]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-structalias.c
gcc/
[thirdparty/gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "diagnostic-core.h"
36 #include "gimple.h"
37 #include "hashtab.h"
38 #include "function.h"
39 #include "cgraph.h"
40 #include "tree-pass.h"
41 #include "timevar.h"
42 #include "alloc-pool.h"
43 #include "splay-tree.h"
44 #include "params.h"
45 #include "cgraph.h"
46 #include "alias.h"
47 #include "pointer-set.h"
48
49 /* The idea behind this analyzer is to generate set constraints from the
50 program, then solve the resulting constraints in order to generate the
51 points-to sets.
52
53 Set constraints are a way of modeling program analysis problems that
54 involve sets. They consist of an inclusion constraint language,
55 describing the variables (each variable is a set) and operations that
56 are involved on the variables, and a set of rules that derive facts
57 from these operations. To solve a system of set constraints, you derive
58 all possible facts under the rules, which gives you the correct sets
59 as a consequence.
60
61 See "Efficient Field-sensitive pointer analysis for C" by "David
62 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
63 http://citeseer.ist.psu.edu/pearce04efficient.html
64
65 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
66 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
67 http://citeseer.ist.psu.edu/heintze01ultrafast.html
68
69 There are three types of real constraint expressions, DEREF,
70 ADDRESSOF, and SCALAR. Each constraint expression consists
71 of a constraint type, a variable, and an offset.
72
73 SCALAR is a constraint expression type used to represent x, whether
74 it appears on the LHS or the RHS of a statement.
75 DEREF is a constraint expression type used to represent *x, whether
76 it appears on the LHS or the RHS of a statement.
77 ADDRESSOF is a constraint expression used to represent &x, whether
78 it appears on the LHS or the RHS of a statement.
79
80 Each pointer variable in the program is assigned an integer id, and
81 each field of a structure variable is assigned an integer id as well.
82
83 Structure variables are linked to their list of fields through a "next
84 field" in each variable that points to the next field in offset
85 order.
86 Each variable for a structure field has
87
88 1. "size", that tells the size in bits of that field.
89 2. "fullsize, that tells the size in bits of the entire structure.
90 3. "offset", that tells the offset in bits from the beginning of the
91 structure to this field.
92
93 Thus,
94 struct f
95 {
96 int a;
97 int b;
98 } foo;
99 int *bar;
100
101 looks like
102
103 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
104 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
105 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
106
107
108 In order to solve the system of set constraints, the following is
109 done:
110
111 1. Each constraint variable x has a solution set associated with it,
112 Sol(x).
113
114 2. Constraints are separated into direct, copy, and complex.
115 Direct constraints are ADDRESSOF constraints that require no extra
116 processing, such as P = &Q
117 Copy constraints are those of the form P = Q.
118 Complex constraints are all the constraints involving dereferences
119 and offsets (including offsetted copies).
120
121 3. All direct constraints of the form P = &Q are processed, such
122 that Q is added to Sol(P)
123
124 4. All complex constraints for a given constraint variable are stored in a
125 linked list attached to that variable's node.
126
127 5. A directed graph is built out of the copy constraints. Each
128 constraint variable is a node in the graph, and an edge from
129 Q to P is added for each copy constraint of the form P = Q
130
131 6. The graph is then walked, and solution sets are
132 propagated along the copy edges, such that an edge from Q to P
133 causes Sol(P) <- Sol(P) union Sol(Q).
134
135 7. As we visit each node, all complex constraints associated with
136 that node are processed by adding appropriate copy edges to the graph, or the
137 appropriate variables to the solution set.
138
139 8. The process of walking the graph is iterated until no solution
140 sets change.
141
142 Prior to walking the graph in steps 6 and 7, We perform static
143 cycle elimination on the constraint graph, as well
144 as off-line variable substitution.
145
146 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
147 on and turned into anything), but isn't. You can just see what offset
148 inside the pointed-to struct it's going to access.
149
150 TODO: Constant bounded arrays can be handled as if they were structs of the
151 same number of elements.
152
153 TODO: Modeling heap and incoming pointers becomes much better if we
154 add fields to them as we discover them, which we could do.
155
156 TODO: We could handle unions, but to be honest, it's probably not
157 worth the pain or slowdown. */
158
159 /* IPA-PTA optimizations possible.
160
161 When the indirect function called is ANYTHING we can add disambiguation
162 based on the function signatures (or simply the parameter count which
163 is the varinfo size). We also do not need to consider functions that
164 do not have their address taken.
165
166 The is_global_var bit which marks escape points is overly conservative
167 in IPA mode. Split it to is_escape_point and is_global_var - only
168 externally visible globals are escape points in IPA mode. This is
169 also needed to fix the pt_solution_includes_global predicate
170 (and thus ptr_deref_may_alias_global_p).
171
172 The way we introduce DECL_PT_UID to avoid fixing up all points-to
173 sets in the translation unit when we copy a DECL during inlining
174 pessimizes precision. The advantage is that the DECL_PT_UID keeps
175 compile-time and memory usage overhead low - the points-to sets
176 do not grow or get unshared as they would during a fixup phase.
177 An alternative solution is to delay IPA PTA until after all
178 inlining transformations have been applied.
179
180 The way we propagate clobber/use information isn't optimized.
181 It should use a new complex constraint that properly filters
182 out local variables of the callee (though that would make
183 the sets invalid after inlining). OTOH we might as well
184 admit defeat to WHOPR and simply do all the clobber/use analysis
185 and propagation after PTA finished but before we threw away
186 points-to information for memory variables. WHOPR and PTA
187 do not play along well anyway - the whole constraint solving
188 would need to be done in WPA phase and it will be very interesting
189 to apply the results to local SSA names during LTRANS phase.
190
191 We probably should compute a per-function unit-ESCAPE solution
192 propagating it simply like the clobber / uses solutions. The
193 solution can go alongside the non-IPA espaced solution and be
194 used to query which vars escape the unit through a function.
195
196 We never put function decls in points-to sets so we do not
197 keep the set of called functions for indirect calls.
198
199 And probably more. */
200 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct heapvar_map)))
201 htab_t heapvar_for_stmt;
202
203 static bool use_field_sensitive = true;
204 static int in_ipa_mode = 0;
205
206 /* Used for predecessor bitmaps. */
207 static bitmap_obstack predbitmap_obstack;
208
209 /* Used for points-to sets. */
210 static bitmap_obstack pta_obstack;
211
212 /* Used for oldsolution members of variables. */
213 static bitmap_obstack oldpta_obstack;
214
215 /* Used for per-solver-iteration bitmaps. */
216 static bitmap_obstack iteration_obstack;
217
218 static unsigned int create_variable_info_for (tree, const char *);
219 typedef struct constraint_graph *constraint_graph_t;
220 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
221
222 struct constraint;
223 typedef struct constraint *constraint_t;
224
225 DEF_VEC_P(constraint_t);
226 DEF_VEC_ALLOC_P(constraint_t,heap);
227
228 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
229 if (a) \
230 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
231
232 static struct constraint_stats
233 {
234 unsigned int total_vars;
235 unsigned int nonpointer_vars;
236 unsigned int unified_vars_static;
237 unsigned int unified_vars_dynamic;
238 unsigned int iterations;
239 unsigned int num_edges;
240 unsigned int num_implicit_edges;
241 unsigned int points_to_sets_created;
242 } stats;
243
244 struct variable_info
245 {
246 /* ID of this variable */
247 unsigned int id;
248
249 /* True if this is a variable created by the constraint analysis, such as
250 heap variables and constraints we had to break up. */
251 unsigned int is_artificial_var : 1;
252
253 /* True if this is a special variable whose solution set should not be
254 changed. */
255 unsigned int is_special_var : 1;
256
257 /* True for variables whose size is not known or variable. */
258 unsigned int is_unknown_size_var : 1;
259
260 /* True for (sub-)fields that represent a whole variable. */
261 unsigned int is_full_var : 1;
262
263 /* True if this is a heap variable. */
264 unsigned int is_heap_var : 1;
265
266 /* True if this is a variable tracking a restrict pointer source. */
267 unsigned int is_restrict_var : 1;
268
269 /* True if this field may contain pointers. */
270 unsigned int may_have_pointers : 1;
271
272 /* True if this field has only restrict qualified pointers. */
273 unsigned int only_restrict_pointers : 1;
274
275 /* True if this represents a global variable. */
276 unsigned int is_global_var : 1;
277
278 /* True if this represents a IPA function info. */
279 unsigned int is_fn_info : 1;
280
281 /* A link to the variable for the next field in this structure. */
282 struct variable_info *next;
283
284 /* Offset of this variable, in bits, from the base variable */
285 unsigned HOST_WIDE_INT offset;
286
287 /* Size of the variable, in bits. */
288 unsigned HOST_WIDE_INT size;
289
290 /* Full size of the base variable, in bits. */
291 unsigned HOST_WIDE_INT fullsize;
292
293 /* Name of this variable */
294 const char *name;
295
296 /* Tree that this variable is associated with. */
297 tree decl;
298
299 /* Points-to set for this variable. */
300 bitmap solution;
301
302 /* Old points-to set for this variable. */
303 bitmap oldsolution;
304 };
305 typedef struct variable_info *varinfo_t;
306
307 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
308 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
309 unsigned HOST_WIDE_INT);
310 static varinfo_t lookup_vi_for_tree (tree);
311
312 /* Pool of variable info structures. */
313 static alloc_pool variable_info_pool;
314
315 DEF_VEC_P(varinfo_t);
316
317 DEF_VEC_ALLOC_P(varinfo_t, heap);
318
319 /* Table of variable info structures for constraint variables.
320 Indexed directly by variable info id. */
321 static VEC(varinfo_t,heap) *varmap;
322
323 /* Return the varmap element N */
324
325 static inline varinfo_t
326 get_varinfo (unsigned int n)
327 {
328 return VEC_index (varinfo_t, varmap, n);
329 }
330
331 /* Static IDs for the special variables. */
332 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
333 escaped_id = 3, nonlocal_id = 4,
334 storedanything_id = 5, integer_id = 6 };
335
336 struct GTY(()) heapvar_map {
337 struct tree_map map;
338 unsigned HOST_WIDE_INT offset;
339 };
340
341 static int
342 heapvar_map_eq (const void *p1, const void *p2)
343 {
344 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
345 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
346 return (h1->map.base.from == h2->map.base.from
347 && h1->offset == h2->offset);
348 }
349
350 static unsigned int
351 heapvar_map_hash (struct heapvar_map *h)
352 {
353 return iterative_hash_host_wide_int (h->offset,
354 htab_hash_pointer (h->map.base.from));
355 }
356
357 /* Lookup a heap var for FROM, and return it if we find one. */
358
359 static tree
360 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
361 {
362 struct heapvar_map *h, in;
363 in.map.base.from = from;
364 in.offset = offset;
365 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
366 heapvar_map_hash (&in));
367 if (h)
368 return h->map.to;
369 return NULL_TREE;
370 }
371
372 /* Insert a mapping FROM->TO in the heap var for statement
373 hashtable. */
374
375 static void
376 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
377 {
378 struct heapvar_map *h;
379 void **loc;
380
381 h = ggc_alloc_heapvar_map ();
382 h->map.base.from = from;
383 h->offset = offset;
384 h->map.hash = heapvar_map_hash (h);
385 h->map.to = to;
386 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
387 gcc_assert (*loc == NULL);
388 *(struct heapvar_map **) loc = h;
389 }
390
391 /* Return a new variable info structure consisting for a variable
392 named NAME, and using constraint graph node NODE. Append it
393 to the vector of variable info structures. */
394
395 static varinfo_t
396 new_var_info (tree t, const char *name)
397 {
398 unsigned index = VEC_length (varinfo_t, varmap);
399 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
400
401 ret->id = index;
402 ret->name = name;
403 ret->decl = t;
404 /* Vars without decl are artificial and do not have sub-variables. */
405 ret->is_artificial_var = (t == NULL_TREE);
406 ret->is_special_var = false;
407 ret->is_unknown_size_var = false;
408 ret->is_full_var = (t == NULL_TREE);
409 ret->is_heap_var = false;
410 ret->is_restrict_var = false;
411 ret->may_have_pointers = true;
412 ret->only_restrict_pointers = false;
413 ret->is_global_var = (t == NULL_TREE);
414 ret->is_fn_info = false;
415 if (t && DECL_P (t))
416 ret->is_global_var = (is_global_var (t)
417 /* We have to treat even local register variables
418 as escape points. */
419 || (TREE_CODE (t) == VAR_DECL
420 && DECL_HARD_REGISTER (t)));
421 ret->solution = BITMAP_ALLOC (&pta_obstack);
422 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
423 ret->next = NULL;
424
425 stats.total_vars++;
426
427 VEC_safe_push (varinfo_t, heap, varmap, ret);
428
429 return ret;
430 }
431
432
433 /* A map mapping call statements to per-stmt variables for uses
434 and clobbers specific to the call. */
435 struct pointer_map_t *call_stmt_vars;
436
437 /* Lookup or create the variable for the call statement CALL. */
438
439 static varinfo_t
440 get_call_vi (gimple call)
441 {
442 void **slot_p;
443 varinfo_t vi, vi2;
444
445 slot_p = pointer_map_insert (call_stmt_vars, call);
446 if (*slot_p)
447 return (varinfo_t) *slot_p;
448
449 vi = new_var_info (NULL_TREE, "CALLUSED");
450 vi->offset = 0;
451 vi->size = 1;
452 vi->fullsize = 2;
453 vi->is_full_var = true;
454
455 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
456 vi2->offset = 1;
457 vi2->size = 1;
458 vi2->fullsize = 2;
459 vi2->is_full_var = true;
460
461 *slot_p = (void *) vi;
462 return vi;
463 }
464
465 /* Lookup the variable for the call statement CALL representing
466 the uses. Returns NULL if there is nothing special about this call. */
467
468 static varinfo_t
469 lookup_call_use_vi (gimple call)
470 {
471 void **slot_p;
472
473 slot_p = pointer_map_contains (call_stmt_vars, call);
474 if (slot_p)
475 return (varinfo_t) *slot_p;
476
477 return NULL;
478 }
479
480 /* Lookup the variable for the call statement CALL representing
481 the clobbers. Returns NULL if there is nothing special about this call. */
482
483 static varinfo_t
484 lookup_call_clobber_vi (gimple call)
485 {
486 varinfo_t uses = lookup_call_use_vi (call);
487 if (!uses)
488 return NULL;
489
490 return uses->next;
491 }
492
493 /* Lookup or create the variable for the call statement CALL representing
494 the uses. */
495
496 static varinfo_t
497 get_call_use_vi (gimple call)
498 {
499 return get_call_vi (call);
500 }
501
502 /* Lookup or create the variable for the call statement CALL representing
503 the clobbers. */
504
505 static varinfo_t ATTRIBUTE_UNUSED
506 get_call_clobber_vi (gimple call)
507 {
508 return get_call_vi (call)->next;
509 }
510
511
512 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
513
514 /* An expression that appears in a constraint. */
515
516 struct constraint_expr
517 {
518 /* Constraint type. */
519 constraint_expr_type type;
520
521 /* Variable we are referring to in the constraint. */
522 unsigned int var;
523
524 /* Offset, in bits, of this constraint from the beginning of
525 variables it ends up referring to.
526
527 IOW, in a deref constraint, we would deref, get the result set,
528 then add OFFSET to each member. */
529 HOST_WIDE_INT offset;
530 };
531
532 /* Use 0x8000... as special unknown offset. */
533 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
534
535 typedef struct constraint_expr ce_s;
536 DEF_VEC_O(ce_s);
537 DEF_VEC_ALLOC_O(ce_s, heap);
538 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
539 static void get_constraint_for (tree, VEC(ce_s, heap) **);
540 static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
541 static void do_deref (VEC (ce_s, heap) **);
542
543 /* Our set constraints are made up of two constraint expressions, one
544 LHS, and one RHS.
545
546 As described in the introduction, our set constraints each represent an
547 operation between set valued variables.
548 */
549 struct constraint
550 {
551 struct constraint_expr lhs;
552 struct constraint_expr rhs;
553 };
554
555 /* List of constraints that we use to build the constraint graph from. */
556
557 static VEC(constraint_t,heap) *constraints;
558 static alloc_pool constraint_pool;
559
560 /* The constraint graph is represented as an array of bitmaps
561 containing successor nodes. */
562
563 struct constraint_graph
564 {
565 /* Size of this graph, which may be different than the number of
566 nodes in the variable map. */
567 unsigned int size;
568
569 /* Explicit successors of each node. */
570 bitmap *succs;
571
572 /* Implicit predecessors of each node (Used for variable
573 substitution). */
574 bitmap *implicit_preds;
575
576 /* Explicit predecessors of each node (Used for variable substitution). */
577 bitmap *preds;
578
579 /* Indirect cycle representatives, or -1 if the node has no indirect
580 cycles. */
581 int *indirect_cycles;
582
583 /* Representative node for a node. rep[a] == a unless the node has
584 been unified. */
585 unsigned int *rep;
586
587 /* Equivalence class representative for a label. This is used for
588 variable substitution. */
589 int *eq_rep;
590
591 /* Pointer equivalence label for a node. All nodes with the same
592 pointer equivalence label can be unified together at some point
593 (either during constraint optimization or after the constraint
594 graph is built). */
595 unsigned int *pe;
596
597 /* Pointer equivalence representative for a label. This is used to
598 handle nodes that are pointer equivalent but not location
599 equivalent. We can unite these once the addressof constraints
600 are transformed into initial points-to sets. */
601 int *pe_rep;
602
603 /* Pointer equivalence label for each node, used during variable
604 substitution. */
605 unsigned int *pointer_label;
606
607 /* Location equivalence label for each node, used during location
608 equivalence finding. */
609 unsigned int *loc_label;
610
611 /* Pointed-by set for each node, used during location equivalence
612 finding. This is pointed-by rather than pointed-to, because it
613 is constructed using the predecessor graph. */
614 bitmap *pointed_by;
615
616 /* Points to sets for pointer equivalence. This is *not* the actual
617 points-to sets for nodes. */
618 bitmap *points_to;
619
620 /* Bitmap of nodes where the bit is set if the node is a direct
621 node. Used for variable substitution. */
622 sbitmap direct_nodes;
623
624 /* Bitmap of nodes where the bit is set if the node is address
625 taken. Used for variable substitution. */
626 bitmap address_taken;
627
628 /* Vector of complex constraints for each graph node. Complex
629 constraints are those involving dereferences or offsets that are
630 not 0. */
631 VEC(constraint_t,heap) **complex;
632 };
633
634 static constraint_graph_t graph;
635
636 /* During variable substitution and the offline version of indirect
637 cycle finding, we create nodes to represent dereferences and
638 address taken constraints. These represent where these start and
639 end. */
640 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
641 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
642
643 /* Return the representative node for NODE, if NODE has been unioned
644 with another NODE.
645 This function performs path compression along the way to finding
646 the representative. */
647
648 static unsigned int
649 find (unsigned int node)
650 {
651 gcc_assert (node < graph->size);
652 if (graph->rep[node] != node)
653 return graph->rep[node] = find (graph->rep[node]);
654 return node;
655 }
656
657 /* Union the TO and FROM nodes to the TO nodes.
658 Note that at some point in the future, we may want to do
659 union-by-rank, in which case we are going to have to return the
660 node we unified to. */
661
662 static bool
663 unite (unsigned int to, unsigned int from)
664 {
665 gcc_assert (to < graph->size && from < graph->size);
666 if (to != from && graph->rep[from] != to)
667 {
668 graph->rep[from] = to;
669 return true;
670 }
671 return false;
672 }
673
674 /* Create a new constraint consisting of LHS and RHS expressions. */
675
676 static constraint_t
677 new_constraint (const struct constraint_expr lhs,
678 const struct constraint_expr rhs)
679 {
680 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
681 ret->lhs = lhs;
682 ret->rhs = rhs;
683 return ret;
684 }
685
686 /* Print out constraint C to FILE. */
687
688 static void
689 dump_constraint (FILE *file, constraint_t c)
690 {
691 if (c->lhs.type == ADDRESSOF)
692 fprintf (file, "&");
693 else if (c->lhs.type == DEREF)
694 fprintf (file, "*");
695 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
696 if (c->lhs.offset == UNKNOWN_OFFSET)
697 fprintf (file, " + UNKNOWN");
698 else if (c->lhs.offset != 0)
699 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
700 fprintf (file, " = ");
701 if (c->rhs.type == ADDRESSOF)
702 fprintf (file, "&");
703 else if (c->rhs.type == DEREF)
704 fprintf (file, "*");
705 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
706 if (c->rhs.offset == UNKNOWN_OFFSET)
707 fprintf (file, " + UNKNOWN");
708 else if (c->rhs.offset != 0)
709 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
710 fprintf (file, "\n");
711 }
712
713
714 void debug_constraint (constraint_t);
715 void debug_constraints (void);
716 void debug_constraint_graph (void);
717 void debug_solution_for_var (unsigned int);
718 void debug_sa_points_to_info (void);
719
720 /* Print out constraint C to stderr. */
721
722 DEBUG_FUNCTION void
723 debug_constraint (constraint_t c)
724 {
725 dump_constraint (stderr, c);
726 }
727
728 /* Print out all constraints to FILE */
729
730 static void
731 dump_constraints (FILE *file, int from)
732 {
733 int i;
734 constraint_t c;
735 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
736 dump_constraint (file, c);
737 }
738
739 /* Print out all constraints to stderr. */
740
741 DEBUG_FUNCTION void
742 debug_constraints (void)
743 {
744 dump_constraints (stderr, 0);
745 }
746
747 /* Print out to FILE the edge in the constraint graph that is created by
748 constraint c. The edge may have a label, depending on the type of
749 constraint that it represents. If complex1, e.g: a = *b, then the label
750 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
751 complex with an offset, e.g: a = b + 8, then the label is "+".
752 Otherwise the edge has no label. */
753
754 static void
755 dump_constraint_edge (FILE *file, constraint_t c)
756 {
757 if (c->rhs.type != ADDRESSOF)
758 {
759 const char *src = get_varinfo (c->rhs.var)->name;
760 const char *dst = get_varinfo (c->lhs.var)->name;
761 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
762 /* Due to preprocessing of constraints, instructions like *a = *b are
763 illegal; thus, we do not have to handle such cases. */
764 if (c->lhs.type == DEREF)
765 fprintf (file, " [ label=\"*=\" ] ;\n");
766 else if (c->rhs.type == DEREF)
767 fprintf (file, " [ label=\"=*\" ] ;\n");
768 else
769 {
770 /* We must check the case where the constraint is an offset.
771 In this case, it is treated as a complex constraint. */
772 if (c->rhs.offset != c->lhs.offset)
773 fprintf (file, " [ label=\"+\" ] ;\n");
774 else
775 fprintf (file, " ;\n");
776 }
777 }
778 }
779
780 /* Print the constraint graph in dot format. */
781
782 static void
783 dump_constraint_graph (FILE *file)
784 {
785 unsigned int i=0, size;
786 constraint_t c;
787
788 /* Only print the graph if it has already been initialized: */
789 if (!graph)
790 return;
791
792 /* Print the constraints used to produce the constraint graph. The
793 constraints will be printed as comments in the dot file: */
794 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
795 dump_constraints (file, 0);
796 fprintf (file, "*/\n");
797
798 /* Prints the header of the dot file: */
799 fprintf (file, "\n\n// The constraint graph in dot format:\n");
800 fprintf (file, "strict digraph {\n");
801 fprintf (file, " node [\n shape = box\n ]\n");
802 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
803 fprintf (file, "\n // List of nodes in the constraint graph:\n");
804
805 /* The next lines print the nodes in the graph. In order to get the
806 number of nodes in the graph, we must choose the minimum between the
807 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
808 yet been initialized, then graph->size == 0, otherwise we must only
809 read nodes that have an entry in VEC (varinfo_t, varmap). */
810 size = VEC_length (varinfo_t, varmap);
811 size = size < graph->size ? size : graph->size;
812 for (i = 0; i < size; i++)
813 {
814 const char *name = get_varinfo (graph->rep[i])->name;
815 fprintf (file, " \"%s\" ;\n", name);
816 }
817
818 /* Go over the list of constraints printing the edges in the constraint
819 graph. */
820 fprintf (file, "\n // The constraint edges:\n");
821 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
822 if (c)
823 dump_constraint_edge (file, c);
824
825 /* Prints the tail of the dot file. By now, only the closing bracket. */
826 fprintf (file, "}\n\n\n");
827 }
828
829 /* Print out the constraint graph to stderr. */
830
831 DEBUG_FUNCTION void
832 debug_constraint_graph (void)
833 {
834 dump_constraint_graph (stderr);
835 }
836
837 /* SOLVER FUNCTIONS
838
839 The solver is a simple worklist solver, that works on the following
840 algorithm:
841
842 sbitmap changed_nodes = all zeroes;
843 changed_count = 0;
844 For each node that is not already collapsed:
845 changed_count++;
846 set bit in changed nodes
847
848 while (changed_count > 0)
849 {
850 compute topological ordering for constraint graph
851
852 find and collapse cycles in the constraint graph (updating
853 changed if necessary)
854
855 for each node (n) in the graph in topological order:
856 changed_count--;
857
858 Process each complex constraint associated with the node,
859 updating changed if necessary.
860
861 For each outgoing edge from n, propagate the solution from n to
862 the destination of the edge, updating changed as necessary.
863
864 } */
865
866 /* Return true if two constraint expressions A and B are equal. */
867
868 static bool
869 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
870 {
871 return a.type == b.type && a.var == b.var && a.offset == b.offset;
872 }
873
874 /* Return true if constraint expression A is less than constraint expression
875 B. This is just arbitrary, but consistent, in order to give them an
876 ordering. */
877
878 static bool
879 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
880 {
881 if (a.type == b.type)
882 {
883 if (a.var == b.var)
884 return a.offset < b.offset;
885 else
886 return a.var < b.var;
887 }
888 else
889 return a.type < b.type;
890 }
891
892 /* Return true if constraint A is less than constraint B. This is just
893 arbitrary, but consistent, in order to give them an ordering. */
894
895 static bool
896 constraint_less (const constraint_t a, const constraint_t b)
897 {
898 if (constraint_expr_less (a->lhs, b->lhs))
899 return true;
900 else if (constraint_expr_less (b->lhs, a->lhs))
901 return false;
902 else
903 return constraint_expr_less (a->rhs, b->rhs);
904 }
905
906 /* Return true if two constraints A and B are equal. */
907
908 static bool
909 constraint_equal (struct constraint a, struct constraint b)
910 {
911 return constraint_expr_equal (a.lhs, b.lhs)
912 && constraint_expr_equal (a.rhs, b.rhs);
913 }
914
915
916 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
917
918 static constraint_t
919 constraint_vec_find (VEC(constraint_t,heap) *vec,
920 struct constraint lookfor)
921 {
922 unsigned int place;
923 constraint_t found;
924
925 if (vec == NULL)
926 return NULL;
927
928 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
929 if (place >= VEC_length (constraint_t, vec))
930 return NULL;
931 found = VEC_index (constraint_t, vec, place);
932 if (!constraint_equal (*found, lookfor))
933 return NULL;
934 return found;
935 }
936
937 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
938
939 static void
940 constraint_set_union (VEC(constraint_t,heap) **to,
941 VEC(constraint_t,heap) **from)
942 {
943 int i;
944 constraint_t c;
945
946 FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
947 {
948 if (constraint_vec_find (*to, *c) == NULL)
949 {
950 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
951 constraint_less);
952 VEC_safe_insert (constraint_t, heap, *to, place, c);
953 }
954 }
955 }
956
957 /* Expands the solution in SET to all sub-fields of variables included.
