]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-math-opts.c
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115
116 /* This structure represents one basic block that either computes a
117 division, or is a common dominator for basic block that compute a
118 division. */
119 struct occurrence {
120 /* The basic block represented by this structure. */
121 basic_block bb;
122
123 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
124 inserted in BB. */
125 tree recip_def;
126
127 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
128 was inserted in BB. */
129 gimple *recip_def_stmt;
130
131 /* Pointer to a list of "struct occurrence"s for blocks dominated
132 by BB. */
133 struct occurrence *children;
134
135 /* Pointer to the next "struct occurrence"s in the list of blocks
136 sharing a common dominator. */
137 struct occurrence *next;
138
139 /* The number of divisions that are in BB before compute_merit. The
140 number of divisions that are in BB or post-dominate it after
141 compute_merit. */
142 int num_divisions;
143
144 /* True if the basic block has a division, false if it is a common
145 dominator for basic blocks that do. If it is false and trapping
146 math is active, BB is not a candidate for inserting a reciprocal. */
147 bool bb_has_division;
148 };
149
150 static struct
151 {
152 /* Number of 1.0/X ops inserted. */
153 int rdivs_inserted;
154
155 /* Number of 1.0/FUNC ops inserted. */
156 int rfuncs_inserted;
157 } reciprocal_stats;
158
159 static struct
160 {
161 /* Number of cexpi calls inserted. */
162 int inserted;
163 } sincos_stats;
164
165 static struct
166 {
167 /* Number of hand-written 16-bit nop / bswaps found. */
168 int found_16bit;
169
170 /* Number of hand-written 32-bit nop / bswaps found. */
171 int found_32bit;
172
173 /* Number of hand-written 64-bit nop / bswaps found. */
174 int found_64bit;
175 } nop_stats, bswap_stats;
176
177 static struct
178 {
179 /* Number of widening multiplication ops inserted. */
180 int widen_mults_inserted;
181
182 /* Number of integer multiply-and-accumulate ops inserted. */
183 int maccs_inserted;
184
185 /* Number of fp fused multiply-add ops inserted. */
186 int fmas_inserted;
187 } widen_mul_stats;
188
189 /* The instance of "struct occurrence" representing the highest
190 interesting block in the dominator tree. */
191 static struct occurrence *occ_head;
192
193 /* Allocation pool for getting instances of "struct occurrence". */
194 static object_allocator<occurrence> *occ_pool;
195
196
197
198 /* Allocate and return a new struct occurrence for basic block BB, and
199 whose children list is headed by CHILDREN. */
200 static struct occurrence *
201 occ_new (basic_block bb, struct occurrence *children)
202 {
203 struct occurrence *occ;
204
205 bb->aux = occ = occ_pool->allocate ();
206 memset (occ, 0, sizeof (struct occurrence));
207
208 occ->bb = bb;
209 occ->children = children;
210 return occ;
211 }
212
213
214 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
215 list of "struct occurrence"s, one per basic block, having IDOM as
216 their common dominator.
217
218 We try to insert NEW_OCC as deep as possible in the tree, and we also
219 insert any other block that is a common dominator for BB and one
220 block already in the tree. */
221
222 static void
223 insert_bb (struct occurrence *new_occ, basic_block idom,
224 struct occurrence **p_head)
225 {
226 struct occurrence *occ, **p_occ;
227
228 for (p_occ = p_head; (occ = *p_occ) != NULL; )
229 {
230 basic_block bb = new_occ->bb, occ_bb = occ->bb;
231 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
232 if (dom == bb)
233 {
234 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
235 from its list. */
236 *p_occ = occ->next;
237 occ->next = new_occ->children;
238 new_occ->children = occ;
239
240 /* Try the next block (it may as well be dominated by BB). */
241 }
242
243 else if (dom == occ_bb)
244 {
245 /* OCC_BB dominates BB. Tail recurse to look deeper. */
246 insert_bb (new_occ, dom, &occ->children);
247 return;
248 }
249
250 else if (dom != idom)
251 {
252 gcc_assert (!dom->aux);
253
254 /* There is a dominator between IDOM and BB, add it and make
255 two children out of NEW_OCC and OCC. First, remove OCC from
256 its list. */
257 *p_occ = occ->next;
258 new_occ->next = occ;
259 occ->next = NULL;
260
261 /* None of the previous blocks has DOM as a dominator: if we tail
262 recursed, we would reexamine them uselessly. Just switch BB with
263 DOM, and go on looking for blocks dominated by DOM. */
264 new_occ = occ_new (dom, new_occ);
265 }
266
267 else
268 {
269 /* Nothing special, go on with the next element. */
270 p_occ = &occ->next;
271 }
272 }
273
274 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
275 new_occ->next = *p_head;
276 *p_head = new_occ;
277 }
278
279 /* Register that we found a division in BB. */
280
281 static inline void
282 register_division_in (basic_block bb)
283 {
284 struct occurrence *occ;
285
286 occ = (struct occurrence *) bb->aux;
287 if (!occ)
288 {
289 occ = occ_new (bb, NULL);
290 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
291 }
292
293 occ->bb_has_division = true;
294 occ->num_divisions++;
295 }
296
297
298 /* Compute the number of divisions that postdominate each block in OCC and
299 its children. */
300
301 static void
302 compute_merit (struct occurrence *occ)
303 {
304 struct occurrence *occ_child;
305 basic_block dom = occ->bb;
306
307 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
308 {
309 basic_block bb;
310 if (occ_child->children)
311 compute_merit (occ_child);
312
313 if (flag_exceptions)
314 bb = single_noncomplex_succ (dom);
315 else
316 bb = dom;
317
318 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
319 occ->num_divisions += occ_child->num_divisions;
320 }
321 }
322
323
324 /* Return whether USE_STMT is a floating-point division by DEF. */
325 static inline bool
326 is_division_by (gimple *use_stmt, tree def)
327 {
328 return is_gimple_assign (use_stmt)
329 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
330 && gimple_assign_rhs2 (use_stmt) == def
331 /* Do not recognize x / x as valid division, as we are getting
332 confused later by replacing all immediate uses x in such
333 a stmt. */
334 && gimple_assign_rhs1 (use_stmt) != def;
335 }
336
337 /* Walk the subset of the dominator tree rooted at OCC, setting the
338 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
339 the given basic block. The field may be left NULL, of course,
340 if it is not possible or profitable to do the optimization.
341
342 DEF_BSI is an iterator pointing at the statement defining DEF.
343 If RECIP_DEF is set, a dominator already has a computation that can
344 be used. */
345
346 static void
347 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
348 tree def, tree recip_def, int threshold)
349 {
350 tree type;
351 gassign *new_stmt;
352 gimple_stmt_iterator gsi;
353 struct occurrence *occ_child;
354
355 if (!recip_def
356 && (occ->bb_has_division || !flag_trapping_math)
357 && occ->num_divisions >= threshold)
358 {
359 /* Make a variable with the replacement and substitute it. */
360 type = TREE_TYPE (def);
361 recip_def = create_tmp_reg (type, "reciptmp");
362 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
363 build_one_cst (type), def);
364
365 if (occ->bb_has_division)
366 {
367 /* Case 1: insert before an existing division. */
368 gsi = gsi_after_labels (occ->bb);
369 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
370 gsi_next (&gsi);
371
372 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
373 }
374 else if (def_gsi && occ->bb == def_gsi->bb)
375 {
376 /* Case 2: insert right after the definition. Note that this will
377 never happen if the definition statement can throw, because in
378 that case the sole successor of the statement's basic block will
379 dominate all the uses as well. */
380 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
381 }
382 else
383 {
384 /* Case 3: insert in a basic block not containing defs/uses. */
385 gsi = gsi_after_labels (occ->bb);
386 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
387 }
388
389 reciprocal_stats.rdivs_inserted++;
390
391 occ->recip_def_stmt = new_stmt;
392 }
393
394 occ->recip_def = recip_def;
395 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
396 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
397 }
398
399
400 /* Replace the division at USE_P with a multiplication by the reciprocal, if
401 possible. */
402
403 static inline void
404 replace_reciprocal (use_operand_p use_p)
405 {
406 gimple *use_stmt = USE_STMT (use_p);
407 basic_block bb = gimple_bb (use_stmt);
408 struct occurrence *occ = (struct occurrence *) bb->aux;
409
410 if (optimize_bb_for_speed_p (bb)
411 && occ->recip_def && use_stmt != occ->recip_def_stmt)
412 {
413 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
414 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
415 SET_USE (use_p, occ->recip_def);
416 fold_stmt_inplace (&gsi);
417 update_stmt (use_stmt);
418 }
419 }
420
421
422 /* Free OCC and return one more "struct occurrence" to be freed. */
423
424 static struct occurrence *
425 free_bb (struct occurrence *occ)
426 {
427 struct occurrence *child, *next;
428
429 /* First get the two pointers hanging off OCC. */
430 next = occ->next;
431 child = occ->children;
432 occ->bb->aux = NULL;
433 occ_pool->remove (occ);
434
435 /* Now ensure that we don't recurse unless it is necessary. */
436 if (!child)
437 return next;
438 else
439 {
440 while (next)
441 next = free_bb (next);
442
443 return child;
444 }
445 }
446
447
448 /* Look for floating-point divisions among DEF's uses, and try to
449 replace them by multiplications with the reciprocal. Add
450 as many statements computing the reciprocal as needed.
451
452 DEF must be a GIMPLE register of a floating-point type. */
453
454 static void
455 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
456 {
457 use_operand_p use_p;
458 imm_use_iterator use_iter;
459 struct occurrence *occ;
460 int count = 0, threshold;
461
462 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
463
464 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
465 {
466 gimple *use_stmt = USE_STMT (use_p);
467 if (is_division_by (use_stmt, def))
468 {
469 register_division_in (gimple_bb (use_stmt));
470 count++;
471 }
472 }
473
474 /* Do the expensive part only if we can hope to optimize something. */
475 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
476 if (count >= threshold)
477 {
478 gimple *use_stmt;
479 for (occ = occ_head; occ; occ = occ->next)
480 {
481 compute_merit (occ);
482 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
483 }
484
485 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
486 {
487 if (is_division_by (use_stmt, def))
488 {
489 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
490 replace_reciprocal (use_p);
491 }
492 }
493 }
494
495 for (occ = occ_head; occ; )
496 occ = free_bb (occ);
497
498 occ_head = NULL;
499 }
500
501 /* Return an internal function that implements the reciprocal of CALL,
502 or IFN_LAST if there is no such function that the target supports. */
503
504 internal_fn
505 internal_fn_reciprocal (gcall *call)
506 {
507 internal_fn ifn;
508
509 switch (gimple_call_combined_fn (call))
510 {
511 CASE_CFN_SQRT:
512 ifn = IFN_RSQRT;
513 break;
514
515 default:
516 return IFN_LAST;
517 }
518
519 tree_pair types = direct_internal_fn_types (ifn, call);
520 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
521 return IFN_LAST;
522
523 return ifn;
524 }
525
526 /* Go through all the floating-point SSA_NAMEs, and call
527 execute_cse_reciprocals_1 on each of them. */
528 namespace {
529
530 const pass_data pass_data_cse_reciprocals =
531 {
532 GIMPLE_PASS, /* type */
533 "recip", /* name */
534 OPTGROUP_NONE, /* optinfo_flags */
535 TV_NONE, /* tv_id */
536 PROP_ssa, /* properties_required */
537 0, /* properties_provided */
538 0, /* properties_destroyed */
539 0, /* todo_flags_start */
540 TODO_update_ssa, /* todo_flags_finish */
541 };
542
543 class pass_cse_reciprocals : public gimple_opt_pass
544 {
545 public:
546 pass_cse_reciprocals (gcc::context *ctxt)
547 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
548 {}
549
550 /* opt_pass methods: */
551 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
552 virtual unsigned int execute (function *);
553
554 }; // class pass_cse_reciprocals
555
556 unsigned int
557 pass_cse_reciprocals::execute (function *fun)
558 {
559 basic_block bb;
560 tree arg;
561
562 occ_pool = new object_allocator<occurrence> ("dominators for recip");
563
564 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
565 calculate_dominance_info (CDI_DOMINATORS);
566 calculate_dominance_info (CDI_POST_DOMINATORS);
567
568 if (flag_checking)
569 FOR_EACH_BB_FN (bb, fun)
570 gcc_assert (!bb->aux);
571
572 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
573 if (FLOAT_TYPE_P (TREE_TYPE (arg))
574 && is_gimple_reg (arg))
575 {
576 tree name = ssa_default_def (fun, arg);
577 if (name)
578 execute_cse_reciprocals_1 (NULL, name);
579 }
580
581 FOR_EACH_BB_FN (bb, fun)
582 {
583 tree def;
584
585 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
586 gsi_next (&gsi))
587 {
588 gphi *phi = gsi.phi ();
589 def = PHI_RESULT (phi);
590 if (! virtual_operand_p (def)
591 && FLOAT_TYPE_P (TREE_TYPE (def)))
592 execute_cse_reciprocals_1 (NULL, def);
593 }
594
595 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
596 gsi_next (&gsi))
597 {
598 gimple *stmt = gsi_stmt (gsi);
599
600 if (gimple_has_lhs (stmt)
601 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
602 && FLOAT_TYPE_P (TREE_TYPE (def))
603 && TREE_CODE (def) == SSA_NAME)
604 execute_cse_reciprocals_1 (&gsi, def);
605 }
606
607 if (optimize_bb_for_size_p (bb))
608 continue;
609
610 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
611 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
612 gsi_next (&gsi))
613 {
614 gimple *stmt = gsi_stmt (gsi);
615
616 if (is_gimple_assign (stmt)
617 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
618 {
619 tree arg1 = gimple_assign_rhs2 (stmt);
620 gimple *stmt1;
621
622 if (TREE_CODE (arg1) != SSA_NAME)
623 continue;
624
625 stmt1 = SSA_NAME_DEF_STMT (arg1);
626
627 if (is_gimple_call (stmt1)
628 && gimple_call_lhs (stmt1))
629 {
630 bool fail;
631 imm_use_iterator ui;
632 use_operand_p use_p;
633 tree fndecl = NULL_TREE;
634
635 gcall *call = as_a <gcall *> (stmt1);
636 internal_fn ifn = internal_fn_reciprocal (call);
637 if (ifn == IFN_LAST)
