
2162 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2163 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2164 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2165 {
2166 unsigned marker
2167 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2168 if (marker && marker != MARKER_BYTE_UNKNOWN)
2169 toinc_n_ptr->n += inc;
2170 }
2171 }
2172 else
2173 {
2174 n->range = n1->range;
2175 n_start = n1;
2176 source_stmt = source_stmt1;
2177 }
2178
2179 if (!n1->alias_set
2180 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2181 n->alias_set = n1->alias_set;
2182 else
2183 n->alias_set = ptr_type_node;
2184 n->vuse = n_start->vuse;
2185 n->base_addr = n_start->base_addr;
2186 n->offset = n_start->offset;
2187 n->bytepos = n_start->bytepos;
2188 n->type = n_start->type;
2189 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2190
2191 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2192 {
2193 uint64_t masked1, masked2;
2194
2195 masked1 = n1->n & mask;
2196 masked2 = n2->n & mask;
2197 if (masked1 && masked2 && masked1 != masked2)
2198 return NULL;
2199 }
2200 n->n = n1->n | n2->n;
2201
2202 return source_stmt;
2203 }
2204
2205 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2206 the operation given by the rhs of STMT on the result. If the operation
2207 could successfully be executed the function returns a gimple stmt whose
2208 rhs's first tree is the expression of the source operand and NULL
2209 otherwise. */
2210
2211 static gimple *
2212 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
2213 {
2214 enum tree_code code;
2215 tree rhs1, rhs2 = NULL;
2216 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
2217 enum gimple_rhs_class rhs_class;
2218
2219 if (!limit || !is_gimple_assign (stmt))
2220 return NULL;
2221
2222 rhs1 = gimple_assign_rhs1 (stmt);
2223
2224 if (find_bswap_or_nop_load (stmt, rhs1, n))
2225 return stmt;
2226
2227 if (TREE_CODE (rhs1) != SSA_NAME)
2228 return NULL;
2229
2230 code = gimple_assign_rhs_code (stmt);
2231 rhs_class = gimple_assign_rhs_class (stmt);
2232 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2233
2234 if (rhs_class == GIMPLE_BINARY_RHS)
2235 rhs2 = gimple_assign_rhs2 (stmt);
2236
2237 /* Handle unary rhs and binary rhs with integer constants as second
2238 operand. */
2239
2240 if (rhs_class == GIMPLE_UNARY_RHS
2241 || (rhs_class == GIMPLE_BINARY_RHS
2242 && TREE_CODE (rhs2) == INTEGER_CST))
2243 {
2244 if (code != BIT_AND_EXPR
2245 && code != LSHIFT_EXPR
2246 && code != RSHIFT_EXPR
2247 && code != LROTATE_EXPR
2248 && code != RROTATE_EXPR
2249 && !CONVERT_EXPR_CODE_P (code))
2250 return NULL;
2251
2252 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2253
2254 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2255 we have to initialize the symbolic number. */
2256 if (!source_stmt1)
2257 {
2258 if (gimple_assign_load_p (stmt)
2259 || !init_symbolic_number (n, rhs1))
2260 return NULL;
2261 source_stmt1 = stmt;
2262 }
2263
2264 switch (code)
2265 {
2266 case BIT_AND_EXPR:
2267 {
2268 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2269 uint64_t val = int_cst_value (rhs2), mask = 0;
2270 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2271
2272 /* Only constants masking full bytes are allowed. */
2273 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2274 if ((val & tmp) != 0 && (val & tmp) != tmp)
2275 return NULL;
2276 else if (val & tmp)
2277 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2278
2279 n->n &= mask;
2280 }
2281 break;
2282 case LSHIFT_EXPR:
2283 case RSHIFT_EXPR:
2284 case LROTATE_EXPR:
2285 case RROTATE_EXPR:
2286 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2287 return NULL;
2288 break;
2289 CASE_CONVERT:
2290 {
2291 int i, type_size, old_type_size;
2292 tree type;
2293
2294 type = gimple_expr_type (stmt);
2295 type_size = TYPE_PRECISION (type);
2296 if (type_size % BITS_PER_UNIT != 0)
2297 return NULL;
2298 type_size /= BITS_PER_UNIT;
2299 if (type_size > 64 / BITS_PER_MARKER)
2300 return NULL;
2301
2302 /* Sign extension: result is dependent on the value. */
2303 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2304 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2305 && HEAD_MARKER (n->n, old_type_size))
2306 for (i = 0; i < type_size - old_type_size; i++)
2307 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2308 << ((type_size - 1 - i) * BITS_PER_MARKER);
2309
2310 if (type_size < 64 / BITS_PER_MARKER)
2311 {
2312 /* If STMT casts to a smaller type mask out the bits not
2313 belonging to the target type. */
2314 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2315 }
2316 n->type = type;
2317 if (!n->base_addr)
2318 n->range = type_size;
2319 }
2320 break;
2321 default:
2322 return NULL;
2323 };
2324 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2325 }
2326
2327 /* Handle binary rhs. */
2328
2329 if (rhs_class == GIMPLE_BINARY_RHS)
