]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-phiopt.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "rtl.h"
27 #include "ssa.h"
28 #include "alias.h"
29 #include "fold-const.h"
30 #include "stor-layout.h"
31 #include "flags.h"
32 #include "tm_p.h"
33 #include "cfganal.h"
34 #include "internal-fn.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "tree-cfg.h"
39 #include "insn-config.h"
40 #include "expmed.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "emit-rtl.h"
45 #include "varasm.h"
46 #include "stmt.h"
47 #include "expr.h"
48 #include "tree-dfa.h"
49 #include "tree-pass.h"
50 #include "langhooks.h"
51 #include "domwalk.h"
52 #include "cfgloop.h"
53 #include "tree-data-ref.h"
54 #include "gimple-pretty-print.h"
55 #include "insn-codes.h"
56 #include "optabs.h"
57 #include "tree-scalar-evolution.h"
58 #include "tree-inline.h"
59
60 static unsigned int tree_ssa_phiopt_worker (bool, bool);
61 static bool conditional_replacement (basic_block, basic_block,
62 edge, edge, gphi *, tree, tree);
63 static int value_replacement (basic_block, basic_block,
64 edge, edge, gimple, tree, tree);
65 static bool minmax_replacement (basic_block, basic_block,
66 edge, edge, gimple, tree, tree);
67 static bool abs_replacement (basic_block, basic_block,
68 edge, edge, gimple, tree, tree);
69 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
70 hash_set<tree> *);
71 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
72 static hash_set<tree> * get_non_trapping ();
73 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
74 static void hoist_adjacent_loads (basic_block, basic_block,
75 basic_block, basic_block);
76 static bool gate_hoist_loads (void);
77
78 /* This pass tries to transform conditional stores into unconditional
79 ones, enabling further simplifications with the simpler then and else
80 blocks. In particular it replaces this:
81
82 bb0:
83 if (cond) goto bb2; else goto bb1;
84 bb1:
85 *p = RHS;
86 bb2:
87
88 with
89
90 bb0:
91 if (cond) goto bb1; else goto bb2;
92 bb1:
93 condtmp' = *p;
94 bb2:
95 condtmp = PHI <RHS, condtmp'>
96 *p = condtmp;
97
98 This transformation can only be done under several constraints,
99 documented below. It also replaces:
100
101 bb0:
102 if (cond) goto bb2; else goto bb1;
103 bb1:
104 *p = RHS1;
105 goto bb3;
106 bb2:
107 *p = RHS2;
108 bb3:
109
110 with
111
112 bb0:
113 if (cond) goto bb3; else goto bb1;
114 bb1:
115 bb3:
116 condtmp = PHI <RHS1, RHS2>
117 *p = condtmp; */
118
119 static unsigned int
120 tree_ssa_cs_elim (void)
121 {
122 unsigned todo;
123 /* ??? We are not interested in loop related info, but the following
124 will create it, ICEing as we didn't init loops with pre-headers.
125 An interfacing issue of find_data_references_in_bb. */
126 loop_optimizer_init (LOOPS_NORMAL);
127 scev_initialize ();
128 todo = tree_ssa_phiopt_worker (true, false);
129 scev_finalize ();
130 loop_optimizer_finalize ();
131 return todo;
132 }
133
134 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
135
136 static gphi *
137 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
138 {
139 gimple_stmt_iterator i;
140 gphi *phi = NULL;
141 if (gimple_seq_singleton_p (seq))
142 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
143 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
144 {
145 gphi *p = as_a <gphi *> (gsi_stmt (i));
146 /* If the PHI arguments are equal then we can skip this PHI. */
147 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
148 gimple_phi_arg_def (p, e1->dest_idx)))
149 continue;
150
151 /* If we already have a PHI that has the two edge arguments are
152 different, then return it is not a singleton for these PHIs. */
153 if (phi)
154 return NULL;
155
156 phi = p;
157 }
158 return phi;
159 }
160
161 /* The core routine of conditional store replacement and normal
162 phi optimizations. Both share much of the infrastructure in how
163 to match applicable basic block patterns. DO_STORE_ELIM is true
164 when we want to do conditional store replacement, false otherwise.
165 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
166 of diamond control flow patterns, false otherwise. */
167 static unsigned int
168 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
169 {
170 basic_block bb;
171 basic_block *bb_order;
172 unsigned n, i;
173 bool cfgchanged = false;
174 hash_set<tree> *nontrap = 0;
175
176 if (do_store_elim)
177 /* Calculate the set of non-trapping memory accesses. */
178 nontrap = get_non_trapping ();
179
180 /* Search every basic block for COND_EXPR we may be able to optimize.
181
182 We walk the blocks in order that guarantees that a block with
183 a single predecessor is processed before the predecessor.
184 This ensures that we collapse inner ifs before visiting the
185 outer ones, and also that we do not try to visit a removed
186 block. */
187 bb_order = single_pred_before_succ_order ();
188 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
189
190 for (i = 0; i < n; i++)
191 {
192 gimple cond_stmt;
193 gphi *phi;
194 basic_block bb1, bb2;
195 edge e1, e2;
196 tree arg0, arg1;
197
198 bb = bb_order[i];
199
200 cond_stmt = last_stmt (bb);
201 /* Check to see if the last statement is a GIMPLE_COND. */
202 if (!cond_stmt
203 || gimple_code (cond_stmt) != GIMPLE_COND)
204 continue;
205
206 e1 = EDGE_SUCC (bb, 0);
207 bb1 = e1->dest;
208 e2 = EDGE_SUCC (bb, 1);
209 bb2 = e2->dest;
210
211 /* We cannot do the optimization on abnormal edges. */
212 if ((e1->flags & EDGE_ABNORMAL) != 0
213 || (e2->flags & EDGE_ABNORMAL) != 0)
214 continue;
215
216 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
217 if (EDGE_COUNT (bb1->succs) == 0
218 || bb2 == NULL
219 || EDGE_COUNT (bb2->succs) == 0)
220 continue;
221
222 /* Find the bb which is the fall through to the other. */
223 if (EDGE_SUCC (bb1, 0)->dest == bb2)
224 ;
225 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
226 {
227 std::swap (bb1, bb2);
228 std::swap (e1, e2);
229 }
230 else if (do_store_elim
231 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
232 {
233 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
234
235 if (!single_succ_p (bb1)
236 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
237 || !single_succ_p (bb2)
238 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
239 || EDGE_COUNT (bb3->preds) != 2)
240 continue;
241 if (cond_if_else_store_replacement (bb1, bb2, bb3))
242 cfgchanged = true;
243 continue;
244 }
245 else if (do_hoist_loads
246 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
247 {
248 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
249
250 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
251 && single_succ_p (bb1)
252 && single_succ_p (bb2)
253 && single_pred_p (bb1)
254 && single_pred_p (bb2)
255 && EDGE_COUNT (bb->succs) == 2
256 && EDGE_COUNT (bb3->preds) == 2
257 /* If one edge or the other is dominant, a conditional move
258 is likely to perform worse than the well-predicted branch. */
259 && !predictable_edge_p (EDGE_SUCC (bb, 0))
260 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
261 hoist_adjacent_loads (bb, bb1, bb2, bb3);
262 continue;
263 }
264 else
265 continue;
266
267 e1 = EDGE_SUCC (bb1, 0);
268
269 /* Make sure that bb1 is just a fall through. */
270 if (!single_succ_p (bb1)
271 || (e1->flags & EDGE_FALLTHRU) == 0)
272 continue;
273
274 /* Also make sure that bb1 only have one predecessor and that it
275 is bb. */
276 if (!single_pred_p (bb1)
277 || single_pred (bb1) != bb)
278 continue;
279
280 if (do_store_elim)
281 {
282 /* bb1 is the middle block, bb2 the join block, bb the split block,
283 e1 the fallthrough edge from bb1 to bb2. We can't do the
284 optimization if the join block has more than two predecessors. */
285 if (EDGE_COUNT (bb2->preds) > 2)
286 continue;
287 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
288 cfgchanged = true;
289 }
290 else
291 {
292 gimple_seq phis = phi_nodes (bb2);
293 gimple_stmt_iterator gsi;
294 bool candorest = true;
295
296 /* Value replacement can work with more than one PHI
297 so try that first. */
298 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
299 {
300 phi = as_a <gphi *> (gsi_stmt (gsi));
301 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
302 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
303 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
304 {
305 candorest = false;
306 cfgchanged = true;
307 break;
308 }
309 }
310
311 if (!candorest)
312 continue;
313
314 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
315 if (!phi)
316 continue;
317
318 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
319 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
320
321 /* Something is wrong if we cannot find the arguments in the PHI
322 node. */
323 gcc_assert (arg0 != NULL && arg1 != NULL);
324
325 /* Do the replacement of conditional if it can be done. */
326 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
327 cfgchanged = true;
328 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
329 cfgchanged = true;
330 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
331 cfgchanged = true;
332 }
333 }
334
335 free (bb_order);
336
337 if (do_store_elim)
338 delete nontrap;
339 /* If the CFG has changed, we should cleanup the CFG. */
340 if (cfgchanged && do_store_elim)
341 {
342 /* In cond-store replacement we have added some loads on edges
343 and new VOPS (as we moved the store, and created a load). */
344 gsi_commit_edge_inserts ();
345 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
346 }
347 else if (cfgchanged)
348 return TODO_cleanup_cfg;
349 return 0;
350 }
351
352 /* Replace PHI node element whose edge is E in block BB with variable NEW.
