]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-propagate.c
re PR target/37170 (gcc.dg/weak/weak-1.c)
[thirdparty/gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "varray.h"
42 #include "vec.h"
43 #include "value-prof.h"
44 #include "gimple.h"
45
46 /* This file implements a generic value propagation engine based on
47 the same propagation used by the SSA-CCP algorithm [1].
48
49 Propagation is performed by simulating the execution of every
50 statement that produces the value being propagated. Simulation
51 proceeds as follows:
52
53 1- Initially, all edges of the CFG are marked not executable and
54 the CFG worklist is seeded with all the statements in the entry
55 basic block (block 0).
56
57 2- Every statement S is simulated with a call to the call-back
58 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
59 results:
60
61 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
62 interest and does not affect any of the work lists.
63
64 SSA_PROP_VARYING: The value produced by S cannot be determined
65 at compile time. Further simulation of S is not required.
66 If S is a conditional jump, all the outgoing edges for the
67 block are considered executable and added to the work
68 list.
69
70 SSA_PROP_INTERESTING: S produces a value that can be computed
71 at compile time. Its result can be propagated into the
72 statements that feed from S. Furthermore, if S is a
73 conditional jump, only the edge known to be taken is added
74 to the work list. Edges that are known not to execute are
75 never simulated.
76
77 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
78 return value from SSA_PROP_VISIT_PHI has the same semantics as
79 described in #2.
80
81 4- Three work lists are kept. Statements are only added to these
82 lists if they produce one of SSA_PROP_INTERESTING or
83 SSA_PROP_VARYING.
84
85 CFG_BLOCKS contains the list of blocks to be simulated.
86 Blocks are added to this list if their incoming edges are
87 found executable.
88
89 VARYING_SSA_EDGES contains the list of statements that feed
90 from statements that produce an SSA_PROP_VARYING result.
91 These are simulated first to speed up processing.
92
93 INTERESTING_SSA_EDGES contains the list of statements that
94 feed from statements that produce an SSA_PROP_INTERESTING
95 result.
96
97 5- Simulation terminates when all three work lists are drained.
98
99 Before calling ssa_propagate, it is important to clear
100 prop_simulate_again_p for all the statements in the program that
101 should be simulated. This initialization allows an implementation
102 to specify which statements should never be simulated.
103
104 It is also important to compute def-use information before calling
105 ssa_propagate.
106
107 References:
108
109 [1] Constant propagation with conditional branches,
110 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111
112 [2] Building an Optimizing Compiler,
113 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114
115 [3] Advanced Compiler Design and Implementation,
116 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117
118 /* Function pointers used to parameterize the propagation engine. */
119 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
120 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121
122 /* Keep track of statements that have been added to one of the SSA
123 edges worklists. This flag is used to avoid visiting statements
124 unnecessarily when draining an SSA edge worklist. If while
125 simulating a basic block, we find a statement with
126 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
127 processing from visiting it again.
128
129 NOTE: users of the propagation engine are not allowed to use
130 the GF_PLF_1 flag. */
131 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
132
133 /* A bitmap to keep track of executable blocks in the CFG. */
134 static sbitmap executable_blocks;
135
136 /* Array of control flow edges on the worklist. */
137 static VEC(basic_block,heap) *cfg_blocks;
138
139 static unsigned int cfg_blocks_num = 0;
140 static int cfg_blocks_tail;
141 static int cfg_blocks_head;
142
143 static sbitmap bb_in_list;
144
145 /* Worklist of SSA edges which will need reexamination as their
146 definition has changed. SSA edges are def-use edges in the SSA
147 web. For each D-U edge, we store the target statement or PHI node
148 U. */
149 static GTY(()) VEC(gimple,gc) *interesting_ssa_edges;
150
151 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
152 list of SSA edges is split into two. One contains all SSA edges
153 who need to be reexamined because their lattice value changed to
154 varying (this worklist), and the other contains all other SSA edges
155 to be reexamined (INTERESTING_SSA_EDGES).
156
157 Since most values in the program are VARYING, the ideal situation
158 is to move them to that lattice value as quickly as possible.