2330 {
2331 struct symbolic_number n1, n2;
2332 gimple *source_stmt, *source_stmt2;
2333
2334 if (code != BIT_IOR_EXPR)
2335 return NULL;
2336
2337 if (TREE_CODE (rhs2) != SSA_NAME)
2338 return NULL;
2339
2340 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2341
2342 switch (code)
2343 {
2344 case BIT_IOR_EXPR:
2345 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2346
2347 if (!source_stmt1)
2348 return NULL;
2349
2350 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2351
2352 if (!source_stmt2)
2353 return NULL;
2354
2355 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2356 return NULL;
2357
2358 if (!n1.vuse != !n2.vuse
2359 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2360 return NULL;
2361
2362 source_stmt
2363 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2364
2365 if (!source_stmt)
2366 return NULL;
2367
2368 if (!verify_symbolic_number_p (n, stmt))
2369 return NULL;
2370
2371 break;
2372 default:
2373 return NULL;
2374 }
2375 return source_stmt;
2376 }
2377 return NULL;
2378 }
2379
2380 /* Check if STMT completes a bswap implementation or a read in a given
2381 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2382 accordingly. It also sets N to represent the kind of operations
2383 performed: size of the resulting expression and whether it works on
2384 a memory source, and if so alias-set and vuse. At last, the
2385 function returns a stmt whose rhs's first tree is the source
2386 expression. */
2387
2388 static gimple *
2389 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
2390 {
2391 /* The number which the find_bswap_or_nop_1 result should match in order
2392 to have a full byte swap. The number is shifted to the right
2393 according to the size of the symbolic number before using it. */
2394 uint64_t cmpxchg = CMPXCHG;
2395 uint64_t cmpnop = CMPNOP;
2396
2397 gimple *source_stmt;
2398 int limit;
2399
2400 /* The last parameter determines the depth search limit. It usually
2401 correlates directly to the number n of bytes to be touched. We
2402 increase that number by log2(n) + 1 here in order to also
2403 cover signed -> unsigned conversions of the src operand as can be seen
2404 in libgcc, and for initial shift/and operation of the src operand. */
2405 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2406 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2407 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2408
2409 if (!source_stmt)
2410 return NULL;
2411
2412 /* Find real size of result (highest non-zero byte). */
2413 if (n->base_addr)
2414 {
2415 int rsize;
2416 uint64_t tmpn;
2417
2418 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2419 n->range = rsize;
2420 }
2421
2422 /* Zero out the extra bits of N and CMP*. */
2423 if (n->range < (int) sizeof (int64_t))
2424 {
2425 uint64_t mask;
2426
2427 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2428 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2429 cmpnop &= mask;
2430 }
2431
2432 /* A complete byte swap should make the symbolic number to start with
2433 the largest digit in the highest order byte. Unchanged symbolic
2434 number indicates a read with same endianness as target architecture. */
2435 if (n->n == cmpnop)
2436 *bswap = false;
2437 else if (n->n == cmpxchg)
2438 *bswap = true;
2439 else
2440 return NULL;
2441
2442 /* Useless bit manipulation performed by code. */
2443 if (!n->base_addr && n->n == cmpnop)
2444 return NULL;
2445
2446 n->range *= BITS_PER_UNIT;
2447 return source_stmt;
2448 }
2449
2450 namespace {
2451
2452 const pass_data pass_data_optimize_bswap =
2453 {
2454 GIMPLE_PASS, /* type */
2455 "bswap", /* name */
2456 OPTGROUP_NONE, /* optinfo_flags */
2457 TV_NONE, /* tv_id */
2458 PROP_ssa, /* properties_required */
2459 0, /* properties_provided */
2460 0, /* properties_destroyed */
2461 0, /* todo_flags_start */
2462 0, /* todo_flags_finish */
2463 };
2464
2465 class pass_optimize_bswap : public gimple_opt_pass
2466 {
2467 public:
2468 pass_optimize_bswap (gcc::context *ctxt)
2469 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2470 {}
2471
2472 /* opt_pass methods: */
2473 virtual bool gate (function *)
2474 {
2475 return flag_expensive_optimizations && optimize;
2476 }
2477
2478 virtual unsigned int execute (function *);
2479
2480 }; // class pass_optimize_bswap
2481
2482 /* Perform the bswap optimization: replace the expression computed in the rhs
2483 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2484 Which of these alternatives replace the rhs is given by N->base_addr (non
2485 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2486 load to perform are also given in N while the builtin bswap invoke is given
2487 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2488 load statements involved to construct the rhs in CUR_STMT and N->range gives
2489 the size of the rhs expression for maintaining some statistics.