353 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
354 is known to have two edges, one of which must reach BB). */
355
356 static void
357 replace_phi_edge_with_variable (basic_block cond_block,
358 edge e, gimple phi, tree new_tree)
359 {
360 basic_block bb = gimple_bb (phi);
361 basic_block block_to_remove;
362 gimple_stmt_iterator gsi;
363
364 /* Change the PHI argument to new. */
365 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
366
367 /* Remove the empty basic block. */
368 if (EDGE_SUCC (cond_block, 0)->dest == bb)
369 {
370 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
371 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
372 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
373 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
374
375 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
376 }
377 else
378 {
379 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
380 EDGE_SUCC (cond_block, 1)->flags
381 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
382 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
383 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
384
385 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
386 }
387 delete_basic_block (block_to_remove);
388
389 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
390 gsi = gsi_last_bb (cond_block);
391 gsi_remove (&gsi, true);
392
393 if (dump_file && (dump_flags & TDF_DETAILS))
394 fprintf (dump_file,
395 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
396 cond_block->index,
397 bb->index);
398 }
399
400 /* The function conditional_replacement does the main work of doing the
401 conditional replacement. Return true if the replacement is done.
402 Otherwise return false.
403 BB is the basic block where the replacement is going to be done on. ARG0
404 is argument 0 from PHI. Likewise for ARG1. */
405
406 static bool
407 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
408 edge e0, edge e1, gphi *phi,
409 tree arg0, tree arg1)
410 {
411 tree result;
412 gimple stmt;
413 gassign *new_stmt;
414 tree cond;
415 gimple_stmt_iterator gsi;
416 edge true_edge, false_edge;
417 tree new_var, new_var2;
418 bool neg;
419
420 /* FIXME: Gimplification of complex type is too hard for now. */
421 /* We aren't prepared to handle vectors either (and it is a question
422 if it would be worthwhile anyway). */
423 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
424 || POINTER_TYPE_P (TREE_TYPE (arg0)))
425 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
426 || POINTER_TYPE_P (TREE_TYPE (arg1))))
427 return false;
428
429 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
430 convert it to the conditional. */
431 if ((integer_zerop (arg0) && integer_onep (arg1))
432 || (integer_zerop (arg1) && integer_onep (arg0)))
433 neg = false;
434 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
435 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
436 neg = true;
437 else
438 return false;
439
440 if (!empty_block_p (middle_bb))
441 return false;
442
443 /* At this point we know we have a GIMPLE_COND with two successors.
444 One successor is BB, the other successor is an empty block which
445 falls through into BB.
446
447 There is a single PHI node at the join point (BB) and its arguments
448 are constants (0, 1) or (0, -1).
449
450 So, given the condition COND, and the two PHI arguments, we can
451 rewrite this PHI into non-branching code:
452
453 dest = (COND) or dest = COND'
454
455 We use the condition as-is if the argument associated with the
456 true edge has the value one or the argument associated with the
457 false edge as the value zero. Note that those conditions are not
458 the same since only one of the outgoing edges from the GIMPLE_COND
459 will directly reach BB and thus be associated with an argument. */
460
461 stmt = last_stmt (cond_bb);
462 result = PHI_RESULT (phi);
463
464 /* To handle special cases like floating point comparison, it is easier and
465 less error-prone to build a tree and gimplify it on the fly though it is
466 less efficient. */
467 cond = fold_build2_loc (gimple_location (stmt),
468 gimple_cond_code (stmt), boolean_type_node,
469 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
470
471 /* We need to know which is the true edge and which is the false
472 edge so that we know when to invert the condition below. */
473 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
474 if ((e0 == true_edge && integer_zerop (arg0))
475 || (e0 == false_edge && !integer_zerop (arg0))
476 || (e1 == true_edge && integer_zerop (arg1))
477 || (e1 == false_edge && !integer_zerop (arg1)))
478 cond = fold_build1_loc (gimple_location (stmt),
479 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
480
481 if (neg)
482 {
483 cond = fold_convert_loc (gimple_location (stmt),
484 TREE_TYPE (result), cond);
485 cond = fold_build1_loc (gimple_location (stmt),
486 NEGATE_EXPR, TREE_TYPE (cond), cond);
487 }
488
489 /* Insert our new statements at the end of conditional block before the
490 COND_STMT. */
491 gsi = gsi_for_stmt (stmt);
492 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
493 GSI_SAME_STMT);
494
495 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
496 {
497 source_location locus_0, locus_1;
498
499 new_var2 = make_ssa_name (TREE_TYPE (result));
500 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
501 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
502 new_var = new_var2;
503
504 /* Set the locus to the first argument, unless is doesn't have one. */
505 locus_0 = gimple_phi_arg_location (phi, 0);
506 locus_1 = gimple_phi_arg_location (phi, 1);
507 if (locus_0 == UNKNOWN_LOCATION)
508 locus_0 = locus_1;
509 gimple_set_location (new_stmt, locus_0);
510 }
511
512 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
513
514 /* Note that we optimized this PHI. */
515 return true;
516 }
517
518 /* Update *ARG which is defined in STMT so that it contains the
519 computed value if that seems profitable. Return true if the
520 statement is made dead by that rewriting. */
521
522 static bool
523 jump_function_from_stmt (tree *arg, gimple stmt)
524 {
525 enum tree_code code = gimple_assign_rhs_code (stmt);
526 if (code == ADDR_EXPR)
527 {
528 /* For arg = &p->i transform it to p, if possible. */
529 tree rhs1 = gimple_assign_rhs1 (stmt);
530 HOST_WIDE_INT offset;
531 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
532 &offset);
533 if (tem
534 && TREE_CODE (tem) == MEM_REF
535 && (mem_ref_offset (tem) + offset) == 0)
536 {
537 *arg = TREE_OPERAND (tem, 0);
538 return true;
539 }
540 }
541 /* TODO: Much like IPA-CP jump-functions we want to handle constant
542 additions symbolically here, and we'd need to update the comparison
543 code that compares the arg + cst tuples in our caller. For now the
544 code above exactly handles the VEC_BASE pattern from vec.h. */
545 return false;
546 }
547
548 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
549 of the form SSA_NAME NE 0.
550
551 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
552 the two input values of the EQ_EXPR match arg0 and arg1.
553
554 If so update *code and return TRUE. Otherwise return FALSE. */
555
556 static bool
557 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
558 enum tree_code *code, const_tree rhs)
559 {
560 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
561 statement. */
562 if (TREE_CODE (rhs) == SSA_NAME)
563 {
564 gimple def1 = SSA_NAME_DEF_STMT (rhs);
565
566 /* Verify the defining statement has an EQ_EXPR on the RHS. */
567 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
568 {
569 /* Finally verify the source operands of the EQ_EXPR are equal
570 to arg0 and arg1. */
571 tree op0 = gimple_assign_rhs1 (def1);
572 tree op1 = gimple_assign_rhs2 (def1);
573 if ((operand_equal_for_phi_arg_p (arg0, op0)
574 && operand_equal_for_phi_arg_p (arg1, op1))
575 || (operand_equal_for_phi_arg_p (arg0, op1)
576 && operand_equal_for_phi_arg_p (arg1, op0)))
577 {
578 /* We will perform the optimization. */
579 *code = gimple_assign_rhs_code (def1);
580 return true;
581 }
582 }
583 }
584 return false;
585 }
586
587 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
588
589 Also return TRUE if arg0/arg1 are equal to the source arguments of a
590 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
591
592 Return FALSE otherwise. */
593
594 static bool
595 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
596 enum tree_code *code, gimple cond)
597 {
598 gimple def;
599 tree lhs = gimple_cond_lhs (cond);
600 tree rhs = gimple_cond_rhs (cond);
601
602 if ((operand_equal_for_phi_arg_p (arg0, lhs)
603 && operand_equal_for_phi_arg_p (arg1, rhs))
604 || (operand_equal_for_phi_arg_p (arg1, lhs)
605 && operand_equal_for_phi_arg_p (arg0, rhs)))
606 return true;
607
608 /* Now handle more complex case where we have an EQ comparison
609 which feeds a BIT_AND_EXPR which feeds COND.