958 Union the expanded result into RESULT. */
959
960 static void
961 solution_set_expand (bitmap result, bitmap set)
962 {
963 bitmap_iterator bi;
964 bitmap vars = NULL;
965 unsigned j;
966
967 /* In a first pass record all variables we need to add all
968 sub-fields off. This avoids quadratic behavior. */
969 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
970 {
971 varinfo_t v = get_varinfo (j);
972 if (v->is_artificial_var
973 || v->is_full_var)
974 continue;
975 v = lookup_vi_for_tree (v->decl);
976 if (vars == NULL)
977 vars = BITMAP_ALLOC (NULL);
978 bitmap_set_bit (vars, v->id);
979 }
980
981 /* In the second pass now do the addition to the solution and
982 to speed up solving add it to the delta as well. */
983 if (vars != NULL)
984 {
985 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
986 {
987 varinfo_t v = get_varinfo (j);
988 for (; v != NULL; v = v->next)
989 bitmap_set_bit (result, v->id);
990 }
991 BITMAP_FREE (vars);
992 }
993 }
994
995 /* Take a solution set SET, add OFFSET to each member of the set, and
996 overwrite SET with the result when done. */
997
998 static void
999 solution_set_add (bitmap set, HOST_WIDE_INT offset)
1000 {
1001 bitmap result = BITMAP_ALLOC (&iteration_obstack);
1002 unsigned int i;
1003 bitmap_iterator bi;
1004
1005 /* If the offset is unknown we have to expand the solution to
1006 all subfields. */
1007 if (offset == UNKNOWN_OFFSET)
1008 {
1009 solution_set_expand (set, set);
1010 return;
1011 }
1012
1013 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1014 {
1015 varinfo_t vi = get_varinfo (i);
1016
1017 /* If this is a variable with just one field just set its bit
1018 in the result. */
1019 if (vi->is_artificial_var
1020 || vi->is_unknown_size_var
1021 || vi->is_full_var)
1022 bitmap_set_bit (result, i);
1023 else
1024 {
1025 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
1026
1027 /* If the offset makes the pointer point to before the
1028 variable use offset zero for the field lookup. */
1029 if (offset < 0
1030 && fieldoffset > vi->offset)
1031 fieldoffset = 0;
1032
1033 if (offset != 0)
1034 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1035
1036 bitmap_set_bit (result, vi->id);
1037 /* If the result is not exactly at fieldoffset include the next
1038 field as well. See get_constraint_for_ptr_offset for more
1039 rationale. */
1040 if (vi->offset != fieldoffset
1041 && vi->next != NULL)
1042 bitmap_set_bit (result, vi->next->id);
1043 }
1044 }
1045
1046 bitmap_copy (set, result);
1047 BITMAP_FREE (result);
1048 }
1049
1050 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
1051 process. */
1052
1053 static bool
1054 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
1055 {
1056 if (inc == 0)
1057 return bitmap_ior_into (to, from);
1058 else
1059 {
1060 bitmap tmp;
1061 bool res;
1062
1063 tmp = BITMAP_ALLOC (&iteration_obstack);
1064 bitmap_copy (tmp, from);
1065 solution_set_add (tmp, inc);
1066 res = bitmap_ior_into (to, tmp);
1067 BITMAP_FREE (tmp);
1068 return res;
1069 }
1070 }
1071
1072 /* Insert constraint C into the list of complex constraints for graph
1073 node VAR. */
1074
1075 static void
1076 insert_into_complex (constraint_graph_t graph,
1077 unsigned int var, constraint_t c)
1078 {
1079 VEC (constraint_t, heap) *complex = graph->complex[var];
1080 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1081 constraint_less);
1082
1083 /* Only insert constraints that do not already exist. */
1084 if (place >= VEC_length (constraint_t, complex)
1085 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1086 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1087 }
1088
1089
1090 /* Condense two variable nodes into a single variable node, by moving
1091 all associated info from SRC to TO. */
1092
1093 static void
1094 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1095 unsigned int from)
1096 {
1097 unsigned int i;
1098 constraint_t c;
1099
1100 gcc_assert (find (from) == to);
1101
1102 /* Move all complex constraints from src node into to node */
1103 FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
1104 {
1105 /* In complex constraints for node src, we may have either
1106 a = *src, and *src = a, or an offseted constraint which are
1107 always added to the rhs node's constraints. */
1108
1109 if (c->rhs.type == DEREF)
1110 c->rhs.var = to;
1111 else if (c->lhs.type == DEREF)
1112 c->lhs.var = to;
1113 else
1114 c->rhs.var = to;
1115 }
1116 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1117 VEC_free (constraint_t, heap, graph->complex[from]);
1118 graph->complex[from] = NULL;
1119 }
1120
1121
1122 /* Remove edges involving NODE from GRAPH. */
1123
1124 static void
1125 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1126 {
1127 if (graph->succs[node])
1128 BITMAP_FREE (graph->succs[node]);
1129 }
1130
1131 /* Merge GRAPH nodes FROM and TO into node TO. */
1132
1133 static void
1134 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1135 unsigned int from)
1136 {
1137 if (graph->indirect_cycles[from] != -1)
1138 {
1139 /* If we have indirect cycles with the from node, and we have
1140 none on the to node, the to node has indirect cycles from the
1141 from node now that they are unified.
1142 If indirect cycles exist on both, unify the nodes that they
1143 are in a cycle with, since we know they are in a cycle with
1144 each other. */
1145 if (graph->indirect_cycles[to] == -1)
1146 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1147 }
1148
1149 /* Merge all the successor edges. */
1150 if (graph->succs[from])
1151 {
1152 if (!graph->succs[to])
1153 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1154 bitmap_ior_into (graph->succs[to],
1155 graph->succs[from]);
1156 }
1157
1158 clear_edges_for_node (graph, from);
1159 }
1160
1161
1162 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1163 it doesn't exist in the graph already. */
1164
1165 static void
1166 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1167 unsigned int from)
1168 {
1169 if (to == from)
1170 return;
1171
1172 if (!graph->implicit_preds[to])
1173 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1174
1175 if (bitmap_set_bit (graph->implicit_preds[to], from))
1176 stats.num_implicit_edges++;
1177 }
1178
1179 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1180 it doesn't exist in the graph already.
1181 Return false if the edge already existed, true otherwise. */
1182
1183 static void
1184 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1185 unsigned int from)
1186 {
1187 if (!graph->preds[to])
1188 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1189 bitmap_set_bit (graph->preds[to], from);
1190 }
1191
1192 /* Add a graph edge to GRAPH, going from FROM to TO if
1193 it doesn't exist in the graph already.
1194 Return false if the edge already existed, true otherwise. */
1195
1196 static bool
1197 add_graph_edge (constraint_graph_t graph, unsigned int to,
1198 unsigned int from)
1199 {
1200 if (to == from)
1201 {
1202 return false;
1203 }
1204 else
1205 {
1206 bool r = false;
1207
1208 if (!graph->succs[from])
1209 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1210 if (bitmap_set_bit (graph->succs[from], to))
1211 {
1212 r = true;
1213 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1214 stats.num_edges++;
1215 }
1216 return r;
1217 }
1218 }
1219
1220
1221 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1222
1223 static bool
1224 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1225 unsigned int dest)
1226 {
1227 return (graph->succs[dest]
1228 && bitmap_bit_p (graph->succs[dest], src));
1229 }
1230
1231 /* Initialize the constraint graph structure to contain SIZE nodes. */
1232
1233 static void
1234 init_graph (unsigned int size)
1235 {
1236 unsigned int j;
1237
1238 graph = XCNEW (struct constraint_graph);
1239 graph->size = size;
1240 graph->succs = XCNEWVEC (bitmap, graph->size);
1241 graph->indirect_cycles = XNEWVEC (int, graph->size);
1242 graph->rep = XNEWVEC (unsigned int, graph->size);
1243 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1244 graph->pe = XCNEWVEC (unsigned int, graph->size);
1245 graph->pe_rep = XNEWVEC (int, graph->size);
1246
1247 for (j = 0; j < graph->size; j++)
1248 {
1249 graph->rep[j] = j;
1250 graph->pe_rep[j] = -1;
1251 graph->indirect_cycles[j] = -1;
1252 }
1253 }
1254
1255 /* Build the constraint graph, adding only predecessor edges right now. */
1256
1257 static void
1258 build_pred_graph (void)
1259 {
1260 int i;
1261 constraint_t c;
1262 unsigned int j;
1263
1264 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1265 graph->preds = XCNEWVEC (bitmap, graph->size);
1266 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1267 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1268 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1269 graph->points_to = XCNEWVEC (bitmap, graph->size);
1270 graph->eq_rep = XNEWVEC (int, graph->size);
1271 graph->direct_nodes = sbitmap_alloc (graph->size);
1272 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1273 sbitmap_zero (graph->direct_nodes);
1274
1275 for (j = 0; j < FIRST_REF_NODE; j++)
1276 {
1277 if (!get_varinfo (j)->is_special_var)
1278 SET_BIT (graph->direct_nodes, j);
1279 }
1280
1281 for (j = 0; j < graph->size; j++)
1282 graph->eq_rep[j] = -1;
1283
1284 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1285 graph->indirect_cycles[j] = -1;
1286
1287 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1288 {
1289 struct constraint_expr lhs = c->lhs;
1290 struct constraint_expr rhs = c->rhs;
1291 unsigned int lhsvar = lhs.var;
1292 unsigned int rhsvar = rhs.var;
1293
1294 if (lhs.type == DEREF)
1295 {
1296 /* *x = y. */
1297 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1298 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1299 }
1300 else if (rhs.type == DEREF)
1301 {
1302 /* x = *y */
1303 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1304 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1305 else
1306 RESET_BIT (graph->direct_nodes, lhsvar);
1307 }
1308 else if (rhs.type == ADDRESSOF)
1309 {
1310 varinfo_t v;
1311
1312 /* x = &y */
1313 if (graph->points_to[lhsvar] == NULL)
1314 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1315 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1316
1317 if (graph->pointed_by[rhsvar] == NULL)
1318 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1319 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1320
1321 /* Implicitly, *x = y */
1322 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1323
1324 /* All related variables are no longer direct nodes. */
1325 RESET_BIT (graph->direct_nodes, rhsvar);
1326 v = get_varinfo (rhsvar);
1327 if (!v->is_full_var)
1328 {
1329 v = lookup_vi_for_tree (v->decl);
1330 do
1331 {
1332 RESET_BIT (graph->direct_nodes, v->id);
1333 v = v->next;
1334 }
1335 while (v != NULL);
1336 }
1337 bitmap_set_bit (graph->address_taken, rhsvar);
1338 }
1339 else if (lhsvar > anything_id
1340 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1341 {
1342 /* x = y */
1343 add_pred_graph_edge (graph, lhsvar, rhsvar);
1344 /* Implicitly, *x = *y */
1345 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1346 FIRST_REF_NODE + rhsvar);
1347 }
1348 else if (lhs.offset != 0 || rhs.offset != 0)
1349 {
1350 if (rhs.offset != 0)
1351 RESET_BIT (graph->direct_nodes, lhs.var);
1352 else if (lhs.offset != 0)
1353 RESET_BIT (graph->direct_nodes, rhs.var);
1354 }
1355 }
1356 }
1357
1358 /* Build the constraint graph, adding successor edges. */
1359
1360 static void
1361 build_succ_graph (void)
1362 {
1363 unsigned i, t;
1364 constraint_t c;
1365
1366 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1367 {
1368 struct constraint_expr lhs;
1369 struct constraint_expr rhs;
1370 unsigned int lhsvar;
1371 unsigned int rhsvar;
1372
1373 if (!c)
1374 continue;
1375
1376 lhs = c->lhs;
1377 rhs = c->rhs;
1378 lhsvar = find (lhs.var);
1379 rhsvar = find (rhs.var);
1380
1381 if (lhs.type == DEREF)
1382 {
1383 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1384 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1385 }
1386 else if (rhs.type == DEREF)
1387 {
1388 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1389 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1390 }
1391 else if (rhs.type == ADDRESSOF)
1392 {
1393 /* x = &y */
1394 gcc_assert (find (rhs.var) == rhs.var);
1395 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1396 }
1397 else if (lhsvar > anything_id
1398 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1399 {
1400 add_graph_edge (graph, lhsvar, rhsvar);
1401 }
1402 }
1403
1404 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1405 receive pointers. */
1406 t = find (storedanything_id);
1407 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1408 {
1409 if (!TEST_BIT (graph->direct_nodes, i)
1410 && get_varinfo (i)->may_have_pointers)
1411 add_graph_edge (graph, find (i), t);
1412 }
1413
1414 /* Everything stored to ANYTHING also potentially escapes. */
1415 add_graph_edge (graph, find (escaped_id), t);
1416 }
1417
1418
1419 /* Changed variables on the last iteration. */
1420 static unsigned int changed_count;
1421 static sbitmap changed;
1422
1423 /* Strongly Connected Component visitation info. */
1424
1425 struct scc_info
1426 {
1427 sbitmap visited;
1428 sbitmap deleted;
1429 unsigned int *dfs;
1430 unsigned int *node_mapping;
1431 int current_index;
1432 VEC(unsigned,heap) *scc_stack;
1433 };
1434
1435
1436 /* Recursive routine to find strongly connected components in GRAPH.
1437 SI is the SCC info to store the information in, and N is the id of current
1438 graph node we are processing.
1439
1440 This is Tarjan's strongly connected component finding algorithm, as
1441 modified by Nuutila to keep only non-root nodes on the stack.
1442 The algorithm can be found in "On finding the strongly connected
1443 connected components in a directed graph" by Esko Nuutila and Eljas
1444 Soisalon-Soininen, in Information Processing Letters volume 49,
1445 number 1, pages 9-14. */
1446
1447 static void
1448 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1449 {
1450 unsigned int i;
1451 bitmap_iterator bi;
1452 unsigned int my_dfs;
1453
1454 SET_BIT (si->visited, n);
1455 si->dfs[n] = si->current_index ++;
1456 my_dfs = si->dfs[n];
1457
1458 /* Visit all the successors. */
1459 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1460 {
1461 unsigned int w;
1462
1463 if (i > LAST_REF_NODE)
1464 break;
1465
1466 w = find (i);
1467 if (TEST_BIT (si->deleted, w))
1468 continue;
1469
1470 if (!TEST_BIT (si->visited, w))
1471 scc_visit (graph, si, w);
1472 {
1473 unsigned int t = find (w);
1474 unsigned int nnode = find (n);
1475 gcc_assert (nnode == n);
1476
1477 if (si->dfs[t] < si->dfs[nnode])
1478 si->dfs[n] = si->dfs[t];
1479 }
1480 }
1481
1482 /* See if any components have been identified. */
1483 if (si->dfs[n] == my_dfs)
1484 {
1485 if (VEC_length (unsigned, si->scc_stack) > 0
1486 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1487 {
1488 bitmap scc = BITMAP_ALLOC (NULL);
1489 unsigned int lowest_node;
1490 bitmap_iterator bi;
1491
1492 bitmap_set_bit (scc, n);
1493
1494 while (VEC_length (unsigned, si->scc_stack) != 0
1495 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1496 {
1497 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1498
1499 bitmap_set_bit (scc, w);
1500 }
1501
1502 lowest_node = bitmap_first_set_bit (scc);
1503 gcc_assert (lowest_node < FIRST_REF_NODE);
1504
1505 /* Collapse the SCC nodes into a single node, and mark the
1506 indirect cycles. */
1507 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1508 {
1509 if (i < FIRST_REF_NODE)
1510 {
1511 if (unite (lowest_node, i))
1512 unify_nodes (graph, lowest_node, i, false);
1513 }
1514 else
1515 {
1516 unite (lowest_node, i);
1517 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1518 }
1519 }
1520 }
1521 SET_BIT (si->deleted, n);
1522 }
1523 else
1524 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1525 }
1526
1527 /* Unify node FROM into node TO, updating the changed count if
1528 necessary when UPDATE_CHANGED is true. */
1529
1530 static void
1531 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1532 bool update_changed)
1533 {
1534
1535 gcc_assert (to != from && find (to) == to);
1536 if (dump_file && (dump_flags & TDF_DETAILS))
1537 fprintf (dump_file, "Unifying %s to %s\n",
1538 get_varinfo (from)->name,
1539 get_varinfo (to)->name);
1540
1541 if (update_changed)
1542 stats.unified_vars_dynamic++;
1543 else
1544 stats.unified_vars_static++;
1545
1546 merge_graph_nodes (graph, to, from);
1547 merge_node_constraints (graph, to, from);
1548
1549 /* Mark TO as changed if FROM was changed. If TO was already marked
1550 as changed, decrease the changed count. */
1551
1552 if (update_changed && TEST_BIT (changed, from))
1553 {
1554 RESET_BIT (changed, from);
1555 if (!TEST_BIT (changed, to))
1556 SET_BIT (changed, to);
1557 else
1558 {
1559 gcc_assert (changed_count > 0);
1560 changed_count--;
1561 }
1562 }
1563 if (get_varinfo (from)->solution)
1564 {
1565 /* If the solution changes because of the merging, we need to mark
1566 the variable as changed. */
1567 if (bitmap_ior_into (get_varinfo (to)->solution,
1568 get_varinfo (from)->solution))
1569 {
1570 if (update_changed && !TEST_BIT (changed, to))
1571 {
1572 SET_BIT (changed, to);
1573 changed_count++;
1574 }
1575 }
1576
1577 BITMAP_FREE (get_varinfo (from)->solution);
1578 BITMAP_FREE (get_varinfo (from)->oldsolution);
1579
1580 if (stats.iterations > 0)
1581 {
1582 BITMAP_FREE (get_varinfo (to)->oldsolution);
1583 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1584 }
1585 }
1586 if (valid_graph_edge (graph, to, to))
1587 {
1588 if (graph->succs[to])
1589 bitmap_clear_bit (graph->succs[to], to);
1590 }
1591 }
1592
1593 /* Information needed to compute the topological ordering of a graph. */
1594
1595 struct topo_info
1596 {
1597 /* sbitmap of visited nodes. */
1598 sbitmap visited;
1599 /* Array that stores the topological order of the graph, *in
1600 reverse*. */
1601 VEC(unsigned,heap) *topo_order;
1602 };
1603
1604
1605 /* Initialize and return a topological info structure. */
1606
1607 static struct topo_info *
1608 init_topo_info (void)
1609 {
1610 size_t size = graph->size;
1611 struct topo_info *ti = XNEW (struct topo_info);
1612 ti->visited = sbitmap_alloc (size);
1613 sbitmap_zero (ti->visited);
1614 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1615 return ti;
1616 }
1617
1618
1619 /* Free the topological sort info pointed to by TI. */
1620
1621 static void
1622 free_topo_info (struct topo_info *ti)
1623 {
1624 sbitmap_free (ti->visited);
1625 VEC_free (unsigned, heap, ti->topo_order);
1626 free (ti);
1627 }
1628
1629 /* Visit the graph in topological order, and store the order in the
1630 topo_info structure. */
1631
1632 static void
1633 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1634 unsigned int n)
1635 {
1636 bitmap_iterator bi;
1637 unsigned int j;
1638
1639 SET_BIT (ti->visited, n);
1640
1641 if (graph->succs[n])
1642 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1643 {
1644 if (!TEST_BIT (ti->visited, j))
1645 topo_visit (graph, ti, j);
1646 }
1647
1648 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1649 }
1650
1651 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1652 starting solution for y. */
1653
1654 static void
1655 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1656 bitmap delta)
1657 {
1658 unsigned int lhs = c->lhs.var;
1659 bool flag = false;
1660 bitmap sol = get_varinfo (lhs)->solution;
1661 unsigned int j;
1662 bitmap_iterator bi;
1663 HOST_WIDE_INT roffset = c->rhs.offset;
1664
1665 /* Our IL does not allow this. */
1666 gcc_assert (c->lhs.offset == 0);
1667
1668 /* If the solution of Y contains anything it is good enough to transfer
1669 this to the LHS. */
1670 if (bitmap_bit_p (delta, anything_id))
1671 {
1672 flag |= bitmap_set_bit (sol, anything_id);
1673 goto done;
1674 }
1675
1676 /* If we do not know at with offset the rhs is dereferenced compute
1677 the reachability set of DELTA, conservatively assuming it is
1678 dereferenced at all valid offsets. */
1679 if (roffset == UNKNOWN_OFFSET)
1680 {
1681 solution_set_expand (delta, delta);
1682 /* No further offset processing is necessary. */
1683 roffset = 0;
1684 }
1685
1686 /* For each variable j in delta (Sol(y)), add
1687 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1688 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1689 {
1690 varinfo_t v = get_varinfo (j);
1691 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1692 unsigned int t;
1693
1694 if (v->is_full_var)
1695 fieldoffset = v->offset;
1696 else if (roffset != 0)
1697 v = first_vi_for_offset (v, fieldoffset);
1698 /* If the access is outside of the variable we can ignore it. */
1699 if (!v)
1700 continue;
1701
1702 do
1703 {
1704 t = find (v->id);
1705
1706 /* Adding edges from the special vars is pointless.
1707 They don't have sets that can change. */
1708 if (get_varinfo (t)->is_special_var)
1709 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1710 /* Merging the solution from ESCAPED needlessly increases
1711 the set. Use ESCAPED as representative instead. */
1712 else if (v->id == escaped_id)
1713 flag |= bitmap_set_bit (sol, escaped_id);
1714 else if (v->may_have_pointers
1715 && add_graph_edge (graph, lhs, t))
1716 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1717
1718 /* If the variable is not exactly at the requested offset
1719 we have to include the next one. */
1720 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1721 || v->next == NULL)
1722 break;
1723
1724 v = v->next;
1725 fieldoffset = v->offset;
1726 }
1727 while (1);
1728 }
1729
1730 done:
1731 /* If the LHS solution changed, mark the var as changed. */
1732 if (flag)
1733 {
1734 get_varinfo (lhs)->solution = sol;
1735 if (!TEST_BIT (changed, lhs))
1736 {
1737 SET_BIT (changed, lhs);
1738 changed_count++;
1739 }
1740 }
1741 }
1742
1743 /* Process a constraint C that represents *(x + off) = y using DELTA
1744 as the starting solution for x. */
1745
1746 static void
1747 do_ds_constraint (constraint_t c, bitmap delta)
1748 {
1749 unsigned int rhs = c->rhs.var;
1750 bitmap sol = get_varinfo (rhs)->solution;
1751 unsigned int j;
1752 bitmap_iterator bi;
1753 HOST_WIDE_INT loff = c->lhs.offset;
1754 bool escaped_p = false;
1755
1756 /* Our IL does not allow this. */
1757 gcc_assert (c->rhs.offset == 0);
1758
1759 /* If the solution of y contains ANYTHING simply use the ANYTHING
1760 solution. This avoids needlessly increasing the points-to sets. */
1761 if (bitmap_bit_p (sol, anything_id))
1762 sol = get_varinfo (find (anything_id))->solution;
1763
1764 /* If the solution for x contains ANYTHING we have to merge the
1765 solution of y into all pointer variables which we do via
1766 STOREDANYTHING. */
1767 if (bitmap_bit_p (delta, anything_id))
1768 {
1769 unsigned t = find (storedanything_id);
1770 if (add_graph_edge (graph, t, rhs))
1771 {
1772 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1773 {
1774 if (!TEST_BIT (changed, t))
1775 {
1776 SET_BIT (changed, t);
1777 changed_count++;
1778 }
1779 }
1780 }
1781 return;
1782 }
1783
1784 /* If we do not know at with offset the rhs is dereferenced compute
1785 the reachability set of DELTA, conservatively assuming it is
1786 dereferenced at all valid offsets. */
1787 if (loff == UNKNOWN_OFFSET)
1788 {
1789 solution_set_expand (delta, delta);
1790 loff = 0;
1791 }
1792
1793 /* For each member j of delta (Sol(x)), add an edge from y to j and
1794 union Sol(y) into Sol(j) */
1795 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1796 {
1797 varinfo_t v = get_varinfo (j);
1798 unsigned int t;
1799 HOST_WIDE_INT fieldoffset = v->offset + loff;
1800
1801 if (v->is_full_var)
1802 fieldoffset = v->offset;
1803 else if (loff != 0)
1804 v = first_vi_for_offset (v, fieldoffset);
1805 /* If the access is outside of the variable we can ignore it. */
1806 if (!v)
1807 continue;
1808
1809 do
1810 {
1811 if (v->may_have_pointers)
1812 {
1813 /* If v is a global variable then this is an escape point. */
1814 if (v->is_global_var
1815 && !escaped_p)
1816 {
1817 t = find (escaped_id);
1818 if (add_graph_edge (graph, t, rhs)
1819 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1820 && !TEST_BIT (changed, t))
1821 {
1822 SET_BIT (changed, t);
1823 changed_count++;
1824 }
1825 /* Enough to let rhs escape once. */
1826 escaped_p = true;
1827 }
1828
1829 if (v->is_special_var)
1830 break;
1831
1832 t = find (v->id);
1833 if (add_graph_edge (graph, t, rhs)
1834 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1835 && !TEST_BIT (changed, t))
1836 {
1837 SET_BIT (changed, t);
1838 changed_count++;
1839 }
1840 }
1841
1842 /* If the variable is not exactly at the requested offset
1843 we have to include the next one. */
1844 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1845 || v->next == NULL)
1846 break;
1847
1848 v = v->next;
1849 fieldoffset = v->offset;
1850 }
1851 while (1);
1852 }
1853 }
1854
1855 /* Handle a non-simple (simple meaning requires no iteration),
1856 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1857
1858 static void
1859 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1860 {
1861 if (c->lhs.type == DEREF)
1862 {
1863 if (c->rhs.type == ADDRESSOF)
1864 {
1865 gcc_unreachable();
1866 }
1867 else
1868 {
1869 /* *x = y */
1870 do_ds_constraint (c, delta);
1871 }
1872 }
1873 else if (c->rhs.type == DEREF)
1874 {
1875 /* x = *y */
1876 if (!(get_varinfo (c->lhs.var)->is_special_var))
1877 do_sd_constraint (graph, c, delta);
1878 }
1879 else
1880 {
1881 bitmap tmp;
1882 bitmap solution;
1883 bool flag = false;
1884
1885 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1886 solution = get_varinfo (c->rhs.var)->solution;
1887 tmp = get_varinfo (c->lhs.var)->solution;
1888
1889 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1890
1891 if (flag)
1892 {
1893 get_varinfo (c->lhs.var)->solution = tmp;
1894 if (!TEST_BIT (changed, c->lhs.var))
1895 {
1896 SET_BIT (changed, c->lhs.var);
1897 changed_count++;
1898 }
1899 }
1900 }
1901 }
1902
1903 /* Initialize and return a new SCC info structure. */
1904
1905 static struct scc_info *
1906 init_scc_info (size_t size)
1907 {
1908 struct scc_info *si = XNEW (struct scc_info);
1909 size_t i;
1910
1911 si->current_index = 0;
1912 si->visited = sbitmap_alloc (size);
1913 sbitmap_zero (si->visited);
1914 si->deleted = sbitmap_alloc (size);
1915 sbitmap_zero (si->deleted);
1916 si->node_mapping = XNEWVEC (unsigned int, size);
1917 si->dfs = XCNEWVEC (unsigned int, size);
1918
1919 for (i = 0; i < size; i++)
1920 si->node_mapping[i] = i;
1921
1922 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1923 return si;
1924 }
1925
1926 /* Free an SCC info structure pointed to by SI */
1927
1928 static void
1929 free_scc_info (struct scc_info *si)
1930 {
1931 sbitmap_free (si->visited);
1932 sbitmap_free (si->deleted);
1933 free (si->node_mapping);
1934 free (si->dfs);
1935 VEC_free (unsigned, heap, si->scc_stack);
1936 free (si);
1937 }
1938
1939
1940 /* Find indirect cycles in GRAPH that occur, using strongly connected
1941 components, and note them in the indirect cycles map.
