]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-phiopt.c
PR testsuite/92016 - Excess errors in Wstringop-overflow-17.c
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
48 #include "case-cfn-macros.h"
49
50 static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
51 static bool two_value_replacement (basic_block, basic_block, edge, gphi *,
52 tree, tree);
53 static bool conditional_replacement (basic_block, basic_block,
54 edge, edge, gphi *, tree, tree);
55 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
56 gimple *);
57 static int value_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool minmax_replacement (basic_block, basic_block,
60 edge, edge, gimple *, tree, tree);
61 static bool abs_replacement (basic_block, basic_block,
62 edge, edge, gimple *, tree, tree);
63 static bool cond_removal_in_popcount_pattern (basic_block, basic_block,
64 edge, edge, gimple *, tree, tree);
65 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
66 hash_set<tree> *);
67 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
68 static hash_set<tree> * get_non_trapping ();
69 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
70 static void hoist_adjacent_loads (basic_block, basic_block,
71 basic_block, basic_block);
72 static bool gate_hoist_loads (void);
73
74 /* This pass tries to transform conditional stores into unconditional
75 ones, enabling further simplifications with the simpler then and else
76 blocks. In particular it replaces this:
77
78 bb0:
79 if (cond) goto bb2; else goto bb1;
80 bb1:
81 *p = RHS;
82 bb2:
83
84 with
85
86 bb0:
87 if (cond) goto bb1; else goto bb2;
88 bb1:
89 condtmp' = *p;
90 bb2:
91 condtmp = PHI <RHS, condtmp'>
92 *p = condtmp;
93
94 This transformation can only be done under several constraints,
95 documented below. It also replaces:
96
97 bb0:
98 if (cond) goto bb2; else goto bb1;
99 bb1:
100 *p = RHS1;
101 goto bb3;
102 bb2:
103 *p = RHS2;
104 bb3:
105
106 with
107
108 bb0:
109 if (cond) goto bb3; else goto bb1;
110 bb1:
111 bb3:
112 condtmp = PHI <RHS1, RHS2>
113 *p = condtmp; */
114
115 static unsigned int
116 tree_ssa_cs_elim (void)
117 {
118 unsigned todo;
119 /* ??? We are not interested in loop related info, but the following
120 will create it, ICEing as we didn't init loops with pre-headers.
121 An interfacing issue of find_data_references_in_bb. */
122 loop_optimizer_init (LOOPS_NORMAL);
123 scev_initialize ();
124 todo = tree_ssa_phiopt_worker (true, false, false);
125 scev_finalize ();
126 loop_optimizer_finalize ();
127 return todo;
128 }
129
130 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
131
132 static gphi *
133 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
134 {
135 gimple_stmt_iterator i;
136 gphi *phi = NULL;
137 if (gimple_seq_singleton_p (seq))
138 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
139 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
140 {
141 gphi *p = as_a <gphi *> (gsi_stmt (i));
142 /* If the PHI arguments are equal then we can skip this PHI. */
143 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
144 gimple_phi_arg_def (p, e1->dest_idx)))
145 continue;
146
147 /* If we already have a PHI that has the two edge arguments are
148 different, then return it is not a singleton for these PHIs. */
149 if (phi)
150 return NULL;
151
152 phi = p;
153 }
154 return phi;
155 }
156
157 /* The core routine of conditional store replacement and normal
158 phi optimizations. Both share much of the infrastructure in how
159 to match applicable basic block patterns. DO_STORE_ELIM is true
160 when we want to do conditional store replacement, false otherwise.
161 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
162 of diamond control flow patterns, false otherwise. */
163 static unsigned int
164 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
165 {
166 basic_block bb;
167 basic_block *bb_order;
168 unsigned n, i;
169 bool cfgchanged = false;
170 hash_set<tree> *nontrap = 0;
171
172 if (do_store_elim)
173 /* Calculate the set of non-trapping memory accesses. */
174 nontrap = get_non_trapping ();
175
176 /* Search every basic block for COND_EXPR we may be able to optimize.
177
178 We walk the blocks in order that guarantees that a block with
179 a single predecessor is processed before the predecessor.
180 This ensures that we collapse inner ifs before visiting the
181 outer ones, and also that we do not try to visit a removed
182 block. */
183 bb_order = single_pred_before_succ_order ();
184 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
185
186 for (i = 0; i < n; i++)
187 {
188 gimple *cond_stmt;
189 gphi *phi;
190 basic_block bb1, bb2;
191 edge e1, e2;
192 tree arg0, arg1;
193
194 bb = bb_order[i];
195
196 cond_stmt = last_stmt (bb);
197 /* Check to see if the last statement is a GIMPLE_COND. */
198 if (!cond_stmt
199 || gimple_code (cond_stmt) != GIMPLE_COND)
200 continue;
201
202 e1 = EDGE_SUCC (bb, 0);
203 bb1 = e1->dest;
204 e2 = EDGE_SUCC (bb, 1);
205 bb2 = e2->dest;
206
207 /* We cannot do the optimization on abnormal edges. */
208 if ((e1->flags & EDGE_ABNORMAL) != 0
209 || (e2->flags & EDGE_ABNORMAL) != 0)
210 continue;
211
212 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
213 if (EDGE_COUNT (bb1->succs) == 0
214 || bb2 == NULL
215 || EDGE_COUNT (bb2->succs) == 0)
216 continue;
217
218 /* Find the bb which is the fall through to the other. */
219 if (EDGE_SUCC (bb1, 0)->dest == bb2)
220 ;
221 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
222 {
223 std::swap (bb1, bb2);
224 std::swap (e1, e2);
225 }
226 else if (do_store_elim
227 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
228 {
229 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
230
231 if (!single_succ_p (bb1)
232 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
233 || !single_succ_p (bb2)
234 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
235 || EDGE_COUNT (bb3->preds) != 2)
236 continue;
237 if (cond_if_else_store_replacement (bb1, bb2, bb3))
238 cfgchanged = true;
239 continue;
240 }
241 else if (do_hoist_loads
242 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
243 {
244 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
245
246 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
247 && single_succ_p (bb1)
248 && single_succ_p (bb2)
249 && single_pred_p (bb1)
250 && single_pred_p (bb2)
251 && EDGE_COUNT (bb->succs) == 2
252 && EDGE_COUNT (bb3->preds) == 2
253 /* If one edge or the other is dominant, a conditional move
254 is likely to perform worse than the well-predicted branch. */
255 && !predictable_edge_p (EDGE_SUCC (bb, 0))
256 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
257 hoist_adjacent_loads (bb, bb1, bb2, bb3);
258 continue;
259 }
260 else
261 continue;
262
263 e1 = EDGE_SUCC (bb1, 0);
264
265 /* Make sure that bb1 is just a fall through. */
266 if (!single_succ_p (bb1)
267 || (e1->flags & EDGE_FALLTHRU) == 0)
268 continue;
269
270 /* Also make sure that bb1 only have one predecessor and that it
271 is bb. */
272 if (!single_pred_p (bb1)
273 || single_pred (bb1) != bb)
274 continue;
275
276 if (do_store_elim)
277 {
278 /* bb1 is the middle block, bb2 the join block, bb the split block,
279 e1 the fallthrough edge from bb1 to bb2. We can't do the
280 optimization if the join block has more than two predecessors. */
281 if (EDGE_COUNT (bb2->preds) > 2)
282 continue;
283 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
284 cfgchanged = true;
285 }
286 else
287 {
288 gimple_seq phis = phi_nodes (bb2);
289 gimple_stmt_iterator gsi;
290 bool candorest = true;
291
292 /* Value replacement can work with more than one PHI
293 so try that first. */
294 if (!early_p)
295 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
296 {
297 phi = as_a <gphi *> (gsi_stmt (gsi));
298 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
299 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
300 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
301 {
302 candorest = false;
303 cfgchanged = true;
304 break;
305 }
306 }
307
308 if (!candorest)
309 continue;
310
311 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
312 if (!phi)
313 continue;
314
315 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
316 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
317
318 /* Something is wrong if we cannot find the arguments in the PHI
319 node. */
320 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
321
322 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
323 arg0, arg1,
324 cond_stmt);
325 if (newphi != NULL)
326 {
327 phi = newphi;
328 /* factor_out_conditional_conversion may create a new PHI in
329 BB2 and eliminate an existing PHI in BB2. Recompute values
330 that may be affected by that change. */
331 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
332 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
333 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
334 }
335
336 /* Do the replacement of conditional if it can be done. */
337 if (two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
338 cfgchanged = true;
339 else if (!early_p
340 && conditional_replacement (bb, bb1, e1, e2, phi,
341 arg0, arg1))
342 cfgchanged = true;
343 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
344 cfgchanged = true;
345 else if (!early_p
346 && cond_removal_in_popcount_pattern (bb, bb1, e1, e2,
347 phi, arg0, arg1))
348 cfgchanged = true;
349 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
350 cfgchanged = true;
351 }
352 }
353
354 free (bb_order);
355
356 if (do_store_elim)
357 delete nontrap;
358 /* If the CFG has changed, we should cleanup the CFG. */
359 if (cfgchanged && do_store_elim)
360 {
361 /* In cond-store replacement we have added some loads on edges
362 and new VOPS (as we moved the store, and created a load). */
363 gsi_commit_edge_inserts ();
364 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
365 }
366 else if (cfgchanged)
367 return TODO_cleanup_cfg;
368 return 0;
369 }
370
371 /* Replace PHI node element whose edge is E in block BB with variable NEW.
372 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
373 is known to have two edges, one of which must reach BB). */
374
375 static void
376 replace_phi_edge_with_variable (basic_block cond_block,
377 edge e, gimple *phi, tree new_tree)
378 {
379 basic_block bb = gimple_bb (phi);
380 basic_block block_to_remove;
381 gimple_stmt_iterator gsi;
382
383 /* Change the PHI argument to new. */
384 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
385
386 /* Remove the empty basic block. */
387 if (EDGE_SUCC (cond_block, 0)->dest == bb)
388 {
389 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
390 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
391 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
392
393 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
394 }
395 else
396 {
397 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
398 EDGE_SUCC (cond_block, 1)->flags
399 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
400 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
401
402 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
403 }
404 delete_basic_block (block_to_remove);
405
406 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
407 gsi = gsi_last_bb (cond_block);
408 gsi_remove (&gsi, true);
409
410 if (dump_file && (dump_flags & TDF_DETAILS))
411 fprintf (dump_file,
412 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
413 cond_block->index,
414 bb->index);
415 }
416
417 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
418 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
419 to the result of PHI stmt. COND_STMT is the controlling predicate.