610
611 First verify that COND is of the form SSA_NAME NE 0. */
612 if (*code != NE_EXPR || !integer_zerop (rhs)
613 || TREE_CODE (lhs) != SSA_NAME)
614 return false;
615
616 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
617 def = SSA_NAME_DEF_STMT (lhs);
618 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
619 return false;
620
621 /* Now verify arg0/arg1 correspond to the source arguments of an
622 EQ comparison feeding the BIT_AND_EXPR. */
623
624 tree tmp = gimple_assign_rhs1 (def);
625 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
626 return true;
627
628 tmp = gimple_assign_rhs2 (def);
629 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
630 return true;
631
632 return false;
633 }
634
635 /* Returns true if ARG is a neutral element for operation CODE
636 on the RIGHT side. */
637
638 static bool
639 neutral_element_p (tree_code code, tree arg, bool right)
640 {
641 switch (code)
642 {
643 case PLUS_EXPR:
644 case BIT_IOR_EXPR:
645 case BIT_XOR_EXPR:
646 return integer_zerop (arg);
647
648 case LROTATE_EXPR:
649 case RROTATE_EXPR:
650 case LSHIFT_EXPR:
651 case RSHIFT_EXPR:
652 case MINUS_EXPR:
653 case POINTER_PLUS_EXPR:
654 return right && integer_zerop (arg);
655
656 case MULT_EXPR:
657 return integer_onep (arg);
658
659 case TRUNC_DIV_EXPR:
660 case CEIL_DIV_EXPR:
661 case FLOOR_DIV_EXPR:
662 case ROUND_DIV_EXPR:
663 case EXACT_DIV_EXPR:
664 return right && integer_onep (arg);
665
666 case BIT_AND_EXPR:
667 return integer_all_onesp (arg);
668
669 default:
670 return false;
671 }
672 }
673
674 /* Returns true if ARG is an absorbing element for operation CODE. */
675
676 static bool
677 absorbing_element_p (tree_code code, tree arg)
678 {
679 switch (code)
680 {
681 case BIT_IOR_EXPR:
682 return integer_all_onesp (arg);
683
684 case MULT_EXPR:
685 case BIT_AND_EXPR:
686 return integer_zerop (arg);
687
688 default:
689 return false;
690 }
691 }
692
693 /* The function value_replacement does the main work of doing the value
694 replacement. Return non-zero if the replacement is done. Otherwise return
695 0. If we remove the middle basic block, return 2.
696 BB is the basic block where the replacement is going to be done on. ARG0
697 is argument 0 from the PHI. Likewise for ARG1. */
698
699 static int
700 value_replacement (basic_block cond_bb, basic_block middle_bb,
701 edge e0, edge e1, gimple phi,
702 tree arg0, tree arg1)
703 {
704 gimple_stmt_iterator gsi;
705 gimple cond;
706 edge true_edge, false_edge;
707 enum tree_code code;
708 bool emtpy_or_with_defined_p = true;
709
710 /* If the type says honor signed zeros we cannot do this
711 optimization. */
712 if (HONOR_SIGNED_ZEROS (arg1))
713 return 0;
714
715 /* If there is a statement in MIDDLE_BB that defines one of the PHI
716 arguments, then adjust arg0 or arg1. */
717 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
718 while (!gsi_end_p (gsi))
719 {
720 gimple stmt = gsi_stmt (gsi);
721 tree lhs;
722 gsi_next_nondebug (&gsi);
723 if (!is_gimple_assign (stmt))
724 {
725 emtpy_or_with_defined_p = false;
726 continue;
727 }
728 /* Now try to adjust arg0 or arg1 according to the computation
729 in the statement. */
730 lhs = gimple_assign_lhs (stmt);
731 if (!(lhs == arg0
732 && jump_function_from_stmt (&arg0, stmt))
733 || (lhs == arg1
734 && jump_function_from_stmt (&arg1, stmt)))
735 emtpy_or_with_defined_p = false;
736 }
737
738 cond = last_stmt (cond_bb);
739 code = gimple_cond_code (cond);
740
741 /* This transformation is only valid for equality comparisons. */
742 if (code != NE_EXPR && code != EQ_EXPR)
743 return 0;
744
745 /* We need to know which is the true edge and which is the false
746 edge so that we know if have abs or negative abs. */
747 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
748
749 /* At this point we know we have a COND_EXPR with two successors.
750 One successor is BB, the other successor is an empty block which
751 falls through into BB.
752
753 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
754
755 There is a single PHI node at the join point (BB) with two arguments.
756
757 We now need to verify that the two arguments in the PHI node match
758 the two arguments to the equality comparison. */
759
760 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
761 {
762 edge e;
763 tree arg;
764
765 /* For NE_EXPR, we want to build an assignment result = arg where
766 arg is the PHI argument associated with the true edge. For
767 EQ_EXPR we want the PHI argument associated with the false edge. */
768 e = (code == NE_EXPR ? true_edge : false_edge);
769
770 /* Unfortunately, E may not reach BB (it may instead have gone to
771 OTHER_BLOCK). If that is the case, then we want the single outgoing
772 edge from OTHER_BLOCK which reaches BB and represents the desired
773 path from COND_BLOCK. */
774 if (e->dest == middle_bb)
775 e = single_succ_edge (e->dest);
776
777 /* Now we know the incoming edge to BB that has the argument for the
778 RHS of our new assignment statement. */
779 if (e0 == e)
780 arg = arg0;
781 else
782 arg = arg1;
783
784 /* If the middle basic block was empty or is defining the
785 PHI arguments and this is a single phi where the args are different
786 for the edges e0 and e1 then we can remove the middle basic block. */
787 if (emtpy_or_with_defined_p
788 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
789 e0, e1) == phi)
790 {
791 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
792 /* Note that we optimized this PHI. */
793 return 2;
794 }
795 else
796 {
797 /* Replace the PHI arguments with arg. */
798 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
799 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
800 if (dump_file && (dump_flags & TDF_DETAILS))
801 {
802 fprintf (dump_file, "PHI ");
803 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
804 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
805 cond_bb->index);
806 print_generic_expr (dump_file, arg, 0);
807 fprintf (dump_file, ".\n");
808 }
809 return 1;
810 }
811
812 }
813
814 /* Now optimize (x != 0) ? x + y : y to just y.
815 The following condition is too restrictive, there can easily be another
816 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
817 gimple assign = last_and_only_stmt (middle_bb);
818 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
819 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
820 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
821 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
822 return 0;
823
824 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
825 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
826 return 0;
827
828 /* Only transform if it removes the condition. */
829 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
830 return 0;
831
832 /* Size-wise, this is always profitable. */
833 if (optimize_bb_for_speed_p (cond_bb)
834 /* The special case is useless if it has a low probability. */
835 && profile_status_for_fn (cfun) != PROFILE_ABSENT
836 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
837 /* If assign is cheap, there is no point avoiding it. */
838 && estimate_num_insns (assign, &eni_time_weights)
839 >= 3 * estimate_num_insns (cond, &eni_time_weights))
840 return 0;
841
842 tree lhs = gimple_assign_lhs (assign);
843 tree rhs1 = gimple_assign_rhs1 (assign);
844 tree rhs2 = gimple_assign_rhs2 (assign);
845 enum tree_code code_def = gimple_assign_rhs_code (assign);
846 tree cond_lhs = gimple_cond_lhs (cond);
847 tree cond_rhs = gimple_cond_rhs (cond);
848
849 if (((code == NE_EXPR && e1 == false_edge)
850 || (code == EQ_EXPR && e1 == true_edge))
851 && arg0 == lhs
852 && ((arg1 == rhs1
853 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
854 && neutral_element_p (code_def, cond_rhs, true))
855 || (arg1 == rhs2
856 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
857 && neutral_element_p (code_def, cond_rhs, false))
858 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
859 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
860 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
861 && absorbing_element_p (code_def, cond_rhs))))
862 {
863 gsi = gsi_for_stmt (cond);
864 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
865 {
866 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
867 def-stmt in:
868 if (n_5 != 0)
869 goto <bb 3>;
870 else
871 goto <bb 4>;
872
873 <bb 3>:
874 # RANGE [0, 4294967294]
875 u_6 = n_5 + 4294967295;
876
877 <bb 4>:
878 # u_3 = PHI <u_6(3), 4294967295(2)> */
879 SSA_NAME_RANGE_INFO (lhs) = NULL;
880 SSA_NAME_ANTI_RANGE_P (lhs) = 0;
881 /* If available, we can use VR of phi result at least. */
882 tree phires = gimple_phi_result (phi);
883 struct range_info_def *phires_range_info
884 = SSA_NAME_RANGE_INFO (phires);
885 if (phires_range_info)
886 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
887 phires_range_info);
888 }
889 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
890 gsi_move_before (&gsi_from, &gsi);
891 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
892 return 2;
893 }
894
895 return 0;
896 }
897
898 /* The function minmax_replacement does the main work of doing the minmax
899 replacement. Return true if the replacement is done. Otherwise return
900 false.