1942
1943 This technique comes from Ben Hardekopf and Calvin Lin,
1944 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1945 Lines of Code", submitted to PLDI 2007. */
1946
1947 static void
1948 find_indirect_cycles (constraint_graph_t graph)
1949 {
1950 unsigned int i;
1951 unsigned int size = graph->size;
1952 struct scc_info *si = init_scc_info (size);
1953
1954 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1955 if (!TEST_BIT (si->visited, i) && find (i) == i)
1956 scc_visit (graph, si, i);
1957
1958 free_scc_info (si);
1959 }
1960
1961 /* Compute a topological ordering for GRAPH, and store the result in the
1962 topo_info structure TI. */
1963
1964 static void
1965 compute_topo_order (constraint_graph_t graph,
1966 struct topo_info *ti)
1967 {
1968 unsigned int i;
1969 unsigned int size = graph->size;
1970
1971 for (i = 0; i != size; ++i)
1972 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1973 topo_visit (graph, ti, i);
1974 }
1975
1976 /* Structure used to for hash value numbering of pointer equivalence
1977 classes. */
1978
1979 typedef struct equiv_class_label
1980 {
1981 hashval_t hashcode;
1982 unsigned int equivalence_class;
1983 bitmap labels;
1984 } *equiv_class_label_t;
1985 typedef const struct equiv_class_label *const_equiv_class_label_t;
1986
1987 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1988 classes. */
1989 static htab_t pointer_equiv_class_table;
1990
1991 /* A hashtable for mapping a bitmap of labels->location equivalence
1992 classes. */
1993 static htab_t location_equiv_class_table;
1994
1995 /* Hash function for a equiv_class_label_t */
1996
1997 static hashval_t
1998 equiv_class_label_hash (const void *p)
1999 {
2000 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
2001 return ecl->hashcode;
2002 }
2003
2004 /* Equality function for two equiv_class_label_t's. */
2005
2006 static int
2007 equiv_class_label_eq (const void *p1, const void *p2)
2008 {
2009 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2010 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
2011 return (eql1->hashcode == eql2->hashcode
2012 && bitmap_equal_p (eql1->labels, eql2->labels));
2013 }
2014
2015 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2016 contains. */
2017
2018 static unsigned int
2019 equiv_class_lookup (htab_t table, bitmap labels)
2020 {
2021 void **slot;
2022 struct equiv_class_label ecl;
2023
2024 ecl.labels = labels;
2025 ecl.hashcode = bitmap_hash (labels);
2026
2027 slot = htab_find_slot_with_hash (table, &ecl,
2028 ecl.hashcode, NO_INSERT);
2029 if (!slot)
2030 return 0;
2031 else
2032 return ((equiv_class_label_t) *slot)->equivalence_class;
2033 }
2034
2035
2036 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2037 to TABLE. */
2038
2039 static void
2040 equiv_class_add (htab_t table, unsigned int equivalence_class,
2041 bitmap labels)
2042 {
2043 void **slot;
2044 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2045
2046 ecl->labels = labels;
2047 ecl->equivalence_class = equivalence_class;
2048 ecl->hashcode = bitmap_hash (labels);
2049
2050 slot = htab_find_slot_with_hash (table, ecl,
2051 ecl->hashcode, INSERT);
2052 gcc_assert (!*slot);
2053 *slot = (void *) ecl;
2054 }
2055
2056 /* Perform offline variable substitution.
2057
2058 This is a worst case quadratic time way of identifying variables
2059 that must have equivalent points-to sets, including those caused by
2060 static cycles, and single entry subgraphs, in the constraint graph.
2061
2062 The technique is described in "Exploiting Pointer and Location
2063 Equivalence to Optimize Pointer Analysis. In the 14th International
2064 Static Analysis Symposium (SAS), August 2007." It is known as the
2065 "HU" algorithm, and is equivalent to value numbering the collapsed
2066 constraint graph including evaluating unions.
2067
2068 The general method of finding equivalence classes is as follows:
2069 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
2070 Initialize all non-REF nodes to be direct nodes.
2071 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2072 variable}
2073 For each constraint containing the dereference, we also do the same
2074 thing.
2075
2076 We then compute SCC's in the graph and unify nodes in the same SCC,
2077 including pts sets.
2078
2079 For each non-collapsed node x:
2080 Visit all unvisited explicit incoming edges.
2081 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2082 where y->x.
2083 Lookup the equivalence class for pts(x).
2084 If we found one, equivalence_class(x) = found class.
2085 Otherwise, equivalence_class(x) = new class, and new_class is
2086 added to the lookup table.
2087
2088 All direct nodes with the same equivalence class can be replaced
2089 with a single representative node.
2090 All unlabeled nodes (label == 0) are not pointers and all edges
2091 involving them can be eliminated.
2092 We perform these optimizations during rewrite_constraints
2093
2094 In addition to pointer equivalence class finding, we also perform
2095 location equivalence class finding. This is the set of variables
2096 that always appear together in points-to sets. We use this to
2097 compress the size of the points-to sets. */
2098
2099 /* Current maximum pointer equivalence class id. */
2100 static int pointer_equiv_class;
2101
2102 /* Current maximum location equivalence class id. */
2103 static int location_equiv_class;
2104
2105 /* Recursive routine to find strongly connected components in GRAPH,
2106 and label it's nodes with DFS numbers. */
2107
2108 static void
2109 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2110 {
2111 unsigned int i;
2112 bitmap_iterator bi;
2113 unsigned int my_dfs;
2114
2115 gcc_assert (si->node_mapping[n] == n);
2116 SET_BIT (si->visited, n);
2117 si->dfs[n] = si->current_index ++;
2118 my_dfs = si->dfs[n];
2119
2120 /* Visit all the successors. */
2121 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2122 {
2123 unsigned int w = si->node_mapping[i];
2124
2125 if (TEST_BIT (si->deleted, w))
2126 continue;
2127
2128 if (!TEST_BIT (si->visited, w))
2129 condense_visit (graph, si, w);
2130 {
2131 unsigned int t = si->node_mapping[w];
2132 unsigned int nnode = si->node_mapping[n];
2133 gcc_assert (nnode == n);
2134
2135 if (si->dfs[t] < si->dfs[nnode])
2136 si->dfs[n] = si->dfs[t];
2137 }
2138 }
2139
2140 /* Visit all the implicit predecessors. */
2141 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2142 {
2143 unsigned int w = si->node_mapping[i];
2144
2145 if (TEST_BIT (si->deleted, w))
2146 continue;
2147
2148 if (!TEST_BIT (si->visited, w))
2149 condense_visit (graph, si, w);
2150 {
2151 unsigned int t = si->node_mapping[w];
2152 unsigned int nnode = si->node_mapping[n];
2153 gcc_assert (nnode == n);
2154
2155 if (si->dfs[t] < si->dfs[nnode])
2156 si->dfs[n] = si->dfs[t];
2157 }
2158 }
2159
2160 /* See if any components have been identified. */
2161 if (si->dfs[n] == my_dfs)
2162 {
2163 while (VEC_length (unsigned, si->scc_stack) != 0
2164 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2165 {
2166 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2167 si->node_mapping[w] = n;
2168
2169 if (!TEST_BIT (graph->direct_nodes, w))
2170 RESET_BIT (graph->direct_nodes, n);
2171
2172 /* Unify our nodes. */
2173 if (graph->preds[w])
2174 {
2175 if (!graph->preds[n])
2176 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2177 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2178 }
2179 if (graph->implicit_preds[w])
2180 {
2181 if (!graph->implicit_preds[n])
2182 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2183 bitmap_ior_into (graph->implicit_preds[n],
2184 graph->implicit_preds[w]);
2185 }
2186 if (graph->points_to[w])
2187 {
2188 if (!graph->points_to[n])
2189 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2190 bitmap_ior_into (graph->points_to[n],
2191 graph->points_to[w]);
2192 }
2193 }
2194 SET_BIT (si->deleted, n);
2195 }
2196 else
2197 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2198 }
2199
2200 /* Label pointer equivalences. */
2201
2202 static void
2203 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2204 {
2205 unsigned int i;
2206 bitmap_iterator bi;
2207 SET_BIT (si->visited, n);
2208
2209 if (!graph->points_to[n])
2210 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2211
2212 /* Label and union our incoming edges's points to sets. */
2213 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2214 {
2215 unsigned int w = si->node_mapping[i];
2216 if (!TEST_BIT (si->visited, w))
2217 label_visit (graph, si, w);
2218
2219 /* Skip unused edges */
2220 if (w == n || graph->pointer_label[w] == 0)
2221 continue;
2222
2223 if (graph->points_to[w])
2224 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2225 }
2226 /* Indirect nodes get fresh variables. */
2227 if (!TEST_BIT (graph->direct_nodes, n))
2228 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2229
2230 if (!bitmap_empty_p (graph->points_to[n]))
2231 {
2232 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2233 graph->points_to[n]);
2234 if (!label)
2235 {
2236 label = pointer_equiv_class++;
2237 equiv_class_add (pointer_equiv_class_table,
2238 label, graph->points_to[n]);
2239 }
2240 graph->pointer_label[n] = label;
2241 }
2242 }
2243
2244 /* Perform offline variable substitution, discovering equivalence
2245 classes, and eliminating non-pointer variables. */
2246
2247 static struct scc_info *
2248 perform_var_substitution (constraint_graph_t graph)
2249 {
2250 unsigned int i;
2251 unsigned int size = graph->size;
2252 struct scc_info *si = init_scc_info (size);
2253
2254 bitmap_obstack_initialize (&iteration_obstack);
2255 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2256 equiv_class_label_eq, free);
2257 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2258 equiv_class_label_eq, free);
2259 pointer_equiv_class = 1;
2260 location_equiv_class = 1;
2261
2262 /* Condense the nodes, which means to find SCC's, count incoming
2263 predecessors, and unite nodes in SCC's. */
2264 for (i = 0; i < FIRST_REF_NODE; i++)
2265 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2266 condense_visit (graph, si, si->node_mapping[i]);
2267
2268 sbitmap_zero (si->visited);
2269 /* Actually the label the nodes for pointer equivalences */
2270 for (i = 0; i < FIRST_REF_NODE; i++)
2271 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2272 label_visit (graph, si, si->node_mapping[i]);
2273
2274 /* Calculate location equivalence labels. */
2275 for (i = 0; i < FIRST_REF_NODE; i++)
2276 {
2277 bitmap pointed_by;
2278 bitmap_iterator bi;
2279 unsigned int j;
2280 unsigned int label;
2281
2282 if (!graph->pointed_by[i])
2283 continue;
2284 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2285
2286 /* Translate the pointed-by mapping for pointer equivalence
2287 labels. */
2288 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2289 {
2290 bitmap_set_bit (pointed_by,
2291 graph->pointer_label[si->node_mapping[j]]);
2292 }
2293 /* The original pointed_by is now dead. */
2294 BITMAP_FREE (graph->pointed_by[i]);
2295
2296 /* Look up the location equivalence label if one exists, or make
2297 one otherwise. */
2298 label = equiv_class_lookup (location_equiv_class_table,
2299 pointed_by);
2300 if (label == 0)
2301 {
2302 label = location_equiv_class++;
2303 equiv_class_add (location_equiv_class_table,
2304 label, pointed_by);
2305 }
2306 else
2307 {
2308 if (dump_file && (dump_flags & TDF_DETAILS))
2309 fprintf (dump_file, "Found location equivalence for node %s\n",
2310 get_varinfo (i)->name);
2311 BITMAP_FREE (pointed_by);
2312 }
2313 graph->loc_label[i] = label;
2314
2315 }
2316
2317 if (dump_file && (dump_flags & TDF_DETAILS))
2318 for (i = 0; i < FIRST_REF_NODE; i++)
2319 {
2320 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2321 fprintf (dump_file,
2322 "Equivalence classes for %s node id %d:%s are pointer: %d"
2323 ", location:%d\n",
2324 direct_node ? "Direct node" : "Indirect node", i,
2325 get_varinfo (i)->name,
2326 graph->pointer_label[si->node_mapping[i]],
2327 graph->loc_label[si->node_mapping[i]]);
2328 }
2329
2330 /* Quickly eliminate our non-pointer variables. */
2331
2332 for (i = 0; i < FIRST_REF_NODE; i++)
2333 {
2334 unsigned int node = si->node_mapping[i];
2335
2336 if (graph->pointer_label[node] == 0)
2337 {
2338 if (dump_file && (dump_flags & TDF_DETAILS))
2339 fprintf (dump_file,
2340 "%s is a non-pointer variable, eliminating edges.\n",
2341 get_varinfo (node)->name);
2342 stats.nonpointer_vars++;
2343 clear_edges_for_node (graph, node);
2344 }
2345 }
2346
2347 return si;
2348 }
2349
2350 /* Free information that was only necessary for variable
2351 substitution. */
2352
2353 static void
2354 free_var_substitution_info (struct scc_info *si)
2355 {
2356 free_scc_info (si);
2357 free (graph->pointer_label);
2358 free (graph->loc_label);
2359 free (graph->pointed_by);
2360 free (graph->points_to);
2361 free (graph->eq_rep);
2362 sbitmap_free (graph->direct_nodes);
2363 htab_delete (pointer_equiv_class_table);
2364 htab_delete (location_equiv_class_table);
2365 bitmap_obstack_release (&iteration_obstack);
2366 }
2367
2368 /* Return an existing node that is equivalent to NODE, which has
2369 equivalence class LABEL, if one exists. Return NODE otherwise. */
2370
2371 static unsigned int
2372 find_equivalent_node (constraint_graph_t graph,
2373 unsigned int node, unsigned int label)
2374 {
2375 /* If the address version of this variable is unused, we can
2376 substitute it for anything else with the same label.
2377 Otherwise, we know the pointers are equivalent, but not the
2378 locations, and we can unite them later. */
2379
2380 if (!bitmap_bit_p (graph->address_taken, node))
2381 {
2382 gcc_assert (label < graph->size);
2383
2384 if (graph->eq_rep[label] != -1)
2385 {
2386 /* Unify the two variables since we know they are equivalent. */
2387 if (unite (graph->eq_rep[label], node))
2388 unify_nodes (graph, graph->eq_rep[label], node, false);
2389 return graph->eq_rep[label];
2390 }
2391 else
2392 {
2393 graph->eq_rep[label] = node;
2394 graph->pe_rep[label] = node;
2395 }
2396 }
2397 else
2398 {
2399 gcc_assert (label < graph->size);
2400 graph->pe[node] = label;
2401 if (graph->pe_rep[label] == -1)
2402 graph->pe_rep[label] = node;
2403 }
2404
2405 return node;
2406 }
2407
2408 /* Unite pointer equivalent but not location equivalent nodes in
2409 GRAPH. This may only be performed once variable substitution is
2410 finished. */
2411
2412 static void
2413 unite_pointer_equivalences (constraint_graph_t graph)
2414 {
2415 unsigned int i;
2416
2417 /* Go through the pointer equivalences and unite them to their
2418 representative, if they aren't already. */
2419 for (i = 0; i < FIRST_REF_NODE; i++)
2420 {
2421 unsigned int label = graph->pe[i];
2422 if (label)
2423 {
2424 int label_rep = graph->pe_rep[label];
2425
2426 if (label_rep == -1)
2427 continue;
2428
2429 label_rep = find (label_rep);
2430 if (label_rep >= 0 && unite (label_rep, find (i)))
2431 unify_nodes (graph, label_rep, i, false);
2432 }
2433 }
2434 }
2435
2436 /* Move complex constraints to the GRAPH nodes they belong to. */
2437
2438 static void
2439 move_complex_constraints (constraint_graph_t graph)
2440 {
2441 int i;
2442 constraint_t c;
2443
2444 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2445 {
2446 if (c)
2447 {
2448 struct constraint_expr lhs = c->lhs;
2449 struct constraint_expr rhs = c->rhs;
2450
2451 if (lhs.type == DEREF)
2452 {
2453 insert_into_complex (graph, lhs.var, c);
2454 }
2455 else if (rhs.type == DEREF)
2456 {
2457 if (!(get_varinfo (lhs.var)->is_special_var))
2458 insert_into_complex (graph, rhs.var, c);
2459 }
2460 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2461 && (lhs.offset != 0 || rhs.offset != 0))
2462 {
2463 insert_into_complex (graph, rhs.var, c);
2464 }
2465 }
2466 }
2467 }
2468
2469
2470 /* Optimize and rewrite complex constraints while performing
2471 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2472 result of perform_variable_substitution. */
2473
2474 static void
2475 rewrite_constraints (constraint_graph_t graph,
2476 struct scc_info *si)
2477 {
2478 int i;
2479 unsigned int j;
2480 constraint_t c;
2481
2482 for (j = 0; j < graph->size; j++)
2483 gcc_assert (find (j) == j);
2484
2485 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2486 {
2487 struct constraint_expr lhs = c->lhs;
2488 struct constraint_expr rhs = c->rhs;
2489 unsigned int lhsvar = find (lhs.var);
2490 unsigned int rhsvar = find (rhs.var);
2491 unsigned int lhsnode, rhsnode;
2492 unsigned int lhslabel, rhslabel;
2493
2494 lhsnode = si->node_mapping[lhsvar];
2495 rhsnode = si->node_mapping[rhsvar];
2496 lhslabel = graph->pointer_label[lhsnode];
2497 rhslabel = graph->pointer_label[rhsnode];
2498
2499 /* See if it is really a non-pointer variable, and if so, ignore
2500 the constraint. */
2501 if (lhslabel == 0)
2502 {
2503 if (dump_file && (dump_flags & TDF_DETAILS))
2504 {
2505
2506 fprintf (dump_file, "%s is a non-pointer variable,"
2507 "ignoring constraint:",
2508 get_varinfo (lhs.var)->name);
2509 dump_constraint (dump_file, c);
2510 }
2511 VEC_replace (constraint_t, constraints, i, NULL);
2512 continue;
2513 }
2514
2515 if (rhslabel == 0)
2516 {
2517 if (dump_file && (dump_flags & TDF_DETAILS))
2518 {
2519
2520 fprintf (dump_file, "%s is a non-pointer variable,"
2521 "ignoring constraint:",
2522 get_varinfo (rhs.var)->name);
2523 dump_constraint (dump_file, c);
2524 }
2525 VEC_replace (constraint_t, constraints, i, NULL);
2526 continue;
2527 }
2528
2529 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2530 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2531 c->lhs.var = lhsvar;
2532 c->rhs.var = rhsvar;
2533
2534 }
2535 }
2536
2537 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2538 part of an SCC, false otherwise. */
2539
2540 static bool
2541 eliminate_indirect_cycles (unsigned int node)
2542 {
2543 if (graph->indirect_cycles[node] != -1
2544 && !bitmap_empty_p (get_varinfo (node)->solution))
2545 {
2546 unsigned int i;
2547 VEC(unsigned,heap) *queue = NULL;
2548 int queuepos;
2549 unsigned int to = find (graph->indirect_cycles[node]);
2550 bitmap_iterator bi;
2551
2552 /* We can't touch the solution set and call unify_nodes
2553 at the same time, because unify_nodes is going to do
2554 bitmap unions into it. */
2555
2556 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2557 {
2558 if (find (i) == i && i != to)
2559 {
2560 if (unite (to, i))
2561 VEC_safe_push (unsigned, heap, queue, i);
2562 }
2563 }
2564
2565 for (queuepos = 0;
2566 VEC_iterate (unsigned, queue, queuepos, i);
2567 queuepos++)
2568 {
2569 unify_nodes (graph, to, i, true);
2570 }
2571 VEC_free (unsigned, heap, queue);
2572 return true;
2573 }
2574 return false;
2575 }
2576
2577 /* Solve the constraint graph GRAPH using our worklist solver.
2578 This is based on the PW* family of solvers from the "Efficient Field
2579 Sensitive Pointer Analysis for C" paper.
2580 It works by iterating over all the graph nodes, processing the complex
2581 constraints and propagating the copy constraints, until everything stops
2582 changed. This corresponds to steps 6-8 in the solving list given above. */
2583
2584 static void
2585 solve_graph (constraint_graph_t graph)
2586 {
2587 unsigned int size = graph->size;
2588 unsigned int i;
2589 bitmap pts;
2590
2591 changed_count = 0;
2592 changed = sbitmap_alloc (size);
2593 sbitmap_zero (changed);
2594
2595 /* Mark all initial non-collapsed nodes as changed. */
2596 for (i = 0; i < size; i++)
2597 {
2598 varinfo_t ivi = get_varinfo (i);
2599 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2600 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2601 || VEC_length (constraint_t, graph->complex[i]) > 0))
2602 {
2603 SET_BIT (changed, i);
2604 changed_count++;
2605 }
2606 }
2607
2608 /* Allocate a bitmap to be used to store the changed bits. */
2609 pts = BITMAP_ALLOC (&pta_obstack);
2610
2611 while (changed_count > 0)
2612 {
2613 unsigned int i;
2614 struct topo_info *ti = init_topo_info ();
2615 stats.iterations++;
2616
2617 bitmap_obstack_initialize (&iteration_obstack);
2618
2619 compute_topo_order (graph, ti);
2620
2621 while (VEC_length (unsigned, ti->topo_order) != 0)
2622 {
2623
2624 i = VEC_pop (unsigned, ti->topo_order);
2625
2626 /* If this variable is not a representative, skip it. */
2627 if (find (i) != i)
2628 continue;
2629
2630 /* In certain indirect cycle cases, we may merge this
2631 variable to another. */
2632 if (eliminate_indirect_cycles (i) && find (i) != i)
2633 continue;
2634
2635 /* If the node has changed, we need to process the
2636 complex constraints and outgoing edges again. */
2637 if (TEST_BIT (changed, i))
2638 {
2639 unsigned int j;
2640 constraint_t c;
2641 bitmap solution;
2642 VEC(constraint_t,heap) *complex = graph->complex[i];
2643 bool solution_empty;
2644
2645 RESET_BIT (changed, i);
2646 changed_count--;
2647
2648 /* Compute the changed set of solution bits. */
2649 bitmap_and_compl (pts, get_varinfo (i)->solution,
2650 get_varinfo (i)->oldsolution);
2651
2652 if (bitmap_empty_p (pts))
2653 continue;
2654
2655 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2656
2657 solution = get_varinfo (i)->solution;
2658 solution_empty = bitmap_empty_p (solution);
2659
2660 /* Process the complex constraints */
2661 FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
2662 {
2663 /* XXX: This is going to unsort the constraints in
2664 some cases, which will occasionally add duplicate
2665 constraints during unification. This does not
2666 affect correctness. */
2667 c->lhs.var = find (c->lhs.var);
2668 c->rhs.var = find (c->rhs.var);
2669
2670 /* The only complex constraint that can change our
2671 solution to non-empty, given an empty solution,
2672 is a constraint where the lhs side is receiving
2673 some set from elsewhere. */
2674 if (!solution_empty || c->lhs.type != DEREF)
2675 do_complex_constraint (graph, c, pts);
2676 }
2677
2678 solution_empty = bitmap_empty_p (solution);
2679
2680 if (!solution_empty)
2681 {
2682 bitmap_iterator bi;
2683 unsigned eff_escaped_id = find (escaped_id);
2684
2685 /* Propagate solution to all successors. */
2686 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2687 0, j, bi)
2688 {
2689 bitmap tmp;
2690 bool flag;
2691
2692 unsigned int to = find (j);
2693 tmp = get_varinfo (to)->solution;
2694 flag = false;
2695
2696 /* Don't try to propagate to ourselves. */
2697 if (to == i)
2698 continue;
2699
2700 /* If we propagate from ESCAPED use ESCAPED as
2701 placeholder. */
2702 if (i == eff_escaped_id)
2703 flag = bitmap_set_bit (tmp, escaped_id);
2704 else
2705 flag = set_union_with_increment (tmp, pts, 0);
2706
2707 if (flag)
2708 {
2709 get_varinfo (to)->solution = tmp;
2710 if (!TEST_BIT (changed, to))
2711 {
2712 SET_BIT (changed, to);
2713 changed_count++;
2714 }
2715 }
2716 }
2717 }
2718 }
2719 }
2720 free_topo_info (ti);
2721 bitmap_obstack_release (&iteration_obstack);
2722 }
2723
2724 BITMAP_FREE (pts);
2725 sbitmap_free (changed);
2726 bitmap_obstack_release (&oldpta_obstack);
2727 }
2728
2729 /* Map from trees to variable infos. */
2730 static struct pointer_map_t *vi_for_tree;
2731
2732
2733 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2734
2735 static void
2736 insert_vi_for_tree (tree t, varinfo_t vi)
2737 {
2738 void **slot = pointer_map_insert (vi_for_tree, t);
2739 gcc_assert (vi);
2740 gcc_assert (*slot == NULL);
2741 *slot = vi;
2742 }
2743
2744 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2745 exist in the map, return NULL, otherwise, return the varinfo we found. */
2746
2747 static varinfo_t
2748 lookup_vi_for_tree (tree t)
2749 {
2750 void **slot = pointer_map_contains (vi_for_tree, t);
2751 if (slot == NULL)
2752 return NULL;
2753
2754 return (varinfo_t) *slot;
2755 }
2756
2757 /* Return a printable name for DECL */
2758
2759 static const char *
2760 alias_get_name (tree decl)
2761 {
2762 const char *res;
2763 char *temp;
2764 int num_printed = 0;
2765
2766 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2767 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2768 else
2769 res= get_name (decl);
2770 if (res != NULL)
2771 return res;
2772
2773 res = "NULL";
2774 if (!dump_file)
2775 return res;
2776
2777 if (TREE_CODE (decl) == SSA_NAME)
2778 {
2779 num_printed = asprintf (&temp, "%s_%u",
2780 alias_get_name (SSA_NAME_VAR (decl)),
2781 SSA_NAME_VERSION (decl));
2782 }
2783 else if (DECL_P (decl))
2784 {
2785 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2786 }
2787 if (num_printed > 0)
2788 {
2789 res = ggc_strdup (temp);
2790 free (temp);
2791 }
2792 return res;
2793 }
2794
2795 /* Find the variable id for tree T in the map.
2796 If T doesn't exist in the map, create an entry for it and return it. */
2797
2798 static varinfo_t
2799 get_vi_for_tree (tree t)
2800 {
2801 void **slot = pointer_map_contains (vi_for_tree, t);
2802 if (slot == NULL)
2803 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2804
2805 return (varinfo_t) *slot;
2806 }
2807
2808 /* Get a scalar constraint expression for a new temporary variable. */
2809
2810 static struct constraint_expr
2811 new_scalar_tmp_constraint_exp (const char *name)
2812 {
2813 struct constraint_expr tmp;
2814 varinfo_t vi;
2815
2816 vi = new_var_info (NULL_TREE, name);
2817 vi->offset = 0;
2818 vi->size = -1;
2819 vi->fullsize = -1;
2820 vi->is_full_var = 1;
2821
2822 tmp.var = vi->id;
2823 tmp.type = SCALAR;
2824 tmp.offset = 0;
2825
2826 return tmp;
2827 }
2828
2829 /* Get a constraint expression vector from an SSA_VAR_P node.