2490
2491 Note that if the replacement involve a load, CUR_STMT is moved just after
2492 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2493 changing of basic block. */
2494
2495 static bool
2496 bswap_replace (gimple *cur_stmt, gimple *src_stmt, tree fndecl,
2497 tree bswap_type, tree load_type, struct symbolic_number *n,
2498 bool bswap)
2499 {
2500 gimple_stmt_iterator gsi;
2501 tree src, tmp, tgt;
2502 gimple *bswap_stmt;
2503
2504 gsi = gsi_for_stmt (cur_stmt);
2505 src = gimple_assign_rhs1 (src_stmt);
2506 tgt = gimple_assign_lhs (cur_stmt);
2507
2508 /* Need to load the value from memory first. */
2509 if (n->base_addr)
2510 {
2511 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2512 tree addr_expr, addr_tmp, val_expr, val_tmp;
2513 tree load_offset_ptr, aligned_load_type;
2514 gimple *addr_stmt, *load_stmt;
2515 unsigned align;
2516 HOST_WIDE_INT load_offset = 0;
2517
2518 align = get_object_alignment (src);
2519 /* If the new access is smaller than the original one, we need
2520 to perform big endian adjustment. */
2521 if (BYTES_BIG_ENDIAN)
2522 {
2523 HOST_WIDE_INT bitsize, bitpos;
2524 machine_mode mode;
2525 int unsignedp, volatilep;
2526 tree offset;
2527
2528 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2529 &unsignedp, &volatilep, false);
2530 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2531 {
2532 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2533 unsigned HOST_WIDE_INT l
2534 = (load_offset * BITS_PER_UNIT) & (align - 1);
2535 if (l)
2536 align = l & -l;
2537 }
2538 }
2539
2540 if (bswap
2541 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2542 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2543 return false;
2544
2545 /* Move cur_stmt just before one of the load of the original
2546 to ensure it has the same VUSE. See PR61517 for what could
2547 go wrong. */
2548 gsi_move_before (&gsi, &gsi_ins);
2549 gsi = gsi_for_stmt (cur_stmt);
2550
2551 /* Compute address to load from and cast according to the size
2552 of the load. */
2553 addr_expr = build_fold_addr_expr (unshare_expr (src));
2554 if (is_gimple_mem_ref_addr (addr_expr))
2555 addr_tmp = addr_expr;
2556 else
2557 {
2558 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2559 "load_src");
2560 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2561 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2562 }
2563
2564 /* Perform the load. */
2565 aligned_load_type = load_type;
2566 if (align < TYPE_ALIGN (load_type))
2567 aligned_load_type = build_aligned_type (load_type, align);
2568 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2569 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2570 load_offset_ptr);
2571
2572 if (!bswap)
2573 {
2574 if (n->range == 16)
2575 nop_stats.found_16bit++;
2576 else if (n->range == 32)
2577 nop_stats.found_32bit++;
2578 else
2579 {
2580 gcc_assert (n->range == 64);
2581 nop_stats.found_64bit++;
2582 }
2583
2584 /* Convert the result of load if necessary. */
2585 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2586 {
2587 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2588 "load_dst");
2589 load_stmt = gimple_build_assign (val_tmp, val_expr);
2590 gimple_set_vuse (load_stmt, n->vuse);
2591 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2592 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2593 }
2594 else
2595 {
2596 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2597 gimple_set_vuse (cur_stmt, n->vuse);
2598 }
2599 update_stmt (cur_stmt);
2600
2601 if (dump_file)
2602 {
2603 fprintf (dump_file,
2604 "%d bit load in target endianness found at: ",
2605 (int) n->range);
2606 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2607 }
2608 return true;
2609 }
2610 else
2611 {
2612 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2613 load_stmt = gimple_build_assign (val_tmp, val_expr);
2614 gimple_set_vuse (load_stmt, n->vuse);
2615 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2616 }
2617 src = val_tmp;
2618 }
2619
2620 if (n->range == 16)
2621 bswap_stats.found_16bit++;
2622 else if (n->range == 32)
2623 bswap_stats.found_32bit++;
2624 else
2625 {
2626 gcc_assert (n->range == 64);
2627 bswap_stats.found_64bit++;
2628 }
2629
2630 tmp = src;
2631
2632 /* Convert the src expression if necessary. */
2633 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2634 {
2635 gimple *convert_stmt;
2636
2637 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2638 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2639 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2640 }
2641
2642 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2643 are considered as rotation of 2N bit values by N bits is generally not
2644 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2645 gives 0x03040102 while a bswap for that value is 0x04030201. */
2646 if (bswap && n->range == 16)
2647 {
2648 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2649 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2650 bswap_stmt = gimple_build_assign (NULL, src);
2651 }
2652 else
2653 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2654
2655 tmp = tgt;
2656
2657 /* Convert the result if necessary. */
2658 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2659 {
2660 gimple *convert_stmt;
2661
2662 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2663 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2664 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2665 }
2666
2667 gimple_set_lhs (bswap_stmt, tmp);
2668
2669 if (dump_file)
2670 {
2671 fprintf (dump_file, "%d bit bswap implementation found at: ",
2672 (int) n->range);
2673 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2674 }
2675
2676 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2677 gsi_remove (&gsi, true);
