]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-structalias.c
* tree-vrp.c (debug_value_range, debug_all_value_ranges,
[thirdparty/gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "diagnostic.h"
36 #include "toplev.h"
37 #include "gimple.h"
38 #include "hashtab.h"
39 #include "function.h"
40 #include "cgraph.h"
41 #include "tree-pass.h"
42 #include "timevar.h"
43 #include "alloc-pool.h"
44 #include "splay-tree.h"
45 #include "params.h"
46 #include "cgraph.h"
47 #include "alias.h"
48 #include "pointer-set.h"
49
50 /* The idea behind this analyzer is to generate set constraints from the
51 program, then solve the resulting constraints in order to generate the
52 points-to sets.
53
54 Set constraints are a way of modeling program analysis problems that
55 involve sets. They consist of an inclusion constraint language,
56 describing the variables (each variable is a set) and operations that
57 are involved on the variables, and a set of rules that derive facts
58 from these operations. To solve a system of set constraints, you derive
59 all possible facts under the rules, which gives you the correct sets
60 as a consequence.
61
62 See "Efficient Field-sensitive pointer analysis for C" by "David
63 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
64 http://citeseer.ist.psu.edu/pearce04efficient.html
65
66 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
67 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
68 http://citeseer.ist.psu.edu/heintze01ultrafast.html
69
70 There are three types of real constraint expressions, DEREF,
71 ADDRESSOF, and SCALAR. Each constraint expression consists
72 of a constraint type, a variable, and an offset.
73
74 SCALAR is a constraint expression type used to represent x, whether
75 it appears on the LHS or the RHS of a statement.
76 DEREF is a constraint expression type used to represent *x, whether
77 it appears on the LHS or the RHS of a statement.
78 ADDRESSOF is a constraint expression used to represent &x, whether
79 it appears on the LHS or the RHS of a statement.
80
81 Each pointer variable in the program is assigned an integer id, and
82 each field of a structure variable is assigned an integer id as well.
83
84 Structure variables are linked to their list of fields through a "next
85 field" in each variable that points to the next field in offset
86 order.
87 Each variable for a structure field has
88
89 1. "size", that tells the size in bits of that field.
90 2. "fullsize, that tells the size in bits of the entire structure.
91 3. "offset", that tells the offset in bits from the beginning of the
92 structure to this field.
93
94 Thus,
95 struct f
96 {
97 int a;
98 int b;
99 } foo;
100 int *bar;
101
102 looks like
103
104 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
105 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
106 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
107
108
109 In order to solve the system of set constraints, the following is
110 done:
111
112 1. Each constraint variable x has a solution set associated with it,
113 Sol(x).
114
115 2. Constraints are separated into direct, copy, and complex.
116 Direct constraints are ADDRESSOF constraints that require no extra
117 processing, such as P = &Q
118 Copy constraints are those of the form P = Q.
119 Complex constraints are all the constraints involving dereferences
120 and offsets (including offsetted copies).
121
122 3. All direct constraints of the form P = &Q are processed, such
123 that Q is added to Sol(P)
124
125 4. All complex constraints for a given constraint variable are stored in a
126 linked list attached to that variable's node.
127
128 5. A directed graph is built out of the copy constraints. Each
129 constraint variable is a node in the graph, and an edge from
130 Q to P is added for each copy constraint of the form P = Q
131
132 6. The graph is then walked, and solution sets are
133 propagated along the copy edges, such that an edge from Q to P
134 causes Sol(P) <- Sol(P) union Sol(Q).
135
136 7. As we visit each node, all complex constraints associated with
137 that node are processed by adding appropriate copy edges to the graph, or the
138 appropriate variables to the solution set.
139
140 8. The process of walking the graph is iterated until no solution
141 sets change.
142
143 Prior to walking the graph in steps 6 and 7, We perform static
144 cycle elimination on the constraint graph, as well
145 as off-line variable substitution.
146
147 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
148 on and turned into anything), but isn't. You can just see what offset
149 inside the pointed-to struct it's going to access.
150
151 TODO: Constant bounded arrays can be handled as if they were structs of the
152 same number of elements.
153
154 TODO: Modeling heap and incoming pointers becomes much better if we
155 add fields to them as we discover them, which we could do.
156
157 TODO: We could handle unions, but to be honest, it's probably not
158 worth the pain or slowdown. */
159
160 /* IPA-PTA optimizations possible.
161
162 When the indirect function called is ANYTHING we can add disambiguation
163 based on the function signatures (or simply the parameter count which
164 is the varinfo size). We also do not need to consider functions that
165 do not have their address taken.
166
167 The is_global_var bit which marks escape points is overly conservative
168 in IPA mode. Split it to is_escape_point and is_global_var - only
169 externally visible globals are escape points in IPA mode. This is
170 also needed to fix the pt_solution_includes_global predicate
171 (and thus ptr_deref_may_alias_global_p).
172
173 The way we introduce DECL_PT_UID to avoid fixing up all points-to
174 sets in the translation unit when we copy a DECL during inlining
175 pessimizes precision. The advantage is that the DECL_PT_UID keeps
176 compile-time and memory usage overhead low - the points-to sets
177 do not grow or get unshared as they would during a fixup phase.
178 An alternative solution is to delay IPA PTA until after all
179 inlining transformations have been applied.
180
181 The way we propagate clobber/use information isn't optimized.
182 It should use a new complex constraint that properly filters
183 out local variables of the callee (though that would make
184 the sets invalid after inlining). OTOH we might as well
185 admit defeat to WHOPR and simply do all the clobber/use analysis
186 and propagation after PTA finished but before we threw away
187 points-to information for memory variables. WHOPR and PTA
188 do not play along well anyway - the whole constraint solving
189 would need to be done in WPA phase and it will be very interesting
190 to apply the results to local SSA names during LTRANS phase.
191
192 We probably should compute a per-function unit-ESCAPE solution
193 propagating it simply like the clobber / uses solutions. The
194 solution can go alongside the non-IPA espaced solution and be
195 used to query which vars escape the unit through a function.
196
197 We never put function decls in points-to sets so we do not
198 keep the set of called functions for indirect calls.
199
200 And probably more. */
201
202 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
203 htab_t heapvar_for_stmt;
204
205 static bool use_field_sensitive = true;
206 static int in_ipa_mode = 0;
207
208 /* Used for predecessor bitmaps. */
209 static bitmap_obstack predbitmap_obstack;
210
211 /* Used for points-to sets. */
212 static bitmap_obstack pta_obstack;
213
214 /* Used for oldsolution members of variables. */
215 static bitmap_obstack oldpta_obstack;
216
217 /* Used for per-solver-iteration bitmaps. */
218 static bitmap_obstack iteration_obstack;
219
220 static unsigned int create_variable_info_for (tree, const char *);
221 typedef struct constraint_graph *constraint_graph_t;
222 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
223
224 struct constraint;
225 typedef struct constraint *constraint_t;
226
227 DEF_VEC_P(constraint_t);
228 DEF_VEC_ALLOC_P(constraint_t,heap);
229
230 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
231 if (a) \
232 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
233
234 static struct constraint_stats
235 {
236 unsigned int total_vars;
237 unsigned int nonpointer_vars;
238 unsigned int unified_vars_static;
239 unsigned int unified_vars_dynamic;
240 unsigned int iterations;
241 unsigned int num_edges;
242 unsigned int num_implicit_edges;
243 unsigned int points_to_sets_created;
244 } stats;
245
246 struct variable_info
247 {
248 /* ID of this variable */
249 unsigned int id;
250
251 /* True if this is a variable created by the constraint analysis, such as
252 heap variables and constraints we had to break up. */
253 unsigned int is_artificial_var : 1;
254
255 /* True if this is a special variable whose solution set should not be
256 changed. */
257 unsigned int is_special_var : 1;
258
259 /* True for variables whose size is not known or variable. */
260 unsigned int is_unknown_size_var : 1;
261
262 /* True for (sub-)fields that represent a whole variable. */
263 unsigned int is_full_var : 1;
264
265 /* True if this is a heap variable. */
266 unsigned int is_heap_var : 1;
267
268 /* True if this is a variable tracking a restrict pointer source. */
269 unsigned int is_restrict_var : 1;
270
271 /* True if this field may contain pointers. */
272 unsigned int may_have_pointers : 1;
273
274 /* True if this field has only restrict qualified pointers. */
275 unsigned int only_restrict_pointers : 1;
276
277 /* True if this represents a global variable. */
278 unsigned int is_global_var : 1;
279
280 /* True if this represents a IPA function info. */
281 unsigned int is_fn_info : 1;
282
283 /* A link to the variable for the next field in this structure. */
284 struct variable_info *next;
285
286 /* Offset of this variable, in bits, from the base variable */
287 unsigned HOST_WIDE_INT offset;
288
289 /* Size of the variable, in bits. */
290 unsigned HOST_WIDE_INT size;
291
292 /* Full size of the base variable, in bits. */
293 unsigned HOST_WIDE_INT fullsize;
294
295 /* Name of this variable */
296 const char *name;
297
298 /* Tree that this variable is associated with. */
299 tree decl;
300
301 /* Points-to set for this variable. */
302 bitmap solution;
303
304 /* Old points-to set for this variable. */
305 bitmap oldsolution;
306 };
307 typedef struct variable_info *varinfo_t;
308
309 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
310 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
311 unsigned HOST_WIDE_INT);
312 static varinfo_t lookup_vi_for_tree (tree);
313
314 /* Pool of variable info structures. */
315 static alloc_pool variable_info_pool;
316
317 DEF_VEC_P(varinfo_t);
318
319 DEF_VEC_ALLOC_P(varinfo_t, heap);
320
321 /* Table of variable info structures for constraint variables.
322 Indexed directly by variable info id. */
323 static VEC(varinfo_t,heap) *varmap;
324
325 /* Return the varmap element N */
326
327 static inline varinfo_t
328 get_varinfo (unsigned int n)
329 {
330 return VEC_index (varinfo_t, varmap, n);
331 }
332
333 /* Static IDs for the special variables. */
334 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
335 escaped_id = 3, nonlocal_id = 4,
336 storedanything_id = 5, integer_id = 6 };
337
338 struct GTY(()) heapvar_map {
339 struct tree_map map;
340 unsigned HOST_WIDE_INT offset;
341 };
342
343 static int
344 heapvar_map_eq (const void *p1, const void *p2)
345 {
346 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
347 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
348 return (h1->map.base.from == h2->map.base.from
349 && h1->offset == h2->offset);
350 }
351
352 static unsigned int
353 heapvar_map_hash (struct heapvar_map *h)
354 {
355 return iterative_hash_host_wide_int (h->offset,
356 htab_hash_pointer (h->map.base.from));
357 }
358
359 /* Lookup a heap var for FROM, and return it if we find one. */
360
361 static tree
362 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
363 {
364 struct heapvar_map *h, in;
365 in.map.base.from = from;
366 in.offset = offset;
367 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
368 heapvar_map_hash (&in));
369 if (h)
370 return h->map.to;
371 return NULL_TREE;
372 }
373
374 /* Insert a mapping FROM->TO in the heap var for statement
375 hashtable. */
376
377 static void
378 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
379 {
380 struct heapvar_map *h;
381 void **loc;
382
383 h = GGC_NEW (struct heapvar_map);
384 h->map.base.from = from;
385 h->offset = offset;
386 h->map.hash = heapvar_map_hash (h);
387 h->map.to = to;
388 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
389 gcc_assert (*loc == NULL);
390 *(struct heapvar_map **) loc = h;
391 }
392
393 /* Return a new variable info structure consisting for a variable
394 named NAME, and using constraint graph node NODE. Append it
395 to the vector of variable info structures. */
396
397 static varinfo_t
398 new_var_info (tree t, const char *name)
399 {
400 unsigned index = VEC_length (varinfo_t, varmap);
401 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
402
403 ret->id = index;
404 ret->name = name;
405 ret->decl = t;
406 /* Vars without decl are artificial and do not have sub-variables. */
407 ret->is_artificial_var = (t == NULL_TREE);
408 ret->is_special_var = false;
409 ret->is_unknown_size_var = false;
410 ret->is_full_var = (t == NULL_TREE);
411 ret->is_heap_var = false;
412 ret->is_restrict_var = false;
413 ret->may_have_pointers = true;
414 ret->only_restrict_pointers = false;
415 ret->is_global_var = (t == NULL_TREE);
416 ret->is_fn_info = false;
417 if (t && DECL_P (t))
418 ret->is_global_var = is_global_var (t);
419 ret->solution = BITMAP_ALLOC (&pta_obstack);
420 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
421 ret->next = NULL;
422
423 stats.total_vars++;
424
425 VEC_safe_push (varinfo_t, heap, varmap, ret);
426
427 return ret;
428 }
429
430
431 /* A map mapping call statements to per-stmt variables for uses
432 and clobbers specific to the call. */
433 struct pointer_map_t *call_stmt_vars;
434
435 /* Lookup or create the variable for the call statement CALL. */
436
437 static varinfo_t
438 get_call_vi (gimple call)
439 {
440 void **slot_p;
441 varinfo_t vi, vi2;
442
443 slot_p = pointer_map_insert (call_stmt_vars, call);
444 if (*slot_p)
445 return (varinfo_t) *slot_p;
446
447 vi = new_var_info (NULL_TREE, "CALLUSED");
448 vi->offset = 0;
449 vi->size = 1;
450 vi->fullsize = 2;
451 vi->is_full_var = true;
452
453 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
454 vi2->offset = 1;
455 vi2->size = 1;
456 vi2->fullsize = 2;
457 vi2->is_full_var = true;
458
459 *slot_p = (void *) vi;
460 return vi;
461 }
462
463 /* Lookup the variable for the call statement CALL representing
464 the uses. Returns NULL if there is nothing special about this call. */
465
466 static varinfo_t
467 lookup_call_use_vi (gimple call)
468 {
469 void **slot_p;
470
471 slot_p = pointer_map_contains (call_stmt_vars, call);
472 if (slot_p)
473 return (varinfo_t) *slot_p;
474
475 return NULL;
476 }
477
478 /* Lookup the variable for the call statement CALL representing
479 the clobbers. Returns NULL if there is nothing special about this call. */
480
481 static varinfo_t
482 lookup_call_clobber_vi (gimple call)
483 {
484 varinfo_t uses = lookup_call_use_vi (call);
485 if (!uses)
486 return NULL;
487
488 return uses->next;
489 }
490
491 /* Lookup or create the variable for the call statement CALL representing
492 the uses. */
493
494 static varinfo_t
495 get_call_use_vi (gimple call)
496 {
497 return get_call_vi (call);
498 }
499
500 /* Lookup or create the variable for the call statement CALL representing
501 the clobbers. */
502
503 static varinfo_t ATTRIBUTE_UNUSED
504 get_call_clobber_vi (gimple call)
505 {
506 return get_call_vi (call)->next;
507 }
508
509
510 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
511
512 /* An expression that appears in a constraint. */
513
514 struct constraint_expr
515 {
516 /* Constraint type. */
517 constraint_expr_type type;
518
519 /* Variable we are referring to in the constraint. */
520 unsigned int var;
521
522 /* Offset, in bits, of this constraint from the beginning of
523 variables it ends up referring to.
524
525 IOW, in a deref constraint, we would deref, get the result set,
526 then add OFFSET to each member. */
527 HOST_WIDE_INT offset;
528 };
529
530 /* Use 0x8000... as special unknown offset. */
531 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
532
533 typedef struct constraint_expr ce_s;
534 DEF_VEC_O(ce_s);
535 DEF_VEC_ALLOC_O(ce_s, heap);
536 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
537 static void get_constraint_for (tree, VEC(ce_s, heap) **);
538 static void do_deref (VEC (ce_s, heap) **);
539
540 /* Our set constraints are made up of two constraint expressions, one
541 LHS, and one RHS.
542
543 As described in the introduction, our set constraints each represent an
544 operation between set valued variables.
545 */
546 struct constraint
547 {
548 struct constraint_expr lhs;
549 struct constraint_expr rhs;
550 };
551
552 /* List of constraints that we use to build the constraint graph from. */
553
554 static VEC(constraint_t,heap) *constraints;
555 static alloc_pool constraint_pool;
556
557 /* The constraint graph is represented as an array of bitmaps
558 containing successor nodes. */
559
560 struct constraint_graph
561 {
562 /* Size of this graph, which may be different than the number of
563 nodes in the variable map. */
564 unsigned int size;
565
566 /* Explicit successors of each node. */
567 bitmap *succs;
568
569 /* Implicit predecessors of each node (Used for variable
570 substitution). */
571 bitmap *implicit_preds;
572
573 /* Explicit predecessors of each node (Used for variable substitution). */
574 bitmap *preds;
575
576 /* Indirect cycle representatives, or -1 if the node has no indirect
577 cycles. */
578 int *indirect_cycles;
579
580 /* Representative node for a node. rep[a] == a unless the node has
581 been unified. */
582 unsigned int *rep;
583
584 /* Equivalence class representative for a label. This is used for
585 variable substitution. */
586 int *eq_rep;
587
588 /* Pointer equivalence label for a node. All nodes with the same
589 pointer equivalence label can be unified together at some point
590 (either during constraint optimization or after the constraint
591 graph is built). */
592 unsigned int *pe;
593
594 /* Pointer equivalence representative for a label. This is used to
595 handle nodes that are pointer equivalent but not location
596 equivalent. We can unite these once the addressof constraints
597 are transformed into initial points-to sets. */
598 int *pe_rep;
599
600 /* Pointer equivalence label for each node, used during variable
601 substitution. */
602 unsigned int *pointer_label;
603
604 /* Location equivalence label for each node, used during location
605 equivalence finding. */
606 unsigned int *loc_label;
607
608 /* Pointed-by set for each node, used during location equivalence
609 finding. This is pointed-by rather than pointed-to, because it
610 is constructed using the predecessor graph. */
611 bitmap *pointed_by;
612
613 /* Points to sets for pointer equivalence. This is *not* the actual
614 points-to sets for nodes. */
615 bitmap *points_to;
616
617 /* Bitmap of nodes where the bit is set if the node is a direct
618 node. Used for variable substitution. */
619 sbitmap direct_nodes;
620
621 /* Bitmap of nodes where the bit is set if the node is address
622 taken. Used for variable substitution. */
623 bitmap address_taken;
624
625 /* Vector of complex constraints for each graph node. Complex
626 constraints are those involving dereferences or offsets that are
627 not 0. */
628 VEC(constraint_t,heap) **complex;
629 };
630
631 static constraint_graph_t graph;
632
633 /* During variable substitution and the offline version of indirect
634 cycle finding, we create nodes to represent dereferences and
635 address taken constraints. These represent where these start and
636 end. */
637 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
638 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
639
640 /* Return the representative node for NODE, if NODE has been unioned
641 with another NODE.
642 This function performs path compression along the way to finding
643 the representative. */
644
645 static unsigned int
646 find (unsigned int node)
647 {
648 gcc_assert (node < graph->size);
649 if (graph->rep[node] != node)
650 return graph->rep[node] = find (graph->rep[node]);
651 return node;
652 }
653
654 /* Union the TO and FROM nodes to the TO nodes.
655 Note that at some point in the future, we may want to do
656 union-by-rank, in which case we are going to have to return the
657 node we unified to. */
658
659 static bool
660 unite (unsigned int to, unsigned int from)
661 {
662 gcc_assert (to < graph->size && from < graph->size);
663 if (to != from && graph->rep[from] != to)
664 {
665 graph->rep[from] = to;
666 return true;
667 }
668 return false;
669 }
670
671 /* Create a new constraint consisting of LHS and RHS expressions. */
672
673 static constraint_t
674 new_constraint (const struct constraint_expr lhs,
675 const struct constraint_expr rhs)
676 {
677 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
678 ret->lhs = lhs;
679 ret->rhs = rhs;
680 return ret;
681 }
682
683 /* Print out constraint C to FILE. */
684
685 static void
686 dump_constraint (FILE *file, constraint_t c)
687 {
688 if (c->lhs.type == ADDRESSOF)
689 fprintf (file, "&");
690 else if (c->lhs.type == DEREF)
691 fprintf (file, "*");
692 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
693 if (c->lhs.offset == UNKNOWN_OFFSET)
694 fprintf (file, " + UNKNOWN");
695 else if (c->lhs.offset != 0)
696 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
697 fprintf (file, " = ");
698 if (c->rhs.type == ADDRESSOF)
699 fprintf (file, "&");
700 else if (c->rhs.type == DEREF)
701 fprintf (file, "*");
702 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
703 if (c->rhs.offset == UNKNOWN_OFFSET)
704 fprintf (file, " + UNKNOWN");
705 else if (c->rhs.offset != 0)
706 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
707 fprintf (file, "\n");
708 }
709
710
711 void debug_constraint (constraint_t);
712 void debug_constraints (void);
713 void debug_constraint_graph (void);
714 void debug_solution_for_var (unsigned int);
715 void debug_sa_points_to_info (void);
716
717 /* Print out constraint C to stderr. */
718
719 DEBUG_FUNCTION void
720 debug_constraint (constraint_t c)
721 {
722 dump_constraint (stderr, c);
723 }
724
725 /* Print out all constraints to FILE */
726
727 static void
728 dump_constraints (FILE *file, int from)
729 {
730 int i;
731 constraint_t c;
732 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
733 dump_constraint (file, c);
734 }
735
736 /* Print out all constraints to stderr. */
737
738 DEBUG_FUNCTION void
739 debug_constraints (void)
740 {
741 dump_constraints (stderr, 0);
742 }
743
744 /* Print out to FILE the edge in the constraint graph that is created by
745 constraint c. The edge may have a label, depending on the type of
746 constraint that it represents. If complex1, e.g: a = *b, then the label
747 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
748 complex with an offset, e.g: a = b + 8, then the label is "+".
749 Otherwise the edge has no label. */
750
751 static void
752 dump_constraint_edge (FILE *file, constraint_t c)
753 {
754 if (c->rhs.type != ADDRESSOF)
755 {
756 const char *src = get_varinfo (c->rhs.var)->name;
757 const char *dst = get_varinfo (c->lhs.var)->name;
758 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
759 /* Due to preprocessing of constraints, instructions like *a = *b are
760 illegal; thus, we do not have to handle such cases. */
761 if (c->lhs.type == DEREF)
762 fprintf (file, " [ label=\"*=\" ] ;\n");
763 else if (c->rhs.type == DEREF)
764 fprintf (file, " [ label=\"=*\" ] ;\n");
765 else
766 {
767 /* We must check the case where the constraint is an offset.