901 BB is the basic block where the replacement is going to be done on. ARG0
902 is argument 0 from the PHI. Likewise for ARG1. */
903
904 static bool
905 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
906 edge e0, edge e1, gimple phi,
907 tree arg0, tree arg1)
908 {
909 tree result, type;
910 gcond *cond;
911 gassign *new_stmt;
912 edge true_edge, false_edge;
913 enum tree_code cmp, minmax, ass_code;
914 tree smaller, larger, arg_true, arg_false;
915 gimple_stmt_iterator gsi, gsi_from;
916
917 type = TREE_TYPE (PHI_RESULT (phi));
918
919 /* The optimization may be unsafe due to NaNs. */
920 if (HONOR_NANS (type))
921 return false;
922
923 cond = as_a <gcond *> (last_stmt (cond_bb));
924 cmp = gimple_cond_code (cond);
925
926 /* This transformation is only valid for order comparisons. Record which
927 operand is smaller/larger if the result of the comparison is true. */
928 if (cmp == LT_EXPR || cmp == LE_EXPR)
929 {
930 smaller = gimple_cond_lhs (cond);
931 larger = gimple_cond_rhs (cond);
932 }
933 else if (cmp == GT_EXPR || cmp == GE_EXPR)
934 {
935 smaller = gimple_cond_rhs (cond);
936 larger = gimple_cond_lhs (cond);
937 }
938 else
939 return false;
940
941 /* We need to know which is the true edge and which is the false
942 edge so that we know if have abs or negative abs. */
943 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
944
945 /* Forward the edges over the middle basic block. */
946 if (true_edge->dest == middle_bb)
947 true_edge = EDGE_SUCC (true_edge->dest, 0);
948 if (false_edge->dest == middle_bb)
949 false_edge = EDGE_SUCC (false_edge->dest, 0);
950
951 if (true_edge == e0)
952 {
953 gcc_assert (false_edge == e1);
954 arg_true = arg0;
955 arg_false = arg1;
956 }
957 else
958 {
959 gcc_assert (false_edge == e0);
960 gcc_assert (true_edge == e1);
961 arg_true = arg1;
962 arg_false = arg0;
963 }
964
965 if (empty_block_p (middle_bb))
966 {
967 if (operand_equal_for_phi_arg_p (arg_true, smaller)
968 && operand_equal_for_phi_arg_p (arg_false, larger))
969 {
970 /* Case
971
972 if (smaller < larger)
973 rslt = smaller;
974 else
975 rslt = larger; */
976 minmax = MIN_EXPR;
977 }
978 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
979 && operand_equal_for_phi_arg_p (arg_true, larger))
980 minmax = MAX_EXPR;
981 else
982 return false;
983 }
984 else
985 {
986 /* Recognize the following case, assuming d <= u:
987
988 if (a <= u)
989 b = MAX (a, d);
990 x = PHI <b, u>
991
992 This is equivalent to
993
994 b = MAX (a, d);
995 x = MIN (b, u); */
996
997 gimple assign = last_and_only_stmt (middle_bb);
998 tree lhs, op0, op1, bound;
999
1000 if (!assign
1001 || gimple_code (assign) != GIMPLE_ASSIGN)
1002 return false;
1003
1004 lhs = gimple_assign_lhs (assign);
1005 ass_code = gimple_assign_rhs_code (assign);
1006 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1007 return false;
1008 op0 = gimple_assign_rhs1 (assign);
1009 op1 = gimple_assign_rhs2 (assign);
1010
1011 if (true_edge->src == middle_bb)
1012 {
1013 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1014 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1015 return false;
1016
1017 if (operand_equal_for_phi_arg_p (arg_false, larger))
1018 {
1019 /* Case
1020
1021 if (smaller < larger)
1022 {
1023 r' = MAX_EXPR (smaller, bound)
1024 }
1025 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1026 if (ass_code != MAX_EXPR)
1027 return false;
1028
1029 minmax = MIN_EXPR;
1030 if (operand_equal_for_phi_arg_p (op0, smaller))
1031 bound = op1;
1032 else if (operand_equal_for_phi_arg_p (op1, smaller))
1033 bound = op0;
1034 else
1035 return false;
1036
1037 /* We need BOUND <= LARGER. */
1038 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1039 bound, larger)))
1040 return false;
1041 }
1042 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1043 {
1044 /* Case
1045
1046 if (smaller < larger)
1047 {
1048 r' = MIN_EXPR (larger, bound)
1049 }
1050 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1051 if (ass_code != MIN_EXPR)
1052 return false;
1053
1054 minmax = MAX_EXPR;
1055 if (operand_equal_for_phi_arg_p (op0, larger))
1056 bound = op1;
1057 else if (operand_equal_for_phi_arg_p (op1, larger))
1058 bound = op0;
1059 else
1060 return false;
1061
1062 /* We need BOUND >= SMALLER. */
1063 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1064 bound, smaller)))
1065 return false;
1066 }
1067 else
1068 return false;
1069 }
1070 else
1071 {
1072 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1073 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1074 return false;
1075
1076 if (operand_equal_for_phi_arg_p (arg_true, larger))
1077 {
1078 /* Case
1079
1080 if (smaller > larger)
1081 {
1082 r' = MIN_EXPR (smaller, bound)
1083 }
1084 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1085 if (ass_code != MIN_EXPR)
1086 return false;
1087
1088 minmax = MAX_EXPR;
1089 if (operand_equal_for_phi_arg_p (op0, smaller))
1090 bound = op1;
1091 else if (operand_equal_for_phi_arg_p (op1, smaller))
1092 bound = op0;
1093 else
1094 return false;
1095
1096 /* We need BOUND >= LARGER. */
1097 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1098 bound, larger)))
1099 return false;
1100 }
1101 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1102 {
1103 /* Case
1104
1105 if (smaller > larger)
1106 {
1107 r' = MAX_EXPR (larger, bound)
1108 }
1109 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1110 if (ass_code != MAX_EXPR)
1111 return false;
1112
1113 minmax = MIN_EXPR;
1114 if (operand_equal_for_phi_arg_p (op0, larger))
1115 bound = op1;
1116 else if (operand_equal_for_phi_arg_p (op1, larger))
1117 bound = op0;
1118 else
1119 return false;
1120
1121 /* We need BOUND <= SMALLER. */
1122 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1123 bound, smaller)))
1124 return false;
1125 }
1126 else
1127 return false;
1128 }
1129
1130 /* Move the statement from the middle block. */
1131 gsi = gsi_last_bb (cond_bb);
1132 gsi_from = gsi_last_nondebug_bb (middle_bb);
1133 gsi_move_before (&gsi_from, &gsi);
1134 }
1135
1136 /* Emit the statement to compute min/max. */
1137 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1138 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1139 gsi = gsi_last_bb (cond_bb);
1140 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1141
1142 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1143 return true;
1144 }
1145
1146 /* The function absolute_replacement does the main work of doing the absolute
1147 replacement. Return true if the replacement is done. Otherwise return
1148 false.
