]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-propagate.c
backport: basic-block.h: Include vec.h, errors.h.
[thirdparty/gcc.git] / gcc / tree-ssa-propagate.c
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "errors.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
43
44
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
47
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
51
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
55
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
59
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
62
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
68
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
75
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
79
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
83
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
87
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
91
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
95
96 5- Simulation terminates when all three work lists are drained.
97
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
102
103 It is also important to compute def-use information before calling
104 ssa_propagate.
105
106 References:
107
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
116
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
128
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
131
132 /* Array of control flow edges on the worklist. */
133 static GTY(()) varray_type cfg_blocks = NULL;
134
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
138
139 static sbitmap bb_in_list;
140
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) varray_type interesting_ssa_edges;
146
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
152
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) varray_type varying_ssa_edges;
162
163
164 /* Return true if the block worklist empty. */
165
166 static inline bool
167 cfg_blocks_empty_p (void)
168 {
169 return (cfg_blocks_num == 0);
170 }
171
172
173 /* Add a basic block to the worklist. */
174
175 static void
176 cfg_blocks_add (basic_block bb)
177 {
178 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
179 return;
180
181 if (TEST_BIT (bb_in_list, bb->index))
182 return;
183
184 if (cfg_blocks_empty_p ())
185 {
186 cfg_blocks_tail = cfg_blocks_head = 0;
187 cfg_blocks_num = 1;
188 }
189 else
190 {
191 cfg_blocks_num++;
192 if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
193 {
194 /* We have to grow the array now. Adjust to queue to occupy the
195 full space of the original array. */
196 cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
197 cfg_blocks_head = 0;
198 VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
199 }
200 else
201 cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
202 }
203
204 VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
205 SET_BIT (bb_in_list, bb->index);
206 }
207
208
209 /* Remove a block from the worklist. */
210
211 static basic_block
212 cfg_blocks_get (void)
213 {
214 basic_block bb;
215
216 bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
217
218 gcc_assert (!cfg_blocks_empty_p ());
219 gcc_assert (bb);
220
221 cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
222 --cfg_blocks_num;
223 RESET_BIT (bb_in_list, bb->index);
224
225 return bb;
226 }
227
228
229 /* We have just defined a new value for VAR. If IS_VARYING is true,
230 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
231 them to INTERESTING_SSA_EDGES. */
232
233 static void
234 add_ssa_edge (tree var, bool is_varying)
235 {
236 tree stmt = SSA_NAME_DEF_STMT (var);
237 dataflow_t df = get_immediate_uses (stmt);
238 int num_uses = num_immediate_uses (df);
239 int i;
240
241 for (i = 0; i < num_uses; i++)
242 {
243 tree use_stmt = immediate_use (df, i);
244
245 if (!DONT_SIMULATE_AGAIN (use_stmt)
246 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
247 {
248 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
249 if (is_varying)
250 VARRAY_PUSH_TREE (varying_ssa_edges, use_stmt);
251 else
252 VARRAY_PUSH_TREE (interesting_ssa_edges, use_stmt);
253 }
254 }
255 }
256
257
258 /* Add edge E to the control flow worklist. */
259
260 static void
261 add_control_edge (edge e)
262 {
263 basic_block bb = e->dest;
264 if (bb == EXIT_BLOCK_PTR)
265 return;
266
267 /* If the edge had already been executed, skip it. */
268 if (e->flags & EDGE_EXECUTABLE)
269 return;
270
271 e->flags |= EDGE_EXECUTABLE;
272
273 /* If the block is already in the list, we're done. */
274 if (TEST_BIT (bb_in_list, bb->index))
275 return;
276
277 cfg_blocks_add (bb);
278
279 if (dump_file && (dump_flags & TDF_DETAILS))