768 In this case, it is treated as a complex constraint. */
769 if (c->rhs.offset != c->lhs.offset)
770 fprintf (file, " [ label=\"+\" ] ;\n");
771 else
772 fprintf (file, " ;\n");
773 }
774 }
775 }
776
777 /* Print the constraint graph in dot format. */
778
779 static void
780 dump_constraint_graph (FILE *file)
781 {
782 unsigned int i=0, size;
783 constraint_t c;
784
785 /* Only print the graph if it has already been initialized: */
786 if (!graph)
787 return;
788
789 /* Print the constraints used to produce the constraint graph. The
790 constraints will be printed as comments in the dot file: */
791 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
792 dump_constraints (file, 0);
793 fprintf (file, "*/\n");
794
795 /* Prints the header of the dot file: */
796 fprintf (file, "\n\n// The constraint graph in dot format:\n");
797 fprintf (file, "strict digraph {\n");
798 fprintf (file, " node [\n shape = box\n ]\n");
799 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
800 fprintf (file, "\n // List of nodes in the constraint graph:\n");
801
802 /* The next lines print the nodes in the graph. In order to get the
803 number of nodes in the graph, we must choose the minimum between the
804 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
805 yet been initialized, then graph->size == 0, otherwise we must only
806 read nodes that have an entry in VEC (varinfo_t, varmap). */
807 size = VEC_length (varinfo_t, varmap);
808 size = size < graph->size ? size : graph->size;
809 for (i = 0; i < size; i++)
810 {
811 const char *name = get_varinfo (graph->rep[i])->name;
812 fprintf (file, " \"%s\" ;\n", name);
813 }
814
815 /* Go over the list of constraints printing the edges in the constraint
816 graph. */
817 fprintf (file, "\n // The constraint edges:\n");
818 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
819 if (c)
820 dump_constraint_edge (file, c);
821
822 /* Prints the tail of the dot file. By now, only the closing bracket. */
823 fprintf (file, "}\n\n\n");
824 }
825
826 /* Print out the constraint graph to stderr. */
827
828 DEBUG_FUNCTION void
829 debug_constraint_graph (void)
830 {
831 dump_constraint_graph (stderr);
832 }
833
834 /* SOLVER FUNCTIONS
835
836 The solver is a simple worklist solver, that works on the following
837 algorithm:
838
839 sbitmap changed_nodes = all zeroes;
840 changed_count = 0;
841 For each node that is not already collapsed:
842 changed_count++;
843 set bit in changed nodes
844
845 while (changed_count > 0)
846 {
847 compute topological ordering for constraint graph
848
849 find and collapse cycles in the constraint graph (updating
850 changed if necessary)
851
852 for each node (n) in the graph in topological order:
853 changed_count--;
854
855 Process each complex constraint associated with the node,
856 updating changed if necessary.
857
858 For each outgoing edge from n, propagate the solution from n to
859 the destination of the edge, updating changed as necessary.
860
861 } */
862
863 /* Return true if two constraint expressions A and B are equal. */
864
865 static bool
866 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
867 {
868 return a.type == b.type && a.var == b.var && a.offset == b.offset;
869 }
870
871 /* Return true if constraint expression A is less than constraint expression
872 B. This is just arbitrary, but consistent, in order to give them an
873 ordering. */
874
875 static bool
876 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
877 {
878 if (a.type == b.type)
879 {
880 if (a.var == b.var)
881 return a.offset < b.offset;
882 else
883 return a.var < b.var;
884 }
885 else
886 return a.type < b.type;
887 }
888
889 /* Return true if constraint A is less than constraint B. This is just
890 arbitrary, but consistent, in order to give them an ordering. */
891
892 static bool
893 constraint_less (const constraint_t a, const constraint_t b)
894 {
895 if (constraint_expr_less (a->lhs, b->lhs))
896 return true;
897 else if (constraint_expr_less (b->lhs, a->lhs))
898 return false;
899 else
900 return constraint_expr_less (a->rhs, b->rhs);
901 }
902
903 /* Return true if two constraints A and B are equal. */
904
905 static bool
906 constraint_equal (struct constraint a, struct constraint b)
907 {
908 return constraint_expr_equal (a.lhs, b.lhs)
909 && constraint_expr_equal (a.rhs, b.rhs);
910 }
911
912
913 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
914
915 static constraint_t
916 constraint_vec_find (VEC(constraint_t,heap) *vec,
917 struct constraint lookfor)
918 {
919 unsigned int place;
920 constraint_t found;
921
922 if (vec == NULL)
923 return NULL;
924
925 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
926 if (place >= VEC_length (constraint_t, vec))
927 return NULL;
928 found = VEC_index (constraint_t, vec, place);
929 if (!constraint_equal (*found, lookfor))
930 return NULL;
931 return found;
932 }
933
934 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
935
936 static void
937 constraint_set_union (VEC(constraint_t,heap) **to,
938 VEC(constraint_t,heap) **from)
939 {
940 int i;
941 constraint_t c;
942
943 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
944 {
945 if (constraint_vec_find (*to, *c) == NULL)
946 {
947 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
948 constraint_less);
949 VEC_safe_insert (constraint_t, heap, *to, place, c);
950 }
951 }
952 }
953
954 /* Expands the solution in SET to all sub-fields of variables included.
955 Union the expanded result into RESULT. */
956
957 static void
958 solution_set_expand (bitmap result, bitmap set)
959 {
960 bitmap_iterator bi;
961 bitmap vars = NULL;
962 unsigned j;
963
964 /* In a first pass record all variables we need to add all
965 sub-fields off. This avoids quadratic behavior. */
966 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
967 {
968 varinfo_t v = get_varinfo (j);
969 if (v->is_artificial_var
970 || v->is_full_var)
971 continue;
972 v = lookup_vi_for_tree (v->decl);
973 if (vars == NULL)
974 vars = BITMAP_ALLOC (NULL);
975 bitmap_set_bit (vars, v->id);
976 }
977
978 /* In the second pass now do the addition to the solution and
979 to speed up solving add it to the delta as well. */
980 if (vars != NULL)
981 {
982 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
983 {
984 varinfo_t v = get_varinfo (j);
985 for (; v != NULL; v = v->next)
986 bitmap_set_bit (result, v->id);
987 }
988 BITMAP_FREE (vars);
989 }
990 }
991
992 /* Take a solution set SET, add OFFSET to each member of the set, and
993 overwrite SET with the result when done. */
994
995 static void
996 solution_set_add (bitmap set, HOST_WIDE_INT offset)
997 {
998 bitmap result = BITMAP_ALLOC (&iteration_obstack);
999 unsigned int i;
1000 bitmap_iterator bi;
1001
1002 /* If the offset is unknown we have to expand the solution to
1003 all subfields. */
1004 if (offset == UNKNOWN_OFFSET)
1005 {
1006 solution_set_expand (set, set);
1007 return;
1008 }
1009
1010 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1011 {
1012 varinfo_t vi = get_varinfo (i);
1013
1014 /* If this is a variable with just one field just set its bit
1015 in the result. */
1016 if (vi->is_artificial_var
1017 || vi->is_unknown_size_var
1018 || vi->is_full_var)
1019 bitmap_set_bit (result, i);
1020 else
1021 {
1022 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
1023
1024 /* If the offset makes the pointer point to before the
1025 variable use offset zero for the field lookup. */
1026 if (offset < 0
1027 && fieldoffset > vi->offset)
1028 fieldoffset = 0;
1029
1030 if (offset != 0)
1031 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1032
1033 bitmap_set_bit (result, vi->id);
1034 /* If the result is not exactly at fieldoffset include the next
1035 field as well. See get_constraint_for_ptr_offset for more
1036 rationale. */
1037 if (vi->offset != fieldoffset
1038 && vi->next != NULL)
1039 bitmap_set_bit (result, vi->next->id);
1040 }
1041 }
1042
1043 bitmap_copy (set, result);
1044 BITMAP_FREE (result);
1045 }
1046
1047 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
1048 process. */
1049
1050 static bool
1051 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
1052 {
1053 if (inc == 0)
1054 return bitmap_ior_into (to, from);
1055 else
1056 {
1057 bitmap tmp;
1058 bool res;
1059
1060 tmp = BITMAP_ALLOC (&iteration_obstack);
1061 bitmap_copy (tmp, from);
1062 solution_set_add (tmp, inc);
1063 res = bitmap_ior_into (to, tmp);
1064 BITMAP_FREE (tmp);
1065 return res;
1066 }
1067 }
1068
1069 /* Insert constraint C into the list of complex constraints for graph
1070 node VAR. */
1071
1072 static void
1073 insert_into_complex (constraint_graph_t graph,
1074 unsigned int var, constraint_t c)
1075 {
1076 VEC (constraint_t, heap) *complex = graph->complex[var];
1077 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1078 constraint_less);
1079
1080 /* Only insert constraints that do not already exist. */
1081 if (place >= VEC_length (constraint_t, complex)
1082 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1083 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1084 }
1085
1086
1087 /* Condense two variable nodes into a single variable node, by moving
1088 all associated info from SRC to TO. */
1089
1090 static void
1091 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1092 unsigned int from)
1093 {
1094 unsigned int i;
1095 constraint_t c;
1096
1097 gcc_assert (find (from) == to);
1098
1099 /* Move all complex constraints from src node into to node */
1100 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
1101 {
1102 /* In complex constraints for node src, we may have either
1103 a = *src, and *src = a, or an offseted constraint which are
1104 always added to the rhs node's constraints. */
1105
1106 if (c->rhs.type == DEREF)
1107 c->rhs.var = to;
1108 else if (c->lhs.type == DEREF)
1109 c->lhs.var = to;
1110 else
1111 c->rhs.var = to;
1112 }
1113 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1114 VEC_free (constraint_t, heap, graph->complex[from]);
1115 graph->complex[from] = NULL;
1116 }
1117
1118
1119 /* Remove edges involving NODE from GRAPH. */
1120
1121 static void
1122 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1123 {
1124 if (graph->succs[node])
1125 BITMAP_FREE (graph->succs[node]);
1126 }
1127
1128 /* Merge GRAPH nodes FROM and TO into node TO. */
1129
1130 static void
1131 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1132 unsigned int from)
1133 {
1134 if (graph->indirect_cycles[from] != -1)
1135 {
1136 /* If we have indirect cycles with the from node, and we have
1137 none on the to node, the to node has indirect cycles from the
1138 from node now that they are unified.
1139 If indirect cycles exist on both, unify the nodes that they
1140 are in a cycle with, since we know they are in a cycle with
1141 each other. */
1142 if (graph->indirect_cycles[to] == -1)
1143 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1144 }
1145
1146 /* Merge all the successor edges. */
1147 if (graph->succs[from])
1148 {
1149 if (!graph->succs[to])
1150 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1151 bitmap_ior_into (graph->succs[to],
1152 graph->succs[from]);
1153 }
1154
1155 clear_edges_for_node (graph, from);
1156 }
1157
1158
1159 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1160 it doesn't exist in the graph already. */
1161
1162 static void
1163 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1164 unsigned int from)
1165 {
1166 if (to == from)
1167 return;
1168
1169 if (!graph->implicit_preds[to])
1170 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1171
1172 if (bitmap_set_bit (graph->implicit_preds[to], from))
1173 stats.num_implicit_edges++;
1174 }
1175
1176 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1177 it doesn't exist in the graph already.
1178 Return false if the edge already existed, true otherwise. */
1179
1180 static void
1181 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1182 unsigned int from)
1183 {
1184 if (!graph->preds[to])
1185 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1186 bitmap_set_bit (graph->preds[to], from);
1187 }
1188
1189 /* Add a graph edge to GRAPH, going from FROM to TO if
1190 it doesn't exist in the graph already.
1191 Return false if the edge already existed, true otherwise. */
1192
1193 static bool
1194 add_graph_edge (constraint_graph_t graph, unsigned int to,
1195 unsigned int from)
1196 {
1197 if (to == from)
1198 {
1199 return false;
1200 }
1201 else
1202 {
1203 bool r = false;
1204
1205 if (!graph->succs[from])
1206 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1207 if (bitmap_set_bit (graph->succs[from], to))
1208 {
1209 r = true;
1210 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1211 stats.num_edges++;
1212 }
1213 return r;
1214 }
1215 }
1216
1217
1218 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1219
1220 static bool
1221 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1222 unsigned int dest)
1223 {
1224 return (graph->succs[dest]
1225 && bitmap_bit_p (graph->succs[dest], src));
1226 }
1227
1228 /* Initialize the constraint graph structure to contain SIZE nodes. */
1229
1230 static void
1231 init_graph (unsigned int size)
1232 {
1233 unsigned int j;
1234
1235 graph = XCNEW (struct constraint_graph);
1236 graph->size = size;
1237 graph->succs = XCNEWVEC (bitmap, graph->size);
1238 graph->indirect_cycles = XNEWVEC (int, graph->size);
1239 graph->rep = XNEWVEC (unsigned int, graph->size);
1240 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1241 graph->pe = XCNEWVEC (unsigned int, graph->size);
1242 graph->pe_rep = XNEWVEC (int, graph->size);
1243
1244 for (j = 0; j < graph->size; j++)
1245 {
1246 graph->rep[j] = j;
1247 graph->pe_rep[j] = -1;
1248 graph->indirect_cycles[j] = -1;
1249 }
1250 }
1251
1252 /* Build the constraint graph, adding only predecessor edges right now. */
1253
1254 static void
1255 build_pred_graph (void)
1256 {
1257 int i;
1258 constraint_t c;
1259 unsigned int j;
1260
1261 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1262 graph->preds = XCNEWVEC (bitmap, graph->size);
1263 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1264 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1265 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1266 graph->points_to = XCNEWVEC (bitmap, graph->size);
1267 graph->eq_rep = XNEWVEC (int, graph->size);
1268 graph->direct_nodes = sbitmap_alloc (graph->size);
1269 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1270 sbitmap_zero (graph->direct_nodes);
1271
1272 for (j = 0; j < FIRST_REF_NODE; j++)
1273 {
1274 if (!get_varinfo (j)->is_special_var)
1275 SET_BIT (graph->direct_nodes, j);
1276 }
1277
1278 for (j = 0; j < graph->size; j++)
1279 graph->eq_rep[j] = -1;
1280
1281 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1282 graph->indirect_cycles[j] = -1;
1283
1284 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1285 {
1286 struct constraint_expr lhs = c->lhs;
1287 struct constraint_expr rhs = c->rhs;
1288 unsigned int lhsvar = lhs.var;
1289 unsigned int rhsvar = rhs.var;
1290
1291 if (lhs.type == DEREF)
1292 {
1293 /* *x = y. */
1294 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1295 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1296 }
1297 else if (rhs.type == DEREF)
1298 {
1299 /* x = *y */
1300 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1301 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1302 else
1303 RESET_BIT (graph->direct_nodes, lhsvar);
1304 }
1305 else if (rhs.type == ADDRESSOF)
1306 {
1307 varinfo_t v;
1308
1309 /* x = &y */
1310 if (graph->points_to[lhsvar] == NULL)
1311 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1312 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1313
1314 if (graph->pointed_by[rhsvar] == NULL)
1315 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1316 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1317
1318 /* Implicitly, *x = y */
1319 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1320
1321 /* All related variables are no longer direct nodes. */
1322 RESET_BIT (graph->direct_nodes, rhsvar);
1323 v = get_varinfo (rhsvar);
1324 if (!v->is_full_var)
1325 {
1326 v = lookup_vi_for_tree (v->decl);
1327 do
1328 {
1329 RESET_BIT (graph->direct_nodes, v->id);
1330 v = v->next;
1331 }
1332 while (v != NULL);
1333 }
1334 bitmap_set_bit (graph->address_taken, rhsvar);
1335 }
1336 else if (lhsvar > anything_id
1337 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1338 {
1339 /* x = y */
1340 add_pred_graph_edge (graph, lhsvar, rhsvar);
1341 /* Implicitly, *x = *y */
1342 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1343 FIRST_REF_NODE + rhsvar);
1344 }
1345 else if (lhs.offset != 0 || rhs.offset != 0)
1346 {
1347 if (rhs.offset != 0)
1348 RESET_BIT (graph->direct_nodes, lhs.var);
1349 else if (lhs.offset != 0)
1350 RESET_BIT (graph->direct_nodes, rhs.var);
1351 }
1352 }
1353 }
1354
1355 /* Build the constraint graph, adding successor edges. */
1356
1357 static void
1358 build_succ_graph (void)
1359 {
1360 unsigned i, t;
1361 constraint_t c;
1362
1363 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1364 {
1365 struct constraint_expr lhs;
1366 struct constraint_expr rhs;
1367 unsigned int lhsvar;
1368 unsigned int rhsvar;
1369
1370 if (!c)
1371 continue;
1372
1373 lhs = c->lhs;
1374 rhs = c->rhs;
1375 lhsvar = find (lhs.var);
1376 rhsvar = find (rhs.var);
1377
1378 if (lhs.type == DEREF)
1379 {
1380 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1381 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1382 }
1383 else if (rhs.type == DEREF)
1384 {
1385 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1386 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1387 }
1388 else if (rhs.type == ADDRESSOF)
1389 {
1390 /* x = &y */
1391 gcc_assert (find (rhs.var) == rhs.var);
1392 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1393 }
1394 else if (lhsvar > anything_id
1395 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1396 {
1397 add_graph_edge (graph, lhsvar, rhsvar);
1398 }
1399 }
1400
1401 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1402 receive pointers. */
1403 t = find (storedanything_id);
1404 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1405 {
1406 if (!TEST_BIT (graph->direct_nodes, i)
1407 && get_varinfo (i)->may_have_pointers)
1408 add_graph_edge (graph, find (i), t);
1409 }
1410
1411 /* Everything stored to ANYTHING also potentially escapes. */
1412 add_graph_edge (graph, find (escaped_id), t);
1413 }
1414
1415
1416 /* Changed variables on the last iteration. */
1417 static unsigned int changed_count;
1418 static sbitmap changed;
1419
1420 /* Strongly Connected Component visitation info. */
1421
1422 struct scc_info
1423 {
1424 sbitmap visited;
1425 sbitmap deleted;
1426 unsigned int *dfs;
1427 unsigned int *node_mapping;
1428 int current_index;
1429 VEC(unsigned,heap) *scc_stack;
1430 };
1431
1432
1433 /* Recursive routine to find strongly connected components in GRAPH.
1434 SI is the SCC info to store the information in, and N is the id of current
1435 graph node we are processing.
1436
1437 This is Tarjan's strongly connected component finding algorithm, as
1438 modified by Nuutila to keep only non-root nodes on the stack.
1439 The algorithm can be found in "On finding the strongly connected
1440 connected components in a directed graph" by Esko Nuutila and Eljas
1441 Soisalon-Soininen, in Information Processing Letters volume 49,
1442 number 1, pages 9-14. */
1443
1444 static void
1445 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1446 {
1447 unsigned int i;
1448 bitmap_iterator bi;
1449 unsigned int my_dfs;
1450
1451 SET_BIT (si->visited, n);
1452 si->dfs[n] = si->current_index ++;
1453 my_dfs = si->dfs[n];
1454
1455 /* Visit all the successors. */
1456 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1457 {
1458 unsigned int w;
1459
1460 if (i > LAST_REF_NODE)
1461 break;
1462
1463 w = find (i);
1464 if (TEST_BIT (si->deleted, w))
1465 continue;
1466
1467 if (!TEST_BIT (si->visited, w))
1468 scc_visit (graph, si, w);
1469 {
1470 unsigned int t = find (w);
1471 unsigned int nnode = find (n);
1472 gcc_assert (nnode == n);
1473
1474 if (si->dfs[t] < si->dfs[nnode])
1475 si->dfs[n] = si->dfs[t];
1476 }
1477 }
1478
1479 /* See if any components have been identified. */
1480 if (si->dfs[n] == my_dfs)
1481 {
1482 if (VEC_length (unsigned, si->scc_stack) > 0
1483 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1484 {
1485 bitmap scc = BITMAP_ALLOC (NULL);
1486 unsigned int lowest_node;
1487 bitmap_iterator bi;
1488
1489 bitmap_set_bit (scc, n);
1490
1491 while (VEC_length (unsigned, si->scc_stack) != 0
1492 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1493 {
1494 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1495
1496 bitmap_set_bit (scc, w);
1497 }
1498
1499 lowest_node = bitmap_first_set_bit (scc);
1500 gcc_assert (lowest_node < FIRST_REF_NODE);
1501
1502 /* Collapse the SCC nodes into a single node, and mark the
1503 indirect cycles. */
1504 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1505 {
1506 if (i < FIRST_REF_NODE)
1507 {
1508 if (unite (lowest_node, i))
1509 unify_nodes (graph, lowest_node, i, false);
1510 }
1511 else
1512 {
1513 unite (lowest_node, i);
1514 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1515 }
1516 }
1517 }
1518 SET_BIT (si->deleted, n);
1519 }
1520 else
1521 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1522 }
1523
1524 /* Unify node FROM into node TO, updating the changed count if
1525 necessary when UPDATE_CHANGED is true. */
1526
1527 static void
1528 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1529 bool update_changed)
1530 {
1531
1532 gcc_assert (to != from && find (to) == to);
1533 if (dump_file && (dump_flags & TDF_DETAILS))
1534 fprintf (dump_file, "Unifying %s to %s\n",
1535 get_varinfo (from)->name,
1536 get_varinfo (to)->name);
1537
1538 if (update_changed)
1539 stats.unified_vars_dynamic++;
1540 else
1541 stats.unified_vars_static++;
1542
1543 merge_graph_nodes (graph, to, from);
1544 merge_node_constraints (graph, to, from);
1545
1546 /* Mark TO as changed if FROM was changed. If TO was already marked
1547 as changed, decrease the changed count. */
1548
1549 if (update_changed && TEST_BIT (changed, from))
1550 {
1551 RESET_BIT (changed, from);
1552 if (!TEST_BIT (changed, to))
1553 SET_BIT (changed, to);
1554 else
1555 {
1556 gcc_assert (changed_count > 0);
1557 changed_count--;
1558 }
1559 }
1560 if (get_varinfo (from)->solution)
1561 {
1562 /* If the solution changes because of the merging, we need to mark
1563 the variable as changed. */
1564 if (bitmap_ior_into (get_varinfo (to)->solution,
1565 get_varinfo (from)->solution))
1566 {
1567 if (update_changed && !TEST_BIT (changed, to))
1568 {
1569 SET_BIT (changed, to);
1570 changed_count++;
1571 }
1572 }
1573
1574 BITMAP_FREE (get_varinfo (from)->solution);
1575 BITMAP_FREE (get_varinfo (from)->oldsolution);
1576
1577 if (stats.iterations > 0)
1578 {
1579 BITMAP_FREE (get_varinfo (to)->oldsolution);
1580 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1581 }
1582 }
1583 if (valid_graph_edge (graph, to, to))
1584 {
1585 if (graph->succs[to])
1586 bitmap_clear_bit (graph->succs[to], to);
1587 }
1588 }
1589
1590 /* Information needed to compute the topological ordering of a graph. */
1591
1592 struct topo_info
1593 {
1594 /* sbitmap of visited nodes. */
1595 sbitmap visited;
1596 /* Array that stores the topological order of the graph, *in
1597 reverse*. */
1598 VEC(unsigned,heap) *topo_order;
1599 };
1600
1601
1602 /* Initialize and return a topological info structure. */
1603
1604 static struct topo_info *
1605 init_topo_info (void)
1606 {
1607 size_t size = graph->size;
1608 struct topo_info *ti = XNEW (struct topo_info);
1609 ti->visited = sbitmap_alloc (size);
1610 sbitmap_zero (ti->visited);
1611 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1612 return ti;
1613 }
1614
1615
1616 /* Free the topological sort info pointed to by TI. */
1617
1618 static void
1619 free_topo_info (struct topo_info *ti)
1620 {
1621 sbitmap_free (ti->visited);
1622 VEC_free (unsigned, heap, ti->topo_order);
1623 free (ti);
1624 }
1625
1626 /* Visit the graph in topological order, and store the order in the
1627 topo_info structure. */
1628
1629 static void
1630 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1631 unsigned int n)
1632 {
1633 bitmap_iterator bi;
1634 unsigned int j;
1635
1636 SET_BIT (ti->visited, n);
1637
1638 if (graph->succs[n])
1639 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1640 {
1641 if (!TEST_BIT (ti->visited, j))
1642 topo_visit (graph, ti, j);
1643 }
1644
1645 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1646 }
1647
1648 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1649 starting solution for y. */
1650
1651 static void
1652 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1653 bitmap delta)
1654 {
1655 unsigned int lhs = c->lhs.var;
1656 bool flag = false;
1657 bitmap sol = get_varinfo (lhs)->solution;
1658 unsigned int j;
1659 bitmap_iterator bi;
1660 HOST_WIDE_INT roffset = c->rhs.offset;
1661
1662 /* Our IL does not allow this. */
1663 gcc_assert (c->lhs.offset == 0);
1664
1665 /* If the solution of Y contains anything it is good enough to transfer
1666 this to the LHS. */
1667 if (bitmap_bit_p (delta, anything_id))
1668 {
1669 flag |= bitmap_set_bit (sol, anything_id);
1670 goto done;
1671 }
1672
1673 /* If we do not know at with offset the rhs is dereferenced compute
1674 the reachability set of DELTA, conservatively assuming it is
1675 dereferenced at all valid offsets. */
1676 if (roffset == UNKNOWN_OFFSET)
1677 {
1678 solution_set_expand (delta, delta);
1679 /* No further offset processing is necessary. */
1680 roffset = 0;
1681 }
1682
1683 /* For each variable j in delta (Sol(y)), add
1684 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1685 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1686 {
1687 varinfo_t v = get_varinfo (j);
1688 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1689 unsigned int t;
1690
1691 if (v->is_full_var)
1692 fieldoffset = v->offset;
1693 else if (roffset != 0)
1694 v = first_vi_for_offset (v, fieldoffset);
1695 /* If the access is outside of the variable we can ignore it. */
1696 if (!v)
1697 continue;
1698
1699 do
1700 {
1701 t = find (v->id);
1702
1703 /* Adding edges from the special vars is pointless.
