]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-math-opts.c
tree-ssa-math-opts.c (execute_optimize_bswap): Search within BB from last to first.
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
23
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
28
29 that can be optimized to
30
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
36
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
39
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
43
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
51
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
57
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
61
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
69
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
80
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "gimple-pretty-print.h"
101
102 /* FIXME: RTL headers have to be included here for optabs. */
103 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
104 #include "expr.h" /* Because optabs.h wants sepops. */
105 #include "optabs.h"
106
107 /* This structure represents one basic block that either computes a
108 division, or is a common dominator for basic block that compute a
109 division. */
110 struct occurrence {
111 /* The basic block represented by this structure. */
112 basic_block bb;
113
114 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
115 inserted in BB. */
116 tree recip_def;
117
118 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
119 was inserted in BB. */
120 gimple recip_def_stmt;
121
122 /* Pointer to a list of "struct occurrence"s for blocks dominated
123 by BB. */
124 struct occurrence *children;
125
126 /* Pointer to the next "struct occurrence"s in the list of blocks
127 sharing a common dominator. */
128 struct occurrence *next;
129
130 /* The number of divisions that are in BB before compute_merit. The
131 number of divisions that are in BB or post-dominate it after
132 compute_merit. */
133 int num_divisions;
134
135 /* True if the basic block has a division, false if it is a common
136 dominator for basic blocks that do. If it is false and trapping
137 math is active, BB is not a candidate for inserting a reciprocal. */
138 bool bb_has_division;
139 };
140
141 static struct
142 {
143 /* Number of 1.0/X ops inserted. */
144 int rdivs_inserted;
145
146 /* Number of 1.0/FUNC ops inserted. */
147 int rfuncs_inserted;
148 } reciprocal_stats;
149
150 static struct
151 {
152 /* Number of cexpi calls inserted. */
153 int inserted;
154 } sincos_stats;
155
156 static struct
157 {
158 /* Number of hand-written 32-bit bswaps found. */
159 int found_32bit;
160
161 /* Number of hand-written 64-bit bswaps found. */
162 int found_64bit;
163 } bswap_stats;
164
165 static struct
166 {
167 /* Number of widening multiplication ops inserted. */
168 int widen_mults_inserted;
169
170 /* Number of integer multiply-and-accumulate ops inserted. */
171 int maccs_inserted;
172
173 /* Number of fp fused multiply-add ops inserted. */
174 int fmas_inserted;
175 } widen_mul_stats;
176
177 /* The instance of "struct occurrence" representing the highest
178 interesting block in the dominator tree. */
179 static struct occurrence *occ_head;
180
181 /* Allocation pool for getting instances of "struct occurrence". */
182 static alloc_pool occ_pool;
183
184
185
186 /* Allocate and return a new struct occurrence for basic block BB, and
187 whose children list is headed by CHILDREN. */
188 static struct occurrence *
189 occ_new (basic_block bb, struct occurrence *children)
190 {
191 struct occurrence *occ;
192
193 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
194 memset (occ, 0, sizeof (struct occurrence));
195
196 occ->bb = bb;
197 occ->children = children;
198 return occ;
199 }
200
201
202 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
203 list of "struct occurrence"s, one per basic block, having IDOM as
204 their common dominator.
205
206 We try to insert NEW_OCC as deep as possible in the tree, and we also
207 insert any other block that is a common dominator for BB and one
208 block already in the tree. */
209
210 static void
211 insert_bb (struct occurrence *new_occ, basic_block idom,
212 struct occurrence **p_head)
213 {
214 struct occurrence *occ, **p_occ;
215
216 for (p_occ = p_head; (occ = *p_occ) != NULL; )
217 {
218 basic_block bb = new_occ->bb, occ_bb = occ->bb;
219 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
220 if (dom == bb)
221 {
222 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
223 from its list. */
224 *p_occ = occ->next;
225 occ->next = new_occ->children;
226 new_occ->children = occ;
227
228 /* Try the next block (it may as well be dominated by BB). */
229 }
230
231 else if (dom == occ_bb)
232 {
233 /* OCC_BB dominates BB. Tail recurse to look deeper. */
234 insert_bb (new_occ, dom, &occ->children);
235 return;
236 }
237
238 else if (dom != idom)
239 {
240 gcc_assert (!dom->aux);
241
242 /* There is a dominator between IDOM and BB, add it and make
243 two children out of NEW_OCC and OCC. First, remove OCC from
244 its list. */
245 *p_occ = occ->next;
246 new_occ->next = occ;
247 occ->next = NULL;
248
249 /* None of the previous blocks has DOM as a dominator: if we tail
250 recursed, we would reexamine them uselessly. Just switch BB with
251 DOM, and go on looking for blocks dominated by DOM. */
252 new_occ = occ_new (dom, new_occ);
253 }
254
255 else
256 {
257 /* Nothing special, go on with the next element. */
258 p_occ = &occ->next;
259 }
260 }
261
262 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
263 new_occ->next = *p_head;
264 *p_head = new_occ;
265 }
266
267 /* Register that we found a division in BB. */
268
269 static inline void
270 register_division_in (basic_block bb)
271 {
272 struct occurrence *occ;
273
274 occ = (struct occurrence *) bb->aux;
275 if (!occ)
276 {
277 occ = occ_new (bb, NULL);
278 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
279 }
280
281 occ->bb_has_division = true;
282 occ->num_divisions++;
283 }
284
285
286 /* Compute the number of divisions that postdominate each block in OCC and
287 its children. */
288
289 static void
290 compute_merit (struct occurrence *occ)
291 {
292 struct occurrence *occ_child;
293 basic_block dom = occ->bb;
294
295 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
296 {
297 basic_block bb;
298 if (occ_child->children)
299 compute_merit (occ_child);
300
301 if (flag_exceptions)
302 bb = single_noncomplex_succ (dom);
303 else
304 bb = dom;
305
306 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
307 occ->num_divisions += occ_child->num_divisions;
308 }
309 }
310
311
312 /* Return whether USE_STMT is a floating-point division by DEF. */
313 static inline bool
314 is_division_by (gimple use_stmt, tree def)
315 {
316 return is_gimple_assign (use_stmt)
317 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
318 && gimple_assign_rhs2 (use_stmt) == def
319 /* Do not recognize x / x as valid division, as we are getting
320 confused later by replacing all immediate uses x in such
321 a stmt. */
322 && gimple_assign_rhs1 (use_stmt) != def;
323 }
324
325 /* Walk the subset of the dominator tree rooted at OCC, setting the
326 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
327 the given basic block. The field may be left NULL, of course,
328 if it is not possible or profitable to do the optimization.
329
330 DEF_BSI is an iterator pointing at the statement defining DEF.
331 If RECIP_DEF is set, a dominator already has a computation that can
332 be used. */
333
334 static void
335 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
336 tree def, tree recip_def, int threshold)
337 {
338 tree type;
339 gimple new_stmt;
340 gimple_stmt_iterator gsi;
341 struct occurrence *occ_child;
342
343 if (!recip_def
344 && (occ->bb_has_division || !flag_trapping_math)
345 && occ->num_divisions >= threshold)
346 {
347 /* Make a variable with the replacement and substitute it. */
348 type = TREE_TYPE (def);
349 recip_def = make_rename_temp (type, "reciptmp");
350 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
351 build_one_cst (type), def);
352
353 if (occ->bb_has_division)
354 {
355 /* Case 1: insert before an existing division. */
356 gsi = gsi_after_labels (occ->bb);
357 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
358 gsi_next (&gsi);
359
360 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
361 }
362 else if (def_gsi && occ->bb == def_gsi->bb)
363 {
364 /* Case 2: insert right after the definition. Note that this will
365 never happen if the definition statement can throw, because in
366 that case the sole successor of the statement's basic block will
367 dominate all the uses as well. */
368 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
369 }
370 else
371 {
372 /* Case 3: insert in a basic block not containing defs/uses. */
373 gsi = gsi_after_labels (occ->bb);
374 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
375 }
376
377 reciprocal_stats.rdivs_inserted++;
378
379 occ->recip_def_stmt = new_stmt;
380 }
381
382 occ->recip_def = recip_def;
383 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
384 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
385 }
386
387
388 /* Replace the division at USE_P with a multiplication by the reciprocal, if
389 possible. */
390
391 static inline void
392 replace_reciprocal (use_operand_p use_p)
393 {
394 gimple use_stmt = USE_STMT (use_p);
395 basic_block bb = gimple_bb (use_stmt);
396 struct occurrence *occ = (struct occurrence *) bb->aux;
397
398 if (optimize_bb_for_speed_p (bb)
399 && occ->recip_def && use_stmt != occ->recip_def_stmt)
400 {
401 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
402 SET_USE (use_p, occ->recip_def);
403 fold_stmt_inplace (use_stmt);
404 update_stmt (use_stmt);
405 }
406 }
407
408
409 /* Free OCC and return one more "struct occurrence" to be freed. */
410
411 static struct occurrence *
412 free_bb (struct occurrence *occ)
413 {
414 struct occurrence *child, *next;
415
416 /* First get the two pointers hanging off OCC. */
417 next = occ->next;
418 child = occ->children;
419 occ->bb->aux = NULL;
420 pool_free (occ_pool, occ);
421
422 /* Now ensure that we don't recurse unless it is necessary. */
423 if (!child)
424 return next;
425 else
426 {
427 while (next)
428 next = free_bb (next);
429
430 return child;
431 }
432 }
433
434
435 /* Look for floating-point divisions among DEF's uses, and try to
436 replace them by multiplications with the reciprocal. Add
437 as many statements computing the reciprocal as needed.