638 {
639 fndecl = gimple_call_fndecl (call);
640 if (!fndecl
641 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
642 continue;
643 fndecl = targetm.builtin_reciprocal (fndecl);
644 if (!fndecl)
645 continue;
646 }
647
648 /* Check that all uses of the SSA name are divisions,
649 otherwise replacing the defining statement will do
650 the wrong thing. */
651 fail = false;
652 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
653 {
654 gimple *stmt2 = USE_STMT (use_p);
655 if (is_gimple_debug (stmt2))
656 continue;
657 if (!is_gimple_assign (stmt2)
658 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
659 || gimple_assign_rhs1 (stmt2) == arg1
660 || gimple_assign_rhs2 (stmt2) != arg1)
661 {
662 fail = true;
663 break;
664 }
665 }
666 if (fail)
667 continue;
668
669 gimple_replace_ssa_lhs (call, arg1);
670 if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
671 {
672 auto_vec<tree, 4> args;
673 for (unsigned int i = 0;
674 i < gimple_call_num_args (call); i++)
675 args.safe_push (gimple_call_arg (call, i));
676 gcall *stmt2;
677 if (ifn == IFN_LAST)
678 stmt2 = gimple_build_call_vec (fndecl, args);
679 else
680 stmt2 = gimple_build_call_internal_vec (ifn, args);
681 gimple_call_set_lhs (stmt2, arg1);
682 if (gimple_vdef (call))
683 {
684 gimple_set_vdef (stmt2, gimple_vdef (call));
685 SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
686 }
687 gimple_set_vuse (stmt2, gimple_vuse (call));
688 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
689 gsi_replace (&gsi2, stmt2, true);
690 }
691 else
692 {
693 if (ifn == IFN_LAST)
694 gimple_call_set_fndecl (call, fndecl);
695 else
696 gimple_call_set_internal_fn (call, ifn);
697 update_stmt (call);
698 }
699 reciprocal_stats.rfuncs_inserted++;
700
701 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
702 {
703 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
704 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
705 fold_stmt_inplace (&gsi);
706 update_stmt (stmt);
707 }
708 }
709 }
710 }
711 }
712
713 statistics_counter_event (fun, "reciprocal divs inserted",
714 reciprocal_stats.rdivs_inserted);
715 statistics_counter_event (fun, "reciprocal functions inserted",
716 reciprocal_stats.rfuncs_inserted);
717
718 free_dominance_info (CDI_DOMINATORS);
719 free_dominance_info (CDI_POST_DOMINATORS);
720 delete occ_pool;
721 return 0;
722 }
723
724 } // anon namespace
725
726 gimple_opt_pass *
727 make_pass_cse_reciprocals (gcc::context *ctxt)
728 {
729 return new pass_cse_reciprocals (ctxt);
730 }
731
732 /* Records an occurrence at statement USE_STMT in the vector of trees
733 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
734 is not yet initialized. Returns true if the occurrence was pushed on
735 the vector. Adjusts *TOP_BB to be the basic block dominating all
736 statements in the vector. */
737
738 static bool
739 maybe_record_sincos (vec<gimple *> *stmts,
740 basic_block *top_bb, gimple *use_stmt)
741 {
742 basic_block use_bb = gimple_bb (use_stmt);
743 if (*top_bb
744 && (*top_bb == use_bb
745 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
746 stmts->safe_push (use_stmt);
747 else if (!*top_bb
748 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
749 {
750 stmts->safe_push (use_stmt);
751 *top_bb = use_bb;
752 }
753 else
754 return false;
755
756 return true;
757 }
758
759 /* Look for sin, cos and cexpi calls with the same argument NAME and
760 create a single call to cexpi CSEing the result in this case.
761 We first walk over all immediate uses of the argument collecting
762 statements that we can CSE in a vector and in a second pass replace
763 the statement rhs with a REALPART or IMAGPART expression on the
764 result of the cexpi call we insert before the use statement that
765 dominates all other candidates. */
766
767 static bool
768 execute_cse_sincos_1 (tree name)
769 {
770 gimple_stmt_iterator gsi;
771 imm_use_iterator use_iter;
772 tree fndecl, res, type;
773 gimple *def_stmt, *use_stmt, *stmt;
774 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
775 auto_vec<gimple *> stmts;
776 basic_block top_bb = NULL;
777 int i;
778 bool cfg_changed = false;
779
780 type = TREE_TYPE (name);
781 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
782 {
783 if (gimple_code (use_stmt) != GIMPLE_CALL
784 || !gimple_call_lhs (use_stmt))
785 continue;
786
787 switch (gimple_call_combined_fn (use_stmt))
788 {
789 CASE_CFN_COS:
790 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
791 break;
792
793 CASE_CFN_SIN:
794 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
795 break;
796
797 CASE_CFN_CEXPI:
798 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
799 break;
800
801 default:;
802 }
803 }
804
805 if (seen_cos + seen_sin + seen_cexpi <= 1)
806 return false;
807
808 /* Simply insert cexpi at the beginning of top_bb but not earlier than
809 the name def statement. */
810 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
811 if (!fndecl)
812 return false;
813 stmt = gimple_build_call (fndecl, 1, name);
814 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
815 gimple_call_set_lhs (stmt, res);
816
817 def_stmt = SSA_NAME_DEF_STMT (name);
818 if (!SSA_NAME_IS_DEFAULT_DEF (name)
819 && gimple_code (def_stmt) != GIMPLE_PHI
820 && gimple_bb (def_stmt) == top_bb)
821 {
822 gsi = gsi_for_stmt (def_stmt);
823 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
824 }
825 else
826 {
827 gsi = gsi_after_labels (top_bb);
828 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
829 }
830 sincos_stats.inserted++;
831
832 /* And adjust the recorded old call sites. */
833 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
834 {
835 tree rhs = NULL;
836
837 switch (gimple_call_combined_fn (use_stmt))
838 {
839 CASE_CFN_COS:
840 rhs = fold_build1 (REALPART_EXPR, type, res);
841 break;
842
843 CASE_CFN_SIN:
844 rhs = fold_build1 (IMAGPART_EXPR, type, res);
845 break;
846
847 CASE_CFN_CEXPI:
848 rhs = res;
849 break;
850
851 default:;
852 gcc_unreachable ();
853 }
854
855 /* Replace call with a copy. */
856 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
857
858 gsi = gsi_for_stmt (use_stmt);
859 gsi_replace (&gsi, stmt, true);
860 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
861 cfg_changed = true;
862 }
863
864 return cfg_changed;
865 }
866
867 /* To evaluate powi(x,n), the floating point value x raised to the
868 constant integer exponent n, we use a hybrid algorithm that
869 combines the "window method" with look-up tables. For an
870 introduction to exponentiation algorithms and "addition chains",
871 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
872 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
873 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
874 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
875
876 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
877 multiplications to inline before calling the system library's pow
878 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
879 so this default never requires calling pow, powf or powl. */
880
881 #ifndef POWI_MAX_MULTS
882 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
883 #endif
884
885 /* The size of the "optimal power tree" lookup table. All
886 exponents less than this value are simply looked up in the
887 powi_table below. This threshold is also used to size the
888 cache of pseudo registers that hold intermediate results. */
889 #define POWI_TABLE_SIZE 256
890
891 /* The size, in bits of the window, used in the "window method"
892 exponentiation algorithm. This is equivalent to a radix of
893 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
894 #define POWI_WINDOW_SIZE 3
895
896 /* The following table is an efficient representation of an
897 "optimal power tree". For each value, i, the corresponding
898 value, j, in the table states than an optimal evaluation
899 sequence for calculating pow(x,i) can be found by evaluating
900 pow(x,j)*pow(x,i-j). An optimal power tree for the first
901 100 integers is given in Knuth's "Seminumerical algorithms". */
902
903 static const unsigned char powi_table[POWI_TABLE_SIZE] =
904 {
905 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
906 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
907 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
908 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
909 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
910 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
911 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
912 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
913 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
914 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
915 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
916 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
917 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
918 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
919 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
920 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
921 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
922 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
923 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
924 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
925 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
926 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
927 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
928 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
929 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
930 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
931 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
932 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
933 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
934 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
935 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
936 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
937 };
938
939
940 /* Return the number of multiplications required to calculate
941 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
942 subroutine of powi_cost. CACHE is an array indicating
943 which exponents have already been calculated. */
944
945 static int
946 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
947 {
948 /* If we've already calculated this exponent, then this evaluation
949 doesn't require any additional multiplications. */
950 if (cache[n])
951 return 0;
952
953 cache[n] = true;
954 return powi_lookup_cost (n - powi_table[n], cache)
955 + powi_lookup_cost (powi_table[n], cache) + 1;
956 }
957
958 /* Return the number of multiplications required to calculate
959 powi(x,n) for an arbitrary x, given the exponent N. This
960 function needs to be kept in sync with powi_as_mults below. */
961
962 static int
963 powi_cost (HOST_WIDE_INT n)
964 {
965 bool cache[POWI_TABLE_SIZE];
966 unsigned HOST_WIDE_INT digit;
967 unsigned HOST_WIDE_INT val;
968 int result;
969
970 if (n == 0)
971 return 0;
972
973 /* Ignore the reciprocal when calculating the cost. */
974 val = (n < 0) ? -n : n;
975
976 /* Initialize the exponent cache. */
977 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
978 cache[1] = true;
979
980 result = 0;
981
982 while (val >= POWI_TABLE_SIZE)
983 {
984 if (val & 1)
985 {
986 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
987 result += powi_lookup_cost (digit, cache)
988 + POWI_WINDOW_SIZE + 1;
989 val >>= POWI_WINDOW_SIZE;
990 }
991 else
992 {
993 val >>= 1;
994 result++;
995 }
996 }
997
998 return result + powi_lookup_cost (val, cache);
999 }
1000
1001 /* Recursive subroutine of powi_as_mults. This function takes the
1002 array, CACHE, of already calculated exponents and an exponent N and
1003 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1004
1005 static tree
1006 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1007 HOST_WIDE_INT n, tree *cache)
1008 {
1009 tree op0, op1, ssa_target;
1010 unsigned HOST_WIDE_INT digit;
1011 gassign *mult_stmt;
1012
1013 if (n < POWI_TABLE_SIZE && cache[n])
1014 return cache[n];
1015
1016 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1017
1018 if (n < POWI_TABLE_SIZE)
1019 {
1020 cache[n] = ssa_target;
1021 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1022 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1023 }
1024 else if (n & 1)
1025 {
1026 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1027 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1028 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1029 }
1030 else
1031 {
1032 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1033 op1 = op0;
1034 }
1035
1036 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1037 gimple_set_location (mult_stmt, loc);
1038 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1039
1040 return ssa_target;
1041 }
1042
1043 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1044 This function needs to be kept in sync with powi_cost above. */
1045
1046 static tree
1047 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1048 tree arg0, HOST_WIDE_INT n)
1049 {
1050 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1051 gassign *div_stmt;
1052 tree target;
1053
1054 if (n == 0)
1055 return build_real (type, dconst1);
1056
1057 memset (cache, 0, sizeof (cache));
1058 cache[1] = arg0;
1059
1060 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1061 if (n >= 0)
1062 return result;
1063
1064 /* If the original exponent was negative, reciprocate the result. */
1065 target = make_temp_ssa_name (type, NULL, "powmult");
1066 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1067 build_real (type, dconst1), result);
1068 gimple_set_location (div_stmt, loc);
1069 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1070
1071 return target;
1072 }
1073
1074 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1075 location info LOC. If the arguments are appropriate, create an
1076 equivalent sequence of statements prior to GSI using an optimal
1077 number of multiplications, and return an expession holding the
1078 result. */
1079
1080 static tree
1081 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1082 tree arg0, HOST_WIDE_INT n)
1083 {
1084 /* Avoid largest negative number. */
1085 if (n != -n
1086 && ((n >= -1 && n <= 2)
1087 || (optimize_function_for_speed_p (cfun)
1088 && powi_cost (n) <= POWI_MAX_MULTS)))
1089 return powi_as_mults (gsi, loc, arg0, n);
1090
1091 return NULL_TREE;
1092 }
1093
1094 /* Build a gimple call statement that calls FN with argument ARG.