2830 If address_p is true, the result will be taken its address of. */
2831
2832 static void
2833 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2834 {
2835 struct constraint_expr cexpr;
2836 varinfo_t vi;
2837
2838 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2839 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2840
2841 /* For parameters, get at the points-to set for the actual parm
2842 decl. */
2843 if (TREE_CODE (t) == SSA_NAME
2844 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2845 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)
2846 && SSA_NAME_IS_DEFAULT_DEF (t))
2847 {
2848 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2849 return;
2850 }
2851
2852 vi = get_vi_for_tree (t);
2853 cexpr.var = vi->id;
2854 cexpr.type = SCALAR;
2855 cexpr.offset = 0;
2856 /* If we determine the result is "anything", and we know this is readonly,
2857 say it points to readonly memory instead. */
2858 if (cexpr.var == anything_id && TREE_READONLY (t))
2859 {
2860 gcc_unreachable ();
2861 cexpr.type = ADDRESSOF;
2862 cexpr.var = readonly_id;
2863 }
2864
2865 /* If we are not taking the address of the constraint expr, add all
2866 sub-fiels of the variable as well. */
2867 if (!address_p
2868 && !vi->is_full_var)
2869 {
2870 for (; vi; vi = vi->next)
2871 {
2872 cexpr.var = vi->id;
2873 VEC_safe_push (ce_s, heap, *results, &cexpr);
2874 }
2875 return;
2876 }
2877
2878 VEC_safe_push (ce_s, heap, *results, &cexpr);
2879 }
2880
2881 /* Process constraint T, performing various simplifications and then
2882 adding it to our list of overall constraints. */
2883
2884 static void
2885 process_constraint (constraint_t t)
2886 {
2887 struct constraint_expr rhs = t->rhs;
2888 struct constraint_expr lhs = t->lhs;
2889
2890 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2891 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2892
2893 /* If we didn't get any useful constraint from the lhs we get
2894 &ANYTHING as fallback from get_constraint_for. Deal with
2895 it here by turning it into *ANYTHING. */
2896 if (lhs.type == ADDRESSOF
2897 && lhs.var == anything_id)
2898 lhs.type = DEREF;
2899
2900 /* ADDRESSOF on the lhs is invalid. */
2901 gcc_assert (lhs.type != ADDRESSOF);
2902
2903 /* We shouldn't add constraints from things that cannot have pointers.
2904 It's not completely trivial to avoid in the callers, so do it here. */
2905 if (rhs.type != ADDRESSOF
2906 && !get_varinfo (rhs.var)->may_have_pointers)
2907 return;
2908
2909 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2910 if (!get_varinfo (lhs.var)->may_have_pointers)
2911 return;
2912
2913 /* This can happen in our IR with things like n->a = *p */
2914 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2915 {
2916 /* Split into tmp = *rhs, *lhs = tmp */
2917 struct constraint_expr tmplhs;
2918 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2919 process_constraint (new_constraint (tmplhs, rhs));
2920 process_constraint (new_constraint (lhs, tmplhs));
2921 }
2922 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2923 {
2924 /* Split into tmp = &rhs, *lhs = tmp */
2925 struct constraint_expr tmplhs;
2926 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2927 process_constraint (new_constraint (tmplhs, rhs));
2928 process_constraint (new_constraint (lhs, tmplhs));
2929 }
2930 else
2931 {
2932 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2933 VEC_safe_push (constraint_t, heap, constraints, t);
2934 }
2935 }
2936
2937
2938 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2939 structure. */
2940
2941 static HOST_WIDE_INT
2942 bitpos_of_field (const tree fdecl)
2943 {
2944 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2945 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2946 return -1;
2947
2948 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
2949 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2950 }
2951
2952
2953 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2954 resulting constraint expressions in *RESULTS. */
2955
2956 static void
2957 get_constraint_for_ptr_offset (tree ptr, tree offset,
2958 VEC (ce_s, heap) **results)
2959 {
2960 struct constraint_expr c;
2961 unsigned int j, n;
2962 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2963
2964 /* If we do not do field-sensitive PTA adding offsets to pointers
2965 does not change the points-to solution. */
2966 if (!use_field_sensitive)
2967 {
2968 get_constraint_for_rhs (ptr, results);
2969 return;
2970 }
2971
2972 /* If the offset is not a non-negative integer constant that fits
2973 in a HOST_WIDE_INT, we have to fall back to a conservative
2974 solution which includes all sub-fields of all pointed-to
2975 variables of ptr. */
2976 if (offset == NULL_TREE
2977 || !host_integerp (offset, 0))
2978 rhsoffset = UNKNOWN_OFFSET;
2979 else
2980 {
2981 /* Make sure the bit-offset also fits. */
2982 rhsunitoffset = TREE_INT_CST_LOW (offset);
2983 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2984 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2985 rhsoffset = UNKNOWN_OFFSET;
2986 }
2987
2988 get_constraint_for_rhs (ptr, results);
2989 if (rhsoffset == 0)
2990 return;
2991
2992 /* As we are eventually appending to the solution do not use
2993 VEC_iterate here. */
2994 n = VEC_length (ce_s, *results);
2995 for (j = 0; j < n; j++)
2996 {
2997 varinfo_t curr;
2998 c = *VEC_index (ce_s, *results, j);
2999 curr = get_varinfo (c.var);
3000
3001 if (c.type == ADDRESSOF
3002 /* If this varinfo represents a full variable just use it. */
3003 && curr->is_full_var)
3004 c.offset = 0;
3005 else if (c.type == ADDRESSOF
3006 /* If we do not know the offset add all subfields. */
3007 && rhsoffset == UNKNOWN_OFFSET)
3008 {
3009 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3010 do
3011 {
3012 struct constraint_expr c2;
3013 c2.var = temp->id;
3014 c2.type = ADDRESSOF;
3015 c2.offset = 0;
3016 if (c2.var != c.var)
3017 VEC_safe_push (ce_s, heap, *results, &c2);
3018 temp = temp->next;
3019 }
3020 while (temp);
3021 }
3022 else if (c.type == ADDRESSOF)
3023 {
3024 varinfo_t temp;
3025 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3026
3027 /* Search the sub-field which overlaps with the
3028 pointed-to offset. If the result is outside of the variable
3029 we have to provide a conservative result, as the variable is
3030 still reachable from the resulting pointer (even though it
3031 technically cannot point to anything). The last and first
3032 sub-fields are such conservative results.
3033 ??? If we always had a sub-field for &object + 1 then
3034 we could represent this in a more precise way. */
3035 if (rhsoffset < 0
3036 && curr->offset < offset)
3037 offset = 0;
3038 temp = first_or_preceding_vi_for_offset (curr, offset);
3039
3040 /* If the found variable is not exactly at the pointed to
3041 result, we have to include the next variable in the
3042 solution as well. Otherwise two increments by offset / 2
3043 do not result in the same or a conservative superset
3044 solution. */
3045 if (temp->offset != offset
3046 && temp->next != NULL)
3047 {
3048 struct constraint_expr c2;
3049 c2.var = temp->next->id;
3050 c2.type = ADDRESSOF;
3051 c2.offset = 0;
3052 VEC_safe_push (ce_s, heap, *results, &c2);
3053 }
3054 c.var = temp->id;
3055 c.offset = 0;
3056 }
3057 else
3058 c.offset = rhsoffset;
3059
3060 VEC_replace (ce_s, *results, j, &c);
3061 }
3062 }
3063
3064
3065 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3066 If address_p is true the result will be taken its address of.
3067 If lhs_p is true then the constraint expression is assumed to be used
3068 as the lhs. */
3069
3070 static void
3071 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3072 bool address_p, bool lhs_p)
3073 {
3074 tree orig_t = t;
3075 HOST_WIDE_INT bitsize = -1;
3076 HOST_WIDE_INT bitmaxsize = -1;
3077 HOST_WIDE_INT bitpos;
3078 tree forzero;
3079 struct constraint_expr *result;
3080
3081 /* Some people like to do cute things like take the address of
3082 &0->a.b */
3083 forzero = t;
3084 while (handled_component_p (forzero)
3085 || INDIRECT_REF_P (forzero)
3086 || TREE_CODE (forzero) == MEM_REF)
3087 forzero = TREE_OPERAND (forzero, 0);
3088
3089 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3090 {
3091 struct constraint_expr temp;
3092
3093 temp.offset = 0;
3094 temp.var = integer_id;
3095 temp.type = SCALAR;
3096 VEC_safe_push (ce_s, heap, *results, &temp);
3097 return;
3098 }
3099
3100 /* Handle type-punning through unions. If we are extracting a pointer
3101 from a union via a possibly type-punning access that pointer
3102 points to anything, similar to a conversion of an integer to
3103 a pointer. */
3104 if (!lhs_p)
3105 {
3106 tree u;
3107 for (u = t;
3108 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3109 u = TREE_OPERAND (u, 0))
3110 if (TREE_CODE (u) == COMPONENT_REF
3111 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3112 {
3113 struct constraint_expr temp;
3114
3115 temp.offset = 0;
3116 temp.var = anything_id;
3117 temp.type = ADDRESSOF;
3118 VEC_safe_push (ce_s, heap, *results, &temp);
3119 return;
3120 }
3121 }
3122
3123 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3124
3125 /* Pretend to take the address of the base, we'll take care of
3126 adding the required subset of sub-fields below. */
3127 get_constraint_for_1 (t, results, true, lhs_p);
3128 gcc_assert (VEC_length (ce_s, *results) == 1);
3129 result = VEC_last (ce_s, *results);
3130
3131 if (result->type == SCALAR
3132 && get_varinfo (result->var)->is_full_var)
3133 /* For single-field vars do not bother about the offset. */
3134 result->offset = 0;
3135 else if (result->type == SCALAR)
3136 {
3137 /* In languages like C, you can access one past the end of an
3138 array. You aren't allowed to dereference it, so we can
3139 ignore this constraint. When we handle pointer subtraction,
3140 we may have to do something cute here. */
3141
3142 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3143 && bitmaxsize != 0)
3144 {
3145 /* It's also not true that the constraint will actually start at the
3146 right offset, it may start in some padding. We only care about
3147 setting the constraint to the first actual field it touches, so
3148 walk to find it. */
3149 struct constraint_expr cexpr = *result;
3150 varinfo_t curr;
3151 VEC_pop (ce_s, *results);
3152 cexpr.offset = 0;
3153 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3154 {
3155 if (ranges_overlap_p (curr->offset, curr->size,
3156 bitpos, bitmaxsize))
3157 {
3158 cexpr.var = curr->id;
3159 VEC_safe_push (ce_s, heap, *results, &cexpr);
3160 if (address_p)
3161 break;
3162 }
3163 }
3164 /* If we are going to take the address of this field then
3165 to be able to compute reachability correctly add at least
3166 the last field of the variable. */
3167 if (address_p
3168 && VEC_length (ce_s, *results) == 0)
3169 {
3170 curr = get_varinfo (cexpr.var);
3171 while (curr->next != NULL)
3172 curr = curr->next;
3173 cexpr.var = curr->id;
3174 VEC_safe_push (ce_s, heap, *results, &cexpr);
3175 }
3176 else if (VEC_length (ce_s, *results) == 0)
3177 /* Assert that we found *some* field there. The user couldn't be
3178 accessing *only* padding. */
3179 /* Still the user could access one past the end of an array
3180 embedded in a struct resulting in accessing *only* padding. */
3181 /* Or accessing only padding via type-punning to a type
3182 that has a filed just in padding space. */
3183 {
3184 cexpr.type = SCALAR;
3185 cexpr.var = anything_id;
3186 cexpr.offset = 0;
3187 VEC_safe_push (ce_s, heap, *results, &cexpr);
3188 }
3189 }
3190 else if (bitmaxsize == 0)
3191 {
3192 if (dump_file && (dump_flags & TDF_DETAILS))
3193 fprintf (dump_file, "Access to zero-sized part of variable,"
3194 "ignoring\n");
3195 }
3196 else
3197 if (dump_file && (dump_flags & TDF_DETAILS))
3198 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3199 }
3200 else if (result->type == DEREF)
3201 {
3202 /* If we do not know exactly where the access goes say so. Note
3203 that only for non-structure accesses we know that we access
3204 at most one subfiled of any variable. */
3205 if (bitpos == -1
3206 || bitsize != bitmaxsize
3207 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3208 || result->offset == UNKNOWN_OFFSET)
3209 result->offset = UNKNOWN_OFFSET;
3210 else
3211 result->offset += bitpos;
3212 }
3213 else if (result->type == ADDRESSOF)
3214 {
3215 /* We can end up here for component references on a
3216 VIEW_CONVERT_EXPR <>(&foobar). */
3217 result->type = SCALAR;
3218 result->var = anything_id;
3219 result->offset = 0;
3220 }
3221 else
3222 gcc_unreachable ();
3223 }
3224
3225
3226 /* Dereference the constraint expression CONS, and return the result.
3227 DEREF (ADDRESSOF) = SCALAR
3228 DEREF (SCALAR) = DEREF
3229 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3230 This is needed so that we can handle dereferencing DEREF constraints. */
3231
3232 static void
3233 do_deref (VEC (ce_s, heap) **constraints)
3234 {
3235 struct constraint_expr *c;
3236 unsigned int i = 0;
3237
3238 FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
3239 {
3240 if (c->type == SCALAR)
3241 c->type = DEREF;
3242 else if (c->type == ADDRESSOF)
3243 c->type = SCALAR;
3244 else if (c->type == DEREF)
3245 {
3246 struct constraint_expr tmplhs;
3247 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3248 process_constraint (new_constraint (tmplhs, *c));
3249 c->var = tmplhs.var;
3250 }
3251 else
3252 gcc_unreachable ();
3253 }
3254 }
3255
3256 /* Given a tree T, return the constraint expression for taking the
3257 address of it. */
3258
3259 static void
3260 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3261 {
3262 struct constraint_expr *c;
3263 unsigned int i;
3264
3265 get_constraint_for_1 (t, results, true, true);
3266
3267 FOR_EACH_VEC_ELT (ce_s, *results, i, c)
3268 {
3269 if (c->type == DEREF)
3270 c->type = SCALAR;
3271 else
3272 c->type = ADDRESSOF;
3273 }
3274 }
3275
3276 /* Given a tree T, return the constraint expression for it. */
3277
3278 static void
3279 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
3280 bool lhs_p)
3281 {
3282 struct constraint_expr temp;
3283
3284 /* x = integer is all glommed to a single variable, which doesn't
3285 point to anything by itself. That is, of course, unless it is an
3286 integer constant being treated as a pointer, in which case, we
3287 will return that this is really the addressof anything. This
3288 happens below, since it will fall into the default case. The only
3289 case we know something about an integer treated like a pointer is
3290 when it is the NULL pointer, and then we just say it points to
3291 NULL.
3292
3293 Do not do that if -fno-delete-null-pointer-checks though, because
3294 in that case *NULL does not fail, so it _should_ alias *anything.
3295 It is not worth adding a new option or renaming the existing one,
3296 since this case is relatively obscure. */
3297 if ((TREE_CODE (t) == INTEGER_CST
3298 && integer_zerop (t))
3299 /* The only valid CONSTRUCTORs in gimple with pointer typed
3300 elements are zero-initializer. But in IPA mode we also
3301 process global initializers, so verify at least. */
3302 || (TREE_CODE (t) == CONSTRUCTOR
3303 && CONSTRUCTOR_NELTS (t) == 0))
3304 {
3305 if (flag_delete_null_pointer_checks)
3306 temp.var = nothing_id;
3307 else
3308 temp.var = nonlocal_id;
3309 temp.type = ADDRESSOF;
3310 temp.offset = 0;
3311 VEC_safe_push (ce_s, heap, *results, &temp);
3312 return;
3313 }
3314
3315 /* String constants are read-only. */
3316 if (TREE_CODE (t) == STRING_CST)
3317 {
3318 temp.var = readonly_id;
3319 temp.type = SCALAR;
3320 temp.offset = 0;
3321 VEC_safe_push (ce_s, heap, *results, &temp);
3322 return;
3323 }
3324
3325 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3326 {
3327 case tcc_expression:
3328 {
3329 switch (TREE_CODE (t))
3330 {
3331 case ADDR_EXPR:
3332 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3333 return;
3334 default:;
3335 }
3336 break;
3337 }
3338 case tcc_reference:
3339 {
3340 switch (TREE_CODE (t))
3341 {
3342 case MEM_REF:
3343 {
3344 struct constraint_expr cs;
3345 varinfo_t vi, curr;
3346 tree off = double_int_to_tree (sizetype, mem_ref_offset (t));
3347 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0), off, results);
3348 do_deref (results);
3349
3350 /* If we are not taking the address then make sure to process
3351 all subvariables we might access. */
3352 cs = *VEC_last (ce_s, *results);
3353 if (address_p
3354 || cs.type != SCALAR)
3355 return;
3356
3357 vi = get_varinfo (cs.var);
3358 curr = vi->next;
3359 if (!vi->is_full_var
3360 && curr)
3361 {
3362 unsigned HOST_WIDE_INT size;
3363 if (host_integerp (TYPE_SIZE (TREE_TYPE (t)), 1))
3364 size = TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (t)));
3365 else
3366 size = -1;
3367 for (; curr; curr = curr->next)
3368 {
3369 if (curr->offset - vi->offset < size)
3370 {
3371 cs.var = curr->id;
3372 VEC_safe_push (ce_s, heap, *results, &cs);
3373 }
3374 else
3375 break;
3376 }
3377 }
3378 return;
3379 }
3380 case ARRAY_REF:
3381 case ARRAY_RANGE_REF:
3382 case COMPONENT_REF:
3383 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3384 return;
3385 case VIEW_CONVERT_EXPR:
3386 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3387 lhs_p);
3388 return;
3389 /* We are missing handling for TARGET_MEM_REF here. */
3390 default:;
3391 }
3392 break;
3393 }
3394 case tcc_exceptional:
3395 {
3396 switch (TREE_CODE (t))
3397 {
3398 case SSA_NAME:
3399 {
3400 get_constraint_for_ssa_var (t, results, address_p);
3401 return;
3402 }
3403 case CONSTRUCTOR:
3404 {
3405 unsigned int i;
3406 tree val;
3407 VEC (ce_s, heap) *tmp = NULL;
3408 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3409 {
3410 struct constraint_expr *rhsp;
3411 unsigned j;
3412 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3413 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
3414 VEC_safe_push (ce_s, heap, *results, rhsp);
3415 VEC_truncate (ce_s, tmp, 0);
3416 }
3417 VEC_free (ce_s, heap, tmp);
3418 /* We do not know whether the constructor was complete,
3419 so technically we have to add &NOTHING or &ANYTHING
3420 like we do for an empty constructor as well. */
3421 return;
3422 }
3423 default:;
3424 }
3425 break;
3426 }
3427 case tcc_declaration:
3428 {
3429 get_constraint_for_ssa_var (t, results, address_p);
3430 return;
3431 }
3432 case tcc_constant:
3433 {
3434 /* We cannot refer to automatic variables through constants. */
3435 temp.type = ADDRESSOF;
3436 temp.var = nonlocal_id;
3437 temp.offset = 0;
3438 VEC_safe_push (ce_s, heap, *results, &temp);
3439 return;
3440 }
3441 default:;
3442 }
3443
3444 /* The default fallback is a constraint from anything. */
3445 temp.type = ADDRESSOF;
3446 temp.var = anything_id;
3447 temp.offset = 0;
3448 VEC_safe_push (ce_s, heap, *results, &temp);
3449 }
3450
3451 /* Given a gimple tree T, return the constraint expression vector for it. */
3452
3453 static void
3454 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3455 {
3456 gcc_assert (VEC_length (ce_s, *results) == 0);
3457
3458 get_constraint_for_1 (t, results, false, true);
3459 }
3460
3461 /* Given a gimple tree T, return the constraint expression vector for it
3462 to be used as the rhs of a constraint. */
3463
3464 static void
3465 get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
3466 {
3467 gcc_assert (VEC_length (ce_s, *results) == 0);
3468
3469 get_constraint_for_1 (t, results, false, false);
3470 }
3471
3472
3473 /* Efficiently generates constraints from all entries in *RHSC to all
3474 entries in *LHSC. */
3475
3476 static void
3477 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3478 {
3479 struct constraint_expr *lhsp, *rhsp;
3480 unsigned i, j;
3481
3482 if (VEC_length (ce_s, lhsc) <= 1
3483 || VEC_length (ce_s, rhsc) <= 1)
3484 {
3485 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3486 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
3487 process_constraint (new_constraint (*lhsp, *rhsp));
3488 }
3489 else
3490 {
3491 struct constraint_expr tmp;
3492 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3493 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
3494 process_constraint (new_constraint (tmp, *rhsp));
3495 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3496 process_constraint (new_constraint (*lhsp, tmp));
3497 }
3498 }
3499
3500 /* Handle aggregate copies by expanding into copies of the respective
3501 fields of the structures. */
3502
3503 static void
3504 do_structure_copy (tree lhsop, tree rhsop)
3505 {
3506 struct constraint_expr *lhsp, *rhsp;
3507 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3508 unsigned j;
3509
3510 get_constraint_for (lhsop, &lhsc);
3511 get_constraint_for_rhs (rhsop, &rhsc);
3512 lhsp = VEC_index (ce_s, lhsc, 0);
3513 rhsp = VEC_index (ce_s, rhsc, 0);
3514 if (lhsp->type == DEREF
3515 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3516 || rhsp->type == DEREF)
3517 {
3518 if (lhsp->type == DEREF)
3519 {
3520 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3521 lhsp->offset = UNKNOWN_OFFSET;
3522 }
3523 if (rhsp->type == DEREF)
3524 {
3525 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3526 rhsp->offset = UNKNOWN_OFFSET;
3527 }
3528 process_all_all_constraints (lhsc, rhsc);
3529 }
3530 else if (lhsp->type == SCALAR
3531 && (rhsp->type == SCALAR
3532 || rhsp->type == ADDRESSOF))
3533 {
3534 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3535 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3536 unsigned k = 0;
3537 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3538 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3539 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3540 {
3541 varinfo_t lhsv, rhsv;
3542 rhsp = VEC_index (ce_s, rhsc, k);
3543 lhsv = get_varinfo (lhsp->var);
3544 rhsv = get_varinfo (rhsp->var);
3545 if (lhsv->may_have_pointers
3546 && (lhsv->is_full_var
3547 || rhsv->is_full_var
3548 || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3549 rhsv->offset + lhsoffset, rhsv->size)))
3550 process_constraint (new_constraint (*lhsp, *rhsp));
3551 if (!rhsv->is_full_var
3552 && (lhsv->is_full_var
3553 || (lhsv->offset + rhsoffset + lhsv->size
3554 > rhsv->offset + lhsoffset + rhsv->size)))
3555 {
3556 ++k;
3557 if (k >= VEC_length (ce_s, rhsc))
3558 break;
3559 }
3560 else
3561 ++j;
3562 }
3563 }
3564 else
3565 gcc_unreachable ();
3566
3567 VEC_free (ce_s, heap, lhsc);
3568 VEC_free (ce_s, heap, rhsc);
3569 }
3570
3571 /* Create constraints ID = { rhsc }. */
3572
3573 static void
3574 make_constraints_to (unsigned id, VEC(ce_s, heap) *rhsc)
3575 {
3576 struct constraint_expr *c;
3577 struct constraint_expr includes;
3578 unsigned int j;
3579
3580 includes.var = id;
3581 includes.offset = 0;
3582 includes.type = SCALAR;
3583
3584 FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
3585 process_constraint (new_constraint (includes, *c));
3586 }
3587
3588 /* Create a constraint ID = OP. */
3589
3590 static void
3591 make_constraint_to (unsigned id, tree op)
3592 {
3593 VEC(ce_s, heap) *rhsc = NULL;
3594 get_constraint_for_rhs (op, &rhsc);
3595 make_constraints_to (id, rhsc);
3596 VEC_free (ce_s, heap, rhsc);
3597 }
3598
3599 /* Create a constraint ID = &FROM. */
3600
3601 static void
3602 make_constraint_from (varinfo_t vi, int from)
3603 {
3604 struct constraint_expr lhs, rhs;
3605
3606 lhs.var = vi->id;
3607 lhs.offset = 0;
3608 lhs.type = SCALAR;
3609
3610 rhs.var = from;
3611 rhs.offset = 0;
3612 rhs.type = ADDRESSOF;
3613 process_constraint (new_constraint (lhs, rhs));
3614 }
3615
3616 /* Create a constraint ID = FROM. */
3617
3618 static void
3619 make_copy_constraint (varinfo_t vi, int from)
3620 {
3621 struct constraint_expr lhs, rhs;
3622
3623 lhs.var = vi->id;
3624 lhs.offset = 0;
3625 lhs.type = SCALAR;
3626
3627 rhs.var = from;
3628 rhs.offset = 0;
3629 rhs.type = SCALAR;
3630 process_constraint (new_constraint (lhs, rhs));
3631 }
3632
3633 /* Make constraints necessary to make OP escape. */
3634
3635 static void
3636 make_escape_constraint (tree op)
3637 {
3638 make_constraint_to (escaped_id, op);
3639 }
3640
3641 /* Add constraints to that the solution of VI is transitively closed. */
3642
3643 static void
3644 make_transitive_closure_constraints (varinfo_t vi)
3645 {
3646 struct constraint_expr lhs, rhs;
3647
3648 /* VAR = *VAR; */
3649 lhs.type = SCALAR;
3650 lhs.var = vi->id;
3651 lhs.offset = 0;
3652 rhs.type = DEREF;
3653 rhs.var = vi->id;
3654 rhs.offset = 0;
3655 process_constraint (new_constraint (lhs, rhs));
3656
3657 /* VAR = VAR + UNKNOWN; */
3658 lhs.type = SCALAR;
3659 lhs.var = vi->id;
3660 lhs.offset = 0;
3661 rhs.type = SCALAR;
3662 rhs.var = vi->id;
3663 rhs.offset = UNKNOWN_OFFSET;
3664 process_constraint (new_constraint (lhs, rhs));
3665 }
3666
3667 /* Create a new artificial heap variable with NAME.
3668 Return the created variable. */
3669
3670 static varinfo_t
3671 make_heapvar_for (varinfo_t lhs, const char *name)
3672 {
3673 varinfo_t vi;
3674 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3675
3676 if (heapvar == NULL_TREE)
3677 {
3678 var_ann_t ann;
3679 heapvar = create_tmp_var_raw (ptr_type_node, name);
3680 DECL_EXTERNAL (heapvar) = 1;
3681
3682 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3683
3684 ann = get_var_ann (heapvar);
3685 ann->is_heapvar = 1;
3686 }
3687
3688 /* For global vars we need to add a heapvar to the list of referenced
3689 vars of a different function than it was created for originally. */
3690 if (cfun && gimple_referenced_vars (cfun))
3691 add_referenced_var (heapvar);
3692
3693 vi = new_var_info (heapvar, name);
3694 vi->is_artificial_var = true;
3695 vi->is_heap_var = true;
3696 vi->is_unknown_size_var = true;
3697 vi->offset = 0;
3698 vi->fullsize = ~0;
3699 vi->size = ~0;
3700 vi->is_full_var = true;
3701 insert_vi_for_tree (heapvar, vi);
3702
3703 return vi;
3704 }
3705
3706 /* Create a new artificial heap variable with NAME and make a
3707 constraint from it to LHS. Return the created variable. */
3708
3709 static varinfo_t
3710 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3711 {
3712 varinfo_t vi = make_heapvar_for (lhs, name);
3713 make_constraint_from (lhs, vi->id);
3714
3715 return vi;
3716 }
3717
3718 /* Create a new artificial heap variable with NAME and make a
3719 constraint from it to LHS. Set flags according to a tag used
3720 for tracking restrict pointers. */
3721
3722 static void
3723 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3724 {
3725 varinfo_t vi;
3726 vi = make_constraint_from_heapvar (lhs, name);
3727 vi->is_restrict_var = 1;
3728 vi->is_global_var = 0;
3729 vi->is_special_var = 1;
3730 vi->may_have_pointers = 0;
3731 }
3732
3733 /* In IPA mode there are varinfos for different aspects of reach
3734 function designator. One for the points-to set of the return
3735 value, one for the variables that are clobbered by the function,
3736 one for its uses and one for each parameter (including a single
3737 glob for remaining variadic arguments). */
3738
3739 enum { fi_clobbers = 1, fi_uses = 2,
3740 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3741
3742 /* Get a constraint for the requested part of a function designator FI
3743 when operating in IPA mode. */
3744
3745 static struct constraint_expr
3746 get_function_part_constraint (varinfo_t fi, unsigned part)
3747 {
3748 struct constraint_expr c;
3749
3750 gcc_assert (in_ipa_mode);
3751
3752 if (fi->id == anything_id)
3753 {
3754 /* ??? We probably should have a ANYFN special variable. */
3755 c.var = anything_id;
3756 c.offset = 0;
3757 c.type = SCALAR;
3758 }
3759 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3760 {
3761 varinfo_t ai = first_vi_for_offset (fi, part);
3762 if (ai)
3763 c.var = ai->id;
3764 else
3765 c.var = anything_id;
3766 c.offset = 0;
3767 c.type = SCALAR;
3768 }
3769 else
3770 {
3771 c.var = fi->id;
3772 c.offset = part;
3773 c.type = DEREF;
3774 }
3775
3776 return c;
3777 }
3778
3779 /* For non-IPA mode, generate constraints necessary for a call on the
3780 RHS. */
3781
3782 static void
3783 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3784 {
3785 struct constraint_expr rhsc;
3786 unsigned i;
3787 bool returns_uses = false;
3788
3789 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3790 {
3791 tree arg = gimple_call_arg (stmt, i);
3792 int flags = gimple_call_arg_flags (stmt, i);
3793
3794 /* If the argument is not used we can ignore it. */
3795 if (flags & EAF_UNUSED)
3796 continue;
3797
3798 /* As we compute ESCAPED context-insensitive we do not gain
3799 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3800 set. The argument would still get clobbered through the
3801 escape solution.