438
439 DEF must be a GIMPLE register of a floating-point type. */
440
441 static void
442 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
443 {
444 use_operand_p use_p;
445 imm_use_iterator use_iter;
446 struct occurrence *occ;
447 int count = 0, threshold;
448
449 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
450
451 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
452 {
453 gimple use_stmt = USE_STMT (use_p);
454 if (is_division_by (use_stmt, def))
455 {
456 register_division_in (gimple_bb (use_stmt));
457 count++;
458 }
459 }
460
461 /* Do the expensive part only if we can hope to optimize something. */
462 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
463 if (count >= threshold)
464 {
465 gimple use_stmt;
466 for (occ = occ_head; occ; occ = occ->next)
467 {
468 compute_merit (occ);
469 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
470 }
471
472 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
473 {
474 if (is_division_by (use_stmt, def))
475 {
476 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
477 replace_reciprocal (use_p);
478 }
479 }
480 }
481
482 for (occ = occ_head; occ; )
483 occ = free_bb (occ);
484
485 occ_head = NULL;
486 }
487
488 static bool
489 gate_cse_reciprocals (void)
490 {
491 return optimize && flag_reciprocal_math;
492 }
493
494 /* Go through all the floating-point SSA_NAMEs, and call
495 execute_cse_reciprocals_1 on each of them. */
496 static unsigned int
497 execute_cse_reciprocals (void)
498 {
499 basic_block bb;
500 tree arg;
501
502 occ_pool = create_alloc_pool ("dominators for recip",
503 sizeof (struct occurrence),
504 n_basic_blocks / 3 + 1);
505
506 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
507 calculate_dominance_info (CDI_DOMINATORS);
508 calculate_dominance_info (CDI_POST_DOMINATORS);
509
510 #ifdef ENABLE_CHECKING
511 FOR_EACH_BB (bb)
512 gcc_assert (!bb->aux);
513 #endif
514
515 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
516 if (gimple_default_def (cfun, arg)
517 && FLOAT_TYPE_P (TREE_TYPE (arg))
518 && is_gimple_reg (arg))
519 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
520
521 FOR_EACH_BB (bb)
522 {
523 gimple_stmt_iterator gsi;
524 gimple phi;
525 tree def;
526
527 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
528 {
529 phi = gsi_stmt (gsi);
530 def = PHI_RESULT (phi);
531 if (FLOAT_TYPE_P (TREE_TYPE (def))
532 && is_gimple_reg (def))
533 execute_cse_reciprocals_1 (NULL, def);
534 }
535
536 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
537 {
538 gimple stmt = gsi_stmt (gsi);
539
540 if (gimple_has_lhs (stmt)
541 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
542 && FLOAT_TYPE_P (TREE_TYPE (def))
543 && TREE_CODE (def) == SSA_NAME)
544 execute_cse_reciprocals_1 (&gsi, def);
545 }
546
547 if (optimize_bb_for_size_p (bb))
548 continue;
549
550 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
551 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
552 {
553 gimple stmt = gsi_stmt (gsi);
554 tree fndecl;
555
556 if (is_gimple_assign (stmt)
557 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
558 {
559 tree arg1 = gimple_assign_rhs2 (stmt);
560 gimple stmt1;
561
562 if (TREE_CODE (arg1) != SSA_NAME)
563 continue;
564
565 stmt1 = SSA_NAME_DEF_STMT (arg1);
566
567 if (is_gimple_call (stmt1)
568 && gimple_call_lhs (stmt1)
569 && (fndecl = gimple_call_fndecl (stmt1))
570 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
571 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
572 {
573 enum built_in_function code;
574 bool md_code, fail;
575 imm_use_iterator ui;
576 use_operand_p use_p;
577
578 code = DECL_FUNCTION_CODE (fndecl);
579 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
580
581 fndecl = targetm.builtin_reciprocal (code, md_code, false);
582 if (!fndecl)
583 continue;
584
585 /* Check that all uses of the SSA name are divisions,
586 otherwise replacing the defining statement will do
587 the wrong thing. */
588 fail = false;
589 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
590 {
591 gimple stmt2 = USE_STMT (use_p);
592 if (is_gimple_debug (stmt2))
593 continue;
594 if (!is_gimple_assign (stmt2)
595 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
596 || gimple_assign_rhs1 (stmt2) == arg1
597 || gimple_assign_rhs2 (stmt2) != arg1)
598 {
599 fail = true;
600 break;
601 }
602 }
603 if (fail)
604 continue;
605
606 gimple_replace_lhs (stmt1, arg1);
607 gimple_call_set_fndecl (stmt1, fndecl);
608 update_stmt (stmt1);
609 reciprocal_stats.rfuncs_inserted++;
610
611 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
612 {
613 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
614 fold_stmt_inplace (stmt);
615 update_stmt (stmt);
616 }
617 }
618 }
619 }
620 }
621
622 statistics_counter_event (cfun, "reciprocal divs inserted",
623 reciprocal_stats.rdivs_inserted);
624 statistics_counter_event (cfun, "reciprocal functions inserted",
625 reciprocal_stats.rfuncs_inserted);
626
627 free_dominance_info (CDI_DOMINATORS);
628 free_dominance_info (CDI_POST_DOMINATORS);
629 free_alloc_pool (occ_pool);
630 return 0;
631 }
632
633 struct gimple_opt_pass pass_cse_reciprocals =
634 {
635 {
636 GIMPLE_PASS,
637 "recip", /* name */
638 gate_cse_reciprocals, /* gate */
639 execute_cse_reciprocals, /* execute */
640 NULL, /* sub */
641 NULL, /* next */
642 0, /* static_pass_number */
643 TV_NONE, /* tv_id */
644 PROP_ssa, /* properties_required */
645 0, /* properties_provided */
646 0, /* properties_destroyed */
647 0, /* todo_flags_start */
648 TODO_update_ssa | TODO_verify_ssa
649 | TODO_verify_stmts /* todo_flags_finish */
650 }
651 };
652
653 /* Records an occurrence at statement USE_STMT in the vector of trees
654 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
655 is not yet initialized. Returns true if the occurrence was pushed on
656 the vector. Adjusts *TOP_BB to be the basic block dominating all
657 statements in the vector. */
658
659 static bool
660 maybe_record_sincos (VEC(gimple, heap) **stmts,
661 basic_block *top_bb, gimple use_stmt)
662 {
663 basic_block use_bb = gimple_bb (use_stmt);
664 if (*top_bb
665 && (*top_bb == use_bb
666 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
667 VEC_safe_push (gimple, heap, *stmts, use_stmt);
668 else if (!*top_bb
669 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
670 {
671 VEC_safe_push (gimple, heap, *stmts, use_stmt);
672 *top_bb = use_bb;
673 }
674 else
675 return false;
676
677 return true;
678 }
679
680 /* Look for sin, cos and cexpi calls with the same argument NAME and
681 create a single call to cexpi CSEing the result in this case.