2678 return true;
2679 }
2680
2681 /* Find manual byte swap implementations as well as load in a given
2682 endianness. Byte swaps are turned into a bswap builtin invokation
2683 while endian loads are converted to bswap builtin invokation or
2684 simple load according to the target endianness. */
2685
2686 unsigned int
2687 pass_optimize_bswap::execute (function *fun)
2688 {
2689 basic_block bb;
2690 bool bswap32_p, bswap64_p;
2691 bool changed = false;
2692 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2693
2694 if (BITS_PER_UNIT != 8)
2695 return 0;
2696
2697 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2698 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2699 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2700 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2701 || (bswap32_p && word_mode == SImode)));
2702
2703 /* Determine the argument type of the builtins. The code later on
2704 assumes that the return and argument type are the same. */
2705 if (bswap32_p)
2706 {
2707 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2708 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2709 }
2710
2711 if (bswap64_p)
2712 {
2713 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2714 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2715 }
2716
2717 memset (&nop_stats, 0, sizeof (nop_stats));
2718 memset (&bswap_stats, 0, sizeof (bswap_stats));
2719
2720 FOR_EACH_BB_FN (bb, fun)
2721 {
2722 gimple_stmt_iterator gsi;
2723
2724 /* We do a reverse scan for bswap patterns to make sure we get the
2725 widest match. As bswap pattern matching doesn't handle previously
2726 inserted smaller bswap replacements as sub-patterns, the wider
2727 variant wouldn't be detected. */
2728 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2729 {
2730 gimple *src_stmt, *cur_stmt = gsi_stmt (gsi);
2731 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2732 enum tree_code code;
2733 struct symbolic_number n;
2734 bool bswap;
2735
2736 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2737 might be moved to a different basic block by bswap_replace and gsi
2738 must not points to it if that's the case. Moving the gsi_prev
2739 there make sure that gsi points to the statement previous to
2740 cur_stmt while still making sure that all statements are
2741 considered in this basic block. */
2742 gsi_prev (&gsi);
2743
2744 if (!is_gimple_assign (cur_stmt))
2745 continue;
2746
2747 code = gimple_assign_rhs_code (cur_stmt);
2748 switch (code)
2749 {
2750 case LROTATE_EXPR:
2751 case RROTATE_EXPR:
2752 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2753 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2754 % BITS_PER_UNIT)
2755 continue;
2756 /* Fall through. */
2757 case BIT_IOR_EXPR:
2758 break;
2759 default:
2760 continue;
2761 }
2762
2763 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2764
2765 if (!src_stmt)
2766 continue;
2767
2768 switch (n.range)
2769 {
2770 case 16:
2771 /* Already in canonical form, nothing to do. */
2772 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2773 continue;
2774 load_type = bswap_type = uint16_type_node;
2775 break;
2776 case 32:
2777 load_type = uint32_type_node;
2778 if (bswap32_p)
2779 {
2780 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2781 bswap_type = bswap32_type;
2782 }
2783 break;
2784 case 64:
2785 load_type = uint64_type_node;
2786 if (bswap64_p)
2787 {
2788 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2789 bswap_type = bswap64_type;
2790 }
2791 break;
2792 default:
2793 continue;
2794 }
2795
2796 if (bswap && !fndecl && n.range != 16)
2797 continue;
2798
2799 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2800 &n, bswap))
2801 changed = true;
2802 }
2803 }
2804
2805 statistics_counter_event (fun, "16-bit nop implementations found",
2806 nop_stats.found_16bit);
2807 statistics_counter_event (fun, "32-bit nop implementations found",
2808 nop_stats.found_32bit);
2809 statistics_counter_event (fun, "64-bit nop implementations found",
2810 nop_stats.found_64bit);
2811 statistics_counter_event (fun, "16-bit bswap implementations found",
2812 bswap_stats.found_16bit);
2813 statistics_counter_event (fun, "32-bit bswap implementations found",
2814 bswap_stats.found_32bit);
2815 statistics_counter_event (fun, "64-bit bswap implementations found",
2816 bswap_stats.found_64bit);
2817
2818 return (changed ? TODO_update_ssa : 0);
2819 }
2820
2821 } // anon namespace
2822
2823 gimple_opt_pass *
2824 make_pass_optimize_bswap (gcc::context *ctxt)
2825 {
2826 return new pass_optimize_bswap (ctxt);
2827 }
2828
2829 /* Return true if stmt is a type conversion operation that can be stripped
2830 when used in a widening multiply operation. */
2831 static bool
2832 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2833 {
2834 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2835
2836 if (TREE_CODE (result_type) == INTEGER_TYPE)
2837 {
2838 tree op_type;
2839 tree inner_op_type;
2840
2841 if (!CONVERT_EXPR_CODE_P (rhs_code))
2842 return false;
2843
2844 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2845
2846 /* If the type of OP has the same precision as the result, then
2847 we can strip this conversion. The multiply operation will be
2848 selected to create the correct extension as a by-product. */
2849 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2850 return true;
2851
2852 /* We can also strip a conversion if it preserves the signed-ness of
2853 the operation and doesn't narrow the range. */
2854 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2855
2856 /* If the inner-most type is unsigned, then we can strip any
2857 intermediate widening operation. If it's signed, then the
2858 intermediate widening operation must also be signed. */
2859 if ((TYPE_UNSIGNED (inner_op_type)