3802 ??? We might get away with less (and more precise) constraints
3803 if using a temporary for transitively closing things. */
3804 if ((flags & EAF_NOCLOBBER)
3805 && (flags & EAF_NOESCAPE))
3806 {
3807 varinfo_t uses = get_call_use_vi (stmt);
3808 if (!(flags & EAF_DIRECT))
3809 make_transitive_closure_constraints (uses);
3810 make_constraint_to (uses->id, arg);
3811 returns_uses = true;
3812 }
3813 else if (flags & EAF_NOESCAPE)
3814 {
3815 varinfo_t uses = get_call_use_vi (stmt);
3816 varinfo_t clobbers = get_call_clobber_vi (stmt);
3817 if (!(flags & EAF_DIRECT))
3818 {
3819 make_transitive_closure_constraints (uses);
3820 make_transitive_closure_constraints (clobbers);
3821 }
3822 make_constraint_to (uses->id, arg);
3823 make_constraint_to (clobbers->id, arg);
3824 returns_uses = true;
3825 }
3826 else
3827 make_escape_constraint (arg);
3828 }
3829
3830 /* If we added to the calls uses solution make sure we account for
3831 pointers to it to be returned. */
3832 if (returns_uses)
3833 {
3834 rhsc.var = get_call_use_vi (stmt)->id;
3835 rhsc.offset = 0;
3836 rhsc.type = SCALAR;
3837 VEC_safe_push (ce_s, heap, *results, &rhsc);
3838 }
3839
3840 /* The static chain escapes as well. */
3841 if (gimple_call_chain (stmt))
3842 make_escape_constraint (gimple_call_chain (stmt));
3843
3844 /* And if we applied NRV the address of the return slot escapes as well. */
3845 if (gimple_call_return_slot_opt_p (stmt)
3846 && gimple_call_lhs (stmt) != NULL_TREE
3847 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3848 {
3849 VEC(ce_s, heap) *tmpc = NULL;
3850 struct constraint_expr lhsc, *c;
3851 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3852 lhsc.var = escaped_id;
3853 lhsc.offset = 0;
3854 lhsc.type = SCALAR;
3855 FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
3856 process_constraint (new_constraint (lhsc, *c));
3857 VEC_free(ce_s, heap, tmpc);
3858 }
3859
3860 /* Regular functions return nonlocal memory. */
3861 rhsc.var = nonlocal_id;
3862 rhsc.offset = 0;
3863 rhsc.type = SCALAR;
3864 VEC_safe_push (ce_s, heap, *results, &rhsc);
3865 }
3866
3867 /* For non-IPA mode, generate constraints necessary for a call
3868 that returns a pointer and assigns it to LHS. This simply makes
3869 the LHS point to global and escaped variables. */
3870
3871 static void
3872 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3873 tree fndecl)
3874 {
3875 VEC(ce_s, heap) *lhsc = NULL;
3876
3877 get_constraint_for (lhs, &lhsc);
3878 /* If the store is to a global decl make sure to
3879 add proper escape constraints. */
3880 lhs = get_base_address (lhs);
3881 if (lhs
3882 && DECL_P (lhs)
3883 && is_global_var (lhs))
3884 {
3885 struct constraint_expr tmpc;
3886 tmpc.var = escaped_id;
3887 tmpc.offset = 0;
3888 tmpc.type = SCALAR;
3889 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3890 }
3891
3892 /* If the call returns an argument unmodified override the rhs
3893 constraints. */
3894 flags = gimple_call_return_flags (stmt);
3895 if (flags & ERF_RETURNS_ARG
3896 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3897 {
3898 tree arg;
3899 rhsc = NULL;
3900 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3901 get_constraint_for (arg, &rhsc);
3902 process_all_all_constraints (lhsc, rhsc);
3903 VEC_free (ce_s, heap, rhsc);
3904 }
3905 else if (flags & ERF_NOALIAS)
3906 {
3907 varinfo_t vi;
3908 struct constraint_expr tmpc;
3909 rhsc = NULL;
3910 vi = make_heapvar_for (get_vi_for_tree (lhs), "HEAP");
3911 /* We delay marking allocated storage global until we know if
3912 it escapes. */
3913 DECL_EXTERNAL (vi->decl) = 0;
3914 vi->is_global_var = 0;
3915 /* If this is not a real malloc call assume the memory was
3916 initialized and thus may point to global memory. All
3917 builtin functions with the malloc attribute behave in a sane way. */
3918 if (!fndecl
3919 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3920 make_constraint_from (vi, nonlocal_id);
3921 tmpc.var = vi->id;
3922 tmpc.offset = 0;
3923 tmpc.type = ADDRESSOF;
3924 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3925 }
3926
3927 process_all_all_constraints (lhsc, rhsc);
3928
3929 VEC_free (ce_s, heap, lhsc);
3930 }
3931
3932 /* For non-IPA mode, generate constraints necessary for a call of a
3933 const function that returns a pointer in the statement STMT. */
3934
3935 static void
3936 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3937 {
3938 struct constraint_expr rhsc;
3939 unsigned int k;
3940
3941 /* Treat nested const functions the same as pure functions as far
3942 as the static chain is concerned. */
3943 if (gimple_call_chain (stmt))
3944 {
3945 varinfo_t uses = get_call_use_vi (stmt);
3946 make_transitive_closure_constraints (uses);
3947 make_constraint_to (uses->id, gimple_call_chain (stmt));
3948 rhsc.var = uses->id;
3949 rhsc.offset = 0;
3950 rhsc.type = SCALAR;
3951 VEC_safe_push (ce_s, heap, *results, &rhsc);
3952 }
3953
3954 /* May return arguments. */
3955 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3956 {
3957 tree arg = gimple_call_arg (stmt, k);
3958 VEC(ce_s, heap) *argc = NULL;
3959 unsigned i;
3960 struct constraint_expr *argp;
3961 get_constraint_for_rhs (arg, &argc);
3962 FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
3963 VEC_safe_push (ce_s, heap, *results, argp);
3964 VEC_free(ce_s, heap, argc);
3965 }
3966
3967 /* May return addresses of globals. */
3968 rhsc.var = nonlocal_id;
3969 rhsc.offset = 0;
3970 rhsc.type = ADDRESSOF;
3971 VEC_safe_push (ce_s, heap, *results, &rhsc);
3972 }
3973
3974 /* For non-IPA mode, generate constraints necessary for a call to a
3975 pure function in statement STMT. */
3976
3977 static void
3978 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3979 {
3980 struct constraint_expr rhsc;
3981 unsigned i;
3982 varinfo_t uses = NULL;
3983
3984 /* Memory reached from pointer arguments is call-used. */
3985 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3986 {
3987 tree arg = gimple_call_arg (stmt, i);
3988 if (!uses)
3989 {
3990 uses = get_call_use_vi (stmt);
3991 make_transitive_closure_constraints (uses);
3992 }
3993 make_constraint_to (uses->id, arg);
3994 }
3995
3996 /* The static chain is used as well. */
3997 if (gimple_call_chain (stmt))
3998 {
3999 if (!uses)
4000 {
4001 uses = get_call_use_vi (stmt);
4002 make_transitive_closure_constraints (uses);
4003 }
4004 make_constraint_to (uses->id, gimple_call_chain (stmt));
4005 }
4006
4007 /* Pure functions may return call-used and nonlocal memory. */
4008 if (uses)
4009 {
4010 rhsc.var = uses->id;
4011 rhsc.offset = 0;
4012 rhsc.type = SCALAR;
4013 VEC_safe_push (ce_s, heap, *results, &rhsc);
4014 }
4015 rhsc.var = nonlocal_id;
4016 rhsc.offset = 0;
4017 rhsc.type = SCALAR;
4018 VEC_safe_push (ce_s, heap, *results, &rhsc);
4019 }
4020
4021
4022 /* Return the varinfo for the callee of CALL. */
4023
4024 static varinfo_t
4025 get_fi_for_callee (gimple call)
4026 {
4027 tree decl;
4028
4029 gcc_assert (!gimple_call_internal_p (call));
4030
4031 /* If we can directly resolve the function being called, do so.
4032 Otherwise, it must be some sort of indirect expression that
4033 we should still be able to handle. */
4034 decl = gimple_call_fndecl (call);
4035 if (decl)
4036 return get_vi_for_tree (decl);
4037
4038 decl = gimple_call_fn (call);
4039 /* The function can be either an SSA name pointer or,
4040 worse, an OBJ_TYPE_REF. In this case we have no
4041 clue and should be getting ANYFN (well, ANYTHING for now). */
4042 if (TREE_CODE (decl) == SSA_NAME)
4043 {
4044 if (TREE_CODE (decl) == SSA_NAME
4045 && (TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
4046 || TREE_CODE (SSA_NAME_VAR (decl)) == RESULT_DECL)
4047 && SSA_NAME_IS_DEFAULT_DEF (decl))
4048 decl = SSA_NAME_VAR (decl);
4049 return get_vi_for_tree (decl);
4050 }
4051 else if (TREE_CODE (decl) == INTEGER_CST
4052 || TREE_CODE (decl) == OBJ_TYPE_REF)
4053 return get_varinfo (anything_id);
4054 else
4055 gcc_unreachable ();
4056 }
4057
4058 /* Walk statement T setting up aliasing constraints according to the
4059 references found in T. This function is the main part of the
4060 constraint builder. AI points to auxiliary alias information used
4061 when building alias sets and computing alias grouping heuristics. */
4062
4063 static void
4064 find_func_aliases (gimple origt)
4065 {
4066 gimple t = origt;
4067 VEC(ce_s, heap) *lhsc = NULL;
4068 VEC(ce_s, heap) *rhsc = NULL;
4069 struct constraint_expr *c;
4070 varinfo_t fi;
4071
4072 /* Now build constraints expressions. */
4073 if (gimple_code (t) == GIMPLE_PHI)
4074 {
4075 size_t i;
4076 unsigned int j;
4077
4078 /* For a phi node, assign all the arguments to
4079 the result. */
4080 get_constraint_for (gimple_phi_result (t), &lhsc);
4081 for (i = 0; i < gimple_phi_num_args (t); i++)
4082 {
4083 tree strippedrhs = PHI_ARG_DEF (t, i);
4084
4085 STRIP_NOPS (strippedrhs);
4086 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4087
4088 FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
4089 {
4090 struct constraint_expr *c2;
4091 while (VEC_length (ce_s, rhsc) > 0)
4092 {
4093 c2 = VEC_last (ce_s, rhsc);
4094 process_constraint (new_constraint (*c, *c2));
4095 VEC_pop (ce_s, rhsc);
4096 }
4097 }
4098 }
4099 }
4100 /* In IPA mode, we need to generate constraints to pass call
4101 arguments through their calls. There are two cases,
4102 either a GIMPLE_CALL returning a value, or just a plain
4103 GIMPLE_CALL when we are not.
4104
4105 In non-ipa mode, we need to generate constraints for each
4106 pointer passed by address. */
4107 else if (is_gimple_call (t))
4108 {
4109 tree fndecl = gimple_call_fndecl (t);
4110 if (fndecl != NULL_TREE
4111 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4112 /* ??? All builtins that are handled here need to be handled
4113 in the alias-oracle query functions explicitly! */
4114 switch (DECL_FUNCTION_CODE (fndecl))
4115 {
4116 /* All the following functions return a pointer to the same object
4117 as their first argument points to. The functions do not add
4118 to the ESCAPED solution. The functions make the first argument
4119 pointed to memory point to what the second argument pointed to
4120 memory points to. */
4121 case BUILT_IN_STRCPY:
4122 case BUILT_IN_STRNCPY:
4123 case BUILT_IN_BCOPY:
4124 case BUILT_IN_MEMCPY:
4125 case BUILT_IN_MEMMOVE:
4126 case BUILT_IN_MEMPCPY:
4127 case BUILT_IN_STPCPY:
4128 case BUILT_IN_STPNCPY:
4129 case BUILT_IN_STRCAT:
4130 case BUILT_IN_STRNCAT:
4131 {
4132 tree res = gimple_call_lhs (t);
4133 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4134 == BUILT_IN_BCOPY ? 1 : 0));
4135 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4136 == BUILT_IN_BCOPY ? 0 : 1));
4137 if (res != NULL_TREE)
4138 {
4139 get_constraint_for (res, &lhsc);
4140 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4141 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4142 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4143 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4144 else
4145 get_constraint_for (dest, &rhsc);
4146 process_all_all_constraints (lhsc, rhsc);
4147 VEC_free (ce_s, heap, lhsc);
4148 VEC_free (ce_s, heap, rhsc);
4149 }
4150 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4151 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4152 do_deref (&lhsc);
4153 do_deref (&rhsc);
4154 process_all_all_constraints (lhsc, rhsc);
4155 VEC_free (ce_s, heap, lhsc);
4156 VEC_free (ce_s, heap, rhsc);
4157 return;
4158 }
4159 case BUILT_IN_MEMSET:
4160 {
4161 tree res = gimple_call_lhs (t);
4162 tree dest = gimple_call_arg (t, 0);
4163 unsigned i;
4164 ce_s *lhsp;
4165 struct constraint_expr ac;
4166 if (res != NULL_TREE)
4167 {
4168 get_constraint_for (res, &lhsc);
4169 get_constraint_for (dest, &rhsc);
4170 process_all_all_constraints (lhsc, rhsc);
4171 VEC_free (ce_s, heap, lhsc);
4172 VEC_free (ce_s, heap, rhsc);
4173 }
4174 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4175 do_deref (&lhsc);
4176 if (flag_delete_null_pointer_checks
4177 && integer_zerop (gimple_call_arg (t, 1)))
4178 {
4179 ac.type = ADDRESSOF;
4180 ac.var = nothing_id;
4181 }
4182 else
4183 {
4184 ac.type = SCALAR;
4185 ac.var = integer_id;
4186 }
4187 ac.offset = 0;
4188 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4189 process_constraint (new_constraint (*lhsp, ac));
4190 VEC_free (ce_s, heap, lhsc);
4191 return;
4192 }
4193 /* All the following functions do not return pointers, do not
4194 modify the points-to sets of memory reachable from their
4195 arguments and do not add to the ESCAPED solution. */
4196 case BUILT_IN_SINCOS:
4197 case BUILT_IN_SINCOSF:
4198 case BUILT_IN_SINCOSL:
4199 case BUILT_IN_FREXP:
4200 case BUILT_IN_FREXPF:
4201 case BUILT_IN_FREXPL:
4202 case BUILT_IN_GAMMA_R:
4203 case BUILT_IN_GAMMAF_R:
4204 case BUILT_IN_GAMMAL_R:
4205 case BUILT_IN_LGAMMA_R:
4206 case BUILT_IN_LGAMMAF_R:
4207 case BUILT_IN_LGAMMAL_R:
4208 case BUILT_IN_MODF:
4209 case BUILT_IN_MODFF:
4210 case BUILT_IN_MODFL:
4211 case BUILT_IN_REMQUO:
4212 case BUILT_IN_REMQUOF:
4213 case BUILT_IN_REMQUOL:
4214 case BUILT_IN_FREE:
4215 return;
4216 /* Trampolines are special - they set up passing the static
4217 frame. */
4218 case BUILT_IN_INIT_TRAMPOLINE:
4219 {
4220 tree tramp = gimple_call_arg (t, 0);
4221 tree nfunc = gimple_call_arg (t, 1);
4222 tree frame = gimple_call_arg (t, 2);
4223 unsigned i;
4224 struct constraint_expr lhs, *rhsp;
4225 if (in_ipa_mode)
4226 {
4227 varinfo_t nfi = NULL;
4228 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4229 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4230 if (nfi)
4231 {
4232 lhs = get_function_part_constraint (nfi, fi_static_chain);
4233 get_constraint_for (frame, &rhsc);
4234 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4235 process_constraint (new_constraint (lhs, *rhsp));
4236 VEC_free (ce_s, heap, rhsc);
4237
4238 /* Make the frame point to the function for
4239 the trampoline adjustment call. */
4240 get_constraint_for (tramp, &lhsc);
4241 do_deref (&lhsc);
4242 get_constraint_for (nfunc, &rhsc);
4243 process_all_all_constraints (lhsc, rhsc);
4244 VEC_free (ce_s, heap, rhsc);
4245 VEC_free (ce_s, heap, lhsc);
4246
4247 return;
4248 }
4249 }
4250 /* Else fallthru to generic handling which will let
4251 the frame escape. */
4252 break;
4253 }
4254 case BUILT_IN_ADJUST_TRAMPOLINE:
4255 {
4256 tree tramp = gimple_call_arg (t, 0);
4257 tree res = gimple_call_lhs (t);
4258 if (in_ipa_mode && res)
4259 {
4260 get_constraint_for (res, &lhsc);
4261 get_constraint_for (tramp, &rhsc);
4262 do_deref (&rhsc);
4263 process_all_all_constraints (lhsc, rhsc);
4264 VEC_free (ce_s, heap, rhsc);
4265 VEC_free (ce_s, heap, lhsc);
4266 }
4267 return;
4268 }
4269 /* Variadic argument handling needs to be handled in IPA
4270 mode as well. */
4271 case BUILT_IN_VA_START:
4272 {
4273 if (in_ipa_mode)
4274 {
4275 tree valist = gimple_call_arg (t, 0);
4276 struct constraint_expr rhs, *lhsp;
4277 unsigned i;
4278 /* The va_list gets access to pointers in variadic
4279 arguments. */
4280 fi = lookup_vi_for_tree (cfun->decl);
4281 gcc_assert (fi != NULL);
4282 get_constraint_for (valist, &lhsc);
4283 do_deref (&lhsc);
4284 rhs = get_function_part_constraint (fi, ~0);
4285 rhs.type = ADDRESSOF;
4286 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4287 process_constraint (new_constraint (*lhsp, rhs));
4288 VEC_free (ce_s, heap, lhsc);
4289 /* va_list is clobbered. */
4290 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4291 return;
4292 }
4293 break;
4294 }
4295 /* va_end doesn't have any effect that matters. */
4296 case BUILT_IN_VA_END:
4297 return;
4298 /* Alternate return. Simply give up for now. */
4299 case BUILT_IN_RETURN:
4300 {
4301 fi = NULL;
4302 if (!in_ipa_mode
4303 || !(fi = get_vi_for_tree (cfun->decl)))
4304 make_constraint_from (get_varinfo (escaped_id), anything_id);
4305 else if (in_ipa_mode
4306 && fi != NULL)
4307 {
4308 struct constraint_expr lhs, rhs;
4309 lhs = get_function_part_constraint (fi, fi_result);
4310 rhs.var = anything_id;
4311 rhs.offset = 0;
4312 rhs.type = SCALAR;
4313 process_constraint (new_constraint (lhs, rhs));
4314 }
4315 return;
4316 }
4317 /* printf-style functions may have hooks to set pointers to
4318 point to somewhere into the generated string. Leave them
4319 for a later excercise... */
4320 default:
4321 /* Fallthru to general call handling. */;
4322 }
4323 if (!in_ipa_mode
4324 || gimple_call_internal_p (t)
4325 || (fndecl
4326 && (!(fi = lookup_vi_for_tree (fndecl))
4327 || !fi->is_fn_info)))
4328 {
4329 VEC(ce_s, heap) *rhsc = NULL;
4330 int flags = gimple_call_flags (t);
4331
4332 /* Const functions can return their arguments and addresses
4333 of global memory but not of escaped memory. */
4334 if (flags & (ECF_CONST|ECF_NOVOPS))
4335 {
4336 if (gimple_call_lhs (t))
4337 handle_const_call (t, &rhsc);
4338 }
4339 /* Pure functions can return addresses in and of memory
4340 reachable from their arguments, but they are not an escape
4341 point for reachable memory of their arguments. */
4342 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4343 handle_pure_call (t, &rhsc);
4344 else
4345 handle_rhs_call (t, &rhsc);
4346 if (gimple_call_lhs (t))
4347 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4348 VEC_free (ce_s, heap, rhsc);
4349 }
4350 else
4351 {
4352 tree lhsop;
4353 unsigned j;
4354
4355 fi = get_fi_for_callee (t);
4356
4357 /* Assign all the passed arguments to the appropriate incoming
4358 parameters of the function. */
4359 for (j = 0; j < gimple_call_num_args (t); j++)
4360 {
4361 struct constraint_expr lhs ;
4362 struct constraint_expr *rhsp;
4363 tree arg = gimple_call_arg (t, j);
4364
4365 get_constraint_for_rhs (arg, &rhsc);
4366 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4367 while (VEC_length (ce_s, rhsc) != 0)
4368 {
4369 rhsp = VEC_last (ce_s, rhsc);
4370 process_constraint (new_constraint (lhs, *rhsp));
4371 VEC_pop (ce_s, rhsc);
4372 }
4373 }
4374
4375 /* If we are returning a value, assign it to the result. */
4376 lhsop = gimple_call_lhs (t);
4377 if (lhsop)
4378 {
4379 struct constraint_expr rhs;
4380 struct constraint_expr *lhsp;
4381
4382 get_constraint_for (lhsop, &lhsc);
4383 rhs = get_function_part_constraint (fi, fi_result);
4384 if (fndecl
4385 && DECL_RESULT (fndecl)
4386 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4387 {
4388 VEC(ce_s, heap) *tem = NULL;
4389 VEC_safe_push (ce_s, heap, tem, &rhs);
4390 do_deref (&tem);
4391 rhs = *VEC_index (ce_s, tem, 0);
4392 VEC_free(ce_s, heap, tem);
4393 }
4394 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4395 process_constraint (new_constraint (*lhsp, rhs));
4396 }
4397
4398 /* If we pass the result decl by reference, honor that. */
4399 if (lhsop
4400 && fndecl
4401 && DECL_RESULT (fndecl)
4402 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4403 {
4404 struct constraint_expr lhs;
4405 struct constraint_expr *rhsp;
4406
4407 get_constraint_for_address_of (lhsop, &rhsc);
4408 lhs = get_function_part_constraint (fi, fi_result);
4409 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4410 process_constraint (new_constraint (lhs, *rhsp));
4411 VEC_free (ce_s, heap, rhsc);
4412 }
4413
4414 /* If we use a static chain, pass it along. */
4415 if (gimple_call_chain (t))
4416 {
4417 struct constraint_expr lhs;
4418 struct constraint_expr *rhsp;
4419
4420 get_constraint_for (gimple_call_chain (t), &rhsc);
4421 lhs = get_function_part_constraint (fi, fi_static_chain);
4422 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4423 process_constraint (new_constraint (lhs, *rhsp));
4424 }
4425 }
4426 }
4427 /* Otherwise, just a regular assignment statement. Only care about
4428 operations with pointer result, others are dealt with as escape
4429 points if they have pointer operands. */
4430 else if (is_gimple_assign (t))
4431 {
4432 /* Otherwise, just a regular assignment statement. */
4433 tree lhsop = gimple_assign_lhs (t);
4434 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4435
4436 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4437 do_structure_copy (lhsop, rhsop);
4438 else
4439 {
4440 enum tree_code code = gimple_assign_rhs_code (t);
4441
4442 get_constraint_for (lhsop, &lhsc);
4443
4444 if (code == POINTER_PLUS_EXPR)
4445 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4446 gimple_assign_rhs2 (t), &rhsc);
4447 else if (code == BIT_AND_EXPR
4448 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4449 {
4450 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4451 the pointer. Handle it by offsetting it by UNKNOWN. */
4452 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4453 NULL_TREE, &rhsc);
4454 }
4455 else if ((CONVERT_EXPR_CODE_P (code)
4456 && !(POINTER_TYPE_P (gimple_expr_type (t))
4457 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4458 || gimple_assign_single_p (t))
4459 get_constraint_for_rhs (rhsop, &rhsc);
4460 else if (truth_value_p (code))
4461 /* Truth value results are not pointer (parts). Or at least
4462 very very unreasonable obfuscation of a part. */
4463 ;
4464 else
4465 {
4466 /* All other operations are merges. */
4467 VEC (ce_s, heap) *tmp = NULL;
4468 struct constraint_expr *rhsp;
4469 unsigned i, j;
4470 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4471 for (i = 2; i < gimple_num_ops (t); ++i)
4472 {
4473 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4474 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
4475 VEC_safe_push (ce_s, heap, rhsc, rhsp);
4476 VEC_truncate (ce_s, tmp, 0);
4477 }
4478 VEC_free (ce_s, heap, tmp);
4479 }
4480 process_all_all_constraints (lhsc, rhsc);
4481 }
4482 /* If there is a store to a global variable the rhs escapes. */
4483 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4484 && DECL_P (lhsop)
4485 && is_global_var (lhsop)
4486 && (!in_ipa_mode
4487 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4488 make_escape_constraint (rhsop);
4489 /* If this is a conversion of a non-restrict pointer to a
4490 restrict pointer track it with a new heapvar. */
4491 else if (gimple_assign_cast_p (t)
4492 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4493 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4494 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4495 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4496 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4497 "CAST_RESTRICT");
4498 }
4499 /* Handle escapes through return. */
4500 else if (gimple_code (t) == GIMPLE_RETURN
4501 && gimple_return_retval (t) != NULL_TREE)
4502 {
4503 fi = NULL;
4504 if (!in_ipa_mode
4505 || !(fi = get_vi_for_tree (cfun->decl)))
4506 make_escape_constraint (gimple_return_retval (t));
4507 else if (in_ipa_mode
4508 && fi != NULL)
4509 {
4510 struct constraint_expr lhs ;
4511 struct constraint_expr *rhsp;
4512 unsigned i;
4513
4514 lhs = get_function_part_constraint (fi, fi_result);
4515 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4516 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4517 process_constraint (new_constraint (lhs, *rhsp));
4518 }
4519 }
4520 /* Handle asms conservatively by adding escape constraints to everything. */
4521 else if (gimple_code (t) == GIMPLE_ASM)
4522 {
4523 unsigned i, noutputs;
4524 const char **oconstraints;
4525 const char *constraint;
4526 bool allows_mem, allows_reg, is_inout;
4527
4528 noutputs = gimple_asm_noutputs (t);
4529 oconstraints = XALLOCAVEC (const char *, noutputs);
4530
4531 for (i = 0; i < noutputs; ++i)
4532 {
4533 tree link = gimple_asm_output_op (t, i);
4534 tree op = TREE_VALUE (link);
4535
4536 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4537 oconstraints[i] = constraint;
4538 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4539 &allows_reg, &is_inout);
4540
4541 /* A memory constraint makes the address of the operand escape. */
4542 if (!allows_reg && allows_mem)
4543 make_escape_constraint (build_fold_addr_expr (op));
4544
4545 /* The asm may read global memory, so outputs may point to
4546 any global memory. */
4547 if (op)
4548 {
4549 VEC(ce_s, heap) *lhsc = NULL;
4550 struct constraint_expr rhsc, *lhsp;
4551 unsigned j;
4552 get_constraint_for (op, &lhsc);
4553 rhsc.var = nonlocal_id;
4554 rhsc.offset = 0;
4555 rhsc.type = SCALAR;
4556 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4557 process_constraint (new_constraint (*lhsp, rhsc));
4558 VEC_free (ce_s, heap, lhsc);
4559 }
4560 }
4561 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4562 {
4563 tree link = gimple_asm_input_op (t, i);
4564 tree op = TREE_VALUE (link);
4565
4566 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4567
4568 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4569 &allows_mem, &allows_reg);
4570
4571 /* A memory constraint makes the address of the operand escape. */
4572 if (!allows_reg && allows_mem)
4573 make_escape_constraint (build_fold_addr_expr (op));
4574 /* Strictly we'd only need the constraint to ESCAPED if
4575 the asm clobbers memory, otherwise using something
4576 along the lines of per-call clobbers/uses would be enough. */
4577 else if (op)
4578 make_escape_constraint (op);
4579 }
4580 }
4581
4582 VEC_free (ce_s, heap, rhsc);
4583 VEC_free (ce_s, heap, lhsc);
4584 }
4585
4586
4587 /* Create a constraint adding to the clobber set of FI the memory
4588 pointed to by PTR. */
4589
4590 static void
4591 process_ipa_clobber (varinfo_t fi, tree ptr)
4592 {
4593 VEC(ce_s, heap) *ptrc = NULL;
4594 struct constraint_expr *c, lhs;
4595 unsigned i;
4596 get_constraint_for_rhs (ptr, &ptrc);
4597 lhs = get_function_part_constraint (fi, fi_clobbers);
4598 FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
4599 process_constraint (new_constraint (lhs, *c));
4600 VEC_free (ce_s, heap, ptrc);
4601 }
4602
4603 /* Walk statement T setting up clobber and use constraints according to the
4604 references found in T. This function is a main part of the
4605 IPA constraint builder. */
4606
4607 static void
4608 find_func_clobbers (gimple origt)
4609 {
4610 gimple t = origt;
4611 VEC(ce_s, heap) *lhsc = NULL;
4612 VEC(ce_s, heap) *rhsc = NULL;
4613 varinfo_t fi;
4614
4615 /* Add constraints for clobbered/used in IPA mode.