1095 Set the lhs of the call statement to a fresh SSA name. Insert the
1096 statement prior to GSI's current position, and return the fresh
1097 SSA name. */
1098
1099 static tree
1100 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1101 tree fn, tree arg)
1102 {
1103 gcall *call_stmt;
1104 tree ssa_target;
1105
1106 call_stmt = gimple_build_call (fn, 1, arg);
1107 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1108 gimple_set_lhs (call_stmt, ssa_target);
1109 gimple_set_location (call_stmt, loc);
1110 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1111
1112 return ssa_target;
1113 }
1114
1115 /* Build a gimple binary operation with the given CODE and arguments
1116 ARG0, ARG1, assigning the result to a new SSA name for variable
1117 TARGET. Insert the statement prior to GSI's current position, and
1118 return the fresh SSA name.*/
1119
1120 static tree
1121 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1122 const char *name, enum tree_code code,
1123 tree arg0, tree arg1)
1124 {
1125 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1126 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1127 gimple_set_location (stmt, loc);
1128 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1129 return result;
1130 }
1131
1132 /* Build a gimple reference operation with the given CODE and argument
1133 ARG, assigning the result to a new SSA name of TYPE with NAME.
1134 Insert the statement prior to GSI's current position, and return
1135 the fresh SSA name. */
1136
1137 static inline tree
1138 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1139 const char *name, enum tree_code code, tree arg0)
1140 {
1141 tree result = make_temp_ssa_name (type, NULL, name);
1142 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1143 gimple_set_location (stmt, loc);
1144 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1145 return result;
1146 }
1147
1148 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1149 prior to GSI's current position, and return the fresh SSA name. */
1150
1151 static tree
1152 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1153 tree type, tree val)
1154 {
1155 tree result = make_ssa_name (type);
1156 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1157 gimple_set_location (stmt, loc);
1158 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1159 return result;
1160 }
1161
1162 struct pow_synth_sqrt_info
1163 {
1164 bool *factors;
1165 unsigned int deepest;
1166 unsigned int num_mults;
1167 };
1168
1169 /* Return true iff the real value C can be represented as a
1170 sum of powers of 0.5 up to N. That is:
1171 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1172 Record in INFO the various parameters of the synthesis algorithm such
1173 as the factors a[i], the maximum 0.5 power and the number of
1174 multiplications that will be required. */
1175
1176 bool
1177 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1178 struct pow_synth_sqrt_info *info)
1179 {
1180 REAL_VALUE_TYPE factor = dconsthalf;
1181 REAL_VALUE_TYPE remainder = c;
1182
1183 info->deepest = 0;
1184 info->num_mults = 0;
1185 memset (info->factors, 0, n * sizeof (bool));
1186
1187 for (unsigned i = 0; i < n; i++)
1188 {
1189 REAL_VALUE_TYPE res;
1190
1191 /* If something inexact happened bail out now. */
1192 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1193 return false;
1194
1195 /* We have hit zero. The number is representable as a sum
1196 of powers of 0.5. */
1197 if (real_equal (&res, &dconst0))
1198 {
1199 info->factors[i] = true;
1200 info->deepest = i + 1;
1201 return true;
1202 }
1203 else if (!REAL_VALUE_NEGATIVE (res))
1204 {
1205 remainder = res;
1206 info->factors[i] = true;
1207 info->num_mults++;
1208 }
1209 else
1210 info->factors[i] = false;
1211
1212 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1213 }
1214 return false;
1215 }
1216
1217 /* Return the tree corresponding to FN being applied
1218 to ARG N times at GSI and LOC.
1219 Look up previous results from CACHE if need be.
1220 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1221
1222 static tree
1223 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1224 tree fn, location_t loc, tree *cache)
1225 {
1226 tree res = cache[n];
1227 if (!res)
1228 {
1229 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1230 res = build_and_insert_call (gsi, loc, fn, prev);
1231 cache[n] = res;
1232 }
1233
1234 return res;
1235 }
1236
1237 /* Print to STREAM the repeated application of function FNAME to ARG
1238 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1239 "foo (foo (x))". */
1240
1241 static void
1242 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1243 unsigned int n)
1244 {
1245 if (n == 0)
1246 fprintf (stream, "%s", arg);
1247 else
1248 {
1249 fprintf (stream, "%s (", fname);
1250 print_nested_fn (stream, fname, arg, n - 1);
1251 fprintf (stream, ")");
1252 }
1253 }
1254
1255 /* Print to STREAM the fractional sequence of sqrt chains
1256 applied to ARG, described by INFO. Used for the dump file. */
1257
1258 static void
1259 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1260 struct pow_synth_sqrt_info *info)
1261 {
1262 for (unsigned int i = 0; i < info->deepest; i++)
1263 {
1264 bool is_set = info->factors[i];
1265 if (is_set)
1266 {
1267 print_nested_fn (stream, "sqrt", arg, i + 1);
1268 if (i != info->deepest - 1)
1269 fprintf (stream, " * ");
1270 }
1271 }
1272 }
1273
1274 /* Print to STREAM a representation of raising ARG to an integer
1275 power N. Used for the dump file. */
1276
1277 static void
1278 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1279 {
1280 if (n > 1)
1281 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1282 else if (n == 1)
1283 fprintf (stream, "%s", arg);
1284 }
1285
1286 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1287 square roots. Place at GSI and LOC. Limit the maximum depth
1288 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1289 result of the expanded sequence or NULL_TREE if the expansion failed.
1290
1291 This routine assumes that ARG1 is a real number with a fractional part
1292 (the integer exponent case will have been handled earlier in
1293 gimple_expand_builtin_pow).
1294
1295 For ARG1 > 0.0:
1296 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1297 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1298 FRAC_PART == ARG1 - WHOLE_PART:
1299 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1300 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1301 if it can be expressed as such, that is if FRAC_PART satisfies:
1302 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1303 where integer a[i] is either 0 or 1.
1304
1305 Example:
1306 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1307 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1308
1309 For ARG1 < 0.0 there are two approaches:
1310 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1311 is calculated as above.
1312
1313 Example:
1314 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1315 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1316
1317 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1318 FRAC_PART := ARG1 - WHOLE_PART
1319 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1320 Example:
1321 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1322 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1323
1324 For ARG1 < 0.0 we choose between (A) and (B) depending on
1325 how many multiplications we'd have to do.
1326 So, for the example in (B): POW (x, -5.875), if we were to
1327 follow algorithm (A) we would produce:
1328 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1329 which contains more multiplications than approach (B).
1330
1331 Hopefully, this approach will eliminate potentially expensive POW library
1332 calls when unsafe floating point math is enabled and allow the compiler to
1333 further optimise the multiplies, square roots and divides produced by this
1334 function. */
1335
1336 static tree
1337 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1338 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1339 {
1340 tree type = TREE_TYPE (arg0);
1341 machine_mode mode = TYPE_MODE (type);
1342 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1343 bool one_over = true;
1344
1345 if (!sqrtfn)
1346 return NULL_TREE;
1347
1348 if (TREE_CODE (arg1) != REAL_CST)
1349 return NULL_TREE;
1350
1351 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1352
1353 gcc_assert (max_depth > 0);
1354 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1355
1356 struct pow_synth_sqrt_info synth_info;
1357 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1358 synth_info.deepest = 0;
1359 synth_info.num_mults = 0;
1360
1361 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1362 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1363
1364 /* The whole and fractional parts of exp. */
1365 REAL_VALUE_TYPE whole_part;
1366 REAL_VALUE_TYPE frac_part;
1367
1368 real_floor (&whole_part, mode, &exp);
1369 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1370
1371
1372 REAL_VALUE_TYPE ceil_whole = dconst0;
1373 REAL_VALUE_TYPE ceil_fract = dconst0;
1374
1375 if (neg_exp)
1376 {
1377 real_ceil (&ceil_whole, mode, &exp);
1378 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1379 }
1380
1381 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1382 return NULL_TREE;
1383
1384 /* Check whether it's more profitable to not use 1.0 / ... */
1385 if (neg_exp)
1386 {
1387 struct pow_synth_sqrt_info alt_synth_info;
1388 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1389 alt_synth_info.deepest = 0;
1390 alt_synth_info.num_mults = 0;
1391
1392 if (representable_as_half_series_p (ceil_fract, max_depth,
1393 &alt_synth_info)
1394 && alt_synth_info.deepest <= synth_info.deepest
1395 && alt_synth_info.num_mults < synth_info.num_mults)
1396 {
1397 whole_part = ceil_whole;
1398 frac_part = ceil_fract;
1399 synth_info.deepest = alt_synth_info.deepest;
1400 synth_info.num_mults = alt_synth_info.num_mults;
1401 memcpy (synth_info.factors, alt_synth_info.factors,
1402 (max_depth + 1) * sizeof (bool));
1403 one_over = false;
1404 }
1405 }
1406
1407 HOST_WIDE_INT n = real_to_integer (&whole_part);
1408 REAL_VALUE_TYPE cint;
1409 real_from_integer (&cint, VOIDmode, n, SIGNED);
1410
1411 if (!real_identical (&whole_part, &cint))
1412 return NULL_TREE;
1413
1414 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1415 return NULL_TREE;
1416
1417 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1418
1419 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1420
1421 /* Calculate the integer part of the exponent. */
1422 if (n > 1)
1423 {
1424 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1425 if (!integer_res)
1426 return NULL_TREE;
1427 }
1428
1429 if (dump_file)
1430 {
1431 char string[64];
1432
1433 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1434 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1435
1436 if (neg_exp)
1437 {
1438 if (one_over)
1439 {
1440 fprintf (dump_file, "1.0 / (");
1441 dump_integer_part (dump_file, "x", n);
1442 if (n > 0)
1443 fprintf (dump_file, " * ");
1444 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1445 fprintf (dump_file, ")");
1446 }
1447 else
1448 {
1449 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1450 fprintf (dump_file, " / (");
1451 dump_integer_part (dump_file, "x", n);
1452 fprintf (dump_file, ")");
1453 }
1454 }
1455 else
1456 {
1457 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1458 if (n > 0)
1459 fprintf (dump_file, " * ");
1460 dump_integer_part (dump_file, "x", n);
1461 }
1462
1463 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1464 }
1465
1466
1467 tree fract_res = NULL_TREE;
1468 cache[0] = arg0;
1469
1470 /* Calculate the fractional part of the exponent. */
1471 for (unsigned i = 0; i < synth_info.deepest; i++)
1472 {
1473 if (synth_info.factors[i])
1474 {
1475 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1476
1477 if (!fract_res)
1478 fract_res = sqrt_chain;
1479
1480 else
1481 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1482 fract_res, sqrt_chain);
1483 }
1484 }
1485
1486 tree res = NULL_TREE;
1487
1488 if (neg_exp)
1489 {
1490 if (one_over)
1491 {
1492 if (n > 0)
1493 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1494 fract_res, integer_res);
1495 else
1496 res = fract_res;
1497
1498 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1499 build_real (type, dconst1), res);
1500 }
1501 else
1502 {
1503 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1504 fract_res, integer_res);
1505 }
1506 }
1507 else
1508 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1509 fract_res, integer_res);
1510 return res;
1511 }
1512
1513 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1514 with location info LOC. If possible, create an equivalent and
1515 less expensive sequence of statements prior to GSI, and return an
1516 expession holding the result. */
1517
1518 static tree
1519 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1520 tree arg0, tree arg1)
1521 {
1522 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1523 REAL_VALUE_TYPE c2, dconst3;
1524 HOST_WIDE_INT n;
1525 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1526 machine_mode mode;
1527 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1528 bool hw_sqrt_exists, c_is_int, c2_is_int;
1529
1530 dconst1_4 = dconst1;
1531 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1532
1533 /* If the exponent isn't a constant, there's nothing of interest
1534 to be done. */
1535 if (TREE_CODE (arg1) != REAL_CST)
1536 return NULL_TREE;
1537
1538 /* Don't perform the operation if flag_signaling_nans is on
1539 and the operand is a signaling NaN. */
1540 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1541 && ((TREE_CODE (arg0) == REAL_CST
1542 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
1543 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1544 return NULL_TREE;
1545
1546 /* If the exponent is equivalent to an integer, expand to an optimal
1547 multiplication sequence when profitable. */
1548 c = TREE_REAL_CST (arg1);
1549 n = real_to_integer (&c);
1550 real_from_integer (&cint, VOIDmode, n, SIGNED);
1551 c_is_int = real_identical (&c, &cint);
1552
1553 if (c_is_int
1554 && ((n >= -1 && n <= 2)
1555 || (flag_unsafe_math_optimizations
1556 && speed_p
1557 && powi_cost (n) <= POWI_MAX_MULTS)))
1558 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1559
1560 /* Attempt various optimizations using sqrt and cbrt. */
1561 type = TREE_TYPE (arg0);
1562 mode = TYPE_MODE (type);
1563 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1564
1565 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1566 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1567 sqrt(-0) = -0. */
1568 if (sqrtfn
1569 && real_equal (&c, &dconsthalf)
1570 && !HONOR_SIGNED_ZEROS (mode))
1571 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1572
1573 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1574
1575 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1576 optimizations since 1./3. is not exactly representable. If x
1577 is negative and finite, the correct value of pow(x,1./3.) is
1578 a NaN with the "invalid" exception raised, because the value
1579 of 1./3. actually has an even denominator. The correct value
1580 of cbrt(x) is a negative real value. */
1581 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1582 dconst1_3 = real_value_truncate (mode, dconst_third ());
1583
1584 if (flag_unsafe_math_optimizations
1585 && cbrtfn
1586 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1587 && real_equal (&c, &dconst1_3))
1588 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1589
1590 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1591 if we don't have a hardware sqrt insn. */
1592 dconst1_6 = dconst1_3;
1593 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1594
1595 if (flag_unsafe_math_optimizations
1596 && sqrtfn
1597 && cbrtfn
1598 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1599 && speed_p
1600 && hw_sqrt_exists
1601 && real_equal (&c, &dconst1_6))
1602 {
1603 /* sqrt(x) */
1604 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1605
1606 /* cbrt(sqrt(x)) */
1607 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1608 }
1609
1610
1611 /* Attempt to expand the POW as a product of square root chains.