420 Return the newly-created PHI, if any. */
421
422 static gphi *
423 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
424 tree arg0, tree arg1, gimple *cond_stmt)
425 {
426 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
427 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
428 tree temp, result;
429 gphi *newphi;
430 gimple_stmt_iterator gsi, gsi_for_def;
431 location_t locus = gimple_location (phi);
432 enum tree_code convert_code;
433
434 /* Handle only PHI statements with two arguments. TODO: If all
435 other arguments to PHI are INTEGER_CST or if their defining
436 statement have the same unary operation, we can handle more
437 than two arguments too. */
438 if (gimple_phi_num_args (phi) != 2)
439 return NULL;
440
441 /* First canonicalize to simplify tests. */
442 if (TREE_CODE (arg0) != SSA_NAME)
443 {
444 std::swap (arg0, arg1);
445 std::swap (e0, e1);
446 }
447
448 if (TREE_CODE (arg0) != SSA_NAME
449 || (TREE_CODE (arg1) != SSA_NAME
450 && TREE_CODE (arg1) != INTEGER_CST))
451 return NULL;
452
453 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
454 a conversion. */
455 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
456 if (!gimple_assign_cast_p (arg0_def_stmt))
457 return NULL;
458
459 /* Use the RHS as new_arg0. */
460 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
461 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
462 if (convert_code == VIEW_CONVERT_EXPR)
463 {
464 new_arg0 = TREE_OPERAND (new_arg0, 0);
465 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
466 return NULL;
467 }
468
469 if (TREE_CODE (arg1) == SSA_NAME)
470 {
471 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
472 is a conversion. */
473 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
474 if (!is_gimple_assign (arg1_def_stmt)
475 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
476 return NULL;
477
478 /* Use the RHS as new_arg1. */
479 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
480 if (convert_code == VIEW_CONVERT_EXPR)
481 new_arg1 = TREE_OPERAND (new_arg1, 0);
482 }
483 else
484 {
485 /* If arg1 is an INTEGER_CST, fold it to new type. */
486 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
487 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
488 {
489 if (gimple_assign_cast_p (arg0_def_stmt))
490 {
491 /* For the INTEGER_CST case, we are just moving the
492 conversion from one place to another, which can often
493 hurt as the conversion moves further away from the
494 statement that computes the value. So, perform this
495 only if new_arg0 is an operand of COND_STMT, or
496 if arg0_def_stmt is the only non-debug stmt in
497 its basic block, because then it is possible this
498 could enable further optimizations (minmax replacement
499 etc.). See PR71016. */
500 if (new_arg0 != gimple_cond_lhs (cond_stmt)
501 && new_arg0 != gimple_cond_rhs (cond_stmt)
502 && gimple_bb (arg0_def_stmt) == e0->src)
503 {
504 gsi = gsi_for_stmt (arg0_def_stmt);
505 gsi_prev_nondebug (&gsi);
506 if (!gsi_end_p (gsi))
507 {
508 if (gassign *assign
509 = dyn_cast <gassign *> (gsi_stmt (gsi)))
510 {
511 tree lhs = gimple_assign_lhs (assign);
512 enum tree_code ass_code
513 = gimple_assign_rhs_code (assign);
514 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
515 return NULL;
516 if (lhs != gimple_assign_rhs1 (arg0_def_stmt))
517 return NULL;
518 gsi_prev_nondebug (&gsi);
519 if (!gsi_end_p (gsi))
520 return NULL;
521 }
522 else
523 return NULL;
524 }
525 gsi = gsi_for_stmt (arg0_def_stmt);
526 gsi_next_nondebug (&gsi);
527 if (!gsi_end_p (gsi))
528 return NULL;
529 }
530 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
531 }
532 else
533 return NULL;
534 }
535 else
536 return NULL;
537 }
538
539 /* If arg0/arg1 have > 1 use, then this transformation actually increases
540 the number of expressions evaluated at runtime. */
541 if (!has_single_use (arg0)
542 || (arg1_def_stmt && !has_single_use (arg1)))
543 return NULL;
544
545 /* If types of new_arg0 and new_arg1 are different bailout. */
546 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
547 return NULL;
548
549 /* Create a new PHI stmt. */
550 result = PHI_RESULT (phi);
551 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
552 newphi = create_phi_node (temp, gimple_bb (phi));
553
554 if (dump_file && (dump_flags & TDF_DETAILS))
555 {
556 fprintf (dump_file, "PHI ");
557 print_generic_expr (dump_file, gimple_phi_result (phi));
558 fprintf (dump_file,
559 " changed to factor conversion out from COND_EXPR.\n");
560 fprintf (dump_file, "New stmt with CAST that defines ");
561 print_generic_expr (dump_file, result);
562 fprintf (dump_file, ".\n");
563 }
564
565 /* Remove the old cast(s) that has single use. */
566 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
567 gsi_remove (&gsi_for_def, true);
568 release_defs (arg0_def_stmt);
569
570 if (arg1_def_stmt)
571 {
572 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
573 gsi_remove (&gsi_for_def, true);
574 release_defs (arg1_def_stmt);
575 }
576
577 add_phi_arg (newphi, new_arg0, e0, locus);
578 add_phi_arg (newphi, new_arg1, e1, locus);
579
580 /* Create the conversion stmt and insert it. */
581 if (convert_code == VIEW_CONVERT_EXPR)
582 {
583 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
584 new_stmt = gimple_build_assign (result, temp);
585 }
586 else
587 new_stmt = gimple_build_assign (result, convert_code, temp);
588 gsi = gsi_after_labels (gimple_bb (phi));
589 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
590
591 /* Remove the original PHI stmt. */
592 gsi = gsi_for_stmt (phi);
593 gsi_remove (&gsi, true);
594 return newphi;
595 }
596
597 /* Optimize
598 # x_5 in range [cst1, cst2] where cst2 = cst1 + 1
599 if (x_5 op cstN) # where op is == or != and N is 1 or 2
600 goto bb3;
601 else
602 goto bb4;
603 bb3:
604 bb4:
605 # r_6 = PHI<cst3(2), cst4(3)> # where cst3 == cst4 + 1 or cst4 == cst3 + 1
606
607 to r_6 = x_5 + (min (cst3, cst4) - cst1) or
608 r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which
609 of cst3 and cst4 is smaller. */
610
611 static bool
612 two_value_replacement (basic_block cond_bb, basic_block middle_bb,
613 edge e1, gphi *phi, tree arg0, tree arg1)
614 {
615 /* Only look for adjacent integer constants. */
616 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
617 || !INTEGRAL_TYPE_P (TREE_TYPE (arg1))
618 || TREE_CODE (arg0) != INTEGER_CST
619 || TREE_CODE (arg1) != INTEGER_CST
620 || (tree_int_cst_lt (arg0, arg1)
621 ? wi::to_widest (arg0) + 1 != wi::to_widest (arg1)
622 : wi::to_widest (arg1) + 1 != wi::to_widest (arg0)))
623 return false;
624
625 if (!empty_block_p (middle_bb))
626 return false;
627
628 gimple *stmt = last_stmt (cond_bb);
629 tree lhs = gimple_cond_lhs (stmt);
630 tree rhs = gimple_cond_rhs (stmt);
631
632 if (TREE_CODE (lhs) != SSA_NAME
633 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
634 || TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE
635 || TREE_CODE (rhs) != INTEGER_CST)
636 return false;
637
638 switch (gimple_cond_code (stmt))
639 {
640 case EQ_EXPR:
641 case NE_EXPR:
642 break;
643 default:
644 return false;
645 }
646
647 wide_int min, max;
648 if (get_range_info (lhs, &min, &max) != VR_RANGE
649 || min + 1 != max
650 || (wi::to_wide (rhs) != min
651 && wi::to_wide (rhs) != max))
652 return false;
653
654 /* We need to know which is the true edge and which is the false
655 edge so that we know when to invert the condition below. */
656 edge true_edge, false_edge;
657 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
658 if ((gimple_cond_code (stmt) == EQ_EXPR)
659 ^ (wi::to_wide (rhs) == max)
660 ^ (e1 == false_edge))
661 std::swap (arg0, arg1);
662
663 tree type;
664 if (TYPE_PRECISION (TREE_TYPE (lhs)) == TYPE_PRECISION (TREE_TYPE (arg0)))
665 {
666 /* Avoid performing the arithmetics in bool type which has different
667 semantics, otherwise prefer unsigned types from the two with
668 the same precision. */
669 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE
670 || !TYPE_UNSIGNED (TREE_TYPE (arg0)))
671 type = TREE_TYPE (lhs);
672 else
673 type = TREE_TYPE (arg0);
674 }
675 else if (TYPE_PRECISION (TREE_TYPE (lhs)) > TYPE_PRECISION (TREE_TYPE (arg0)))
676 type = TREE_TYPE (lhs);
677 else
678 type = TREE_TYPE (arg0);
679
680 min = wide_int::from (min, TYPE_PRECISION (type),
681 TYPE_SIGN (TREE_TYPE (lhs)));
682 wide_int a = wide_int::from (wi::to_wide (arg0), TYPE_PRECISION (type),
683 TYPE_SIGN (TREE_TYPE (arg0)));
684 enum tree_code code;
685 wi::overflow_type ovf;
686 if (tree_int_cst_lt (arg0, arg1))
687 {
688 code = PLUS_EXPR;
689 a -= min;
690 if (!TYPE_UNSIGNED (type))
691 {
692 /* lhs is known to be in range [min, min+1] and we want to add a
693 to it. Check if that operation can overflow for those 2 values
694 and if yes, force unsigned type. */
695 wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf);
696 if (ovf)
697 type = unsigned_type_for (type);
698 }
699 }
700 else
701 {
702 code = MINUS_EXPR;
703 a += min;
704 if (!TYPE_UNSIGNED (type))
705 {
706 /* lhs is known to be in range [min, min+1] and we want to subtract
707 it from a. Check if that operation can overflow for those 2
708 values and if yes, force unsigned type. */
709 wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf);
710 if (ovf)
711 type = unsigned_type_for (type);
712 }
713 }
714
715 tree arg = wide_int_to_tree (type, a);
716 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
717 if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
718 lhs = gimplify_build1 (&gsi, NOP_EXPR, type, lhs);
719 tree new_rhs;
720 if (code == PLUS_EXPR)
721 new_rhs = gimplify_build2 (&gsi, PLUS_EXPR, type, lhs, arg);
722 else
723 new_rhs = gimplify_build2 (&gsi, MINUS_EXPR, type, arg, lhs);
724 if (!useless_type_conversion_p (TREE_TYPE (arg0), type))
725 new_rhs = gimplify_build1 (&gsi, NOP_EXPR, TREE_TYPE (arg0), new_rhs);
726
727 replace_phi_edge_with_variable (cond_bb, e1, phi, new_rhs);
728
729 /* Note that we optimized this PHI. */
730 return true;
731 }
732
733 /* The function conditional_replacement does the main work of doing the
734 conditional replacement. Return true if the replacement is done.
735 Otherwise return false.
736 BB is the basic block where the replacement is going to be done on. ARG0
737 is argument 0 from PHI. Likewise for ARG1. */
738
739 static bool
740 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
741 edge e0, edge e1, gphi *phi,
742 tree arg0, tree arg1)
743 {
744 tree result;
745 gimple *stmt;
746 gassign *new_stmt;
747 tree cond;
748 gimple_stmt_iterator gsi;
749 edge true_edge, false_edge;
750 tree new_var, new_var2;
751 bool neg;
752
753 /* FIXME: Gimplification of complex type is too hard for now. */
754 /* We aren't prepared to handle vectors either (and it is a question
755 if it would be worthwhile anyway). */
756 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
757 || POINTER_TYPE_P (TREE_TYPE (arg0)))
758 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
759 || POINTER_TYPE_P (TREE_TYPE (arg1))))
760 return false;
761
762 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
763 convert it to the conditional. */
764 if ((integer_zerop (arg0) && integer_onep (arg1))
765 || (integer_zerop (arg1) && integer_onep (arg0)))
766 neg = false;
767 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
768 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
769 neg = true;
770 else
771 return false;
772
773 if (!empty_block_p (middle_bb))
774 return false;
775
776 /* At this point we know we have a GIMPLE_COND with two successors.
777 One successor is BB, the other successor is an empty block which
778 falls through into BB.
779
780 There is a single PHI node at the join point (BB) and its arguments
781 are constants (0, 1) or (0, -1).