159 Thus, it doesn't make sense to process any other type of lattice
160 value until all VARYING values are propagated fully, which is one
161 thing using the VARYING worklist achieves. In addition, if we
162 don't use a separate worklist for VARYING edges, we end up with
163 situations where lattice values move from
164 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
165 static GTY(()) VEC(gimple,gc) *varying_ssa_edges;
166
167
168 /* Return true if the block worklist empty. */
169
170 static inline bool
171 cfg_blocks_empty_p (void)
172 {
173 return (cfg_blocks_num == 0);
174 }
175
176
177 /* Add a basic block to the worklist. The block must not be already
178 in the worklist, and it must not be the ENTRY or EXIT block. */
179
180 static void
181 cfg_blocks_add (basic_block bb)
182 {
183 bool head = false;
184
185 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
186 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
187
188 if (cfg_blocks_empty_p ())
189 {
190 cfg_blocks_tail = cfg_blocks_head = 0;
191 cfg_blocks_num = 1;
192 }
193 else
194 {
195 cfg_blocks_num++;
196 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
197 {
198 /* We have to grow the array now. Adjust to queue to occupy
199 the full space of the original array. We do not need to
200 initialize the newly allocated portion of the array
201 because we keep track of CFG_BLOCKS_HEAD and
202 CFG_BLOCKS_HEAD. */
203 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
204 cfg_blocks_head = 0;
205 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
206 }
207 /* Minor optimization: we prefer to see blocks with more
208 predecessors later, because there is more of a chance that
209 the incoming edges will be executable. */
210 else if (EDGE_COUNT (bb->preds)
211 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
212 cfg_blocks_head)->preds))
213 cfg_blocks_tail = ((cfg_blocks_tail + 1)
214 % VEC_length (basic_block, cfg_blocks));
215 else
216 {
217 if (cfg_blocks_head == 0)
218 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
219 --cfg_blocks_head;
220 head = true;
221 }
222 }
223
224 VEC_replace (basic_block, cfg_blocks,
225 head ? cfg_blocks_head : cfg_blocks_tail,
226 bb);
227 SET_BIT (bb_in_list, bb->index);
228 }
229
230
231 /* Remove a block from the worklist. */
232
233 static basic_block
234 cfg_blocks_get (void)
235 {
236 basic_block bb;
237
238 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
239
240 gcc_assert (!cfg_blocks_empty_p ());
241 gcc_assert (bb);
242
243 cfg_blocks_head = ((cfg_blocks_head + 1)
244 % VEC_length (basic_block, cfg_blocks));
245 --cfg_blocks_num;
246 RESET_BIT (bb_in_list, bb->index);
247
248 return bb;
249 }
250
251
252 /* We have just defined a new value for VAR. If IS_VARYING is true,
253 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
254 them to INTERESTING_SSA_EDGES. */
255
256 static void
257 add_ssa_edge (tree var, bool is_varying)
258 {
259 imm_use_iterator iter;
260 use_operand_p use_p;
261
262 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
263 {
264 gimple use_stmt = USE_STMT (use_p);
265
266 if (prop_simulate_again_p (use_stmt)
267 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
268 {
269 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
270 if (is_varying)
271 VEC_safe_push (gimple, gc, varying_ssa_edges, use_stmt);
272 else
273 VEC_safe_push (gimple, gc, interesting_ssa_edges, use_stmt);
274 }
275 }
276 }
277
278
279 /* Add edge E to the control flow worklist. */
280
281 static void
282 add_control_edge (edge e)
283 {
284 basic_block bb = e->dest;
285 if (bb == EXIT_BLOCK_PTR)
286 return;
287
288 /* If the edge had already been executed, skip it. */
289 if (e->flags & EDGE_EXECUTABLE)
290 return;
291
292 e->flags |= EDGE_EXECUTABLE;
293
294 /* If the block is already in the list, we're done. */
295 if (TEST_BIT (bb_in_list, bb->index))
296 return;
297
298 cfg_blocks_add (bb);
299
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
302 e->src->index, e->dest->index);
303 }
304
305
306 /* Simulate the execution of STMT and update the work lists accordingly. */
307
308 static void
309 simulate_stmt (gimple stmt)
310 {
311 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
312 edge taken_edge = NULL;
313 tree output_name = NULL_TREE;
314
315 /* Don't bother visiting statements that are already
316 considered varying by the propagator. */
317 if (!prop_simulate_again_p (stmt))
318 return;
319
320 if (gimple_code (stmt) == GIMPLE_PHI)
321 {
322 val = ssa_prop_visit_phi (stmt);
323 output_name = gimple_phi_result (stmt);
324 }
325 else
326 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
327
328 if (val == SSA_PROP_VARYING)
329 {
330 prop_set_simulate_again (stmt, false);
331
332 /* If the statement produced a new varying value, add the SSA
333 edges coming out of OUTPUT_NAME. */
334 if (output_name)
335 add_ssa_edge (output_name, true);
336
337 /* If STMT transfers control out of its basic block, add
338 all outgoing edges to the work list. */
339 if (stmt_ends_bb_p (stmt))
340 {
341 edge e;
342 edge_iterator ei;
343 basic_block bb = gimple_bb (stmt);
344 FOR_EACH_EDGE (e, ei, bb->succs)
345 add_control_edge (e);
346 }
347 }
348 else if (val == SSA_PROP_INTERESTING)
349 {
350 /* If the statement produced new value, add the SSA edges coming
351 out of OUTPUT_NAME. */
352 if (output_name)
353 add_ssa_edge (output_name, false);
354
355 /* If we know which edge is going to be taken out of this block,
356 add it to the CFG work list. */
357 if (taken_edge)
358 add_control_edge (taken_edge);
359 }
360 }
361
362 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
363 drain. This pops statements off the given WORKLIST and processes
364 them until there are no more statements on WORKLIST.