1704 They don't have sets that can change. */
1705 if (get_varinfo (t)->is_special_var)
1706 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1707 /* Merging the solution from ESCAPED needlessly increases
1708 the set. Use ESCAPED as representative instead. */
1709 else if (v->id == escaped_id)
1710 flag |= bitmap_set_bit (sol, escaped_id);
1711 else if (v->may_have_pointers
1712 && add_graph_edge (graph, lhs, t))
1713 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1714
1715 /* If the variable is not exactly at the requested offset
1716 we have to include the next one. */
1717 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1718 || v->next == NULL)
1719 break;
1720
1721 v = v->next;
1722 fieldoffset = v->offset;
1723 }
1724 while (1);
1725 }
1726
1727 done:
1728 /* If the LHS solution changed, mark the var as changed. */
1729 if (flag)
1730 {
1731 get_varinfo (lhs)->solution = sol;
1732 if (!TEST_BIT (changed, lhs))
1733 {
1734 SET_BIT (changed, lhs);
1735 changed_count++;
1736 }
1737 }
1738 }
1739
1740 /* Process a constraint C that represents *(x + off) = y using DELTA
1741 as the starting solution for x. */
1742
1743 static void
1744 do_ds_constraint (constraint_t c, bitmap delta)
1745 {
1746 unsigned int rhs = c->rhs.var;
1747 bitmap sol = get_varinfo (rhs)->solution;
1748 unsigned int j;
1749 bitmap_iterator bi;
1750 HOST_WIDE_INT loff = c->lhs.offset;
1751 bool escaped_p = false;
1752
1753 /* Our IL does not allow this. */
1754 gcc_assert (c->rhs.offset == 0);
1755
1756 /* If the solution of y contains ANYTHING simply use the ANYTHING
1757 solution. This avoids needlessly increasing the points-to sets. */
1758 if (bitmap_bit_p (sol, anything_id))
1759 sol = get_varinfo (find (anything_id))->solution;
1760
1761 /* If the solution for x contains ANYTHING we have to merge the
1762 solution of y into all pointer variables which we do via
1763 STOREDANYTHING. */
1764 if (bitmap_bit_p (delta, anything_id))
1765 {
1766 unsigned t = find (storedanything_id);
1767 if (add_graph_edge (graph, t, rhs))
1768 {
1769 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1770 {
1771 if (!TEST_BIT (changed, t))
1772 {
1773 SET_BIT (changed, t);
1774 changed_count++;
1775 }
1776 }
1777 }
1778 return;
1779 }
1780
1781 /* If we do not know at with offset the rhs is dereferenced compute
1782 the reachability set of DELTA, conservatively assuming it is
1783 dereferenced at all valid offsets. */
1784 if (loff == UNKNOWN_OFFSET)
1785 {
1786 solution_set_expand (delta, delta);
1787 loff = 0;
1788 }
1789
1790 /* For each member j of delta (Sol(x)), add an edge from y to j and
1791 union Sol(y) into Sol(j) */
1792 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1793 {
1794 varinfo_t v = get_varinfo (j);
1795 unsigned int t;
1796 HOST_WIDE_INT fieldoffset = v->offset + loff;
1797
1798 if (v->is_full_var)
1799 fieldoffset = v->offset;
1800 else if (loff != 0)
1801 v = first_vi_for_offset (v, fieldoffset);
1802 /* If the access is outside of the variable we can ignore it. */
1803 if (!v)
1804 continue;
1805
1806 do
1807 {
1808 if (v->may_have_pointers)
1809 {
1810 /* If v is a global variable then this is an escape point. */
1811 if (v->is_global_var
1812 && !escaped_p)
1813 {
1814 t = find (escaped_id);
1815 if (add_graph_edge (graph, t, rhs)
1816 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1817 && !TEST_BIT (changed, t))
1818 {
1819 SET_BIT (changed, t);
1820 changed_count++;
1821 }
1822 /* Enough to let rhs escape once. */
1823 escaped_p = true;
1824 }
1825
1826 if (v->is_special_var)
1827 break;
1828
1829 t = find (v->id);
1830 if (add_graph_edge (graph, t, rhs)
1831 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1832 && !TEST_BIT (changed, t))
1833 {
1834 SET_BIT (changed, t);
1835 changed_count++;
1836 }
1837 }
1838
1839 /* If the variable is not exactly at the requested offset
1840 we have to include the next one. */
1841 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1842 || v->next == NULL)
1843 break;
1844
1845 v = v->next;
1846 fieldoffset = v->offset;
1847 }
1848 while (1);
1849 }
1850 }
1851
1852 /* Handle a non-simple (simple meaning requires no iteration),
1853 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1854
1855 static void
1856 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1857 {
1858 if (c->lhs.type == DEREF)
1859 {
1860 if (c->rhs.type == ADDRESSOF)
1861 {
1862 gcc_unreachable();
1863 }
1864 else
1865 {
1866 /* *x = y */
1867 do_ds_constraint (c, delta);
1868 }
1869 }
1870 else if (c->rhs.type == DEREF)
1871 {
1872 /* x = *y */
1873 if (!(get_varinfo (c->lhs.var)->is_special_var))
1874 do_sd_constraint (graph, c, delta);
1875 }
1876 else
1877 {
1878 bitmap tmp;
1879 bitmap solution;
1880 bool flag = false;
1881
1882 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1883 solution = get_varinfo (c->rhs.var)->solution;
1884 tmp = get_varinfo (c->lhs.var)->solution;
1885
1886 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1887
1888 if (flag)
1889 {
1890 get_varinfo (c->lhs.var)->solution = tmp;
1891 if (!TEST_BIT (changed, c->lhs.var))
1892 {
1893 SET_BIT (changed, c->lhs.var);
1894 changed_count++;
1895 }
1896 }
1897 }
1898 }
1899
1900 /* Initialize and return a new SCC info structure. */
1901
1902 static struct scc_info *
1903 init_scc_info (size_t size)
1904 {
1905 struct scc_info *si = XNEW (struct scc_info);
1906 size_t i;
1907
1908 si->current_index = 0;
1909 si->visited = sbitmap_alloc (size);
1910 sbitmap_zero (si->visited);
1911 si->deleted = sbitmap_alloc (size);
1912 sbitmap_zero (si->deleted);
1913 si->node_mapping = XNEWVEC (unsigned int, size);
1914 si->dfs = XCNEWVEC (unsigned int, size);
1915
1916 for (i = 0; i < size; i++)
1917 si->node_mapping[i] = i;
1918
1919 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1920 return si;
1921 }
1922
1923 /* Free an SCC info structure pointed to by SI */
1924
1925 static void
1926 free_scc_info (struct scc_info *si)
1927 {
1928 sbitmap_free (si->visited);
1929 sbitmap_free (si->deleted);
1930 free (si->node_mapping);
1931 free (si->dfs);
1932 VEC_free (unsigned, heap, si->scc_stack);
1933 free (si);
1934 }
1935
1936
1937 /* Find indirect cycles in GRAPH that occur, using strongly connected
1938 components, and note them in the indirect cycles map.
1939
1940 This technique comes from Ben Hardekopf and Calvin Lin,
1941 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1942 Lines of Code", submitted to PLDI 2007. */
1943
1944 static void
1945 find_indirect_cycles (constraint_graph_t graph)
1946 {
1947 unsigned int i;
1948 unsigned int size = graph->size;
1949 struct scc_info *si = init_scc_info (size);
1950
1951 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1952 if (!TEST_BIT (si->visited, i) && find (i) == i)
1953 scc_visit (graph, si, i);
1954
1955 free_scc_info (si);
1956 }
1957
1958 /* Compute a topological ordering for GRAPH, and store the result in the
1959 topo_info structure TI. */
1960
1961 static void
1962 compute_topo_order (constraint_graph_t graph,
1963 struct topo_info *ti)
1964 {
1965 unsigned int i;
1966 unsigned int size = graph->size;
1967
1968 for (i = 0; i != size; ++i)
1969 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1970 topo_visit (graph, ti, i);
1971 }
1972
1973 /* Structure used to for hash value numbering of pointer equivalence
1974 classes. */
1975
1976 typedef struct equiv_class_label
1977 {
1978 hashval_t hashcode;
1979 unsigned int equivalence_class;
1980 bitmap labels;
1981 } *equiv_class_label_t;
1982 typedef const struct equiv_class_label *const_equiv_class_label_t;
1983
1984 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1985 classes. */
1986 static htab_t pointer_equiv_class_table;
1987
1988 /* A hashtable for mapping a bitmap of labels->location equivalence
1989 classes. */
1990 static htab_t location_equiv_class_table;
1991
1992 /* Hash function for a equiv_class_label_t */
1993
1994 static hashval_t
1995 equiv_class_label_hash (const void *p)
1996 {
1997 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1998 return ecl->hashcode;
1999 }
2000
2001 /* Equality function for two equiv_class_label_t's. */
2002
2003 static int
2004 equiv_class_label_eq (const void *p1, const void *p2)
2005 {
2006 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2007 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
2008 return (eql1->hashcode == eql2->hashcode
2009 && bitmap_equal_p (eql1->labels, eql2->labels));
2010 }
2011
2012 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2013 contains. */
2014
2015 static unsigned int
2016 equiv_class_lookup (htab_t table, bitmap labels)
2017 {
2018 void **slot;
2019 struct equiv_class_label ecl;
2020
2021 ecl.labels = labels;
2022 ecl.hashcode = bitmap_hash (labels);
2023
2024 slot = htab_find_slot_with_hash (table, &ecl,
2025 ecl.hashcode, NO_INSERT);
2026 if (!slot)
2027 return 0;
2028 else
2029 return ((equiv_class_label_t) *slot)->equivalence_class;
2030 }
2031
2032
2033 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2034 to TABLE. */
2035
2036 static void
2037 equiv_class_add (htab_t table, unsigned int equivalence_class,
2038 bitmap labels)
2039 {
2040 void **slot;
2041 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2042
2043 ecl->labels = labels;
2044 ecl->equivalence_class = equivalence_class;
2045 ecl->hashcode = bitmap_hash (labels);
2046
2047 slot = htab_find_slot_with_hash (table, ecl,
2048 ecl->hashcode, INSERT);
2049 gcc_assert (!*slot);
2050 *slot = (void *) ecl;
2051 }
2052
2053 /* Perform offline variable substitution.
2054
2055 This is a worst case quadratic time way of identifying variables
2056 that must have equivalent points-to sets, including those caused by
2057 static cycles, and single entry subgraphs, in the constraint graph.
2058
2059 The technique is described in "Exploiting Pointer and Location
2060 Equivalence to Optimize Pointer Analysis. In the 14th International
2061 Static Analysis Symposium (SAS), August 2007." It is known as the
2062 "HU" algorithm, and is equivalent to value numbering the collapsed
2063 constraint graph including evaluating unions.
2064
2065 The general method of finding equivalence classes is as follows:
2066 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
2067 Initialize all non-REF nodes to be direct nodes.
2068 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2069 variable}
2070 For each constraint containing the dereference, we also do the same
2071 thing.
2072
2073 We then compute SCC's in the graph and unify nodes in the same SCC,
2074 including pts sets.
2075
2076 For each non-collapsed node x:
2077 Visit all unvisited explicit incoming edges.
2078 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2079 where y->x.
2080 Lookup the equivalence class for pts(x).
2081 If we found one, equivalence_class(x) = found class.
2082 Otherwise, equivalence_class(x) = new class, and new_class is
2083 added to the lookup table.
2084
2085 All direct nodes with the same equivalence class can be replaced
2086 with a single representative node.
2087 All unlabeled nodes (label == 0) are not pointers and all edges
2088 involving them can be eliminated.
2089 We perform these optimizations during rewrite_constraints
2090
2091 In addition to pointer equivalence class finding, we also perform
2092 location equivalence class finding. This is the set of variables
2093 that always appear together in points-to sets. We use this to
2094 compress the size of the points-to sets. */
2095
2096 /* Current maximum pointer equivalence class id. */
2097 static int pointer_equiv_class;
2098
2099 /* Current maximum location equivalence class id. */
2100 static int location_equiv_class;
2101
2102 /* Recursive routine to find strongly connected components in GRAPH,
2103 and label it's nodes with DFS numbers. */
2104
2105 static void
2106 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2107 {
2108 unsigned int i;
2109 bitmap_iterator bi;
2110 unsigned int my_dfs;
2111
2112 gcc_assert (si->node_mapping[n] == n);
2113 SET_BIT (si->visited, n);
2114 si->dfs[n] = si->current_index ++;
2115 my_dfs = si->dfs[n];
2116
2117 /* Visit all the successors. */
2118 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2119 {
2120 unsigned int w = si->node_mapping[i];
2121
2122 if (TEST_BIT (si->deleted, w))
2123 continue;
2124
2125 if (!TEST_BIT (si->visited, w))
2126 condense_visit (graph, si, w);
2127 {
2128 unsigned int t = si->node_mapping[w];
2129 unsigned int nnode = si->node_mapping[n];
2130 gcc_assert (nnode == n);
2131
2132 if (si->dfs[t] < si->dfs[nnode])
2133 si->dfs[n] = si->dfs[t];
2134 }
2135 }
2136
2137 /* Visit all the implicit predecessors. */
2138 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2139 {
2140 unsigned int w = si->node_mapping[i];
2141
2142 if (TEST_BIT (si->deleted, w))
2143 continue;
2144
2145 if (!TEST_BIT (si->visited, w))
2146 condense_visit (graph, si, w);
2147 {
2148 unsigned int t = si->node_mapping[w];
2149 unsigned int nnode = si->node_mapping[n];
2150 gcc_assert (nnode == n);
2151
2152 if (si->dfs[t] < si->dfs[nnode])
2153 si->dfs[n] = si->dfs[t];
2154 }
2155 }
2156
2157 /* See if any components have been identified. */
2158 if (si->dfs[n] == my_dfs)
2159 {
2160 while (VEC_length (unsigned, si->scc_stack) != 0
2161 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2162 {
2163 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2164 si->node_mapping[w] = n;
2165
2166 if (!TEST_BIT (graph->direct_nodes, w))
2167 RESET_BIT (graph->direct_nodes, n);
2168
2169 /* Unify our nodes. */
2170 if (graph->preds[w])
2171 {
2172 if (!graph->preds[n])
2173 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2174 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2175 }
2176 if (graph->implicit_preds[w])
2177 {
2178 if (!graph->implicit_preds[n])
2179 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2180 bitmap_ior_into (graph->implicit_preds[n],
2181 graph->implicit_preds[w]);
2182 }
2183 if (graph->points_to[w])
2184 {
2185 if (!graph->points_to[n])
2186 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2187 bitmap_ior_into (graph->points_to[n],
2188 graph->points_to[w]);
2189 }
2190 }
2191 SET_BIT (si->deleted, n);
2192 }
2193 else
2194 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2195 }
2196
2197 /* Label pointer equivalences. */
2198
2199 static void
2200 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2201 {
2202 unsigned int i;
2203 bitmap_iterator bi;
2204 SET_BIT (si->visited, n);
2205
2206 if (!graph->points_to[n])
2207 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2208
2209 /* Label and union our incoming edges's points to sets. */
2210 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2211 {
2212 unsigned int w = si->node_mapping[i];
2213 if (!TEST_BIT (si->visited, w))
2214 label_visit (graph, si, w);
2215
2216 /* Skip unused edges */
2217 if (w == n || graph->pointer_label[w] == 0)
2218 continue;
2219
2220 if (graph->points_to[w])
2221 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2222 }
2223 /* Indirect nodes get fresh variables. */
2224 if (!TEST_BIT (graph->direct_nodes, n))
2225 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2226
2227 if (!bitmap_empty_p (graph->points_to[n]))
2228 {
2229 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2230 graph->points_to[n]);
2231 if (!label)
2232 {
2233 label = pointer_equiv_class++;
2234 equiv_class_add (pointer_equiv_class_table,
2235 label, graph->points_to[n]);
2236 }
2237 graph->pointer_label[n] = label;
2238 }
2239 }
2240
2241 /* Perform offline variable substitution, discovering equivalence
2242 classes, and eliminating non-pointer variables. */
2243
2244 static struct scc_info *
2245 perform_var_substitution (constraint_graph_t graph)
2246 {
2247 unsigned int i;
2248 unsigned int size = graph->size;
2249 struct scc_info *si = init_scc_info (size);
2250
2251 bitmap_obstack_initialize (&iteration_obstack);
2252 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2253 equiv_class_label_eq, free);
2254 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2255 equiv_class_label_eq, free);
2256 pointer_equiv_class = 1;
2257 location_equiv_class = 1;
2258
2259 /* Condense the nodes, which means to find SCC's, count incoming
2260 predecessors, and unite nodes in SCC's. */
2261 for (i = 0; i < FIRST_REF_NODE; i++)
2262 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2263 condense_visit (graph, si, si->node_mapping[i]);
2264
2265 sbitmap_zero (si->visited);
2266 /* Actually the label the nodes for pointer equivalences */
2267 for (i = 0; i < FIRST_REF_NODE; i++)
2268 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2269 label_visit (graph, si, si->node_mapping[i]);
2270
2271 /* Calculate location equivalence labels. */
2272 for (i = 0; i < FIRST_REF_NODE; i++)
2273 {
2274 bitmap pointed_by;
2275 bitmap_iterator bi;
2276 unsigned int j;
2277 unsigned int label;
2278
2279 if (!graph->pointed_by[i])
2280 continue;
2281 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2282
2283 /* Translate the pointed-by mapping for pointer equivalence
2284 labels. */
2285 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2286 {
2287 bitmap_set_bit (pointed_by,
2288 graph->pointer_label[si->node_mapping[j]]);
2289 }
2290 /* The original pointed_by is now dead. */
2291 BITMAP_FREE (graph->pointed_by[i]);
2292
2293 /* Look up the location equivalence label if one exists, or make
2294 one otherwise. */
2295 label = equiv_class_lookup (location_equiv_class_table,
2296 pointed_by);
2297 if (label == 0)
2298 {
2299 label = location_equiv_class++;
2300 equiv_class_add (location_equiv_class_table,
2301 label, pointed_by);
2302 }
2303 else
2304 {
2305 if (dump_file && (dump_flags & TDF_DETAILS))
2306 fprintf (dump_file, "Found location equivalence for node %s\n",
2307 get_varinfo (i)->name);
2308 BITMAP_FREE (pointed_by);
2309 }
2310 graph->loc_label[i] = label;
2311
2312 }
2313
2314 if (dump_file && (dump_flags & TDF_DETAILS))
2315 for (i = 0; i < FIRST_REF_NODE; i++)
2316 {
2317 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2318 fprintf (dump_file,
2319 "Equivalence classes for %s node id %d:%s are pointer: %d"
2320 ", location:%d\n",
2321 direct_node ? "Direct node" : "Indirect node", i,
2322 get_varinfo (i)->name,
2323 graph->pointer_label[si->node_mapping[i]],
2324 graph->loc_label[si->node_mapping[i]]);
2325 }
2326
2327 /* Quickly eliminate our non-pointer variables. */
2328
2329 for (i = 0; i < FIRST_REF_NODE; i++)
2330 {
2331 unsigned int node = si->node_mapping[i];
2332
2333 if (graph->pointer_label[node] == 0)
2334 {
2335 if (dump_file && (dump_flags & TDF_DETAILS))
2336 fprintf (dump_file,
2337 "%s is a non-pointer variable, eliminating edges.\n",
2338 get_varinfo (node)->name);
2339 stats.nonpointer_vars++;
2340 clear_edges_for_node (graph, node);
2341 }
2342 }
2343
2344 return si;
2345 }
2346
2347 /* Free information that was only necessary for variable
2348 substitution. */
2349
2350 static void
2351 free_var_substitution_info (struct scc_info *si)
2352 {
2353 free_scc_info (si);
2354 free (graph->pointer_label);
2355 free (graph->loc_label);
2356 free (graph->pointed_by);
2357 free (graph->points_to);
2358 free (graph->eq_rep);
2359 sbitmap_free (graph->direct_nodes);
2360 htab_delete (pointer_equiv_class_table);
2361 htab_delete (location_equiv_class_table);
2362 bitmap_obstack_release (&iteration_obstack);
2363 }
2364
2365 /* Return an existing node that is equivalent to NODE, which has
2366 equivalence class LABEL, if one exists. Return NODE otherwise. */
2367
2368 static unsigned int
2369 find_equivalent_node (constraint_graph_t graph,
2370 unsigned int node, unsigned int label)
2371 {
2372 /* If the address version of this variable is unused, we can
2373 substitute it for anything else with the same label.