782
783 So, given the condition COND, and the two PHI arguments, we can
784 rewrite this PHI into non-branching code:
785
786 dest = (COND) or dest = COND'
787
788 We use the condition as-is if the argument associated with the
789 true edge has the value one or the argument associated with the
790 false edge as the value zero. Note that those conditions are not
791 the same since only one of the outgoing edges from the GIMPLE_COND
792 will directly reach BB and thus be associated with an argument. */
793
794 stmt = last_stmt (cond_bb);
795 result = PHI_RESULT (phi);
796
797 /* To handle special cases like floating point comparison, it is easier and
798 less error-prone to build a tree and gimplify it on the fly though it is
799 less efficient. */
800 cond = fold_build2_loc (gimple_location (stmt),
801 gimple_cond_code (stmt), boolean_type_node,
802 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
803
804 /* We need to know which is the true edge and which is the false
805 edge so that we know when to invert the condition below. */
806 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
807 if ((e0 == true_edge && integer_zerop (arg0))
808 || (e0 == false_edge && !integer_zerop (arg0))
809 || (e1 == true_edge && integer_zerop (arg1))
810 || (e1 == false_edge && !integer_zerop (arg1)))
811 cond = fold_build1_loc (gimple_location (stmt),
812 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
813
814 if (neg)
815 {
816 cond = fold_convert_loc (gimple_location (stmt),
817 TREE_TYPE (result), cond);
818 cond = fold_build1_loc (gimple_location (stmt),
819 NEGATE_EXPR, TREE_TYPE (cond), cond);
820 }
821
822 /* Insert our new statements at the end of conditional block before the
823 COND_STMT. */
824 gsi = gsi_for_stmt (stmt);
825 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
826 GSI_SAME_STMT);
827
828 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
829 {
830 location_t locus_0, locus_1;
831
832 new_var2 = make_ssa_name (TREE_TYPE (result));
833 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
834 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
835 new_var = new_var2;
836
837 /* Set the locus to the first argument, unless is doesn't have one. */
838 locus_0 = gimple_phi_arg_location (phi, 0);
839 locus_1 = gimple_phi_arg_location (phi, 1);
840 if (locus_0 == UNKNOWN_LOCATION)
841 locus_0 = locus_1;
842 gimple_set_location (new_stmt, locus_0);
843 }
844
845 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
846
847 /* Note that we optimized this PHI. */
848 return true;
849 }
850
851 /* Update *ARG which is defined in STMT so that it contains the
852 computed value if that seems profitable. Return true if the
853 statement is made dead by that rewriting. */
854
855 static bool
856 jump_function_from_stmt (tree *arg, gimple *stmt)
857 {
858 enum tree_code code = gimple_assign_rhs_code (stmt);
859 if (code == ADDR_EXPR)
860 {
861 /* For arg = &p->i transform it to p, if possible. */
862 tree rhs1 = gimple_assign_rhs1 (stmt);
863 poly_int64 offset;
864 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
865 &offset);
866 if (tem
867 && TREE_CODE (tem) == MEM_REF
868 && known_eq (mem_ref_offset (tem) + offset, 0))
869 {
870 *arg = TREE_OPERAND (tem, 0);
871 return true;
872 }
873 }
874 /* TODO: Much like IPA-CP jump-functions we want to handle constant
875 additions symbolically here, and we'd need to update the comparison
876 code that compares the arg + cst tuples in our caller. For now the
877 code above exactly handles the VEC_BASE pattern from vec.h. */
878 return false;
879 }
880
881 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
882 of the form SSA_NAME NE 0.
883
884 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
885 the two input values of the EQ_EXPR match arg0 and arg1.
886
887 If so update *code and return TRUE. Otherwise return FALSE. */
888
889 static bool
890 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
891 enum tree_code *code, const_tree rhs)
892 {
893 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
894 statement. */
895 if (TREE_CODE (rhs) == SSA_NAME)
896 {
897 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
898
899 /* Verify the defining statement has an EQ_EXPR on the RHS. */
900 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
901 {
902 /* Finally verify the source operands of the EQ_EXPR are equal
903 to arg0 and arg1. */
904 tree op0 = gimple_assign_rhs1 (def1);
905 tree op1 = gimple_assign_rhs2 (def1);
906 if ((operand_equal_for_phi_arg_p (arg0, op0)
907 && operand_equal_for_phi_arg_p (arg1, op1))
908 || (operand_equal_for_phi_arg_p (arg0, op1)
909 && operand_equal_for_phi_arg_p (arg1, op0)))
910 {
911 /* We will perform the optimization. */
912 *code = gimple_assign_rhs_code (def1);
913 return true;
914 }
915 }
916 }
917 return false;
918 }
919
920 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
921
922 Also return TRUE if arg0/arg1 are equal to the source arguments of a
923 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
924
925 Return FALSE otherwise. */
926
927 static bool
928 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
929 enum tree_code *code, gimple *cond)
930 {
931 gimple *def;
932 tree lhs = gimple_cond_lhs (cond);
933 tree rhs = gimple_cond_rhs (cond);
934
935 if ((operand_equal_for_phi_arg_p (arg0, lhs)
936 && operand_equal_for_phi_arg_p (arg1, rhs))
937 || (operand_equal_for_phi_arg_p (arg1, lhs)
938 && operand_equal_for_phi_arg_p (arg0, rhs)))
939 return true;
940
941 /* Now handle more complex case where we have an EQ comparison
942 which feeds a BIT_AND_EXPR which feeds COND.
943
944 First verify that COND is of the form SSA_NAME NE 0. */
945 if (*code != NE_EXPR || !integer_zerop (rhs)
946 || TREE_CODE (lhs) != SSA_NAME)
947 return false;
948
949 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
950 def = SSA_NAME_DEF_STMT (lhs);
951 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
952 return false;
953
954 /* Now verify arg0/arg1 correspond to the source arguments of an
955 EQ comparison feeding the BIT_AND_EXPR. */
956
957 tree tmp = gimple_assign_rhs1 (def);
958 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
959 return true;
960
961 tmp = gimple_assign_rhs2 (def);
962 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
963 return true;
964
965 return false;
966 }
967
968 /* Returns true if ARG is a neutral element for operation CODE
969 on the RIGHT side. */
970
971 static bool
972 neutral_element_p (tree_code code, tree arg, bool right)
973 {
974 switch (code)
975 {
976 case PLUS_EXPR:
977 case BIT_IOR_EXPR:
978 case BIT_XOR_EXPR:
979 return integer_zerop (arg);
980
981 case LROTATE_EXPR:
982 case RROTATE_EXPR:
983 case LSHIFT_EXPR:
984 case RSHIFT_EXPR:
985 case MINUS_EXPR:
986 case POINTER_PLUS_EXPR:
987 return right && integer_zerop (arg);
988
989 case MULT_EXPR:
990 return integer_onep (arg);
991
992 case TRUNC_DIV_EXPR:
993 case CEIL_DIV_EXPR:
994 case FLOOR_DIV_EXPR:
995 case ROUND_DIV_EXPR:
996 case EXACT_DIV_EXPR:
997 return right && integer_onep (arg);
998
999 case BIT_AND_EXPR:
1000 return integer_all_onesp (arg);
1001
1002 default:
1003 return false;
1004 }
1005 }
1006
1007 /* Returns true if ARG is an absorbing element for operation CODE. */
1008
1009 static bool
1010 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
1011 {
1012 switch (code)
1013 {
1014 case BIT_IOR_EXPR:
1015 return integer_all_onesp (arg);
1016
1017 case MULT_EXPR:
1018 case BIT_AND_EXPR:
1019 return integer_zerop (arg);
1020
1021 case LSHIFT_EXPR:
1022 case RSHIFT_EXPR:
1023 case LROTATE_EXPR:
1024 case RROTATE_EXPR:
1025 return !right && integer_zerop (arg);
1026
1027 case TRUNC_DIV_EXPR:
1028 case CEIL_DIV_EXPR:
1029 case FLOOR_DIV_EXPR:
1030 case ROUND_DIV_EXPR:
1031 case EXACT_DIV_EXPR:
1032 case TRUNC_MOD_EXPR:
1033 case CEIL_MOD_EXPR:
1034 case FLOOR_MOD_EXPR:
1035 case ROUND_MOD_EXPR:
1036 return (!right
1037 && integer_zerop (arg)
1038 && tree_single_nonzero_warnv_p (rval, NULL));
1039
1040 default:
1041 return false;
1042 }
1043 }
1044
1045 /* The function value_replacement does the main work of doing the value
1046 replacement. Return non-zero if the replacement is done. Otherwise return
1047 0. If we remove the middle basic block, return 2.
1048 BB is the basic block where the replacement is going to be done on. ARG0
1049 is argument 0 from the PHI. Likewise for ARG1. */
1050
1051 static int
1052 value_replacement (basic_block cond_bb, basic_block middle_bb,
1053 edge e0, edge e1, gimple *phi,
1054 tree arg0, tree arg1)
1055 {
1056 gimple_stmt_iterator gsi;
1057 gimple *cond;
1058 edge true_edge, false_edge;
1059 enum tree_code code;
1060 bool emtpy_or_with_defined_p = true;
1061
1062 /* If the type says honor signed zeros we cannot do this
1063 optimization. */
1064 if (HONOR_SIGNED_ZEROS (arg1))
1065 return 0;
1066
1067 /* If there is a statement in MIDDLE_BB that defines one of the PHI
1068 arguments, then adjust arg0 or arg1. */
1069 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1070 while (!gsi_end_p (gsi))
1071 {
1072 gimple *stmt = gsi_stmt (gsi);
1073 tree lhs;
1074 gsi_next_nondebug (&gsi);
1075 if (!is_gimple_assign (stmt))
1076 {
1077 if (gimple_code (stmt) != GIMPLE_PREDICT
1078 && gimple_code (stmt) != GIMPLE_NOP)
1079 emtpy_or_with_defined_p = false;
1080 continue;
1081 }
1082 /* Now try to adjust arg0 or arg1 according to the computation
1083 in the statement. */
1084 lhs = gimple_assign_lhs (stmt);
1085 if (!(lhs == arg0
1086 && jump_function_from_stmt (&arg0, stmt))
1087 || (lhs == arg1
1088 && jump_function_from_stmt (&arg1, stmt)))
1089 emtpy_or_with_defined_p = false;
1090 }
1091
1092 cond = last_stmt (cond_bb);
1093 code = gimple_cond_code (cond);
1094
1095 /* This transformation is only valid for equality comparisons. */
1096 if (code != NE_EXPR && code != EQ_EXPR)
1097 return 0;
1098
1099 /* We need to know which is the true edge and which is the false
1100 edge so that we know if have abs or negative abs. */
1101 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1102
1103 /* At this point we know we have a COND_EXPR with two successors.
1104 One successor is BB, the other successor is an empty block which
1105 falls through into BB.