4616 We are not interested in what automatic variables are clobbered
4617 or used as we only use the information in the caller to which
4618 they do not escape. */
4619 gcc_assert (in_ipa_mode);
4620
4621 /* If the stmt refers to memory in any way it better had a VUSE. */
4622 if (gimple_vuse (t) == NULL_TREE)
4623 return;
4624
4625 /* We'd better have function information for the current function. */
4626 fi = lookup_vi_for_tree (cfun->decl);
4627 gcc_assert (fi != NULL);
4628
4629 /* Account for stores in assignments and calls. */
4630 if (gimple_vdef (t) != NULL_TREE
4631 && gimple_has_lhs (t))
4632 {
4633 tree lhs = gimple_get_lhs (t);
4634 tree tem = lhs;
4635 while (handled_component_p (tem))
4636 tem = TREE_OPERAND (tem, 0);
4637 if ((DECL_P (tem)
4638 && !auto_var_in_fn_p (tem, cfun->decl))
4639 || INDIRECT_REF_P (tem)
4640 || (TREE_CODE (tem) == MEM_REF
4641 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4642 && auto_var_in_fn_p
4643 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4644 {
4645 struct constraint_expr lhsc, *rhsp;
4646 unsigned i;
4647 lhsc = get_function_part_constraint (fi, fi_clobbers);
4648 get_constraint_for_address_of (lhs, &rhsc);
4649 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4650 process_constraint (new_constraint (lhsc, *rhsp));
4651 VEC_free (ce_s, heap, rhsc);
4652 }
4653 }
4654
4655 /* Account for uses in assigments and returns. */
4656 if (gimple_assign_single_p (t)
4657 || (gimple_code (t) == GIMPLE_RETURN
4658 && gimple_return_retval (t) != NULL_TREE))
4659 {
4660 tree rhs = (gimple_assign_single_p (t)
4661 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4662 tree tem = rhs;
4663 while (handled_component_p (tem))
4664 tem = TREE_OPERAND (tem, 0);
4665 if ((DECL_P (tem)
4666 && !auto_var_in_fn_p (tem, cfun->decl))
4667 || INDIRECT_REF_P (tem)
4668 || (TREE_CODE (tem) == MEM_REF
4669 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4670 && auto_var_in_fn_p
4671 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4672 {
4673 struct constraint_expr lhs, *rhsp;
4674 unsigned i;
4675 lhs = get_function_part_constraint (fi, fi_uses);
4676 get_constraint_for_address_of (rhs, &rhsc);
4677 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4678 process_constraint (new_constraint (lhs, *rhsp));
4679 VEC_free (ce_s, heap, rhsc);
4680 }
4681 }
4682
4683 if (is_gimple_call (t))
4684 {
4685 varinfo_t cfi = NULL;
4686 tree decl = gimple_call_fndecl (t);
4687 struct constraint_expr lhs, rhs;
4688 unsigned i, j;
4689
4690 /* For builtins we do not have separate function info. For those
4691 we do not generate escapes for we have to generate clobbers/uses. */
4692 if (decl
4693 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4694 switch (DECL_FUNCTION_CODE (decl))
4695 {
4696 /* The following functions use and clobber memory pointed to
4697 by their arguments. */
4698 case BUILT_IN_STRCPY:
4699 case BUILT_IN_STRNCPY:
4700 case BUILT_IN_BCOPY:
4701 case BUILT_IN_MEMCPY:
4702 case BUILT_IN_MEMMOVE:
4703 case BUILT_IN_MEMPCPY:
4704 case BUILT_IN_STPCPY:
4705 case BUILT_IN_STPNCPY:
4706 case BUILT_IN_STRCAT:
4707 case BUILT_IN_STRNCAT:
4708 {
4709 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4710 == BUILT_IN_BCOPY ? 1 : 0));
4711 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4712 == BUILT_IN_BCOPY ? 0 : 1));
4713 unsigned i;
4714 struct constraint_expr *rhsp, *lhsp;
4715 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4716 lhs = get_function_part_constraint (fi, fi_clobbers);
4717 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4718 process_constraint (new_constraint (lhs, *lhsp));
4719 VEC_free (ce_s, heap, lhsc);
4720 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4721 lhs = get_function_part_constraint (fi, fi_uses);
4722 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4723 process_constraint (new_constraint (lhs, *rhsp));
4724 VEC_free (ce_s, heap, rhsc);
4725 return;
4726 }
4727 /* The following function clobbers memory pointed to by
4728 its argument. */
4729 case BUILT_IN_MEMSET:
4730 {
4731 tree dest = gimple_call_arg (t, 0);
4732 unsigned i;
4733 ce_s *lhsp;
4734 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4735 lhs = get_function_part_constraint (fi, fi_clobbers);
4736 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4737 process_constraint (new_constraint (lhs, *lhsp));
4738 VEC_free (ce_s, heap, lhsc);
4739 return;
4740 }
4741 /* The following functions clobber their second and third
4742 arguments. */
4743 case BUILT_IN_SINCOS:
4744 case BUILT_IN_SINCOSF:
4745 case BUILT_IN_SINCOSL:
4746 {
4747 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4748 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4749 return;
4750 }
4751 /* The following functions clobber their second argument. */
4752 case BUILT_IN_FREXP:
4753 case BUILT_IN_FREXPF:
4754 case BUILT_IN_FREXPL:
4755 case BUILT_IN_LGAMMA_R:
4756 case BUILT_IN_LGAMMAF_R:
4757 case BUILT_IN_LGAMMAL_R:
4758 case BUILT_IN_GAMMA_R:
4759 case BUILT_IN_GAMMAF_R:
4760 case BUILT_IN_GAMMAL_R:
4761 case BUILT_IN_MODF:
4762 case BUILT_IN_MODFF:
4763 case BUILT_IN_MODFL:
4764 {
4765 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4766 return;
4767 }
4768 /* The following functions clobber their third argument. */
4769 case BUILT_IN_REMQUO:
4770 case BUILT_IN_REMQUOF:
4771 case BUILT_IN_REMQUOL:
4772 {
4773 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4774 return;
4775 }
4776 /* The following functions neither read nor clobber memory. */
4777 case BUILT_IN_FREE:
4778 return;
4779 /* Trampolines are of no interest to us. */
4780 case BUILT_IN_INIT_TRAMPOLINE:
4781 case BUILT_IN_ADJUST_TRAMPOLINE:
4782 return;
4783 case BUILT_IN_VA_START:
4784 case BUILT_IN_VA_END:
4785 return;
4786 /* printf-style functions may have hooks to set pointers to
4787 point to somewhere into the generated string. Leave them
4788 for a later excercise... */
4789 default:
4790 /* Fallthru to general call handling. */;
4791 }
4792
4793 /* Parameters passed by value are used. */
4794 lhs = get_function_part_constraint (fi, fi_uses);
4795 for (i = 0; i < gimple_call_num_args (t); i++)
4796 {
4797 struct constraint_expr *rhsp;
4798 tree arg = gimple_call_arg (t, i);
4799
4800 if (TREE_CODE (arg) == SSA_NAME
4801 || is_gimple_min_invariant (arg))
4802 continue;
4803
4804 get_constraint_for_address_of (arg, &rhsc);
4805 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4806 process_constraint (new_constraint (lhs, *rhsp));
4807 VEC_free (ce_s, heap, rhsc);
4808 }
4809
4810 /* Build constraints for propagating clobbers/uses along the
4811 callgraph edges. */
4812 cfi = get_fi_for_callee (t);
4813 if (cfi->id == anything_id)
4814 {
4815 if (gimple_vdef (t))
4816 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4817 anything_id);
4818 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4819 anything_id);
4820 return;
4821 }
4822
4823 /* For callees without function info (that's external functions),
4824 ESCAPED is clobbered and used. */
4825 if (gimple_call_fndecl (t)
4826 && !cfi->is_fn_info)
4827 {
4828 varinfo_t vi;
4829
4830 if (gimple_vdef (t))
4831 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4832 escaped_id);
4833 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4834
4835 /* Also honor the call statement use/clobber info. */
4836 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4837 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4838 vi->id);
4839 if ((vi = lookup_call_use_vi (t)) != NULL)
4840 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4841 vi->id);
4842 return;
4843 }
4844
4845 /* Otherwise the caller clobbers and uses what the callee does.
4846 ??? This should use a new complex constraint that filters
4847 local variables of the callee. */
4848 if (gimple_vdef (t))
4849 {
4850 lhs = get_function_part_constraint (fi, fi_clobbers);
4851 rhs = get_function_part_constraint (cfi, fi_clobbers);
4852 process_constraint (new_constraint (lhs, rhs));
4853 }
4854 lhs = get_function_part_constraint (fi, fi_uses);
4855 rhs = get_function_part_constraint (cfi, fi_uses);
4856 process_constraint (new_constraint (lhs, rhs));
4857 }
4858 else if (gimple_code (t) == GIMPLE_ASM)
4859 {
4860 /* ??? Ick. We can do better. */
4861 if (gimple_vdef (t))
4862 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4863 anything_id);
4864 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4865 anything_id);
4866 }
4867
4868 VEC_free (ce_s, heap, rhsc);
4869 }
4870
4871
4872 /* Find the first varinfo in the same variable as START that overlaps with
4873 OFFSET. Return NULL if we can't find one. */
4874
4875 static varinfo_t
4876 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4877 {
4878 /* If the offset is outside of the variable, bail out. */
4879 if (offset >= start->fullsize)
4880 return NULL;
4881
4882 /* If we cannot reach offset from start, lookup the first field
4883 and start from there. */
4884 if (start->offset > offset)
4885 start = lookup_vi_for_tree (start->decl);
4886
4887 while (start)
4888 {
4889 /* We may not find a variable in the field list with the actual
4890 offset when when we have glommed a structure to a variable.
4891 In that case, however, offset should still be within the size
4892 of the variable. */
4893 if (offset >= start->offset
4894 && (offset - start->offset) < start->size)
4895 return start;
4896
4897 start= start->next;
4898 }
4899
4900 return NULL;
4901 }
4902
4903 /* Find the first varinfo in the same variable as START that overlaps with
4904 OFFSET. If there is no such varinfo the varinfo directly preceding
4905 OFFSET is returned. */
4906
4907 static varinfo_t
4908 first_or_preceding_vi_for_offset (varinfo_t start,
4909 unsigned HOST_WIDE_INT offset)
4910 {
4911 /* If we cannot reach offset from start, lookup the first field
4912 and start from there. */
4913 if (start->offset > offset)
4914 start = lookup_vi_for_tree (start->decl);
4915
4916 /* We may not find a variable in the field list with the actual
4917 offset when when we have glommed a structure to a variable.
4918 In that case, however, offset should still be within the size
4919 of the variable.
4920 If we got beyond the offset we look for return the field
4921 directly preceding offset which may be the last field. */
4922 while (start->next
4923 && offset >= start->offset
4924 && !((offset - start->offset) < start->size))
4925 start = start->next;
4926
4927 return start;
4928 }
4929
4930
4931 /* This structure is used during pushing fields onto the fieldstack
4932 to track the offset of the field, since bitpos_of_field gives it
4933 relative to its immediate containing type, and we want it relative
4934 to the ultimate containing object. */
4935
4936 struct fieldoff
4937 {
4938 /* Offset from the base of the base containing object to this field. */
4939 HOST_WIDE_INT offset;
4940
4941 /* Size, in bits, of the field. */
4942 unsigned HOST_WIDE_INT size;
4943
4944 unsigned has_unknown_size : 1;
4945
4946 unsigned must_have_pointers : 1;
4947
4948 unsigned may_have_pointers : 1;
4949
4950 unsigned only_restrict_pointers : 1;
4951 };
4952 typedef struct fieldoff fieldoff_s;
4953
4954 DEF_VEC_O(fieldoff_s);
4955 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4956
4957 /* qsort comparison function for two fieldoff's PA and PB */
4958
4959 static int
4960 fieldoff_compare (const void *pa, const void *pb)
4961 {
4962 const fieldoff_s *foa = (const fieldoff_s *)pa;
4963 const fieldoff_s *fob = (const fieldoff_s *)pb;
4964 unsigned HOST_WIDE_INT foasize, fobsize;
4965
4966 if (foa->offset < fob->offset)
4967 return -1;
4968 else if (foa->offset > fob->offset)
4969 return 1;
4970
4971 foasize = foa->size;
4972 fobsize = fob->size;
4973 if (foasize < fobsize)
4974 return -1;
4975 else if (foasize > fobsize)
4976 return 1;
4977 return 0;
4978 }
4979
4980 /* Sort a fieldstack according to the field offset and sizes. */
4981 static void
4982 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4983 {
4984 VEC_qsort (fieldoff_s, fieldstack, fieldoff_compare);
4985 }
4986
4987 /* Return true if V is a tree that we can have subvars for.
4988 Normally, this is any aggregate type. Also complex
4989 types which are not gimple registers can have subvars. */
4990
4991 static inline bool
4992 var_can_have_subvars (const_tree v)
4993 {
4994 /* Volatile variables should never have subvars. */
4995 if (TREE_THIS_VOLATILE (v))
4996 return false;
4997
4998 /* Non decls or memory tags can never have subvars. */
4999 if (!DECL_P (v))
5000 return false;
5001
5002 /* Aggregates without overlapping fields can have subvars. */
5003 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
5004 return true;
5005
5006 return false;
5007 }
5008
5009 /* Return true if T is a type that does contain pointers. */
5010
5011 static bool
5012 type_must_have_pointers (tree type)
5013 {
5014 if (POINTER_TYPE_P (type))
5015 return true;
5016
5017 if (TREE_CODE (type) == ARRAY_TYPE)
5018 return type_must_have_pointers (TREE_TYPE (type));
5019
5020 /* A function or method can have pointers as arguments, so track
5021 those separately. */
5022 if (TREE_CODE (type) == FUNCTION_TYPE
5023 || TREE_CODE (type) == METHOD_TYPE)
5024 return true;
5025
5026 return false;
5027 }
5028
5029 static bool
5030 field_must_have_pointers (tree t)
5031 {
5032 return type_must_have_pointers (TREE_TYPE (t));
5033 }
5034
5035 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5036 the fields of TYPE onto fieldstack, recording their offsets along
5037 the way.
5038
5039 OFFSET is used to keep track of the offset in this entire
5040 structure, rather than just the immediately containing structure.
5041 Returns false if the caller is supposed to handle the field we
5042 recursed for. */
5043
5044 static bool
5045 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
5046 HOST_WIDE_INT offset)
5047 {
5048 tree field;
5049 bool empty_p = true;
5050
5051 if (TREE_CODE (type) != RECORD_TYPE)
5052 return false;
5053
5054 /* If the vector of fields is growing too big, bail out early.
5055 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5056 sure this fails. */
5057 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5058 return false;
5059
5060 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5061 if (TREE_CODE (field) == FIELD_DECL)
5062 {
5063 bool push = false;
5064 HOST_WIDE_INT foff = bitpos_of_field (field);
5065
5066 if (!var_can_have_subvars (field)
5067 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5068 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5069 push = true;
5070 else if (!push_fields_onto_fieldstack
5071 (TREE_TYPE (field), fieldstack, offset + foff)
5072 && (DECL_SIZE (field)
5073 && !integer_zerop (DECL_SIZE (field))))
5074 /* Empty structures may have actual size, like in C++. So
5075 see if we didn't push any subfields and the size is
5076 nonzero, push the field onto the stack. */
5077 push = true;
5078
5079 if (push)
5080 {
5081 fieldoff_s *pair = NULL;
5082 bool has_unknown_size = false;
5083 bool must_have_pointers_p;
5084
5085 if (!VEC_empty (fieldoff_s, *fieldstack))
5086 pair = VEC_last (fieldoff_s, *fieldstack);
5087
5088 /* If there isn't anything at offset zero, create sth. */
5089 if (!pair
5090 && offset + foff != 0)
5091 {
5092 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5093 pair->offset = 0;
5094 pair->size = offset + foff;
5095 pair->has_unknown_size = false;
5096 pair->must_have_pointers = false;
5097 pair->may_have_pointers = false;
5098 pair->only_restrict_pointers = false;
5099 }
5100
5101 if (!DECL_SIZE (field)
5102 || !host_integerp (DECL_SIZE (field), 1))
5103 has_unknown_size = true;
5104
5105 /* If adjacent fields do not contain pointers merge them. */
5106 must_have_pointers_p = field_must_have_pointers (field);
5107 if (pair
5108 && !has_unknown_size
5109 && !must_have_pointers_p
5110 && !pair->must_have_pointers
5111 && !pair->has_unknown_size
5112 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5113 {
5114 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5115 }
5116 else
5117 {
5118 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5119 pair->offset = offset + foff;
5120 pair->has_unknown_size = has_unknown_size;
5121 if (!has_unknown_size)
5122 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5123 else
5124 pair->size = -1;
5125 pair->must_have_pointers = must_have_pointers_p;
5126 pair->may_have_pointers = true;
5127 pair->only_restrict_pointers
5128 = (!has_unknown_size
5129 && POINTER_TYPE_P (TREE_TYPE (field))
5130 && TYPE_RESTRICT (TREE_TYPE (field)));
5131 }
5132 }
5133
5134 empty_p = false;
5135 }
5136
5137 return !empty_p;
5138 }
5139
5140 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5141 if it is a varargs function. */
5142
5143 static unsigned int
5144 count_num_arguments (tree decl, bool *is_varargs)
5145 {
5146 unsigned int num = 0;
5147 tree t;
5148
5149 /* Capture named arguments for K&R functions. They do not
5150 have a prototype and thus no TYPE_ARG_TYPES. */
5151 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5152 ++num;
5153
5154 /* Check if the function has variadic arguments. */
5155 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5156 if (TREE_VALUE (t) == void_type_node)
5157 break;
5158 if (!t)
5159 *is_varargs = true;
5160
5161 return num;
5162 }
5163
5164 /* Creation function node for DECL, using NAME, and return the index
5165 of the variable we've created for the function. */
5166
5167 static varinfo_t
5168 create_function_info_for (tree decl, const char *name)
5169 {
5170 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5171 varinfo_t vi, prev_vi;
5172 tree arg;
5173 unsigned int i;
5174 bool is_varargs = false;
5175 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5176
5177 /* Create the variable info. */
5178
5179 vi = new_var_info (decl, name);
5180 vi->offset = 0;
5181 vi->size = 1;
5182 vi->fullsize = fi_parm_base + num_args;
5183 vi->is_fn_info = 1;
5184 vi->may_have_pointers = false;
5185 if (is_varargs)
5186 vi->fullsize = ~0;
5187 insert_vi_for_tree (vi->decl, vi);
5188
5189 prev_vi = vi;
5190
5191 /* Create a variable for things the function clobbers and one for
5192 things the function uses. */
5193 {
5194 varinfo_t clobbervi, usevi;
5195 const char *newname;
5196 char *tempname;
5197
5198 asprintf (&tempname, "%s.clobber", name);
5199 newname = ggc_strdup (tempname);
5200 free (tempname);
5201
5202 clobbervi = new_var_info (NULL, newname);
5203 clobbervi->offset = fi_clobbers;
5204 clobbervi->size = 1;
5205 clobbervi->fullsize = vi->fullsize;
5206 clobbervi->is_full_var = true;
5207 clobbervi->is_global_var = false;
5208 gcc_assert (prev_vi->offset < clobbervi->offset);
5209 prev_vi->next = clobbervi;
5210 prev_vi = clobbervi;
5211
5212 asprintf (&tempname, "%s.use", name);
5213 newname = ggc_strdup (tempname);
5214 free (tempname);
5215
5216 usevi = new_var_info (NULL, newname);
5217 usevi->offset = fi_uses;
5218 usevi->size = 1;
5219 usevi->fullsize = vi->fullsize;
5220 usevi->is_full_var = true;
5221 usevi->is_global_var = false;
5222 gcc_assert (prev_vi->offset < usevi->offset);
5223 prev_vi->next = usevi;
5224 prev_vi = usevi;
5225 }
5226
5227 /* And one for the static chain. */
5228 if (fn->static_chain_decl != NULL_TREE)
5229 {
5230 varinfo_t chainvi;
5231 const char *newname;
5232 char *tempname;
5233
5234 asprintf (&tempname, "%s.chain", name);
5235 newname = ggc_strdup (tempname);
5236 free (tempname);
5237
5238 chainvi = new_var_info (fn->static_chain_decl, newname);
5239 chainvi->offset = fi_static_chain;
5240 chainvi->size = 1;
5241 chainvi->fullsize = vi->fullsize;
5242 chainvi->is_full_var = true;
5243 chainvi->is_global_var = false;
5244 gcc_assert (prev_vi->offset < chainvi->offset);
5245 prev_vi->next = chainvi;
5246 prev_vi = chainvi;
5247 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5248 }
5249
5250 /* Create a variable for the return var. */
5251 if (DECL_RESULT (decl) != NULL
5252 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5253 {
5254 varinfo_t resultvi;
5255 const char *newname;
5256 char *tempname;
5257 tree resultdecl = decl;
5258
5259 if (DECL_RESULT (decl))
5260 resultdecl = DECL_RESULT (decl);
5261
5262 asprintf (&tempname, "%s.result", name);
5263 newname = ggc_strdup (tempname);
5264 free (tempname);
5265
5266 resultvi = new_var_info (resultdecl, newname);
5267 resultvi->offset = fi_result;
5268 resultvi->size = 1;
5269 resultvi->fullsize = vi->fullsize;
5270 resultvi->is_full_var = true;
5271 if (DECL_RESULT (decl))
5272 resultvi->may_have_pointers = true;
5273 gcc_assert (prev_vi->offset < resultvi->offset);
5274 prev_vi->next = resultvi;
5275 prev_vi = resultvi;
5276 if (DECL_RESULT (decl))
5277 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5278 }
5279
5280 /* Set up variables for each argument. */
5281 arg = DECL_ARGUMENTS (decl);
5282 for (i = 0; i < num_args; i++)
5283 {
5284 varinfo_t argvi;
5285 const char *newname;
5286 char *tempname;
5287 tree argdecl = decl;
5288
5289 if (arg)
5290 argdecl = arg;
5291
5292 asprintf (&tempname, "%s.arg%d", name, i);
5293 newname = ggc_strdup (tempname);
5294 free (tempname);
5295
5296 argvi = new_var_info (argdecl, newname);
5297 argvi->offset = fi_parm_base + i;
5298 argvi->size = 1;
5299 argvi->is_full_var = true;
5300 argvi->fullsize = vi->fullsize;
5301 if (arg)
5302 argvi->may_have_pointers = true;
5303 gcc_assert (prev_vi->offset < argvi->offset);
5304 prev_vi->next = argvi;
5305 prev_vi = argvi;
5306 if (arg)
5307 {
5308 insert_vi_for_tree (arg, argvi);
5309 arg = DECL_CHAIN (arg);
5310 }
5311 }
5312
5313 /* Add one representative for all further args. */
5314 if (is_varargs)
5315 {
5316 varinfo_t argvi;
5317 const char *newname;
5318 char *tempname;
5319 tree decl;
5320
5321 asprintf (&tempname, "%s.varargs", name);
5322 newname = ggc_strdup (tempname);
5323 free (tempname);
5324
5325 /* We need sth that can be pointed to for va_start. */
5326 decl = create_tmp_var_raw (ptr_type_node, name);
5327 get_var_ann (decl);
5328
5329 argvi = new_var_info (decl, newname);
5330 argvi->offset = fi_parm_base + num_args;
5331 argvi->size = ~0;
5332 argvi->is_full_var = true;
5333 argvi->is_heap_var = true;
5334 argvi->fullsize = vi->fullsize;
5335 gcc_assert (prev_vi->offset < argvi->offset);
5336 prev_vi->next = argvi;
5337 prev_vi = argvi;
5338 }
5339
5340 return vi;
5341 }
5342
5343
5344 /* Return true if FIELDSTACK contains fields that overlap.