365 We take a pointer to WORKLIST because it may be reallocated when an
366 SSA edge is added to it in simulate_stmt. */
367
368 static void
369 process_ssa_edge_worklist (VEC(gimple,gc) **worklist)
370 {
371 /* Drain the entire worklist. */
372 while (VEC_length (gimple, *worklist) > 0)
373 {
374 basic_block bb;
375
376 /* Pull the statement to simulate off the worklist. */
377 gimple stmt = VEC_pop (gimple, *worklist);
378
379 /* If this statement was already visited by simulate_block, then
380 we don't need to visit it again here. */
381 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
382 continue;
383
384 /* STMT is no longer in a worklist. */
385 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
386
387 if (dump_file && (dump_flags & TDF_DETAILS))
388 {
389 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
390 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
391 }
392
393 bb = gimple_bb (stmt);
394
395 /* PHI nodes are always visited, regardless of whether or not
396 the destination block is executable. Otherwise, visit the
397 statement only if its block is marked executable. */
398 if (gimple_code (stmt) == GIMPLE_PHI
399 || TEST_BIT (executable_blocks, bb->index))
400 simulate_stmt (stmt);
401 }
402 }
403
404
405 /* Simulate the execution of BLOCK. Evaluate the statement associated
406 with each variable reference inside the block. */
407
408 static void
409 simulate_block (basic_block block)
410 {
411 gimple_stmt_iterator gsi;
412
413 /* There is nothing to do for the exit block. */
414 if (block == EXIT_BLOCK_PTR)
415 return;
416
417 if (dump_file && (dump_flags & TDF_DETAILS))
418 fprintf (dump_file, "\nSimulating block %d\n", block->index);
419
420 /* Always simulate PHI nodes, even if we have simulated this block
421 before. */
422 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
423 simulate_stmt (gsi_stmt (gsi));
424
425 /* If this is the first time we've simulated this block, then we
426 must simulate each of its statements. */
427 if (!TEST_BIT (executable_blocks, block->index))
428 {
429 gimple_stmt_iterator j;
430 unsigned int normal_edge_count;
431 edge e, normal_edge;
432 edge_iterator ei;
433
434 /* Note that we have simulated this block. */
435 SET_BIT (executable_blocks, block->index);
436
437 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
438 {
439 gimple stmt = gsi_stmt (j);
440
441 /* If this statement is already in the worklist then
442 "cancel" it. The reevaluation implied by the worklist
443 entry will produce the same value we generate here and
444 thus reevaluating it again from the worklist is
445 pointless. */
446 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
447 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
448
449 simulate_stmt (stmt);
450 }
451
452 /* We can not predict when abnormal edges will be executed, so
453 once a block is considered executable, we consider any
454 outgoing abnormal edges as executable.
455
456 At the same time, if this block has only one successor that is
457 reached by non-abnormal edges, then add that successor to the
458 worklist. */
459 normal_edge_count = 0;
460 normal_edge = NULL;
461 FOR_EACH_EDGE (e, ei, block->succs)
462 {
463 if (e->flags & EDGE_ABNORMAL)
464 add_control_edge (e);
465 else
466 {
467 normal_edge_count++;
468 normal_edge = e;
469 }
470 }
471
472 if (normal_edge_count == 1)
473 add_control_edge (normal_edge);
474 }
475 }
476
477
478 /* Initialize local data structures and work lists. */
479
480 static void
481 ssa_prop_init (void)
482 {
483 edge e;
484 edge_iterator ei;
485 basic_block bb;
486 size_t i;
487
488 /* Worklists of SSA edges. */
489 interesting_ssa_edges = VEC_alloc (gimple, gc, 20);
490 varying_ssa_edges = VEC_alloc (gimple, gc, 20);
491
492 executable_blocks = sbitmap_alloc (last_basic_block);
493 sbitmap_zero (executable_blocks);
494
495 bb_in_list = sbitmap_alloc (last_basic_block);
496 sbitmap_zero (bb_in_list);
497
498 if (dump_file && (dump_flags & TDF_DETAILS))
499 dump_immediate_uses (dump_file);
500
501 cfg_blocks = VEC_alloc (basic_block, heap, 20);
502 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
503
504 /* Initialize the values for every SSA_NAME. */
505 for (i = 1; i < num_ssa_names; i++)
506 if (ssa_name (i))
507 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
508
509 /* Initially assume that every edge in the CFG is not executable.