1149 bb is the basic block where the replacement is going to be done on. arg0
1150 is argument 0 from the phi. Likewise for arg1. */
1151
1152 static bool
1153 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1154 edge e0 ATTRIBUTE_UNUSED, edge e1,
1155 gimple phi, tree arg0, tree arg1)
1156 {
1157 tree result;
1158 gassign *new_stmt;
1159 gimple cond;
1160 gimple_stmt_iterator gsi;
1161 edge true_edge, false_edge;
1162 gimple assign;
1163 edge e;
1164 tree rhs, lhs;
1165 bool negate;
1166 enum tree_code cond_code;
1167
1168 /* If the type says honor signed zeros we cannot do this
1169 optimization. */
1170 if (HONOR_SIGNED_ZEROS (arg1))
1171 return false;
1172
1173 /* OTHER_BLOCK must have only one executable statement which must have the
1174 form arg0 = -arg1 or arg1 = -arg0. */
1175
1176 assign = last_and_only_stmt (middle_bb);
1177 /* If we did not find the proper negation assignment, then we can not
1178 optimize. */
1179 if (assign == NULL)
1180 return false;
1181
1182 /* If we got here, then we have found the only executable statement
1183 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1184 arg1 = -arg0, then we can not optimize. */
1185 if (gimple_code (assign) != GIMPLE_ASSIGN)
1186 return false;
1187
1188 lhs = gimple_assign_lhs (assign);
1189
1190 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1191 return false;
1192
1193 rhs = gimple_assign_rhs1 (assign);
1194
1195 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1196 if (!(lhs == arg0 && rhs == arg1)
1197 && !(lhs == arg1 && rhs == arg0))
1198 return false;
1199
1200 cond = last_stmt (cond_bb);
1201 result = PHI_RESULT (phi);
1202
1203 /* Only relationals comparing arg[01] against zero are interesting. */
1204 cond_code = gimple_cond_code (cond);
1205 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1206 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1207 return false;
1208
1209 /* Make sure the conditional is arg[01] OP y. */
1210 if (gimple_cond_lhs (cond) != rhs)
1211 return false;
1212
1213 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1214 ? real_zerop (gimple_cond_rhs (cond))
1215 : integer_zerop (gimple_cond_rhs (cond)))
1216 ;
1217 else
1218 return false;
1219
1220 /* We need to know which is the true edge and which is the false
1221 edge so that we know if have abs or negative abs. */
1222 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1223
1224 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1225 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1226 the false edge goes to OTHER_BLOCK. */
1227 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1228 e = true_edge;
1229 else
1230 e = false_edge;
1231
1232 if (e->dest == middle_bb)
1233 negate = true;
1234 else
1235 negate = false;
1236
1237 result = duplicate_ssa_name (result, NULL);
1238
1239 if (negate)
1240 lhs = make_ssa_name (TREE_TYPE (result));
1241 else
1242 lhs = result;
1243
1244 /* Build the modify expression with abs expression. */
1245 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1246
1247 gsi = gsi_last_bb (cond_bb);
1248 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1249
1250 if (negate)
1251 {
1252 /* Get the right GSI. We want to insert after the recently
1253 added ABS_EXPR statement (which we know is the first statement
1254 in the block. */
1255 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1256
1257 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1258 }
1259
1260 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1261
1262 /* Note that we optimized this PHI. */
1263 return true;
1264 }
1265
1266 /* Auxiliary functions to determine the set of memory accesses which
1267 can't trap because they are preceded by accesses to the same memory
1268 portion. We do that for MEM_REFs, so we only need to track
1269 the SSA_NAME of the pointer indirectly referenced. The algorithm
1270 simply is a walk over all instructions in dominator order. When
1271 we see an MEM_REF we determine if we've already seen a same
1272 ref anywhere up to the root of the dominator tree. If we do the
1273 current access can't trap. If we don't see any dominating access
1274 the current access might trap, but might also make later accesses
1275 non-trapping, so we remember it. We need to be careful with loads
1276 or stores, for instance a load might not trap, while a store would,
1277 so if we see a dominating read access this doesn't mean that a later
1278 write access would not trap. Hence we also need to differentiate the
1279 type of access(es) seen.
1280
1281 ??? We currently are very conservative and assume that a load might
1282 trap even if a store doesn't (write-only memory). This probably is
1283 overly conservative. */
1284
1285 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1286 through it was seen, which would constitute a no-trap region for
1287 same accesses. */
1288 struct name_to_bb
1289 {
1290 unsigned int ssa_name_ver;
1291 unsigned int phase;
1292 bool store;
1293 HOST_WIDE_INT offset, size;
1294 basic_block bb;
1295 };
1296
1297 /* Hashtable helpers. */
1298
1299 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1300 {
1301 static inline hashval_t hash (const name_to_bb *);
1302 static inline bool equal (const name_to_bb *, const name_to_bb *);
1303 };
1304
1305 /* Used for quick clearing of the hash-table when we see calls.
1306 Hash entries with phase < nt_call_phase are invalid. */
1307 static unsigned int nt_call_phase;
1308
1309 /* The hash function. */
1310
1311 inline hashval_t
1312 ssa_names_hasher::hash (const name_to_bb *n)
1313 {
1314 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1315 ^ (n->offset << 6) ^ (n->size << 3);
1316 }
1317
1318 /* The equality function of *P1 and *P2. */
1319
1320 inline bool
1321 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1322 {
1323 return n1->ssa_name_ver == n2->ssa_name_ver
1324 && n1->store == n2->store
1325 && n1->offset == n2->offset
1326 && n1->size == n2->size;
1327 }
1328
1329 class nontrapping_dom_walker : public dom_walker
1330 {
1331 public:
1332 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1333 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1334
1335 virtual void before_dom_children (basic_block);
1336 virtual void after_dom_children (basic_block);
1337
1338 private:
1339
1340 /* We see the expression EXP in basic block BB. If it's an interesting
1341 expression (an MEM_REF through an SSA_NAME) possibly insert the
1342 expression into the set NONTRAP or the hash table of seen expressions.
1343 STORE is true if this expression is on the LHS, otherwise it's on
1344 the RHS. */
1345 void add_or_mark_expr (basic_block, tree, bool);
1346
1347 hash_set<tree> *m_nontrapping;
1348
1349 /* The hash table for remembering what we've seen. */
1350 hash_table<ssa_names_hasher> m_seen_ssa_names;
1351 };
1352
1353 /* Called by walk_dominator_tree, when entering the block BB. */
1354 void
1355 nontrapping_dom_walker::before_dom_children (basic_block bb)
1356 {
1357 edge e;
1358 edge_iterator ei;
1359 gimple_stmt_iterator gsi;
1360
1361 /* If we haven't seen all our predecessors, clear the hash-table. */
1362 FOR_EACH_EDGE (e, ei, bb->preds)
1363 if ((((size_t)e->src->aux) & 2) == 0)
1364 {
1365 nt_call_phase++;
1366 break;
1367 }
1368
1369 /* Mark this BB as being on the path to dominator root and as visited. */
1370 bb->aux = (void*)(1 | 2);
1371
1372 /* And walk the statements in order. */
1373 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1374 {
1375 gimple stmt = gsi_stmt (gsi);
1376
1377 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1378 nt_call_phase++;
1379 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1380 {
1381 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1382 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1383 }
1384 }
1385 }
1386
1387 /* Called by walk_dominator_tree, when basic block BB is exited. */
1388 void
1389 nontrapping_dom_walker::after_dom_children (basic_block bb)
1390 {
1391 /* This BB isn't on the path to dominator root anymore. */
1392 bb->aux = (void*)2;
1393 }
1394
1395 /* We see the expression EXP in basic block BB. If it's an interesting
1396 expression (an MEM_REF through an SSA_NAME) possibly insert the
1397 expression into the set NONTRAP or the hash table of seen expressions.