280 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
281 e->src->index, e->dest->index);
282 }
283
284
285 /* Simulate the execution of STMT and update the work lists accordingly. */
286
287 static void
288 simulate_stmt (tree stmt)
289 {
290 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
291 edge taken_edge = NULL;
292 tree output_name = NULL_TREE;
293
294 /* Don't bother visiting statements that are already
295 considered varying by the propagator. */
296 if (DONT_SIMULATE_AGAIN (stmt))
297 return;
298
299 if (TREE_CODE (stmt) == PHI_NODE)
300 {
301 val = ssa_prop_visit_phi (stmt);
302 output_name = PHI_RESULT (stmt);
303 }
304 else
305 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
306
307 if (val == SSA_PROP_VARYING)
308 {
309 DONT_SIMULATE_AGAIN (stmt) = 1;
310
311 /* If the statement produced a new varying value, add the SSA
312 edges coming out of OUTPUT_NAME. */
313 if (output_name)
314 add_ssa_edge (output_name, true);
315
316 /* If STMT transfers control out of its basic block, add
317 all outgoing edges to the work list. */
318 if (stmt_ends_bb_p (stmt))
319 {
320 edge e;
321 edge_iterator ei;
322 basic_block bb = bb_for_stmt (stmt);
323 FOR_EACH_EDGE (e, ei, bb->succs)
324 add_control_edge (e);
325 }
326 }
327 else if (val == SSA_PROP_INTERESTING)
328 {
329 /* If the statement produced new value, add the SSA edges coming
330 out of OUTPUT_NAME. */
331 if (output_name)
332 add_ssa_edge (output_name, false);
333
334 /* If we know which edge is going to be taken out of this block,
335 add it to the CFG work list. */
336 if (taken_edge)
337 add_control_edge (taken_edge);
338 }
339 }
340
341 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
342 drain. This pops statements off the given WORKLIST and processes
343 them until there are no more statements on WORKLIST. */
344
345 static void
346 process_ssa_edge_worklist (varray_type *worklist)
347 {
348 /* Drain the entire worklist. */
349 while (VARRAY_ACTIVE_SIZE (*worklist) > 0)
350 {
351 basic_block bb;
352
353 /* Pull the statement to simulate off the worklist. */
354 tree stmt = VARRAY_TOP_TREE (*worklist);
355 VARRAY_POP (*worklist);
356
357 /* If this statement was already visited by simulate_block, then
358 we don't need to visit it again here. */
359 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
360 continue;
361
362 /* STMT is no longer in a worklist. */
363 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
364
365 if (dump_file && (dump_flags & TDF_DETAILS))
366 {
367 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
368 print_generic_stmt (dump_file, stmt, dump_flags);
369 }
370
371 bb = bb_for_stmt (stmt);
372
373 /* PHI nodes are always visited, regardless of whether or not
374 the destination block is executable. Otherwise, visit the
375 statement only if its block is marked executable. */
376 if (TREE_CODE (stmt) == PHI_NODE
377 || TEST_BIT (executable_blocks, bb->index))
378 simulate_stmt (stmt);
379 }
380 }
381
382
383 /* Simulate the execution of BLOCK. Evaluate the statement associated
384 with each variable reference inside the block. */
385
386 static void
387 simulate_block (basic_block block)
388 {
389 tree phi;
390
391 /* There is nothing to do for the exit block. */
392 if (block == EXIT_BLOCK_PTR)
393 return;
394
395 if (dump_file && (dump_flags & TDF_DETAILS))
396 fprintf (dump_file, "\nSimulating block %d\n", block->index);
397
398 /* Always simulate PHI nodes, even if we have simulated this block
399 before. */
400 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
401 simulate_stmt (phi);
402
403 /* If this is the first time we've simulated this block, then we
404 must simulate each of its statements. */
405 if (!TEST_BIT (executable_blocks, block->index))
406 {
407 block_stmt_iterator j;
408 unsigned int normal_edge_count;
409 edge e, normal_edge;
410 edge_iterator ei;
411
412 /* Note that we have simulated this block. */
413 SET_BIT (executable_blocks, block->index);
414
415 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
416 {
417 tree stmt = bsi_stmt (j);
418
419 /* If this statement is already in the worklist then
420 "cancel" it. The reevaluation implied by the worklist
421 entry will produce the same value we generate here and
422 thus reevaluating it again from the worklist is
423 pointless. */
424 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
425 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
426
427 simulate_stmt (stmt);
428 }
429
430 /* We can not predict when abnormal edges will be executed, so
431 once a block is considered executable, we consider any
432 outgoing abnormal edges as executable.