2374 Otherwise, we know the pointers are equivalent, but not the
2375 locations, and we can unite them later. */
2376
2377 if (!bitmap_bit_p (graph->address_taken, node))
2378 {
2379 gcc_assert (label < graph->size);
2380
2381 if (graph->eq_rep[label] != -1)
2382 {
2383 /* Unify the two variables since we know they are equivalent. */
2384 if (unite (graph->eq_rep[label], node))
2385 unify_nodes (graph, graph->eq_rep[label], node, false);
2386 return graph->eq_rep[label];
2387 }
2388 else
2389 {
2390 graph->eq_rep[label] = node;
2391 graph->pe_rep[label] = node;
2392 }
2393 }
2394 else
2395 {
2396 gcc_assert (label < graph->size);
2397 graph->pe[node] = label;
2398 if (graph->pe_rep[label] == -1)
2399 graph->pe_rep[label] = node;
2400 }
2401
2402 return node;
2403 }
2404
2405 /* Unite pointer equivalent but not location equivalent nodes in
2406 GRAPH. This may only be performed once variable substitution is
2407 finished. */
2408
2409 static void
2410 unite_pointer_equivalences (constraint_graph_t graph)
2411 {
2412 unsigned int i;
2413
2414 /* Go through the pointer equivalences and unite them to their
2415 representative, if they aren't already. */
2416 for (i = 0; i < FIRST_REF_NODE; i++)
2417 {
2418 unsigned int label = graph->pe[i];
2419 if (label)
2420 {
2421 int label_rep = graph->pe_rep[label];
2422
2423 if (label_rep == -1)
2424 continue;
2425
2426 label_rep = find (label_rep);
2427 if (label_rep >= 0 && unite (label_rep, find (i)))
2428 unify_nodes (graph, label_rep, i, false);
2429 }
2430 }
2431 }
2432
2433 /* Move complex constraints to the GRAPH nodes they belong to. */
2434
2435 static void
2436 move_complex_constraints (constraint_graph_t graph)
2437 {
2438 int i;
2439 constraint_t c;
2440
2441 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2442 {
2443 if (c)
2444 {
2445 struct constraint_expr lhs = c->lhs;
2446 struct constraint_expr rhs = c->rhs;
2447
2448 if (lhs.type == DEREF)
2449 {
2450 insert_into_complex (graph, lhs.var, c);
2451 }
2452 else if (rhs.type == DEREF)
2453 {
2454 if (!(get_varinfo (lhs.var)->is_special_var))
2455 insert_into_complex (graph, rhs.var, c);
2456 }
2457 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2458 && (lhs.offset != 0 || rhs.offset != 0))
2459 {
2460 insert_into_complex (graph, rhs.var, c);
2461 }
2462 }
2463 }
2464 }
2465
2466
2467 /* Optimize and rewrite complex constraints while performing
2468 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2469 result of perform_variable_substitution. */
2470
2471 static void
2472 rewrite_constraints (constraint_graph_t graph,
2473 struct scc_info *si)
2474 {
2475 int i;
2476 unsigned int j;
2477 constraint_t c;
2478
2479 for (j = 0; j < graph->size; j++)
2480 gcc_assert (find (j) == j);
2481
2482 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2483 {
2484 struct constraint_expr lhs = c->lhs;
2485 struct constraint_expr rhs = c->rhs;
2486 unsigned int lhsvar = find (lhs.var);
2487 unsigned int rhsvar = find (rhs.var);
2488 unsigned int lhsnode, rhsnode;
2489 unsigned int lhslabel, rhslabel;
2490
2491 lhsnode = si->node_mapping[lhsvar];
2492 rhsnode = si->node_mapping[rhsvar];
2493 lhslabel = graph->pointer_label[lhsnode];
2494 rhslabel = graph->pointer_label[rhsnode];
2495
2496 /* See if it is really a non-pointer variable, and if so, ignore
2497 the constraint. */
2498 if (lhslabel == 0)
2499 {
2500 if (dump_file && (dump_flags & TDF_DETAILS))
2501 {
2502
2503 fprintf (dump_file, "%s is a non-pointer variable,"
2504 "ignoring constraint:",
2505 get_varinfo (lhs.var)->name);
2506 dump_constraint (dump_file, c);
2507 }
2508 VEC_replace (constraint_t, constraints, i, NULL);
2509 continue;
2510 }
2511
2512 if (rhslabel == 0)
2513 {
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2515 {
2516
2517 fprintf (dump_file, "%s is a non-pointer variable,"
2518 "ignoring constraint:",
2519 get_varinfo (rhs.var)->name);
2520 dump_constraint (dump_file, c);
2521 }
2522 VEC_replace (constraint_t, constraints, i, NULL);
2523 continue;
2524 }
2525
2526 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2527 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2528 c->lhs.var = lhsvar;
2529 c->rhs.var = rhsvar;
2530
2531 }
2532 }
2533
2534 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2535 part of an SCC, false otherwise. */
2536
2537 static bool
2538 eliminate_indirect_cycles (unsigned int node)
2539 {
2540 if (graph->indirect_cycles[node] != -1
2541 && !bitmap_empty_p (get_varinfo (node)->solution))
2542 {
2543 unsigned int i;
2544 VEC(unsigned,heap) *queue = NULL;
2545 int queuepos;
2546 unsigned int to = find (graph->indirect_cycles[node]);
2547 bitmap_iterator bi;
2548
2549 /* We can't touch the solution set and call unify_nodes
2550 at the same time, because unify_nodes is going to do
2551 bitmap unions into it. */
2552
2553 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2554 {
2555 if (find (i) == i && i != to)
2556 {
2557 if (unite (to, i))
2558 VEC_safe_push (unsigned, heap, queue, i);
2559 }
2560 }
2561
2562 for (queuepos = 0;
2563 VEC_iterate (unsigned, queue, queuepos, i);
2564 queuepos++)
2565 {
2566 unify_nodes (graph, to, i, true);
2567 }
2568 VEC_free (unsigned, heap, queue);
2569 return true;
2570 }
2571 return false;
2572 }
2573
2574 /* Solve the constraint graph GRAPH using our worklist solver.
2575 This is based on the PW* family of solvers from the "Efficient Field
2576 Sensitive Pointer Analysis for C" paper.
2577 It works by iterating over all the graph nodes, processing the complex
2578 constraints and propagating the copy constraints, until everything stops
2579 changed. This corresponds to steps 6-8 in the solving list given above. */
2580
2581 static void
2582 solve_graph (constraint_graph_t graph)
2583 {
2584 unsigned int size = graph->size;
2585 unsigned int i;
2586 bitmap pts;
2587
2588 changed_count = 0;
2589 changed = sbitmap_alloc (size);
2590 sbitmap_zero (changed);
2591
2592 /* Mark all initial non-collapsed nodes as changed. */
2593 for (i = 0; i < size; i++)
2594 {
2595 varinfo_t ivi = get_varinfo (i);
2596 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2597 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2598 || VEC_length (constraint_t, graph->complex[i]) > 0))
2599 {
2600 SET_BIT (changed, i);
2601 changed_count++;
2602 }
2603 }
2604
2605 /* Allocate a bitmap to be used to store the changed bits. */
2606 pts = BITMAP_ALLOC (&pta_obstack);
2607
2608 while (changed_count > 0)
2609 {
2610 unsigned int i;
2611 struct topo_info *ti = init_topo_info ();
2612 stats.iterations++;
2613
2614 bitmap_obstack_initialize (&iteration_obstack);
2615
2616 compute_topo_order (graph, ti);
2617
2618 while (VEC_length (unsigned, ti->topo_order) != 0)
2619 {
2620
2621 i = VEC_pop (unsigned, ti->topo_order);
2622
2623 /* If this variable is not a representative, skip it. */
2624 if (find (i) != i)
2625 continue;
2626
2627 /* In certain indirect cycle cases, we may merge this
2628 variable to another. */
2629 if (eliminate_indirect_cycles (i) && find (i) != i)
2630 continue;
2631
2632 /* If the node has changed, we need to process the
2633 complex constraints and outgoing edges again. */
2634 if (TEST_BIT (changed, i))
2635 {
2636 unsigned int j;
2637 constraint_t c;
2638 bitmap solution;
2639 VEC(constraint_t,heap) *complex = graph->complex[i];
2640 bool solution_empty;
2641
2642 RESET_BIT (changed, i);
2643 changed_count--;
2644
2645 /* Compute the changed set of solution bits. */
2646 bitmap_and_compl (pts, get_varinfo (i)->solution,
2647 get_varinfo (i)->oldsolution);
2648
2649 if (bitmap_empty_p (pts))
2650 continue;
2651
2652 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2653
2654 solution = get_varinfo (i)->solution;
2655 solution_empty = bitmap_empty_p (solution);
2656
2657 /* Process the complex constraints */
2658 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
2659 {
2660 /* XXX: This is going to unsort the constraints in
2661 some cases, which will occasionally add duplicate
2662 constraints during unification. This does not
2663 affect correctness. */
2664 c->lhs.var = find (c->lhs.var);
2665 c->rhs.var = find (c->rhs.var);
2666
2667 /* The only complex constraint that can change our
2668 solution to non-empty, given an empty solution,
2669 is a constraint where the lhs side is receiving
2670 some set from elsewhere. */
2671 if (!solution_empty || c->lhs.type != DEREF)
2672 do_complex_constraint (graph, c, pts);
2673 }
2674
2675 solution_empty = bitmap_empty_p (solution);
2676
2677 if (!solution_empty)
2678 {
2679 bitmap_iterator bi;
2680 unsigned eff_escaped_id = find (escaped_id);
2681
2682 /* Propagate solution to all successors. */
2683 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2684 0, j, bi)
2685 {
2686 bitmap tmp;
2687 bool flag;
2688
2689 unsigned int to = find (j);
2690 tmp = get_varinfo (to)->solution;
2691 flag = false;
2692
2693 /* Don't try to propagate to ourselves. */
2694 if (to == i)
2695 continue;
2696
2697 /* If we propagate from ESCAPED use ESCAPED as
2698 placeholder. */
2699 if (i == eff_escaped_id)
2700 flag = bitmap_set_bit (tmp, escaped_id);
2701 else
2702 flag = set_union_with_increment (tmp, pts, 0);
2703
2704 if (flag)
2705 {
2706 get_varinfo (to)->solution = tmp;
2707 if (!TEST_BIT (changed, to))
2708 {
2709 SET_BIT (changed, to);
2710 changed_count++;
2711 }
2712 }
2713 }
2714 }
2715 }
2716 }
2717 free_topo_info (ti);
2718 bitmap_obstack_release (&iteration_obstack);
2719 }
2720
2721 BITMAP_FREE (pts);
2722 sbitmap_free (changed);
2723 bitmap_obstack_release (&oldpta_obstack);
2724 }
2725
2726 /* Map from trees to variable infos. */
2727 static struct pointer_map_t *vi_for_tree;
2728
2729
2730 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2731
2732 static void
2733 insert_vi_for_tree (tree t, varinfo_t vi)
2734 {
2735 void **slot = pointer_map_insert (vi_for_tree, t);
2736 gcc_assert (vi);
2737 gcc_assert (*slot == NULL);
2738 *slot = vi;
2739 }
2740
2741 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2742 exist in the map, return NULL, otherwise, return the varinfo we found. */
2743
2744 static varinfo_t
2745 lookup_vi_for_tree (tree t)
2746 {
2747 void **slot = pointer_map_contains (vi_for_tree, t);
2748 if (slot == NULL)
2749 return NULL;
2750
2751 return (varinfo_t) *slot;
2752 }
2753
2754 /* Return a printable name for DECL */
2755
2756 static const char *
2757 alias_get_name (tree decl)
2758 {
2759 const char *res;
2760 char *temp;
2761 int num_printed = 0;
2762
2763 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2764 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2765 else
2766 res= get_name (decl);
2767 if (res != NULL)
2768 return res;
2769
2770 res = "NULL";
2771 if (!dump_file)
2772 return res;
2773
2774 if (TREE_CODE (decl) == SSA_NAME)
2775 {
2776 num_printed = asprintf (&temp, "%s_%u",
2777 alias_get_name (SSA_NAME_VAR (decl)),
2778 SSA_NAME_VERSION (decl));
2779 }
2780 else if (DECL_P (decl))
2781 {
2782 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2783 }
2784 if (num_printed > 0)
2785 {
2786 res = ggc_strdup (temp);
2787 free (temp);
2788 }
2789 return res;
2790 }
2791
2792 /* Find the variable id for tree T in the map.
2793 If T doesn't exist in the map, create an entry for it and return it. */
2794
2795 static varinfo_t
2796 get_vi_for_tree (tree t)
2797 {
2798 void **slot = pointer_map_contains (vi_for_tree, t);
2799 if (slot == NULL)
2800 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2801
2802 return (varinfo_t) *slot;
2803 }
2804
2805 /* Get a scalar constraint expression for a new temporary variable. */
2806
2807 static struct constraint_expr
2808 new_scalar_tmp_constraint_exp (const char *name)
2809 {
2810 struct constraint_expr tmp;
2811 varinfo_t vi;
2812
2813 vi = new_var_info (NULL_TREE, name);
2814 vi->offset = 0;
2815 vi->size = -1;
2816 vi->fullsize = -1;
2817 vi->is_full_var = 1;
2818
2819 tmp.var = vi->id;
2820 tmp.type = SCALAR;
2821 tmp.offset = 0;
2822
2823 return tmp;
2824 }
2825
2826 /* Get a constraint expression vector from an SSA_VAR_P node.
2827 If address_p is true, the result will be taken its address of. */
2828
2829 static void
2830 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2831 {
2832 struct constraint_expr cexpr;
2833 varinfo_t vi;
2834
2835 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2836 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2837
2838 /* For parameters, get at the points-to set for the actual parm
2839 decl. */
2840 if (TREE_CODE (t) == SSA_NAME
2841 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2842 && SSA_NAME_IS_DEFAULT_DEF (t))
2843 {
2844 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2845 return;
2846 }
2847
2848 vi = get_vi_for_tree (t);
2849 cexpr.var = vi->id;
2850 cexpr.type = SCALAR;
2851 cexpr.offset = 0;
2852 /* If we determine the result is "anything", and we know this is readonly,
2853 say it points to readonly memory instead. */
2854 if (cexpr.var == anything_id && TREE_READONLY (t))
2855 {
2856 gcc_unreachable ();
2857 cexpr.type = ADDRESSOF;
2858 cexpr.var = readonly_id;
2859 }
2860
2861 /* If we are not taking the address of the constraint expr, add all
2862 sub-fiels of the variable as well. */
2863 if (!address_p
2864 && !vi->is_full_var)
2865 {
2866 for (; vi; vi = vi->next)
2867 {
2868 cexpr.var = vi->id;
2869 VEC_safe_push (ce_s, heap, *results, &cexpr);
2870 }
2871 return;
2872 }
2873
2874 VEC_safe_push (ce_s, heap, *results, &cexpr);
2875 }
2876
2877 /* Process constraint T, performing various simplifications and then
2878 adding it to our list of overall constraints. */
2879
2880 static void
2881 process_constraint (constraint_t t)
2882 {
2883 struct constraint_expr rhs = t->rhs;
2884 struct constraint_expr lhs = t->lhs;
2885
2886 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2887 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2888
2889 /* If we didn't get any useful constraint from the lhs we get
2890 &ANYTHING as fallback from get_constraint_for. Deal with
2891 it here by turning it into *ANYTHING. */
2892 if (lhs.type == ADDRESSOF
2893 && lhs.var == anything_id)
2894 lhs.type = DEREF;
2895
2896 /* ADDRESSOF on the lhs is invalid. */
2897 gcc_assert (lhs.type != ADDRESSOF);
2898
2899 /* We shouldn't add constraints from things that cannot have pointers.
2900 It's not completely trivial to avoid in the callers, so do it here. */
2901 if (rhs.type != ADDRESSOF
2902 && !get_varinfo (rhs.var)->may_have_pointers)
2903 return;
2904
2905 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2906 if (!get_varinfo (lhs.var)->may_have_pointers)
2907 return;
2908
2909 /* This can happen in our IR with things like n->a = *p */
2910 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2911 {
2912 /* Split into tmp = *rhs, *lhs = tmp */
2913 struct constraint_expr tmplhs;
2914 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2915 process_constraint (new_constraint (tmplhs, rhs));
2916 process_constraint (new_constraint (lhs, tmplhs));
2917 }
2918 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2919 {
2920 /* Split into tmp = &rhs, *lhs = tmp */
2921 struct constraint_expr tmplhs;
2922 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2923 process_constraint (new_constraint (tmplhs, rhs));
2924 process_constraint (new_constraint (lhs, tmplhs));
2925 }
2926 else
2927 {
2928 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2929 VEC_safe_push (constraint_t, heap, constraints, t);
2930 }
2931 }
2932
2933 /* Return true if T is a type that could contain pointers. */
2934
2935 static bool
2936 type_could_have_pointers (tree type)
2937 {
2938 if (POINTER_TYPE_P (type))
2939 return true;
2940
2941 if (TREE_CODE (type) == ARRAY_TYPE)
2942 return type_could_have_pointers (TREE_TYPE (type));
2943
2944 /* A function or method can consume pointers.
2945 ??? We could be more precise here. */
2946 if (TREE_CODE (type) == FUNCTION_TYPE
2947 || TREE_CODE (type) == METHOD_TYPE)
2948 return true;
2949
2950 return AGGREGATE_TYPE_P (type);
2951 }
2952
2953 /* Return true if T is a variable of a type that could contain
2954 pointers. */
2955
2956 static bool
2957 could_have_pointers (tree t)
2958 {
2959 return (((TREE_CODE (t) == VAR_DECL
2960 || TREE_CODE (t) == PARM_DECL
2961 || TREE_CODE (t) == RESULT_DECL)
2962 && (TREE_PUBLIC (t) || DECL_EXTERNAL (t) || TREE_ADDRESSABLE (t)))
2963 || type_could_have_pointers (TREE_TYPE (t)));
2964 }
2965
2966 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2967 structure. */
2968
2969 static HOST_WIDE_INT
2970 bitpos_of_field (const tree fdecl)
2971 {
2972
2973 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2974 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2975 return -1;
2976
2977 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2978 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2979 }
2980
2981
2982 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2983 resulting constraint expressions in *RESULTS. */
2984
2985 static void
2986 get_constraint_for_ptr_offset (tree ptr, tree offset,
2987 VEC (ce_s, heap) **results)
2988 {
2989 struct constraint_expr c;
2990 unsigned int j, n;
2991 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2992
2993 /* If we do not do field-sensitive PTA adding offsets to pointers
2994 does not change the points-to solution. */
2995 if (!use_field_sensitive)
2996 {
2997 get_constraint_for (ptr, results);
2998 return;
2999 }
3000
3001 /* If the offset is not a non-negative integer constant that fits
3002 in a HOST_WIDE_INT, we have to fall back to a conservative
3003 solution which includes all sub-fields of all pointed-to
3004 variables of ptr. */
3005 if (offset == NULL_TREE
3006 || !host_integerp (offset, 0))
3007 rhsoffset = UNKNOWN_OFFSET;
3008 else
3009 {
3010 /* Make sure the bit-offset also fits. */
3011 rhsunitoffset = TREE_INT_CST_LOW (offset);
3012 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3013 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3014 rhsoffset = UNKNOWN_OFFSET;
3015 }
3016
3017 get_constraint_for (ptr, results);
3018 if (rhsoffset == 0)
3019 return;
3020
3021 /* As we are eventually appending to the solution do not use
3022 VEC_iterate here. */
3023 n = VEC_length (ce_s, *results);
3024 for (j = 0; j < n; j++)
3025 {
3026 varinfo_t curr;
3027 c = *VEC_index (ce_s, *results, j);
3028 curr = get_varinfo (c.var);
3029
3030 if (c.type == ADDRESSOF
3031 /* If this varinfo represents a full variable just use it. */
3032 && curr->is_full_var)
3033 c.offset = 0;
3034 else if (c.type == ADDRESSOF
3035 /* If we do not know the offset add all subfields. */
3036 && rhsoffset == UNKNOWN_OFFSET)
3037 {
3038 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3039 do
3040 {
3041 struct constraint_expr c2;
3042 c2.var = temp->id;
3043 c2.type = ADDRESSOF;
3044 c2.offset = 0;
3045 if (c2.var != c.var)
3046 VEC_safe_push (ce_s, heap, *results, &c2);
3047 temp = temp->next;
3048 }
3049 while (temp);
3050 }
3051 else if (c.type == ADDRESSOF)
3052 {
3053 varinfo_t temp;
3054 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3055
3056 /* Search the sub-field which overlaps with the
3057 pointed-to offset. If the result is outside of the variable
3058 we have to provide a conservative result, as the variable is
3059 still reachable from the resulting pointer (even though it
3060 technically cannot point to anything). The last and first
3061 sub-fields are such conservative results.
3062 ??? If we always had a sub-field for &object + 1 then
3063 we could represent this in a more precise way. */
3064 if (rhsoffset < 0
3065 && curr->offset < offset)
3066 offset = 0;
3067 temp = first_or_preceding_vi_for_offset (curr, offset);
3068
3069 /* If the found variable is not exactly at the pointed to
3070 result, we have to include the next variable in the
3071 solution as well. Otherwise two increments by offset / 2
3072 do not result in the same or a conservative superset
3073 solution. */
3074 if (temp->offset != offset
3075 && temp->next != NULL)
3076 {
3077 struct constraint_expr c2;
3078 c2.var = temp->next->id;
3079 c2.type = ADDRESSOF;
3080 c2.offset = 0;
3081 VEC_safe_push (ce_s, heap, *results, &c2);
3082 }
3083 c.var = temp->id;
3084 c.offset = 0;
3085 }
3086 else
3087 c.offset = rhsoffset;
3088
3089 VEC_replace (ce_s, *results, j, &c);
3090 }
3091 }
3092
3093
3094 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3095 If address_p is true the result will be taken its address of. */
3096
3097 static void
3098 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3099 bool address_p)
3100 {
3101 tree orig_t = t;
3102 HOST_WIDE_INT bitsize = -1;
3103 HOST_WIDE_INT bitmaxsize = -1;
3104 HOST_WIDE_INT bitpos;
3105 tree forzero;
3106 struct constraint_expr *result;
3107
3108 /* Some people like to do cute things like take the address of
3109 &0->a.b */
3110 forzero = t;
3111 while (handled_component_p (forzero)
3112 || INDIRECT_REF_P (forzero))
3113 forzero = TREE_OPERAND (forzero, 0);
3114
3115 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3116 {
3117 struct constraint_expr temp;
3118
3119 temp.offset = 0;
3120 temp.var = integer_id;
3121 temp.type = SCALAR;
3122 VEC_safe_push (ce_s, heap, *results, &temp);
3123 return;
3124 }
3125
3126 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3127
3128 /* Pretend to take the address of the base, we'll take care of
3129 adding the required subset of sub-fields below. */
3130 get_constraint_for_1 (t, results, true);
3131 gcc_assert (VEC_length (ce_s, *results) == 1);
3132 result = VEC_last (ce_s, *results);
3133
3134 if (result->type == SCALAR
3135 && get_varinfo (result->var)->is_full_var)
3136 /* For single-field vars do not bother about the offset. */
3137 result->offset = 0;
3138 else if (result->type == SCALAR)
3139 {
3140 /* In languages like C, you can access one past the end of an
3141 array. You aren't allowed to dereference it, so we can
3142 ignore this constraint. When we handle pointer subtraction,
3143 we may have to do something cute here. */
3144
3145 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3146 && bitmaxsize != 0)
3147 {
3148 /* It's also not true that the constraint will actually start at the
3149 right offset, it may start in some padding. We only care about
3150 setting the constraint to the first actual field it touches, so
3151 walk to find it. */
3152 struct constraint_expr cexpr = *result;
3153 varinfo_t curr;
3154 VEC_pop (ce_s, *results);
3155 cexpr.offset = 0;
3156 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3157 {
3158 if (ranges_overlap_p (curr->offset, curr->size,
3159 bitpos, bitmaxsize))
3160 {
3161 cexpr.var = curr->id;
3162 VEC_safe_push (ce_s, heap, *results, &cexpr);
3163 if (address_p)
3164 break;
3165 }
3166 }
3167 /* If we are going to take the address of this field then
3168 to be able to compute reachability correctly add at least
3169 the last field of the variable. */
3170 if (address_p
3171 && VEC_length (ce_s, *results) == 0)
3172 {
3173 curr = get_varinfo (cexpr.var);
3174 while (curr->next != NULL)
3175 curr = curr->next;
3176 cexpr.var = curr->id;
3177 VEC_safe_push (ce_s, heap, *results, &cexpr);
3178 }
3179 else
3180 /* Assert that we found *some* field there. The user couldn't be
3181 accessing *only* padding. */
3182 /* Still the user could access one past the end of an array
3183 embedded in a struct resulting in accessing *only* padding. */
3184 gcc_assert (VEC_length (ce_s, *results) >= 1
3185 || ref_contains_array_ref (orig_t));
3186 }
3187 else if (bitmaxsize == 0)
3188 {
3189 if (dump_file && (dump_flags & TDF_DETAILS))
3190 fprintf (dump_file, "Access to zero-sized part of variable,"
3191 "ignoring\n");
3192 }
3193 else
3194 if (dump_file && (dump_flags & TDF_DETAILS))
3195 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3196 }
3197 else if (result->type == DEREF)
3198 {
3199 /* If we do not know exactly where the access goes say so. Note
3200 that only for non-structure accesses we know that we access
3201 at most one subfiled of any variable. */
3202 if (bitpos == -1
3203 || bitsize != bitmaxsize
3204 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3205 result->offset = UNKNOWN_OFFSET;
3206 else
3207 result->offset = bitpos;
3208 }
3209 else if (result->type == ADDRESSOF)
3210 {
3211 /* We can end up here for component references on a
3212 VIEW_CONVERT_EXPR <>(&foobar). */
3213 result->type = SCALAR;
3214 result->var = anything_id;
3215 result->offset = 0;
3216 }
3217 else
3218 gcc_unreachable ();
3219 }
3220
3221
3222 /* Dereference the constraint expression CONS, and return the result.