1398 STORE is true if this expression is on the LHS, otherwise it's on
1399 the RHS. */
1400 void
1401 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1402 {
1403 HOST_WIDE_INT size;
1404
1405 if (TREE_CODE (exp) == MEM_REF
1406 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1407 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1408 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1409 {
1410 tree name = TREE_OPERAND (exp, 0);
1411 struct name_to_bb map;
1412 name_to_bb **slot;
1413 struct name_to_bb *n2bb;
1414 basic_block found_bb = 0;
1415
1416 /* Try to find the last seen MEM_REF through the same
1417 SSA_NAME, which can trap. */
1418 map.ssa_name_ver = SSA_NAME_VERSION (name);
1419 map.phase = 0;
1420 map.bb = 0;
1421 map.store = store;
1422 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1423 map.size = size;
1424
1425 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1426 n2bb = *slot;
1427 if (n2bb && n2bb->phase >= nt_call_phase)
1428 found_bb = n2bb->bb;
1429
1430 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1431 (it's in a basic block on the path from us to the dominator root)
1432 then we can't trap. */
1433 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1434 {
1435 m_nontrapping->add (exp);
1436 }
1437 else
1438 {
1439 /* EXP might trap, so insert it into the hash table. */
1440 if (n2bb)
1441 {
1442 n2bb->phase = nt_call_phase;
1443 n2bb->bb = bb;
1444 }
1445 else
1446 {
1447 n2bb = XNEW (struct name_to_bb);
1448 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1449 n2bb->phase = nt_call_phase;
1450 n2bb->bb = bb;
1451 n2bb->store = store;
1452 n2bb->offset = map.offset;
1453 n2bb->size = size;
1454 *slot = n2bb;
1455 }
1456 }
1457 }
1458 }
1459
1460 /* This is the entry point of gathering non trapping memory accesses.
1461 It will do a dominator walk over the whole function, and it will
1462 make use of the bb->aux pointers. It returns a set of trees
1463 (the MEM_REFs itself) which can't trap. */
1464 static hash_set<tree> *
1465 get_non_trapping (void)
1466 {
1467 nt_call_phase = 0;
1468 hash_set<tree> *nontrap = new hash_set<tree>;
1469 /* We're going to do a dominator walk, so ensure that we have
1470 dominance information. */
1471 calculate_dominance_info (CDI_DOMINATORS);
1472
1473 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1474 .walk (cfun->cfg->x_entry_block_ptr);
1475
1476 clear_aux_for_blocks ();
1477 return nontrap;
1478 }
1479
1480 /* Do the main work of conditional store replacement. We already know
1481 that the recognized pattern looks like so:
1482
1483 split:
1484 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1485 MIDDLE_BB:
1486 something
1487 fallthrough (edge E0)
1488 JOIN_BB:
1489 some more
1490
1491 We check that MIDDLE_BB contains only one store, that that store
1492 doesn't trap (not via NOTRAP, but via checking if an access to the same
1493 memory location dominates us) and that the store has a "simple" RHS. */
1494
1495 static bool
1496 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1497 edge e0, edge e1, hash_set<tree> *nontrap)
1498 {
1499 gimple assign = last_and_only_stmt (middle_bb);
1500 tree lhs, rhs, name, name2;
1501 gphi *newphi;
1502 gassign *new_stmt;
1503 gimple_stmt_iterator gsi;
1504 source_location locus;
1505
1506 /* Check if middle_bb contains of only one store. */
1507 if (!assign
1508 || !gimple_assign_single_p (assign)
1509 || gimple_has_volatile_ops (assign))
1510 return false;
1511
1512 locus = gimple_location (assign);
1513 lhs = gimple_assign_lhs (assign);
1514 rhs = gimple_assign_rhs1 (assign);
1515 if (TREE_CODE (lhs) != MEM_REF
1516 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1517 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1518 return false;
1519
1520 /* Prove that we can move the store down. We could also check
1521 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1522 whose value is not available readily, which we want to avoid. */
1523 if (!nontrap->contains (lhs))
1524 return false;
1525
1526 /* Now we've checked the constraints, so do the transformation:
1527 1) Remove the single store. */
1528 gsi = gsi_for_stmt (assign);
1529 unlink_stmt_vdef (assign);
1530 gsi_remove (&gsi, true);
1531 release_defs (assign);
1532
1533 /* 2) Insert a load from the memory of the store to the temporary
1534 on the edge which did not contain the store. */
1535 lhs = unshare_expr (lhs);
1536 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1537 new_stmt = gimple_build_assign (name, lhs);
1538 gimple_set_location (new_stmt, locus);
1539 gsi_insert_on_edge (e1, new_stmt);
1540
1541 /* 3) Create a PHI node at the join block, with one argument
1542 holding the old RHS, and the other holding the temporary
1543 where we stored the old memory contents. */
1544 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1545 newphi = create_phi_node (name2, join_bb);
1546 add_phi_arg (newphi, rhs, e0, locus);
1547 add_phi_arg (newphi, name, e1, locus);
1548
1549 lhs = unshare_expr (lhs);
1550 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1551
1552 /* 4) Insert that PHI node. */
1553 gsi = gsi_after_labels (join_bb);
1554 if (gsi_end_p (gsi))
1555 {
1556 gsi = gsi_last_bb (join_bb);
1557 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1558 }
1559 else
1560 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1561
1562 return true;
1563 }
1564
1565 /* Do the main work of conditional store replacement. */
1566
1567 static bool
1568 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1569 basic_block join_bb, gimple then_assign,
1570 gimple else_assign)
1571 {
1572 tree lhs_base, lhs, then_rhs, else_rhs, name;
1573 source_location then_locus, else_locus;
1574 gimple_stmt_iterator gsi;
1575 gphi *newphi;
1576 gassign *new_stmt;
1577
1578 if (then_assign == NULL
1579 || !gimple_assign_single_p (then_assign)
1580 || gimple_clobber_p (then_assign)
1581 || gimple_has_volatile_ops (then_assign)
1582 || else_assign == NULL
1583 || !gimple_assign_single_p (else_assign)
1584 || gimple_clobber_p (else_assign)
1585 || gimple_has_volatile_ops (else_assign))
1586 return false;
1587
1588 lhs = gimple_assign_lhs (then_assign);
1589 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1590 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1591 return false;
1592
1593 lhs_base = get_base_address (lhs);
1594 if (lhs_base == NULL_TREE
1595 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1596 return false;
1597
1598 then_rhs = gimple_assign_rhs1 (then_assign);
1599 else_rhs = gimple_assign_rhs1 (else_assign);
1600 then_locus = gimple_location (then_assign);
1601 else_locus = gimple_location (else_assign);
1602
1603 /* Now we've checked the constraints, so do the transformation:
1604 1) Remove the stores. */
1605 gsi = gsi_for_stmt (then_assign);
1606 unlink_stmt_vdef (then_assign);
1607 gsi_remove (&gsi, true);
1608 release_defs (then_assign);
1609
1610 gsi = gsi_for_stmt (else_assign);
1611 unlink_stmt_vdef (else_assign);
1612 gsi_remove (&gsi, true);
1613 release_defs (else_assign);
1614
1615 /* 2) Create a PHI node at the join block, with one argument
1616 holding the old RHS, and the other holding the temporary
1617 where we stored the old memory contents. */
1618 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1619 newphi = create_phi_node (name, join_bb);
1620 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1621 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1622
1623 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1624
1625 /* 3) Insert that PHI node. */
1626 gsi = gsi_after_labels (join_bb);
1627 if (gsi_end_p (gsi))
1628 {
1629 gsi = gsi_last_bb (join_bb);
1630 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1631 }
1632 else
1633 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1634
1635 return true;
1636 }
1637
1638 /* Conditional store replacement. We already know
1639 that the recognized pattern looks like so:
1640
1641 split:
1642 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1643 THEN_BB:
1644 ...
1645 X = Y;
1646 ...
1647 goto JOIN_BB;
1648 ELSE_BB:
1649 ...
1650 X = Z;
1651 ...