433
434 At the same time, if this block has only one successor that is
435 reached by non-abnormal edges, then add that successor to the
436 worklist. */
437 normal_edge_count = 0;
438 normal_edge = NULL;
439 FOR_EACH_EDGE (e, ei, block->succs)
440 {
441 if (e->flags & EDGE_ABNORMAL)
442 add_control_edge (e);
443 else
444 {
445 normal_edge_count++;
446 normal_edge = e;
447 }
448 }
449
450 if (normal_edge_count == 1)
451 add_control_edge (normal_edge);
452 }
453 }
454
455
456 /* Initialize local data structures and work lists. */
457
458 static void
459 ssa_prop_init (void)
460 {
461 edge e;
462 edge_iterator ei;
463 basic_block bb;
464
465 /* Worklists of SSA edges. */
466 VARRAY_TREE_INIT (interesting_ssa_edges, 20, "interesting_ssa_edges");
467 VARRAY_TREE_INIT (varying_ssa_edges, 20, "varying_ssa_edges");
468
469 executable_blocks = sbitmap_alloc (last_basic_block);
470 sbitmap_zero (executable_blocks);
471
472 bb_in_list = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (bb_in_list);
474
475 if (dump_file && (dump_flags & TDF_DETAILS))
476 dump_immediate_uses (dump_file);
477
478 VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
479
480 /* Initially assume that every edge in the CFG is not executable. */
481 FOR_EACH_BB (bb)
482 {
483 block_stmt_iterator si;
484
485 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
486 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
487
488 FOR_EACH_EDGE (e, ei, bb->succs)
489 e->flags &= ~EDGE_EXECUTABLE;
490 }
491
492 /* Seed the algorithm by adding the successors of the entry block to the
493 edge worklist. */
494 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
495 {
496 if (e->dest != EXIT_BLOCK_PTR)
497 {
498 e->flags |= EDGE_EXECUTABLE;
499 cfg_blocks_add (e->dest);
500 }
501 }
502 }
503
504
505 /* Free allocated storage. */
506
507 static void
508 ssa_prop_fini (void)
509 {
510 interesting_ssa_edges = NULL;
511 varying_ssa_edges = NULL;
512 cfg_blocks = NULL;
513 sbitmap_free (bb_in_list);
514 sbitmap_free (executable_blocks);
515 free_df ();
516 }
517
518
519 /* Get the main expression from statement STMT. */
520
521 tree
522 get_rhs (tree stmt)
523 {
524 enum tree_code code = TREE_CODE (stmt);
525
526 switch (code)
527 {
528 case RETURN_EXPR:
529 stmt = TREE_OPERAND (stmt, 0);
530 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
531 return stmt;
532 /* FALLTHRU */
533
534 case MODIFY_EXPR:
535 stmt = TREE_OPERAND (stmt, 1);
536 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
537 return TREE_OPERAND (stmt, 0);
538 else
539 return stmt;
540
541 case COND_EXPR:
542 return COND_EXPR_COND (stmt);
543 case SWITCH_EXPR:
544 return SWITCH_COND (stmt);
545 case GOTO_EXPR:
546 return GOTO_DESTINATION (stmt);
547 case LABEL_EXPR:
548 return LABEL_EXPR_LABEL (stmt);
549
550 default:
551 return stmt;
552 }
553 }
554
555
556 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
557 GIMPLE expression no changes are done and the function returns
558 false. */
559
560 bool