510 (including the edges coming out of ENTRY_BLOCK_PTR). */
511 FOR_ALL_BB (bb)
512 {
513 gimple_stmt_iterator si;
514
515 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
516 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
517
518 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
519 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
520
521 FOR_EACH_EDGE (e, ei, bb->succs)
522 e->flags &= ~EDGE_EXECUTABLE;
523 }
524
525 /* Seed the algorithm by adding the successors of the entry block to the
526 edge worklist. */
527 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
528 add_control_edge (e);
529 }
530
531
532 /* Free allocated storage. */
533
534 static void
535 ssa_prop_fini (void)
536 {
537 VEC_free (gimple, gc, interesting_ssa_edges);
538 VEC_free (gimple, gc, varying_ssa_edges);
539 VEC_free (basic_block, heap, cfg_blocks);
540 cfg_blocks = NULL;
541 sbitmap_free (bb_in_list);
542 sbitmap_free (executable_blocks);
543 }
544
545
546 /* Return true if EXPR is an acceptable right-hand-side for a
547 GIMPLE assignment. We validate the entire tree, not just
548 the root node, thus catching expressions that embed complex
549 operands that are not permitted in GIMPLE. This function
550 is needed because the folding routines in fold-const.c
551 may return such expressions in some cases, e.g., an array
552 access with an embedded index addition. It may make more
553 sense to have folding routines that are sensitive to the
554 constraints on GIMPLE operands, rather than abandoning any
555 any attempt to fold if the usual folding turns out to be too
556 aggressive. */
557
558 bool
559 valid_gimple_rhs_p (tree expr)
560 {
561 enum tree_code code = TREE_CODE (expr);
562
563 switch (TREE_CODE_CLASS (code))
564 {
565 case tcc_declaration:
566 if (!is_gimple_variable (expr))
567 return false;
568 break;
569
570 case tcc_constant:
571 /* All constants are ok. */
572 break;
573
574 case tcc_binary:
575 case tcc_comparison:
576 if (!is_gimple_val (TREE_OPERAND (expr, 0))
577 || !is_gimple_val (TREE_OPERAND (expr, 1)))
578 return false;
579 break;
580
581 case tcc_unary:
582 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
583 return false;
584 break;
585
586 case tcc_expression:
587 switch (code)
588 {
589 case ADDR_EXPR:
590 {
591 tree t;
592 if (is_gimple_min_invariant (expr))
593 return true;
594 t = TREE_OPERAND (expr, 0);
595 while (handled_component_p (t))
596 {
597 /* ??? More checks needed, see the GIMPLE verifier. */
598 if ((TREE_CODE (t) == ARRAY_REF
599 || TREE_CODE (t) == ARRAY_RANGE_REF)
600 && !is_gimple_val (TREE_OPERAND (t, 1)))
601 return false;
602 t = TREE_OPERAND (t, 0);
603 }
604 if (!is_gimple_id (t))
605 return false;
606 }
607 break;
608
609 case TRUTH_NOT_EXPR:
610 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
611 return false;
612 break;
613
614 case TRUTH_AND_EXPR:
615 case TRUTH_XOR_EXPR:
616 case TRUTH_OR_EXPR:
617 if (!is_gimple_val (TREE_OPERAND (expr, 0))
618 || !is_gimple_val (TREE_OPERAND (expr, 1)))
619 return false;
620 break;
621
622 case EXC_PTR_EXPR:
623 case FILTER_EXPR:
624 break;
625
626 default:
627 return false;
628 }
629 break;
630
631 case tcc_vl_exp:
632 return false;
633
634 case tcc_exceptional:
635 if (code != SSA_NAME)
636 return false;
637 break;
638
639 default:
640 return false;
641 }
642
643 return true;
644 }
645
646
647 /* Return true if EXPR is a CALL_EXPR suitable for representation
648 as a single GIMPLE_CALL statement. If the arguments require
649 further gimplification, return false. */
650
651 bool
652 valid_gimple_call_p (tree expr)
653 {
654 unsigned i, nargs;
655
656 if (TREE_CODE (expr) != CALL_EXPR)
657 return false;
658
659 nargs = call_expr_nargs (expr);
660 for (i = 0; i < nargs; i++)
661 if (! is_gimple_operand (CALL_EXPR_ARG (expr, i)))