2860 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2861 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2862 return true;
2863
2864 return false;
2865 }
2866
2867 return rhs_code == FIXED_CONVERT_EXPR;
2868 }
2869
2870 /* Return true if RHS is a suitable operand for a widening multiplication,
2871 assuming a target type of TYPE.
2872 There are two cases:
2873
2874 - RHS makes some value at least twice as wide. Store that value
2875 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2876
2877 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2878 but leave *TYPE_OUT untouched. */
2879
2880 static bool
2881 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2882 tree *new_rhs_out)
2883 {
2884 gimple *stmt;
2885 tree type1, rhs1;
2886
2887 if (TREE_CODE (rhs) == SSA_NAME)
2888 {
2889 stmt = SSA_NAME_DEF_STMT (rhs);
2890 if (is_gimple_assign (stmt))
2891 {
2892 if (! widening_mult_conversion_strippable_p (type, stmt))
2893 rhs1 = rhs;
2894 else
2895 {
2896 rhs1 = gimple_assign_rhs1 (stmt);
2897
2898 if (TREE_CODE (rhs1) == INTEGER_CST)
2899 {
2900 *new_rhs_out = rhs1;
2901 *type_out = NULL;
2902 return true;
2903 }
2904 }
2905 }
2906 else
2907 rhs1 = rhs;
2908
2909 type1 = TREE_TYPE (rhs1);
2910
2911 if (TREE_CODE (type1) != TREE_CODE (type)
2912 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2913 return false;
2914
2915 *new_rhs_out = rhs1;
2916 *type_out = type1;
2917 return true;
2918 }
2919
2920 if (TREE_CODE (rhs) == INTEGER_CST)
2921 {
2922 *new_rhs_out = rhs;
2923 *type_out = NULL;
2924 return true;
2925 }
2926
2927 return false;
2928 }
2929
2930 /* Return true if STMT performs a widening multiplication, assuming the
2931 output type is TYPE. If so, store the unwidened types of the operands
2932 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2933 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2934 and *TYPE2_OUT would give the operands of the multiplication. */
2935
2936 static bool
2937 is_widening_mult_p (gimple *stmt,
2938 tree *type1_out, tree *rhs1_out,
2939 tree *type2_out, tree *rhs2_out)
2940 {
2941 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2942
2943 if (TREE_CODE (type) != INTEGER_TYPE
2944 && TREE_CODE (type) != FIXED_POINT_TYPE)
2945 return false;
2946
2947 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2948 rhs1_out))
2949 return false;
2950
2951 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2952 rhs2_out))
2953 return false;
2954
2955 if (*type1_out == NULL)
2956 {
2957 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2958 return false;
2959 *type1_out = *type2_out;
2960 }
2961
2962 if (*type2_out == NULL)
2963 {
2964 if (!int_fits_type_p (*rhs2_out, *type1_out))
2965 return false;
2966 *type2_out = *type1_out;
2967 }
2968
2969 /* Ensure that the larger of the two operands comes first. */
2970 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2971 {
2972 std::swap (*type1_out, *type2_out);
2973 std::swap (*rhs1_out, *rhs2_out);
2974 }
2975
2976 return true;
2977 }
2978
2979 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2980 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2981 value is true iff we converted the statement. */
2982
2983 static bool
2984 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
2985 {
2986 tree lhs, rhs1, rhs2, type, type1, type2;
2987 enum insn_code handler;
2988 machine_mode to_mode, from_mode, actual_mode;
2989 optab op;
2990 int actual_precision;
2991 location_t loc = gimple_location (stmt);
2992 bool from_unsigned1, from_unsigned2;
2993
2994 lhs = gimple_assign_lhs (stmt);
2995 type = TREE_TYPE (lhs);
2996 if (TREE_CODE (type) != INTEGER_TYPE)
2997 return false;
2998
2999 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3000 return false;
3001
3002 to_mode = TYPE_MODE (type);
3003 from_mode = TYPE_MODE (type1);
3004 from_unsigned1 = TYPE_UNSIGNED (type1);
3005 from_unsigned2 = TYPE_UNSIGNED (type2);
3006
3007 if (from_unsigned1 && from_unsigned2)
3008 op = umul_widen_optab;
3009 else if (!from_unsigned1 && !from_unsigned2)
3010 op = smul_widen_optab;
3011 else
3012 op = usmul_widen_optab;
3013
3014 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3015 0, &actual_mode);
3016
3017 if (handler == CODE_FOR_nothing)
3018 {
3019 if (op != smul_widen_optab)
3020 {
3021 /* We can use a signed multiply with unsigned types as long as
3022 there is a wider mode to use, or it is the smaller of the two
3023 types that is unsigned. Note that type1 >= type2, always. */
3024 if ((TYPE_UNSIGNED (type1)
3025 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3026 || (TYPE_UNSIGNED (type2)
3027 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3028 {
3029 from_mode = GET_MODE_WIDER_MODE (from_mode);
3030 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3031 return false;
3032 }
3033
3034 op = smul_widen_optab;
3035 handler = find_widening_optab_handler_and_mode (op, to_mode,
3036 from_mode, 0,
3037 &actual_mode);
3038
3039 if (handler == CODE_FOR_nothing)
3040 return false;
3041
3042 from_unsigned1 = from_unsigned2 = false;
3043 }
3044 else
3045 return false;
3046 }
3047
3048 /* Ensure that the inputs to the handler are in the correct precison
3049 for the opcode. This will be the full mode size. */
3050 actual_precision = GET_MODE_PRECISION (actual_mode);
3051 if (2 * actual_precision > TYPE_PRECISION (type))
3052 return false;
3053 if (actual_precision != TYPE_PRECISION (type1)
3054 || from_unsigned1 != TYPE_UNSIGNED (type1))
3055 rhs1 = build_and_insert_cast (gsi, loc,
3056 build_nonstandard_integer_type
3057 (actual_precision, from_unsigned1), rhs1);
3058 if (actual_precision != TYPE_PRECISION (type2)
3059 || from_unsigned2 != TYPE_UNSIGNED (type2))
3060 rhs2 = build_and_insert_cast (gsi, loc,
3061 build_nonstandard_integer_type
