]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-sink.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / tree-ssa-sink.c
1 /* Code sinking for trees
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "tree-inline.h"
30 #include "gimple.h"
31 #include "gimple-iterator.h"
32 #include "gimple-ssa.h"
33 #include "tree-cfg.h"
34 #include "tree-phinodes.h"
35 #include "ssa-iterators.h"
36 #include "hashtab.h"
37 #include "tree-iterator.h"
38 #include "alloc-pool.h"
39 #include "tree-pass.h"
40 #include "flags.h"
41 #include "cfgloop.h"
42 #include "params.h"
43
44 /* TODO:
45 1. Sinking store only using scalar promotion (IE without moving the RHS):
46
47 *q = p;
48 p = p + 1;
49 if (something)
50 *q = <not p>;
51 else
52 y = *q;
53
54
55 should become
56 sinktemp = p;
57 p = p + 1;
58 if (something)
59 *q = <not p>;
60 else
61 {
62 *q = sinktemp;
63 y = *q
64 }
65 Store copy propagation will take care of the store elimination above.
66
67
68 2. Sinking using Partial Dead Code Elimination. */
69
70
71 static struct
72 {
73 /* The number of statements sunk down the flowgraph by code sinking. */
74 int sunk;
75
76 } sink_stats;
77
78
79 /* Given a PHI, and one of its arguments (DEF), find the edge for
80 that argument and return it. If the argument occurs twice in the PHI node,
81 we return NULL. */
82
83 static basic_block
84 find_bb_for_arg (gimple phi, tree def)
85 {
86 size_t i;
87 bool foundone = false;
88 basic_block result = NULL;
89 for (i = 0; i < gimple_phi_num_args (phi); i++)
90 if (PHI_ARG_DEF (phi, i) == def)
91 {
92 if (foundone)
93 return NULL;
94 foundone = true;
95 result = gimple_phi_arg_edge (phi, i)->src;
96 }
97 return result;
98 }
99
100 /* When the first immediate use is in a statement, then return true if all
101 immediate uses in IMM are in the same statement.
102 We could also do the case where the first immediate use is in a phi node,
103 and all the other uses are in phis in the same basic block, but this
104 requires some expensive checking later (you have to make sure no def/vdef
105 in the statement occurs for multiple edges in the various phi nodes it's
106 used in, so that you only have one place you can sink it to. */
107
108 static bool
109 all_immediate_uses_same_place (gimple stmt)
110 {
111 gimple firstuse = NULL;
112 ssa_op_iter op_iter;
113 imm_use_iterator imm_iter;
114 use_operand_p use_p;
115 tree var;
116
117 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
118 {
119 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
120 {
121 if (is_gimple_debug (USE_STMT (use_p)))
122 continue;
123 if (firstuse == NULL)
124 firstuse = USE_STMT (use_p);
125 else
126 if (firstuse != USE_STMT (use_p))
127 return false;
128 }
129 }
130
131 return true;
132 }
133
134 /* Find the nearest common dominator of all of the immediate uses in IMM. */
135
136 static basic_block
137 nearest_common_dominator_of_uses (gimple stmt, bool *debug_stmts)
138 {
139 bitmap blocks = BITMAP_ALLOC (NULL);
140 basic_block commondom;
141 unsigned int j;
142 bitmap_iterator bi;
143 ssa_op_iter op_iter;
144 imm_use_iterator imm_iter;
145 use_operand_p use_p;
146 tree var;
147
148 bitmap_clear (blocks);
149 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
150 {
151 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
152 {
153 gimple usestmt = USE_STMT (use_p);
154 basic_block useblock;
155
156 if (gimple_code (usestmt) == GIMPLE_PHI)
157 {
158 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
159
160 useblock = gimple_phi_arg_edge (usestmt, idx)->src;
161 }
162 else if (is_gimple_debug (usestmt))
163 {
164 *debug_stmts = true;
165 continue;
166 }
167 else
168 {
169 useblock = gimple_bb (usestmt);
170 }
171
172 /* Short circuit. Nothing dominates the entry block. */
173 if (useblock == ENTRY_BLOCK_PTR)
174 {
175 BITMAP_FREE (blocks);
176 return NULL;
177 }
178 bitmap_set_bit (blocks, useblock->index);
179 }
180 }
181 commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks));
182 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
183 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
184 BASIC_BLOCK (j));
185 BITMAP_FREE (blocks);
186 return commondom;
187 }
188
189 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
190 tree, return the best basic block between them (inclusive) to place
191 statements.