662 return false;
663
664 return true;
665 }
666
667
668 /* Make SSA names defined by OLD_STMT point to NEW_STMT
669 as their defining statement. */
670
671 void
672 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
673 {
674 tree var;
675 ssa_op_iter iter;
676
677 if (gimple_in_ssa_p (cfun))
678 {
679 /* Make defined SSA_NAMEs point to the new
680 statement as their definition. */
681 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
682 {
683 if (TREE_CODE (var) == SSA_NAME)
684 SSA_NAME_DEF_STMT (var) = new_stmt;
685 }
686 }
687 }
688
689
690 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
691 value of EXPR, which is expected to be the result of folding the
692 call. This can only be done if EXPR is a CALL_EXPR with valid
693 GIMPLE operands as arguments, or if it is a suitable RHS expression
694 for a GIMPLE_ASSIGN. More complex expressions will require
695 gimplification, which will introduce addtional statements. In this
696 event, no update is performed, and the function returns false.
697 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
698 replace the statement at *SI_P with an entirely new statement.
699 The new statement need not be a call, e.g., if the original call
700 folded to a constant. */
701
702 bool
703 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
704 {
705 tree lhs;
706
707 gimple stmt = gsi_stmt (*si_p);
708
709 gcc_assert (is_gimple_call (stmt));
710
711 lhs = gimple_call_lhs (stmt);
712
713 if (valid_gimple_call_p (expr))
714 {
715 /* The call has simplified to another call. */
716 tree fn = CALL_EXPR_FN (expr);
717 unsigned i;
718 unsigned nargs = call_expr_nargs (expr);
719 VEC(tree, heap) *args = NULL;
720 gimple new_stmt;
721
722 if (nargs > 0)
723 {
724 args = VEC_alloc (tree, heap, nargs);
725 VEC_safe_grow (tree, heap, args, nargs);
726
727 for (i = 0; i < nargs; i++)
728 VEC_replace (tree, args, i, CALL_EXPR_ARG (expr, i));
729 }
730
731 new_stmt = gimple_build_call_vec (fn, args);
732 gimple_call_set_lhs (new_stmt, lhs);
733 copy_virtual_operands (new_stmt, stmt);
734 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
735 gimple_set_location (new_stmt, gimple_location (stmt));
736 gsi_replace (si_p, new_stmt, false);
737 VEC_free (tree, heap, args);
738
739 return true;
740 }
741 else if (valid_gimple_rhs_p (expr))
742 {
743 gimple new_stmt;
744
745 /* The call has simplified to an expression
746 that cannot be represented as a GIMPLE_CALL. */
747 if (lhs)
748 {
749 /* A value is expected.
750 Introduce a new GIMPLE_ASSIGN statement. */
751 STRIP_USELESS_TYPE_CONVERSION (expr);
752 new_stmt = gimple_build_assign (lhs, expr);
753 copy_virtual_operands (new_stmt, stmt);
754 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
755 }
756 else if (!TREE_SIDE_EFFECTS (expr))
757 {
758 /* No value is expected, and EXPR has no effect.
759 Replace it with an empty statement. */
760 new_stmt = gimple_build_nop ();
761 }
762 else
763 {
764 /* No value is expected, but EXPR has an effect,
765 e.g., it could be a reference to a volatile
766 variable. Create an assignment statement
767 with a dummy (unused) lhs variable. */
768 STRIP_USELESS_TYPE_CONVERSION (expr);
769 lhs = create_tmp_var (TREE_TYPE (expr), NULL);
770 new_stmt = gimple_build_assign (lhs, expr);
771 add_referenced_var (lhs);
772 lhs = make_ssa_name (lhs, new_stmt);
773 gimple_assign_set_lhs (new_stmt, lhs);
774 copy_virtual_operands (new_stmt, stmt);
775 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
776 }
777 gimple_set_location (new_stmt, gimple_location (stmt));
778 gsi_replace (si_p, new_stmt, false);
779 return true;
780 }
781 else
782 /* The call simplified to an expression that is
783 not a valid GIMPLE RHS. */
784 return false;
785 }
786
787
788 /* Entry point to the propagation engine.