682 We first walk over all immediate uses of the argument collecting
683 statements that we can CSE in a vector and in a second pass replace
684 the statement rhs with a REALPART or IMAGPART expression on the
685 result of the cexpi call we insert before the use statement that
686 dominates all other candidates. */
687
688 static bool
689 execute_cse_sincos_1 (tree name)
690 {
691 gimple_stmt_iterator gsi;
692 imm_use_iterator use_iter;
693 tree fndecl, res, type;
694 gimple def_stmt, use_stmt, stmt;
695 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
696 VEC(gimple, heap) *stmts = NULL;
697 basic_block top_bb = NULL;
698 int i;
699 bool cfg_changed = false;
700
701 type = TREE_TYPE (name);
702 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
703 {
704 if (gimple_code (use_stmt) != GIMPLE_CALL
705 || !gimple_call_lhs (use_stmt)
706 || !(fndecl = gimple_call_fndecl (use_stmt))
707 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
708 continue;
709
710 switch (DECL_FUNCTION_CODE (fndecl))
711 {
712 CASE_FLT_FN (BUILT_IN_COS):
713 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
714 break;
715
716 CASE_FLT_FN (BUILT_IN_SIN):
717 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
718 break;
719
720 CASE_FLT_FN (BUILT_IN_CEXPI):
721 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
722 break;
723
724 default:;
725 }
726 }
727
728 if (seen_cos + seen_sin + seen_cexpi <= 1)
729 {
730 VEC_free(gimple, heap, stmts);
731 return false;
732 }
733
734 /* Simply insert cexpi at the beginning of top_bb but not earlier than
735 the name def statement. */
736 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
737 if (!fndecl)
738 return false;
739 res = create_tmp_reg (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
740 stmt = gimple_build_call (fndecl, 1, name);
741 res = make_ssa_name (res, stmt);
742 gimple_call_set_lhs (stmt, res);
743
744 def_stmt = SSA_NAME_DEF_STMT (name);
745 if (!SSA_NAME_IS_DEFAULT_DEF (name)
746 && gimple_code (def_stmt) != GIMPLE_PHI
747 && gimple_bb (def_stmt) == top_bb)
748 {
749 gsi = gsi_for_stmt (def_stmt);
750 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
751 }
752 else
753 {
754 gsi = gsi_after_labels (top_bb);
755 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
756 }
757 update_stmt (stmt);
758 sincos_stats.inserted++;
759
760 /* And adjust the recorded old call sites. */
761 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
762 {
763 tree rhs = NULL;
764 fndecl = gimple_call_fndecl (use_stmt);
765
766 switch (DECL_FUNCTION_CODE (fndecl))
767 {
768 CASE_FLT_FN (BUILT_IN_COS):
769 rhs = fold_build1 (REALPART_EXPR, type, res);
770 break;
771
772 CASE_FLT_FN (BUILT_IN_SIN):
773 rhs = fold_build1 (IMAGPART_EXPR, type, res);
774 break;
775
776 CASE_FLT_FN (BUILT_IN_CEXPI):
777 rhs = res;
778 break;
779
780 default:;
781 gcc_unreachable ();
782 }
783
784 /* Replace call with a copy. */
785 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
786
787 gsi = gsi_for_stmt (use_stmt);
788 gsi_replace (&gsi, stmt, true);
789 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
790 cfg_changed = true;
791 }
792
793 VEC_free(gimple, heap, stmts);
794
795 return cfg_changed;
796 }
797
798 /* To evaluate powi(x,n), the floating point value x raised to the
799 constant integer exponent n, we use a hybrid algorithm that
800 combines the "window method" with look-up tables. For an
801 introduction to exponentiation algorithms and "addition chains",
802 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
803 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
804 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
805 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
806
807 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
808 multiplications to inline before calling the system library's pow
809 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
810 so this default never requires calling pow, powf or powl. */
811
812 #ifndef POWI_MAX_MULTS
813 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
814 #endif
815
816 /* The size of the "optimal power tree" lookup table. All
817 exponents less than this value are simply looked up in the
818 powi_table below. This threshold is also used to size the
819 cache of pseudo registers that hold intermediate results. */
820 #define POWI_TABLE_SIZE 256
821
822 /* The size, in bits of the window, used in the "window method"
823 exponentiation algorithm. This is equivalent to a radix of
824 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
825 #define POWI_WINDOW_SIZE 3
826
827 /* The following table is an efficient representation of an
828 "optimal power tree". For each value, i, the corresponding
829 value, j, in the table states than an optimal evaluation
830 sequence for calculating pow(x,i) can be found by evaluating
831 pow(x,j)*pow(x,i-j). An optimal power tree for the first
832 100 integers is given in Knuth's "Seminumerical algorithms". */
833
834 static const unsigned char powi_table[POWI_TABLE_SIZE] =
835 {
836 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
837 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
838 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
839 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
840 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
841 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
842 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
843 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
844 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
845 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
846 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
847 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
848 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
849 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
850 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
851 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
852 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
853 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
854 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
855 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
856 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
857 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
858 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
859 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
860 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
861 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
862 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
863 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
864 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
865 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
866 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
867 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
868 };
869
870
871 /* Return the number of multiplications required to calculate
872 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
873 subroutine of powi_cost. CACHE is an array indicating
874 which exponents have already been calculated. */
875
876 static int
877 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
878 {
879 /* If we've already calculated this exponent, then this evaluation
880 doesn't require any additional multiplications. */
881 if (cache[n])
882 return 0;
883
884 cache[n] = true;
885 return powi_lookup_cost (n - powi_table[n], cache)
886 + powi_lookup_cost (powi_table[n], cache) + 1;
887 }
888
889 /* Return the number of multiplications required to calculate
890 powi(x,n) for an arbitrary x, given the exponent N. This
891 function needs to be kept in sync with powi_as_mults below. */
892
893 static int
894 powi_cost (HOST_WIDE_INT n)
895 {
896 bool cache[POWI_TABLE_SIZE];
897 unsigned HOST_WIDE_INT digit;
898 unsigned HOST_WIDE_INT val;
899 int result;
900
901 if (n == 0)
902 return 0;
903
904 /* Ignore the reciprocal when calculating the cost. */
905 val = (n < 0) ? -n : n;
906
907 /* Initialize the exponent cache. */
908 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
909 cache[1] = true;
910
911 result = 0;
912
913 while (val >= POWI_TABLE_SIZE)
914 {
915 if (val & 1)
916 {
917 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
918 result += powi_lookup_cost (digit, cache)
919 + POWI_WINDOW_SIZE + 1;
920 val >>= POWI_WINDOW_SIZE;
921 }
922 else
923 {
924 val >>= 1;
925 result++;
926 }
927 }
928
929 return result + powi_lookup_cost (val, cache);
930 }
931
932 /* Recursive subroutine of powi_as_mults. This function takes the
933 array, CACHE, of already calculated exponents and an exponent N and
934 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
935
936 static tree
937 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
938 HOST_WIDE_INT n, tree *cache, tree target)
939 {
940 tree op0, op1, ssa_target;
941 unsigned HOST_WIDE_INT digit;
942 gimple mult_stmt;
943
944 if (n < POWI_TABLE_SIZE && cache[n])
945 return cache[n];
946
947 ssa_target = make_ssa_name (target, NULL);
948
949 if (n < POWI_TABLE_SIZE)
950 {
951 cache[n] = ssa_target;
952 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache, target);
953 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache, target);
954 }
955 else if (n & 1)
956 {
957 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
958 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache, target);
959 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache, target);
960 }
961 else
962 {
963 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache, target);
964 op1 = op0;
965 }
966
967 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
968 gimple_set_location (mult_stmt, loc);
969 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
970
971 return ssa_target;
972 }
973
974 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
975 This function needs to be kept in sync with powi_cost above. */
976
977 static tree
978 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
979 tree arg0, HOST_WIDE_INT n)
980 {
981 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0), target;
982 gimple div_stmt;
983
984 if (n == 0)
985 return build_real (type, dconst1);
986
987 memset (cache, 0, sizeof (cache));
988 cache[1] = arg0;
989
990 target = create_tmp_reg (type, "powmult");
991 add_referenced_var (target);
992
993 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache, target);
994
995 if (n >= 0)
996 return result;
997
998 /* If the original exponent was negative, reciprocate the result. */
999 target = make_ssa_name (target, NULL);
1000 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1001 build_real (type, dconst1),
1002 result);
1003 gimple_set_location (div_stmt, loc);
1004 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1005
1006 return target;
1007 }
1008
1009 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1010 location info LOC. If the arguments are appropriate, create an
1011 equivalent sequence of statements prior to GSI using an optimal
1012 number of multiplications, and return an expession holding the
1013 result. */
1014
1015 static tree
1016 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1017 tree arg0, HOST_WIDE_INT n)
1018 {
1019 /* Avoid largest negative number. */
1020 if (n != -n
1021 && ((n >= -1 && n <= 2)
1022 || (optimize_function_for_speed_p (cfun)
1023 && powi_cost (n) <= POWI_MAX_MULTS)))
1024 return powi_as_mults (gsi, loc, arg0, n);
1025
1026 return NULL_TREE;
1027 }
1028
1029 /* Build a gimple call statement that calls FN with argument ARG.