5345 FIELDSTACK is assumed to be sorted by offset. */
5346
5347 static bool
5348 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5349 {
5350 fieldoff_s *fo = NULL;
5351 unsigned int i;
5352 HOST_WIDE_INT lastoffset = -1;
5353
5354 FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
5355 {
5356 if (fo->offset == lastoffset)
5357 return true;
5358 lastoffset = fo->offset;
5359 }
5360 return false;
5361 }
5362
5363 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5364 This will also create any varinfo structures necessary for fields
5365 of DECL. */
5366
5367 static varinfo_t
5368 create_variable_info_for_1 (tree decl, const char *name)
5369 {
5370 varinfo_t vi, newvi;
5371 tree decl_type = TREE_TYPE (decl);
5372 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5373 VEC (fieldoff_s,heap) *fieldstack = NULL;
5374 fieldoff_s *fo;
5375 unsigned int i;
5376
5377 if (!declsize
5378 || !host_integerp (declsize, 1))
5379 {
5380 vi = new_var_info (decl, name);
5381 vi->offset = 0;
5382 vi->size = ~0;
5383 vi->fullsize = ~0;
5384 vi->is_unknown_size_var = true;
5385 vi->is_full_var = true;
5386 vi->may_have_pointers = true;
5387 return vi;
5388 }
5389
5390 /* Collect field information. */
5391 if (use_field_sensitive
5392 && var_can_have_subvars (decl)
5393 /* ??? Force us to not use subfields for global initializers
5394 in IPA mode. Else we'd have to parse arbitrary initializers. */
5395 && !(in_ipa_mode
5396 && is_global_var (decl)
5397 && DECL_INITIAL (decl)))
5398 {
5399 fieldoff_s *fo = NULL;
5400 bool notokay = false;
5401 unsigned int i;
5402
5403 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5404
5405 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5406 if (fo->has_unknown_size
5407 || fo->offset < 0)
5408 {
5409 notokay = true;
5410 break;
5411 }
5412
5413 /* We can't sort them if we have a field with a variable sized type,
5414 which will make notokay = true. In that case, we are going to return
5415 without creating varinfos for the fields anyway, so sorting them is a
5416 waste to boot. */
5417 if (!notokay)
5418 {
5419 sort_fieldstack (fieldstack);
5420 /* Due to some C++ FE issues, like PR 22488, we might end up
5421 what appear to be overlapping fields even though they,
5422 in reality, do not overlap. Until the C++ FE is fixed,
5423 we will simply disable field-sensitivity for these cases. */
5424 notokay = check_for_overlaps (fieldstack);
5425 }
5426
5427 if (notokay)
5428 VEC_free (fieldoff_s, heap, fieldstack);
5429 }
5430
5431 /* If we didn't end up collecting sub-variables create a full
5432 variable for the decl. */
5433 if (VEC_length (fieldoff_s, fieldstack) <= 1
5434 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5435 {
5436 vi = new_var_info (decl, name);
5437 vi->offset = 0;
5438 vi->may_have_pointers = true;
5439 vi->fullsize = TREE_INT_CST_LOW (declsize);
5440 vi->size = vi->fullsize;
5441 vi->is_full_var = true;
5442 VEC_free (fieldoff_s, heap, fieldstack);
5443 return vi;
5444 }
5445
5446 vi = new_var_info (decl, name);
5447 vi->fullsize = TREE_INT_CST_LOW (declsize);
5448 for (i = 0, newvi = vi;
5449 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5450 ++i, newvi = newvi->next)
5451 {
5452 const char *newname = "NULL";
5453 char *tempname;
5454
5455 if (dump_file)
5456 {
5457 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5458 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5459 newname = ggc_strdup (tempname);
5460 free (tempname);
5461 }
5462 newvi->name = newname;
5463 newvi->offset = fo->offset;
5464 newvi->size = fo->size;
5465 newvi->fullsize = vi->fullsize;
5466 newvi->may_have_pointers = fo->may_have_pointers;
5467 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5468 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5469 newvi->next = new_var_info (decl, name);
5470 }
5471
5472 VEC_free (fieldoff_s, heap, fieldstack);
5473
5474 return vi;
5475 }
5476
5477 static unsigned int
5478 create_variable_info_for (tree decl, const char *name)
5479 {
5480 varinfo_t vi = create_variable_info_for_1 (decl, name);
5481 unsigned int id = vi->id;
5482
5483 insert_vi_for_tree (decl, vi);
5484
5485 /* Create initial constraints for globals. */
5486 for (; vi; vi = vi->next)
5487 {
5488 if (!vi->may_have_pointers
5489 || !vi->is_global_var)
5490 continue;
5491
5492 /* Mark global restrict qualified pointers. */
5493 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5494 && TYPE_RESTRICT (TREE_TYPE (decl)))
5495 || vi->only_restrict_pointers)
5496 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5497
5498 /* For escaped variables initialize them from nonlocal. */
5499 if (!in_ipa_mode
5500 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5501 make_copy_constraint (vi, nonlocal_id);
5502
5503 /* If this is a global variable with an initializer and we are in
5504 IPA mode generate constraints for it. In non-IPA mode
5505 the initializer from nonlocal is all we need. */
5506 if (in_ipa_mode
5507 && DECL_INITIAL (decl))
5508 {
5509 VEC (ce_s, heap) *rhsc = NULL;
5510 struct constraint_expr lhs, *rhsp;
5511 unsigned i;
5512 get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
5513 lhs.var = vi->id;
5514 lhs.offset = 0;
5515 lhs.type = SCALAR;
5516 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5517 process_constraint (new_constraint (lhs, *rhsp));
5518 /* If this is a variable that escapes from the unit
5519 the initializer escapes as well. */
5520 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5521 {
5522 lhs.var = escaped_id;
5523 lhs.offset = 0;
5524 lhs.type = SCALAR;
5525 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5526 process_constraint (new_constraint (lhs, *rhsp));
5527 }
5528 VEC_free (ce_s, heap, rhsc);
5529 }
5530 }
5531
5532 return id;
5533 }
5534
5535 /* Print out the points-to solution for VAR to FILE. */
5536
5537 static void
5538 dump_solution_for_var (FILE *file, unsigned int var)
5539 {
5540 varinfo_t vi = get_varinfo (var);
5541 unsigned int i;
5542 bitmap_iterator bi;
5543
5544 /* Dump the solution for unified vars anyway, this avoids difficulties
5545 in scanning dumps in the testsuite. */
5546 fprintf (file, "%s = { ", vi->name);
5547 vi = get_varinfo (find (var));
5548 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5549 fprintf (file, "%s ", get_varinfo (i)->name);
5550 fprintf (file, "}");
5551
5552 /* But note when the variable was unified. */
5553 if (vi->id != var)
5554 fprintf (file, " same as %s", vi->name);
5555
5556 fprintf (file, "\n");
5557 }
5558
5559 /* Print the points-to solution for VAR to stdout. */
5560
5561 DEBUG_FUNCTION void
5562 debug_solution_for_var (unsigned int var)
5563 {
5564 dump_solution_for_var (stdout, var);
5565 }
5566
5567 /* Create varinfo structures for all of the variables in the
5568 function for intraprocedural mode. */
5569
5570 static void
5571 intra_create_variable_infos (void)
5572 {
5573 tree t;
5574
5575 /* For each incoming pointer argument arg, create the constraint ARG
5576 = NONLOCAL or a dummy variable if it is a restrict qualified
5577 passed-by-reference argument. */
5578 for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
5579 {
5580 varinfo_t p;
5581
5582 /* For restrict qualified pointers to objects passed by
5583 reference build a real representative for the pointed-to object. */
5584 if (DECL_BY_REFERENCE (t)
5585 && POINTER_TYPE_P (TREE_TYPE (t))
5586 && TYPE_RESTRICT (TREE_TYPE (t)))
5587 {
5588 struct constraint_expr lhsc, rhsc;
5589 varinfo_t vi;
5590 tree heapvar = heapvar_lookup (t, 0);
5591 if (heapvar == NULL_TREE)
5592 {
5593 var_ann_t ann;
5594 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5595 "PARM_NOALIAS");
5596 DECL_EXTERNAL (heapvar) = 1;
5597 heapvar_insert (t, 0, heapvar);
5598 ann = get_var_ann (heapvar);
5599 ann->is_heapvar = 1;
5600 }
5601 if (gimple_referenced_vars (cfun))
5602 add_referenced_var (heapvar);
5603 lhsc.var = get_vi_for_tree (t)->id;
5604 lhsc.type = SCALAR;
5605 lhsc.offset = 0;
5606 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5607 rhsc.type = ADDRESSOF;
5608 rhsc.offset = 0;
5609 process_constraint (new_constraint (lhsc, rhsc));
5610 vi->is_restrict_var = 1;
5611 continue;
5612 }
5613
5614 for (p = get_vi_for_tree (t); p; p = p->next)
5615 {
5616 if (p->may_have_pointers)
5617 make_constraint_from (p, nonlocal_id);
5618 if (p->only_restrict_pointers)
5619 make_constraint_from_restrict (p, "PARM_RESTRICT");
5620 }
5621 if (POINTER_TYPE_P (TREE_TYPE (t))
5622 && TYPE_RESTRICT (TREE_TYPE (t)))
5623 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5624 }
5625
5626 /* Add a constraint for a result decl that is passed by reference. */
5627 if (DECL_RESULT (cfun->decl)
5628 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5629 {
5630 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5631
5632 for (p = result_vi; p; p = p->next)
5633 make_constraint_from (p, nonlocal_id);
5634 }
5635
5636 /* Add a constraint for the incoming static chain parameter. */
5637 if (cfun->static_chain_decl != NULL_TREE)
5638 {
5639 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5640
5641 for (p = chain_vi; p; p = p->next)
5642 make_constraint_from (p, nonlocal_id);
5643 }
5644 }
5645
5646 /* Structure used to put solution bitmaps in a hashtable so they can
5647 be shared among variables with the same points-to set. */
5648
5649 typedef struct shared_bitmap_info
5650 {
5651 bitmap pt_vars;
5652 hashval_t hashcode;
5653 } *shared_bitmap_info_t;
5654 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5655
5656 static htab_t shared_bitmap_table;
5657
5658 /* Hash function for a shared_bitmap_info_t */
5659
5660 static hashval_t
5661 shared_bitmap_hash (const void *p)
5662 {
5663 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5664 return bi->hashcode;
5665 }
5666
5667 /* Equality function for two shared_bitmap_info_t's. */
5668
5669 static int
5670 shared_bitmap_eq (const void *p1, const void *p2)
5671 {
5672 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5673 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5674 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5675 }
5676
5677 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5678 existing instance if there is one, NULL otherwise. */
5679
5680 static bitmap
5681 shared_bitmap_lookup (bitmap pt_vars)
5682 {
5683 void **slot;
5684 struct shared_bitmap_info sbi;
5685
5686 sbi.pt_vars = pt_vars;
5687 sbi.hashcode = bitmap_hash (pt_vars);
5688
5689 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5690 sbi.hashcode, NO_INSERT);
5691 if (!slot)
5692 return NULL;
5693 else
5694 return ((shared_bitmap_info_t) *slot)->pt_vars;
5695 }
5696
5697
5698 /* Add a bitmap to the shared bitmap hashtable. */
5699
5700 static void
5701 shared_bitmap_add (bitmap pt_vars)
5702 {
5703 void **slot;
5704 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5705
5706 sbi->pt_vars = pt_vars;
5707 sbi->hashcode = bitmap_hash (pt_vars);
5708
5709 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5710 sbi->hashcode, INSERT);
5711 gcc_assert (!*slot);
5712 *slot = (void *) sbi;
5713 }
5714
5715
5716 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5717
5718 static void
5719 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5720 {
5721 unsigned int i;
5722 bitmap_iterator bi;
5723
5724 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5725 {
5726 varinfo_t vi = get_varinfo (i);
5727
5728 /* The only artificial variables that are allowed in a may-alias
5729 set are heap variables. */
5730 if (vi->is_artificial_var && !vi->is_heap_var)
5731 continue;
5732
5733 if (TREE_CODE (vi->decl) == VAR_DECL
5734 || TREE_CODE (vi->decl) == PARM_DECL
5735 || TREE_CODE (vi->decl) == RESULT_DECL)
5736 {
5737 /* If we are in IPA mode we will not recompute points-to
5738 sets after inlining so make sure they stay valid. */
5739 if (in_ipa_mode
5740 && !DECL_PT_UID_SET_P (vi->decl))
5741 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5742
5743 /* Add the decl to the points-to set. Note that the points-to
5744 set contains global variables. */
5745 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5746 if (vi->is_global_var)
5747 pt->vars_contains_global = true;
5748 }
5749 }
5750 }
5751
5752
5753 /* Compute the points-to solution *PT for the variable VI. */
5754
5755 static void
5756 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5757 {
5758 unsigned int i;
5759 bitmap_iterator bi;
5760 bitmap finished_solution;
5761 bitmap result;
5762 varinfo_t vi;
5763
5764 memset (pt, 0, sizeof (struct pt_solution));
5765
5766 /* This variable may have been collapsed, let's get the real
5767 variable. */
5768 vi = get_varinfo (find (orig_vi->id));
5769
5770 /* Translate artificial variables into SSA_NAME_PTR_INFO
5771 attributes. */
5772 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5773 {
5774 varinfo_t vi = get_varinfo (i);
5775
5776 if (vi->is_artificial_var)
5777 {
5778 if (vi->id == nothing_id)
5779 pt->null = 1;
5780 else if (vi->id == escaped_id)
5781 {
5782 if (in_ipa_mode)
5783 pt->ipa_escaped = 1;
5784 else
5785 pt->escaped = 1;
5786 }
5787 else if (vi->id == nonlocal_id)
5788 pt->nonlocal = 1;
5789 else if (vi->is_heap_var)
5790 /* We represent heapvars in the points-to set properly. */
5791 ;
5792 else if (vi->id == readonly_id)
5793 /* Nobody cares. */
5794 ;
5795 else if (vi->id == anything_id
5796 || vi->id == integer_id)
5797 pt->anything = 1;
5798 }
5799 if (vi->is_restrict_var)
5800 pt->vars_contains_restrict = true;
5801 }
5802
5803 /* Instead of doing extra work, simply do not create
5804 elaborate points-to information for pt_anything pointers. */
5805 if (pt->anything
5806 && (orig_vi->is_artificial_var
5807 || !pt->vars_contains_restrict))
5808 return;
5809
5810 /* Share the final set of variables when possible. */
5811 finished_solution = BITMAP_GGC_ALLOC ();
5812 stats.points_to_sets_created++;
5813
5814 set_uids_in_ptset (finished_solution, vi->solution, pt);
5815 result = shared_bitmap_lookup (finished_solution);
5816 if (!result)
5817 {
5818 shared_bitmap_add (finished_solution);
5819 pt->vars = finished_solution;
5820 }
5821 else
5822 {
5823 pt->vars = result;
5824 bitmap_clear (finished_solution);
5825 }
5826 }
5827
5828 /* Given a pointer variable P, fill in its points-to set. */
5829
5830 static void
5831 find_what_p_points_to (tree p)
5832 {
5833 struct ptr_info_def *pi;
5834 tree lookup_p = p;
5835 varinfo_t vi;
5836
5837 /* For parameters, get at the points-to set for the actual parm
5838 decl. */
5839 if (TREE_CODE (p) == SSA_NAME
5840 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5841 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)
5842 && SSA_NAME_IS_DEFAULT_DEF (p))
5843 lookup_p = SSA_NAME_VAR (p);
5844
5845 vi = lookup_vi_for_tree (lookup_p);
5846 if (!vi)
5847 return;
5848
5849 pi = get_ptr_info (p);
5850 find_what_var_points_to (vi, &pi->pt);
5851 }
5852
5853
5854 /* Query statistics for points-to solutions. */
5855
5856 static struct {
5857 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5858 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5859 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5860 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5861 } pta_stats;
5862
5863 void
5864 dump_pta_stats (FILE *s)
5865 {
5866 fprintf (s, "\nPTA query stats:\n");
5867 fprintf (s, " pt_solution_includes: "
5868 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5869 HOST_WIDE_INT_PRINT_DEC" queries\n",
5870 pta_stats.pt_solution_includes_no_alias,
5871 pta_stats.pt_solution_includes_no_alias
5872 + pta_stats.pt_solution_includes_may_alias);
5873 fprintf (s, " pt_solutions_intersect: "
5874 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5875 HOST_WIDE_INT_PRINT_DEC" queries\n",
5876 pta_stats.pt_solutions_intersect_no_alias,
5877 pta_stats.pt_solutions_intersect_no_alias
5878 + pta_stats.pt_solutions_intersect_may_alias);
5879 }
5880
5881
5882 /* Reset the points-to solution *PT to a conservative default
5883 (point to anything). */
5884
5885 void
5886 pt_solution_reset (struct pt_solution *pt)
5887 {
5888 memset (pt, 0, sizeof (struct pt_solution));
5889 pt->anything = true;
5890 }
5891
5892 /* Set the points-to solution *PT to point only to the variables
5893 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5894 global variables and VARS_CONTAINS_RESTRICT specifies whether
5895 it contains restrict tag variables. */
5896
5897 void
5898 pt_solution_set (struct pt_solution *pt, bitmap vars,
5899 bool vars_contains_global, bool vars_contains_restrict)
5900 {
5901 memset (pt, 0, sizeof (struct pt_solution));
5902 pt->vars = vars;
5903 pt->vars_contains_global = vars_contains_global;
5904 pt->vars_contains_restrict = vars_contains_restrict;
5905 }
5906
5907 /* Set the points-to solution *PT to point only to the variable VAR. */
5908
5909 void
5910 pt_solution_set_var (struct pt_solution *pt, tree var)
5911 {
5912 memset (pt, 0, sizeof (struct pt_solution));
5913 pt->vars = BITMAP_GGC_ALLOC ();
5914 bitmap_set_bit (pt->vars, DECL_PT_UID (var));
5915 pt->vars_contains_global = is_global_var (var);
5916 }
5917
5918 /* Computes the union of the points-to solutions *DEST and *SRC and
5919 stores the result in *DEST. This changes the points-to bitmap
5920 of *DEST and thus may not be used if that might be shared.
5921 The points-to bitmap of *SRC and *DEST will not be shared after
5922 this function if they were not before. */
5923
5924 static void
5925 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5926 {
5927 dest->anything |= src->anything;
5928 if (dest->anything)
5929 {
5930 pt_solution_reset (dest);
5931 return;
5932 }
5933
5934 dest->nonlocal |= src->nonlocal;
5935 dest->escaped |= src->escaped;
5936 dest->ipa_escaped |= src->ipa_escaped;
5937 dest->null |= src->null;
5938 dest->vars_contains_global |= src->vars_contains_global;
5939 dest->vars_contains_restrict |= src->vars_contains_restrict;
5940 if (!src->vars)
5941 return;
5942
5943 if (!dest->vars)
5944 dest->vars = BITMAP_GGC_ALLOC ();
5945 bitmap_ior_into (dest->vars, src->vars);
5946 }
5947
5948 /* Return true if the points-to solution *PT is empty. */
5949
5950 bool
5951 pt_solution_empty_p (struct pt_solution *pt)
5952 {
5953 if (pt->anything
5954 || pt->nonlocal)
5955 return false;
5956
5957 if (pt->vars
5958 && !bitmap_empty_p (pt->vars))
5959 return false;
5960
5961 /* If the solution includes ESCAPED, check if that is empty. */
5962 if (pt->escaped
5963 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5964 return false;
5965
5966 /* If the solution includes ESCAPED, check if that is empty. */
5967 if (pt->ipa_escaped
5968 && !pt_solution_empty_p (&ipa_escaped_pt))
5969 return false;
5970
5971 return true;
5972 }
5973
5974 /* Return true if the points-to solution *PT includes global memory. */
5975
5976 bool
5977 pt_solution_includes_global (struct pt_solution *pt)
5978 {
5979 if (pt->anything
5980 || pt->nonlocal
5981 || pt->vars_contains_global)
5982 return true;
5983
5984 if (pt->escaped)
5985 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5986
5987 if (pt->ipa_escaped)
5988 return pt_solution_includes_global (&ipa_escaped_pt);
5989
5990 /* ??? This predicate is not correct for the IPA-PTA solution
5991 as we do not properly distinguish between unit escape points
5992 and global variables. */
5993 if (cfun->gimple_df->ipa_pta)
5994 return true;
5995
5996 return false;
5997 }
5998
5999 /* Return true if the points-to solution *PT includes the variable
6000 declaration DECL. */
6001
6002 static bool
6003 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6004 {
6005 if (pt->anything)
6006 return true;
6007
6008 if (pt->nonlocal
6009 && is_global_var (decl))
6010 return true;
6011
6012 if (pt->vars
6013 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6014 return true;
6015
6016 /* If the solution includes ESCAPED, check it. */
6017 if (pt->escaped
6018 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6019 return true;
6020
6021 /* If the solution includes ESCAPED, check it. */
6022 if (pt->ipa_escaped
6023 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6024 return true;
6025
6026 return false;
6027 }
6028
6029 bool
6030 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6031 {
6032 bool res = pt_solution_includes_1 (pt, decl);
6033 if (res)
6034 ++pta_stats.pt_solution_includes_may_alias;
6035 else
6036 ++pta_stats.pt_solution_includes_no_alias;
6037 return res;
6038 }
6039
6040 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6041 intersection. */
6042
6043 static bool
6044 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6045 {
6046 if (pt1->anything || pt2->anything)
6047 return true;
6048
6049 /* If either points to unknown global memory and the other points to
6050 any global memory they alias. */
6051 if ((pt1->nonlocal
6052 && (pt2->nonlocal
6053 || pt2->vars_contains_global))
6054 || (pt2->nonlocal
6055 && pt1->vars_contains_global))
6056 return true;
6057
6058 /* Check the escaped solution if required. */
6059 if ((pt1->escaped || pt2->escaped)
6060 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6061 {
6062 /* If both point to escaped memory and that solution
6063 is not empty they alias. */
6064 if (pt1->escaped && pt2->escaped)
6065 return true;
6066
6067 /* If either points to escaped memory see if the escaped solution
6068 intersects with the other. */
6069 if ((pt1->escaped
6070 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
6071 || (pt2->escaped
6072 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
6073 return true;
6074 }
6075
6076 /* Check the escaped solution if required.
6077 ??? Do we need to check the local against the IPA escaped sets? */
6078 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6079 && !pt_solution_empty_p (&ipa_escaped_pt))
6080 {
6081 /* If both point to escaped memory and that solution
6082 is not empty they alias. */
6083 if (pt1->ipa_escaped && pt2->ipa_escaped)
6084 return true;
6085
6086 /* If either points to escaped memory see if the escaped solution
6087 intersects with the other. */
6088 if ((pt1->ipa_escaped
6089 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6090 || (pt2->ipa_escaped
6091 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6092 return true;
6093 }
6094
6095 /* Now both pointers alias if their points-to solution intersects. */
6096 return (pt1->vars
6097 && pt2->vars
6098 && bitmap_intersect_p (pt1->vars, pt2->vars));
6099 }
6100
6101 bool
6102 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6103 {
6104 bool res = pt_solutions_intersect_1 (pt1, pt2);
6105 if (res)
6106 ++pta_stats.pt_solutions_intersect_may_alias;
6107 else
6108 ++pta_stats.pt_solutions_intersect_no_alias;
6109 return res;
6110 }
6111
6112 /* Return true if both points-to solutions PT1 and PT2 for two restrict
6113 qualified pointers are possibly based on the same pointer. */
6114
6115 bool
6116 pt_solutions_same_restrict_base (struct pt_solution *pt1,
6117 struct pt_solution *pt2)
6118 {
6119 /* If we deal with points-to solutions of two restrict qualified
6120 pointers solely rely on the pointed-to variable bitmap intersection.