3062 (actual_precision, from_unsigned2), rhs2);
3063
3064 /* Handle constants. */
3065 if (TREE_CODE (rhs1) == INTEGER_CST)
3066 rhs1 = fold_convert (type1, rhs1);
3067 if (TREE_CODE (rhs2) == INTEGER_CST)
3068 rhs2 = fold_convert (type2, rhs2);
3069
3070 gimple_assign_set_rhs1 (stmt, rhs1);
3071 gimple_assign_set_rhs2 (stmt, rhs2);
3072 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3073 update_stmt (stmt);
3074 widen_mul_stats.widen_mults_inserted++;
3075 return true;
3076 }
3077
3078 /* Process a single gimple statement STMT, which is found at the
3079 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3080 rhs (given by CODE), and try to convert it into a
3081 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3082 is true iff we converted the statement. */
3083
3084 static bool
3085 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
3086 enum tree_code code)
3087 {
3088 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
3089 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
3090 tree type, type1, type2, optype;
3091 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3092 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3093 optab this_optab;
3094 enum tree_code wmult_code;
3095 enum insn_code handler;
3096 machine_mode to_mode, from_mode, actual_mode;
3097 location_t loc = gimple_location (stmt);
3098 int actual_precision;
3099 bool from_unsigned1, from_unsigned2;
3100
3101 lhs = gimple_assign_lhs (stmt);
3102 type = TREE_TYPE (lhs);
3103 if (TREE_CODE (type) != INTEGER_TYPE
3104 && TREE_CODE (type) != FIXED_POINT_TYPE)
3105 return false;
3106
3107 if (code == MINUS_EXPR)
3108 wmult_code = WIDEN_MULT_MINUS_EXPR;
3109 else
3110 wmult_code = WIDEN_MULT_PLUS_EXPR;
3111
3112 rhs1 = gimple_assign_rhs1 (stmt);
3113 rhs2 = gimple_assign_rhs2 (stmt);
3114
3115 if (TREE_CODE (rhs1) == SSA_NAME)
3116 {
3117 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3118 if (is_gimple_assign (rhs1_stmt))
3119 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3120 }
3121
3122 if (TREE_CODE (rhs2) == SSA_NAME)
3123 {
3124 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3125 if (is_gimple_assign (rhs2_stmt))
3126 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3127 }
3128
3129 /* Allow for one conversion statement between the multiply
3130 and addition/subtraction statement. If there are more than
3131 one conversions then we assume they would invalidate this
3132 transformation. If that's not the case then they should have
3133 been folded before now. */
3134 if (CONVERT_EXPR_CODE_P (rhs1_code))
3135 {
3136 conv1_stmt = rhs1_stmt;
3137 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3138 if (TREE_CODE (rhs1) == SSA_NAME)
3139 {
3140 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3141 if (is_gimple_assign (rhs1_stmt))
3142 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3143 }
3144 else
3145 return false;
3146 }
3147 if (CONVERT_EXPR_CODE_P (rhs2_code))
3148 {
3149 conv2_stmt = rhs2_stmt;
3150 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3151 if (TREE_CODE (rhs2) == SSA_NAME)
3152 {
3153 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3154 if (is_gimple_assign (rhs2_stmt))
3155 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3156 }
3157 else
3158 return false;
3159 }
3160
3161 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3162 is_widening_mult_p, but we still need the rhs returns.
3163
3164 It might also appear that it would be sufficient to use the existing
3165 operands of the widening multiply, but that would limit the choice of
3166 multiply-and-accumulate instructions.
3167
3168 If the widened-multiplication result has more than one uses, it is
3169 probably wiser not to do the conversion. */
3170 if (code == PLUS_EXPR
3171 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3172 {
3173 if (!has_single_use (rhs1)
3174 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3175 &type2, &mult_rhs2))
3176 return false;
3177 add_rhs = rhs2;
3178 conv_stmt = conv1_stmt;
3179 }
3180 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3181 {
3182 if (!has_single_use (rhs2)
3183 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3184 &type2, &mult_rhs2))
3185 return false;
3186 add_rhs = rhs1;
3187 conv_stmt = conv2_stmt;
3188 }
3189 else
3190 return false;
3191
3192 to_mode = TYPE_MODE (type);
3193 from_mode = TYPE_MODE (type1);
3194 from_unsigned1 = TYPE_UNSIGNED (type1);
3195 from_unsigned2 = TYPE_UNSIGNED (type2);
3196 optype = type1;
3197
3198 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3199 if (from_unsigned1 != from_unsigned2)
3200 {
3201 if (!INTEGRAL_TYPE_P (type))
3202 return false;
3203 /* We can use a signed multiply with unsigned types as long as
3204 there is a wider mode to use, or it is the smaller of the two
3205 types that is unsigned. Note that type1 >= type2, always. */
3206 if ((from_unsigned1
3207 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3208 || (from_unsigned2
3209 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3210 {
3211 from_mode = GET_MODE_WIDER_MODE (from_mode);
3212 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3213 return false;
3214 }
3215
3216 from_unsigned1 = from_unsigned2 = false;
3217 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3218 false);
3219 }
3220
3221 /* If there was a conversion between the multiply and addition
3222 then we need to make sure it fits a multiply-and-accumulate.
3223 The should be a single mode change which does not change the
3224 value. */
3225 if (conv_stmt)
3226 {
3227 /* We use the original, unmodified data types for this. */
3228 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3229 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3230 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3231 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3232