1030 Set the lhs of the call statement to a fresh SSA name for
1031 variable VAR. If VAR is NULL, first allocate it. Insert the
1032 statement prior to GSI's current position, and return the fresh
1033 SSA name. */
1034
1035 static tree
1036 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1037 tree *var, tree fn, tree arg)
1038 {
1039 gimple call_stmt;
1040 tree ssa_target;
1041
1042 if (!*var)
1043 {
1044 *var = create_tmp_reg (TREE_TYPE (arg), "powroot");
1045 add_referenced_var (*var);
1046 }
1047
1048 call_stmt = gimple_build_call (fn, 1, arg);
1049 ssa_target = make_ssa_name (*var, NULL);
1050 gimple_set_lhs (call_stmt, ssa_target);
1051 gimple_set_location (call_stmt, loc);
1052 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1053
1054 return ssa_target;
1055 }
1056
1057 /* Build a gimple binary operation with the given CODE and arguments
1058 ARG0, ARG1, assigning the result to a new SSA name for variable
1059 TARGET. Insert the statement prior to GSI's current position, and
1060 return the fresh SSA name.*/
1061
1062 static tree
1063 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1064 tree target, enum tree_code code, tree arg0, tree arg1)
1065 {
1066 tree result = make_ssa_name (target, NULL);
1067 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1068 gimple_set_location (stmt, loc);
1069 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1070 return result;
1071 }
1072
1073 /* Build a gimple reference operation with the given CODE and argument
1074 ARG, assigning the result to a new SSA name for variable TARGET.
1075 Insert the statement prior to GSI's current position, and return
1076 the fresh SSA name. */
1077
1078 static inline tree
1079 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1080 tree target, enum tree_code code, tree arg0)
1081 {
1082 tree result = make_ssa_name (target, NULL);
1083 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1084 gimple_set_location (stmt, loc);
1085 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1086 return result;
1087 }
1088
1089 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1090 with location info LOC. If possible, create an equivalent and
1091 less expensive sequence of statements prior to GSI, and return an
1092 expession holding the result. */
1093
1094 static tree
1095 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1096 tree arg0, tree arg1)
1097 {
1098 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1099 REAL_VALUE_TYPE c2, dconst3;
1100 HOST_WIDE_INT n;
1101 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1102 tree target = NULL_TREE;
1103 enum machine_mode mode;
1104 bool hw_sqrt_exists;
1105
1106 /* If the exponent isn't a constant, there's nothing of interest
1107 to be done. */
1108 if (TREE_CODE (arg1) != REAL_CST)
1109 return NULL_TREE;
1110
1111 /* If the exponent is equivalent to an integer, expand to an optimal
1112 multiplication sequence when profitable. */
1113 c = TREE_REAL_CST (arg1);
1114 n = real_to_integer (&c);
1115 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1116
1117 if (real_identical (&c, &cint)
1118 && ((n >= -1 && n <= 2)
1119 || (flag_unsafe_math_optimizations
1120 && optimize_insn_for_speed_p ()
1121 && powi_cost (n) <= POWI_MAX_MULTS)))
1122 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1123
1124 /* Attempt various optimizations using sqrt and cbrt. */
1125 type = TREE_TYPE (arg0);
1126 mode = TYPE_MODE (type);
1127 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1128
1129 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1130 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1131 sqrt(-0) = -0. */
1132 if (sqrtfn
1133 && REAL_VALUES_EQUAL (c, dconsthalf)
1134 && !HONOR_SIGNED_ZEROS (mode))
1135 return build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1136
1137 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1138 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1139 so do this optimization even if -Os. Don't do this optimization
1140 if we don't have a hardware sqrt insn. */
1141 dconst1_4 = dconst1;
1142 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1143 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1144
1145 if (flag_unsafe_math_optimizations
1146 && sqrtfn
1147 && REAL_VALUES_EQUAL (c, dconst1_4)
1148 && hw_sqrt_exists)
1149 {
1150 /* sqrt(x) */
1151 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1152
1153 /* sqrt(sqrt(x)) */
1154 return build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
1155 }
1156
1157 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1158 optimizing for space. Don't do this optimization if we don't have
1159 a hardware sqrt insn. */
1160 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1161 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1162
1163 if (flag_unsafe_math_optimizations
1164 && sqrtfn
1165 && optimize_function_for_speed_p (cfun)
1166 && REAL_VALUES_EQUAL (c, dconst3_4)
1167 && hw_sqrt_exists)
1168 {
1169 /* sqrt(x) */
1170 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1171
1172 /* sqrt(sqrt(x)) */
1173 sqrt_sqrt = build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
1174
1175 /* sqrt(x) * sqrt(sqrt(x)) */
1176 return build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1177 sqrt_arg0, sqrt_sqrt);
1178 }
1179
1180 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1181 optimizations since 1./3. is not exactly representable. If x
1182 is negative and finite, the correct value of pow(x,1./3.) is
1183 a NaN with the "invalid" exception raised, because the value
1184 of 1./3. actually has an even denominator. The correct value
1185 of cbrt(x) is a negative real value. */
1186 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1187 dconst1_3 = real_value_truncate (mode, dconst_third ());
1188
1189 if (flag_unsafe_math_optimizations
1190 && cbrtfn
1191 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1192 && REAL_VALUES_EQUAL (c, dconst1_3))
1193 return build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1194
1195 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1196 if we don't have a hardware sqrt insn. */
1197 dconst1_6 = dconst1_3;
1198 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1199
1200 if (flag_unsafe_math_optimizations
1201 && sqrtfn
1202 && cbrtfn
1203 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1204 && optimize_function_for_speed_p (cfun)
1205 && hw_sqrt_exists
1206 && REAL_VALUES_EQUAL (c, dconst1_6))
1207 {
1208 /* sqrt(x) */
1209 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1210
1211 /* cbrt(sqrt(x)) */
1212 return build_and_insert_call (gsi, loc, &target, cbrtfn, sqrt_arg0);
1213 }
1214
1215 /* Optimize pow(x,c), where n = 2c for some nonzero integer n, into
1216
1217 sqrt(x) * powi(x, n/2), n > 0;
1218 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1219
1220 Do not calculate the powi factor when n/2 = 0. */
1221 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1222 n = real_to_integer (&c2);
1223 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1224
1225 if (flag_unsafe_math_optimizations
1226 && sqrtfn
1227 && real_identical (&c2, &cint))
1228 {
1229 tree powi_x_ndiv2 = NULL_TREE;
1230
1231 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1232 possible or profitable, give up. Skip the degenerate case when
1233 n is 1 or -1, where the result is always 1. */
1234 if (abs (n) != 1)
1235 {
1236 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0, abs(n/2));
1237 if (!powi_x_ndiv2)
1238 return NULL_TREE;
1239 }
1240
1241 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1242 result of the optimal multiply sequence just calculated. */
1243 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1244
1245 if (abs (n) == 1)
1246 result = sqrt_arg0;
1247 else
1248 result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1249 sqrt_arg0, powi_x_ndiv2);
1250
1251 /* If n is negative, reciprocate the result. */
1252 if (n < 0)
1253 result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1254 build_real (type, dconst1), result);
1255 return result;
1256 }
1257
1258 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1259
1260 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1261 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1262
1263 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1264 different from pow(x, 1./3.) due to rounding and behavior with
1265 negative x, we need to constrain this transformation to unsafe
1266 math and positive x or finite math. */
1267 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1268 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1269 real_round (&c2, mode, &c2);
1270 n = real_to_integer (&c2);
1271 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1272 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1273 real_convert (&c2, mode, &c2);
1274
1275 if (flag_unsafe_math_optimizations
1276 && cbrtfn
1277 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1278 && real_identical (&c2, &c)
1279 && optimize_function_for_speed_p (cfun)
1280 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1281 {
1282 tree powi_x_ndiv3 = NULL_TREE;
1283
1284 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1285 possible or profitable, give up. Skip the degenerate case when
1286 abs(n) < 3, where the result is always 1. */
1287 if (abs (n) >= 3)
1288 {
1289 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1290 abs (n / 3));
1291 if (!powi_x_ndiv3)
1292 return NULL_TREE;
1293 }
1294
1295 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1296 as that creates an unnecessary variable. Instead, just produce