3223 DEREF (ADDRESSOF) = SCALAR
3224 DEREF (SCALAR) = DEREF
3225 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3226 This is needed so that we can handle dereferencing DEREF constraints. */
3227
3228 static void
3229 do_deref (VEC (ce_s, heap) **constraints)
3230 {
3231 struct constraint_expr *c;
3232 unsigned int i = 0;
3233
3234 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
3235 {
3236 if (c->type == SCALAR)
3237 c->type = DEREF;
3238 else if (c->type == ADDRESSOF)
3239 c->type = SCALAR;
3240 else if (c->type == DEREF)
3241 {
3242 struct constraint_expr tmplhs;
3243 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3244 process_constraint (new_constraint (tmplhs, *c));
3245 c->var = tmplhs.var;
3246 }
3247 else
3248 gcc_unreachable ();
3249 }
3250 }
3251
3252 static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
3253
3254 /* Given a tree T, return the constraint expression for taking the
3255 address of it. */
3256
3257 static void
3258 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3259 {
3260 struct constraint_expr *c;
3261 unsigned int i;
3262
3263 get_constraint_for_1 (t, results, true);
3264
3265 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3266 {
3267 if (c->type == DEREF)
3268 c->type = SCALAR;
3269 else
3270 c->type = ADDRESSOF;
3271 }
3272 }
3273
3274 /* Given a tree T, return the constraint expression for it. */
3275
3276 static void
3277 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
3278 {
3279 struct constraint_expr temp;
3280
3281 /* x = integer is all glommed to a single variable, which doesn't
3282 point to anything by itself. That is, of course, unless it is an
3283 integer constant being treated as a pointer, in which case, we
3284 will return that this is really the addressof anything. This
3285 happens below, since it will fall into the default case. The only
3286 case we know something about an integer treated like a pointer is
3287 when it is the NULL pointer, and then we just say it points to
3288 NULL.
3289
3290 Do not do that if -fno-delete-null-pointer-checks though, because
3291 in that case *NULL does not fail, so it _should_ alias *anything.
3292 It is not worth adding a new option or renaming the existing one,
3293 since this case is relatively obscure. */
3294 if ((TREE_CODE (t) == INTEGER_CST
3295 && integer_zerop (t))
3296 /* The only valid CONSTRUCTORs in gimple with pointer typed
3297 elements are zero-initializer. But in IPA mode we also
3298 process global initializers, so verify at least. */
3299 || (TREE_CODE (t) == CONSTRUCTOR
3300 && CONSTRUCTOR_NELTS (t) == 0))
3301 {
3302 if (flag_delete_null_pointer_checks)
3303 temp.var = nothing_id;
3304 else
3305 temp.var = anything_id;
3306 temp.type = ADDRESSOF;
3307 temp.offset = 0;
3308 VEC_safe_push (ce_s, heap, *results, &temp);
3309 return;
3310 }
3311
3312 /* String constants are read-only. */
3313 if (TREE_CODE (t) == STRING_CST)
3314 {
3315 temp.var = readonly_id;
3316 temp.type = SCALAR;
3317 temp.offset = 0;
3318 VEC_safe_push (ce_s, heap, *results, &temp);
3319 return;
3320 }
3321
3322 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3323 {
3324 case tcc_expression:
3325 {
3326 switch (TREE_CODE (t))
3327 {
3328 case ADDR_EXPR:
3329 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3330 return;
3331 default:;
3332 }
3333 break;
3334 }
3335 case tcc_reference:
3336 {
3337 switch (TREE_CODE (t))
3338 {
3339 case INDIRECT_REF:
3340 {
3341 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3342 do_deref (results);
3343 return;
3344 }
3345 case ARRAY_REF:
3346 case ARRAY_RANGE_REF:
3347 case COMPONENT_REF:
3348 get_constraint_for_component_ref (t, results, address_p);
3349 return;
3350 case VIEW_CONVERT_EXPR:
3351 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3352 return;
3353 /* We are missing handling for TARGET_MEM_REF here. */
3354 default:;
3355 }
3356 break;
3357 }
3358 case tcc_exceptional:
3359 {
3360 switch (TREE_CODE (t))
3361 {
3362 case SSA_NAME:
3363 {
3364 get_constraint_for_ssa_var (t, results, address_p);
3365 return;
3366 }
3367 case CONSTRUCTOR:
3368 {
3369 unsigned int i;
3370 tree val;
3371 VEC (ce_s, heap) *tmp = NULL;
3372 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3373 {
3374 struct constraint_expr *rhsp;
3375 unsigned j;
3376 get_constraint_for_1 (val, &tmp, address_p);
3377 for (j = 0; VEC_iterate (ce_s, tmp, j, rhsp); ++j)
3378 VEC_safe_push (ce_s, heap, *results, rhsp);
3379 VEC_truncate (ce_s, tmp, 0);
3380 }
3381 VEC_free (ce_s, heap, tmp);
3382 /* We do not know whether the constructor was complete,
3383 so technically we have to add &NOTHING or &ANYTHING
3384 like we do for an empty constructor as well. */
3385 return;
3386 }
3387 default:;
3388 }
3389 break;
3390 }
3391 case tcc_declaration:
3392 {
3393 get_constraint_for_ssa_var (t, results, address_p);
3394 return;
3395 }
3396 default:;
3397 }
3398
3399 /* The default fallback is a constraint from anything. */
3400 temp.type = ADDRESSOF;
3401 temp.var = anything_id;
3402 temp.offset = 0;
3403 VEC_safe_push (ce_s, heap, *results, &temp);
3404 }
3405
3406 /* Given a gimple tree T, return the constraint expression vector for it. */
3407
3408 static void
3409 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3410 {
3411 gcc_assert (VEC_length (ce_s, *results) == 0);
3412
3413 get_constraint_for_1 (t, results, false);
3414 }
3415
3416
3417 /* Efficiently generates constraints from all entries in *RHSC to all
3418 entries in *LHSC. */
3419
3420 static void
3421 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3422 {
3423 struct constraint_expr *lhsp, *rhsp;
3424 unsigned i, j;
3425
3426 if (VEC_length (ce_s, lhsc) <= 1
3427 || VEC_length (ce_s, rhsc) <= 1)
3428 {
3429 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3430 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3431 process_constraint (new_constraint (*lhsp, *rhsp));
3432 }
3433 else
3434 {
3435 struct constraint_expr tmp;
3436 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3437 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
3438 process_constraint (new_constraint (tmp, *rhsp));
3439 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3440 process_constraint (new_constraint (*lhsp, tmp));
3441 }
3442 }
3443
3444 /* Handle aggregate copies by expanding into copies of the respective
3445 fields of the structures. */
3446
3447 static void
3448 do_structure_copy (tree lhsop, tree rhsop)
3449 {
3450 struct constraint_expr *lhsp, *rhsp;
3451 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3452 unsigned j;
3453
3454 get_constraint_for (lhsop, &lhsc);
3455 get_constraint_for (rhsop, &rhsc);
3456 lhsp = VEC_index (ce_s, lhsc, 0);
3457 rhsp = VEC_index (ce_s, rhsc, 0);
3458 if (lhsp->type == DEREF
3459 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3460 || rhsp->type == DEREF)
3461 {
3462 if (lhsp->type == DEREF)
3463 {
3464 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3465 lhsp->offset = UNKNOWN_OFFSET;
3466 }
3467 if (rhsp->type == DEREF)
3468 {
3469 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3470 rhsp->offset = UNKNOWN_OFFSET;
3471 }
3472 process_all_all_constraints (lhsc, rhsc);
3473 }
3474 else if (lhsp->type == SCALAR
3475 && (rhsp->type == SCALAR
3476 || rhsp->type == ADDRESSOF))
3477 {
3478 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3479 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3480 unsigned k = 0;
3481 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3482 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3483 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3484 {
3485 varinfo_t lhsv, rhsv;
3486 rhsp = VEC_index (ce_s, rhsc, k);
3487 lhsv = get_varinfo (lhsp->var);
3488 rhsv = get_varinfo (rhsp->var);
3489 if (lhsv->may_have_pointers
3490 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3491 rhsv->offset + lhsoffset, rhsv->size))
3492 process_constraint (new_constraint (*lhsp, *rhsp));
3493 if (lhsv->offset + rhsoffset + lhsv->size
3494 > rhsv->offset + lhsoffset + rhsv->size)
3495 {
3496 ++k;
3497 if (k >= VEC_length (ce_s, rhsc))
3498 break;
3499 }
3500 else
3501 ++j;
3502 }
3503 }
3504 else
3505 gcc_unreachable ();
3506
3507 VEC_free (ce_s, heap, lhsc);
3508 VEC_free (ce_s, heap, rhsc);
3509 }
3510
3511 /* Create a constraint ID = OP. */
3512
3513 static void
3514 make_constraint_to (unsigned id, tree op)
3515 {
3516 VEC(ce_s, heap) *rhsc = NULL;
3517 struct constraint_expr *c;
3518 struct constraint_expr includes;
3519 unsigned int j;
3520
3521 includes.var = id;
3522 includes.offset = 0;
3523 includes.type = SCALAR;
3524
3525 get_constraint_for (op, &rhsc);
3526 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
3527 process_constraint (new_constraint (includes, *c));
3528 VEC_free (ce_s, heap, rhsc);
3529 }
3530
3531 /* Create a constraint ID = &FROM. */
3532
3533 static void
3534 make_constraint_from (varinfo_t vi, int from)
3535 {
3536 struct constraint_expr lhs, rhs;
3537
3538 lhs.var = vi->id;
3539 lhs.offset = 0;
3540 lhs.type = SCALAR;
3541
3542 rhs.var = from;
3543 rhs.offset = 0;
3544 rhs.type = ADDRESSOF;
3545 process_constraint (new_constraint (lhs, rhs));
3546 }
3547
3548 /* Create a constraint ID = FROM. */
3549
3550 static void
3551 make_copy_constraint (varinfo_t vi, int from)
3552 {
3553 struct constraint_expr lhs, rhs;
3554
3555 lhs.var = vi->id;
3556 lhs.offset = 0;
3557 lhs.type = SCALAR;
3558
3559 rhs.var = from;
3560 rhs.offset = 0;
3561 rhs.type = SCALAR;
3562 process_constraint (new_constraint (lhs, rhs));
3563 }
3564
3565 /* Make constraints necessary to make OP escape. */
3566
3567 static void
3568 make_escape_constraint (tree op)
3569 {
3570 make_constraint_to (escaped_id, op);
3571 }
3572
3573 /* Add constraints to that the solution of VI is transitively closed. */
3574
3575 static void
3576 make_transitive_closure_constraints (varinfo_t vi)
3577 {
3578 struct constraint_expr lhs, rhs;
3579
3580 /* VAR = *VAR; */
3581 lhs.type = SCALAR;
3582 lhs.var = vi->id;
3583 lhs.offset = 0;
3584 rhs.type = DEREF;
3585 rhs.var = vi->id;
3586 rhs.offset = 0;
3587 process_constraint (new_constraint (lhs, rhs));
3588
3589 /* VAR = VAR + UNKNOWN; */
3590 lhs.type = SCALAR;
3591 lhs.var = vi->id;
3592 lhs.offset = 0;
3593 rhs.type = SCALAR;
3594 rhs.var = vi->id;
3595 rhs.offset = UNKNOWN_OFFSET;
3596 process_constraint (new_constraint (lhs, rhs));
3597 }
3598
3599 /* Create a new artificial heap variable with NAME.
3600 Return the created variable. */
3601
3602 static varinfo_t
3603 make_heapvar_for (varinfo_t lhs, const char *name)
3604 {
3605 varinfo_t vi;
3606 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3607
3608 if (heapvar == NULL_TREE)
3609 {
3610 var_ann_t ann;
3611 heapvar = create_tmp_var_raw (ptr_type_node, name);
3612 DECL_EXTERNAL (heapvar) = 1;
3613
3614 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3615
3616 ann = get_var_ann (heapvar);
3617 ann->is_heapvar = 1;
3618 }
3619
3620 /* For global vars we need to add a heapvar to the list of referenced
3621 vars of a different function than it was created for originally. */
3622 if (cfun && gimple_referenced_vars (cfun))
3623 add_referenced_var (heapvar);
3624
3625 vi = new_var_info (heapvar, name);
3626 vi->is_artificial_var = true;
3627 vi->is_heap_var = true;
3628 vi->is_unknown_size_var = true;
3629 vi->offset = 0;
3630 vi->fullsize = ~0;
3631 vi->size = ~0;
3632 vi->is_full_var = true;
3633 insert_vi_for_tree (heapvar, vi);
3634
3635 return vi;
3636 }
3637
3638 /* Create a new artificial heap variable with NAME and make a
3639 constraint from it to LHS. Return the created variable. */
3640
3641 static varinfo_t
3642 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3643 {
3644 varinfo_t vi = make_heapvar_for (lhs, name);
3645 make_constraint_from (lhs, vi->id);
3646
3647 return vi;
3648 }
3649
3650 /* Create a new artificial heap variable with NAME and make a
3651 constraint from it to LHS. Set flags according to a tag used
3652 for tracking restrict pointers. */
3653
3654 static void
3655 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3656 {
3657 varinfo_t vi;
3658 vi = make_constraint_from_heapvar (lhs, name);
3659 vi->is_restrict_var = 1;
3660 vi->is_global_var = 0;
3661 vi->is_special_var = 1;
3662 vi->may_have_pointers = 0;
3663 }
3664
3665 /* In IPA mode there are varinfos for different aspects of reach
3666 function designator. One for the points-to set of the return
3667 value, one for the variables that are clobbered by the function,
3668 one for its uses and one for each parameter (including a single
3669 glob for remaining variadic arguments). */
3670
3671 enum { fi_clobbers = 1, fi_uses = 2,
3672 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3673
3674 /* Get a constraint for the requested part of a function designator FI
3675 when operating in IPA mode. */
3676
3677 static struct constraint_expr
3678 get_function_part_constraint (varinfo_t fi, unsigned part)
3679 {
3680 struct constraint_expr c;
3681
3682 gcc_assert (in_ipa_mode);
3683
3684 if (fi->id == anything_id)
3685 {
3686 /* ??? We probably should have a ANYFN special variable. */
3687 c.var = anything_id;
3688 c.offset = 0;
3689 c.type = SCALAR;
3690 }
3691 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3692 {
3693 varinfo_t ai = first_vi_for_offset (fi, part);
3694 if (ai)
3695 c.var = ai->id;
3696 else
3697 c.var = anything_id;
3698 c.offset = 0;
3699 c.type = SCALAR;
3700 }
3701 else
3702 {
3703 c.var = fi->id;
3704 c.offset = part;
3705 c.type = DEREF;
3706 }
3707
3708 return c;
3709 }
3710
3711 /* For non-IPA mode, generate constraints necessary for a call on the
3712 RHS. */
3713
3714 static void
3715 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3716 {
3717 struct constraint_expr rhsc;
3718 unsigned i;
3719 bool returns_uses = false;
3720
3721 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3722 {
3723 tree arg = gimple_call_arg (stmt, i);
3724 int flags = gimple_call_arg_flags (stmt, i);
3725
3726 /* If the argument is not used or it does not contain pointers
3727 we can ignore it. */
3728 if ((flags & EAF_UNUSED)
3729 || !could_have_pointers (arg))
3730 continue;
3731
3732 /* As we compute ESCAPED context-insensitive we do not gain
3733 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3734 set. The argument would still get clobbered through the
3735 escape solution.
3736 ??? We might get away with less (and more precise) constraints
3737 if using a temporary for transitively closing things. */
3738 if ((flags & EAF_NOCLOBBER)
3739 && (flags & EAF_NOESCAPE))
3740 {
3741 varinfo_t uses = get_call_use_vi (stmt);
3742 if (!(flags & EAF_DIRECT))
3743 make_transitive_closure_constraints (uses);
3744 make_constraint_to (uses->id, arg);
3745 returns_uses = true;
3746 }
3747 else if (flags & EAF_NOESCAPE)
3748 {
3749 varinfo_t uses = get_call_use_vi (stmt);
3750 varinfo_t clobbers = get_call_clobber_vi (stmt);
3751 if (!(flags & EAF_DIRECT))
3752 {
3753 make_transitive_closure_constraints (uses);
3754 make_transitive_closure_constraints (clobbers);
3755 }
3756 make_constraint_to (uses->id, arg);
3757 make_constraint_to (clobbers->id, arg);
3758 returns_uses = true;
3759 }
3760 else
3761 make_escape_constraint (arg);
3762 }
3763
3764 /* If we added to the calls uses solution make sure we account for
3765 pointers to it to be returned. */
3766 if (returns_uses)
3767 {
3768 rhsc.var = get_call_use_vi (stmt)->id;
3769 rhsc.offset = 0;
3770 rhsc.type = SCALAR;
3771 VEC_safe_push (ce_s, heap, *results, &rhsc);
3772 }
3773
3774 /* The static chain escapes as well. */
3775 if (gimple_call_chain (stmt))
3776 make_escape_constraint (gimple_call_chain (stmt));
3777
3778 /* And if we applied NRV the address of the return slot escapes as well. */
3779 if (gimple_call_return_slot_opt_p (stmt)
3780 && gimple_call_lhs (stmt) != NULL_TREE
3781 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3782 {
3783 VEC(ce_s, heap) *tmpc = NULL;
3784 struct constraint_expr lhsc, *c;
3785 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3786 lhsc.var = escaped_id;
3787 lhsc.offset = 0;
3788 lhsc.type = SCALAR;
3789 for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
3790 process_constraint (new_constraint (lhsc, *c));
3791 VEC_free(ce_s, heap, tmpc);
3792 }
3793
3794 /* Regular functions return nonlocal memory. */
3795 rhsc.var = nonlocal_id;
3796 rhsc.offset = 0;
3797 rhsc.type = SCALAR;
3798 VEC_safe_push (ce_s, heap, *results, &rhsc);
3799 }
3800
3801 /* For non-IPA mode, generate constraints necessary for a call
3802 that returns a pointer and assigns it to LHS. This simply makes
3803 the LHS point to global and escaped variables. */
3804
3805 static void
3806 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3807 tree fndecl)
3808 {
3809 VEC(ce_s, heap) *lhsc = NULL;
3810
3811 get_constraint_for (lhs, &lhsc);
3812 /* If the store is to a global decl make sure to
3813 add proper escape constraints. */
3814 lhs = get_base_address (lhs);
3815 if (lhs
3816 && DECL_P (lhs)
3817 && is_global_var (lhs))
3818 {
3819 struct constraint_expr tmpc;
3820 tmpc.var = escaped_id;
3821 tmpc.offset = 0;
3822 tmpc.type = SCALAR;
3823 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3824 }
3825
3826 /* If the call returns an argument unmodified override the rhs
3827 constraints. */
3828 flags = gimple_call_return_flags (stmt);
3829 if (flags & ERF_RETURNS_ARG
3830 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3831 {
3832 tree arg;
3833 rhsc = NULL;
3834 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3835 get_constraint_for (arg, &rhsc);
3836 process_all_all_constraints (lhsc, rhsc);
3837 VEC_free (ce_s, heap, rhsc);
3838 }
3839 else if (flags & ERF_NOALIAS)
3840 {
3841 varinfo_t vi;
3842 struct constraint_expr tmpc;
3843 rhsc = NULL;
3844 vi = make_heapvar_for (get_vi_for_tree (lhs), "HEAP");
3845 /* We delay marking allocated storage global until we know if
3846 it escapes. */
3847 DECL_EXTERNAL (vi->decl) = 0;
3848 vi->is_global_var = 0;
3849 /* If this is not a real malloc call assume the memory was
3850 initialized and thus may point to global memory. All
3851 builtin functions with the malloc attribute behave in a sane way. */
3852 if (!fndecl
3853 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3854 make_constraint_from (vi, nonlocal_id);
3855 tmpc.var = vi->id;
3856 tmpc.offset = 0;
3857 tmpc.type = ADDRESSOF;
3858 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3859 }
3860
3861 process_all_all_constraints (lhsc, rhsc);
3862
3863 VEC_free (ce_s, heap, lhsc);
3864 }
3865
3866 /* For non-IPA mode, generate constraints necessary for a call of a
3867 const function that returns a pointer in the statement STMT. */
3868
3869 static void
3870 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3871 {
3872 struct constraint_expr rhsc;
3873 unsigned int k;
3874
3875 /* Treat nested const functions the same as pure functions as far
3876 as the static chain is concerned. */
3877 if (gimple_call_chain (stmt))
3878 {
3879 varinfo_t uses = get_call_use_vi (stmt);
3880 make_transitive_closure_constraints (uses);
3881 make_constraint_to (uses->id, gimple_call_chain (stmt));
3882 rhsc.var = uses->id;
3883 rhsc.offset = 0;
3884 rhsc.type = SCALAR;
3885 VEC_safe_push (ce_s, heap, *results, &rhsc);
3886 }
3887
3888 /* May return arguments. */
3889 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3890 {
3891 tree arg = gimple_call_arg (stmt, k);
3892
3893 if (could_have_pointers (arg))
3894 {
3895 VEC(ce_s, heap) *argc = NULL;
3896 unsigned i;
3897 struct constraint_expr *argp;
3898 get_constraint_for (arg, &argc);
3899 for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
3900 VEC_safe_push (ce_s, heap, *results, argp);
3901 VEC_free(ce_s, heap, argc);
3902 }
3903 }
3904
3905 /* May return addresses of globals. */
3906 rhsc.var = nonlocal_id;
3907 rhsc.offset = 0;
3908 rhsc.type = ADDRESSOF;
3909 VEC_safe_push (ce_s, heap, *results, &rhsc);
3910 }
3911
3912 /* For non-IPA mode, generate constraints necessary for a call to a
3913 pure function in statement STMT. */
3914
3915 static void
3916 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3917 {
3918 struct constraint_expr rhsc;
3919 unsigned i;
3920 varinfo_t uses = NULL;
3921
3922 /* Memory reached from pointer arguments is call-used. */
3923 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3924 {
3925 tree arg = gimple_call_arg (stmt, i);
3926
3927 if (could_have_pointers (arg))
3928 {
3929 if (!uses)
3930 {
3931 uses = get_call_use_vi (stmt);
3932 make_transitive_closure_constraints (uses);
3933 }
3934 make_constraint_to (uses->id, arg);
3935 }
3936 }
3937
3938 /* The static chain is used as well. */
3939 if (gimple_call_chain (stmt))
3940 {
3941 if (!uses)
3942 {
3943 uses = get_call_use_vi (stmt);
3944 make_transitive_closure_constraints (uses);
3945 }
3946 make_constraint_to (uses->id, gimple_call_chain (stmt));
3947 }
3948
3949 /* Pure functions may return call-used and nonlocal memory. */
3950 if (uses)
3951 {
3952 rhsc.var = uses->id;
3953 rhsc.offset = 0;
3954 rhsc.type = SCALAR;
3955 VEC_safe_push (ce_s, heap, *results, &rhsc);
3956 }
3957 rhsc.var = nonlocal_id;
3958 rhsc.offset = 0;
3959 rhsc.type = SCALAR;
3960 VEC_safe_push (ce_s, heap, *results, &rhsc);
3961 }
3962
3963
3964 /* Return the varinfo for the callee of CALL. */
3965
3966 static varinfo_t
3967 get_fi_for_callee (gimple call)
3968 {
3969 tree decl;
3970
3971 /* If we can directly resolve the function being called, do so.