1612 Expand the 0.25 case even when otpimising for size. */
1613 if (flag_unsafe_math_optimizations
1614 && sqrtfn
1615 && hw_sqrt_exists
1616 && (speed_p || real_equal (&c, &dconst1_4))
1617 && !HONOR_SIGNED_ZEROS (mode))
1618 {
1619 unsigned int max_depth = speed_p
1620 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1621 : 2;
1622
1623 tree expand_with_sqrts
1624 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1625
1626 if (expand_with_sqrts)
1627 return expand_with_sqrts;
1628 }
1629
1630 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1631 n = real_to_integer (&c2);
1632 real_from_integer (&cint, VOIDmode, n, SIGNED);
1633 c2_is_int = real_identical (&c2, &cint);
1634
1635 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1636
1637 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1638 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1639
1640 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1641 different from pow(x, 1./3.) due to rounding and behavior with
1642 negative x, we need to constrain this transformation to unsafe
1643 math and positive x or finite math. */
1644 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1645 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1646 real_round (&c2, mode, &c2);
1647 n = real_to_integer (&c2);
1648 real_from_integer (&cint, VOIDmode, n, SIGNED);
1649 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1650 real_convert (&c2, mode, &c2);
1651
1652 if (flag_unsafe_math_optimizations
1653 && cbrtfn
1654 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1655 && real_identical (&c2, &c)
1656 && !c2_is_int
1657 && optimize_function_for_speed_p (cfun)
1658 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1659 {
1660 tree powi_x_ndiv3 = NULL_TREE;
1661
1662 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1663 possible or profitable, give up. Skip the degenerate case when
1664 abs(n) < 3, where the result is always 1. */
1665 if (absu_hwi (n) >= 3)
1666 {
1667 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1668 abs_hwi (n / 3));
1669 if (!powi_x_ndiv3)
1670 return NULL_TREE;
1671 }
1672
1673 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1674 as that creates an unnecessary variable. Instead, just produce
1675 either cbrt(x) or cbrt(x) * cbrt(x). */
1676 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1677
1678 if (absu_hwi (n) % 3 == 1)
1679 powi_cbrt_x = cbrt_x;
1680 else
1681 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1682 cbrt_x, cbrt_x);
1683
1684 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1685 if (absu_hwi (n) < 3)
1686 result = powi_cbrt_x;
1687 else
1688 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1689 powi_x_ndiv3, powi_cbrt_x);
1690
1691 /* If n is negative, reciprocate the result. */
1692 if (n < 0)
1693 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1694 build_real (type, dconst1), result);
1695
1696 return result;
1697 }
1698
1699 /* No optimizations succeeded. */
1700 return NULL_TREE;
1701 }
1702
1703 /* ARG is the argument to a cabs builtin call in GSI with location info
1704 LOC. Create a sequence of statements prior to GSI that calculates
1705 sqrt(R*R + I*I), where R and I are the real and imaginary components
1706 of ARG, respectively. Return an expression holding the result. */
1707
1708 static tree
1709 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1710 {
1711 tree real_part, imag_part, addend1, addend2, sum, result;
1712 tree type = TREE_TYPE (TREE_TYPE (arg));
1713 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1714 machine_mode mode = TYPE_MODE (type);
1715
1716 if (!flag_unsafe_math_optimizations
1717 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1718 || !sqrtfn
1719 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1720 return NULL_TREE;
1721
1722 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1723 REALPART_EXPR, arg);
1724 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1725 real_part, real_part);
1726 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1727 IMAGPART_EXPR, arg);
1728 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1729 imag_part, imag_part);
1730 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1731 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1732
1733 return result;
1734 }
1735
1736 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1737 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1738 an optimal number of multiplies, when n is a constant. */
1739
1740 namespace {
1741
1742 const pass_data pass_data_cse_sincos =
1743 {
1744 GIMPLE_PASS, /* type */
1745 "sincos", /* name */
1746 OPTGROUP_NONE, /* optinfo_flags */
1747 TV_NONE, /* tv_id */
1748 PROP_ssa, /* properties_required */
1749 PROP_gimple_opt_math, /* properties_provided */
1750 0, /* properties_destroyed */
1751 0, /* todo_flags_start */
1752 TODO_update_ssa, /* todo_flags_finish */
1753 };
1754
1755 class pass_cse_sincos : public gimple_opt_pass
1756 {
1757 public:
1758 pass_cse_sincos (gcc::context *ctxt)
1759 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1760 {}
1761
1762 /* opt_pass methods: */
1763 virtual bool gate (function *)
1764 {
1765 /* We no longer require either sincos or cexp, since powi expansion
1766 piggybacks on this pass. */
1767 return optimize;
1768 }
1769
1770 virtual unsigned int execute (function *);
1771
1772 }; // class pass_cse_sincos
1773
1774 unsigned int
1775 pass_cse_sincos::execute (function *fun)
1776 {
1777 basic_block bb;
1778 bool cfg_changed = false;
1779
1780 calculate_dominance_info (CDI_DOMINATORS);
1781 memset (&sincos_stats, 0, sizeof (sincos_stats));
1782
1783 FOR_EACH_BB_FN (bb, fun)
1784 {
1785 gimple_stmt_iterator gsi;
1786 bool cleanup_eh = false;
1787
1788 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1789 {
1790 gimple *stmt = gsi_stmt (gsi);
1791
1792 /* Only the last stmt in a bb could throw, no need to call
1793 gimple_purge_dead_eh_edges if we change something in the middle
1794 of a basic block. */
1795 cleanup_eh = false;
1796
1797 if (is_gimple_call (stmt)
1798 && gimple_call_lhs (stmt))
1799 {
1800 tree arg, arg0, arg1, result;
1801 HOST_WIDE_INT n;
1802 location_t loc;
1803
1804 switch (gimple_call_combined_fn (stmt))
1805 {
1806 CASE_CFN_COS:
1807 CASE_CFN_SIN:
1808 CASE_CFN_CEXPI:
1809 /* Make sure we have either sincos or cexp. */
1810 if (!targetm.libc_has_function (function_c99_math_complex)
1811 && !targetm.libc_has_function (function_sincos))
1812 break;
1813
1814 arg = gimple_call_arg (stmt, 0);
1815 if (TREE_CODE (arg) == SSA_NAME)
1816 cfg_changed |= execute_cse_sincos_1 (arg);
1817 break;
1818
1819 CASE_CFN_POW:
1820 arg0 = gimple_call_arg (stmt, 0);
1821 arg1 = gimple_call_arg (stmt, 1);
1822
1823 loc = gimple_location (stmt);
1824 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1825
1826 if (result)
1827 {
1828 tree lhs = gimple_get_lhs (stmt);
1829 gassign *new_stmt = gimple_build_assign (lhs, result);
1830 gimple_set_location (new_stmt, loc);
1831 unlink_stmt_vdef (stmt);
1832 gsi_replace (&gsi, new_stmt, true);
1833 cleanup_eh = true;
1834 if (gimple_vdef (stmt))
1835 release_ssa_name (gimple_vdef (stmt));
1836 }
1837 break;
1838
1839 CASE_CFN_POWI:
1840 arg0 = gimple_call_arg (stmt, 0);
1841 arg1 = gimple_call_arg (stmt, 1);
1842 loc = gimple_location (stmt);
1843
1844 if (real_minus_onep (arg0))
1845 {
1846 tree t0, t1, cond, one, minus_one;
1847 gassign *stmt;
1848
1849 t0 = TREE_TYPE (arg0);
1850 t1 = TREE_TYPE (arg1);
1851 one = build_real (t0, dconst1);
1852 minus_one = build_real (t0, dconstm1);
1853
1854 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1855 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1856 arg1, build_int_cst (t1, 1));
1857 gimple_set_location (stmt, loc);
1858 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1859
1860 result = make_temp_ssa_name (t0, NULL, "powi");
1861 stmt = gimple_build_assign (result, COND_EXPR, cond,
1862 minus_one, one);
1863 gimple_set_location (stmt, loc);
1864 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1865 }
1866 else
1867 {
1868 if (!tree_fits_shwi_p (arg1))
1869 break;
1870
1871 n = tree_to_shwi (arg1);
1872 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1873 }
1874
1875 if (result)
1876 {
1877 tree lhs = gimple_get_lhs (stmt);
1878 gassign *new_stmt = gimple_build_assign (lhs, result);
1879 gimple_set_location (new_stmt, loc);
1880 unlink_stmt_vdef (stmt);
1881 gsi_replace (&gsi, new_stmt, true);
1882 cleanup_eh = true;
1883 if (gimple_vdef (stmt))
1884 release_ssa_name (gimple_vdef (stmt));
1885 }
1886 break;
1887
1888 CASE_CFN_CABS:
1889 arg0 = gimple_call_arg (stmt, 0);
1890 loc = gimple_location (stmt);
1891 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1892
1893 if (result)
1894 {
1895 tree lhs = gimple_get_lhs (stmt);
1896 gassign *new_stmt = gimple_build_assign (lhs, result);
1897 gimple_set_location (new_stmt, loc);
1898 unlink_stmt_vdef (stmt);
1899 gsi_replace (&gsi, new_stmt, true);
1900 cleanup_eh = true;
1901 if (gimple_vdef (stmt))
1902 release_ssa_name (gimple_vdef (stmt));
1903 }
1904 break;
1905
1906 default:;
1907 }
1908 }
1909 }
1910 if (cleanup_eh)
1911 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1912 }
1913
1914 statistics_counter_event (fun, "sincos statements inserted",
1915 sincos_stats.inserted);
1916
1917 return cfg_changed ? TODO_cleanup_cfg : 0;
1918 }
1919
1920 } // anon namespace
1921
1922 gimple_opt_pass *
1923 make_pass_cse_sincos (gcc::context *ctxt)
1924 {
1925 return new pass_cse_sincos (ctxt);
1926 }
1927
1928 /* A symbolic number is used to detect byte permutation and selection
1929 patterns. Therefore the field N contains an artificial number
1930 consisting of octet sized markers:
1931
1932 0 - target byte has the value 0
1933 FF - target byte has an unknown value (eg. due to sign extension)
1934 1..size - marker value is the target byte index minus one.
1935
1936 To detect permutations on memory sources (arrays and structures), a symbolic
1937 number is also associated a base address (the array or structure the load is
1938 made from), an offset from the base address and a range which gives the
1939 difference between the highest and lowest accessed memory location to make
1940 such a symbolic number. The range is thus different from size which reflects
1941 the size of the type of current expression. Note that for non memory source,
1942 range holds the same value as size.