1297 either cbrt(x) or cbrt(x) * cbrt(x). */
1298 cbrt_x = build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1299
1300 if (abs (n) % 3 == 1)
1301 powi_cbrt_x = cbrt_x;
1302 else
1303 powi_cbrt_x = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1304 cbrt_x, cbrt_x);
1305
1306 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1307 if (abs (n) < 3)
1308 result = powi_cbrt_x;
1309 else
1310 result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1311 powi_x_ndiv3, powi_cbrt_x);
1312
1313 /* If n is negative, reciprocate the result. */
1314 if (n < 0)
1315 result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1316 build_real (type, dconst1), result);
1317
1318 return result;
1319 }
1320
1321 /* No optimizations succeeded. */
1322 return NULL_TREE;
1323 }
1324
1325 /* ARG is the argument to a cabs builtin call in GSI with location info
1326 LOC. Create a sequence of statements prior to GSI that calculates
1327 sqrt(R*R + I*I), where R and I are the real and imaginary components
1328 of ARG, respectively. Return an expression holding the result. */
1329
1330 static tree
1331 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1332 {
1333 tree target, real_part, imag_part, addend1, addend2, sum, result;
1334 tree type = TREE_TYPE (TREE_TYPE (arg));
1335 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1336 enum machine_mode mode = TYPE_MODE (type);
1337
1338 if (!flag_unsafe_math_optimizations
1339 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1340 || !sqrtfn
1341 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1342 return NULL_TREE;
1343
1344 target = create_tmp_reg (type, "cabs");
1345 add_referenced_var (target);
1346
1347 real_part = build_and_insert_ref (gsi, loc, type, target,
1348 REALPART_EXPR, arg);
1349 addend1 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1350 real_part, real_part);
1351 imag_part = build_and_insert_ref (gsi, loc, type, target,
1352 IMAGPART_EXPR, arg);
1353 addend2 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1354 imag_part, imag_part);
1355 sum = build_and_insert_binop (gsi, loc, target, PLUS_EXPR, addend1, addend2);
1356 result = build_and_insert_call (gsi, loc, &target, sqrtfn, sum);
1357
1358 return result;
1359 }
1360
1361 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1362 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1363 an optimal number of multiplies, when n is a constant. */
1364
1365 static unsigned int
1366 execute_cse_sincos (void)
1367 {
1368 basic_block bb;
1369 bool cfg_changed = false;
1370
1371 calculate_dominance_info (CDI_DOMINATORS);
1372 memset (&sincos_stats, 0, sizeof (sincos_stats));
1373
1374 FOR_EACH_BB (bb)
1375 {
1376 gimple_stmt_iterator gsi;
1377
1378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1379 {
1380 gimple stmt = gsi_stmt (gsi);
1381 tree fndecl;
1382
1383 if (is_gimple_call (stmt)
1384 && gimple_call_lhs (stmt)
1385 && (fndecl = gimple_call_fndecl (stmt))
1386 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1387 {
1388 tree arg, arg0, arg1, result;
1389 HOST_WIDE_INT n;
1390 location_t loc;
1391
1392 switch (DECL_FUNCTION_CODE (fndecl))
1393 {
1394 CASE_FLT_FN (BUILT_IN_COS):
1395 CASE_FLT_FN (BUILT_IN_SIN):
1396 CASE_FLT_FN (BUILT_IN_CEXPI):
1397 /* Make sure we have either sincos or cexp. */
1398 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1399 break;
1400
1401 arg = gimple_call_arg (stmt, 0);
1402 if (TREE_CODE (arg) == SSA_NAME)
1403 cfg_changed |= execute_cse_sincos_1 (arg);
1404 break;
1405
1406 CASE_FLT_FN (BUILT_IN_POW):
1407 arg0 = gimple_call_arg (stmt, 0);
1408 arg1 = gimple_call_arg (stmt, 1);
1409
1410 loc = gimple_location (stmt);
1411 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1412
1413 if (result)
1414 {
1415 tree lhs = gimple_get_lhs (stmt);
1416 gimple new_stmt = gimple_build_assign (lhs, result);
1417 gimple_set_location (new_stmt, loc);
1418 unlink_stmt_vdef (stmt);
1419 gsi_replace (&gsi, new_stmt, true);
1420 }
1421 break;
1422
1423 CASE_FLT_FN (BUILT_IN_POWI):
1424 arg0 = gimple_call_arg (stmt, 0);
1425 arg1 = gimple_call_arg (stmt, 1);
1426 if (!host_integerp (arg1, 0))
1427 break;
1428
1429 n = TREE_INT_CST_LOW (arg1);
1430 loc = gimple_location (stmt);
1431 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1432
1433 if (result)
1434 {
1435 tree lhs = gimple_get_lhs (stmt);
1436 gimple new_stmt = gimple_build_assign (lhs, result);
1437 gimple_set_location (new_stmt, loc);
1438 unlink_stmt_vdef (stmt);
1439 gsi_replace (&gsi, new_stmt, true);
1440 }
1441 break;
1442
1443 CASE_FLT_FN (BUILT_IN_CABS):
1444 arg0 = gimple_call_arg (stmt, 0);
1445 loc = gimple_location (stmt);
1446 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1447
1448 if (result)
1449 {
1450 tree lhs = gimple_get_lhs (stmt);
1451 gimple new_stmt = gimple_build_assign (lhs, result);
1452 gimple_set_location (new_stmt, loc);
1453 unlink_stmt_vdef (stmt);
1454 gsi_replace (&gsi, new_stmt, true);
1455 }
1456 break;
1457
1458 default:;
1459 }
1460 }
1461 }
1462 }
1463
1464 statistics_counter_event (cfun, "sincos statements inserted",
1465 sincos_stats.inserted);
1466
1467 free_dominance_info (CDI_DOMINATORS);
1468 return cfg_changed ? TODO_cleanup_cfg : 0;
1469 }
1470
1471 static bool
1472 gate_cse_sincos (void)
1473 {
1474 /* We no longer require either sincos or cexp, since powi expansion
1475 piggybacks on this pass. */
1476 return optimize;
1477 }
1478
1479 struct gimple_opt_pass pass_cse_sincos =
1480 {
1481 {
1482 GIMPLE_PASS,
1483 "sincos", /* name */
1484 gate_cse_sincos, /* gate */
1485 execute_cse_sincos, /* execute */
1486 NULL, /* sub */
1487 NULL, /* next */
1488 0, /* static_pass_number */
1489 TV_NONE, /* tv_id */
1490 PROP_ssa, /* properties_required */
1491 0, /* properties_provided */
1492 0, /* properties_destroyed */
1493 0, /* todo_flags_start */
1494 TODO_update_ssa | TODO_verify_ssa
1495 | TODO_verify_stmts /* todo_flags_finish */
1496 }
1497 };
1498
1499 /* A symbolic number is used to detect byte permutation and selection
1500 patterns. Therefore the field N contains an artificial number
1501 consisting of byte size markers:
1502
1503 0 - byte has the value 0
1504 1..size - byte contains the content of the byte
1505 number indexed with that value minus one */
1506
1507 struct symbolic_number {
1508 unsigned HOST_WIDEST_INT n;
1509 int size;
1510 };
1511
1512 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1513 number N. Return false if the requested operation is not permitted
1514 on a symbolic number. */
1515
1516 static inline bool
1517 do_shift_rotate (enum tree_code code,
1518 struct symbolic_number *n,
1519 int count)
1520 {
1521 if (count % 8 != 0)
1522 return false;
1523
1524 /* Zero out the extra bits of N in order to avoid them being shifted
1525 into the significant bits. */
1526 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1527 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1528
1529 switch (code)
1530 {
1531 case LSHIFT_EXPR:
1532 n->n <<= count;
1533 break;
1534 case RSHIFT_EXPR:
1535 n->n >>= count;
1536 break;
1537 case LROTATE_EXPR:
1538 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1539 break;
1540 case RROTATE_EXPR:
1541 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1542 break;
1543 default:
1544 return false;
1545 }
1546 /* Zero unused bits for size. */
1547 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1548 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1549 return true;
1550 }
1551
1552 /* Perform sanity checking for the symbolic number N and the gimple
1553 statement STMT. */
1554
1555 static inline bool
1556 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1557 {
1558 tree lhs_type;
1559
1560 lhs_type = gimple_expr_type (stmt);
1561
1562 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1563 return false;
1564
1565 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1566 return false;
1567
1568 return true;
1569 }
1570
1571 /* find_bswap_1 invokes itself recursively with N and tries to perform
1572 the operation given by the rhs of STMT on the result. If the
1573 operation could successfully be executed the function returns the
1574 tree expression of the source operand and NULL otherwise. */
1575
1576 static tree
1577 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1578 {
1579 enum tree_code code;
1580 tree rhs1, rhs2 = NULL;
1581 gimple rhs1_stmt, rhs2_stmt;
1582 tree source_expr1;
1583 enum gimple_rhs_class rhs_class;
1584
1585 if (!limit || !is_gimple_assign (stmt))
1586 return NULL_TREE;
1587
1588 rhs1 = gimple_assign_rhs1 (stmt);
1589
1590 if (TREE_CODE (rhs1) != SSA_NAME)
1591 return NULL_TREE;
1592
1593 code = gimple_assign_rhs_code (stmt);
1594 rhs_class = gimple_assign_rhs_class (stmt);
1595 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1596
1597 if (rhs_class == GIMPLE_BINARY_RHS)
1598 rhs2 = gimple_assign_rhs2 (stmt);
1599
1600 /* Handle unary rhs and binary rhs with integer constants as second
1601 operand. */
1602
1603 if (rhs_class == GIMPLE_UNARY_RHS
1604 || (rhs_class == GIMPLE_BINARY_RHS
1605 && TREE_CODE (rhs2) == INTEGER_CST))
1606 {
1607 if (code != BIT_AND_EXPR
1608 && code != LSHIFT_EXPR
1609 && code != RSHIFT_EXPR
1610 && code != LROTATE_EXPR
1611 && code != RROTATE_EXPR
1612 && code != NOP_EXPR
1613 && code != CONVERT_EXPR)
1614 return NULL_TREE;
1615
1616 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1617
1618 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1619 to initialize the symbolic number. */
1620 if (!source_expr1)
1621 {