3972 Otherwise, it must be some sort of indirect expression that
3973 we should still be able to handle. */
3974 decl = gimple_call_fndecl (call);
3975 if (decl)
3976 return get_vi_for_tree (decl);
3977
3978 decl = gimple_call_fn (call);
3979 /* The function can be either an SSA name pointer or,
3980 worse, an OBJ_TYPE_REF. In this case we have no
3981 clue and should be getting ANYFN (well, ANYTHING for now). */
3982 if (TREE_CODE (decl) == SSA_NAME)
3983 {
3984 if (TREE_CODE (decl) == SSA_NAME
3985 && TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
3986 && SSA_NAME_IS_DEFAULT_DEF (decl))
3987 decl = SSA_NAME_VAR (decl);
3988 return get_vi_for_tree (decl);
3989 }
3990 else if (TREE_CODE (decl) == INTEGER_CST
3991 || TREE_CODE (decl) == OBJ_TYPE_REF)
3992 return get_varinfo (anything_id);
3993 else
3994 gcc_unreachable ();
3995 }
3996
3997 /* Walk statement T setting up aliasing constraints according to the
3998 references found in T. This function is the main part of the
3999 constraint builder. AI points to auxiliary alias information used
4000 when building alias sets and computing alias grouping heuristics. */
4001
4002 static void
4003 find_func_aliases (gimple origt)
4004 {
4005 gimple t = origt;
4006 VEC(ce_s, heap) *lhsc = NULL;
4007 VEC(ce_s, heap) *rhsc = NULL;
4008 struct constraint_expr *c;
4009 varinfo_t fi;
4010
4011 /* Now build constraints expressions. */
4012 if (gimple_code (t) == GIMPLE_PHI)
4013 {
4014 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
4015
4016 /* Only care about pointers and structures containing
4017 pointers. */
4018 if (could_have_pointers (gimple_phi_result (t)))
4019 {
4020 size_t i;
4021 unsigned int j;
4022
4023 /* For a phi node, assign all the arguments to
4024 the result. */
4025 get_constraint_for (gimple_phi_result (t), &lhsc);
4026 for (i = 0; i < gimple_phi_num_args (t); i++)
4027 {
4028 tree strippedrhs = PHI_ARG_DEF (t, i);
4029
4030 STRIP_NOPS (strippedrhs);
4031 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
4032
4033 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
4034 {
4035 struct constraint_expr *c2;
4036 while (VEC_length (ce_s, rhsc) > 0)
4037 {
4038 c2 = VEC_last (ce_s, rhsc);
4039 process_constraint (new_constraint (*c, *c2));
4040 VEC_pop (ce_s, rhsc);
4041 }
4042 }
4043 }
4044 }
4045 }
4046 /* In IPA mode, we need to generate constraints to pass call
4047 arguments through their calls. There are two cases,
4048 either a GIMPLE_CALL returning a value, or just a plain
4049 GIMPLE_CALL when we are not.
4050
4051 In non-ipa mode, we need to generate constraints for each
4052 pointer passed by address. */
4053 else if (is_gimple_call (t))
4054 {
4055 tree fndecl = gimple_call_fndecl (t);
4056 if (fndecl != NULL_TREE
4057 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4058 /* ??? All builtins that are handled here need to be handled
4059 in the alias-oracle query functions explicitly! */
4060 switch (DECL_FUNCTION_CODE (fndecl))
4061 {
4062 /* All the following functions return a pointer to the same object
4063 as their first argument points to. The functions do not add
4064 to the ESCAPED solution. The functions make the first argument
4065 pointed to memory point to what the second argument pointed to
4066 memory points to. */
4067 case BUILT_IN_STRCPY:
4068 case BUILT_IN_STRNCPY:
4069 case BUILT_IN_BCOPY:
4070 case BUILT_IN_MEMCPY:
4071 case BUILT_IN_MEMMOVE:
4072 case BUILT_IN_MEMPCPY:
4073 case BUILT_IN_STPCPY:
4074 case BUILT_IN_STPNCPY:
4075 case BUILT_IN_STRCAT:
4076 case BUILT_IN_STRNCAT:
4077 {
4078 tree res = gimple_call_lhs (t);
4079 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4080 == BUILT_IN_BCOPY ? 1 : 0));
4081 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4082 == BUILT_IN_BCOPY ? 0 : 1));
4083 if (res != NULL_TREE)
4084 {
4085 get_constraint_for (res, &lhsc);
4086 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4087 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4088 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4089 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4090 else
4091 get_constraint_for (dest, &rhsc);
4092 process_all_all_constraints (lhsc, rhsc);
4093 VEC_free (ce_s, heap, lhsc);
4094 VEC_free (ce_s, heap, rhsc);
4095 }
4096 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4097 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4098 do_deref (&lhsc);
4099 do_deref (&rhsc);
4100 process_all_all_constraints (lhsc, rhsc);
4101 VEC_free (ce_s, heap, lhsc);
4102 VEC_free (ce_s, heap, rhsc);
4103 return;
4104 }
4105 case BUILT_IN_MEMSET:
4106 {
4107 tree res = gimple_call_lhs (t);
4108 tree dest = gimple_call_arg (t, 0);
4109 unsigned i;
4110 ce_s *lhsp;
4111 struct constraint_expr ac;
4112 if (res != NULL_TREE)
4113 {
4114 get_constraint_for (res, &lhsc);
4115 get_constraint_for (dest, &rhsc);
4116 process_all_all_constraints (lhsc, rhsc);
4117 VEC_free (ce_s, heap, lhsc);
4118 VEC_free (ce_s, heap, rhsc);
4119 }
4120 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4121 do_deref (&lhsc);
4122 if (flag_delete_null_pointer_checks
4123 && integer_zerop (gimple_call_arg (t, 1)))
4124 {
4125 ac.type = ADDRESSOF;
4126 ac.var = nothing_id;
4127 }
4128 else
4129 {
4130 ac.type = SCALAR;
4131 ac.var = integer_id;
4132 }
4133 ac.offset = 0;
4134 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4135 process_constraint (new_constraint (*lhsp, ac));
4136 VEC_free (ce_s, heap, lhsc);
4137 return;
4138 }
4139 /* All the following functions do not return pointers, do not
4140 modify the points-to sets of memory reachable from their
4141 arguments and do not add to the ESCAPED solution. */
4142 case BUILT_IN_SINCOS:
4143 case BUILT_IN_SINCOSF:
4144 case BUILT_IN_SINCOSL:
4145 case BUILT_IN_FREXP:
4146 case BUILT_IN_FREXPF:
4147 case BUILT_IN_FREXPL:
4148 case BUILT_IN_GAMMA_R:
4149 case BUILT_IN_GAMMAF_R:
4150 case BUILT_IN_GAMMAL_R:
4151 case BUILT_IN_LGAMMA_R:
4152 case BUILT_IN_LGAMMAF_R:
4153 case BUILT_IN_LGAMMAL_R:
4154 case BUILT_IN_MODF:
4155 case BUILT_IN_MODFF:
4156 case BUILT_IN_MODFL:
4157 case BUILT_IN_REMQUO:
4158 case BUILT_IN_REMQUOF:
4159 case BUILT_IN_REMQUOL:
4160 case BUILT_IN_FREE:
4161 return;
4162 /* Trampolines are special - they set up passing the static
4163 frame. */
4164 case BUILT_IN_INIT_TRAMPOLINE:
4165 {
4166 tree tramp = gimple_call_arg (t, 0);
4167 tree nfunc = gimple_call_arg (t, 1);
4168 tree frame = gimple_call_arg (t, 2);
4169 unsigned i;
4170 struct constraint_expr lhs, *rhsp;
4171 if (in_ipa_mode)
4172 {
4173 varinfo_t nfi = NULL;
4174 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4175 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4176 if (nfi)
4177 {
4178 lhs = get_function_part_constraint (nfi, fi_static_chain);
4179 get_constraint_for (frame, &rhsc);
4180 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
4181 process_constraint (new_constraint (lhs, *rhsp));
4182 VEC_free (ce_s, heap, rhsc);
4183
4184 /* Make the frame point to the function for
4185 the trampoline adjustment call. */
4186 get_constraint_for (tramp, &lhsc);
4187 do_deref (&lhsc);
4188 get_constraint_for (nfunc, &rhsc);
4189 process_all_all_constraints (lhsc, rhsc);
4190 VEC_free (ce_s, heap, rhsc);
4191 VEC_free (ce_s, heap, lhsc);
4192
4193 return;
4194 }
4195 }
4196 /* Else fallthru to generic handling which will let
4197 the frame escape. */
4198 break;
4199 }
4200 case BUILT_IN_ADJUST_TRAMPOLINE:
4201 {
4202 tree tramp = gimple_call_arg (t, 0);
4203 tree res = gimple_call_lhs (t);
4204 if (in_ipa_mode && res)
4205 {
4206 get_constraint_for (res, &lhsc);
4207 get_constraint_for (tramp, &rhsc);
4208 do_deref (&rhsc);
4209 process_all_all_constraints (lhsc, rhsc);
4210 VEC_free (ce_s, heap, rhsc);
4211 VEC_free (ce_s, heap, lhsc);
4212 }
4213 return;
4214 }
4215 /* Variadic argument handling needs to be handled in IPA
4216 mode as well. */
4217 case BUILT_IN_VA_START:
4218 {
4219 if (in_ipa_mode)
4220 {
4221 tree valist = gimple_call_arg (t, 0);
4222 struct constraint_expr rhs, *lhsp;
4223 unsigned i;
4224 /* The va_list gets access to pointers in variadic
4225 arguments. */
4226 fi = lookup_vi_for_tree (cfun->decl);
4227 gcc_assert (fi != NULL);
4228 get_constraint_for (valist, &lhsc);
4229 do_deref (&lhsc);
4230 rhs = get_function_part_constraint (fi, ~0);
4231 rhs.type = ADDRESSOF;
4232 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4233 process_constraint (new_constraint (*lhsp, rhs));
4234 VEC_free (ce_s, heap, lhsc);
4235 /* va_list is clobbered. */
4236 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4237 return;
4238 }
4239 break;
4240 }
4241 /* va_end doesn't have any effect that matters. */
4242 case BUILT_IN_VA_END:
4243 return;
4244 /* printf-style functions may have hooks to set pointers to
4245 point to somewhere into the generated string. Leave them
4246 for a later excercise... */
4247 default:
4248 /* Fallthru to general call handling. */;
4249 }
4250 if (!in_ipa_mode
4251 || (fndecl
4252 && (!(fi = lookup_vi_for_tree (fndecl))
4253 || !fi->is_fn_info)))
4254 {
4255 VEC(ce_s, heap) *rhsc = NULL;
4256 int flags = gimple_call_flags (t);
4257
4258 /* Const functions can return their arguments and addresses
4259 of global memory but not of escaped memory. */
4260 if (flags & (ECF_CONST|ECF_NOVOPS))
4261 {
4262 if (gimple_call_lhs (t)
4263 && could_have_pointers (gimple_call_lhs (t)))
4264 handle_const_call (t, &rhsc);
4265 }
4266 /* Pure functions can return addresses in and of memory
4267 reachable from their arguments, but they are not an escape
4268 point for reachable memory of their arguments. */
4269 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4270 handle_pure_call (t, &rhsc);
4271 else
4272 handle_rhs_call (t, &rhsc);
4273 if (gimple_call_lhs (t)
4274 && could_have_pointers (gimple_call_lhs (t)))
4275 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4276 VEC_free (ce_s, heap, rhsc);
4277 }
4278 else
4279 {
4280 tree lhsop;
4281 unsigned j;
4282
4283 fi = get_fi_for_callee (t);
4284
4285 /* Assign all the passed arguments to the appropriate incoming
4286 parameters of the function. */
4287 for (j = 0; j < gimple_call_num_args (t); j++)
4288 {
4289 struct constraint_expr lhs ;
4290 struct constraint_expr *rhsp;
4291 tree arg = gimple_call_arg (t, j);
4292
4293 if (!could_have_pointers (arg))
4294 continue;
4295
4296 get_constraint_for (arg, &rhsc);
4297 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4298 while (VEC_length (ce_s, rhsc) != 0)
4299 {
4300 rhsp = VEC_last (ce_s, rhsc);
4301 process_constraint (new_constraint (lhs, *rhsp));
4302 VEC_pop (ce_s, rhsc);
4303 }
4304 }
4305
4306 /* If we are returning a value, assign it to the result. */
4307 lhsop = gimple_call_lhs (t);
4308 if (lhsop
4309 && type_could_have_pointers (TREE_TYPE (lhsop)))
4310 {
4311 struct constraint_expr rhs;
4312 struct constraint_expr *lhsp;
4313
4314 get_constraint_for (lhsop, &lhsc);
4315 rhs = get_function_part_constraint (fi, fi_result);
4316 if (fndecl
4317 && DECL_RESULT (fndecl)
4318 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4319 {
4320 VEC(ce_s, heap) *tem = NULL;
4321 VEC_safe_push (ce_s, heap, tem, &rhs);
4322 do_deref (&tem);
4323 rhs = *VEC_index (ce_s, tem, 0);
4324 VEC_free(ce_s, heap, tem);
4325 }
4326 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4327 process_constraint (new_constraint (*lhsp, rhs));
4328 }
4329
4330 /* If we pass the result decl by reference, honor that. */
4331 if (lhsop
4332 && fndecl
4333 && DECL_RESULT (fndecl)
4334 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4335 {
4336 struct constraint_expr lhs;
4337 struct constraint_expr *rhsp;
4338
4339 get_constraint_for_address_of (lhsop, &rhsc);
4340 lhs = get_function_part_constraint (fi, fi_result);
4341 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4342 process_constraint (new_constraint (lhs, *rhsp));
4343 VEC_free (ce_s, heap, rhsc);
4344 }
4345
4346 /* If we use a static chain, pass it along. */
4347 if (gimple_call_chain (t))
4348 {
4349 struct constraint_expr lhs;
4350 struct constraint_expr *rhsp;
4351
4352 get_constraint_for (gimple_call_chain (t), &rhsc);
4353 lhs = get_function_part_constraint (fi, fi_static_chain);
4354 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4355 process_constraint (new_constraint (lhs, *rhsp));
4356 }
4357 }
4358 }
4359 /* Otherwise, just a regular assignment statement. Only care about
4360 operations with pointer result, others are dealt with as escape
4361 points if they have pointer operands. */
4362 else if (is_gimple_assign (t)
4363 && type_could_have_pointers (TREE_TYPE (gimple_assign_lhs (t))))
4364 {
4365 /* Otherwise, just a regular assignment statement. */
4366 tree lhsop = gimple_assign_lhs (t);
4367 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4368
4369 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4370 do_structure_copy (lhsop, rhsop);
4371 else
4372 {
4373 struct constraint_expr temp;
4374 get_constraint_for (lhsop, &lhsc);
4375
4376 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
4377 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4378 gimple_assign_rhs2 (t), &rhsc);
4379 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
4380 && !(POINTER_TYPE_P (gimple_expr_type (t))
4381 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4382 || gimple_assign_single_p (t))
4383 get_constraint_for (rhsop, &rhsc);
4384 else
4385 {
4386 temp.type = ADDRESSOF;
4387 temp.var = anything_id;
4388 temp.offset = 0;
4389 VEC_safe_push (ce_s, heap, rhsc, &temp);
4390 }
4391 process_all_all_constraints (lhsc, rhsc);
4392 }
4393 /* If there is a store to a global variable the rhs escapes. */
4394 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4395 && DECL_P (lhsop)
4396 && is_global_var (lhsop)
4397 && (!in_ipa_mode
4398 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4399 make_escape_constraint (rhsop);
4400 /* If this is a conversion of a non-restrict pointer to a
4401 restrict pointer track it with a new heapvar. */
4402 else if (gimple_assign_cast_p (t)
4403 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4404 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4405 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4406 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4407 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4408 "CAST_RESTRICT");
4409 }
4410 /* For conversions of pointers to non-pointers the pointer escapes. */
4411 else if (gimple_assign_cast_p (t)
4412 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
4413 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
4414 {
4415 make_escape_constraint (gimple_assign_rhs1 (t));
4416 }
4417 /* Handle escapes through return. */
4418 else if (gimple_code (t) == GIMPLE_RETURN
4419 && gimple_return_retval (t) != NULL_TREE
4420 && could_have_pointers (gimple_return_retval (t)))
4421 {
4422 fi = NULL;
4423 if (!in_ipa_mode
4424 || !(fi = get_vi_for_tree (cfun->decl)))
4425 make_escape_constraint (gimple_return_retval (t));
4426 else if (in_ipa_mode
4427 && fi != NULL)
4428 {
4429 struct constraint_expr lhs ;
4430 struct constraint_expr *rhsp;
4431 unsigned i;
4432
4433 lhs = get_function_part_constraint (fi, fi_result);
4434 get_constraint_for (gimple_return_retval (t), &rhsc);
4435 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4436 process_constraint (new_constraint (lhs, *rhsp));
4437 }
4438 }
4439 /* Handle asms conservatively by adding escape constraints to everything. */
4440 else if (gimple_code (t) == GIMPLE_ASM)
4441 {
4442 unsigned i, noutputs;
4443 const char **oconstraints;
4444 const char *constraint;
4445 bool allows_mem, allows_reg, is_inout;
4446
4447 noutputs = gimple_asm_noutputs (t);
4448 oconstraints = XALLOCAVEC (const char *, noutputs);
4449
4450 for (i = 0; i < noutputs; ++i)
4451 {
4452 tree link = gimple_asm_output_op (t, i);
4453 tree op = TREE_VALUE (link);
4454
4455 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4456 oconstraints[i] = constraint;
4457 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4458 &allows_reg, &is_inout);
4459
4460 /* A memory constraint makes the address of the operand escape. */
4461 if (!allows_reg && allows_mem)
4462 make_escape_constraint (build_fold_addr_expr (op));
4463
4464 /* The asm may read global memory, so outputs may point to
4465 any global memory. */
4466 if (op && could_have_pointers (op))
4467 {
4468 VEC(ce_s, heap) *lhsc = NULL;
4469 struct constraint_expr rhsc, *lhsp;
4470 unsigned j;
4471 get_constraint_for (op, &lhsc);
4472 rhsc.var = nonlocal_id;
4473 rhsc.offset = 0;
4474 rhsc.type = SCALAR;
4475 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4476 process_constraint (new_constraint (*lhsp, rhsc));
4477 VEC_free (ce_s, heap, lhsc);
4478 }
4479 }
4480 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4481 {
4482 tree link = gimple_asm_input_op (t, i);
4483 tree op = TREE_VALUE (link);
4484
4485 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4486
4487 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4488 &allows_mem, &allows_reg);
4489
4490 /* A memory constraint makes the address of the operand escape. */
4491 if (!allows_reg && allows_mem)
4492 make_escape_constraint (build_fold_addr_expr (op));
4493 /* Strictly we'd only need the constraint to ESCAPED if
4494 the asm clobbers memory, otherwise using something
4495 along the lines of per-call clobbers/uses would be enough. */
4496 else if (op && could_have_pointers (op))
4497 make_escape_constraint (op);
4498 }
4499 }
4500
4501 VEC_free (ce_s, heap, rhsc);
4502 VEC_free (ce_s, heap, lhsc);
4503 }
4504
4505
4506 /* Create a constraint adding to the clobber set of FI the memory
4507 pointed to by PTR. */
4508
4509 static void
4510 process_ipa_clobber (varinfo_t fi, tree ptr)
4511 {
4512 VEC(ce_s, heap) *ptrc = NULL;
4513 struct constraint_expr *c, lhs;
4514 unsigned i;
4515 get_constraint_for (ptr, &ptrc);
4516 lhs = get_function_part_constraint (fi, fi_clobbers);
4517 for (i = 0; VEC_iterate (ce_s, ptrc, i, c); i++)
4518 process_constraint (new_constraint (lhs, *c));
4519 VEC_free (ce_s, heap, ptrc);
4520 }
4521
4522 /* Walk statement T setting up clobber and use constraints according to the
4523 references found in T. This function is a main part of the
4524 IPA constraint builder. */
4525
4526 static void
4527 find_func_clobbers (gimple origt)
4528 {
4529 gimple t = origt;
4530 VEC(ce_s, heap) *lhsc = NULL;
4531 VEC(ce_s, heap) *rhsc = NULL;
4532 varinfo_t fi;
4533
4534 /* Add constraints for clobbered/used in IPA mode.