3233 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3234 {
3235 /* Conversion is a truncate. */
3236 if (TYPE_PRECISION (to_type) < data_size)
3237 return false;
3238 }
3239 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3240 {
3241 /* Conversion is an extend. Check it's the right sort. */
3242 if (TYPE_UNSIGNED (from_type) != is_unsigned
3243 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3244 return false;
3245 }
3246 /* else convert is a no-op for our purposes. */
3247 }
3248
3249 /* Verify that the machine can perform a widening multiply
3250 accumulate in this mode/signedness combination, otherwise
3251 this transformation is likely to pessimize code. */
3252 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3253 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3254 from_mode, 0, &actual_mode);
3255
3256 if (handler == CODE_FOR_nothing)
3257 return false;
3258
3259 /* Ensure that the inputs to the handler are in the correct precison
3260 for the opcode. This will be the full mode size. */
3261 actual_precision = GET_MODE_PRECISION (actual_mode);
3262 if (actual_precision != TYPE_PRECISION (type1)
3263 || from_unsigned1 != TYPE_UNSIGNED (type1))
3264 mult_rhs1 = build_and_insert_cast (gsi, loc,
3265 build_nonstandard_integer_type
3266 (actual_precision, from_unsigned1),
3267 mult_rhs1);
3268 if (actual_precision != TYPE_PRECISION (type2)
3269 || from_unsigned2 != TYPE_UNSIGNED (type2))
3270 mult_rhs2 = build_and_insert_cast (gsi, loc,
3271 build_nonstandard_integer_type
3272 (actual_precision, from_unsigned2),
3273 mult_rhs2);
3274
3275 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3276 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3277
3278 /* Handle constants. */
3279 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3280 mult_rhs1 = fold_convert (type1, mult_rhs1);
3281 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3282 mult_rhs2 = fold_convert (type2, mult_rhs2);
3283
3284 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3285 add_rhs);
3286 update_stmt (gsi_stmt (*gsi));
3287 widen_mul_stats.maccs_inserted++;
3288 return true;
3289 }
3290
3291 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3292 with uses in additions and subtractions to form fused multiply-add
3293 operations. Returns true if successful and MUL_STMT should be removed. */
3294
3295 static bool
3296 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
3297 {
3298 tree mul_result = gimple_get_lhs (mul_stmt);
3299 tree type = TREE_TYPE (mul_result);
3300 gimple *use_stmt, *neguse_stmt;
3301 gassign *fma_stmt;
3302 use_operand_p use_p;
3303 imm_use_iterator imm_iter;
3304
3305 if (FLOAT_TYPE_P (type)
3306 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3307 return false;
3308
3309 /* We don't want to do bitfield reduction ops. */
3310 if (INTEGRAL_TYPE_P (type)
3311 && (TYPE_PRECISION (type)
3312 != GET_MODE_PRECISION (TYPE_MODE (type))))
3313 return false;
3314
3315 /* If the target doesn't support it, don't generate it. We assume that
3316 if fma isn't available then fms, fnma or fnms are not either. */
3317 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3318 return false;
3319
3320 /* If the multiplication has zero uses, it is kept around probably because
3321 of -fnon-call-exceptions. Don't optimize it away in that case,
3322 it is DCE job. */
3323 if (has_zero_uses (mul_result))
3324 return false;
3325
3326 /* Make sure that the multiplication statement becomes dead after
3327 the transformation, thus that all uses are transformed to FMAs.
3328 This means we assume that an FMA operation has the same cost
3329 as an addition. */
3330 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3331 {
3332 enum tree_code use_code;
3333 tree result = mul_result;
3334 bool negate_p = false;
3335
3336 use_stmt = USE_STMT (use_p);
3337
3338 if (is_gimple_debug (use_stmt))
3339 continue;
3340
3341 /* For now restrict this operations to single basic blocks. In theory
3342 we would want to support sinking the multiplication in
3343 m = a*b;
3344 if ()
3345 ma = m + c;
3346 else
3347 d = m;
3348 to form a fma in the then block and sink the multiplication to the
3349 else block. */
3350 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3351 return false;
3352
3353 if (!is_gimple_assign (use_stmt))
3354 return false;
3355
3356 use_code = gimple_assign_rhs_code (use_stmt);
3357
3358 /* A negate on the multiplication leads to FNMA. */
3359 if (use_code == NEGATE_EXPR)
3360 {
3361 ssa_op_iter iter;
3362 use_operand_p usep;
3363
3364 result = gimple_assign_lhs (use_stmt);
3365
3366 /* Make sure the negate statement becomes dead with this
3367 single transformation. */
3368 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3369 &use_p, &neguse_stmt))
3370 return false;
3371
3372 /* Make sure the multiplication isn't also used on that stmt. */
3373 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3374 if (USE_FROM_PTR (usep) == mul_result)
3375 return false;
3376
3377 /* Re-validate. */
3378 use_stmt = neguse_stmt;
3379 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3380 return false;
3381 if (!is_gimple_assign (use_stmt))
3382 return false;
3383
3384 use_code = gimple_assign_rhs_code (use_stmt);
3385 negate_p = true;
3386 }
3387
3388 switch (use_code)
3389 {
3390 case MINUS_EXPR:
3391 if (gimple_assign_rhs2 (use_stmt) == result)
3392 negate_p = !negate_p;
3393 break;
3394 case PLUS_EXPR:
3395 break;
3396 default:
3397 /* FMA can only be formed from PLUS and MINUS. */
3398 return false;
3399 }
3400
3401 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3402 by a MULT_EXPR that we'll visit later, we might be able to
3403 get a more profitable match with fnma.