1622 /* Set up the symbolic number N by setting each byte to a
1623 value between 1 and the byte size of rhs1. The highest
1624 order byte is set to n->size and the lowest order
1625 byte to 1. */
1626 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1627 if (n->size % BITS_PER_UNIT != 0)
1628 return NULL_TREE;
1629 n->size /= BITS_PER_UNIT;
1630 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1631 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1632
1633 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1634 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1635 (n->size * BITS_PER_UNIT)) - 1;
1636
1637 source_expr1 = rhs1;
1638 }
1639
1640 switch (code)
1641 {
1642 case BIT_AND_EXPR:
1643 {
1644 int i;
1645 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1646 unsigned HOST_WIDEST_INT tmp = val;
1647
1648 /* Only constants masking full bytes are allowed. */
1649 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1650 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1651 return NULL_TREE;
1652
1653 n->n &= val;
1654 }
1655 break;
1656 case LSHIFT_EXPR:
1657 case RSHIFT_EXPR:
1658 case LROTATE_EXPR:
1659 case RROTATE_EXPR:
1660 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1661 return NULL_TREE;
1662 break;
1663 CASE_CONVERT:
1664 {
1665 int type_size;
1666
1667 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1668 if (type_size % BITS_PER_UNIT != 0)
1669 return NULL_TREE;
1670
1671 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1672 {
1673 /* If STMT casts to a smaller type mask out the bits not
1674 belonging to the target type. */
1675 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1676 }
1677 n->size = type_size / BITS_PER_UNIT;
1678 }
1679 break;
1680 default:
1681 return NULL_TREE;
1682 };
1683 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1684 }
1685
1686 /* Handle binary rhs. */
1687
1688 if (rhs_class == GIMPLE_BINARY_RHS)
1689 {
1690 struct symbolic_number n1, n2;
1691 tree source_expr2;
1692
1693 if (code != BIT_IOR_EXPR)
1694 return NULL_TREE;
1695
1696 if (TREE_CODE (rhs2) != SSA_NAME)
1697 return NULL_TREE;
1698
1699 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1700
1701 switch (code)
1702 {
1703 case BIT_IOR_EXPR:
1704 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1705
1706 if (!source_expr1)
1707 return NULL_TREE;
1708
1709 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1710
1711 if (source_expr1 != source_expr2
1712 || n1.size != n2.size)
1713 return NULL_TREE;
1714
1715 n->size = n1.size;
1716 n->n = n1.n | n2.n;
1717
1718 if (!verify_symbolic_number_p (n, stmt))
1719 return NULL_TREE;
1720
1721 break;
1722 default:
1723 return NULL_TREE;
1724 }
1725 return source_expr1;
1726 }
1727 return NULL_TREE;
1728 }
1729
1730 /* Check if STMT completes a bswap implementation consisting of ORs,
1731 SHIFTs and ANDs. Return the source tree expression on which the
1732 byte swap is performed and NULL if no bswap was found. */
1733
1734 static tree
1735 find_bswap (gimple stmt)
1736 {
1737 /* The number which the find_bswap result should match in order to
1738 have a full byte swap. The number is shifted to the left according
1739 to the size of the symbolic number before using it. */
1740 unsigned HOST_WIDEST_INT cmp =
1741 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1742 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1743
1744 struct symbolic_number n;
1745 tree source_expr;
1746 int limit;
1747
1748 /* The last parameter determines the depth search limit. It usually
1749 correlates directly to the number of bytes to be touched. We
1750 increase that number by three here in order to also
1751 cover signed -> unsigned converions of the src operand as can be seen
1752 in libgcc, and for initial shift/and operation of the src operand. */
1753 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1754 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1755 source_expr = find_bswap_1 (stmt, &n, limit);
1756
1757 if (!source_expr)
1758 return NULL_TREE;
1759
1760 /* Zero out the extra bits of N and CMP. */
1761 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1762 {
1763 unsigned HOST_WIDEST_INT mask =
1764 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1765
1766 n.n &= mask;
1767 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1768 }
1769
1770 /* A complete byte swap should make the symbolic number to start
1771 with the largest digit in the highest order byte. */
1772 if (cmp != n.n)
1773 return NULL_TREE;
1774
1775 return source_expr;
1776 }
1777
1778 /* Find manual byte swap implementations and turn them into a bswap
1779 builtin invokation. */
1780
1781 static unsigned int
1782 execute_optimize_bswap (void)
1783 {
1784 basic_block bb;
1785 bool bswap32_p, bswap64_p;
1786 bool changed = false;
1787 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1788
1789 if (BITS_PER_UNIT != 8)
1790 return 0;
1791
1792 if (sizeof (HOST_WIDEST_INT) < 8)
1793 return 0;
1794
1795 bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
1796 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1797 bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
1798 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1799 || (bswap32_p && word_mode == SImode)));
1800
1801 if (!bswap32_p && !bswap64_p)
1802 return 0;
1803
1804 /* Determine the argument type of the builtins. The code later on
1805 assumes that the return and argument type are the same. */
1806 if (bswap32_p)
1807 {
1808 tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
1809 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1810 }
1811
1812 if (bswap64_p)
1813 {
1814 tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
1815 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1816 }
1817
1818 memset (&bswap_stats, 0, sizeof (bswap_stats));
1819
1820 FOR_EACH_BB (bb)
1821 {
1822 gimple_stmt_iterator gsi;
1823
1824 /* We do a reverse scan for bswap patterns to make sure we get the
1825 widest match. As bswap pattern matching doesn't handle
1826 previously inserted smaller bswap replacements as sub-
1827 patterns, the wider variant wouldn't be detected. */
1828 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1829 {
1830 gimple stmt = gsi_stmt (gsi);
1831 tree bswap_src, bswap_type;
1832 tree bswap_tmp;
1833 tree fndecl = NULL_TREE;
1834 int type_size;
1835 gimple call;
1836
1837 if (!is_gimple_assign (stmt)
1838 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1839 continue;
1840
1841 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1842
1843 switch (type_size)
1844 {
1845 case 32:
1846 if (bswap32_p)
1847 {
1848 fndecl = built_in_decls[BUILT_IN_BSWAP32];
1849 bswap_type = bswap32_type;
1850 }
1851 break;
1852 case 64:
1853 if (bswap64_p)
1854 {
1855 fndecl = built_in_decls[BUILT_IN_BSWAP64];
1856 bswap_type = bswap64_type;
1857 }
1858 break;
1859 default:
1860 continue;
1861 }
1862
1863 if (!fndecl)
1864 continue;
1865
1866 bswap_src = find_bswap (stmt);
1867
1868 if (!bswap_src)
1869 continue;
1870
1871 changed = true;
1872 if (type_size == 32)
1873 bswap_stats.found_32bit++;
1874 else
1875 bswap_stats.found_64bit++;
1876
1877 bswap_tmp = bswap_src;
1878
1879 /* Convert the src expression if necessary. */
1880 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1881 {
1882 gimple convert_stmt;
1883
1884 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1885 add_referenced_var (bswap_tmp);
1886 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1887
1888 convert_stmt = gimple_build_assign_with_ops (
1889 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1890 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1891 }
1892
1893 call = gimple_build_call (fndecl, 1, bswap_tmp);
1894
1895 bswap_tmp = gimple_assign_lhs (stmt);
1896
1897 /* Convert the result if necessary. */
1898 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1899 {
1900 gimple convert_stmt;
1901
1902 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1903 add_referenced_var (bswap_tmp);
1904 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1905 convert_stmt = gimple_build_assign_with_ops (
1906 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1907 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1908 }
1909
1910 gimple_call_set_lhs (call, bswap_tmp);
1911
1912 if (dump_file)
1913 {
1914 fprintf (dump_file, "%d bit bswap implementation found at: ",
1915 (int)type_size);
1916 print_gimple_stmt (dump_file, stmt, 0, 0);
1917 }
1918
1919 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1920 gsi_remove (&gsi, true);
1921 }
1922 }
1923
1924 statistics_counter_event (cfun, "32-bit bswap implementations found",
1925 bswap_stats.found_32bit);
1926 statistics_counter_event (cfun, "64-bit bswap implementations found",
1927 bswap_stats.found_64bit);
1928
1929 return (changed ? TODO_update_ssa | TODO_verify_ssa
1930 | TODO_verify_stmts : 0);
1931 }
1932
1933 static bool
1934 gate_optimize_bswap (void)
1935 {
1936 return flag_expensive_optimizations && optimize;
1937 }
1938
1939 struct gimple_opt_pass pass_optimize_bswap =
1940 {
1941 {
1942 GIMPLE_PASS,
1943 "bswap", /* name */
1944 gate_optimize_bswap, /* gate */
1945 execute_optimize_bswap, /* execute */
1946 NULL, /* sub */
1947 NULL, /* next */
1948 0, /* static_pass_number */
1949 TV_NONE, /* tv_id */
1950 PROP_ssa, /* properties_required */
1951 0, /* properties_provided */
1952 0, /* properties_destroyed */
1953 0, /* todo_flags_start */
1954 0 /* todo_flags_finish */
1955 }
1956 };
1957
1958 /* Return true if RHS is a suitable operand for a widening multiplication.