4535 We are not interested in what automatic variables are clobbered
4536 or used as we only use the information in the caller to which
4537 they do not escape. */
4538 gcc_assert (in_ipa_mode);
4539
4540 /* If the stmt refers to memory in any way it better had a VUSE. */
4541 if (gimple_vuse (t) == NULL_TREE)
4542 return;
4543
4544 /* We'd better have function information for the current function. */
4545 fi = lookup_vi_for_tree (cfun->decl);
4546 gcc_assert (fi != NULL);
4547
4548 /* Account for stores in assignments and calls. */
4549 if (gimple_vdef (t) != NULL_TREE
4550 && gimple_has_lhs (t))
4551 {
4552 tree lhs = gimple_get_lhs (t);
4553 tree tem = lhs;
4554 while (handled_component_p (tem))
4555 tem = TREE_OPERAND (tem, 0);
4556 if ((DECL_P (tem)
4557 && !auto_var_in_fn_p (tem, cfun->decl))
4558 || INDIRECT_REF_P (tem))
4559 {
4560 struct constraint_expr lhsc, *rhsp;
4561 unsigned i;
4562 lhsc = get_function_part_constraint (fi, fi_clobbers);
4563 get_constraint_for_address_of (lhs, &rhsc);
4564 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4565 process_constraint (new_constraint (lhsc, *rhsp));
4566 VEC_free (ce_s, heap, rhsc);
4567 }
4568 }
4569
4570 /* Account for uses in assigments and returns. */
4571 if (gimple_assign_single_p (t)
4572 || (gimple_code (t) == GIMPLE_RETURN
4573 && gimple_return_retval (t) != NULL_TREE))
4574 {
4575 tree rhs = (gimple_assign_single_p (t)
4576 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4577 tree tem = rhs;
4578 while (handled_component_p (tem))
4579 tem = TREE_OPERAND (tem, 0);
4580 if ((DECL_P (tem)
4581 && !auto_var_in_fn_p (tem, cfun->decl))
4582 || INDIRECT_REF_P (tem))
4583 {
4584 struct constraint_expr lhs, *rhsp;
4585 unsigned i;
4586 lhs = get_function_part_constraint (fi, fi_uses);
4587 get_constraint_for_address_of (rhs, &rhsc);
4588 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4589 process_constraint (new_constraint (lhs, *rhsp));
4590 VEC_free (ce_s, heap, rhsc);
4591 }
4592 }
4593
4594 if (is_gimple_call (t))
4595 {
4596 varinfo_t cfi = NULL;
4597 tree decl = gimple_call_fndecl (t);
4598 struct constraint_expr lhs, rhs;
4599 unsigned i, j;
4600
4601 /* For builtins we do not have separate function info. For those
4602 we do not generate escapes for we have to generate clobbers/uses. */
4603 if (decl
4604 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4605 switch (DECL_FUNCTION_CODE (decl))
4606 {
4607 /* The following functions use and clobber memory pointed to
4608 by their arguments. */
4609 case BUILT_IN_STRCPY:
4610 case BUILT_IN_STRNCPY:
4611 case BUILT_IN_BCOPY:
4612 case BUILT_IN_MEMCPY:
4613 case BUILT_IN_MEMMOVE:
4614 case BUILT_IN_MEMPCPY:
4615 case BUILT_IN_STPCPY:
4616 case BUILT_IN_STPNCPY:
4617 case BUILT_IN_STRCAT:
4618 case BUILT_IN_STRNCAT:
4619 {
4620 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4621 == BUILT_IN_BCOPY ? 1 : 0));
4622 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4623 == BUILT_IN_BCOPY ? 0 : 1));
4624 unsigned i;
4625 struct constraint_expr *rhsp, *lhsp;
4626 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4627 lhs = get_function_part_constraint (fi, fi_clobbers);
4628 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4629 process_constraint (new_constraint (lhs, *lhsp));
4630 VEC_free (ce_s, heap, lhsc);
4631 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4632 lhs = get_function_part_constraint (fi, fi_uses);
4633 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4634 process_constraint (new_constraint (lhs, *rhsp));
4635 VEC_free (ce_s, heap, rhsc);
4636 return;
4637 }
4638 /* The following function clobbers memory pointed to by
4639 its argument. */
4640 case BUILT_IN_MEMSET:
4641 {
4642 tree dest = gimple_call_arg (t, 0);
4643 unsigned i;
4644 ce_s *lhsp;
4645 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4646 lhs = get_function_part_constraint (fi, fi_clobbers);
4647 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4648 process_constraint (new_constraint (lhs, *lhsp));
4649 VEC_free (ce_s, heap, lhsc);
4650 return;
4651 }
4652 /* The following functions clobber their second and third
4653 arguments. */
4654 case BUILT_IN_SINCOS:
4655 case BUILT_IN_SINCOSF:
4656 case BUILT_IN_SINCOSL:
4657 {
4658 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4659 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4660 return;
4661 }
4662 /* The following functions clobber their second argument. */
4663 case BUILT_IN_FREXP:
4664 case BUILT_IN_FREXPF:
4665 case BUILT_IN_FREXPL:
4666 case BUILT_IN_LGAMMA_R:
4667 case BUILT_IN_LGAMMAF_R:
4668 case BUILT_IN_LGAMMAL_R:
4669 case BUILT_IN_GAMMA_R:
4670 case BUILT_IN_GAMMAF_R:
4671 case BUILT_IN_GAMMAL_R:
4672 case BUILT_IN_MODF:
4673 case BUILT_IN_MODFF:
4674 case BUILT_IN_MODFL:
4675 {
4676 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4677 return;
4678 }
4679 /* The following functions clobber their third argument. */
4680 case BUILT_IN_REMQUO:
4681 case BUILT_IN_REMQUOF:
4682 case BUILT_IN_REMQUOL:
4683 {
4684 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4685 return;
4686 }
4687 /* The following functions neither read nor clobber memory. */
4688 case BUILT_IN_FREE:
4689 return;
4690 /* Trampolines are of no interest to us. */
4691 case BUILT_IN_INIT_TRAMPOLINE:
4692 case BUILT_IN_ADJUST_TRAMPOLINE:
4693 return;
4694 case BUILT_IN_VA_START:
4695 case BUILT_IN_VA_END:
4696 return;
4697 /* printf-style functions may have hooks to set pointers to
4698 point to somewhere into the generated string. Leave them
4699 for a later excercise... */
4700 default:
4701 /* Fallthru to general call handling. */;
4702 }
4703
4704 /* Parameters passed by value are used. */
4705 lhs = get_function_part_constraint (fi, fi_uses);
4706 for (i = 0; i < gimple_call_num_args (t); i++)
4707 {
4708 struct constraint_expr *rhsp;
4709 tree arg = gimple_call_arg (t, i);
4710
4711 if (TREE_CODE (arg) == SSA_NAME
4712 || is_gimple_min_invariant (arg))
4713 continue;
4714
4715 get_constraint_for_address_of (arg, &rhsc);
4716 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4717 process_constraint (new_constraint (lhs, *rhsp));
4718 VEC_free (ce_s, heap, rhsc);
4719 }
4720
4721 /* Build constraints for propagating clobbers/uses along the
4722 callgraph edges. */
4723 cfi = get_fi_for_callee (t);
4724 if (cfi->id == anything_id)
4725 {
4726 if (gimple_vdef (t))
4727 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4728 anything_id);
4729 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4730 anything_id);
4731 return;
4732 }
4733
4734 /* For callees without function info (that's external functions),
4735 ESCAPED is clobbered and used. */
4736 if (gimple_call_fndecl (t)
4737 && !cfi->is_fn_info)
4738 {
4739 varinfo_t vi;
4740
4741 if (gimple_vdef (t))
4742 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4743 escaped_id);
4744 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4745
4746 /* Also honor the call statement use/clobber info. */
4747 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4748 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4749 vi->id);
4750 if ((vi = lookup_call_use_vi (t)) != NULL)
4751 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4752 vi->id);
4753 return;
4754 }
4755
4756 /* Otherwise the caller clobbers and uses what the callee does.
4757 ??? This should use a new complex constraint that filters
4758 local variables of the callee. */
4759 if (gimple_vdef (t))
4760 {
4761 lhs = get_function_part_constraint (fi, fi_clobbers);
4762 rhs = get_function_part_constraint (cfi, fi_clobbers);
4763 process_constraint (new_constraint (lhs, rhs));
4764 }
4765 lhs = get_function_part_constraint (fi, fi_uses);
4766 rhs = get_function_part_constraint (cfi, fi_uses);
4767 process_constraint (new_constraint (lhs, rhs));
4768 }
4769 else if (gimple_code (t) == GIMPLE_ASM)
4770 {
4771 /* ??? Ick. We can do better. */
4772 if (gimple_vdef (t))
4773 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4774 anything_id);
4775 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4776 anything_id);
4777 }
4778
4779 VEC_free (ce_s, heap, rhsc);
4780 }
4781
4782
4783 /* Find the first varinfo in the same variable as START that overlaps with
4784 OFFSET. Return NULL if we can't find one. */
4785
4786 static varinfo_t
4787 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4788 {
4789 /* If the offset is outside of the variable, bail out. */
4790 if (offset >= start->fullsize)
4791 return NULL;
4792
4793 /* If we cannot reach offset from start, lookup the first field
4794 and start from there. */
4795 if (start->offset > offset)
4796 start = lookup_vi_for_tree (start->decl);
4797
4798 while (start)
4799 {
4800 /* We may not find a variable in the field list with the actual
4801 offset when when we have glommed a structure to a variable.
4802 In that case, however, offset should still be within the size
4803 of the variable. */
4804 if (offset >= start->offset
4805 && (offset - start->offset) < start->size)
4806 return start;
4807
4808 start= start->next;
4809 }
4810
4811 return NULL;
4812 }
4813
4814 /* Find the first varinfo in the same variable as START that overlaps with
4815 OFFSET. If there is no such varinfo the varinfo directly preceding
4816 OFFSET is returned. */
4817
4818 static varinfo_t
4819 first_or_preceding_vi_for_offset (varinfo_t start,
4820 unsigned HOST_WIDE_INT offset)
4821 {
4822 /* If we cannot reach offset from start, lookup the first field
4823 and start from there. */
4824 if (start->offset > offset)
4825 start = lookup_vi_for_tree (start->decl);
4826
4827 /* We may not find a variable in the field list with the actual
4828 offset when when we have glommed a structure to a variable.
4829 In that case, however, offset should still be within the size
4830 of the variable.
4831 If we got beyond the offset we look for return the field
4832 directly preceding offset which may be the last field. */
4833 while (start->next
4834 && offset >= start->offset
4835 && !((offset - start->offset) < start->size))
4836 start = start->next;
4837
4838 return start;
4839 }
4840
4841
4842 /* This structure is used during pushing fields onto the fieldstack
4843 to track the offset of the field, since bitpos_of_field gives it
4844 relative to its immediate containing type, and we want it relative
4845 to the ultimate containing object. */
4846
4847 struct fieldoff
4848 {
4849 /* Offset from the base of the base containing object to this field. */
4850 HOST_WIDE_INT offset;
4851
4852 /* Size, in bits, of the field. */
4853 unsigned HOST_WIDE_INT size;
4854
4855 unsigned has_unknown_size : 1;
4856
4857 unsigned may_have_pointers : 1;
4858
4859 unsigned only_restrict_pointers : 1;
4860 };
4861 typedef struct fieldoff fieldoff_s;
4862
4863 DEF_VEC_O(fieldoff_s);
4864 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4865
4866 /* qsort comparison function for two fieldoff's PA and PB */
4867
4868 static int
4869 fieldoff_compare (const void *pa, const void *pb)
4870 {
4871 const fieldoff_s *foa = (const fieldoff_s *)pa;
4872 const fieldoff_s *fob = (const fieldoff_s *)pb;
4873 unsigned HOST_WIDE_INT foasize, fobsize;
4874
4875 if (foa->offset < fob->offset)
4876 return -1;
4877 else if (foa->offset > fob->offset)
4878 return 1;
4879
4880 foasize = foa->size;
4881 fobsize = fob->size;
4882 if (foasize < fobsize)
4883 return -1;
4884 else if (foasize > fobsize)
4885 return 1;
4886 return 0;
4887 }
4888
4889 /* Sort a fieldstack according to the field offset and sizes. */
4890 static void
4891 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4892 {
4893 qsort (VEC_address (fieldoff_s, fieldstack),
4894 VEC_length (fieldoff_s, fieldstack),
4895 sizeof (fieldoff_s),
4896 fieldoff_compare);
4897 }
4898
4899 /* Return true if V is a tree that we can have subvars for.
4900 Normally, this is any aggregate type. Also complex
4901 types which are not gimple registers can have subvars. */
4902
4903 static inline bool
4904 var_can_have_subvars (const_tree v)
4905 {
4906 /* Volatile variables should never have subvars. */
4907 if (TREE_THIS_VOLATILE (v))
4908 return false;
4909
4910 /* Non decls or memory tags can never have subvars. */
4911 if (!DECL_P (v))
4912 return false;
4913
4914 /* Aggregates without overlapping fields can have subvars. */
4915 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4916 return true;
4917
4918 return false;
4919 }
4920
4921 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4922 the fields of TYPE onto fieldstack, recording their offsets along
4923 the way.
4924
4925 OFFSET is used to keep track of the offset in this entire
4926 structure, rather than just the immediately containing structure.
4927 Returns false if the caller is supposed to handle the field we
4928 recursed for. */
4929
4930 static bool
4931 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
4932 HOST_WIDE_INT offset, bool must_have_pointers_p)
4933 {
4934 tree field;
4935 bool empty_p = true;
4936
4937 if (TREE_CODE (type) != RECORD_TYPE)
4938 return false;
4939
4940 /* If the vector of fields is growing too big, bail out early.
4941 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4942 sure this fails. */
4943 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
4944 return false;
4945
4946 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4947 if (TREE_CODE (field) == FIELD_DECL)
4948 {
4949 bool push = false;
4950 HOST_WIDE_INT foff = bitpos_of_field (field);
4951
4952 if (!var_can_have_subvars (field)
4953 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4954 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4955 push = true;
4956 else if (!push_fields_onto_fieldstack
4957 (TREE_TYPE (field), fieldstack, offset + foff,
4958 must_have_pointers_p)
4959 && (DECL_SIZE (field)
4960 && !integer_zerop (DECL_SIZE (field))))
4961 /* Empty structures may have actual size, like in C++. So
4962 see if we didn't push any subfields and the size is
4963 nonzero, push the field onto the stack. */
4964 push = true;
4965
4966 if (push)
4967 {
4968 fieldoff_s *pair = NULL;
4969 bool has_unknown_size = false;
4970
4971 if (!VEC_empty (fieldoff_s, *fieldstack))
4972 pair = VEC_last (fieldoff_s, *fieldstack);
4973
4974 if (!DECL_SIZE (field)
4975 || !host_integerp (DECL_SIZE (field), 1))
4976 has_unknown_size = true;
4977
4978 /* If adjacent fields do not contain pointers merge them. */
4979 if (pair
4980 && !pair->may_have_pointers
4981 && !pair->has_unknown_size
4982 && !has_unknown_size
4983 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff
4984 && !must_have_pointers_p
4985 && !could_have_pointers (field))
4986 {
4987 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4988 }
4989 else
4990 {
4991 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4992 pair->offset = offset + foff;
4993 pair->has_unknown_size = has_unknown_size;
4994 if (!has_unknown_size)
4995 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4996 else
4997 pair->size = -1;
4998 pair->may_have_pointers
4999 = must_have_pointers_p || could_have_pointers (field);
5000 pair->only_restrict_pointers
5001 = (!has_unknown_size
5002 && POINTER_TYPE_P (TREE_TYPE (field))
5003 && TYPE_RESTRICT (TREE_TYPE (field)));
5004 }
5005 }
5006
5007 empty_p = false;
5008 }
5009
5010 return !empty_p;
5011 }
5012
5013 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5014 if it is a varargs function. */
5015
5016 static unsigned int
5017 count_num_arguments (tree decl, bool *is_varargs)
5018 {
5019 unsigned int num = 0;
5020 tree t;
5021
5022 /* Capture named arguments for K&R functions. They do not
5023 have a prototype and thus no TYPE_ARG_TYPES. */
5024 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5025 ++num;
5026
5027 /* Check if the function has variadic arguments. */
5028 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5029 if (TREE_VALUE (t) == void_type_node)
5030 break;
5031 if (!t)
5032 *is_varargs = true;
5033
5034 return num;
5035 }
5036
5037 /* Creation function node for DECL, using NAME, and return the index
5038 of the variable we've created for the function. */
5039
5040 static varinfo_t
5041 create_function_info_for (tree decl, const char *name)
5042 {
5043 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5044 varinfo_t vi, prev_vi;
5045 tree arg;
5046 unsigned int i;
5047 bool is_varargs = false;
5048 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5049
5050 /* Create the variable info. */
5051
5052 vi = new_var_info (decl, name);
5053 vi->offset = 0;
5054 vi->size = 1;
5055 vi->fullsize = fi_parm_base + num_args;
5056 vi->is_fn_info = 1;
5057 vi->may_have_pointers = false;
5058 if (is_varargs)
5059 vi->fullsize = ~0;
5060 insert_vi_for_tree (vi->decl, vi);
5061
5062 prev_vi = vi;
5063
5064 /* Create a variable for things the function clobbers and one for
5065 things the function uses. */
5066 {
5067 varinfo_t clobbervi, usevi;
5068 const char *newname;
5069 char *tempname;
5070
5071 asprintf (&tempname, "%s.clobber", name);
5072 newname = ggc_strdup (tempname);
5073 free (tempname);
5074
5075 clobbervi = new_var_info (NULL, newname);
5076 clobbervi->offset = fi_clobbers;
5077 clobbervi->size = 1;
5078 clobbervi->fullsize = vi->fullsize;
5079 clobbervi->is_full_var = true;
5080 clobbervi->is_global_var = false;
5081 gcc_assert (prev_vi->offset < clobbervi->offset);
5082 prev_vi->next = clobbervi;
5083 prev_vi = clobbervi;
5084
5085 asprintf (&tempname, "%s.use", name);
5086 newname = ggc_strdup (tempname);
5087 free (tempname);
5088
5089 usevi = new_var_info (NULL, newname);
5090 usevi->offset = fi_uses;
5091 usevi->size = 1;
5092 usevi->fullsize = vi->fullsize;
5093 usevi->is_full_var = true;
5094 usevi->is_global_var = false;
5095 gcc_assert (prev_vi->offset < usevi->offset);
5096 prev_vi->next = usevi;
5097 prev_vi = usevi;
5098 }
5099
5100 /* And one for the static chain. */
5101 if (fn->static_chain_decl != NULL_TREE)
5102 {
5103 varinfo_t chainvi;
5104 const char *newname;
5105 char *tempname;
5106
5107 asprintf (&tempname, "%s.chain", name);
5108 newname = ggc_strdup (tempname);
5109 free (tempname);
5110
5111 chainvi = new_var_info (fn->static_chain_decl, newname);
5112 chainvi->offset = fi_static_chain;
5113 chainvi->size = 1;
5114 chainvi->fullsize = vi->fullsize;
5115 chainvi->is_full_var = true;
5116 chainvi->is_global_var = false;
5117 gcc_assert (prev_vi->offset < chainvi->offset);
5118 prev_vi->next = chainvi;
5119 prev_vi = chainvi;
5120 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5121 }
5122
5123 /* Create a variable for the return var. */
5124 if (DECL_RESULT (decl) != NULL
5125 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5126 {
5127 varinfo_t resultvi;
5128 const char *newname;
5129 char *tempname;
5130 tree resultdecl = decl;
5131
5132 if (DECL_RESULT (decl))
5133 resultdecl = DECL_RESULT (decl);
5134
5135 asprintf (&tempname, "%s.result", name);
5136 newname = ggc_strdup (tempname);
5137 free (tempname);
5138
5139 resultvi = new_var_info (resultdecl, newname);
5140 resultvi->offset = fi_result;
5141 resultvi->size = 1;
5142 resultvi->fullsize = vi->fullsize;
5143 resultvi->is_full_var = true;
5144 if (DECL_RESULT (decl))
5145 resultvi->may_have_pointers = could_have_pointers (DECL_RESULT (decl));
5146 gcc_assert (prev_vi->offset < resultvi->offset);
5147 prev_vi->next = resultvi;
5148 prev_vi = resultvi;
5149 if (DECL_RESULT (decl))
5150 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5151 }
5152
5153 /* Set up variables for each argument. */
5154 arg = DECL_ARGUMENTS (decl);
5155 for (i = 0; i < num_args; i++)
5156 {
5157 varinfo_t argvi;
5158 const char *newname;
5159 char *tempname;
5160 tree argdecl = decl;
5161
5162 if (arg)
5163 argdecl = arg;
5164
5165 asprintf (&tempname, "%s.arg%d", name, i);
5166 newname = ggc_strdup (tempname);
5167 free (tempname);
5168
5169 argvi = new_var_info (argdecl, newname);
5170 argvi->offset = fi_parm_base + i;
5171 argvi->size = 1;
5172 argvi->is_full_var = true;
5173 argvi->fullsize = vi->fullsize;
5174 if (arg)
5175 argvi->may_have_pointers = could_have_pointers (arg);
5176 gcc_assert (prev_vi->offset < argvi->offset);
5177 prev_vi->next = argvi;
5178 prev_vi = argvi;
5179 if (arg)
5180 {
5181 insert_vi_for_tree (arg, argvi);
5182 arg = TREE_CHAIN (arg);
5183 }
5184 }
5185
5186 /* Add one representative for all further args. */
5187 if (is_varargs)
5188 {
5189 varinfo_t argvi;
5190 const char *newname;
5191 char *tempname;
5192 tree decl;
5193
5194 asprintf (&tempname, "%s.varargs", name);
5195 newname = ggc_strdup (tempname);
5196 free (tempname);
5197
5198 /* We need sth that can be pointed to for va_start. */
5199 decl = create_tmp_var_raw (ptr_type_node, name);
5200 get_var_ann (decl);
5201
5202 argvi = new_var_info (decl, newname);
5203 argvi->offset = fi_parm_base + num_args;
5204 argvi->size = ~0;
5205 argvi->is_full_var = true;
5206 argvi->is_heap_var = true;
5207 argvi->fullsize = vi->fullsize;
5208 gcc_assert (prev_vi->offset < argvi->offset);
5209 prev_vi->next = argvi;
5210 prev_vi = argvi;
5211 }
5212
5213 return vi;
5214 }
5215
5216
5217 /* Return true if FIELDSTACK contains fields that overlap.