789
790 VISIT_STMT is called for every statement visited.
791 VISIT_PHI is called for every PHI node visited. */
792
793 void
794 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
795 ssa_prop_visit_phi_fn visit_phi)
796 {
797 ssa_prop_visit_stmt = visit_stmt;
798 ssa_prop_visit_phi = visit_phi;
799
800 ssa_prop_init ();
801
802 /* Iterate until the worklists are empty. */
803 while (!cfg_blocks_empty_p ()
804 || VEC_length (gimple, interesting_ssa_edges) > 0
805 || VEC_length (gimple, varying_ssa_edges) > 0)
806 {
807 if (!cfg_blocks_empty_p ())
808 {
809 /* Pull the next block to simulate off the worklist. */
810 basic_block dest_block = cfg_blocks_get ();
811 simulate_block (dest_block);
812 }
813
814 /* In order to move things to varying as quickly as
815 possible,process the VARYING_SSA_EDGES worklist first. */
816 process_ssa_edge_worklist (&varying_ssa_edges);
817
818 /* Now process the INTERESTING_SSA_EDGES worklist. */
819 process_ssa_edge_worklist (&interesting_ssa_edges);
820 }
821
822 ssa_prop_fini ();
823 }
824
825
826 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
827 is a non-volatile pointer dereference, a structure reference or a
828 reference to a single _DECL. Ignore volatile memory references
829 because they are not interesting for the optimizers. */
830
831 bool
832 stmt_makes_single_load (gimple stmt)
833 {
834 tree rhs;
835
836 if (gimple_code (stmt) != GIMPLE_ASSIGN)
837 return false;
838
839 /* Only a GIMPLE_SINGLE_RHS assignment may have a
840 declaration or reference as its RHS. */
841 if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
842 != GIMPLE_SINGLE_RHS)
843 return false;
844
845 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
846 return false;
847
848 rhs = gimple_assign_rhs1 (stmt);
849
850 return (!TREE_THIS_VOLATILE (rhs)
851 && (DECL_P (rhs)
852 || REFERENCE_CLASS_P (rhs)));
853 }
854
855
856 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
857 is a non-volatile pointer dereference, a structure reference or a
858 reference to a single _DECL. Ignore volatile memory references
859 because they are not interesting for the optimizers. */
860
861 bool
862 stmt_makes_single_store (gimple stmt)
863 {
864 tree lhs;
865
866 if (gimple_code (stmt) != GIMPLE_ASSIGN
867 && gimple_code (stmt) != GIMPLE_CALL)
868 return false;
869
870 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
871 return false;
872
873 lhs = gimple_get_lhs (stmt);
874
875 /* A call statement may have a null LHS. */
876 if (!lhs)
877 return false;
878
879 return (!TREE_THIS_VOLATILE (lhs)
880 && (DECL_P (lhs)
881 || REFERENCE_CLASS_P (lhs)));
882 }
883
884
885 /* Propagation statistics. */
886 struct prop_stats_d
887 {
888 long num_const_prop;
889 long num_copy_prop;
890 long num_pred_folded;
891 long num_dce;
892 };
893
894 static struct prop_stats_d prop_stats;
895
896 /* Replace USE references in statement STMT with the values stored in
897 PROP_VALUE. Return true if at least one reference was replaced. */
898
899 static bool
900 replace_uses_in (gimple stmt, prop_value_t *prop_value)
901 {
902 bool replaced = false;
903 use_operand_p use;
904 ssa_op_iter iter;
905
906 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
907 {
908 tree tuse = USE_FROM_PTR (use);
909 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
910
911 if (val == tuse || val == NULL_TREE)
912 continue;
913
914 if (gimple_code (stmt) == GIMPLE_ASM
915 && !may_propagate_copy_into_asm (tuse))
916 continue;
917
918 if (!may_propagate_copy (tuse, val))
919 continue;
920
921 if (TREE_CODE (val) != SSA_NAME)
922 prop_stats.num_const_prop++;
923 else