192
193 We want the most control dependent block in the shallowest loop nest.
194
195 If the resulting block is in a shallower loop nest, then use it. Else
196 only use the resulting block if it has significantly lower execution
197 frequency than EARLY_BB to avoid gratutious statement movement. We
198 consider statements with VOPS more desirable to move.
199
200 This pass would obviously benefit from PDO as it utilizes block
201 frequencies. It would also benefit from recomputing frequencies
202 if profile data is not available since frequencies often get out
203 of sync with reality. */
204
205 static basic_block
206 select_best_block (basic_block early_bb,
207 basic_block late_bb,
208 gimple stmt)
209 {
210 basic_block best_bb = late_bb;
211 basic_block temp_bb = late_bb;
212 int threshold;
213
214 while (temp_bb != early_bb)
215 {
216 /* If we've moved into a lower loop nest, then that becomes
217 our best block. */
218 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
219 best_bb = temp_bb;
220
221 /* Walk up the dominator tree, hopefully we'll find a shallower
222 loop nest. */
223 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
224 }
225
226 /* If we found a shallower loop nest, then we always consider that
227 a win. This will always give us the most control dependent block
228 within that loop nest. */
229 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
230 return best_bb;
231
232 /* Get the sinking threshold. If the statement to be moved has memory
233 operands, then increase the threshold by 7% as those are even more
234 profitable to avoid, clamping at 100%. */
235 threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD);
236 if (gimple_vuse (stmt) || gimple_vdef (stmt))
237 {
238 threshold += 7;
239 if (threshold > 100)
240 threshold = 100;
241 }
242
243 /* If BEST_BB is at the same nesting level, then require it to have
244 significantly lower execution frequency to avoid gratutious movement. */
245 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
246 && best_bb->frequency < (early_bb->frequency * threshold / 100.0))
247 return best_bb;
248
249 /* No better block found, so return EARLY_BB, which happens to be the
250 statement's original block. */
251 return early_bb;
252 }
253
254 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
255 determine the location to sink the statement to, if any.
256 Returns true if there is such location; in that case, TOGSI points to the
257 statement before that STMT should be moved. */
258
259 static bool
260 statement_sink_location (gimple stmt, basic_block frombb,
261 gimple_stmt_iterator *togsi)
262 {
263 gimple use;
264 use_operand_p one_use = NULL_USE_OPERAND_P;
265 basic_block sinkbb;
266 use_operand_p use_p;
267 def_operand_p def_p;
268 ssa_op_iter iter;
269 imm_use_iterator imm_iter;
270
271 /* We only can sink assignments. */
272 if (!is_gimple_assign (stmt))
273 return false;
274
275 /* We only can sink stmts with a single definition. */
276 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
277 if (def_p == NULL_DEF_OPERAND_P)
278 return false;
279
280 /* Return if there are no immediate uses of this stmt. */
281 if (has_zero_uses (DEF_FROM_PTR (def_p)))
282 return false;
283
284 /* There are a few classes of things we can't or don't move, some because we
285 don't have code to handle it, some because it's not profitable and some
286 because it's not legal.
287
288 We can't sink things that may be global stores, at least not without
289 calculating a lot more information, because we may cause it to no longer
290 be seen by an external routine that needs it depending on where it gets
291 moved to.
292
293 We don't want to sink loads from memory.
294
295 We can't sink statements that end basic blocks without splitting the
296 incoming edge for the sink location to place it there.
297
298 We can't sink statements that have volatile operands.
299
300 We don't want to sink dead code, so anything with 0 immediate uses is not
301 sunk.
302
303 Don't sink BLKmode assignments if current function has any local explicit
304 register variables, as BLKmode assignments may involve memcpy or memset
305 calls or, on some targets, inline expansion thereof that sometimes need
306 to use specific hard registers.