1106
1107 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
1108
1109 There is a single PHI node at the join point (BB) with two arguments.
1110
1111 We now need to verify that the two arguments in the PHI node match
1112 the two arguments to the equality comparison. */
1113
1114 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
1115 {
1116 edge e;
1117 tree arg;
1118
1119 /* For NE_EXPR, we want to build an assignment result = arg where
1120 arg is the PHI argument associated with the true edge. For
1121 EQ_EXPR we want the PHI argument associated with the false edge. */
1122 e = (code == NE_EXPR ? true_edge : false_edge);
1123
1124 /* Unfortunately, E may not reach BB (it may instead have gone to
1125 OTHER_BLOCK). If that is the case, then we want the single outgoing
1126 edge from OTHER_BLOCK which reaches BB and represents the desired
1127 path from COND_BLOCK. */
1128 if (e->dest == middle_bb)
1129 e = single_succ_edge (e->dest);
1130
1131 /* Now we know the incoming edge to BB that has the argument for the
1132 RHS of our new assignment statement. */
1133 if (e0 == e)
1134 arg = arg0;
1135 else
1136 arg = arg1;
1137
1138 /* If the middle basic block was empty or is defining the
1139 PHI arguments and this is a single phi where the args are different
1140 for the edges e0 and e1 then we can remove the middle basic block. */
1141 if (emtpy_or_with_defined_p
1142 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
1143 e0, e1) == phi)
1144 {
1145 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
1146 /* Note that we optimized this PHI. */
1147 return 2;
1148 }
1149 else
1150 {
1151 /* Replace the PHI arguments with arg. */
1152 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
1153 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
1154 if (dump_file && (dump_flags & TDF_DETAILS))
1155 {
1156 fprintf (dump_file, "PHI ");
1157 print_generic_expr (dump_file, gimple_phi_result (phi));
1158 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
1159 cond_bb->index);
1160 print_generic_expr (dump_file, arg);
1161 fprintf (dump_file, ".\n");
1162 }
1163 return 1;
1164 }
1165
1166 }
1167
1168 /* Now optimize (x != 0) ? x + y : y to just x + y. */
1169 gsi = gsi_last_nondebug_bb (middle_bb);
1170 if (gsi_end_p (gsi))
1171 return 0;
1172
1173 gimple *assign = gsi_stmt (gsi);
1174 if (!is_gimple_assign (assign)
1175 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1176 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1177 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1178 return 0;
1179
1180 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1181 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1182 return 0;
1183
1184 /* Allow up to 2 cheap preparation statements that prepare argument
1185 for assign, e.g.:
1186 if (y_4 != 0)
1187 goto <bb 3>;
1188 else
1189 goto <bb 4>;
1190 <bb 3>:
1191 _1 = (int) y_4;
1192 iftmp.0_6 = x_5(D) r<< _1;
1193 <bb 4>:
1194 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1195 or:
1196 if (y_3(D) == 0)
1197 goto <bb 4>;
1198 else
1199 goto <bb 3>;
1200 <bb 3>:
1201 y_4 = y_3(D) & 31;
1202 _1 = (int) y_4;
1203 _6 = x_5(D) r<< _1;
1204 <bb 4>:
1205 # _2 = PHI <x_5(D)(2), _6(3)> */
1206 gimple *prep_stmt[2] = { NULL, NULL };
1207 int prep_cnt;
1208 for (prep_cnt = 0; ; prep_cnt++)
1209 {
1210 gsi_prev_nondebug (&gsi);
1211 if (gsi_end_p (gsi))
1212 break;
1213
1214 gimple *g = gsi_stmt (gsi);
1215 if (gimple_code (g) == GIMPLE_LABEL)
1216 break;
1217
1218 if (prep_cnt == 2 || !is_gimple_assign (g))
1219 return 0;
1220
1221 tree lhs = gimple_assign_lhs (g);
1222 tree rhs1 = gimple_assign_rhs1 (g);
1223 use_operand_p use_p;
1224 gimple *use_stmt;
1225 if (TREE_CODE (lhs) != SSA_NAME
1226 || TREE_CODE (rhs1) != SSA_NAME
1227 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1228 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1229 || !single_imm_use (lhs, &use_p, &use_stmt)
1230 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1231 return 0;
1232 switch (gimple_assign_rhs_code (g))
1233 {
1234 CASE_CONVERT:
1235 break;
1236 case PLUS_EXPR:
1237 case BIT_AND_EXPR:
1238 case BIT_IOR_EXPR:
1239 case BIT_XOR_EXPR:
1240 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1241 return 0;
1242 break;
1243 default:
1244 return 0;
1245 }
1246 prep_stmt[prep_cnt] = g;
1247 }
1248
1249 /* Only transform if it removes the condition. */
1250 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1251 return 0;
1252
1253 /* Size-wise, this is always profitable. */
1254 if (optimize_bb_for_speed_p (cond_bb)
1255 /* The special case is useless if it has a low probability. */
1256 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1257 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1258 /* If assign is cheap, there is no point avoiding it. */
1259 && estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
1260 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1261 return 0;
1262
1263 tree lhs = gimple_assign_lhs (assign);
1264 tree rhs1 = gimple_assign_rhs1 (assign);
1265 tree rhs2 = gimple_assign_rhs2 (assign);
1266 enum tree_code code_def = gimple_assign_rhs_code (assign);
1267 tree cond_lhs = gimple_cond_lhs (cond);
1268 tree cond_rhs = gimple_cond_rhs (cond);
1269
1270 /* Propagate the cond_rhs constant through preparation stmts,
1271 make sure UB isn't invoked while doing that. */
1272 for (int i = prep_cnt - 1; i >= 0; --i)
1273 {
1274 gimple *g = prep_stmt[i];
1275 tree grhs1 = gimple_assign_rhs1 (g);
1276 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1277 return 0;
1278 cond_lhs = gimple_assign_lhs (g);
1279 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1280 if (TREE_CODE (cond_rhs) != INTEGER_CST
1281 || TREE_OVERFLOW (cond_rhs))
1282 return 0;
1283 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1284 {
1285 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1286 gimple_assign_rhs2 (g));
1287 if (TREE_OVERFLOW (cond_rhs))
1288 return 0;
1289 }
1290 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1291 if (TREE_CODE (cond_rhs) != INTEGER_CST
1292 || TREE_OVERFLOW (cond_rhs))
1293 return 0;
1294 }
1295
1296 if (((code == NE_EXPR && e1 == false_edge)
1297 || (code == EQ_EXPR && e1 == true_edge))
1298 && arg0 == lhs
1299 && ((arg1 == rhs1
1300 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1301 && neutral_element_p (code_def, cond_rhs, true))
1302 || (arg1 == rhs2
1303 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1304 && neutral_element_p (code_def, cond_rhs, false))
1305 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1306 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1307 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1308 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1309 && absorbing_element_p (code_def,
1310 cond_rhs, false, rhs2))))))
1311 {
1312 gsi = gsi_for_stmt (cond);
1313 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1314 def-stmt in:
1315 if (n_5 != 0)
1316 goto <bb 3>;
1317 else
1318 goto <bb 4>;
1319
1320 <bb 3>:
1321 # RANGE [0, 4294967294]
1322 u_6 = n_5 + 4294967295;
1323
1324 <bb 4>:
1325 # u_3 = PHI <u_6(3), 4294967295(2)> */
1326 reset_flow_sensitive_info (lhs);
1327 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1328 {
1329 /* If available, we can use VR of phi result at least. */
1330 tree phires = gimple_phi_result (phi);
1331 struct range_info_def *phires_range_info
1332 = SSA_NAME_RANGE_INFO (phires);
1333 if (phires_range_info)
1334 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1335 phires_range_info);
1336 }
1337 gimple_stmt_iterator gsi_from;
1338 for (int i = prep_cnt - 1; i >= 0; --i)
1339 {
1340 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1341 reset_flow_sensitive_info (plhs);
1342 gsi_from = gsi_for_stmt (prep_stmt[i]);
1343 gsi_move_before (&gsi_from, &gsi);
1344 }
1345 gsi_from = gsi_for_stmt (assign);
1346 gsi_move_before (&gsi_from, &gsi);
1347 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1348 return 2;
1349 }
1350
1351 return 0;
1352 }
1353
1354 /* The function minmax_replacement does the main work of doing the minmax
1355 replacement. Return true if the replacement is done. Otherwise return
1356 false.
1357 BB is the basic block where the replacement is going to be done on. ARG0
1358 is argument 0 from the PHI. Likewise for ARG1. */
1359
1360 static bool
1361 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1362 edge e0, edge e1, gimple *phi,
1363 tree arg0, tree arg1)
1364 {
1365 tree result, type, rhs;
1366 gcond *cond;
1367 gassign *new_stmt;
1368 edge true_edge, false_edge;
1369 enum tree_code cmp, minmax, ass_code;
1370 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1371 gimple_stmt_iterator gsi, gsi_from;
1372
1373 type = TREE_TYPE (PHI_RESULT (phi));
1374
1375 /* The optimization may be unsafe due to NaNs. */
1376 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1377 return false;
1378
1379 cond = as_a <gcond *> (last_stmt (cond_bb));
1380 cmp = gimple_cond_code (cond);
1381 rhs = gimple_cond_rhs (cond);
1382
1383 /* Turn EQ/NE of extreme values to order comparisons. */
1384 if ((cmp == NE_EXPR || cmp == EQ_EXPR)
1385 && TREE_CODE (rhs) == INTEGER_CST)
1386 {
1387 if (wi::eq_p (wi::to_wide (rhs), wi::min_value (TREE_TYPE (rhs))))
1388 {
1389 cmp = (cmp == EQ_EXPR) ? LT_EXPR : GE_EXPR;
1390 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1391 wi::min_value (TREE_TYPE (rhs)) + 1);
1392 }
1393 else if (wi::eq_p (wi::to_wide (rhs), wi::max_value (TREE_TYPE (rhs))))
1394 {
1395 cmp = (cmp == EQ_EXPR) ? GT_EXPR : LE_EXPR;
1396 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1397 wi::max_value (TREE_TYPE (rhs)) - 1);
1398 }
1399 }
1400
1401 /* This transformation is only valid for order comparisons. Record which
1402 operand is smaller/larger if the result of the comparison is true. */
1403 alt_smaller = NULL_TREE;
1404 alt_larger = NULL_TREE;
1405 if (cmp == LT_EXPR || cmp == LE_EXPR)
1406 {
1407 smaller = gimple_cond_lhs (cond);
1408 larger = rhs;
1409 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1410 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1411 if (TREE_CODE (larger) == INTEGER_CST)
1412 {
1413 if (cmp == LT_EXPR)
1414 {
1415 wi::overflow_type overflow;
1416 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1417 TYPE_SIGN (TREE_TYPE (larger)),
1418 &overflow);
1419 if (! overflow)
1420 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1421 }
1422 else
1423 {
1424 wi::overflow_type overflow;
1425 wide_int alt = wi::add (wi::to_wide (larger), 1,
1426 TYPE_SIGN (TREE_TYPE (larger)),
1427 &overflow);
1428 if (! overflow)
1429 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1430 }
1431 }
1432 }
1433 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1434 {
1435 smaller = rhs;
1436 larger = gimple_cond_lhs (cond);
1437 /* If we have larger > CST it is equivalent to larger >= CST+1.