924 prop_stats.num_copy_prop++;
925
926 propagate_value (use, val);
927
928 replaced = true;
929 }
930
931 return replaced;
932 }
933
934
935 /* Replace propagated values into all the arguments for PHI using the
936 values from PROP_VALUE. */
937
938 static void
939 replace_phi_args_in (gimple phi, prop_value_t *prop_value)
940 {
941 size_t i;
942 bool replaced = false;
943
944 if (dump_file && (dump_flags & TDF_DETAILS))
945 {
946 fprintf (dump_file, "Folding PHI node: ");
947 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
948 }
949
950 for (i = 0; i < gimple_phi_num_args (phi); i++)
951 {
952 tree arg = gimple_phi_arg_def (phi, i);
953
954 if (TREE_CODE (arg) == SSA_NAME)
955 {
956 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
957
958 if (val && val != arg && may_propagate_copy (arg, val))
959 {
960 if (TREE_CODE (val) != SSA_NAME)
961 prop_stats.num_const_prop++;
962 else
963 prop_stats.num_copy_prop++;
964
965 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
966 replaced = true;
967
968 /* If we propagated a copy and this argument flows
969 through an abnormal edge, update the replacement
970 accordingly. */
971 if (TREE_CODE (val) == SSA_NAME
972 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
973 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
974 }
975 }
976 }
977
978 if (dump_file && (dump_flags & TDF_DETAILS))
979 {
980 if (!replaced)
981 fprintf (dump_file, "No folding possible\n");
982 else
983 {
984 fprintf (dump_file, "Folded into: ");
985 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
986 fprintf (dump_file, "\n");
987 }
988 }
989 }
990
991
992 /* If the statement pointed by SI has a predicate whose value can be
993 computed using the value range information computed by VRP, compute
994 its value and return true. Otherwise, return false. */
995
996 static bool
997 fold_predicate_in (gimple_stmt_iterator *si)
998 {
999 bool assignment_p = false;
1000 tree val;
1001 gimple stmt = gsi_stmt (*si);
1002
1003 if (is_gimple_assign (stmt)
1004 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
1005 {
1006 assignment_p = true;
1007 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
1008 gimple_assign_rhs1 (stmt),
1009 gimple_assign_rhs2 (stmt),
1010 stmt);
1011 }
1012 else if (gimple_code (stmt) == GIMPLE_COND)
1013 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
1014 gimple_cond_lhs (stmt),
1015 gimple_cond_rhs (stmt),
1016 stmt);
1017 else
1018 return false;
1019
1020
1021 if (val)
1022 {
1023 if (assignment_p)
1024 val = fold_convert (gimple_expr_type (stmt), val);
1025
1026 if (dump_file)
1027 {
1028 fprintf (dump_file, "Folding predicate ");
1029 print_gimple_expr (dump_file, stmt, 0, 0);
1030 fprintf (dump_file, " to ");
1031 print_generic_expr (dump_file, val, 0);
1032 fprintf (dump_file, "\n");
1033 }
1034
1035 prop_stats.num_pred_folded++;
1036
1037 if (is_gimple_assign (stmt))
1038 gimple_assign_set_rhs_from_tree (si, val);
1039 else
1040 {
1041 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
1042 if (integer_zerop (val))
1043 gimple_cond_make_false (stmt);
1044 else if (integer_onep (val))
1045 gimple_cond_make_true (stmt);
1046 else
1047 gcc_unreachable ();
1048 }
1049
1050 return true;
1051 }
1052
1053 return false;
1054 }
1055
1056
1057 /* Perform final substitution and folding of propagated values.
1058
1059 PROP_VALUE[I] contains the single value that should be substituted
1060 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1061 substituted.
1062
1063 If USE_RANGES_P is true, statements that contain predicate
1064 expressions are evaluated with a call to vrp_evaluate_conditional.