307
308 */
309 if (stmt_ends_bb_p (stmt)
310 || gimple_has_side_effects (stmt)
311 || gimple_has_volatile_ops (stmt)
312 || (gimple_vuse (stmt) && !gimple_vdef (stmt))
313 || (cfun->has_local_explicit_reg_vars
314 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode))
315 return false;
316
317 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
318 return false;
319
320 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
321 {
322 tree use = USE_FROM_PTR (use_p);
323 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
324 return false;
325 }
326
327 use = NULL;
328
329 /* If stmt is a store the one and only use needs to be the VOP
330 merging PHI node. */
331 if (gimple_vdef (stmt))
332 {
333 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
334 {
335 gimple use_stmt = USE_STMT (use_p);
336
337 /* A killing definition is not a use. */
338 if ((gimple_has_lhs (use_stmt)
339 && operand_equal_p (gimple_assign_lhs (stmt),
340 gimple_get_lhs (use_stmt), 0))
341 || stmt_kills_ref_p (use_stmt, gimple_assign_lhs (stmt)))
342 {
343 /* If use_stmt is or might be a nop assignment then USE_STMT
344 acts as a use as well as definition. */
345 if (stmt != use_stmt
346 && ref_maybe_used_by_stmt_p (use_stmt,
347 gimple_assign_lhs (stmt)))
348 return false;
349 continue;
350 }
351
352 if (gimple_code (use_stmt) != GIMPLE_PHI)
353 return false;
354
355 if (use
356 && use != use_stmt)
357 return false;
358
359 use = use_stmt;
360 }
361 if (!use)
362 return false;
363 }
364 /* If all the immediate uses are not in the same place, find the nearest
365 common dominator of all the immediate uses. For PHI nodes, we have to
366 find the nearest common dominator of all of the predecessor blocks, since
367 that is where insertion would have to take place. */
368 else if (!all_immediate_uses_same_place (stmt))
369 {
370 bool debug_stmts = false;
371 basic_block commondom = nearest_common_dominator_of_uses (stmt,
372 &debug_stmts);
373
374 if (commondom == frombb)
375 return false;
376
377 /* Our common dominator has to be dominated by frombb in order to be a
378 trivially safe place to put this statement, since it has multiple
379 uses. */
380 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
381 return false;
382
383 commondom = select_best_block (frombb, commondom, stmt);
384
385 if (commondom == frombb)
386 return false;
387
388 *togsi = gsi_after_labels (commondom);
389
390 return true;
391 }
392 else
393 {
394 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
395 {
396 if (is_gimple_debug (USE_STMT (one_use)))
397 continue;
398 break;
399 }
400 use = USE_STMT (one_use);
401
402 if (gimple_code (use) != GIMPLE_PHI)
403 {
404 sinkbb = gimple_bb (use);
405 sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
406
407 if (sinkbb == frombb)
408 return false;
409
410 *togsi = gsi_for_stmt (use);
411
412 return true;
413 }
414 }
415
416 sinkbb = find_bb_for_arg (use, DEF_FROM_PTR (def_p));
417
418 /* This can happen if there are multiple uses in a PHI. */
419 if (!sinkbb)
420 return false;
421
422 sinkbb = select_best_block (frombb, sinkbb, stmt);
423 if (!sinkbb || sinkbb == frombb)
424 return false;
425
426 /* If the latch block is empty, don't make it non-empty by sinking
427 something into it. */
428 if (sinkbb == frombb->loop_father->latch
429 && empty_block_p (sinkbb))
430 return false;
431
432 *togsi = gsi_after_labels (sinkbb);
433
434 return true;
435 }
436
437 /* Perform code sinking on BB */
438
439 static void
440 sink_code_in_bb (basic_block bb)
441 {
442 basic_block son;
443 gimple_stmt_iterator gsi;
444 edge_iterator ei;
445 edge e;
446 bool last = true;
447
448 /* If this block doesn't dominate anything, there can't be any place to sink
449 the statements to. */
450 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
451 goto earlyout;
452
453 /* We can't move things across abnormal edges, so don't try. */
454 FOR_EACH_EDGE (e, ei, bb->succs)
455 if (e->flags & EDGE_ABNORMAL)
456 goto earlyout;
457
458 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
459 {
460 gimple stmt = gsi_stmt (gsi);