1438 Likewise larger >= CST is equivalent to larger > CST-1. */
1439 if (TREE_CODE (smaller) == INTEGER_CST)
1440 {
1441 wi::overflow_type overflow;
1442 if (cmp == GT_EXPR)
1443 {
1444 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1445 TYPE_SIGN (TREE_TYPE (smaller)),
1446 &overflow);
1447 if (! overflow)
1448 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1449 }
1450 else
1451 {
1452 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1453 TYPE_SIGN (TREE_TYPE (smaller)),
1454 &overflow);
1455 if (! overflow)
1456 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1457 }
1458 }
1459 }
1460 else
1461 return false;
1462
1463 /* We need to know which is the true edge and which is the false
1464 edge so that we know if have abs or negative abs. */
1465 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1466
1467 /* Forward the edges over the middle basic block. */
1468 if (true_edge->dest == middle_bb)
1469 true_edge = EDGE_SUCC (true_edge->dest, 0);
1470 if (false_edge->dest == middle_bb)
1471 false_edge = EDGE_SUCC (false_edge->dest, 0);
1472
1473 if (true_edge == e0)
1474 {
1475 gcc_assert (false_edge == e1);
1476 arg_true = arg0;
1477 arg_false = arg1;
1478 }
1479 else
1480 {
1481 gcc_assert (false_edge == e0);
1482 gcc_assert (true_edge == e1);
1483 arg_true = arg1;
1484 arg_false = arg0;
1485 }
1486
1487 if (empty_block_p (middle_bb))
1488 {
1489 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1490 || (alt_smaller
1491 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1492 && (operand_equal_for_phi_arg_p (arg_false, larger)
1493 || (alt_larger
1494 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1495 {
1496 /* Case
1497
1498 if (smaller < larger)
1499 rslt = smaller;
1500 else
1501 rslt = larger; */
1502 minmax = MIN_EXPR;
1503 }
1504 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1505 || (alt_smaller
1506 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1507 && (operand_equal_for_phi_arg_p (arg_true, larger)
1508 || (alt_larger
1509 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1510 minmax = MAX_EXPR;
1511 else
1512 return false;
1513 }
1514 else
1515 {
1516 /* Recognize the following case, assuming d <= u:
1517
1518 if (a <= u)
1519 b = MAX (a, d);
1520 x = PHI <b, u>
1521
1522 This is equivalent to
1523
1524 b = MAX (a, d);
1525 x = MIN (b, u); */
1526
1527 gimple *assign = last_and_only_stmt (middle_bb);
1528 tree lhs, op0, op1, bound;
1529
1530 if (!assign
1531 || gimple_code (assign) != GIMPLE_ASSIGN)
1532 return false;
1533
1534 lhs = gimple_assign_lhs (assign);
1535 ass_code = gimple_assign_rhs_code (assign);
1536 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1537 return false;
1538 op0 = gimple_assign_rhs1 (assign);
1539 op1 = gimple_assign_rhs2 (assign);
1540
1541 if (true_edge->src == middle_bb)
1542 {
1543 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1544 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1545 return false;
1546
1547 if (operand_equal_for_phi_arg_p (arg_false, larger)
1548 || (alt_larger
1549 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1550 {
1551 /* Case
1552
1553 if (smaller < larger)
1554 {
1555 r' = MAX_EXPR (smaller, bound)
1556 }
1557 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1558 if (ass_code != MAX_EXPR)
1559 return false;
1560
1561 minmax = MIN_EXPR;
1562 if (operand_equal_for_phi_arg_p (op0, smaller)
1563 || (alt_smaller
1564 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1565 bound = op1;
1566 else if (operand_equal_for_phi_arg_p (op1, smaller)
1567 || (alt_smaller
1568 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1569 bound = op0;
1570 else
1571 return false;
1572
1573 /* We need BOUND <= LARGER. */
1574 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1575 bound, larger)))
1576 return false;
1577 }
1578 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1579 || (alt_smaller
1580 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1581 {
1582 /* Case
1583
1584 if (smaller < larger)
1585 {
1586 r' = MIN_EXPR (larger, bound)
1587 }
1588 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1589 if (ass_code != MIN_EXPR)
1590 return false;
1591
1592 minmax = MAX_EXPR;
1593 if (operand_equal_for_phi_arg_p (op0, larger)
1594 || (alt_larger
1595 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1596 bound = op1;
1597 else if (operand_equal_for_phi_arg_p (op1, larger)
1598 || (alt_larger
1599 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1600 bound = op0;
1601 else
1602 return false;
1603
1604 /* We need BOUND >= SMALLER. */
1605 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1606 bound, smaller)))
1607 return false;
1608 }
1609 else
1610 return false;
1611 }
1612 else
1613 {
1614 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1615 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1616 return false;
1617
1618 if (operand_equal_for_phi_arg_p (arg_true, larger)
1619 || (alt_larger
1620 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1621 {
1622 /* Case
1623
1624 if (smaller > larger)
1625 {
1626 r' = MIN_EXPR (smaller, bound)
1627 }
1628 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1629 if (ass_code != MIN_EXPR)
1630 return false;
1631
1632 minmax = MAX_EXPR;
1633 if (operand_equal_for_phi_arg_p (op0, smaller)
1634 || (alt_smaller
1635 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1636 bound = op1;
1637 else if (operand_equal_for_phi_arg_p (op1, smaller)
1638 || (alt_smaller
1639 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1640 bound = op0;
1641 else
1642 return false;
1643
1644 /* We need BOUND >= LARGER. */
1645 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1646 bound, larger)))
1647 return false;
1648 }
1649 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1650 || (alt_smaller
1651 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1652 {
1653 /* Case
1654
1655 if (smaller > larger)
1656 {
1657 r' = MAX_EXPR (larger, bound)
1658 }
1659 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1660 if (ass_code != MAX_EXPR)
1661 return false;
1662
1663 minmax = MIN_EXPR;
1664 if (operand_equal_for_phi_arg_p (op0, larger))
1665 bound = op1;
1666 else if (operand_equal_for_phi_arg_p (op1, larger))
1667 bound = op0;
1668 else
1669 return false;
1670
1671 /* We need BOUND <= SMALLER. */
1672 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1673 bound, smaller)))
1674 return false;
1675 }
1676 else
1677 return false;
1678 }
1679
1680 /* Move the statement from the middle block. */
1681 gsi = gsi_last_bb (cond_bb);
1682 gsi_from = gsi_last_nondebug_bb (middle_bb);
1683 reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
1684 SSA_OP_DEF));
1685 gsi_move_before (&gsi_from, &gsi);
1686 }
1687
1688 /* Create an SSA var to hold the min/max result. If we're the only
1689 things setting the target PHI, then we can clone the PHI
1690 variable. Otherwise we must create a new one. */
1691 result = PHI_RESULT (phi);
1692 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1693 result = duplicate_ssa_name (result, NULL);
1694 else
1695 result = make_ssa_name (TREE_TYPE (result));
1696
1697 /* Emit the statement to compute min/max. */
1698 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1699 gsi = gsi_last_bb (cond_bb);
1700 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1701
1702 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1703
1704 return true;
1705 }
1706
1707 /* Convert
1708
1709 <bb 2>
1710 if (b_4(D) != 0)
1711 goto <bb 3>
1712 else
1713 goto <bb 4>
1714
1715 <bb 3>
1716 _2 = (unsigned long) b_4(D);
1717 _9 = __builtin_popcountl (_2);
1718 OR
1719 _9 = __builtin_popcountl (b_4(D));
1720
1721 <bb 4>
1722 c_12 = PHI <0(2), _9(3)>
1723
1724 Into
1725 <bb 2>
1726 _2 = (unsigned long) b_4(D);
1727 _9 = __builtin_popcountl (_2);
1728 OR
1729 _9 = __builtin_popcountl (b_4(D));
1730
1731 <bb 4>
1732 c_12 = PHI <_9(2)>
1733 */
1734
1735 static bool
1736 cond_removal_in_popcount_pattern (basic_block cond_bb, basic_block middle_bb,
1737 edge e1, edge e2,
1738 gimple *phi, tree arg0, tree arg1)
1739 {
1740 gimple *cond;
1741 gimple_stmt_iterator gsi, gsi_from;
1742 gimple *popcount;
1743 gimple *cast = NULL;
1744 tree lhs, arg;
1745
1746 /* Check that
1747 _2 = (unsigned long) b_4(D);
1748 _9 = __builtin_popcountl (_2);
1749 OR
1750 _9 = __builtin_popcountl (b_4(D));
1751 are the only stmts in the middle_bb. */
1752
1753 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1754 if (gsi_end_p (gsi))
1755 return false;
1756 cast = gsi_stmt (gsi);
1757 gsi_next_nondebug (&gsi);
1758 if (!gsi_end_p (gsi))
1759 {
1760 popcount = gsi_stmt (gsi);
1761 gsi_next_nondebug (&gsi);
1762 if (!gsi_end_p (gsi))
1763 return false;
1764 }
1765 else
1766 {
1767 popcount = cast;
1768 cast = NULL;
1769 }
1770
1771 /* Check that we have a popcount builtin. */
1772 if (!is_gimple_call (popcount))
1773 return false;
1774 combined_fn cfn = gimple_call_combined_fn (popcount);
1775 switch (cfn)
1776 {
1777 CASE_CFN_POPCOUNT:
1778 break;
1779 default:
1780 return false;
1781 }
1782
1783 arg = gimple_call_arg (popcount, 0);
1784 lhs = gimple_get_lhs (popcount);
1785
1786 if (cast)
1787 {
1788 /* We have a cast stmt feeding popcount builtin. */
1789 /* Check that we have a cast prior to that. */
1790 if (gimple_code (cast) != GIMPLE_ASSIGN
1791 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
1792 return false;
1793 /* Result of the cast stmt is the argument to the builtin. */
1794 if (arg != gimple_assign_lhs (cast))
1795 return false;
1796 arg = gimple_assign_rhs1 (cast);
1797 }
1798
1799 cond = last_stmt (cond_bb);
1800
1801 /* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount
1802 builtin. */
1803 if (gimple_code (cond) != GIMPLE_COND
1804 || (gimple_cond_code (cond) != NE_EXPR
1805 && gimple_cond_code (cond) != EQ_EXPR)
1806 || !integer_zerop (gimple_cond_rhs (cond))
1807 || arg != gimple_cond_lhs (cond))
1808 return false;
1809
1810 /* Canonicalize. */
1811 if ((e2->flags & EDGE_TRUE_VALUE
1812 && gimple_cond_code (cond) == NE_EXPR)
1813 || (e1->flags & EDGE_TRUE_VALUE
1814 && gimple_cond_code (cond) == EQ_EXPR))
1815 {
1816 std::swap (arg0, arg1);
1817 std::swap (e1, e2);
1818 }
1819
1820 /* Check PHI arguments. */
1821 if (lhs != arg0 || !integer_zerop (arg1))
1822 return false;
1823
1824 /* And insert the popcount builtin and cast stmt before the cond_bb. */
1825 gsi = gsi_last_bb (cond_bb);
1826 if (cast)
1827 {
1828 gsi_from = gsi_for_stmt (cast);
1829 gsi_move_before (&gsi_from, &gsi);
1830 reset_flow_sensitive_info (gimple_get_lhs (cast));
1831 }
1832 gsi_from = gsi_for_stmt (popcount);
1833 gsi_move_before (&gsi_from, &gsi);
1834 reset_flow_sensitive_info (gimple_get_lhs (popcount));
1835
1836 /* Now update the PHI and remove unneeded bbs. */
1837 replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
1838 return true;
1839 }
1840
1841 /* The function absolute_replacement does the main work of doing the absolute
1842 replacement. Return true if the replacement is done. Otherwise return
1843 false.
1844 bb is the basic block where the replacement is going to be done on. arg0
1845 is argument 0 from the phi. Likewise for arg1. */
1846
1847 static bool
1848 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1849 edge e0 ATTRIBUTE_UNUSED, edge e1,
1850 gimple *phi, tree arg0, tree arg1)
1851 {
1852 tree result;
1853 gassign *new_stmt;
1854 gimple *cond;
1855 gimple_stmt_iterator gsi;
1856 edge true_edge, false_edge;
1857 gimple *assign;
1858 edge e;
1859 tree rhs, lhs;
1860 bool negate;
1861 enum tree_code cond_code;
1862
1863 /* If the type says honor signed zeros we cannot do this
1864 optimization. */
1865 if (HONOR_SIGNED_ZEROS (arg1))
1866 return false;
1867
1868 /* OTHER_BLOCK must have only one executable statement which must have the
1869 form arg0 = -arg1 or arg1 = -arg0. */
1870
1871 assign = last_and_only_stmt (middle_bb);
1872 /* If we did not find the proper negation assignment, then we cannot
1873 optimize. */
1874 if (assign == NULL)
1875 return false;
1876
1877 /* If we got here, then we have found the only executable statement
1878 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1879 arg1 = -arg0, then we cannot optimize. */
1880 if (gimple_code (assign) != GIMPLE_ASSIGN)
1881 return false;
1882
1883 lhs = gimple_assign_lhs (assign);
1884
1885 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1886 return false;
1887
1888 rhs = gimple_assign_rhs1 (assign);
1889
1890 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1891 if (!(lhs == arg0 && rhs == arg1)
1892 && !(lhs == arg1 && rhs == arg0))
1893 return false;
1894
1895 cond = last_stmt (cond_bb);
1896 result = PHI_RESULT (phi);
1897
1898 /* Only relationals comparing arg[01] against zero are interesting. */
1899 cond_code = gimple_cond_code (cond);
1900 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1901 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1902 return false;
1903
1904 /* Make sure the conditional is arg[01] OP y. */
1905 if (gimple_cond_lhs (cond) != rhs)
1906 return false;
1907
1908 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1909 ? real_zerop (gimple_cond_rhs (cond))
1910 : integer_zerop (gimple_cond_rhs (cond)))
1911 ;
1912 else
1913 return false;
1914
1915 /* We need to know which is the true edge and which is the false
1916 edge so that we know if have abs or negative abs. */
1917 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1918
1919 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1920 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1921 the false edge goes to OTHER_BLOCK. */
1922 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1923 e = true_edge;
1924 else
1925 e = false_edge;
1926
1927 if (e->dest == middle_bb)
1928 negate = true;
1929 else
1930 negate = false;
1931
1932 /* If the code negates only iff positive then make sure to not
1933 introduce undefined behavior when negating or computing the absolute.