1943
1944 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1945 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1946 still have a size of 2 but this time a range of 1. */
1947
1948 struct symbolic_number {
1949 uint64_t n;
1950 tree type;
1951 tree base_addr;
1952 tree offset;
1953 HOST_WIDE_INT bytepos;
1954 tree alias_set;
1955 tree vuse;
1956 unsigned HOST_WIDE_INT range;
1957 };
1958
1959 #define BITS_PER_MARKER 8
1960 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1961 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1962 #define HEAD_MARKER(n, size) \
1963 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1964
1965 /* The number which the find_bswap_or_nop_1 result should match in
1966 order to have a nop. The number is masked according to the size of
1967 the symbolic number before using it. */
1968 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1969 (uint64_t)0x08070605 << 32 | 0x04030201)
1970
1971 /* The number which the find_bswap_or_nop_1 result should match in
1972 order to have a byte swap. The number is masked according to the
1973 size of the symbolic number before using it. */
1974 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1975 (uint64_t)0x01020304 << 32 | 0x05060708)
1976
1977 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1978 number N. Return false if the requested operation is not permitted
1979 on a symbolic number. */
1980
1981 static inline bool
1982 do_shift_rotate (enum tree_code code,
1983 struct symbolic_number *n,
1984 int count)
1985 {
1986 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1987 unsigned head_marker;
1988
1989 if (count % BITS_PER_UNIT != 0)
1990 return false;
1991 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1992
1993 /* Zero out the extra bits of N in order to avoid them being shifted
1994 into the significant bits. */
1995 if (size < 64 / BITS_PER_MARKER)
1996 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1997
1998 switch (code)
1999 {
2000 case LSHIFT_EXPR:
2001 n->n <<= count;
2002 break;
2003 case RSHIFT_EXPR:
2004 head_marker = HEAD_MARKER (n->n, size);
2005 n->n >>= count;
2006 /* Arithmetic shift of signed type: result is dependent on the value. */
2007 if (!TYPE_UNSIGNED (n->type) && head_marker)
2008 for (i = 0; i < count / BITS_PER_MARKER; i++)
2009 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2010 << ((size - 1 - i) * BITS_PER_MARKER);
2011 break;
2012 case LROTATE_EXPR:
2013 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
2014 break;
2015 case RROTATE_EXPR:
2016 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
2017 break;
2018 default:
2019 return false;
2020 }
2021 /* Zero unused bits for size. */
2022 if (size < 64 / BITS_PER_MARKER)
2023 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2024 return true;
2025 }
2026
2027 /* Perform sanity checking for the symbolic number N and the gimple
2028 statement STMT. */
2029
2030 static inline bool
2031 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
2032 {
2033 tree lhs_type;
2034
2035 lhs_type = gimple_expr_type (stmt);
2036
2037 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
2038 return false;
2039
2040 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
2041 return false;
2042
2043 return true;
2044 }
2045
2046 /* Initialize the symbolic number N for the bswap pass from the base element
2047 SRC manipulated by the bitwise OR expression. */
2048
2049 static bool
2050 init_symbolic_number (struct symbolic_number *n, tree src)
2051 {
2052 int size;
2053
2054 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
2055
2056 /* Set up the symbolic number N by setting each byte to a value between 1 and
2057 the byte size of rhs1. The highest order byte is set to n->size and the
2058 lowest order byte to 1. */
2059 n->type = TREE_TYPE (src);
2060 size = TYPE_PRECISION (n->type);
2061 if (size % BITS_PER_UNIT != 0)
2062 return false;
2063 size /= BITS_PER_UNIT;
2064 if (size > 64 / BITS_PER_MARKER)
2065 return false;
2066 n->range = size;
2067 n->n = CMPNOP;
2068
2069 if (size < 64 / BITS_PER_MARKER)
2070 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2071
2072 return true;
2073 }
2074
2075 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2076 the answer. If so, REF is that memory source and the base of the memory area
2077 accessed and the offset of the access from that base are recorded in N. */
2078
2079 bool
2080 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
2081 {
2082 /* Leaf node is an array or component ref. Memorize its base and
2083 offset from base to compare to other such leaf node. */
2084 HOST_WIDE_INT bitsize, bitpos;
2085 machine_mode mode;
2086 int unsignedp, reversep, volatilep;
2087 tree offset, base_addr;
2088
2089 /* Not prepared to handle PDP endian. */
2090 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2091 return false;
2092
2093 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2094 return false;
2095
2096 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2097 &unsignedp, &reversep, &volatilep, false);
2098
2099 if (TREE_CODE (base_addr) == MEM_REF)
2100 {
2101 offset_int bit_offset = 0;
2102 tree off = TREE_OPERAND (base_addr, 1);
2103
2104 if (!integer_zerop (off))
2105 {
2106 offset_int boff, coff = mem_ref_offset (base_addr);
2107 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2108 bit_offset += boff;
2109 }
2110
2111 base_addr = TREE_OPERAND (base_addr, 0);
2112
2113 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2114 if (wi::neg_p (bit_offset))
2115 {
2116 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2117 offset_int tem = bit_offset.and_not (mask);
2118 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2119 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2120 bit_offset -= tem;
2121 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
2122 if (offset)
2123 offset = size_binop (PLUS_EXPR, offset,
2124 wide_int_to_tree (sizetype, tem));
2125 else
2126 offset = wide_int_to_tree (sizetype, tem);
2127 }
2128
2129 bitpos += bit_offset.to_shwi ();
2130 }
2131
2132 if (bitpos % BITS_PER_UNIT)
2133 return false;
2134 if (bitsize % BITS_PER_UNIT)
2135 return false;
2136 if (reversep)
2137 return false;
2138
2139 if (!init_symbolic_number (n, ref))
2140 return false;
2141 n->base_addr = base_addr;
2142 n->offset = offset;
2143 n->bytepos = bitpos / BITS_PER_UNIT;
2144 n->alias_set = reference_alias_ptr_type (ref);
2145 n->vuse = gimple_vuse (stmt);
2146 return true;
2147 }
2148
2149 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2150 symbolic number N1 and N2 whose source statements are respectively
2151 SOURCE_STMT1 and SOURCE_STMT2. */
2152
2153 static gimple *
2154 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
2155 gimple *source_stmt2, struct symbolic_number *n2,
2156 struct symbolic_number *n)
2157 {
2158 int i, size;
2159 uint64_t mask;
2160 gimple *source_stmt;
2161 struct symbolic_number *n_start;
2162
2163 /* Sources are different, cancel bswap if they are not memory location with
2164 the same base (array, structure, ...). */
2165 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2166 {
2167 uint64_t inc;
2168 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2169 struct symbolic_number *toinc_n_ptr, *n_end;
2170
2171 if (!n1->base_addr || !n2->base_addr
2172 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2173 return NULL;
2174
2175 if (!n1->offset != !n2->offset
2176 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2177 return NULL;
2178
2179 if (n1->bytepos < n2->bytepos)
2180 {
2181 n_start = n1;
2182 start_sub = n2->bytepos - n1->bytepos;
2183 source_stmt = source_stmt1;
2184 }
2185 else
2186 {
2187 n_start = n2;
2188 start_sub = n1->bytepos - n2->bytepos;
2189 source_stmt = source_stmt2;
2190 }
2191
2192 /* Find the highest address at which a load is performed and
2193 compute related info. */
2194 end1 = n1->bytepos + (n1->range - 1);
2195 end2 = n2->bytepos + (n2->range - 1);
2196 if (end1 < end2)
2197 {
2198 end = end2;
2199 end_sub = end2 - end1;
2200 }
2201 else
2202 {
2203 end = end1;
2204 end_sub = end1 - end2;
2205 }
2206 n_end = (end2 > end1) ? n2 : n1;
2207
2208 /* Find symbolic number whose lsb is the most significant. */
2209 if (BYTES_BIG_ENDIAN)
2210 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2211 else
2212 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2213
2214 n->range = end - n_start->bytepos + 1;
2215
2216 /* Check that the range of memory covered can be represented by
2217 a symbolic number. */
2218 if (n->range > 64 / BITS_PER_MARKER)
2219 return NULL;
2220
2221 /* Reinterpret byte marks in symbolic number holding the value of
2222 bigger weight according to target endianness. */
2223 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2224 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2225 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2226 {
2227 unsigned marker
2228 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2229 if (marker && marker != MARKER_BYTE_UNKNOWN)
2230 toinc_n_ptr->n += inc;
2231 }
2232 }
2233 else
2234 {
2235 n->range = n1->range;
2236 n_start = n1;
2237 source_stmt = source_stmt1;
2238 }
2239
2240 if (!n1->alias_set
2241 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2242 n->alias_set = n1->alias_set;
2243 else
2244 n->alias_set = ptr_type_node;
2245 n->vuse = n_start->vuse;
2246 n->base_addr = n_start->base_addr;
2247 n->offset = n_start->offset;
2248 n->bytepos = n_start->bytepos;
2249 n->type = n_start->type;
2250 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2251
2252 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2253 {
2254 uint64_t masked1, masked2;
2255
2256 masked1 = n1->n & mask;
2257 masked2 = n2->n & mask;
2258 if (masked1 && masked2 && masked1 != masked2)
2259 return NULL;
2260 }
2261 n->n = n1->n | n2->n;
2262
2263 return source_stmt;
2264 }
2265
2266 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2267 the operation given by the rhs of STMT on the result. If the operation
2268 could successfully be executed the function returns a gimple stmt whose
2269 rhs's first tree is the expression of the source operand and NULL
2270 otherwise. */
2271
2272 static gimple *
2273 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
2274 {
2275 enum tree_code code;
2276 tree rhs1, rhs2 = NULL;
2277 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
2278 enum gimple_rhs_class rhs_class;
2279
2280 if (!limit || !is_gimple_assign (stmt))
2281 return NULL;
2282
2283 rhs1 = gimple_assign_rhs1 (stmt);
2284
2285 if (find_bswap_or_nop_load (stmt, rhs1, n))
2286 return stmt;
2287
2288 if (TREE_CODE (rhs1) != SSA_NAME)
2289 return NULL;
2290
2291 code = gimple_assign_rhs_code (stmt);
2292 rhs_class = gimple_assign_rhs_class (stmt);
2293 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2294
2295 if (rhs_class == GIMPLE_BINARY_RHS)
2296 rhs2 = gimple_assign_rhs2 (stmt);
2297
2298 /* Handle unary rhs and binary rhs with integer constants as second
2299 operand. */
2300
2301 if (rhs_class == GIMPLE_UNARY_RHS
2302 || (rhs_class == GIMPLE_BINARY_RHS
2303 && TREE_CODE (rhs2) == INTEGER_CST))
2304 {
2305 if (code != BIT_AND_EXPR
2306 && code != LSHIFT_EXPR
2307 && code != RSHIFT_EXPR
2308 && code != LROTATE_EXPR
2309 && code != RROTATE_EXPR
2310 && !CONVERT_EXPR_CODE_P (code))
2311 return NULL;
2312
2313 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2314
2315 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2316 we have to initialize the symbolic number. */
2317 if (!source_stmt1)
2318 {
2319 if (gimple_assign_load_p (stmt)
2320 || !init_symbolic_number (n, rhs1))
2321 return NULL;
2322 source_stmt1 = stmt;
2323 }
2324
2325 switch (code)
2326 {
2327 case BIT_AND_EXPR:
2328 {
2329 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2330 uint64_t val = int_cst_value (rhs2), mask = 0;
2331 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2332
2333 /* Only constants masking full bytes are allowed. */
2334 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2335 if ((val & tmp) != 0 && (val & tmp) != tmp)
2336 return NULL;
2337 else if (val & tmp)
2338 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2339
2340 n->n &= mask;
2341 }
2342 break;
2343 case LSHIFT_EXPR:
2344 case RSHIFT_EXPR:
2345 case LROTATE_EXPR:
2346 case RROTATE_EXPR:
2347 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2348 return NULL;
2349 break;
2350 CASE_CONVERT:
2351 {
2352 int i, type_size, old_type_size;
2353 tree type;
2354
2355 type = gimple_expr_type (stmt);
2356 type_size = TYPE_PRECISION (type);
2357 if (type_size % BITS_PER_UNIT != 0)
2358 return NULL;
2359 type_size /= BITS_PER_UNIT;
2360 if (type_size > 64 / BITS_PER_MARKER)
2361 return NULL;
2362
2363 /* Sign extension: result is dependent on the value. */
2364 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2365 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2366 && HEAD_MARKER (n->n, old_type_size))
2367 for (i = 0; i < type_size - old_type_size; i++)
2368 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2369 << ((type_size - 1 - i) * BITS_PER_MARKER);
2370
2371 if (type_size < 64 / BITS_PER_MARKER)
2372 {
2373 /* If STMT casts to a smaller type mask out the bits not
2374 belonging to the target type. */
2375 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2376 }
2377 n->type = type;
2378 if (!n->base_addr)
2379 n->range = type_size;
2380 }
2381 break;
2382 default:
2383 return NULL;
2384 };
2385 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2386 }
2387
2388 /* Handle binary rhs. */
2389
2390 if (rhs_class == GIMPLE_BINARY_RHS)
2391 {
2392 struct symbolic_number n1, n2;
2393 gimple *source_stmt, *source_stmt2;
2394
2395 if (code != BIT_IOR_EXPR)
2396 return NULL;
2397
2398 if (TREE_CODE (rhs2) != SSA_NAME)
2399 return NULL;
2400
2401 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2402
2403 switch (code)
2404 {
2405 case BIT_IOR_EXPR:
2406 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2407
2408 if (!source_stmt1)
2409 return NULL;
2410
2411 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2412
2413 if (!source_stmt2)
2414 return NULL;
2415
2416 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2417 return NULL;
2418
2419 if (!n1.vuse != !n2.vuse
2420 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2421 return NULL;
2422
2423 source_stmt
2424 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2425
2426 if (!source_stmt)
2427 return NULL;
2428
2429 if (!verify_symbolic_number_p (n, stmt))
2430 return NULL;
2431
2432 break;
2433 default:
2434 return NULL;
2435 }
2436 return source_stmt;
2437 }
2438 return NULL;
2439 }
2440
2441 /* Check if STMT completes a bswap implementation or a read in a given
2442 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2443 accordingly. It also sets N to represent the kind of operations
2444 performed: size of the resulting expression and whether it works on
2445 a memory source, and if so alias-set and vuse. At last, the
2446 function returns a stmt whose rhs's first tree is the source
2447 expression. */
2448
2449 static gimple *
2450 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
2451 {
2452 /* The number which the find_bswap_or_nop_1 result should match in order
2453 to have a full byte swap. The number is shifted to the right
2454 according to the size of the symbolic number before using it. */
2455 uint64_t cmpxchg = CMPXCHG;
2456 uint64_t cmpnop = CMPNOP;
2457
2458 gimple *source_stmt;
2459 int limit;
2460
2461 /* The last parameter determines the depth search limit. It usually
2462 correlates directly to the number n of bytes to be touched. We
2463 increase that number by log2(n) + 1 here in order to also
2464 cover signed -> unsigned conversions of the src operand as can be seen
2465 in libgcc, and for initial shift/and operation of the src operand. */
2466 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2467 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2468 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2469
2470 if (!source_stmt)
2471 return NULL;
2472
2473 /* Find real size of result (highest non-zero byte). */
2474 if (n->base_addr)
2475 {
2476 int rsize;
2477 uint64_t tmpn;
2478
2479 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2480 n->range = rsize;
2481 }
2482
2483 /* Zero out the extra bits of N and CMP*. */
2484 if (n->range < (int) sizeof (int64_t))
2485 {
2486 uint64_t mask;
2487
2488 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2489 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2490 cmpnop &= mask;
2491 }
2492
2493 /* A complete byte swap should make the symbolic number to start with
2494 the largest digit in the highest order byte. Unchanged symbolic
2495 number indicates a read with same endianness as target architecture. */
2496 if (n->n == cmpnop)
2497 *bswap = false;
2498 else if (n->n == cmpxchg)
2499 *bswap = true;
2500 else
2501 return NULL;
2502
2503 /* Useless bit manipulation performed by code. */
2504 if (!n->base_addr && n->n == cmpnop)
2505 return NULL;
2506
2507 n->range *= BITS_PER_UNIT;
2508 return source_stmt;
2509 }
2510
2511 namespace {
2512
2513 const pass_data pass_data_optimize_bswap =
2514 {
2515 GIMPLE_PASS, /* type */
2516 "bswap", /* name */
2517 OPTGROUP_NONE, /* optinfo_flags */
2518 TV_NONE, /* tv_id */
2519 PROP_ssa, /* properties_required */
2520 0, /* properties_provided */
2521 0, /* properties_destroyed */
2522 0, /* todo_flags_start */
2523 0, /* todo_flags_finish */
2524 };
2525
2526 class pass_optimize_bswap : public gimple_opt_pass
2527 {
2528 public:
2529 pass_optimize_bswap (gcc::context *ctxt)
2530 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2531 {}
2532
2533 /* opt_pass methods: */
2534 virtual bool gate (function *)
2535 {
2536 return flag_expensive_optimizations && optimize;
2537 }
2538
2539 virtual unsigned int execute (function *);
2540
2541 }; // class pass_optimize_bswap
2542
2543 /* Perform the bswap optimization: replace the expression computed in the rhs
2544 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2545 Which of these alternatives replace the rhs is given by N->base_addr (non
2546 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2547 load to perform are also given in N while the builtin bswap invoke is given
2548 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2549 load statements involved to construct the rhs in CUR_STMT and N->range gives
2550 the size of the rhs expression for maintaining some statistics.