1959 There are two cases:
1960
1961 - RHS makes some value twice as wide. Store that value in *NEW_RHS_OUT
1962 if so, and store its type in *TYPE_OUT.
1963
1964 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
1965 but leave *TYPE_OUT untouched. */
1966
1967 static bool
1968 is_widening_mult_rhs_p (tree rhs, tree *type_out, tree *new_rhs_out)
1969 {
1970 gimple stmt;
1971 tree type, type1, rhs1;
1972 enum tree_code rhs_code;
1973
1974 if (TREE_CODE (rhs) == SSA_NAME)
1975 {
1976 type = TREE_TYPE (rhs);
1977 stmt = SSA_NAME_DEF_STMT (rhs);
1978 if (!is_gimple_assign (stmt))
1979 return false;
1980
1981 rhs_code = gimple_assign_rhs_code (stmt);
1982 if (TREE_CODE (type) == INTEGER_TYPE
1983 ? !CONVERT_EXPR_CODE_P (rhs_code)
1984 : rhs_code != FIXED_CONVERT_EXPR)
1985 return false;
1986
1987 rhs1 = gimple_assign_rhs1 (stmt);
1988 type1 = TREE_TYPE (rhs1);
1989 if (TREE_CODE (type1) != TREE_CODE (type)
1990 || TYPE_PRECISION (type1) * 2 != TYPE_PRECISION (type))
1991 return false;
1992
1993 *new_rhs_out = rhs1;
1994 *type_out = type1;
1995 return true;
1996 }
1997
1998 if (TREE_CODE (rhs) == INTEGER_CST)
1999 {
2000 *new_rhs_out = rhs;
2001 *type_out = NULL;
2002 return true;
2003 }
2004
2005 return false;
2006 }
2007
2008 /* Return true if STMT performs a widening multiplication. If so,
2009 store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT
2010 respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting
2011 those operands to types *TYPE1_OUT and *TYPE2_OUT would give the
2012 operands of the multiplication. */
2013
2014 static bool
2015 is_widening_mult_p (gimple stmt,
2016 tree *type1_out, tree *rhs1_out,
2017 tree *type2_out, tree *rhs2_out)
2018 {
2019 tree type;
2020
2021 type = TREE_TYPE (gimple_assign_lhs (stmt));
2022 if (TREE_CODE (type) != INTEGER_TYPE
2023 && TREE_CODE (type) != FIXED_POINT_TYPE)
2024 return false;
2025
2026 if (!is_widening_mult_rhs_p (gimple_assign_rhs1 (stmt), type1_out, rhs1_out))
2027 return false;
2028
2029 if (!is_widening_mult_rhs_p (gimple_assign_rhs2 (stmt), type2_out, rhs2_out))
2030 return false;
2031
2032 if (*type1_out == NULL)
2033 {
2034 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2035 return false;
2036 *type1_out = *type2_out;
2037 }
2038
2039 if (*type2_out == NULL)
2040 {
2041 if (!int_fits_type_p (*rhs2_out, *type1_out))
2042 return false;
2043 *type2_out = *type1_out;
2044 }
2045
2046 return true;
2047 }
2048
2049 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2050 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2051 value is true iff we converted the statement. */
2052
2053 static bool
2054 convert_mult_to_widen (gimple stmt)
2055 {
2056 tree lhs, rhs1, rhs2, type, type1, type2;
2057 enum insn_code handler;
2058
2059 lhs = gimple_assign_lhs (stmt);
2060 type = TREE_TYPE (lhs);
2061 if (TREE_CODE (type) != INTEGER_TYPE)
2062 return false;
2063
2064 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2065 return false;
2066
2067 if (TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2))
2068 handler = optab_handler (umul_widen_optab, TYPE_MODE (type));
2069 else if (!TYPE_UNSIGNED (type1) && !TYPE_UNSIGNED (type2))
2070 handler = optab_handler (smul_widen_optab, TYPE_MODE (type));
2071 else
2072 handler = optab_handler (usmul_widen_optab, TYPE_MODE (type));
2073
2074 if (handler == CODE_FOR_nothing)
2075 return false;
2076
2077 gimple_assign_set_rhs1 (stmt, fold_convert (type1, rhs1));
2078 gimple_assign_set_rhs2 (stmt, fold_convert (type2, rhs2));
2079 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2080 update_stmt (stmt);
2081 widen_mul_stats.widen_mults_inserted++;
2082 return true;
2083 }
2084
2085 /* Process a single gimple statement STMT, which is found at the
2086 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2087 rhs (given by CODE), and try to convert it into a
2088 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2089 is true iff we converted the statement. */
2090
2091 static bool
2092 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2093 enum tree_code code)
2094 {
2095 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2096 tree type, type1, type2;
2097 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2098 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2099 optab this_optab;
2100 enum tree_code wmult_code;
2101
2102 lhs = gimple_assign_lhs (stmt);
2103 type = TREE_TYPE (lhs);
2104 if (TREE_CODE (type) != INTEGER_TYPE
2105 && TREE_CODE (type) != FIXED_POINT_TYPE)
2106 return false;
2107
2108 if (code == MINUS_EXPR)
2109 wmult_code = WIDEN_MULT_MINUS_EXPR;
2110 else
2111 wmult_code = WIDEN_MULT_PLUS_EXPR;
2112
2113 rhs1 = gimple_assign_rhs1 (stmt);
2114 rhs2 = gimple_assign_rhs2 (stmt);
2115
2116 if (TREE_CODE (rhs1) == SSA_NAME)
2117 {
2118 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2119 if (is_gimple_assign (rhs1_stmt))
2120 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2121 }
2122 else
2123 return false;
2124
2125 if (TREE_CODE (rhs2) == SSA_NAME)
2126 {
2127 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2128 if (is_gimple_assign (rhs2_stmt))
2129 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2130 }
2131 else
2132 return false;
2133
2134 if (code == PLUS_EXPR && rhs1_code == MULT_EXPR)
2135 {
2136 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2137 &type2, &mult_rhs2))
2138 return false;
2139 add_rhs = rhs2;
2140 }
2141 else if (rhs2_code == MULT_EXPR)
2142 {
2143 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2144 &type2, &mult_rhs2))
2145 return false;
2146 add_rhs = rhs1;
2147 }
2148 else if (code == PLUS_EXPR && rhs1_code == WIDEN_MULT_EXPR)
2149 {
2150 mult_rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2151 mult_rhs2 = gimple_assign_rhs2 (rhs1_stmt);
2152 type1 = TREE_TYPE (mult_rhs1);
2153 type2 = TREE_TYPE (mult_rhs2);
2154 add_rhs = rhs2;
2155 }
2156 else if (rhs2_code == WIDEN_MULT_EXPR)
2157 {
2158 mult_rhs1 = gimple_assign_rhs1 (rhs2_stmt);
2159 mult_rhs2 = gimple_assign_rhs2 (rhs2_stmt);
2160 type1 = TREE_TYPE (mult_rhs1);
2161 type2 = TREE_TYPE (mult_rhs2);
2162 add_rhs = rhs1;
2163 }
2164 else
2165 return false;
2166
2167 if (TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2))
2168 return false;
2169
2170 /* Verify that the machine can perform a widening multiply
2171 accumulate in this mode/signedness combination, otherwise
2172 this transformation is likely to pessimize code. */
2173 this_optab = optab_for_tree_code (wmult_code, type1, optab_default);
2174 if (optab_handler (this_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2175 return false;
2176
2177 /* ??? May need some type verification here? */
2178
2179 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code,
2180 fold_convert (type1, mult_rhs1),
2181 fold_convert (type2, mult_rhs2),
2182 add_rhs);
2183 update_stmt (gsi_stmt (*gsi));
2184 widen_mul_stats.maccs_inserted++;
2185 return true;
2186 }
2187
2188 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2189 with uses in additions and subtractions to form fused multiply-add
2190 operations. Returns true if successful and MUL_STMT should be removed. */
2191
2192 static bool
2193 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2194 {
2195 tree mul_result = gimple_get_lhs (mul_stmt);
2196 tree type = TREE_TYPE (mul_result);
2197 gimple use_stmt, neguse_stmt, fma_stmt;
2198 use_operand_p use_p;
2199 imm_use_iterator imm_iter;
2200
2201 if (FLOAT_TYPE_P (type)
2202 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2203 return false;
2204
2205 /* We don't want to do bitfield reduction ops. */
2206 if (INTEGRAL_TYPE_P (type)
2207 && (TYPE_PRECISION (type)
2208 != GET_MODE_PRECISION (TYPE_MODE (type))))
2209 return false;
2210
2211 /* If the target doesn't support it, don't generate it. We assume that
2212 if fma isn't available then fms, fnma or fnms are not either. */
2213 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2214 return false;
2215
2216 /* Make sure that the multiplication statement becomes dead after
2217 the transformation, thus that all uses are transformed to FMAs.