1652 fallthrough (edge E0)
1653 JOIN_BB:
1654 some more
1655
1656 We check that it is safe to sink the store to JOIN_BB by verifying that
1657 there are no read-after-write or write-after-write dependencies in
1658 THEN_BB and ELSE_BB. */
1659
1660 static bool
1661 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1662 basic_block join_bb)
1663 {
1664 gimple then_assign = last_and_only_stmt (then_bb);
1665 gimple else_assign = last_and_only_stmt (else_bb);
1666 vec<data_reference_p> then_datarefs, else_datarefs;
1667 vec<ddr_p> then_ddrs, else_ddrs;
1668 gimple then_store, else_store;
1669 bool found, ok = false, res;
1670 struct data_dependence_relation *ddr;
1671 data_reference_p then_dr, else_dr;
1672 int i, j;
1673 tree then_lhs, else_lhs;
1674 basic_block blocks[3];
1675
1676 if (MAX_STORES_TO_SINK == 0)
1677 return false;
1678
1679 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1680 if (then_assign && else_assign)
1681 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1682 then_assign, else_assign);
1683
1684 /* Find data references. */
1685 then_datarefs.create (1);
1686 else_datarefs.create (1);
1687 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1688 == chrec_dont_know)
1689 || !then_datarefs.length ()
1690 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1691 == chrec_dont_know)
1692 || !else_datarefs.length ())
1693 {
1694 free_data_refs (then_datarefs);
1695 free_data_refs (else_datarefs);
1696 return false;
1697 }
1698
1699 /* Find pairs of stores with equal LHS. */
1700 auto_vec<gimple, 1> then_stores, else_stores;
1701 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1702 {
1703 if (DR_IS_READ (then_dr))
1704 continue;
1705
1706 then_store = DR_STMT (then_dr);
1707 then_lhs = gimple_get_lhs (then_store);
1708 if (then_lhs == NULL_TREE)
1709 continue;
1710 found = false;
1711
1712 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1713 {
1714 if (DR_IS_READ (else_dr))
1715 continue;
1716
1717 else_store = DR_STMT (else_dr);
1718 else_lhs = gimple_get_lhs (else_store);
1719 if (else_lhs == NULL_TREE)
1720 continue;
1721
1722 if (operand_equal_p (then_lhs, else_lhs, 0))
1723 {
1724 found = true;
1725 break;
1726 }
1727 }
1728
1729 if (!found)
1730 continue;
1731
1732 then_stores.safe_push (then_store);
1733 else_stores.safe_push (else_store);
1734 }
1735
1736 /* No pairs of stores found. */
1737 if (!then_stores.length ()
1738 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1739 {
1740 free_data_refs (then_datarefs);
1741 free_data_refs (else_datarefs);
1742 return false;
1743 }
1744
1745 /* Compute and check data dependencies in both basic blocks. */
1746 then_ddrs.create (1);
1747 else_ddrs.create (1);
1748 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1749 vNULL, false)
1750 || !compute_all_dependences (else_datarefs, &else_ddrs,
1751 vNULL, false))
1752 {
1753 free_dependence_relations (then_ddrs);
1754 free_dependence_relations (else_ddrs);
1755 free_data_refs (then_datarefs);
1756 free_data_refs (else_datarefs);
1757 return false;
1758 }
1759 blocks[0] = then_bb;
1760 blocks[1] = else_bb;
1761 blocks[2] = join_bb;
1762 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1763
1764 /* Check that there are no read-after-write or write-after-write dependencies
1765 in THEN_BB. */
1766 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1767 {
1768 struct data_reference *dra = DDR_A (ddr);
1769 struct data_reference *drb = DDR_B (ddr);
1770
1771 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1772 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1773 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1774 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1775 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1776 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1777 {
1778 free_dependence_relations (then_ddrs);
1779 free_dependence_relations (else_ddrs);
1780 free_data_refs (then_datarefs);
1781 free_data_refs (else_datarefs);
1782 return false;
1783 }
1784 }
1785
1786 /* Check that there are no read-after-write or write-after-write dependencies
1787 in ELSE_BB. */
1788 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1789 {
1790 struct data_reference *dra = DDR_A (ddr);
1791 struct data_reference *drb = DDR_B (ddr);
1792
1793 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1794 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1795 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1796 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1797 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1798 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1799 {
1800 free_dependence_relations (then_ddrs);
1801 free_dependence_relations (else_ddrs);
1802 free_data_refs (then_datarefs);
1803 free_data_refs (else_datarefs);
1804 return false;
1805 }
1806 }
1807
1808 /* Sink stores with same LHS. */
1809 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1810 {
1811 else_store = else_stores[i];
1812 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1813 then_store, else_store);
1814 ok = ok || res;
1815 }
1816
1817 free_dependence_relations (then_ddrs);
1818 free_dependence_relations (else_ddrs);
1819 free_data_refs (then_datarefs);
1820 free_data_refs (else_datarefs);
1821
1822 return ok;
1823 }
1824
1825 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1826
1827 static bool
1828 local_mem_dependence (gimple stmt, basic_block bb)
1829 {
1830 tree vuse = gimple_vuse (stmt);
1831 gimple def;
1832
1833 if (!vuse)
1834 return false;
1835
1836 def = SSA_NAME_DEF_STMT (vuse);
1837 return (def && gimple_bb (def) == bb);
1838 }
1839
1840 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1841 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1842 and BB3 rejoins control flow following BB1 and BB2, look for
1843 opportunities to hoist loads as follows. If BB3 contains a PHI of
1844 two loads, one each occurring in BB1 and BB2, and the loads are
1845 provably of adjacent fields in the same structure, then move both
1846 loads into BB0. Of course this can only be done if there are no
1847 dependencies preventing such motion.
1848
1849 One of the hoisted loads will always be speculative, so the
1850 transformation is currently conservative:
1851
1852 - The fields must be strictly adjacent.
1853 - The two fields must occupy a single memory block that is
1854 guaranteed to not cross a page boundary.
1855
1856 The last is difficult to prove, as such memory blocks should be
1857 aligned on the minimum of the stack alignment boundary and the
1858 alignment guaranteed by heap allocation interfaces. Thus we rely
1859 on a parameter for the alignment value.
1860
1861 Provided a good value is used for the last case, the first
1862 restriction could possibly be relaxed. */
1863
1864 static void
1865 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1866 basic_block bb2, basic_block bb3)
1867 {
1868 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1869 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1870 gphi_iterator gsi;
1871
1872 /* Walk the phis in bb3 looking for an opportunity. We are looking
1873 for phis of two SSA names, one each of which is defined in bb1 and
1874 bb2. */
1875 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1876 {
1877 gphi *phi_stmt = gsi.phi ();
1878 gimple def1, def2;
1879 tree arg1, arg2, ref1, ref2, field1, field2;
1880 tree tree_offset1, tree_offset2, tree_size2, next;
1881 int offset1, offset2, size2;
1882 unsigned align1;
1883 gimple_stmt_iterator gsi2;
1884 basic_block bb_for_def1, bb_for_def2;
1885
1886 if (gimple_phi_num_args (phi_stmt) != 2
1887 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1888 continue;
1889
1890 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1891 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1892
1893 if (TREE_CODE (arg1) != SSA_NAME
1894 || TREE_CODE (arg2) != SSA_NAME
1895 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1896 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1897 continue;
1898
1899 def1 = SSA_NAME_DEF_STMT (arg1);
1900 def2 = SSA_NAME_DEF_STMT (arg2);
1901
1902 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1903 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1904 continue;
1905
1906 /* Check the mode of the arguments to be sure a conditional move
1907 can be generated for it. */
1908 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1909 == CODE_FOR_nothing)
1910 continue;
1911
1912 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1913 if (!gimple_assign_single_p (def1)
1914 || !gimple_assign_single_p (def2)
1915 || gimple_has_volatile_ops (def1)
1916 || gimple_has_volatile_ops (def2))
1917 continue;
1918
1919 ref1 = gimple_assign_rhs1 (def1);
1920 ref2 = gimple_assign_rhs1 (def2);
1921
1922 if (TREE_CODE (ref1) != COMPONENT_REF
1923 || TREE_CODE (ref2) != COMPONENT_REF)
1924 continue;
1925
1926 /* The zeroth operand of the two component references must be
1927 identical. It is not sufficient to compare get_base_address of
1928 the two references, because this could allow for different
1929 elements of the same array in the two trees. It is not safe to
1930 assume that the existence of one array element implies the
1931 existence of a different one. */
1932 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1933 continue;
1934
1935 field1 = TREE_OPERAND (ref1, 1);
1936 field2 = TREE_OPERAND (ref2, 1);
1937
1938 /* Check for field adjacency, and ensure field1 comes first. */
1939 for (next = DECL_CHAIN (field1);
1940 next && TREE_CODE (next) != FIELD_DECL;
1941 next = DECL_CHAIN (next))
1942 ;
1943
1944 if (next != field2)
1945 {
1946 for (next = DECL_CHAIN (field2);
1947 next && TREE_CODE (next) != FIELD_DECL;
1948 next = DECL_CHAIN (next))
1949 ;
1950
1951 if (next != field1)
1952 continue;
1953
1954 std::swap (field1, field2);
1955 std::swap (def1, def2);
1956 }
1957
1958 bb_for_def1 = gimple_bb (def1);
1959 bb_for_def2 = gimple_bb (def2);
1960
1961 /* Check for proper alignment of the first field. */
1962 tree_offset1 = bit_position (field1);
1963 tree_offset2 = bit_position (field2);
1964 tree_size2 = DECL_SIZE (field2);
1965
1966 if (!tree_fits_uhwi_p (tree_offset1)
1967 || !tree_fits_uhwi_p (tree_offset2)
1968 || !tree_fits_uhwi_p (tree_size2))
1969 continue;
1970
1971 offset1 = tree_to_uhwi (tree_offset1);
1972 offset2 = tree_to_uhwi (tree_offset2);
1973 size2 = tree_to_uhwi (tree_size2);
1974 align1 = DECL_ALIGN (field1) % param_align_bits;
1975
1976 if (offset1 % BITS_PER_UNIT != 0)
1977 continue;
1978
1979 /* For profitability, the two field references should fit within
1980 a single cache line. */
1981 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1982 continue;
1983
1984 /* The two expressions cannot be dependent upon vdefs defined
1985 in bb1/bb2. */
1986 if (local_mem_dependence (def1, bb_for_def1)
1987 || local_mem_dependence (def2, bb_for_def2))
1988 continue;
1989
1990 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
1991 bb0. We hoist the first one first so that a cache miss is handled
1992 efficiently regardless of hardware cache-fill policy. */
1993 gsi2 = gsi_for_stmt (def1);
1994 gsi_move_to_bb_end (&gsi2, bb0);
1995 gsi2 = gsi_for_stmt (def2);
1996 gsi_move_to_bb_end (&gsi2, bb0);
1997
1998 if (dump_file && (dump_flags & TDF_DETAILS))
1999 {
2000 fprintf (dump_file,
2001 "\nHoisting adjacent loads from %d and %d into %d: \n",
2002 bb_for_def1->index, bb_for_def2->index, bb0->index);
2003 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2004 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2005 }
2006 }
2007 }
2008
2009 /* Determine whether we should attempt to hoist adjacent loads out of
2010 diamond patterns in pass_phiopt. Always hoist loads if
2011 -fhoist-adjacent-loads is specified and the target machine has
2012 both a conditional move instruction and a defined cache line size. */
2013
2014 static bool
2015 gate_hoist_loads (void)
2016 {
2017 return (flag_hoist_adjacent_loads == 1
2018 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2019 && HAVE_conditional_move);
2020 }
2021
2022 /* This pass tries to replaces an if-then-else block with an
2023 assignment. We have four kinds of transformations. Some of these
2024 transformations are also performed by the ifcvt RTL optimizer.