2551
2552 Note that if the replacement involve a load, CUR_STMT is moved just after
2553 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2554 changing of basic block. */
2555
2556 static bool
2557 bswap_replace (gimple *cur_stmt, gimple *src_stmt, tree fndecl,
2558 tree bswap_type, tree load_type, struct symbolic_number *n,
2559 bool bswap)
2560 {
2561 gimple_stmt_iterator gsi;
2562 tree src, tmp, tgt;
2563 gimple *bswap_stmt;
2564
2565 gsi = gsi_for_stmt (cur_stmt);
2566 src = gimple_assign_rhs1 (src_stmt);
2567 tgt = gimple_assign_lhs (cur_stmt);
2568
2569 /* Need to load the value from memory first. */
2570 if (n->base_addr)
2571 {
2572 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2573 tree addr_expr, addr_tmp, val_expr, val_tmp;
2574 tree load_offset_ptr, aligned_load_type;
2575 gimple *addr_stmt, *load_stmt;
2576 unsigned align;
2577 HOST_WIDE_INT load_offset = 0;
2578
2579 align = get_object_alignment (src);
2580 /* If the new access is smaller than the original one, we need
2581 to perform big endian adjustment. */
2582 if (BYTES_BIG_ENDIAN)
2583 {
2584 HOST_WIDE_INT bitsize, bitpos;
2585 machine_mode mode;
2586 int unsignedp, reversep, volatilep;
2587 tree offset;
2588
2589 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2590 &unsignedp, &reversep, &volatilep, false);
2591 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2592 {
2593 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2594 unsigned HOST_WIDE_INT l
2595 = (load_offset * BITS_PER_UNIT) & (align - 1);
2596 if (l)
2597 align = l & -l;
2598 }
2599 }
2600
2601 if (bswap
2602 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2603 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2604 return false;
2605
2606 /* Move cur_stmt just before one of the load of the original
2607 to ensure it has the same VUSE. See PR61517 for what could
2608 go wrong. */
2609 gsi_move_before (&gsi, &gsi_ins);
2610 gsi = gsi_for_stmt (cur_stmt);
2611
2612 /* Compute address to load from and cast according to the size
2613 of the load. */
2614 addr_expr = build_fold_addr_expr (unshare_expr (src));
2615 if (is_gimple_mem_ref_addr (addr_expr))
2616 addr_tmp = addr_expr;
2617 else
2618 {
2619 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2620 "load_src");
2621 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2622 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2623 }
2624
2625 /* Perform the load. */
2626 aligned_load_type = load_type;
2627 if (align < TYPE_ALIGN (load_type))
2628 aligned_load_type = build_aligned_type (load_type, align);
2629 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2630 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2631 load_offset_ptr);
2632
2633 if (!bswap)
2634 {
2635 if (n->range == 16)
2636 nop_stats.found_16bit++;
2637 else if (n->range == 32)
2638 nop_stats.found_32bit++;
2639 else
2640 {
2641 gcc_assert (n->range == 64);
2642 nop_stats.found_64bit++;
2643 }
2644
2645 /* Convert the result of load if necessary. */
2646 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2647 {
2648 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2649 "load_dst");
2650 load_stmt = gimple_build_assign (val_tmp, val_expr);
2651 gimple_set_vuse (load_stmt, n->vuse);
2652 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2653 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2654 }
2655 else
2656 {
2657 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2658 gimple_set_vuse (cur_stmt, n->vuse);
2659 }
2660 update_stmt (cur_stmt);
2661
2662 if (dump_file)
2663 {
2664 fprintf (dump_file,
2665 "%d bit load in target endianness found at: ",
2666 (int) n->range);
2667 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2668 }
2669 return true;
2670 }
2671 else
2672 {
2673 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2674 load_stmt = gimple_build_assign (val_tmp, val_expr);
2675 gimple_set_vuse (load_stmt, n->vuse);
2676 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2677 }
2678 src = val_tmp;
2679 }
2680
2681 if (n->range == 16)
2682 bswap_stats.found_16bit++;
2683 else if (n->range == 32)
2684 bswap_stats.found_32bit++;
2685 else
2686 {
2687 gcc_assert (n->range == 64);
2688 bswap_stats.found_64bit++;
2689 }
2690
2691 tmp = src;
2692
2693 /* Convert the src expression if necessary. */
2694 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2695 {
2696 gimple *convert_stmt;
2697
2698 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2699 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2700 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2701 }
2702
2703 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2704 are considered as rotation of 2N bit values by N bits is generally not
2705 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2706 gives 0x03040102 while a bswap for that value is 0x04030201. */
2707 if (bswap && n->range == 16)
2708 {
2709 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2710 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2711 bswap_stmt = gimple_build_assign (NULL, src);
2712 }
2713 else
2714 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2715
2716 tmp = tgt;
2717
2718 /* Convert the result if necessary. */
2719 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2720 {
2721 gimple *convert_stmt;
2722
2723 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2724 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2725 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2726 }
2727
2728 gimple_set_lhs (bswap_stmt, tmp);
2729
2730 if (dump_file)
2731 {
2732 fprintf (dump_file, "%d bit bswap implementation found at: ",
2733 (int) n->range);
2734 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2735 }
2736
2737 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2738 gsi_remove (&gsi, true);
2739 return true;
2740 }
2741
2742 /* Find manual byte swap implementations as well as load in a given
2743 endianness. Byte swaps are turned into a bswap builtin invokation
2744 while endian loads are converted to bswap builtin invokation or
2745 simple load according to the target endianness. */
2746
2747 unsigned int
2748 pass_optimize_bswap::execute (function *fun)
2749 {
2750 basic_block bb;
2751 bool bswap32_p, bswap64_p;
2752 bool changed = false;
2753 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2754
2755 if (BITS_PER_UNIT != 8)
2756 return 0;
2757
2758 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2759 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2760 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2761 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2762 || (bswap32_p && word_mode == SImode)));
2763
2764 /* Determine the argument type of the builtins. The code later on
2765 assumes that the return and argument type are the same. */
2766 if (bswap32_p)
2767 {
2768 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2769 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2770 }
2771
2772 if (bswap64_p)
2773 {
2774 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2775 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2776 }
2777
2778 memset (&nop_stats, 0, sizeof (nop_stats));
2779 memset (&bswap_stats, 0, sizeof (bswap_stats));
2780
2781 FOR_EACH_BB_FN (bb, fun)
2782 {
2783 gimple_stmt_iterator gsi;
2784
2785 /* We do a reverse scan for bswap patterns to make sure we get the
2786 widest match. As bswap pattern matching doesn't handle previously
2787 inserted smaller bswap replacements as sub-patterns, the wider
2788 variant wouldn't be detected. */
2789 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2790 {
2791 gimple *src_stmt, *cur_stmt = gsi_stmt (gsi);
2792 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2793 enum tree_code code;
2794 struct symbolic_number n;
2795 bool bswap;
2796
2797 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2798 might be moved to a different basic block by bswap_replace and gsi
2799 must not points to it if that's the case. Moving the gsi_prev
2800 there make sure that gsi points to the statement previous to
2801 cur_stmt while still making sure that all statements are
2802 considered in this basic block. */
2803 gsi_prev (&gsi);
2804
2805 if (!is_gimple_assign (cur_stmt))
2806 continue;
2807
2808 code = gimple_assign_rhs_code (cur_stmt);
2809 switch (code)
2810 {
2811 case LROTATE_EXPR:
2812 case RROTATE_EXPR:
2813 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2814 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2815 % BITS_PER_UNIT)
2816 continue;
2817 /* Fall through. */
2818 case BIT_IOR_EXPR:
2819 break;
2820 default:
2821 continue;
2822 }
2823
2824 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2825
2826 if (!src_stmt)
2827 continue;
2828
2829 switch (n.range)
2830 {
2831 case 16:
2832 /* Already in canonical form, nothing to do. */
2833 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2834 continue;
2835 load_type = bswap_type = uint16_type_node;
2836 break;
2837 case 32:
2838 load_type = uint32_type_node;
2839 if (bswap32_p)
2840 {
2841 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2842 bswap_type = bswap32_type;
2843 }
2844 break;
2845 case 64:
2846 load_type = uint64_type_node;
2847 if (bswap64_p)
2848 {
2849 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2850 bswap_type = bswap64_type;
2851 }
2852 break;
2853 default:
2854 continue;
2855 }
2856
2857 if (bswap && !fndecl && n.range != 16)
2858 continue;
2859
2860 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2861 &n, bswap))
2862 changed = true;
2863 }
2864 }
2865
2866 statistics_counter_event (fun, "16-bit nop implementations found",
2867 nop_stats.found_16bit);
2868 statistics_counter_event (fun, "32-bit nop implementations found",
2869 nop_stats.found_32bit);
2870 statistics_counter_event (fun, "64-bit nop implementations found",
2871 nop_stats.found_64bit);
2872 statistics_counter_event (fun, "16-bit bswap implementations found",
2873 bswap_stats.found_16bit);
2874 statistics_counter_event (fun, "32-bit bswap implementations found",
2875 bswap_stats.found_32bit);
2876 statistics_counter_event (fun, "64-bit bswap implementations found",
2877 bswap_stats.found_64bit);
2878
2879 return (changed ? TODO_update_ssa : 0);
2880 }
2881
2882 } // anon namespace
2883
2884 gimple_opt_pass *
2885 make_pass_optimize_bswap (gcc::context *ctxt)
2886 {
2887 return new pass_optimize_bswap (ctxt);
2888 }
2889
2890 /* Return true if stmt is a type conversion operation that can be stripped
2891 when used in a widening multiply operation. */
2892 static bool
2893 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2894 {
2895 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2896
2897 if (TREE_CODE (result_type) == INTEGER_TYPE)
2898 {
2899 tree op_type;
2900 tree inner_op_type;
2901
2902 if (!CONVERT_EXPR_CODE_P (rhs_code))
2903 return false;
2904
2905 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2906
2907 /* If the type of OP has the same precision as the result, then
2908 we can strip this conversion. The multiply operation will be
2909 selected to create the correct extension as a by-product. */
2910 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2911 return true;
2912
2913 /* We can also strip a conversion if it preserves the signed-ness of
2914 the operation and doesn't narrow the range. */
2915 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2916
2917 /* If the inner-most type is unsigned, then we can strip any
2918 intermediate widening operation. If it's signed, then the
2919 intermediate widening operation must also be signed. */
2920 if ((TYPE_UNSIGNED (inner_op_type)
2921 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2922 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2923 return true;
2924
2925 return false;
2926 }
2927
2928 return rhs_code == FIXED_CONVERT_EXPR;
2929 }
2930
2931 /* Return true if RHS is a suitable operand for a widening multiplication,
2932 assuming a target type of TYPE.