1065 This will only give meaningful results when called from tree-vrp.c
1066 (the information used by vrp_evaluate_conditional is built by the
1067 VRP pass).
1068
1069 Return TRUE when something changed. */
1070
1071 bool
1072 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1073 {
1074 basic_block bb;
1075 bool something_changed = false;
1076
1077 if (prop_value == NULL && !use_ranges_p)
1078 return false;
1079
1080 if (dump_file && (dump_flags & TDF_DETAILS))
1081 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
1082
1083 memset (&prop_stats, 0, sizeof (prop_stats));
1084
1085 /* Substitute values in every statement of every basic block. */
1086 FOR_EACH_BB (bb)
1087 {
1088 gimple_stmt_iterator i;
1089
1090 /* Propagate known values into PHI nodes. */
1091 if (prop_value)
1092 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
1093 replace_phi_args_in (gsi_stmt (i), prop_value);
1094
1095 /* Propagate known values into stmts. Do a backward walk to expose
1096 more trivially deletable stmts. */
1097 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1098 {
1099 bool did_replace;
1100 gimple stmt = gsi_stmt (i);
1101 gimple old_stmt;
1102 enum gimple_code code = gimple_code (stmt);
1103
1104 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1105 range information for names and they are discarded
1106 afterwards. */
1107
1108 if (code == GIMPLE_ASSIGN
1109 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1110 {
1111 gsi_prev (&i);
1112 continue;
1113 }
1114
1115 /* No point propagating into a stmt whose result is not used,
1116 but instead we might be able to remove a trivially dead stmt. */
1117 if (gimple_get_lhs (stmt)
1118 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1119 && has_zero_uses (gimple_get_lhs (stmt))
1120 && !stmt_could_throw_p (stmt)
1121 && !gimple_has_side_effects (stmt))
1122 {
1123 gimple_stmt_iterator i2;
1124
1125 if (dump_file && dump_flags & TDF_DETAILS)
1126 {
1127 fprintf (dump_file, "Removing dead stmt ");
1128 print_gimple_stmt (dump_file, stmt, 0, 0);
1129 fprintf (dump_file, "\n");
1130 }
1131 prop_stats.num_dce++;
1132 gsi_prev (&i);
1133 i2 = gsi_for_stmt (stmt);
1134 gsi_remove (&i2, true);
1135 release_defs (stmt);
1136 continue;
1137 }
1138
1139 /* Record the state of the statement before replacements. */
1140 push_stmt_changes (gsi_stmt_ptr (&i));
1141
1142 /* Replace the statement with its folded version and mark it
1143 folded. */
1144 did_replace = false;
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 {
1147 fprintf (dump_file, "Folding statement: ");
1148 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1149 }
1150
1151 /* If we have range information, see if we can fold
1152 predicate expressions. */
1153 if (use_ranges_p)
1154 {
1155 did_replace = fold_predicate_in (&i);
1156 /* fold_predicate_in should not have reallocated STMT. */
1157 gcc_assert (gsi_stmt (i) == stmt);
1158 }
1159
1160 /* Only replace real uses if we couldn't fold the
1161 statement using value range information. */
1162 if (prop_value
1163 && !did_replace)
1164 did_replace |= replace_uses_in (stmt, prop_value);
1165
1166 /* If we made a replacement, fold the statement. */
1167
1168 old_stmt = stmt;
1169 if (did_replace)
1170 fold_stmt (&i);
1171
1172 /* Some statements may be simplified using ranges. For
1173 example, division may be replaced by shifts, modulo
1174 replaced with bitwise and, etc. Do this after
1175 substituting constants, folding, etc so that we're
1176 presented with a fully propagated, canonicalized
1177 statement. */
1178 if (use_ranges_p)
1179 did_replace |= simplify_stmt_using_ranges (&i);
1180
1181 /* Now cleanup. */
1182 if (did_replace)
1183 {
1184 stmt = gsi_stmt (i);
1185
1186 /* If we cleaned up EH information from the statement,
1187 remove EH edges. */
1188 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1189 gimple_purge_dead_eh_edges (bb);
1190
1191 if (is_gimple_assign (stmt)
1192 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1193 == GIMPLE_SINGLE_RHS))
1194 {
1195 tree rhs = gimple_assign_rhs1 (stmt);
1196
1197 if (TREE_CODE (rhs) == ADDR_EXPR)
1198 recompute_tree_invariant_for_addr_expr (rhs);
1199 }
1200
1201 /* Determine what needs to be done to update the SSA form. */
1202 pop_stmt_changes (gsi_stmt_ptr (&i));
1203 something_changed = true;
1204 }
1205 else
1206 {
1207 /* The statement was not modified, discard the change buffer. */
1208 discard_stmt_changes (gsi_stmt_ptr (&i));
1209 }
1210
1211 if (dump_file && (dump_flags & TDF_DETAILS))
1212 {
1213 if (did_replace)
1214 {
1215 fprintf (dump_file, "Folded into: ");
1216 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1217 fprintf (dump_file, "\n");
1218 }
1219 else
1220 fprintf (dump_file, "Not folded\n");
1221 }
1222
1223 gsi_prev (&i);
1224 }
1225 }
1226
1227 statistics_counter_event (cfun, "Constants propagated",
1228 prop_stats.num_const_prop);
1229 statistics_counter_event (cfun, "Copies propagated",
1230 prop_stats.num_copy_prop);
1231 statistics_counter_event (cfun, "Predicates folded",
1232 prop_stats.num_pred_folded);
1233 statistics_counter_event (cfun, "Statements deleted",
1234 prop_stats.num_dce);
1235 return something_changed;
1236 }
1237
1238 #include "gt-tree-ssa-propagate.h"