1934 ??? We could use range info if present to check for arg1 == INT_MIN. */
1935 if (negate
1936 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1937 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1938 return false;
1939
1940 result = duplicate_ssa_name (result, NULL);
1941
1942 if (negate)
1943 lhs = make_ssa_name (TREE_TYPE (result));
1944 else
1945 lhs = result;
1946
1947 /* Build the modify expression with abs expression. */
1948 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1949
1950 gsi = gsi_last_bb (cond_bb);
1951 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1952
1953 if (negate)
1954 {
1955 /* Get the right GSI. We want to insert after the recently
1956 added ABS_EXPR statement (which we know is the first statement
1957 in the block. */
1958 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1959
1960 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1961 }
1962
1963 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1964
1965 /* Note that we optimized this PHI. */
1966 return true;
1967 }
1968
1969 /* Auxiliary functions to determine the set of memory accesses which
1970 can't trap because they are preceded by accesses to the same memory
1971 portion. We do that for MEM_REFs, so we only need to track
1972 the SSA_NAME of the pointer indirectly referenced. The algorithm
1973 simply is a walk over all instructions in dominator order. When
1974 we see an MEM_REF we determine if we've already seen a same
1975 ref anywhere up to the root of the dominator tree. If we do the
1976 current access can't trap. If we don't see any dominating access
1977 the current access might trap, but might also make later accesses
1978 non-trapping, so we remember it. We need to be careful with loads
1979 or stores, for instance a load might not trap, while a store would,
1980 so if we see a dominating read access this doesn't mean that a later
1981 write access would not trap. Hence we also need to differentiate the
1982 type of access(es) seen.
1983
1984 ??? We currently are very conservative and assume that a load might
1985 trap even if a store doesn't (write-only memory). This probably is
1986 overly conservative. */
1987
1988 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1989 through it was seen, which would constitute a no-trap region for
1990 same accesses. */
1991 struct name_to_bb
1992 {
1993 unsigned int ssa_name_ver;
1994 unsigned int phase;
1995 bool store;
1996 HOST_WIDE_INT offset, size;
1997 basic_block bb;
1998 };
1999
2000 /* Hashtable helpers. */
2001
2002 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
2003 {
2004 static inline hashval_t hash (const name_to_bb *);
2005 static inline bool equal (const name_to_bb *, const name_to_bb *);
2006 };
2007
2008 /* Used for quick clearing of the hash-table when we see calls.
2009 Hash entries with phase < nt_call_phase are invalid. */
2010 static unsigned int nt_call_phase;
2011
2012 /* The hash function. */
2013
2014 inline hashval_t
2015 ssa_names_hasher::hash (const name_to_bb *n)
2016 {
2017 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
2018 ^ (n->offset << 6) ^ (n->size << 3);
2019 }
2020
2021 /* The equality function of *P1 and *P2. */
2022
2023 inline bool
2024 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
2025 {
2026 return n1->ssa_name_ver == n2->ssa_name_ver
2027 && n1->store == n2->store
2028 && n1->offset == n2->offset
2029 && n1->size == n2->size;
2030 }
2031
2032 class nontrapping_dom_walker : public dom_walker
2033 {
2034 public:
2035 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
2036 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
2037
2038 virtual edge before_dom_children (basic_block);
2039 virtual void after_dom_children (basic_block);
2040
2041 private:
2042
2043 /* We see the expression EXP in basic block BB. If it's an interesting
2044 expression (an MEM_REF through an SSA_NAME) possibly insert the
2045 expression into the set NONTRAP or the hash table of seen expressions.
2046 STORE is true if this expression is on the LHS, otherwise it's on
2047 the RHS. */
2048 void add_or_mark_expr (basic_block, tree, bool);
2049
2050 hash_set<tree> *m_nontrapping;
2051
2052 /* The hash table for remembering what we've seen. */
2053 hash_table<ssa_names_hasher> m_seen_ssa_names;
2054 };
2055
2056 /* Called by walk_dominator_tree, when entering the block BB. */
2057 edge
2058 nontrapping_dom_walker::before_dom_children (basic_block bb)
2059 {
2060 edge e;
2061 edge_iterator ei;
2062 gimple_stmt_iterator gsi;
2063
2064 /* If we haven't seen all our predecessors, clear the hash-table. */
2065 FOR_EACH_EDGE (e, ei, bb->preds)
2066 if ((((size_t)e->src->aux) & 2) == 0)
2067 {
2068 nt_call_phase++;
2069 break;
2070 }
2071
2072 /* Mark this BB as being on the path to dominator root and as visited. */
2073 bb->aux = (void*)(1 | 2);
2074
2075 /* And walk the statements in order. */
2076 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2077 {
2078 gimple *stmt = gsi_stmt (gsi);
2079
2080 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
2081 || (is_gimple_call (stmt)
2082 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
2083 nt_call_phase++;
2084 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
2085 {
2086 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
2087 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
2088 }
2089 }
2090 return NULL;
2091 }
2092
2093 /* Called by walk_dominator_tree, when basic block BB is exited. */
2094 void
2095 nontrapping_dom_walker::after_dom_children (basic_block bb)
2096 {
2097 /* This BB isn't on the path to dominator root anymore. */
2098 bb->aux = (void*)2;
2099 }
2100
2101 /* We see the expression EXP in basic block BB. If it's an interesting
2102 expression (an MEM_REF through an SSA_NAME) possibly insert the
2103 expression into the set NONTRAP or the hash table of seen expressions.
2104 STORE is true if this expression is on the LHS, otherwise it's on
2105 the RHS. */
2106 void
2107 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
2108 {
2109 HOST_WIDE_INT size;
2110
2111 if (TREE_CODE (exp) == MEM_REF
2112 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
2113 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
2114 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
2115 {
2116 tree name = TREE_OPERAND (exp, 0);
2117 struct name_to_bb map;
2118 name_to_bb **slot;
2119 struct name_to_bb *n2bb;
2120 basic_block found_bb = 0;
2121
2122 /* Try to find the last seen MEM_REF through the same
2123 SSA_NAME, which can trap. */
2124 map.ssa_name_ver = SSA_NAME_VERSION (name);
2125 map.phase = 0;
2126 map.bb = 0;
2127 map.store = store;
2128 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
2129 map.size = size;
2130
2131 slot = m_seen_ssa_names.find_slot (&map, INSERT);
2132 n2bb = *slot;
2133 if (n2bb && n2bb->phase >= nt_call_phase)
2134 found_bb = n2bb->bb;
2135
2136 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
2137 (it's in a basic block on the path from us to the dominator root)
2138 then we can't trap. */
2139 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
2140 {
2141 m_nontrapping->add (exp);
2142 }
2143 else
2144 {
2145 /* EXP might trap, so insert it into the hash table. */
2146 if (n2bb)
2147 {
2148 n2bb->phase = nt_call_phase;
2149 n2bb->bb = bb;
2150 }
2151 else
2152 {
2153 n2bb = XNEW (struct name_to_bb);
2154 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
2155 n2bb->phase = nt_call_phase;
2156 n2bb->bb = bb;
2157 n2bb->store = store;
2158 n2bb->offset = map.offset;
2159 n2bb->size = size;
2160 *slot = n2bb;
2161 }
2162 }
2163 }
2164 }
2165
2166 /* This is the entry point of gathering non trapping memory accesses.
2167 It will do a dominator walk over the whole function, and it will
2168 make use of the bb->aux pointers. It returns a set of trees
2169 (the MEM_REFs itself) which can't trap. */
2170 static hash_set<tree> *
2171 get_non_trapping (void)
2172 {
2173 nt_call_phase = 0;
2174 hash_set<tree> *nontrap = new hash_set<tree>;
2175 /* We're going to do a dominator walk, so ensure that we have
2176 dominance information. */
2177 calculate_dominance_info (CDI_DOMINATORS);
2178
2179 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
2180 .walk (cfun->cfg->x_entry_block_ptr);
2181
2182 clear_aux_for_blocks ();
2183 return nontrap;
2184 }
2185
2186 /* Do the main work of conditional store replacement. We already know
2187 that the recognized pattern looks like so:
2188
2189 split:
2190 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
2191 MIDDLE_BB:
2192 something
2193 fallthrough (edge E0)
2194 JOIN_BB:
2195 some more
2196
2197 We check that MIDDLE_BB contains only one store, that that store
2198 doesn't trap (not via NOTRAP, but via checking if an access to the same
2199 memory location dominates us, or the store is to a local addressable
2200 object) and that the store has a "simple" RHS. */
2201
2202 static bool
2203 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
2204 edge e0, edge e1, hash_set<tree> *nontrap)
2205 {
2206 gimple *assign = last_and_only_stmt (middle_bb);
2207 tree lhs, rhs, name, name2;
2208 gphi *newphi;
2209 gassign *new_stmt;
2210 gimple_stmt_iterator gsi;
2211 location_t locus;
2212
2213 /* Check if middle_bb contains of only one store. */
2214 if (!assign
2215 || !gimple_assign_single_p (assign)
2216 || gimple_has_volatile_ops (assign))
2217 return false;
2218
2219 /* And no PHI nodes so all uses in the single stmt are also
2220 available where we insert to. */
2221 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
2222 return false;
2223
2224 locus = gimple_location (assign);
2225 lhs = gimple_assign_lhs (assign);
2226 rhs = gimple_assign_rhs1 (assign);
2227 if ((TREE_CODE (lhs) != MEM_REF
2228 && TREE_CODE (lhs) != ARRAY_REF
2229 && TREE_CODE (lhs) != COMPONENT_REF)
2230 || !is_gimple_reg_type (TREE_TYPE (lhs)))
2231 return false;
2232
2233 /* Prove that we can move the store down. We could also check
2234 TREE_THIS_NOTRAP here, but in that case we also could move stores,
2235 whose value is not available readily, which we want to avoid. */
2236 if (!nontrap->contains (lhs))
2237 {
2238 /* If LHS is a local variable without address-taken, we could
2239 always safely move down the store. */
2240 tree base = get_base_address (lhs);
2241 if (!auto_var_p (base) || TREE_ADDRESSABLE (base))
2242 return false;
2243 }
2244
2245 /* Now we've checked the constraints, so do the transformation:
2246 1) Remove the single store. */
2247 gsi = gsi_for_stmt (assign);
2248 unlink_stmt_vdef (assign);
2249 gsi_remove (&gsi, true);
2250 release_defs (assign);
2251
2252 /* Make both store and load use alias-set zero as we have to
2253 deal with the case of the store being a conditional change
2254 of the dynamic type. */
2255 lhs = unshare_expr (lhs);
2256 tree *basep = &lhs;
2257 while (handled_component_p (*basep))
2258 basep = &TREE_OPERAND (*basep, 0);
2259 if (TREE_CODE (*basep) == MEM_REF
2260 || TREE_CODE (*basep) == TARGET_MEM_REF)
2261 TREE_OPERAND (*basep, 1)
2262 = fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
2263 else
2264 *basep = build2 (MEM_REF, TREE_TYPE (*basep),
2265 build_fold_addr_expr (*basep),
2266 build_zero_cst (ptr_type_node));
2267
2268 /* 2) Insert a load from the memory of the store to the temporary
2269 on the edge which did not contain the store. */
2270 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2271 new_stmt = gimple_build_assign (name, lhs);
2272 gimple_set_location (new_stmt, locus);
2273 gsi_insert_on_edge (e1, new_stmt);
2274
2275 /* 3) Create a PHI node at the join block, with one argument
2276 holding the old RHS, and the other holding the temporary
2277 where we stored the old memory contents. */
2278 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2279 newphi = create_phi_node (name2, join_bb);
2280 add_phi_arg (newphi, rhs, e0, locus);