2933 There are two cases:
2934
2935 - RHS makes some value at least twice as wide. Store that value
2936 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2937
2938 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2939 but leave *TYPE_OUT untouched. */
2940
2941 static bool
2942 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2943 tree *new_rhs_out)
2944 {
2945 gimple *stmt;
2946 tree type1, rhs1;
2947
2948 if (TREE_CODE (rhs) == SSA_NAME)
2949 {
2950 stmt = SSA_NAME_DEF_STMT (rhs);
2951 if (is_gimple_assign (stmt))
2952 {
2953 if (! widening_mult_conversion_strippable_p (type, stmt))
2954 rhs1 = rhs;
2955 else
2956 {
2957 rhs1 = gimple_assign_rhs1 (stmt);
2958
2959 if (TREE_CODE (rhs1) == INTEGER_CST)
2960 {
2961 *new_rhs_out = rhs1;
2962 *type_out = NULL;
2963 return true;
2964 }
2965 }
2966 }
2967 else
2968 rhs1 = rhs;
2969
2970 type1 = TREE_TYPE (rhs1);
2971
2972 if (TREE_CODE (type1) != TREE_CODE (type)
2973 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2974 return false;
2975
2976 *new_rhs_out = rhs1;
2977 *type_out = type1;
2978 return true;
2979 }
2980
2981 if (TREE_CODE (rhs) == INTEGER_CST)
2982 {
2983 *new_rhs_out = rhs;
2984 *type_out = NULL;
2985 return true;
2986 }
2987
2988 return false;
2989 }
2990
2991 /* Return true if STMT performs a widening multiplication, assuming the
2992 output type is TYPE. If so, store the unwidened types of the operands
2993 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2994 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2995 and *TYPE2_OUT would give the operands of the multiplication. */
2996
2997 static bool
2998 is_widening_mult_p (gimple *stmt,
2999 tree *type1_out, tree *rhs1_out,
3000 tree *type2_out, tree *rhs2_out)
3001 {
3002 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3003
3004 if (TREE_CODE (type) != INTEGER_TYPE
3005 && TREE_CODE (type) != FIXED_POINT_TYPE)
3006 return false;
3007
3008 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
3009 rhs1_out))
3010 return false;
3011
3012 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
3013 rhs2_out))
3014 return false;
3015
3016 if (*type1_out == NULL)
3017 {
3018 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
3019 return false;
3020 *type1_out = *type2_out;
3021 }
3022
3023 if (*type2_out == NULL)
3024 {
3025 if (!int_fits_type_p (*rhs2_out, *type1_out))
3026 return false;
3027 *type2_out = *type1_out;
3028 }
3029
3030 /* Ensure that the larger of the two operands comes first. */
3031 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
3032 {
3033 std::swap (*type1_out, *type2_out);
3034 std::swap (*rhs1_out, *rhs2_out);
3035 }
3036
3037 return true;
3038 }
3039
3040 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3041 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3042 value is true iff we converted the statement. */
3043
3044 static bool
3045 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
3046 {
3047 tree lhs, rhs1, rhs2, type, type1, type2;
3048 enum insn_code handler;
3049 machine_mode to_mode, from_mode, actual_mode;
3050 optab op;
3051 int actual_precision;
3052 location_t loc = gimple_location (stmt);
3053 bool from_unsigned1, from_unsigned2;
3054
3055 lhs = gimple_assign_lhs (stmt);
3056 type = TREE_TYPE (lhs);
3057 if (TREE_CODE (type) != INTEGER_TYPE)
3058 return false;
3059
3060 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3061 return false;
3062
3063 to_mode = TYPE_MODE (type);
3064 from_mode = TYPE_MODE (type1);
3065 from_unsigned1 = TYPE_UNSIGNED (type1);
3066 from_unsigned2 = TYPE_UNSIGNED (type2);
3067
3068 if (from_unsigned1 && from_unsigned2)
3069 op = umul_widen_optab;
3070 else if (!from_unsigned1 && !from_unsigned2)
3071 op = smul_widen_optab;
3072 else
3073 op = usmul_widen_optab;
3074
3075 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3076 0, &actual_mode);
3077
3078 if (handler == CODE_FOR_nothing)
3079 {
3080 if (op != smul_widen_optab)
3081 {
3082 /* We can use a signed multiply with unsigned types as long as
3083 there is a wider mode to use, or it is the smaller of the two
3084 types that is unsigned. Note that type1 >= type2, always. */
3085 if ((TYPE_UNSIGNED (type1)
3086 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3087 || (TYPE_UNSIGNED (type2)
3088 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3089 {
3090 from_mode = GET_MODE_WIDER_MODE (from_mode);
3091 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3092 return false;
3093 }
3094
3095 op = smul_widen_optab;
3096 handler = find_widening_optab_handler_and_mode (op, to_mode,
3097 from_mode, 0,
3098 &actual_mode);
3099
3100 if (handler == CODE_FOR_nothing)
3101 return false;
3102
3103 from_unsigned1 = from_unsigned2 = false;
3104 }
3105 else
3106 return false;
3107 }
3108
3109 /* Ensure that the inputs to the handler are in the correct precison
3110 for the opcode. This will be the full mode size. */
3111 actual_precision = GET_MODE_PRECISION (actual_mode);
3112 if (2 * actual_precision > TYPE_PRECISION (type))
3113 return false;
3114 if (actual_precision != TYPE_PRECISION (type1)
3115 || from_unsigned1 != TYPE_UNSIGNED (type1))
3116 rhs1 = build_and_insert_cast (gsi, loc,
3117 build_nonstandard_integer_type
3118 (actual_precision, from_unsigned1), rhs1);
3119 if (actual_precision != TYPE_PRECISION (type2)
3120 || from_unsigned2 != TYPE_UNSIGNED (type2))
3121 rhs2 = build_and_insert_cast (gsi, loc,
3122 build_nonstandard_integer_type
3123 (actual_precision, from_unsigned2), rhs2);
3124
3125 /* Handle constants. */
3126 if (TREE_CODE (rhs1) == INTEGER_CST)
3127 rhs1 = fold_convert (type1, rhs1);
3128 if (TREE_CODE (rhs2) == INTEGER_CST)
3129 rhs2 = fold_convert (type2, rhs2);
3130
3131 gimple_assign_set_rhs1 (stmt, rhs1);
3132 gimple_assign_set_rhs2 (stmt, rhs2);
3133 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3134 update_stmt (stmt);
3135 widen_mul_stats.widen_mults_inserted++;
3136 return true;
3137 }
3138
3139 /* Process a single gimple statement STMT, which is found at the
3140 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3141 rhs (given by CODE), and try to convert it into a
3142 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3143 is true iff we converted the statement. */
3144
3145 static bool
3146 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
3147 enum tree_code code)
3148 {
3149 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
3150 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
3151 tree type, type1, type2, optype;
3152 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3153 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3154 optab this_optab;
3155 enum tree_code wmult_code;
3156 enum insn_code handler;
3157 machine_mode to_mode, from_mode, actual_mode;
3158 location_t loc = gimple_location (stmt);
3159 int actual_precision;
3160 bool from_unsigned1, from_unsigned2;
3161
3162 lhs = gimple_assign_lhs (stmt);
3163 type = TREE_TYPE (lhs);
3164 if (TREE_CODE (type) != INTEGER_TYPE
3165 && TREE_CODE (type) != FIXED_POINT_TYPE)
3166 return false;
3167
3168 if (code == MINUS_EXPR)
3169 wmult_code = WIDEN_MULT_MINUS_EXPR;
3170 else
3171 wmult_code = WIDEN_MULT_PLUS_EXPR;
3172
3173 rhs1 = gimple_assign_rhs1 (stmt);
3174 rhs2 = gimple_assign_rhs2 (stmt);
3175
3176 if (TREE_CODE (rhs1) == SSA_NAME)
3177 {
3178 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3179 if (is_gimple_assign (rhs1_stmt))
3180 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3181 }
3182
3183 if (TREE_CODE (rhs2) == SSA_NAME)
3184 {
3185 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3186 if (is_gimple_assign (rhs2_stmt))
3187 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3188 }
3189
3190 /* Allow for one conversion statement between the multiply
3191 and addition/subtraction statement. If there are more than
3192 one conversions then we assume they would invalidate this
3193 transformation. If that's not the case then they should have
3194 been folded before now. */
3195 if (CONVERT_EXPR_CODE_P (rhs1_code))
3196 {
3197 conv1_stmt = rhs1_stmt;
3198 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3199 if (TREE_CODE (rhs1) == SSA_NAME)
3200 {
3201 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3202 if (is_gimple_assign (rhs1_stmt))
3203 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3204 }
3205 else
3206 return false;
3207 }
3208 if (CONVERT_EXPR_CODE_P (rhs2_code))
3209 {
3210 conv2_stmt = rhs2_stmt;
3211 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3212 if (TREE_CODE (rhs2) == SSA_NAME)
3213 {
3214 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3215 if (is_gimple_assign (rhs2_stmt))
3216 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3217 }
3218 else
3219 return false;
3220 }
3221
3222 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3223 is_widening_mult_p, but we still need the rhs returns.
3224
3225 It might also appear that it would be sufficient to use the existing
3226 operands of the widening multiply, but that would limit the choice of
3227 multiply-and-accumulate instructions.
3228
3229 If the widened-multiplication result has more than one uses, it is
3230 probably wiser not to do the conversion. */
3231 if (code == PLUS_EXPR
3232 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3233 {
3234 if (!has_single_use (rhs1)
3235 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3236 &type2, &mult_rhs2))
3237 return false;
3238 add_rhs = rhs2;
3239 conv_stmt = conv1_stmt;
3240 }
3241 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3242 {
3243 if (!has_single_use (rhs2)
3244 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3245 &type2, &mult_rhs2))
3246 return false;
3247 add_rhs = rhs1;
3248 conv_stmt = conv2_stmt;
3249 }
3250 else
3251 return false;
3252
3253 to_mode = TYPE_MODE (type);
3254 from_mode = TYPE_MODE (type1);
3255 from_unsigned1 = TYPE_UNSIGNED (type1);
3256 from_unsigned2 = TYPE_UNSIGNED (type2);
3257 optype = type1;
3258
3259 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3260 if (from_unsigned1 != from_unsigned2)
3261 {
3262 if (!INTEGRAL_TYPE_P (type))
3263 return false;
3264 /* We can use a signed multiply with unsigned types as long as
3265 there is a wider mode to use, or it is the smaller of the two
3266 types that is unsigned. Note that type1 >= type2, always. */
3267 if ((from_unsigned1
3268 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3269 || (from_unsigned2
3270 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3271 {
3272 from_mode = GET_MODE_WIDER_MODE (from_mode);
3273 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3274 return false;
3275 }
3276
3277 from_unsigned1 = from_unsigned2 = false;
3278 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3279 false);
3280 }
3281
3282 /* If there was a conversion between the multiply and addition
3283 then we need to make sure it fits a multiply-and-accumulate.
3284 The should be a single mode change which does not change the
3285 value. */
3286 if (conv_stmt)
3287 {
3288 /* We use the original, unmodified data types for this. */
3289 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3290 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3291 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3292 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3293
3294 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3295 {
3296 /* Conversion is a truncate. */
3297 if (TYPE_PRECISION (to_type) < data_size)
3298 return false;
3299 }
3300 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3301 {
3302 /* Conversion is an extend. Check it's the right sort. */
3303 if (TYPE_UNSIGNED (from_type) != is_unsigned
3304 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3305 return false;
3306 }
3307 /* else convert is a no-op for our purposes. */
3308 }
3309
3310 /* Verify that the machine can perform a widening multiply
3311 accumulate in this mode/signedness combination, otherwise
3312 this transformation is likely to pessimize code. */
3313 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3314 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3315 from_mode, 0, &actual_mode);
3316
3317 if (handler == CODE_FOR_nothing)
3318 return false;
3319
3320 /* Ensure that the inputs to the handler are in the correct precison
3321 for the opcode. This will be the full mode size. */
3322 actual_precision = GET_MODE_PRECISION (actual_mode);
3323 if (actual_precision != TYPE_PRECISION (type1)
3324 || from_unsigned1 != TYPE_UNSIGNED (type1))
3325 mult_rhs1 = build_and_insert_cast (gsi, loc,
3326 build_nonstandard_integer_type
3327 (actual_precision, from_unsigned1),
3328 mult_rhs1);
3329 if (actual_precision != TYPE_PRECISION (type2)
3330 || from_unsigned2 != TYPE_UNSIGNED (type2))
3331 mult_rhs2 = build_and_insert_cast (gsi, loc,
3332 build_nonstandard_integer_type
3333 (actual_precision, from_unsigned2),
3334 mult_rhs2);
3335
3336 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3337 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3338
3339 /* Handle constants. */
3340 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3341 mult_rhs1 = fold_convert (type1, mult_rhs1);
3342 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3343 mult_rhs2 = fold_convert (type2, mult_rhs2);
3344
3345 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3346 add_rhs);
3347 update_stmt (gsi_stmt (*gsi));
3348 widen_mul_stats.maccs_inserted++;
3349 return true;
3350 }
3351
3352 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3353 with uses in additions and subtractions to form fused multiply-add
3354 operations. Returns true if successful and MUL_STMT should be removed. */
3355
3356 static bool
3357 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
3358 {
3359 tree mul_result = gimple_get_lhs (mul_stmt);
3360 tree type = TREE_TYPE (mul_result);
3361 gimple *use_stmt, *neguse_stmt;
3362 gassign *fma_stmt;
3363 use_operand_p use_p;
3364 imm_use_iterator imm_iter;
3365
3366 if (FLOAT_TYPE_P (type)
3367 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3368 return false;
3369
3370 /* We don't want to do bitfield reduction ops. */
3371 if (INTEGRAL_TYPE_P (type)
3372 && (TYPE_PRECISION (type)
3373 != GET_MODE_PRECISION (TYPE_MODE (type))))
3374 return false;
3375
3376 /* If the target doesn't support it, don't generate it. We assume that
3377 if fma isn't available then fms, fnma or fnms are not either. */
3378 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3379 return false;
3380
3381 /* If the multiplication has zero uses, it is kept around probably because
3382 of -fnon-call-exceptions. Don't optimize it away in that case,
3383 it is DCE job. */
3384 if (has_zero_uses (mul_result))
3385 return false;
3386
3387 /* Make sure that the multiplication statement becomes dead after
3388 the transformation, thus that all uses are transformed to FMAs.
3389 This means we assume that an FMA operation has the same cost
3390 as an addition. */
3391 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3392 {
3393 enum tree_code use_code;
3394 tree result = mul_result;
3395 bool negate_p = false;
3396
3397 use_stmt = USE_STMT (use_p);
3398
3399 if (is_gimple_debug (use_stmt))
3400 continue;
3401
3402 /* For now restrict this operations to single basic blocks. In theory
3403 we would want to support sinking the multiplication in
3404 m = a*b;
3405 if ()
3406 ma = m + c;
3407 else
3408 d = m;
3409 to form a fma in the then block and sink the multiplication to the
3410 else block. */
3411 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3412 return false;
3413
3414 if (!is_gimple_assign (use_stmt))
3415 return false;
3416
3417 use_code = gimple_assign_rhs_code (use_stmt);
3418
3419 /* A negate on the multiplication leads to FNMA. */
3420 if (use_code == NEGATE_EXPR)
3421 {
3422 ssa_op_iter iter;
3423 use_operand_p usep;
3424
3425 result = gimple_assign_lhs (use_stmt);
3426
3427 /* Make sure the negate statement becomes dead with this
3428 single transformation. */
3429 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3430 &use_p, &neguse_stmt))
3431 return false;
3432
3433 /* Make sure the multiplication isn't also used on that stmt. */
3434 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3435 if (USE_FROM_PTR (usep) == mul_result)
3436 return false;
3437
3438 /* Re-validate. */
3439 use_stmt = neguse_stmt;
3440 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3441 return false;
3442 if (!is_gimple_assign (use_stmt))
3443 return false;
3444
3445 use_code = gimple_assign_rhs_code (use_stmt);
3446 negate_p = true;
3447 }
3448
3449 switch (use_code)
3450 {
3451 case MINUS_EXPR:
3452 if (gimple_assign_rhs2 (use_stmt) == result)
3453 negate_p = !negate_p;
3454 break;
3455 case PLUS_EXPR:
3456 break;
3457 default:
3458 /* FMA can only be formed from PLUS and MINUS. */
3459 return false;
3460 }
3461
3462 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3463 by a MULT_EXPR that we'll visit later, we might be able to
3464 get a more profitable match with fnma.