2218 This means we assume that an FMA operation has the same cost
2219 as an addition. */
2220 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2221 {
2222 enum tree_code use_code;
2223 tree result = mul_result;
2224 bool negate_p = false;
2225
2226 use_stmt = USE_STMT (use_p);
2227
2228 if (is_gimple_debug (use_stmt))
2229 continue;
2230
2231 /* For now restrict this operations to single basic blocks. In theory
2232 we would want to support sinking the multiplication in
2233 m = a*b;
2234 if ()
2235 ma = m + c;
2236 else
2237 d = m;
2238 to form a fma in the then block and sink the multiplication to the
2239 else block. */
2240 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2241 return false;
2242
2243 if (!is_gimple_assign (use_stmt))
2244 return false;
2245
2246 use_code = gimple_assign_rhs_code (use_stmt);
2247
2248 /* A negate on the multiplication leads to FNMA. */
2249 if (use_code == NEGATE_EXPR)
2250 {
2251 ssa_op_iter iter;
2252 use_operand_p usep;
2253
2254 result = gimple_assign_lhs (use_stmt);
2255
2256 /* Make sure the negate statement becomes dead with this
2257 single transformation. */
2258 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2259 &use_p, &neguse_stmt))
2260 return false;
2261
2262 /* Make sure the multiplication isn't also used on that stmt. */
2263 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2264 if (USE_FROM_PTR (usep) == mul_result)
2265 return false;
2266
2267 /* Re-validate. */
2268 use_stmt = neguse_stmt;
2269 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2270 return false;
2271 if (!is_gimple_assign (use_stmt))
2272 return false;
2273
2274 use_code = gimple_assign_rhs_code (use_stmt);
2275 negate_p = true;
2276 }
2277
2278 switch (use_code)
2279 {
2280 case MINUS_EXPR:
2281 if (gimple_assign_rhs2 (use_stmt) == result)
2282 negate_p = !negate_p;
2283 break;
2284 case PLUS_EXPR:
2285 break;
2286 default:
2287 /* FMA can only be formed from PLUS and MINUS. */
2288 return false;
2289 }
2290
2291 /* We can't handle a * b + a * b. */
2292 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2293 return false;
2294
2295 /* While it is possible to validate whether or not the exact form
2296 that we've recognized is available in the backend, the assumption
2297 is that the transformation is never a loss. For instance, suppose
2298 the target only has the plain FMA pattern available. Consider
2299 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2300 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2301 still have 3 operations, but in the FMA form the two NEGs are
2302 independant and could be run in parallel. */
2303 }
2304
2305 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2306 {
2307 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2308 enum tree_code use_code;
2309 tree addop, mulop1 = op1, result = mul_result;
2310 bool negate_p = false;
2311
2312 if (is_gimple_debug (use_stmt))
2313 continue;
2314
2315 use_code = gimple_assign_rhs_code (use_stmt);
2316 if (use_code == NEGATE_EXPR)
2317 {
2318 result = gimple_assign_lhs (use_stmt);
2319 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2320 gsi_remove (&gsi, true);
2321 release_defs (use_stmt);
2322
2323 use_stmt = neguse_stmt;
2324 gsi = gsi_for_stmt (use_stmt);
2325 use_code = gimple_assign_rhs_code (use_stmt);
2326 negate_p = true;
2327 }
2328
2329 if (gimple_assign_rhs1 (use_stmt) == result)
2330 {
2331 addop = gimple_assign_rhs2 (use_stmt);
2332 /* a * b - c -> a * b + (-c) */
2333 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2334 addop = force_gimple_operand_gsi (&gsi,
2335 build1 (NEGATE_EXPR,
2336 type, addop),
2337 true, NULL_TREE, true,
2338 GSI_SAME_STMT);
2339 }
2340 else
2341 {
2342 addop = gimple_assign_rhs1 (use_stmt);
2343 /* a - b * c -> (-b) * c + a */
2344 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2345 negate_p = !negate_p;
2346 }
2347
2348 if (negate_p)
2349 mulop1 = force_gimple_operand_gsi (&gsi,
2350 build1 (NEGATE_EXPR,
2351 type, mulop1),
2352 true, NULL_TREE, true,
2353 GSI_SAME_STMT);
2354
2355 fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
2356 gimple_assign_lhs (use_stmt),
2357 mulop1, op2,
2358 addop);
2359 gsi_replace (&gsi, fma_stmt, true);
2360 widen_mul_stats.fmas_inserted++;
2361 }
2362
2363 return true;
2364 }
2365
2366 /* Find integer multiplications where the operands are extended from
2367 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2368 where appropriate. */
2369
2370 static unsigned int
2371 execute_optimize_widening_mul (void)
2372 {
2373 basic_block bb;
2374 bool cfg_changed = false;
2375
2376 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2377
2378 FOR_EACH_BB (bb)
2379 {
2380 gimple_stmt_iterator gsi;
2381
2382 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2383 {
2384 gimple stmt = gsi_stmt (gsi);
2385 enum tree_code code;
2386
2387 if (is_gimple_assign (stmt))
2388 {
2389 code = gimple_assign_rhs_code (stmt);
2390 switch (code)
2391 {
2392 case MULT_EXPR:
2393 if (!convert_mult_to_widen (stmt)
2394 && convert_mult_to_fma (stmt,
2395 gimple_assign_rhs1 (stmt),
2396 gimple_assign_rhs2 (stmt)))
2397 {
2398 gsi_remove (&gsi, true);
2399 release_defs (stmt);
2400 continue;
2401 }
2402 break;
2403
2404 case PLUS_EXPR:
2405 case MINUS_EXPR:
2406 convert_plusminus_to_widen (&gsi, stmt, code);
2407 break;
2408
2409 default:;
2410 }
2411 }
2412 else if (is_gimple_call (stmt)
2413 && gimple_call_lhs (stmt))
2414 {
2415 tree fndecl = gimple_call_fndecl (stmt);
2416 if (fndecl
2417 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2418 {
2419 switch (DECL_FUNCTION_CODE (fndecl))
2420 {
2421 case BUILT_IN_POWF:
2422 case BUILT_IN_POW:
2423 case BUILT_IN_POWL:
2424 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2425 && REAL_VALUES_EQUAL
2426 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2427 dconst2)
2428 && convert_mult_to_fma (stmt,
2429 gimple_call_arg (stmt, 0),
2430 gimple_call_arg (stmt, 0)))
2431 {
2432 unlink_stmt_vdef (stmt);
2433 gsi_remove (&gsi, true);
2434 release_defs (stmt);
2435 if (gimple_purge_dead_eh_edges (bb))
2436 cfg_changed = true;
2437 continue;
2438 }
2439 break;
2440
2441 default:;
2442 }
2443 }
2444 }
2445 gsi_next (&gsi);
2446 }
2447 }
2448
2449 statistics_counter_event (cfun, "widening multiplications inserted",
2450 widen_mul_stats.widen_mults_inserted);
2451 statistics_counter_event (cfun, "widening maccs inserted",
2452 widen_mul_stats.maccs_inserted);
2453 statistics_counter_event (cfun, "fused multiply-adds inserted",
2454 widen_mul_stats.fmas_inserted);
2455
2456 return cfg_changed ? TODO_cleanup_cfg : 0;
2457 }
2458
2459 static bool
2460 gate_optimize_widening_mul (void)
2461 {
2462 return flag_expensive_optimizations && optimize;
2463 }
2464
2465 struct gimple_opt_pass pass_optimize_widening_mul =
2466 {
2467 {
2468 GIMPLE_PASS,
2469 "widening_mul", /* name */
2470 gate_optimize_widening_mul, /* gate */
2471 execute_optimize_widening_mul, /* execute */
2472 NULL, /* sub */
2473 NULL, /* next */
2474 0, /* static_pass_number */
2475 TV_NONE, /* tv_id */
2476 PROP_ssa, /* properties_required */
2477 0, /* properties_provided */
2478 0, /* properties_destroyed */
2479 0, /* todo_flags_start */
2480 TODO_verify_ssa
2481 | TODO_verify_stmts
2482 | TODO_update_ssa /* todo_flags_finish */
2483 }
2484 };