2281 add_phi_arg (newphi, name, e1, locus);
2282
2283 lhs = unshare_expr (lhs);
2284 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2285
2286 /* 4) Insert that PHI node. */
2287 gsi = gsi_after_labels (join_bb);
2288 if (gsi_end_p (gsi))
2289 {
2290 gsi = gsi_last_bb (join_bb);
2291 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2292 }
2293 else
2294 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2295
2296 if (dump_file && (dump_flags & TDF_DETAILS))
2297 {
2298 fprintf (dump_file, "\nConditional store replacement happened!");
2299 fprintf (dump_file, "\nReplaced the store with a load.");
2300 fprintf (dump_file, "\nInserted a new PHI statement in joint block:\n");
2301 print_gimple_stmt (dump_file, new_stmt, 0, TDF_VOPS|TDF_MEMSYMS);
2302 }
2303
2304 return true;
2305 }
2306
2307 /* Do the main work of conditional store replacement. */
2308
2309 static bool
2310 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
2311 basic_block join_bb, gimple *then_assign,
2312 gimple *else_assign)
2313 {
2314 tree lhs_base, lhs, then_rhs, else_rhs, name;
2315 location_t then_locus, else_locus;
2316 gimple_stmt_iterator gsi;
2317 gphi *newphi;
2318 gassign *new_stmt;
2319
2320 if (then_assign == NULL
2321 || !gimple_assign_single_p (then_assign)
2322 || gimple_clobber_p (then_assign)
2323 || gimple_has_volatile_ops (then_assign)
2324 || else_assign == NULL
2325 || !gimple_assign_single_p (else_assign)
2326 || gimple_clobber_p (else_assign)
2327 || gimple_has_volatile_ops (else_assign))
2328 return false;
2329
2330 lhs = gimple_assign_lhs (then_assign);
2331 if (!is_gimple_reg_type (TREE_TYPE (lhs))
2332 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
2333 return false;
2334
2335 lhs_base = get_base_address (lhs);
2336 if (lhs_base == NULL_TREE
2337 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
2338 return false;
2339
2340 then_rhs = gimple_assign_rhs1 (then_assign);
2341 else_rhs = gimple_assign_rhs1 (else_assign);
2342 then_locus = gimple_location (then_assign);
2343 else_locus = gimple_location (else_assign);
2344
2345 /* Now we've checked the constraints, so do the transformation:
2346 1) Remove the stores. */
2347 gsi = gsi_for_stmt (then_assign);
2348 unlink_stmt_vdef (then_assign);
2349 gsi_remove (&gsi, true);
2350 release_defs (then_assign);
2351
2352 gsi = gsi_for_stmt (else_assign);
2353 unlink_stmt_vdef (else_assign);
2354 gsi_remove (&gsi, true);
2355 release_defs (else_assign);
2356
2357 /* 2) Create a PHI node at the join block, with one argument
2358 holding the old RHS, and the other holding the temporary
2359 where we stored the old memory contents. */
2360 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2361 newphi = create_phi_node (name, join_bb);
2362 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
2363 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
2364
2365 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2366
2367 /* 3) Insert that PHI node. */
2368 gsi = gsi_after_labels (join_bb);
2369 if (gsi_end_p (gsi))
2370 {
2371 gsi = gsi_last_bb (join_bb);
2372 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2373 }
2374 else
2375 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2376
2377 return true;
2378 }
2379
2380 /* Return the single store in BB with VDEF or NULL if there are
2381 other stores in the BB or loads following the store. */
2382
2383 static gimple *
2384 single_trailing_store_in_bb (basic_block bb, tree vdef)
2385 {
2386 if (SSA_NAME_IS_DEFAULT_DEF (vdef))
2387 return NULL;
2388 gimple *store = SSA_NAME_DEF_STMT (vdef);
2389 if (gimple_bb (store) != bb
2390 || gimple_code (store) == GIMPLE_PHI)
2391 return NULL;
2392
2393 /* Verify there is no other store in this BB. */
2394 if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
2395 && gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
2396 && gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
2397 return NULL;
2398
2399 /* Verify there is no load or store after the store. */
2400 use_operand_p use_p;
2401 imm_use_iterator imm_iter;
2402 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
2403 if (USE_STMT (use_p) != store
2404 && gimple_bb (USE_STMT (use_p)) == bb)
2405 return NULL;
2406
2407 return store;
2408 }
2409
2410 /* Conditional store replacement. We already know
2411 that the recognized pattern looks like so:
2412
2413 split:
2414 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
2415 THEN_BB:
2416 ...
2417 X = Y;
2418 ...
2419 goto JOIN_BB;
2420 ELSE_BB:
2421 ...
2422 X = Z;
2423 ...
2424 fallthrough (edge E0)
2425 JOIN_BB:
2426 some more
2427
2428 We check that it is safe to sink the store to JOIN_BB by verifying that
2429 there are no read-after-write or write-after-write dependencies in
2430 THEN_BB and ELSE_BB. */
2431
2432 static bool
2433 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
2434 basic_block join_bb)
2435 {
2436 vec<data_reference_p> then_datarefs, else_datarefs;
2437 vec<ddr_p> then_ddrs, else_ddrs;
2438 gimple *then_store, *else_store;
2439 bool found, ok = false, res;
2440 struct data_dependence_relation *ddr;
2441 data_reference_p then_dr, else_dr;
2442 int i, j;
2443 tree then_lhs, else_lhs;
2444 basic_block blocks[3];
2445
2446 /* Handle the case with single store in THEN_BB and ELSE_BB. That is
2447 cheap enough to always handle as it allows us to elide dependence
2448 checking. */
2449 gphi *vphi = NULL;
2450 for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
2451 gsi_next (&si))
2452 if (virtual_operand_p (gimple_phi_result (si.phi ())))
2453 {
2454 vphi = si.phi ();
2455 break;
2456 }
2457 if (!vphi)
2458 return false;
2459 tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
2460 tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
2461 gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
2462 if (then_assign)
2463 {
2464 gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
2465 if (else_assign)
2466 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2467 then_assign, else_assign);
2468 }
2469
2470 /* If either vectorization or if-conversion is disabled then do
2471 not sink any stores. */
2472 if (MAX_STORES_TO_SINK == 0
2473 || (!flag_tree_loop_vectorize && !flag_tree_slp_vectorize)
2474 || !flag_tree_loop_if_convert)
2475 return false;
2476
2477 /* Find data references. */
2478 then_datarefs.create (1);
2479 else_datarefs.create (1);
2480 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
2481 == chrec_dont_know)
2482 || !then_datarefs.length ()
2483 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
2484 == chrec_dont_know)
2485 || !else_datarefs.length ())
2486 {
2487 free_data_refs (then_datarefs);
2488 free_data_refs (else_datarefs);
2489 return false;
2490 }
2491
2492 /* Find pairs of stores with equal LHS. */
2493 auto_vec<gimple *, 1> then_stores, else_stores;
2494 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
2495 {
2496 if (DR_IS_READ (then_dr))
2497 continue;
2498
2499 then_store = DR_STMT (then_dr);
2500 then_lhs = gimple_get_lhs (then_store);
2501 if (then_lhs == NULL_TREE)
2502 continue;
2503 found = false;
2504
2505 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
2506 {
2507 if (DR_IS_READ (else_dr))
2508 continue;
2509
2510 else_store = DR_STMT (else_dr);
2511 else_lhs = gimple_get_lhs (else_store);
2512 if (else_lhs == NULL_TREE)
2513 continue;
2514
2515 if (operand_equal_p (then_lhs, else_lhs, 0))
2516 {
2517 found = true;
2518 break;
2519 }
2520 }
2521
2522 if (!found)
2523 continue;
2524
2525 then_stores.safe_push (then_store);
2526 else_stores.safe_push (else_store);
2527 }
2528
2529 /* No pairs of stores found. */
2530 if (!then_stores.length ()
2531 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2532 {
2533 free_data_refs (then_datarefs);
2534 free_data_refs (else_datarefs);
2535 return false;
2536 }
2537
2538 /* Compute and check data dependencies in both basic blocks. */
2539 then_ddrs.create (1);
2540 else_ddrs.create (1);
2541 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2542 vNULL, false)
2543 || !compute_all_dependences (else_datarefs, &else_ddrs,
2544 vNULL, false))
2545 {
2546 free_dependence_relations (then_ddrs);
2547 free_dependence_relations (else_ddrs);
2548 free_data_refs (then_datarefs);
2549 free_data_refs (else_datarefs);
2550 return false;
2551 }
2552 blocks[0] = then_bb;
2553 blocks[1] = else_bb;
2554 blocks[2] = join_bb;
2555 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2556
2557 /* Check that there are no read-after-write or write-after-write dependencies
2558 in THEN_BB. */
2559 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2560 {
2561 struct data_reference *dra = DDR_A (ddr);
2562 struct data_reference *drb = DDR_B (ddr);
2563
2564 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2565 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2566 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2567 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2568 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2569 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2570 {
2571 free_dependence_relations (then_ddrs);
2572 free_dependence_relations (else_ddrs);
2573 free_data_refs (then_datarefs);
2574 free_data_refs (else_datarefs);
2575 return false;
2576 }
2577 }
2578
2579 /* Check that there are no read-after-write or write-after-write dependencies
2580 in ELSE_BB. */
2581 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2582 {
2583 struct data_reference *dra = DDR_A (ddr);
2584 struct data_reference *drb = DDR_B (ddr);
2585
2586 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2587 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2588 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2589 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2590 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2591 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2592 {
2593 free_dependence_relations (then_ddrs);
2594 free_dependence_relations (else_ddrs);
2595 free_data_refs (then_datarefs);
2596 free_data_refs (else_datarefs);
2597 return false;
2598 }
2599 }
2600
2601 /* Sink stores with same LHS. */
2602 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2603 {
2604 else_store = else_stores[i];
2605 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2606 then_store, else_store);
2607 ok = ok || res;
2608 }
2609
2610 free_dependence_relations (then_ddrs);
2611 free_dependence_relations (else_ddrs);
2612 free_data_refs (then_datarefs);
2613 free_data_refs (else_datarefs);
2614
2615 return ok;
2616 }
2617
2618 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2619
2620 static bool
2621 local_mem_dependence (gimple *stmt, basic_block bb)
2622 {
2623 tree vuse = gimple_vuse (stmt);
2624 gimple *def;
2625
2626 if (!vuse)
2627 return false;
2628
2629 def = SSA_NAME_DEF_STMT (vuse);
2630 return (def && gimple_bb (def) == bb);
2631 }
2632
2633 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2634 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2635 and BB3 rejoins control flow following BB1 and BB2, look for
2636 opportunities to hoist loads as follows. If BB3 contains a PHI of
2637 two loads, one each occurring in BB1 and BB2, and the loads are
2638 provably of adjacent fields in the same structure, then move both
2639 loads into BB0. Of course this can only be done if there are no
2640 dependencies preventing such motion.
2641
2642 One of the hoisted loads will always be speculative, so the
2643 transformation is currently conservative:
2644
2645 - The fields must be strictly adjacent.
2646 - The two fields must occupy a single memory block that is
2647 guaranteed to not cross a page boundary.
2648
2649 The last is difficult to prove, as such memory blocks should be
2650 aligned on the minimum of the stack alignment boundary and the
2651 alignment guaranteed by heap allocation interfaces. Thus we rely
2652 on a parameter for the alignment value.