3465 OTOH, if we don't, a negate / fma pair has likely lower latency
3466 that a mult / subtract pair. */
3467 if (use_code == MINUS_EXPR && !negate_p
3468 && gimple_assign_rhs1 (use_stmt) == result
3469 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3470 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3471 {
3472 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3473
3474 if (TREE_CODE (rhs2) == SSA_NAME)
3475 {
3476 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
3477 if (has_single_use (rhs2)
3478 && is_gimple_assign (stmt2)
3479 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3480 return false;
3481 }
3482 }
3483
3484 /* We can't handle a * b + a * b. */
3485 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3486 return false;
3487
3488 /* While it is possible to validate whether or not the exact form
3489 that we've recognized is available in the backend, the assumption
3490 is that the transformation is never a loss. For instance, suppose
3491 the target only has the plain FMA pattern available. Consider
3492 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3493 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3494 still have 3 operations, but in the FMA form the two NEGs are
3495 independent and could be run in parallel. */
3496 }
3497
3498 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3499 {
3500 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3501 enum tree_code use_code;
3502 tree addop, mulop1 = op1, result = mul_result;
3503 bool negate_p = false;
3504
3505 if (is_gimple_debug (use_stmt))
3506 continue;
3507
3508 use_code = gimple_assign_rhs_code (use_stmt);
3509 if (use_code == NEGATE_EXPR)
3510 {
3511 result = gimple_assign_lhs (use_stmt);
3512 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3513 gsi_remove (&gsi, true);
3514 release_defs (use_stmt);
3515
3516 use_stmt = neguse_stmt;
3517 gsi = gsi_for_stmt (use_stmt);
3518 use_code = gimple_assign_rhs_code (use_stmt);
3519 negate_p = true;
3520 }
3521
3522 if (gimple_assign_rhs1 (use_stmt) == result)
3523 {
3524 addop = gimple_assign_rhs2 (use_stmt);
3525 /* a * b - c -> a * b + (-c) */
3526 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3527 addop = force_gimple_operand_gsi (&gsi,
3528 build1 (NEGATE_EXPR,
3529 type, addop),
3530 true, NULL_TREE, true,
3531 GSI_SAME_STMT);
3532 }
3533 else
3534 {
3535 addop = gimple_assign_rhs1 (use_stmt);
3536 /* a - b * c -> (-b) * c + a */
3537 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3538 negate_p = !negate_p;
3539 }
3540
3541 if (negate_p)
3542 mulop1 = force_gimple_operand_gsi (&gsi,
3543 build1 (NEGATE_EXPR,
3544 type, mulop1),
3545 true, NULL_TREE, true,
3546 GSI_SAME_STMT);
3547
3548 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3549 FMA_EXPR, mulop1, op2, addop);
3550 gsi_replace (&gsi, fma_stmt, true);
3551 widen_mul_stats.fmas_inserted++;
3552 }
3553
3554 return true;
3555 }
3556
3557
3558 /* Helper function of match_uaddsub_overflow. Return 1
3559 if USE_STMT is unsigned overflow check ovf != 0 for
3560 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
3561 and 0 otherwise. */
3562
3563 static int
3564 uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
3565 {
3566 enum tree_code ccode = ERROR_MARK;
3567 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
3568 if (gimple_code (use_stmt) == GIMPLE_COND)
3569 {
3570 ccode = gimple_cond_code (use_stmt);
3571 crhs1 = gimple_cond_lhs (use_stmt);
3572 crhs2 = gimple_cond_rhs (use_stmt);
3573 }
3574 else if (is_gimple_assign (use_stmt))
3575 {
3576 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3577 {
3578 ccode = gimple_assign_rhs_code (use_stmt);
3579 crhs1 = gimple_assign_rhs1 (use_stmt);
3580 crhs2 = gimple_assign_rhs2 (use_stmt);
3581 }
3582 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
3583 {
3584 tree cond = gimple_assign_rhs1 (use_stmt);
3585 if (COMPARISON_CLASS_P (cond))
3586 {
3587 ccode = TREE_CODE (cond);
3588 crhs1 = TREE_OPERAND (cond, 0);
3589 crhs2 = TREE_OPERAND (cond, 1);
3590 }
3591 else
3592 return 0;
3593 }
3594 else
3595 return 0;
3596 }
3597 else
3598 return 0;
3599
3600 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
3601 return 0;
3602
3603 enum tree_code code = gimple_assign_rhs_code (stmt);
3604 tree lhs = gimple_assign_lhs (stmt);
3605 tree rhs1 = gimple_assign_rhs1 (stmt);
3606 tree rhs2 = gimple_assign_rhs2 (stmt);
3607
3608 switch (ccode)
3609 {
3610 case GT_EXPR:
3611 case LE_EXPR:
3612 /* r = a - b; r > a or r <= a
3613 r = a + b; a > r or a <= r or b > r or b <= r. */
3614 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
3615 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
3616 && crhs2 == lhs))
3617 return ccode == GT_EXPR ? 1 : -1;
3618 break;
3619 case LT_EXPR:
3620 case GE_EXPR:
3621 /* r = a - b; a < r or a >= r
3622 r = a + b; r < a or r >= a or r < b or r >= b. */
3623 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
3624 || (code == PLUS_EXPR && crhs1 == lhs
3625 && (crhs2 == rhs1 || crhs2 == rhs2)))
3626 return ccode == LT_EXPR ? 1 : -1;
3627 break;
3628 default:
3629 break;
3630 }
3631 return 0;
3632 }
3633
3634 /* Recognize for unsigned x
3635 x = y - z;
3636 if (x > y)
3637 where there are other uses of x and replace it with
3638 _7 = SUB_OVERFLOW (y, z);
3639 x = REALPART_EXPR <_7>;
3640 _8 = IMAGPART_EXPR <_7>;
3641 if (_8)
3642 and similarly for addition. */
3643
3644 static bool
3645 match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
3646 enum tree_code code)
3647 {
3648 tree lhs = gimple_assign_lhs (stmt);
3649 tree type = TREE_TYPE (lhs);
3650 use_operand_p use_p;
3651 imm_use_iterator iter;
3652 bool use_seen = false;
3653 bool ovf_use_seen = false;
3654 gimple *use_stmt;
3655
3656 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
3657 if (!INTEGRAL_TYPE_P (type)
3658 || !TYPE_UNSIGNED (type)
3659 || has_zero_uses (lhs)
3660 || has_single_use (lhs)
3661 || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
3662 TYPE_MODE (type)) == CODE_FOR_nothing)
3663 return false;
3664
3665 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
3666 {
3667 use_stmt = USE_STMT (use_p);
3668 if (is_gimple_debug (use_stmt))
3669 continue;
3670
3671 if (uaddsub_overflow_check_p (stmt, use_stmt))
3672 ovf_use_seen = true;
3673 else
3674 use_seen = true;
3675 if (ovf_use_seen && use_seen)
3676 break;
3677 }
3678
3679 if (!ovf_use_seen || !use_seen)
3680 return false;
3681
3682 tree ctype = build_complex_type (type);
3683 tree rhs1 = gimple_assign_rhs1 (stmt);
3684 tree rhs2 = gimple_assign_rhs2 (stmt);
3685 gcall *g = gimple_build_call_internal (code == PLUS_EXPR
3686 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
3687 2, rhs1, rhs2);
3688 tree ctmp = make_ssa_name (ctype);
3689 gimple_call_set_lhs (g, ctmp);
3690 gsi_insert_before (gsi, g, GSI_SAME_STMT);
3691 gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
3692 build1 (REALPART_EXPR, type, ctmp));
3693 gsi_replace (gsi, g2, true);
3694 tree ovf = make_ssa_name (type);
3695 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
3696 build1 (IMAGPART_EXPR, type, ctmp));
3697 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
3698
3699 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3700 {
3701 if (is_gimple_debug (use_stmt))
3702 continue;
3703
3704 int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
3705 if (ovf_use == 0)
3706 continue;
3707 if (gimple_code (use_stmt) == GIMPLE_COND)
3708 {
3709 gcond *cond_stmt = as_a <gcond *> (use_stmt);
3710 gimple_cond_set_lhs (cond_stmt, ovf);
3711 gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
3712 gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3713 }
3714 else
3715 {
3716 gcc_checking_assert (is_gimple_assign (use_stmt));
3717 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3718 {
3719 gimple_assign_set_rhs1 (use_stmt, ovf);
3720 gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3721 gimple_assign_set_rhs_code (use_stmt,
3722 ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3723 }
3724 else
3725 {
3726 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3727 == COND_EXPR);
3728 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3729 boolean_type_node, ovf,
3730 build_int_cst (type, 0));
3731 gimple_assign_set_rhs1 (use_stmt, cond);
3732 }
3733 }
3734 update_stmt (use_stmt);
3735 }
3736 return true;
3737 }
3738
3739
3740 /* Find integer multiplications where the operands are extended from
3741 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3742 where appropriate. */
3743
3744 namespace {
3745
3746 const pass_data pass_data_optimize_widening_mul =
3747 {
3748 GIMPLE_PASS, /* type */
3749 "widening_mul", /* name */
3750 OPTGROUP_NONE, /* optinfo_flags */
3751 TV_NONE, /* tv_id */
3752 PROP_ssa, /* properties_required */
3753 0, /* properties_provided */
3754 0, /* properties_destroyed */
3755 0, /* todo_flags_start */
3756 TODO_update_ssa, /* todo_flags_finish */
3757 };
3758
3759 class pass_optimize_widening_mul : public gimple_opt_pass
3760 {
3761 public:
3762 pass_optimize_widening_mul (gcc::context *ctxt)
3763 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3764 {}
3765
3766 /* opt_pass methods: */
3767 virtual bool gate (function *)
3768 {
3769 return flag_expensive_optimizations && optimize;
3770 }
3771
3772 virtual unsigned int execute (function *);
3773
3774 }; // class pass_optimize_widening_mul
3775
3776 unsigned int
3777 pass_optimize_widening_mul::execute (function *fun)
3778 {
3779 basic_block bb;
3780 bool cfg_changed = false;
3781
3782 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3783
3784 FOR_EACH_BB_FN (bb, fun)
3785 {
3786 gimple_stmt_iterator gsi;
3787
3788 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3789 {
3790 gimple *stmt = gsi_stmt (gsi);
3791 enum tree_code code;
3792
3793 if (is_gimple_assign (stmt))
3794 {
3795 code = gimple_assign_rhs_code (stmt);
3796 switch (code)
3797 {
3798 case MULT_EXPR:
3799 if (!convert_mult_to_widen (stmt, &gsi)
3800 && convert_mult_to_fma (stmt,
3801 gimple_assign_rhs1 (stmt),
3802 gimple_assign_rhs2 (stmt)))
3803 {
3804 gsi_remove (&gsi, true);
3805 release_defs (stmt);
3806 continue;
3807 }
3808 break;
3809
3810 case PLUS_EXPR:
3811 case MINUS_EXPR:
3812 if (!convert_plusminus_to_widen (&gsi, stmt, code))
3813 match_uaddsub_overflow (&gsi, stmt, code);
3814 break;
3815
3816 default:;
3817 }
3818 }
3819 else if (is_gimple_call (stmt)
3820 && gimple_call_lhs (stmt))
3821 {
3822 tree fndecl = gimple_call_fndecl (stmt);
3823 if (fndecl
3824 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3825 {
3826 switch (DECL_FUNCTION_CODE (fndecl))
3827 {
3828 case BUILT_IN_POWF:
3829 case BUILT_IN_POW:
3830 case BUILT_IN_POWL:
3831 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3832 && real_equal
3833 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3834 &dconst2)
3835 && convert_mult_to_fma (stmt,
3836 gimple_call_arg (stmt, 0),
3837 gimple_call_arg (stmt, 0)))
3838 {
3839 unlink_stmt_vdef (stmt);
3840 if (gsi_remove (&gsi, true)
3841 && gimple_purge_dead_eh_edges (bb))
3842 cfg_changed = true;
3843 release_defs (stmt);
3844 continue;
3845 }
3846 break;
3847
3848 default:;
3849 }
3850 }
3851 }
3852 gsi_next (&gsi);
3853 }
3854 }
3855
3856 statistics_counter_event (fun, "widening multiplications inserted",
3857 widen_mul_stats.widen_mults_inserted);
3858 statistics_counter_event (fun, "widening maccs inserted",
3859 widen_mul_stats.maccs_inserted);
3860 statistics_counter_event (fun, "fused multiply-adds inserted",
3861 widen_mul_stats.fmas_inserted);
3862
3863 return cfg_changed ? TODO_cleanup_cfg : 0;
3864 }
3865
3866 } // anon namespace
3867
3868 gimple_opt_pass *
3869 make_pass_optimize_widening_mul (gcc::context *ctxt)
3870 {
3871 return new pass_optimize_widening_mul (ctxt);
3872 }