461 gimple_stmt_iterator togsi;
462
463 if (!statement_sink_location (stmt, bb, &togsi))
464 {
465 if (!gsi_end_p (gsi))
466 gsi_prev (&gsi);
467 last = false;
468 continue;
469 }
470 if (dump_file)
471 {
472 fprintf (dump_file, "Sinking ");
473 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
474 fprintf (dump_file, " from bb %d to bb %d\n",
475 bb->index, (gsi_bb (togsi))->index);
476 }
477
478 /* Update virtual operands of statements in the path we
479 do not sink to. */
480 if (gimple_vdef (stmt))
481 {
482 imm_use_iterator iter;
483 use_operand_p use_p;
484 gimple vuse_stmt;
485
486 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
487 if (gimple_code (vuse_stmt) != GIMPLE_PHI)
488 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
489 SET_USE (use_p, gimple_vuse (stmt));
490 }
491
492 /* If this is the end of the basic block, we need to insert at the end
493 of the basic block. */
494 if (gsi_end_p (togsi))
495 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
496 else
497 gsi_move_before (&gsi, &togsi);
498
499 sink_stats.sunk++;
500
501 /* If we've just removed the last statement of the BB, the
502 gsi_end_p() test below would fail, but gsi_prev() would have
503 succeeded, and we want it to succeed. So we keep track of
504 whether we're at the last statement and pick up the new last
505 statement. */
506 if (last)
507 {
508 gsi = gsi_last_bb (bb);
509 continue;
510 }
511
512 last = false;
513 if (!gsi_end_p (gsi))
514 gsi_prev (&gsi);
515
516 }
517 earlyout:
518 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
519 son;
520 son = next_dom_son (CDI_POST_DOMINATORS, son))
521 {
522 sink_code_in_bb (son);
523 }
524 }
525
526 /* Perform code sinking.
527 This moves code down the flowgraph when we know it would be
528 profitable to do so, or it wouldn't increase the number of
529 executions of the statement.
530
531 IE given
532
533 a_1 = b + c;
534 if (<something>)
535 {
536 }
537 else
538 {
539 foo (&b, &c);
540 a_5 = b + c;
541 }
542 a_6 = PHI (a_5, a_1);
543 USE a_6.
544
545 we'll transform this into:
546
547 if (<something>)
548 {
549 a_1 = b + c;
550 }
551 else
552 {
553 foo (&b, &c);
554 a_5 = b + c;
555 }
556 a_6 = PHI (a_5, a_1);
557 USE a_6.
558
559 Note that this reduces the number of computations of a = b + c to 1
560 when we take the else edge, instead of 2.
561 */
562 static void
563 execute_sink_code (void)
564 {
565 loop_optimizer_init (LOOPS_NORMAL);
566
567 connect_infinite_loops_to_exit ();
568 memset (&sink_stats, 0, sizeof (sink_stats));
569 calculate_dominance_info (CDI_DOMINATORS);
570 calculate_dominance_info (CDI_POST_DOMINATORS);
571 sink_code_in_bb (EXIT_BLOCK_PTR);
572 statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk);
573 free_dominance_info (CDI_POST_DOMINATORS);
574 remove_fake_exit_edges ();
575 loop_optimizer_finalize ();
576 }
577
578 /* Gate and execute functions for PRE. */
579
580 static unsigned int
581 do_sink (void)
582 {
583 execute_sink_code ();
584 return 0;
585 }
586
587 static bool
588 gate_sink (void)
589 {
590 return flag_tree_sink != 0;
591 }
592
593 namespace {
594
595 const pass_data pass_data_sink_code =
596 {
597 GIMPLE_PASS, /* type */
598 "sink", /* name */
599 OPTGROUP_NONE, /* optinfo_flags */
600 true, /* has_gate */
601 true, /* has_execute */
602 TV_TREE_SINK, /* tv_id */
603 ( PROP_no_crit_edges | PROP_cfg | PROP_ssa ), /* properties_required */
604 0, /* properties_provided */
605 0, /* properties_destroyed */
606 0, /* todo_flags_start */
607 ( TODO_update_ssa | TODO_verify_ssa
608 | TODO_verify_flow ), /* todo_flags_finish */
609 };
610
611 class pass_sink_code : public gimple_opt_pass
612 {
613 public:
614 pass_sink_code (gcc::context *ctxt)
615 : gimple_opt_pass (pass_data_sink_code, ctxt)
616 {}
617
618 /* opt_pass methods: */
619 bool gate () { return gate_sink (); }
620 unsigned int execute () { return do_sink (); }
621
622 }; // class pass_sink_code
623
624 } // anon namespace
625
626 gimple_opt_pass *
627 make_pass_sink_code (gcc::context *ctxt)
628 {
629 return new pass_sink_code (ctxt);
630 }