561 set_rhs (tree *stmt_p, tree expr)
562 {
563 tree stmt = *stmt_p, op;
564 enum tree_code code = TREE_CODE (expr);
565 stmt_ann_t ann;
566 tree var;
567 ssa_op_iter iter;
568
569 /* Verify the constant folded result is valid gimple. */
570 if (TREE_CODE_CLASS (code) == tcc_binary)
571 {
572 if (!is_gimple_val (TREE_OPERAND (expr, 0))
573 || !is_gimple_val (TREE_OPERAND (expr, 1)))
574 return false;
575 }
576 else if (TREE_CODE_CLASS (code) == tcc_unary)
577 {
578 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
579 return false;
580 }
581 else if (code == COMPOUND_EXPR)
582 return false;
583
584 switch (TREE_CODE (stmt))
585 {
586 case RETURN_EXPR:
587 op = TREE_OPERAND (stmt, 0);
588 if (TREE_CODE (op) != MODIFY_EXPR)
589 {
590 TREE_OPERAND (stmt, 0) = expr;
591 break;
592 }
593 stmt = op;
594 /* FALLTHRU */
595
596 case MODIFY_EXPR:
597 op = TREE_OPERAND (stmt, 1);
598 if (TREE_CODE (op) == WITH_SIZE_EXPR)
599 stmt = op;
600 TREE_OPERAND (stmt, 1) = expr;
601 break;
602
603 case COND_EXPR:
604 COND_EXPR_COND (stmt) = expr;
605 break;
606 case SWITCH_EXPR:
607 SWITCH_COND (stmt) = expr;
608 break;
609 case GOTO_EXPR:
610 GOTO_DESTINATION (stmt) = expr;
611 break;
612 case LABEL_EXPR:
613 LABEL_EXPR_LABEL (stmt) = expr;
614 break;
615
616 default:
617 /* Replace the whole statement with EXPR. If EXPR has no side
618 effects, then replace *STMT_P with an empty statement. */
619 ann = stmt_ann (stmt);
620 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
621 (*stmt_p)->common.ann = (tree_ann_t) ann;
622
623 if (TREE_SIDE_EFFECTS (expr))
624 {
625 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
626 replacement. */
627 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
628 {
629 if (TREE_CODE (var) == SSA_NAME)
630 SSA_NAME_DEF_STMT (var) = *stmt_p;
631 }
632 }
633 break;
634 }
635
636 return true;
637 }
638
639
640 /* Entry point to the propagation engine.
641
642 VISIT_STMT is called for every statement visited.
643 VISIT_PHI is called for every PHI node visited. */
644
645 void
646 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
647 ssa_prop_visit_phi_fn visit_phi)
648 {
649 ssa_prop_visit_stmt = visit_stmt;
650 ssa_prop_visit_phi = visit_phi;
651
652 ssa_prop_init ();
653
654 /* Iterate until the worklists are empty. */
655 while (!cfg_blocks_empty_p ()
656 || VARRAY_ACTIVE_SIZE (interesting_ssa_edges) > 0
657 || VARRAY_ACTIVE_SIZE (varying_ssa_edges) > 0)
658 {
659 if (!cfg_blocks_empty_p ())
660 {
661 /* Pull the next block to simulate off the worklist. */
662 basic_block dest_block = cfg_blocks_get ();
663 simulate_block (dest_block);
664 }
665
666 /* In order to move things to varying as quickly as
667 possible,process the VARYING_SSA_EDGES worklist first. */
668 process_ssa_edge_worklist (&varying_ssa_edges);
669
670 /* Now process the INTERESTING_SSA_EDGES worklist. */
671 process_ssa_edge_worklist (&interesting_ssa_edges);
672 }
673
674 ssa_prop_fini ();
675 }
676
677 #include "gt-tree-ssa-propagate.h"