2653
2654 Provided a good value is used for the last case, the first
2655 restriction could possibly be relaxed. */
2656
2657 static void
2658 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2659 basic_block bb2, basic_block bb3)
2660 {
2661 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2662 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2663 gphi_iterator gsi;
2664
2665 /* Walk the phis in bb3 looking for an opportunity. We are looking
2666 for phis of two SSA names, one each of which is defined in bb1 and
2667 bb2. */
2668 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2669 {
2670 gphi *phi_stmt = gsi.phi ();
2671 gimple *def1, *def2;
2672 tree arg1, arg2, ref1, ref2, field1, field2;
2673 tree tree_offset1, tree_offset2, tree_size2, next;
2674 int offset1, offset2, size2;
2675 unsigned align1;
2676 gimple_stmt_iterator gsi2;
2677 basic_block bb_for_def1, bb_for_def2;
2678
2679 if (gimple_phi_num_args (phi_stmt) != 2
2680 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2681 continue;
2682
2683 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2684 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2685
2686 if (TREE_CODE (arg1) != SSA_NAME
2687 || TREE_CODE (arg2) != SSA_NAME
2688 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2689 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2690 continue;
2691
2692 def1 = SSA_NAME_DEF_STMT (arg1);
2693 def2 = SSA_NAME_DEF_STMT (arg2);
2694
2695 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2696 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2697 continue;
2698
2699 /* Check the mode of the arguments to be sure a conditional move
2700 can be generated for it. */
2701 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2702 == CODE_FOR_nothing)
2703 continue;
2704
2705 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2706 if (!gimple_assign_single_p (def1)
2707 || !gimple_assign_single_p (def2)
2708 || gimple_has_volatile_ops (def1)
2709 || gimple_has_volatile_ops (def2))
2710 continue;
2711
2712 ref1 = gimple_assign_rhs1 (def1);
2713 ref2 = gimple_assign_rhs1 (def2);
2714
2715 if (TREE_CODE (ref1) != COMPONENT_REF
2716 || TREE_CODE (ref2) != COMPONENT_REF)
2717 continue;
2718
2719 /* The zeroth operand of the two component references must be
2720 identical. It is not sufficient to compare get_base_address of
2721 the two references, because this could allow for different
2722 elements of the same array in the two trees. It is not safe to
2723 assume that the existence of one array element implies the
2724 existence of a different one. */
2725 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2726 continue;
2727
2728 field1 = TREE_OPERAND (ref1, 1);
2729 field2 = TREE_OPERAND (ref2, 1);
2730
2731 /* Check for field adjacency, and ensure field1 comes first. */
2732 for (next = DECL_CHAIN (field1);
2733 next && TREE_CODE (next) != FIELD_DECL;
2734 next = DECL_CHAIN (next))
2735 ;
2736
2737 if (next != field2)
2738 {
2739 for (next = DECL_CHAIN (field2);
2740 next && TREE_CODE (next) != FIELD_DECL;
2741 next = DECL_CHAIN (next))
2742 ;
2743
2744 if (next != field1)
2745 continue;
2746
2747 std::swap (field1, field2);
2748 std::swap (def1, def2);
2749 }
2750
2751 bb_for_def1 = gimple_bb (def1);
2752 bb_for_def2 = gimple_bb (def2);
2753
2754 /* Check for proper alignment of the first field. */
2755 tree_offset1 = bit_position (field1);
2756 tree_offset2 = bit_position (field2);
2757 tree_size2 = DECL_SIZE (field2);
2758
2759 if (!tree_fits_uhwi_p (tree_offset1)
2760 || !tree_fits_uhwi_p (tree_offset2)
2761 || !tree_fits_uhwi_p (tree_size2))
2762 continue;
2763
2764 offset1 = tree_to_uhwi (tree_offset1);
2765 offset2 = tree_to_uhwi (tree_offset2);
2766 size2 = tree_to_uhwi (tree_size2);
2767 align1 = DECL_ALIGN (field1) % param_align_bits;
2768
2769 if (offset1 % BITS_PER_UNIT != 0)
2770 continue;
2771
2772 /* For profitability, the two field references should fit within
2773 a single cache line. */
2774 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2775 continue;
2776
2777 /* The two expressions cannot be dependent upon vdefs defined
2778 in bb1/bb2. */
2779 if (local_mem_dependence (def1, bb_for_def1)
2780 || local_mem_dependence (def2, bb_for_def2))
2781 continue;
2782
2783 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2784 bb0. We hoist the first one first so that a cache miss is handled
2785 efficiently regardless of hardware cache-fill policy. */
2786 gsi2 = gsi_for_stmt (def1);
2787 gsi_move_to_bb_end (&gsi2, bb0);
2788 gsi2 = gsi_for_stmt (def2);
2789 gsi_move_to_bb_end (&gsi2, bb0);
2790
2791 if (dump_file && (dump_flags & TDF_DETAILS))
2792 {
2793 fprintf (dump_file,
2794 "\nHoisting adjacent loads from %d and %d into %d: \n",
2795 bb_for_def1->index, bb_for_def2->index, bb0->index);
2796 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2797 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2798 }
2799 }
2800 }
2801
2802 /* Determine whether we should attempt to hoist adjacent loads out of
2803 diamond patterns in pass_phiopt. Always hoist loads if
2804 -fhoist-adjacent-loads is specified and the target machine has
2805 both a conditional move instruction and a defined cache line size. */
2806
2807 static bool
2808 gate_hoist_loads (void)
2809 {
2810 return (flag_hoist_adjacent_loads == 1
2811 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2812 && HAVE_conditional_move);
2813 }
2814
2815 /* This pass tries to replaces an if-then-else block with an
2816 assignment. We have four kinds of transformations. Some of these
2817 transformations are also performed by the ifcvt RTL optimizer.
2818
2819 Conditional Replacement
2820 -----------------------
2821
2822 This transformation, implemented in conditional_replacement,
2823 replaces
2824
2825 bb0:
2826 if (cond) goto bb2; else goto bb1;
2827 bb1:
2828 bb2:
2829 x = PHI <0 (bb1), 1 (bb0), ...>;
2830
2831 with
2832
2833 bb0:
2834 x' = cond;
2835 goto bb2;
2836 bb2:
2837 x = PHI <x' (bb0), ...>;
2838
2839 We remove bb1 as it becomes unreachable. This occurs often due to
2840 gimplification of conditionals.
2841
2842 Value Replacement
2843 -----------------
2844
2845 This transformation, implemented in value_replacement, replaces
2846
2847 bb0:
2848 if (a != b) goto bb2; else goto bb1;
2849 bb1:
2850 bb2:
2851 x = PHI <a (bb1), b (bb0), ...>;
2852
2853 with
2854
2855 bb0:
2856 bb2:
2857 x = PHI <b (bb0), ...>;
2858
2859 This opportunity can sometimes occur as a result of other
2860 optimizations.
2861
2862
2863 Another case caught by value replacement looks like this:
2864
2865 bb0:
2866 t1 = a == CONST;
2867 t2 = b > c;
2868 t3 = t1 & t2;
2869 if (t3 != 0) goto bb1; else goto bb2;
2870 bb1:
2871 bb2:
2872 x = PHI (CONST, a)
2873
2874 Gets replaced with:
2875 bb0:
2876 bb2:
2877 t1 = a == CONST;
2878 t2 = b > c;
2879 t3 = t1 & t2;
2880 x = a;
2881
2882 ABS Replacement
2883 ---------------
2884
2885 This transformation, implemented in abs_replacement, replaces
2886
2887 bb0:
2888 if (a >= 0) goto bb2; else goto bb1;
2889 bb1:
2890 x = -a;
2891 bb2:
2892 x = PHI <x (bb1), a (bb0), ...>;
2893
2894 with
2895
2896 bb0:
2897 x' = ABS_EXPR< a >;
2898 bb2:
2899 x = PHI <x' (bb0), ...>;
2900
2901 MIN/MAX Replacement
2902 -------------------
2903
2904 This transformation, minmax_replacement replaces
2905
2906 bb0:
2907 if (a <= b) goto bb2; else goto bb1;
2908 bb1:
2909 bb2:
2910 x = PHI <b (bb1), a (bb0), ...>;
2911
2912 with
2913
2914 bb0:
2915 x' = MIN_EXPR (a, b)
2916 bb2:
2917 x = PHI <x' (bb0), ...>;
2918
2919 A similar transformation is done for MAX_EXPR.
2920
2921
2922 This pass also performs a fifth transformation of a slightly different
2923 flavor.
2924
2925 Factor conversion in COND_EXPR
2926 ------------------------------
2927
2928 This transformation factors the conversion out of COND_EXPR with
2929 factor_out_conditional_conversion.
2930
2931 For example:
2932 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2933 <bb 3>:
2934 tmp = (int) a;
2935 <bb 4>:
2936 tmp = PHI <tmp, CST>
2937
2938 Into:
2939 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2940 <bb 3>:
2941 <bb 4>:
2942 a = PHI <a, CST>
2943 tmp = (int) a;
2944
2945 Adjacent Load Hoisting
2946 ----------------------
2947
2948 This transformation replaces
2949
2950 bb0:
2951 if (...) goto bb2; else goto bb1;
2952 bb1:
2953 x1 = (<expr>).field1;
2954 goto bb3;
2955 bb2:
2956 x2 = (<expr>).field2;
2957 bb3:
2958 # x = PHI <x1, x2>;
2959
2960 with
2961
2962 bb0:
2963 x1 = (<expr>).field1;
2964 x2 = (<expr>).field2;
2965 if (...) goto bb2; else goto bb1;
2966 bb1:
2967 goto bb3;
2968 bb2:
2969 bb3:
2970 # x = PHI <x1, x2>;
2971
2972 The purpose of this transformation is to enable generation of conditional
2973 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2974 the loads is speculative, the transformation is restricted to very
2975 specific cases to avoid introducing a page fault. We are looking for
2976 the common idiom:
2977
2978 if (...)
2979 x = y->left;
2980 else
2981 x = y->right;
2982
2983 where left and right are typically adjacent pointers in a tree structure. */
2984
2985 namespace {
2986
2987 const pass_data pass_data_phiopt =
2988 {
2989 GIMPLE_PASS, /* type */
2990 "phiopt", /* name */
2991 OPTGROUP_NONE, /* optinfo_flags */
2992 TV_TREE_PHIOPT, /* tv_id */
2993 ( PROP_cfg | PROP_ssa ), /* properties_required */
2994 0, /* properties_provided */
2995 0, /* properties_destroyed */
2996 0, /* todo_flags_start */
2997 0, /* todo_flags_finish */
2998 };
2999
3000 class pass_phiopt : public gimple_opt_pass
3001 {
3002 public:
3003 pass_phiopt (gcc::context *ctxt)
3004 : gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
3005 {}
3006
3007 /* opt_pass methods: */
3008 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
3009 void set_pass_param (unsigned n, bool param)
3010 {
3011 gcc_assert (n == 0);
3012 early_p = param;
3013 }
3014 virtual bool gate (function *) { return flag_ssa_phiopt; }
3015 virtual unsigned int execute (function *)
3016 {
3017 return tree_ssa_phiopt_worker (false,
3018 !early_p ? gate_hoist_loads () : false,
3019 early_p);
3020 }
3021
3022 private:
3023 bool early_p;
3024 }; // class pass_phiopt
3025
3026 } // anon namespace
3027
3028 gimple_opt_pass *
3029 make_pass_phiopt (gcc::context *ctxt)
3030 {
3031 return new pass_phiopt (ctxt);
3032 }
3033
3034 namespace {
3035
3036 const pass_data pass_data_cselim =
3037 {
3038 GIMPLE_PASS, /* type */
3039 "cselim", /* name */
3040 OPTGROUP_NONE, /* optinfo_flags */
3041 TV_TREE_PHIOPT, /* tv_id */
3042 ( PROP_cfg | PROP_ssa ), /* properties_required */
3043 0, /* properties_provided */
3044 0, /* properties_destroyed */
3045 0, /* todo_flags_start */
3046 0, /* todo_flags_finish */
3047 };
3048
3049 class pass_cselim : public gimple_opt_pass
3050 {
3051 public:
3052 pass_cselim (gcc::context *ctxt)
3053 : gimple_opt_pass (pass_data_cselim, ctxt)
3054 {}
3055
3056 /* opt_pass methods: */
3057 virtual bool gate (function *) { return flag_tree_cselim; }
3058 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
3059
3060 }; // class pass_cselim
3061
3062 } // anon namespace
3063
3064 gimple_opt_pass *
3065 make_pass_cselim (gcc::context *ctxt)
3066 {
3067 return new pass_cselim (ctxt);
3068 }