2025
2026 Conditional Replacement
2027 -----------------------
2028
2029 This transformation, implemented in conditional_replacement,
2030 replaces
2031
2032 bb0:
2033 if (cond) goto bb2; else goto bb1;
2034 bb1:
2035 bb2:
2036 x = PHI <0 (bb1), 1 (bb0), ...>;
2037
2038 with
2039
2040 bb0:
2041 x' = cond;
2042 goto bb2;
2043 bb2:
2044 x = PHI <x' (bb0), ...>;
2045
2046 We remove bb1 as it becomes unreachable. This occurs often due to
2047 gimplification of conditionals.
2048
2049 Value Replacement
2050 -----------------
2051
2052 This transformation, implemented in value_replacement, replaces
2053
2054 bb0:
2055 if (a != b) goto bb2; else goto bb1;
2056 bb1:
2057 bb2:
2058 x = PHI <a (bb1), b (bb0), ...>;
2059
2060 with
2061
2062 bb0:
2063 bb2:
2064 x = PHI <b (bb0), ...>;
2065
2066 This opportunity can sometimes occur as a result of other
2067 optimizations.
2068
2069
2070 Another case caught by value replacement looks like this:
2071
2072 bb0:
2073 t1 = a == CONST;
2074 t2 = b > c;
2075 t3 = t1 & t2;
2076 if (t3 != 0) goto bb1; else goto bb2;
2077 bb1:
2078 bb2:
2079 x = PHI (CONST, a)
2080
2081 Gets replaced with:
2082 bb0:
2083 bb2:
2084 t1 = a == CONST;
2085 t2 = b > c;
2086 t3 = t1 & t2;
2087 x = a;
2088
2089 ABS Replacement
2090 ---------------
2091
2092 This transformation, implemented in abs_replacement, replaces
2093
2094 bb0:
2095 if (a >= 0) goto bb2; else goto bb1;
2096 bb1:
2097 x = -a;
2098 bb2:
2099 x = PHI <x (bb1), a (bb0), ...>;
2100
2101 with
2102
2103 bb0:
2104 x' = ABS_EXPR< a >;
2105 bb2:
2106 x = PHI <x' (bb0), ...>;
2107
2108 MIN/MAX Replacement
2109 -------------------
2110
2111 This transformation, minmax_replacement replaces
2112
2113 bb0:
2114 if (a <= b) goto bb2; else goto bb1;
2115 bb1:
2116 bb2:
2117 x = PHI <b (bb1), a (bb0), ...>;
2118
2119 with
2120
2121 bb0:
2122 x' = MIN_EXPR (a, b)
2123 bb2:
2124 x = PHI <x' (bb0), ...>;
2125
2126 A similar transformation is done for MAX_EXPR.
2127
2128
2129 This pass also performs a fifth transformation of a slightly different
2130 flavor.
2131
2132 Adjacent Load Hoisting
2133 ----------------------
2134
2135 This transformation replaces
2136
2137 bb0:
2138 if (...) goto bb2; else goto bb1;
2139 bb1:
2140 x1 = (<expr>).field1;
2141 goto bb3;
2142 bb2:
2143 x2 = (<expr>).field2;
2144 bb3:
2145 # x = PHI <x1, x2>;
2146
2147 with
2148
2149 bb0:
2150 x1 = (<expr>).field1;
2151 x2 = (<expr>).field2;
2152 if (...) goto bb2; else goto bb1;
2153 bb1:
2154 goto bb3;
2155 bb2:
2156 bb3:
2157 # x = PHI <x1, x2>;
2158
2159 The purpose of this transformation is to enable generation of conditional
2160 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2161 the loads is speculative, the transformation is restricted to very
2162 specific cases to avoid introducing a page fault. We are looking for
2163 the common idiom:
2164
2165 if (...)
2166 x = y->left;
2167 else
2168 x = y->right;
2169
2170 where left and right are typically adjacent pointers in a tree structure. */
2171
2172 namespace {
2173
2174 const pass_data pass_data_phiopt =
2175 {
2176 GIMPLE_PASS, /* type */
2177 "phiopt", /* name */
2178 OPTGROUP_NONE, /* optinfo_flags */
2179 TV_TREE_PHIOPT, /* tv_id */
2180 ( PROP_cfg | PROP_ssa ), /* properties_required */
2181 0, /* properties_provided */
2182 0, /* properties_destroyed */
2183 0, /* todo_flags_start */
2184 0, /* todo_flags_finish */
2185 };
2186
2187 class pass_phiopt : public gimple_opt_pass
2188 {
2189 public:
2190 pass_phiopt (gcc::context *ctxt)
2191 : gimple_opt_pass (pass_data_phiopt, ctxt)
2192 {}
2193
2194 /* opt_pass methods: */
2195 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2196 virtual bool gate (function *) { return flag_ssa_phiopt; }
2197 virtual unsigned int execute (function *)
2198 {
2199 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2200 }
2201
2202 }; // class pass_phiopt
2203
2204 } // anon namespace
2205
2206 gimple_opt_pass *
2207 make_pass_phiopt (gcc::context *ctxt)
2208 {
2209 return new pass_phiopt (ctxt);
2210 }
2211
2212 namespace {
2213
2214 const pass_data pass_data_cselim =
2215 {
2216 GIMPLE_PASS, /* type */
2217 "cselim", /* name */
2218 OPTGROUP_NONE, /* optinfo_flags */
2219 TV_TREE_PHIOPT, /* tv_id */
2220 ( PROP_cfg | PROP_ssa ), /* properties_required */
2221 0, /* properties_provided */
2222 0, /* properties_destroyed */
2223 0, /* todo_flags_start */
2224 0, /* todo_flags_finish */
2225 };
2226
2227 class pass_cselim : public gimple_opt_pass
2228 {
2229 public:
2230 pass_cselim (gcc::context *ctxt)
2231 : gimple_opt_pass (pass_data_cselim, ctxt)
2232 {}
2233
2234 /* opt_pass methods: */
2235 virtual bool gate (function *) { return flag_tree_cselim; }
2236 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2237
2238 }; // class pass_cselim
2239
2240 } // anon namespace
2241
2242 gimple_opt_pass *
2243 make_pass_cselim (gcc::context *ctxt)
2244 {
2245 return new pass_cselim (ctxt);
2246 }