6121 For two pointers that are based on each other the bitmaps will
6122 intersect. */
6123 if (pt1->vars_contains_restrict
6124 && pt2->vars_contains_restrict)
6125 {
6126 gcc_assert (pt1->vars && pt2->vars);
6127 return bitmap_intersect_p (pt1->vars, pt2->vars);
6128 }
6129
6130 return true;
6131 }
6132
6133
6134 /* Dump points-to information to OUTFILE. */
6135
6136 static void
6137 dump_sa_points_to_info (FILE *outfile)
6138 {
6139 unsigned int i;
6140
6141 fprintf (outfile, "\nPoints-to sets\n\n");
6142
6143 if (dump_flags & TDF_STATS)
6144 {
6145 fprintf (outfile, "Stats:\n");
6146 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6147 fprintf (outfile, "Non-pointer vars: %d\n",
6148 stats.nonpointer_vars);
6149 fprintf (outfile, "Statically unified vars: %d\n",
6150 stats.unified_vars_static);
6151 fprintf (outfile, "Dynamically unified vars: %d\n",
6152 stats.unified_vars_dynamic);
6153 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6154 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6155 fprintf (outfile, "Number of implicit edges: %d\n",
6156 stats.num_implicit_edges);
6157 }
6158
6159 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6160 {
6161 varinfo_t vi = get_varinfo (i);
6162 if (!vi->may_have_pointers)
6163 continue;
6164 dump_solution_for_var (outfile, i);
6165 }
6166 }
6167
6168
6169 /* Debug points-to information to stderr. */
6170
6171 DEBUG_FUNCTION void
6172 debug_sa_points_to_info (void)
6173 {
6174 dump_sa_points_to_info (stderr);
6175 }
6176
6177
6178 /* Initialize the always-existing constraint variables for NULL
6179 ANYTHING, READONLY, and INTEGER */
6180
6181 static void
6182 init_base_vars (void)
6183 {
6184 struct constraint_expr lhs, rhs;
6185 varinfo_t var_anything;
6186 varinfo_t var_nothing;
6187 varinfo_t var_readonly;
6188 varinfo_t var_escaped;
6189 varinfo_t var_nonlocal;
6190 varinfo_t var_storedanything;
6191 varinfo_t var_integer;
6192
6193 /* Create the NULL variable, used to represent that a variable points
6194 to NULL. */
6195 var_nothing = new_var_info (NULL_TREE, "NULL");
6196 gcc_assert (var_nothing->id == nothing_id);
6197 var_nothing->is_artificial_var = 1;
6198 var_nothing->offset = 0;
6199 var_nothing->size = ~0;
6200 var_nothing->fullsize = ~0;
6201 var_nothing->is_special_var = 1;
6202 var_nothing->may_have_pointers = 0;
6203 var_nothing->is_global_var = 0;
6204
6205 /* Create the ANYTHING variable, used to represent that a variable
6206 points to some unknown piece of memory. */
6207 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6208 gcc_assert (var_anything->id == anything_id);
6209 var_anything->is_artificial_var = 1;
6210 var_anything->size = ~0;
6211 var_anything->offset = 0;
6212 var_anything->next = NULL;
6213 var_anything->fullsize = ~0;
6214 var_anything->is_special_var = 1;
6215
6216 /* Anything points to anything. This makes deref constraints just
6217 work in the presence of linked list and other p = *p type loops,
6218 by saying that *ANYTHING = ANYTHING. */
6219 lhs.type = SCALAR;
6220 lhs.var = anything_id;
6221 lhs.offset = 0;
6222 rhs.type = ADDRESSOF;
6223 rhs.var = anything_id;
6224 rhs.offset = 0;
6225
6226 /* This specifically does not use process_constraint because
6227 process_constraint ignores all anything = anything constraints, since all
6228 but this one are redundant. */
6229 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6230
6231 /* Create the READONLY variable, used to represent that a variable
6232 points to readonly memory. */
6233 var_readonly = new_var_info (NULL_TREE, "READONLY");
6234 gcc_assert (var_readonly->id == readonly_id);
6235 var_readonly->is_artificial_var = 1;
6236 var_readonly->offset = 0;
6237 var_readonly->size = ~0;
6238 var_readonly->fullsize = ~0;
6239 var_readonly->next = NULL;
6240 var_readonly->is_special_var = 1;
6241
6242 /* readonly memory points to anything, in order to make deref
6243 easier. In reality, it points to anything the particular
6244 readonly variable can point to, but we don't track this
6245 separately. */
6246 lhs.type = SCALAR;
6247 lhs.var = readonly_id;
6248 lhs.offset = 0;
6249 rhs.type = ADDRESSOF;
6250 rhs.var = readonly_id; /* FIXME */
6251 rhs.offset = 0;
6252 process_constraint (new_constraint (lhs, rhs));
6253
6254 /* Create the ESCAPED variable, used to represent the set of escaped
6255 memory. */
6256 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6257 gcc_assert (var_escaped->id == escaped_id);
6258 var_escaped->is_artificial_var = 1;
6259 var_escaped->offset = 0;
6260 var_escaped->size = ~0;
6261 var_escaped->fullsize = ~0;
6262 var_escaped->is_special_var = 0;
6263
6264 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6265 memory. */
6266 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6267 gcc_assert (var_nonlocal->id == nonlocal_id);
6268 var_nonlocal->is_artificial_var = 1;
6269 var_nonlocal->offset = 0;
6270 var_nonlocal->size = ~0;
6271 var_nonlocal->fullsize = ~0;
6272 var_nonlocal->is_special_var = 1;
6273
6274 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6275 lhs.type = SCALAR;
6276 lhs.var = escaped_id;
6277 lhs.offset = 0;
6278 rhs.type = DEREF;
6279 rhs.var = escaped_id;
6280 rhs.offset = 0;
6281 process_constraint (new_constraint (lhs, rhs));
6282
6283 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6284 whole variable escapes. */
6285 lhs.type = SCALAR;
6286 lhs.var = escaped_id;
6287 lhs.offset = 0;
6288 rhs.type = SCALAR;
6289 rhs.var = escaped_id;
6290 rhs.offset = UNKNOWN_OFFSET;
6291 process_constraint (new_constraint (lhs, rhs));
6292
6293 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6294 everything pointed to by escaped points to what global memory can
6295 point to. */
6296 lhs.type = DEREF;
6297 lhs.var = escaped_id;
6298 lhs.offset = 0;
6299 rhs.type = SCALAR;
6300 rhs.var = nonlocal_id;
6301 rhs.offset = 0;
6302 process_constraint (new_constraint (lhs, rhs));
6303
6304 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6305 global memory may point to global memory and escaped memory. */
6306 lhs.type = SCALAR;
6307 lhs.var = nonlocal_id;
6308 lhs.offset = 0;
6309 rhs.type = ADDRESSOF;
6310 rhs.var = nonlocal_id;
6311 rhs.offset = 0;
6312 process_constraint (new_constraint (lhs, rhs));
6313 rhs.type = ADDRESSOF;
6314 rhs.var = escaped_id;
6315 rhs.offset = 0;
6316 process_constraint (new_constraint (lhs, rhs));
6317
6318 /* Create the STOREDANYTHING variable, used to represent the set of
6319 variables stored to *ANYTHING. */
6320 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6321 gcc_assert (var_storedanything->id == storedanything_id);
6322 var_storedanything->is_artificial_var = 1;
6323 var_storedanything->offset = 0;
6324 var_storedanything->size = ~0;
6325 var_storedanything->fullsize = ~0;
6326 var_storedanything->is_special_var = 0;
6327
6328 /* Create the INTEGER variable, used to represent that a variable points
6329 to what an INTEGER "points to". */
6330 var_integer = new_var_info (NULL_TREE, "INTEGER");
6331 gcc_assert (var_integer->id == integer_id);
6332 var_integer->is_artificial_var = 1;
6333 var_integer->size = ~0;
6334 var_integer->fullsize = ~0;
6335 var_integer->offset = 0;
6336 var_integer->next = NULL;
6337 var_integer->is_special_var = 1;
6338
6339 /* INTEGER = ANYTHING, because we don't know where a dereference of
6340 a random integer will point to. */
6341 lhs.type = SCALAR;
6342 lhs.var = integer_id;
6343 lhs.offset = 0;
6344 rhs.type = ADDRESSOF;
6345 rhs.var = anything_id;
6346 rhs.offset = 0;
6347 process_constraint (new_constraint (lhs, rhs));
6348 }
6349
6350 /* Initialize things necessary to perform PTA */
6351
6352 static void
6353 init_alias_vars (void)
6354 {
6355 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6356
6357 bitmap_obstack_initialize (&pta_obstack);
6358 bitmap_obstack_initialize (&oldpta_obstack);
6359 bitmap_obstack_initialize (&predbitmap_obstack);
6360
6361 constraint_pool = create_alloc_pool ("Constraint pool",
6362 sizeof (struct constraint), 30);
6363 variable_info_pool = create_alloc_pool ("Variable info pool",
6364 sizeof (struct variable_info), 30);
6365 constraints = VEC_alloc (constraint_t, heap, 8);
6366 varmap = VEC_alloc (varinfo_t, heap, 8);
6367 vi_for_tree = pointer_map_create ();
6368 call_stmt_vars = pointer_map_create ();
6369
6370 memset (&stats, 0, sizeof (stats));
6371 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6372 shared_bitmap_eq, free);
6373 init_base_vars ();
6374 }
6375
6376 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6377 predecessor edges. */
6378
6379 static void
6380 remove_preds_and_fake_succs (constraint_graph_t graph)
6381 {
6382 unsigned int i;
6383
6384 /* Clear the implicit ref and address nodes from the successor
6385 lists. */
6386 for (i = 0; i < FIRST_REF_NODE; i++)
6387 {
6388 if (graph->succs[i])
6389 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6390 FIRST_REF_NODE * 2);
6391 }
6392
6393 /* Free the successor list for the non-ref nodes. */
6394 for (i = FIRST_REF_NODE; i < graph->size; i++)
6395 {
6396 if (graph->succs[i])
6397 BITMAP_FREE (graph->succs[i]);
6398 }
6399
6400 /* Now reallocate the size of the successor list as, and blow away
6401 the predecessor bitmaps. */
6402 graph->size = VEC_length (varinfo_t, varmap);
6403 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6404
6405 free (graph->implicit_preds);
6406 graph->implicit_preds = NULL;
6407 free (graph->preds);
6408 graph->preds = NULL;
6409 bitmap_obstack_release (&predbitmap_obstack);
6410 }
6411
6412 /* Initialize the heapvar for statement mapping. */
6413
6414 static void
6415 init_alias_heapvars (void)
6416 {
6417 if (!heapvar_for_stmt)
6418 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
6419 NULL);
6420 }
6421
6422 /* Delete the heapvar for statement mapping. */
6423
6424 void
6425 delete_alias_heapvars (void)
6426 {
6427 if (heapvar_for_stmt)
6428 htab_delete (heapvar_for_stmt);
6429 heapvar_for_stmt = NULL;
6430 }
6431
6432 /* Solve the constraint set. */
6433
6434 static void
6435 solve_constraints (void)
6436 {
6437 struct scc_info *si;
6438
6439 if (dump_file)
6440 fprintf (dump_file,
6441 "\nCollapsing static cycles and doing variable "
6442 "substitution\n");
6443
6444 init_graph (VEC_length (varinfo_t, varmap) * 2);
6445
6446 if (dump_file)
6447 fprintf (dump_file, "Building predecessor graph\n");
6448 build_pred_graph ();
6449
6450 if (dump_file)
6451 fprintf (dump_file, "Detecting pointer and location "
6452 "equivalences\n");
6453 si = perform_var_substitution (graph);
6454
6455 if (dump_file)
6456 fprintf (dump_file, "Rewriting constraints and unifying "
6457 "variables\n");
6458 rewrite_constraints (graph, si);
6459
6460 build_succ_graph ();
6461 free_var_substitution_info (si);
6462
6463 if (dump_file && (dump_flags & TDF_GRAPH))
6464 dump_constraint_graph (dump_file);
6465
6466 move_complex_constraints (graph);
6467
6468 if (dump_file)
6469 fprintf (dump_file, "Uniting pointer but not location equivalent "
6470 "variables\n");
6471 unite_pointer_equivalences (graph);
6472
6473 if (dump_file)
6474 fprintf (dump_file, "Finding indirect cycles\n");
6475 find_indirect_cycles (graph);
6476
6477 /* Implicit nodes and predecessors are no longer necessary at this
6478 point. */
6479 remove_preds_and_fake_succs (graph);
6480
6481 if (dump_file)
6482 fprintf (dump_file, "Solving graph\n");
6483
6484 solve_graph (graph);
6485
6486 if (dump_file)
6487 dump_sa_points_to_info (dump_file);
6488 }
6489
6490 /* Create points-to sets for the current function. See the comments
6491 at the start of the file for an algorithmic overview. */
6492
6493 static void
6494 compute_points_to_sets (void)
6495 {
6496 basic_block bb;
6497 unsigned i;
6498 varinfo_t vi;
6499
6500 timevar_push (TV_TREE_PTA);
6501
6502 init_alias_vars ();
6503 init_alias_heapvars ();
6504
6505 intra_create_variable_infos ();
6506
6507 /* Now walk all statements and build the constraint set. */
6508 FOR_EACH_BB (bb)
6509 {
6510 gimple_stmt_iterator gsi;
6511
6512 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6513 {
6514 gimple phi = gsi_stmt (gsi);
6515
6516 if (is_gimple_reg (gimple_phi_result (phi)))
6517 find_func_aliases (phi);
6518 }
6519
6520 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6521 {
6522 gimple stmt = gsi_stmt (gsi);
6523
6524 find_func_aliases (stmt);
6525 }
6526 }
6527
6528 if (dump_file)
6529 {
6530 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6531 dump_constraints (dump_file, 0);
6532 }
6533
6534 /* From the constraints compute the points-to sets. */
6535 solve_constraints ();
6536
6537 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6538 find_what_var_points_to (get_varinfo (escaped_id),
6539 &cfun->gimple_df->escaped);
6540
6541 /* Make sure the ESCAPED solution (which is used as placeholder in
6542 other solutions) does not reference itself. This simplifies
6543 points-to solution queries. */
6544 cfun->gimple_df->escaped.escaped = 0;
6545
6546 /* Mark escaped HEAP variables as global. */
6547 FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
6548 if (vi->is_heap_var
6549 && !vi->is_restrict_var
6550 && !vi->is_global_var)
6551 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6552 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6553
6554 /* Compute the points-to sets for pointer SSA_NAMEs. */
6555 for (i = 0; i < num_ssa_names; ++i)
6556 {
6557 tree ptr = ssa_name (i);
6558 if (ptr
6559 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6560 find_what_p_points_to (ptr);
6561 }
6562
6563 /* Compute the call-used/clobbered sets. */
6564 FOR_EACH_BB (bb)
6565 {
6566 gimple_stmt_iterator gsi;
6567
6568 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6569 {
6570 gimple stmt = gsi_stmt (gsi);
6571 struct pt_solution *pt;
6572 if (!is_gimple_call (stmt))
6573 continue;
6574
6575 pt = gimple_call_use_set (stmt);
6576 if (gimple_call_flags (stmt) & ECF_CONST)
6577 memset (pt, 0, sizeof (struct pt_solution));
6578 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6579 {
6580 find_what_var_points_to (vi, pt);
6581 /* Escaped (and thus nonlocal) variables are always
6582 implicitly used by calls. */
6583 /* ??? ESCAPED can be empty even though NONLOCAL
6584 always escaped. */
6585 pt->nonlocal = 1;
6586 pt->escaped = 1;
6587 }
6588 else
6589 {
6590 /* If there is nothing special about this call then
6591 we have made everything that is used also escape. */
6592 *pt = cfun->gimple_df->escaped;
6593 pt->nonlocal = 1;
6594 }
6595
6596 pt = gimple_call_clobber_set (stmt);
6597 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6598 memset (pt, 0, sizeof (struct pt_solution));
6599 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6600 {
6601 find_what_var_points_to (vi, pt);
6602 /* Escaped (and thus nonlocal) variables are always
6603 implicitly clobbered by calls. */
6604 /* ??? ESCAPED can be empty even though NONLOCAL
6605 always escaped. */
6606 pt->nonlocal = 1;
6607 pt->escaped = 1;
6608 }
6609 else
6610 {
6611 /* If there is nothing special about this call then
6612 we have made everything that is used also escape. */
6613 *pt = cfun->gimple_df->escaped;
6614 pt->nonlocal = 1;
6615 }
6616 }
6617 }
6618
6619 timevar_pop (TV_TREE_PTA);
6620 }
6621
6622
6623 /* Delete created points-to sets. */
6624
6625 static void
6626 delete_points_to_sets (void)
6627 {
6628 unsigned int i;
6629
6630 htab_delete (shared_bitmap_table);
6631 if (dump_file && (dump_flags & TDF_STATS))
6632 fprintf (dump_file, "Points to sets created:%d\n",
6633 stats.points_to_sets_created);
6634
6635 pointer_map_destroy (vi_for_tree);
6636 pointer_map_destroy (call_stmt_vars);
6637 bitmap_obstack_release (&pta_obstack);
6638 VEC_free (constraint_t, heap, constraints);
6639
6640 for (i = 0; i < graph->size; i++)
6641 VEC_free (constraint_t, heap, graph->complex[i]);
6642 free (graph->complex);
6643
6644 free (graph->rep);
6645 free (graph->succs);
6646 free (graph->pe);
6647 free (graph->pe_rep);
6648 free (graph->indirect_cycles);
6649 free (graph);
6650
6651 VEC_free (varinfo_t, heap, varmap);
6652 free_alloc_pool (variable_info_pool);
6653 free_alloc_pool (constraint_pool);
6654 }
6655
6656
6657 /* Compute points-to information for every SSA_NAME pointer in the
6658 current function and compute the transitive closure of escaped
6659 variables to re-initialize the call-clobber states of local variables. */
6660
6661 unsigned int
6662 compute_may_aliases (void)
6663 {
6664 if (cfun->gimple_df->ipa_pta)
6665 {
6666 if (dump_file)
6667 {
6668 fprintf (dump_file, "\nNot re-computing points-to information "
6669 "because IPA points-to information is available.\n\n");
6670
6671 /* But still dump what we have remaining it. */
6672 dump_alias_info (dump_file);
6673
6674 if (dump_flags & TDF_DETAILS)
6675 dump_referenced_vars (dump_file);
6676 }
6677
6678 return 0;
6679 }
6680
6681 /* For each pointer P_i, determine the sets of variables that P_i may
6682 point-to. Compute the reachability set of escaped and call-used
6683 variables. */
6684 compute_points_to_sets ();
6685
6686 /* Debugging dumps. */
6687 if (dump_file)
6688 {
6689 dump_alias_info (dump_file);
6690
6691 if (dump_flags & TDF_DETAILS)
6692 dump_referenced_vars (dump_file);
6693 }
6694
6695 /* Deallocate memory used by aliasing data structures and the internal
6696 points-to solution. */
6697 delete_points_to_sets ();
6698
6699 gcc_assert (!need_ssa_update_p (cfun));
6700
6701 return 0;
6702 }
6703
6704 static bool
6705 gate_tree_pta (void)
6706 {
6707 return flag_tree_pta;
6708 }
6709
6710 /* A dummy pass to cause points-to information to be computed via
6711 TODO_rebuild_alias. */
6712
6713 struct gimple_opt_pass pass_build_alias =
6714 {
6715 {
6716 GIMPLE_PASS,
6717 "alias", /* name */
6718 gate_tree_pta, /* gate */
6719 NULL, /* execute */
6720 NULL, /* sub */
6721 NULL, /* next */
6722 0, /* static_pass_number */
6723 TV_NONE, /* tv_id */
6724 PROP_cfg | PROP_ssa, /* properties_required */
6725 0, /* properties_provided */
6726 0, /* properties_destroyed */
6727 0, /* todo_flags_start */
6728 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6729 }
6730 };
6731
6732 /* A dummy pass to cause points-to information to be computed via
6733 TODO_rebuild_alias. */
6734
6735 struct gimple_opt_pass pass_build_ealias =
6736 {
6737 {
6738 GIMPLE_PASS,
6739 "ealias", /* name */
6740 gate_tree_pta, /* gate */
6741 NULL, /* execute */
6742 NULL, /* sub */
6743 NULL, /* next */
6744 0, /* static_pass_number */
6745 TV_NONE, /* tv_id */
6746 PROP_cfg | PROP_ssa, /* properties_required */
6747 0, /* properties_provided */
6748 0, /* properties_destroyed */
6749 0, /* todo_flags_start */
6750 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6751 }
6752 };
6753
6754
6755 /* Return true if we should execute IPA PTA. */
6756 static bool
6757 gate_ipa_pta (void)
6758 {
6759 return (optimize
6760 && flag_ipa_pta
6761 /* Don't bother doing anything if the program has errors. */
6762 && !seen_error ());
6763 }
6764
6765 /* IPA PTA solutions for ESCAPED. */
6766 struct pt_solution ipa_escaped_pt
6767 = { true, false, false, false, false, false, false, NULL };
6768
6769 /* Execute the driver for IPA PTA. */
6770 static unsigned int
6771 ipa_pta_execute (void)
6772 {
6773 struct cgraph_node *node;
6774 struct varpool_node *var;
6775 int from;
6776
6777 in_ipa_mode = 1;
6778
6779 init_alias_heapvars ();
6780 init_alias_vars ();
6781
6782 /* Build the constraints. */
6783 for (node = cgraph_nodes; node; node = node->next)
6784 {
6785 struct cgraph_node *alias;
6786 varinfo_t vi;
6787
6788 /* Nodes without a body are not interesting. Especially do not
6789 visit clones at this point for now - we get duplicate decls
6790 there for inline clones at least. */
6791 if (!gimple_has_body_p (node->decl)
6792 || node->clone_of)
6793 continue;
6794
6795 vi = create_function_info_for (node->decl,
6796 alias_get_name (node->decl));
6797
6798 /* Associate the varinfo node with all aliases. */
6799 for (alias = node->same_body; alias; alias = alias->next)
6800 insert_vi_for_tree (alias->decl, vi);
6801 }
6802
6803 /* Create constraints for global variables and their initializers. */
6804 for (var = varpool_nodes; var; var = var->next)
6805 {
6806 struct varpool_node *alias;
6807 varinfo_t vi;
6808
6809 vi = get_vi_for_tree (var->decl);
6810
6811 /* Associate the varinfo node with all aliases. */
6812 for (alias = var->extra_name; alias; alias = alias->next)
6813 insert_vi_for_tree (alias->decl, vi);
6814 }
6815
6816 if (dump_file)
6817 {
6818 fprintf (dump_file,
6819 "Generating constraints for global initializers\n\n");
6820 dump_constraints (dump_file, 0);
6821 fprintf (dump_file, "\n");
6822 }
6823 from = VEC_length (constraint_t, constraints);
6824
6825 for (node = cgraph_nodes; node; node = node->next)
6826 {
6827 struct function *func;
6828 basic_block bb;
6829 tree old_func_decl;
6830
6831 /* Nodes without a body are not interesting. */
6832 if (!gimple_has_body_p (node->decl)
6833 || node->clone_of)
6834 continue;
6835
6836 if (dump_file)
6837 {
6838 fprintf (dump_file,
6839 "Generating constraints for %s", cgraph_node_name (node));
6840 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6841 fprintf (dump_file, " (%s)",
6842 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6843 fprintf (dump_file, "\n");
6844 }
6845
6846 func = DECL_STRUCT_FUNCTION (node->decl);
6847 old_func_decl = current_function_decl;
6848 push_cfun (func);
6849 current_function_decl = node->decl;
6850
6851 if (node->local.externally_visible)
6852 {
6853 /* For externally visible functions use local constraints for
6854 their arguments. For local functions we see all callers
6855 and thus do not need initial constraints for parameters. */
6856 intra_create_variable_infos ();
6857
6858 /* We also need to make function return values escape. Nothing
6859 escapes by returning from main though. */
6860 if (!MAIN_NAME_P (DECL_NAME (node->decl)))
6861 {
6862 varinfo_t fi, rvi;
6863 fi = lookup_vi_for_tree (node->decl);
6864 rvi = first_vi_for_offset (fi, fi_result);
6865 if (rvi && rvi->offset == fi_result)
6866 {
6867 struct constraint_expr includes;
6868 struct constraint_expr var;
6869 includes.var = escaped_id;
6870 includes.offset = 0;
6871 includes.type = SCALAR;
6872 var.var = rvi->id;
6873 var.offset = 0;
6874 var.type = SCALAR;
6875 process_constraint (new_constraint (includes, var));
6876 }
6877 }
6878 }
6879
6880 /* Build constriants for the function body. */
6881 FOR_EACH_BB_FN (bb, func)
6882 {
6883 gimple_stmt_iterator gsi;
6884
6885 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6886 gsi_next (&gsi))
6887 {
6888 gimple phi = gsi_stmt (gsi);
6889
6890 if (is_gimple_reg (gimple_phi_result (phi)))
6891 find_func_aliases (phi);
6892 }
6893
6894 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6895 {
6896 gimple stmt = gsi_stmt (gsi);
6897
6898 find_func_aliases (stmt);
6899 find_func_clobbers (stmt);
6900 }
6901 }
6902
6903 current_function_decl = old_func_decl;
6904 pop_cfun ();
6905
6906 if (dump_file)
6907 {
6908 fprintf (dump_file, "\n");
6909 dump_constraints (dump_file, from);
6910 fprintf (dump_file, "\n");
6911 }
6912 from = VEC_length (constraint_t, constraints);
6913 }
6914
6915 /* From the constraints compute the points-to sets. */
6916 solve_constraints ();
6917
6918 /* Compute the global points-to sets for ESCAPED.
6919 ??? Note that the computed escape set is not correct
6920 for the whole unit as we fail to consider graph edges to
6921 externally visible functions. */
6922 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6923
6924 /* Make sure the ESCAPED solution (which is used as placeholder in
6925 other solutions) does not reference itself. This simplifies
6926 points-to solution queries. */
6927 ipa_escaped_pt.ipa_escaped = 0;
6928
6929 /* Assign the points-to sets to the SSA names in the unit. */
6930 for (node = cgraph_nodes; node; node = node->next)
6931 {
6932 tree ptr;
6933 struct function *fn;
6934 unsigned i;
6935 varinfo_t fi;
6936 basic_block bb;
6937 struct pt_solution uses, clobbers;
6938 struct cgraph_edge *e;
6939
6940 /* Nodes without a body are not interesting. */
6941 if (!gimple_has_body_p (node->decl)
6942 || node->clone_of)
6943 continue;
6944
6945 fn = DECL_STRUCT_FUNCTION (node->decl);
6946
6947 /* Compute the points-to sets for pointer SSA_NAMEs. */
6948 FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
6949 {
6950 if (ptr
6951 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6952 find_what_p_points_to (ptr);
6953 }
6954
6955 /* Compute the call-use and call-clobber sets for all direct calls. */
6956 fi = lookup_vi_for_tree (node->decl);
6957 gcc_assert (fi->is_fn_info);
6958 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6959 &clobbers);
6960 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6961 for (e = node->callers; e; e = e->next_caller)
6962 {
6963 if (!e->call_stmt)
6964 continue;
6965
6966 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6967 *gimple_call_use_set (e->call_stmt) = uses;
6968 }
6969
6970 /* Compute the call-use and call-clobber sets for indirect calls
6971 and calls to external functions. */
6972 FOR_EACH_BB_FN (bb, fn)
6973 {
6974 gimple_stmt_iterator gsi;
6975
6976 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6977 {
6978 gimple stmt = gsi_stmt (gsi);
6979 struct pt_solution *pt;
6980 varinfo_t vi;
6981 tree decl;
6982
6983 if (!is_gimple_call (stmt))
6984 continue;
6985
6986 /* Handle direct calls to external functions. */
6987 decl = gimple_call_fndecl (stmt);
6988 if (decl
6989 && (!(fi = lookup_vi_for_tree (decl))
6990 || !fi->is_fn_info))
6991 {
6992 pt = gimple_call_use_set (stmt);
6993 if (gimple_call_flags (stmt) & ECF_CONST)
6994 memset (pt, 0, sizeof (struct pt_solution));
6995 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6996 {
6997 find_what_var_points_to (vi, pt);
6998 /* Escaped (and thus nonlocal) variables are always
6999 implicitly used by calls. */
7000 /* ??? ESCAPED can be empty even though NONLOCAL
7001 always escaped. */
7002 pt->nonlocal = 1;
7003 pt->ipa_escaped = 1;
7004 }
7005 else
7006 {
7007 /* If there is nothing special about this call then
7008 we have made everything that is used also escape. */
7009 *pt = ipa_escaped_pt;
7010 pt->nonlocal = 1;
7011 }
7012
7013 pt = gimple_call_clobber_set (stmt);
7014 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7015 memset (pt, 0, sizeof (struct pt_solution));
7016 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7017 {
7018 find_what_var_points_to (vi, pt);
7019 /* Escaped (and thus nonlocal) variables are always
7020 implicitly clobbered by calls. */
7021 /* ??? ESCAPED can be empty even though NONLOCAL
7022 always escaped. */
7023 pt->nonlocal = 1;
7024 pt->ipa_escaped = 1;
7025 }
7026 else
7027 {
7028 /* If there is nothing special about this call then
7029 we have made everything that is used also escape. */
7030 *pt = ipa_escaped_pt;
7031 pt->nonlocal = 1;
7032 }
7033 }
7034
7035 /* Handle indirect calls. */
7036 if (!decl
7037 && (fi = get_fi_for_callee (stmt)))
7038 {
7039 /* We need to accumulate all clobbers/uses of all possible
7040 callees. */
7041 fi = get_varinfo (find (fi->id));
7042 /* If we cannot constrain the set of functions we'll end up
7043 calling we end up using/clobbering everything. */
7044 if (bitmap_bit_p (fi->solution, anything_id)
7045 || bitmap_bit_p (fi->solution, nonlocal_id)
7046 || bitmap_bit_p (fi->solution, escaped_id))
7047 {
7048 pt_solution_reset (gimple_call_clobber_set (stmt));
7049 pt_solution_reset (gimple_call_use_set (stmt));
7050 }
7051 else
7052 {
7053 bitmap_iterator bi;
7054 unsigned i;
7055 struct pt_solution *uses, *clobbers;
7056
7057 uses = gimple_call_use_set (stmt);
7058 clobbers = gimple_call_clobber_set (stmt);
7059 memset (uses, 0, sizeof (struct pt_solution));
7060 memset (clobbers, 0, sizeof (struct pt_solution));
7061 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7062 {
7063 struct pt_solution sol;
7064
7065 vi = get_varinfo (i);
7066 if (!vi->is_fn_info)
7067 {
7068 /* ??? We could be more precise here? */
7069 uses->nonlocal = 1;
7070 uses->ipa_escaped = 1;
7071 clobbers->nonlocal = 1;
7072 clobbers->ipa_escaped = 1;
7073 continue;
7074 }
7075
7076 if (!uses->anything)
7077 {
7078 find_what_var_points_to
7079 (first_vi_for_offset (vi, fi_uses), &sol);
7080 pt_solution_ior_into (uses, &sol);
7081 }
7082 if (!clobbers->anything)
7083 {
7084 find_what_var_points_to
7085 (first_vi_for_offset (vi, fi_clobbers), &sol);
7086 pt_solution_ior_into (clobbers, &sol);
7087 }
7088 }
7089 }
7090 }
7091 }
7092 }
7093
7094 fn->gimple_df->ipa_pta = true;
7095 }
7096
7097 delete_points_to_sets ();
7098
7099 in_ipa_mode = 0;
7100
7101 return 0;
7102 }
7103
7104 struct simple_ipa_opt_pass pass_ipa_pta =
7105 {
7106 {
7107 SIMPLE_IPA_PASS,
7108 "pta", /* name */
7109 gate_ipa_pta, /* gate */
7110 ipa_pta_execute, /* execute */
7111 NULL, /* sub */
7112 NULL, /* next */
7113 0, /* static_pass_number */
7114 TV_IPA_PTA, /* tv_id */
7115 0, /* properties_required */
7116 0, /* properties_provided */
7117 0, /* properties_destroyed */
7118 0, /* todo_flags_start */
7119 TODO_update_ssa /* todo_flags_finish */
7120 }
7121 };
7122
7123
7124 #include "gt-tree-ssa-structalias.h"