3404 OTOH, if we don't, a negate / fma pair has likely lower latency
3405 that a mult / subtract pair. */
3406 if (use_code == MINUS_EXPR && !negate_p
3407 && gimple_assign_rhs1 (use_stmt) == result
3408 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3409 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3410 {
3411 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3412
3413 if (TREE_CODE (rhs2) == SSA_NAME)
3414 {
3415 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
3416 if (has_single_use (rhs2)
3417 && is_gimple_assign (stmt2)
3418 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3419 return false;
3420 }
3421 }
3422
3423 /* We can't handle a * b + a * b. */
3424 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3425 return false;
3426
3427 /* While it is possible to validate whether or not the exact form
3428 that we've recognized is available in the backend, the assumption
3429 is that the transformation is never a loss. For instance, suppose
3430 the target only has the plain FMA pattern available. Consider
3431 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3432 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3433 still have 3 operations, but in the FMA form the two NEGs are
3434 independent and could be run in parallel. */
3435 }
3436
3437 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3438 {
3439 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3440 enum tree_code use_code;
3441 tree addop, mulop1 = op1, result = mul_result;
3442 bool negate_p = false;
3443
3444 if (is_gimple_debug (use_stmt))
3445 continue;
3446
3447 use_code = gimple_assign_rhs_code (use_stmt);
3448 if (use_code == NEGATE_EXPR)
3449 {
3450 result = gimple_assign_lhs (use_stmt);
3451 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3452 gsi_remove (&gsi, true);
3453 release_defs (use_stmt);
3454
3455 use_stmt = neguse_stmt;
3456 gsi = gsi_for_stmt (use_stmt);
3457 use_code = gimple_assign_rhs_code (use_stmt);
3458 negate_p = true;
3459 }
3460
3461 if (gimple_assign_rhs1 (use_stmt) == result)
3462 {
3463 addop = gimple_assign_rhs2 (use_stmt);
3464 /* a * b - c -> a * b + (-c) */
3465 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3466 addop = force_gimple_operand_gsi (&gsi,
3467 build1 (NEGATE_EXPR,
3468 type, addop),
3469 true, NULL_TREE, true,
3470 GSI_SAME_STMT);
3471 }
3472 else
3473 {
3474 addop = gimple_assign_rhs1 (use_stmt);
3475 /* a - b * c -> (-b) * c + a */
3476 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3477 negate_p = !negate_p;
3478 }
3479
3480 if (negate_p)
3481 mulop1 = force_gimple_operand_gsi (&gsi,
3482 build1 (NEGATE_EXPR,
3483 type, mulop1),
3484 true, NULL_TREE, true,
3485 GSI_SAME_STMT);
3486
3487 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3488 FMA_EXPR, mulop1, op2, addop);
3489 gsi_replace (&gsi, fma_stmt, true);
3490 widen_mul_stats.fmas_inserted++;
3491 }
3492
3493 return true;
3494 }
3495
3496 /* Find integer multiplications where the operands are extended from
3497 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3498 where appropriate. */
3499
3500 namespace {
3501
3502 const pass_data pass_data_optimize_widening_mul =
3503 {
3504 GIMPLE_PASS, /* type */
3505 "widening_mul", /* name */
3506 OPTGROUP_NONE, /* optinfo_flags */
3507 TV_NONE, /* tv_id */
3508 PROP_ssa, /* properties_required */
3509 0, /* properties_provided */
3510 0, /* properties_destroyed */
3511 0, /* todo_flags_start */
3512 TODO_update_ssa, /* todo_flags_finish */
3513 };
3514
3515 class pass_optimize_widening_mul : public gimple_opt_pass
3516 {
3517 public:
3518 pass_optimize_widening_mul (gcc::context *ctxt)
3519 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3520 {}
3521
3522 /* opt_pass methods: */
3523 virtual bool gate (function *)
3524 {
3525 return flag_expensive_optimizations && optimize;
3526 }
3527
3528 virtual unsigned int execute (function *);
3529
3530 }; // class pass_optimize_widening_mul
3531
3532 unsigned int
3533 pass_optimize_widening_mul::execute (function *fun)
3534 {
3535 basic_block bb;
3536 bool cfg_changed = false;
3537
3538 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3539
3540 FOR_EACH_BB_FN (bb, fun)
3541 {
3542 gimple_stmt_iterator gsi;
3543
3544 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3545 {
3546 gimple *stmt = gsi_stmt (gsi);
3547 enum tree_code code;
3548
3549 if (is_gimple_assign (stmt))
3550 {
3551 code = gimple_assign_rhs_code (stmt);
3552 switch (code)
3553 {
3554 case MULT_EXPR:
3555 if (!convert_mult_to_widen (stmt, &gsi)
3556 && convert_mult_to_fma (stmt,
3557 gimple_assign_rhs1 (stmt),
3558 gimple_assign_rhs2 (stmt)))
3559 {
3560 gsi_remove (&gsi, true);
3561 release_defs (stmt);
3562 continue;
3563 }
3564 break;
3565
3566 case PLUS_EXPR:
3567 case MINUS_EXPR:
3568 convert_plusminus_to_widen (&gsi, stmt, code);
3569 break;
3570
3571 default:;
3572 }
3573 }
3574 else if (is_gimple_call (stmt)
3575 && gimple_call_lhs (stmt))
3576 {
3577 tree fndecl = gimple_call_fndecl (stmt);
3578 if (fndecl
3579 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3580 {
3581 switch (DECL_FUNCTION_CODE (fndecl))
3582 {
3583 case BUILT_IN_POWF:
3584 case BUILT_IN_POW:
3585 case BUILT_IN_POWL:
3586 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3587 && real_equal
3588 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3589 &dconst2)
3590 && convert_mult_to_fma (stmt,
3591 gimple_call_arg (stmt, 0),
3592 gimple_call_arg (stmt, 0)))
3593 {
3594 unlink_stmt_vdef (stmt);
3595 if (gsi_remove (&gsi, true)
3596 && gimple_purge_dead_eh_edges (bb))
3597 cfg_changed = true;
3598 release_defs (stmt);
3599 continue;
3600 }
3601 break;
3602
3603 default:;
3604 }
3605 }
3606 }
3607 gsi_next (&gsi);
3608 }
3609 }
3610
3611 statistics_counter_event (fun, "widening multiplications inserted",
3612 widen_mul_stats.widen_mults_inserted);
3613 statistics_counter_event (fun, "widening maccs inserted",
3614 widen_mul_stats.maccs_inserted);
3615 statistics_counter_event (fun, "fused multiply-adds inserted",
3616 widen_mul_stats.fmas_inserted);
3617
3618 return cfg_changed ? TODO_cleanup_cfg : 0;
3619 }
3620
3621 } // anon namespace
3622
3623 gimple_opt_pass *
3624 make_pass_optimize_widening_mul (gcc::context *ctxt)
3625 {
3626 return new pass_optimize_widening_mul (ctxt);
3627 }