5218 FIELDSTACK is assumed to be sorted by offset. */
5219
5220 static bool
5221 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5222 {
5223 fieldoff_s *fo = NULL;
5224 unsigned int i;
5225 HOST_WIDE_INT lastoffset = -1;
5226
5227 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5228 {
5229 if (fo->offset == lastoffset)
5230 return true;
5231 lastoffset = fo->offset;
5232 }
5233 return false;
5234 }
5235
5236 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5237 This will also create any varinfo structures necessary for fields
5238 of DECL. */
5239
5240 static varinfo_t
5241 create_variable_info_for_1 (tree decl, const char *name)
5242 {
5243 varinfo_t vi, newvi;
5244 tree decl_type = TREE_TYPE (decl);
5245 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5246 VEC (fieldoff_s,heap) *fieldstack = NULL;
5247 fieldoff_s *fo;
5248 unsigned int i;
5249
5250 if (!declsize
5251 || !host_integerp (declsize, 1))
5252 {
5253 vi = new_var_info (decl, name);
5254 vi->offset = 0;
5255 vi->size = ~0;
5256 vi->fullsize = ~0;
5257 vi->is_unknown_size_var = true;
5258 vi->is_full_var = true;
5259 vi->may_have_pointers = could_have_pointers (decl);
5260 return vi;
5261 }
5262
5263 /* Collect field information. */
5264 if (use_field_sensitive
5265 && var_can_have_subvars (decl)
5266 /* ??? Force us to not use subfields for global initializers
5267 in IPA mode. Else we'd have to parse arbitrary initializers. */
5268 && !(in_ipa_mode
5269 && is_global_var (decl)
5270 && DECL_INITIAL (decl)))
5271 {
5272 fieldoff_s *fo = NULL;
5273 bool notokay = false;
5274 unsigned int i;
5275
5276 push_fields_onto_fieldstack (decl_type, &fieldstack, 0,
5277 TREE_PUBLIC (decl)
5278 || DECL_EXTERNAL (decl)
5279 || TREE_ADDRESSABLE (decl));
5280
5281 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5282 if (fo->has_unknown_size
5283 || fo->offset < 0)
5284 {
5285 notokay = true;
5286 break;
5287 }
5288
5289 /* We can't sort them if we have a field with a variable sized type,
5290 which will make notokay = true. In that case, we are going to return
5291 without creating varinfos for the fields anyway, so sorting them is a
5292 waste to boot. */
5293 if (!notokay)
5294 {
5295 sort_fieldstack (fieldstack);
5296 /* Due to some C++ FE issues, like PR 22488, we might end up
5297 what appear to be overlapping fields even though they,
5298 in reality, do not overlap. Until the C++ FE is fixed,
5299 we will simply disable field-sensitivity for these cases. */
5300 notokay = check_for_overlaps (fieldstack);
5301 }
5302
5303 if (notokay)
5304 VEC_free (fieldoff_s, heap, fieldstack);
5305 }
5306
5307 /* If we didn't end up collecting sub-variables create a full
5308 variable for the decl. */
5309 if (VEC_length (fieldoff_s, fieldstack) <= 1
5310 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5311 {
5312 vi = new_var_info (decl, name);
5313 vi->offset = 0;
5314 vi->may_have_pointers = could_have_pointers (decl);
5315 vi->fullsize = TREE_INT_CST_LOW (declsize);
5316 vi->size = vi->fullsize;
5317 vi->is_full_var = true;
5318 VEC_free (fieldoff_s, heap, fieldstack);
5319 return vi;
5320 }
5321
5322 vi = new_var_info (decl, name);
5323 vi->fullsize = TREE_INT_CST_LOW (declsize);
5324 for (i = 0, newvi = vi;
5325 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5326 ++i, newvi = newvi->next)
5327 {
5328 const char *newname = "NULL";
5329 char *tempname;
5330
5331 if (dump_file)
5332 {
5333 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5334 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5335 newname = ggc_strdup (tempname);
5336 free (tempname);
5337 }
5338 newvi->name = newname;
5339 newvi->offset = fo->offset;
5340 newvi->size = fo->size;
5341 newvi->fullsize = vi->fullsize;
5342 newvi->may_have_pointers = fo->may_have_pointers;
5343 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5344 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5345 newvi->next = new_var_info (decl, name);
5346 }
5347
5348 VEC_free (fieldoff_s, heap, fieldstack);
5349
5350 return vi;
5351 }
5352
5353 static unsigned int
5354 create_variable_info_for (tree decl, const char *name)
5355 {
5356 varinfo_t vi = create_variable_info_for_1 (decl, name);
5357 unsigned int id = vi->id;
5358
5359 insert_vi_for_tree (decl, vi);
5360
5361 /* Create initial constraints for globals. */
5362 for (; vi; vi = vi->next)
5363 {
5364 if (!vi->may_have_pointers
5365 || !vi->is_global_var)
5366 continue;
5367
5368 /* Mark global restrict qualified pointers. */
5369 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5370 && TYPE_RESTRICT (TREE_TYPE (decl)))
5371 || vi->only_restrict_pointers)
5372 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5373
5374 /* For escaped variables initialize them from nonlocal. */
5375 if (!in_ipa_mode
5376 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5377 make_copy_constraint (vi, nonlocal_id);
5378
5379 /* If this is a global variable with an initializer and we are in
5380 IPA mode generate constraints for it. In non-IPA mode
5381 the initializer from nonlocal is all we need. */
5382 if (in_ipa_mode
5383 && DECL_INITIAL (decl))
5384 {
5385 VEC (ce_s, heap) *rhsc = NULL;
5386 struct constraint_expr lhs, *rhsp;
5387 unsigned i;
5388 get_constraint_for (DECL_INITIAL (decl), &rhsc);
5389 lhs.var = vi->id;
5390 lhs.offset = 0;
5391 lhs.type = SCALAR;
5392 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5393 process_constraint (new_constraint (lhs, *rhsp));
5394 /* If this is a variable that escapes from the unit
5395 the initializer escapes as well. */
5396 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5397 {
5398 lhs.var = escaped_id;
5399 lhs.offset = 0;
5400 lhs.type = SCALAR;
5401 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5402 process_constraint (new_constraint (lhs, *rhsp));
5403 }
5404 VEC_free (ce_s, heap, rhsc);
5405 }
5406 }
5407
5408 return id;
5409 }
5410
5411 /* Print out the points-to solution for VAR to FILE. */
5412
5413 static void
5414 dump_solution_for_var (FILE *file, unsigned int var)
5415 {
5416 varinfo_t vi = get_varinfo (var);
5417 unsigned int i;
5418 bitmap_iterator bi;
5419
5420 /* Dump the solution for unified vars anyway, this avoids difficulties
5421 in scanning dumps in the testsuite. */
5422 fprintf (file, "%s = { ", vi->name);
5423 vi = get_varinfo (find (var));
5424 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5425 fprintf (file, "%s ", get_varinfo (i)->name);
5426 fprintf (file, "}");
5427
5428 /* But note when the variable was unified. */
5429 if (vi->id != var)
5430 fprintf (file, " same as %s", vi->name);
5431
5432 fprintf (file, "\n");
5433 }
5434
5435 /* Print the points-to solution for VAR to stdout. */
5436
5437 DEBUG_FUNCTION void
5438 debug_solution_for_var (unsigned int var)
5439 {
5440 dump_solution_for_var (stdout, var);
5441 }
5442
5443 /* Create varinfo structures for all of the variables in the
5444 function for intraprocedural mode. */
5445
5446 static void
5447 intra_create_variable_infos (void)
5448 {
5449 tree t;
5450
5451 /* For each incoming pointer argument arg, create the constraint ARG
5452 = NONLOCAL or a dummy variable if it is a restrict qualified
5453 passed-by-reference argument. */
5454 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
5455 {
5456 varinfo_t p;
5457
5458 if (!could_have_pointers (t))
5459 continue;
5460
5461 /* For restrict qualified pointers to objects passed by
5462 reference build a real representative for the pointed-to object. */
5463 if (DECL_BY_REFERENCE (t)
5464 && POINTER_TYPE_P (TREE_TYPE (t))
5465 && TYPE_RESTRICT (TREE_TYPE (t)))
5466 {
5467 struct constraint_expr lhsc, rhsc;
5468 varinfo_t vi;
5469 tree heapvar = heapvar_lookup (t, 0);
5470 if (heapvar == NULL_TREE)
5471 {
5472 var_ann_t ann;
5473 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5474 "PARM_NOALIAS");
5475 DECL_EXTERNAL (heapvar) = 1;
5476 heapvar_insert (t, 0, heapvar);
5477 ann = get_var_ann (heapvar);
5478 ann->is_heapvar = 1;
5479 }
5480 if (gimple_referenced_vars (cfun))
5481 add_referenced_var (heapvar);
5482 lhsc.var = get_vi_for_tree (t)->id;
5483 lhsc.type = SCALAR;
5484 lhsc.offset = 0;
5485 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5486 rhsc.type = ADDRESSOF;
5487 rhsc.offset = 0;
5488 process_constraint (new_constraint (lhsc, rhsc));
5489 vi->is_restrict_var = 1;
5490 continue;
5491 }
5492
5493 for (p = get_vi_for_tree (t); p; p = p->next)
5494 {
5495 if (p->may_have_pointers)
5496 make_constraint_from (p, nonlocal_id);
5497 if (p->only_restrict_pointers)
5498 make_constraint_from_restrict (p, "PARM_RESTRICT");
5499 }
5500 if (POINTER_TYPE_P (TREE_TYPE (t))
5501 && TYPE_RESTRICT (TREE_TYPE (t)))
5502 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5503 }
5504
5505 /* Add a constraint for a result decl that is passed by reference. */
5506 if (DECL_RESULT (cfun->decl)
5507 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5508 {
5509 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5510
5511 for (p = result_vi; p; p = p->next)
5512 make_constraint_from (p, nonlocal_id);
5513 }
5514
5515 /* Add a constraint for the incoming static chain parameter. */
5516 if (cfun->static_chain_decl != NULL_TREE)
5517 {
5518 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5519
5520 for (p = chain_vi; p; p = p->next)
5521 make_constraint_from (p, nonlocal_id);
5522 }
5523 }
5524
5525 /* Structure used to put solution bitmaps in a hashtable so they can
5526 be shared among variables with the same points-to set. */
5527
5528 typedef struct shared_bitmap_info
5529 {
5530 bitmap pt_vars;
5531 hashval_t hashcode;
5532 } *shared_bitmap_info_t;
5533 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5534
5535 static htab_t shared_bitmap_table;
5536
5537 /* Hash function for a shared_bitmap_info_t */
5538
5539 static hashval_t
5540 shared_bitmap_hash (const void *p)
5541 {
5542 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5543 return bi->hashcode;
5544 }
5545
5546 /* Equality function for two shared_bitmap_info_t's. */
5547
5548 static int
5549 shared_bitmap_eq (const void *p1, const void *p2)
5550 {
5551 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5552 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5553 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5554 }
5555
5556 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5557 existing instance if there is one, NULL otherwise. */
5558
5559 static bitmap
5560 shared_bitmap_lookup (bitmap pt_vars)
5561 {
5562 void **slot;
5563 struct shared_bitmap_info sbi;
5564
5565 sbi.pt_vars = pt_vars;
5566 sbi.hashcode = bitmap_hash (pt_vars);
5567
5568 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5569 sbi.hashcode, NO_INSERT);
5570 if (!slot)
5571 return NULL;
5572 else
5573 return ((shared_bitmap_info_t) *slot)->pt_vars;
5574 }
5575
5576
5577 /* Add a bitmap to the shared bitmap hashtable. */
5578
5579 static void
5580 shared_bitmap_add (bitmap pt_vars)
5581 {
5582 void **slot;
5583 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5584
5585 sbi->pt_vars = pt_vars;
5586 sbi->hashcode = bitmap_hash (pt_vars);
5587
5588 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5589 sbi->hashcode, INSERT);
5590 gcc_assert (!*slot);
5591 *slot = (void *) sbi;
5592 }
5593
5594
5595 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5596
5597 static void
5598 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5599 {
5600 unsigned int i;
5601 bitmap_iterator bi;
5602
5603 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5604 {
5605 varinfo_t vi = get_varinfo (i);
5606
5607 /* The only artificial variables that are allowed in a may-alias
5608 set are heap variables. */
5609 if (vi->is_artificial_var && !vi->is_heap_var)
5610 continue;
5611
5612 if (TREE_CODE (vi->decl) == VAR_DECL
5613 || TREE_CODE (vi->decl) == PARM_DECL
5614 || TREE_CODE (vi->decl) == RESULT_DECL)
5615 {
5616 /* If we are in IPA mode we will not recompute points-to
5617 sets after inlining so make sure they stay valid. */
5618 if (in_ipa_mode
5619 && !DECL_PT_UID_SET_P (vi->decl))
5620 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5621
5622 /* Add the decl to the points-to set. Note that the points-to
5623 set contains global variables. */
5624 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5625 if (vi->is_global_var)
5626 pt->vars_contains_global = true;
5627 }
5628 }
5629 }
5630
5631
5632 /* Compute the points-to solution *PT for the variable VI. */
5633
5634 static void
5635 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5636 {
5637 unsigned int i;
5638 bitmap_iterator bi;
5639 bitmap finished_solution;
5640 bitmap result;
5641 varinfo_t vi;
5642
5643 memset (pt, 0, sizeof (struct pt_solution));
5644
5645 /* This variable may have been collapsed, let's get the real
5646 variable. */
5647 vi = get_varinfo (find (orig_vi->id));
5648
5649 /* Translate artificial variables into SSA_NAME_PTR_INFO
5650 attributes. */
5651 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5652 {
5653 varinfo_t vi = get_varinfo (i);
5654
5655 if (vi->is_artificial_var)
5656 {
5657 if (vi->id == nothing_id)
5658 pt->null = 1;
5659 else if (vi->id == escaped_id)
5660 {
5661 if (in_ipa_mode)
5662 pt->ipa_escaped = 1;
5663 else
5664 pt->escaped = 1;
5665 }
5666 else if (vi->id == nonlocal_id)
5667 pt->nonlocal = 1;
5668 else if (vi->is_heap_var)
5669 /* We represent heapvars in the points-to set properly. */
5670 ;
5671 else if (vi->id == readonly_id)
5672 /* Nobody cares. */
5673 ;
5674 else if (vi->id == anything_id
5675 || vi->id == integer_id)
5676 pt->anything = 1;
5677 }
5678 if (vi->is_restrict_var)
5679 pt->vars_contains_restrict = true;
5680 }
5681
5682 /* Instead of doing extra work, simply do not create
5683 elaborate points-to information for pt_anything pointers. */
5684 if (pt->anything
5685 && (orig_vi->is_artificial_var
5686 || !pt->vars_contains_restrict))
5687 return;
5688
5689 /* Share the final set of variables when possible. */
5690 finished_solution = BITMAP_GGC_ALLOC ();
5691 stats.points_to_sets_created++;
5692
5693 set_uids_in_ptset (finished_solution, vi->solution, pt);
5694 result = shared_bitmap_lookup (finished_solution);
5695 if (!result)
5696 {
5697 shared_bitmap_add (finished_solution);
5698 pt->vars = finished_solution;
5699 }
5700 else
5701 {
5702 pt->vars = result;
5703 bitmap_clear (finished_solution);
5704 }
5705 }
5706
5707 /* Given a pointer variable P, fill in its points-to set. */
5708
5709 static void
5710 find_what_p_points_to (tree p)
5711 {
5712 struct ptr_info_def *pi;
5713 tree lookup_p = p;
5714 varinfo_t vi;
5715
5716 /* For parameters, get at the points-to set for the actual parm
5717 decl. */
5718 if (TREE_CODE (p) == SSA_NAME
5719 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5720 && SSA_NAME_IS_DEFAULT_DEF (p))
5721 lookup_p = SSA_NAME_VAR (p);
5722
5723 vi = lookup_vi_for_tree (lookup_p);
5724 if (!vi)
5725 return;
5726
5727 pi = get_ptr_info (p);
5728 find_what_var_points_to (vi, &pi->pt);
5729 }
5730
5731
5732 /* Query statistics for points-to solutions. */
5733
5734 static struct {
5735 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5736 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5737 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5738 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5739 } pta_stats;
5740
5741 void
5742 dump_pta_stats (FILE *s)
5743 {
5744 fprintf (s, "\nPTA query stats:\n");
5745 fprintf (s, " pt_solution_includes: "
5746 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5747 HOST_WIDE_INT_PRINT_DEC" queries\n",
5748 pta_stats.pt_solution_includes_no_alias,
5749 pta_stats.pt_solution_includes_no_alias
5750 + pta_stats.pt_solution_includes_may_alias);
5751 fprintf (s, " pt_solutions_intersect: "
5752 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5753 HOST_WIDE_INT_PRINT_DEC" queries\n",
5754 pta_stats.pt_solutions_intersect_no_alias,
5755 pta_stats.pt_solutions_intersect_no_alias
5756 + pta_stats.pt_solutions_intersect_may_alias);
5757 }
5758
5759
5760 /* Reset the points-to solution *PT to a conservative default
5761 (point to anything). */
5762
5763 void
5764 pt_solution_reset (struct pt_solution *pt)
5765 {
5766 memset (pt, 0, sizeof (struct pt_solution));
5767 pt->anything = true;
5768 }
5769
5770 /* Set the points-to solution *PT to point only to the variables
5771 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5772 global variables and VARS_CONTAINS_RESTRICT specifies whether
5773 it contains restrict tag variables. */
5774
5775 void
5776 pt_solution_set (struct pt_solution *pt, bitmap vars,
5777 bool vars_contains_global, bool vars_contains_restrict)
5778 {
5779 memset (pt, 0, sizeof (struct pt_solution));
5780 pt->vars = vars;
5781 pt->vars_contains_global = vars_contains_global;
5782 pt->vars_contains_restrict = vars_contains_restrict;
5783 }
5784
5785 /* Computes the union of the points-to solutions *DEST and *SRC and
5786 stores the result in *DEST. This changes the points-to bitmap
5787 of *DEST and thus may not be used if that might be shared.
5788 The points-to bitmap of *SRC and *DEST will not be shared after
5789 this function if they were not before. */
5790
5791 static void
5792 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5793 {
5794 dest->anything |= src->anything;
5795 if (dest->anything)
5796 {
5797 pt_solution_reset (dest);
5798 return;
5799 }
5800
5801 dest->nonlocal |= src->nonlocal;
5802 dest->escaped |= src->escaped;
5803 dest->ipa_escaped |= src->ipa_escaped;
5804 dest->null |= src->null;
5805 dest->vars_contains_global |= src->vars_contains_global;
5806 dest->vars_contains_restrict |= src->vars_contains_restrict;
5807 if (!src->vars)
5808 return;
5809
5810 if (!dest->vars)
5811 dest->vars = BITMAP_GGC_ALLOC ();
5812 bitmap_ior_into (dest->vars, src->vars);
5813 }
5814
5815 /* Return true if the points-to solution *PT is empty. */
5816
5817 bool
5818 pt_solution_empty_p (struct pt_solution *pt)
5819 {
5820 if (pt->anything
5821 || pt->nonlocal)
5822 return false;
5823
5824 if (pt->vars
5825 && !bitmap_empty_p (pt->vars))
5826 return false;
5827
5828 /* If the solution includes ESCAPED, check if that is empty. */
5829 if (pt->escaped
5830 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5831 return false;
5832
5833 /* If the solution includes ESCAPED, check if that is empty. */
5834 if (pt->ipa_escaped
5835 && !pt_solution_empty_p (&ipa_escaped_pt))
5836 return false;
5837
5838 return true;
5839 }
5840
5841 /* Return true if the points-to solution *PT includes global memory. */
5842
5843 bool
5844 pt_solution_includes_global (struct pt_solution *pt)
5845 {
5846 if (pt->anything
5847 || pt->nonlocal
5848 || pt->vars_contains_global)
5849 return true;
5850
5851 if (pt->escaped)
5852 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5853
5854 if (pt->ipa_escaped)
5855 return pt_solution_includes_global (&ipa_escaped_pt);
5856
5857 /* ??? This predicate is not correct for the IPA-PTA solution
5858 as we do not properly distinguish between unit escape points
5859 and global variables. */
5860 if (cfun->gimple_df->ipa_pta)
5861 return true;
5862
5863 return false;
5864 }
5865
5866 /* Return true if the points-to solution *PT includes the variable
5867 declaration DECL. */
5868
5869 static bool
5870 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
5871 {
5872 if (pt->anything)
5873 return true;
5874
5875 if (pt->nonlocal
5876 && is_global_var (decl))
5877 return true;
5878
5879 if (pt->vars
5880 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
5881 return true;
5882
5883 /* If the solution includes ESCAPED, check it. */
5884 if (pt->escaped
5885 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
5886 return true;
5887
5888 /* If the solution includes ESCAPED, check it. */
5889 if (pt->ipa_escaped
5890 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
5891 return true;
5892
5893 return false;
5894 }
5895
5896 bool
5897 pt_solution_includes (struct pt_solution *pt, const_tree decl)
5898 {
5899 bool res = pt_solution_includes_1 (pt, decl);
5900 if (res)
5901 ++pta_stats.pt_solution_includes_may_alias;
5902 else
5903 ++pta_stats.pt_solution_includes_no_alias;
5904 return res;
5905 }
5906
5907 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5908 intersection. */
5909
5910 static bool
5911 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5912 {
5913 if (pt1->anything || pt2->anything)
5914 return true;
5915
5916 /* If either points to unknown global memory and the other points to
5917 any global memory they alias. */
5918 if ((pt1->nonlocal
5919 && (pt2->nonlocal
5920 || pt2->vars_contains_global))
5921 || (pt2->nonlocal
5922 && pt1->vars_contains_global))
5923 return true;
5924
5925 /* Check the escaped solution if required. */
5926 if ((pt1->escaped || pt2->escaped)
5927 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5928 {
5929 /* If both point to escaped memory and that solution
5930 is not empty they alias. */
5931 if (pt1->escaped && pt2->escaped)
5932 return true;
5933
5934 /* If either points to escaped memory see if the escaped solution
5935 intersects with the other. */
5936 if ((pt1->escaped
5937 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5938 || (pt2->escaped
5939 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5940 return true;
5941 }
5942
5943 /* Check the escaped solution if required.
5944 ??? Do we need to check the local against the IPA escaped sets? */
5945 if ((pt1->ipa_escaped || pt2->ipa_escaped)
5946 && !pt_solution_empty_p (&ipa_escaped_pt))
5947 {
5948 /* If both point to escaped memory and that solution
5949 is not empty they alias. */
5950 if (pt1->ipa_escaped && pt2->ipa_escaped)
5951 return true;
5952
5953 /* If either points to escaped memory see if the escaped solution
5954 intersects with the other. */
5955 if ((pt1->ipa_escaped
5956 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
5957 || (pt2->ipa_escaped
5958 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
5959 return true;
5960 }
5961
5962 /* Now both pointers alias if their points-to solution intersects. */
5963 return (pt1->vars
5964 && pt2->vars
5965 && bitmap_intersect_p (pt1->vars, pt2->vars));
5966 }
5967
5968 bool
5969 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5970 {
5971 bool res = pt_solutions_intersect_1 (pt1, pt2);
5972 if (res)
5973 ++pta_stats.pt_solutions_intersect_may_alias;
5974 else
5975 ++pta_stats.pt_solutions_intersect_no_alias;
5976 return res;
5977 }
5978
5979 /* Return true if both points-to solutions PT1 and PT2 for two restrict
5980 qualified pointers are possibly based on the same pointer. */
5981
5982 bool
5983 pt_solutions_same_restrict_base (struct pt_solution *pt1,
5984 struct pt_solution *pt2)
5985 {
5986 /* If we deal with points-to solutions of two restrict qualified
5987 pointers solely rely on the pointed-to variable bitmap intersection.
5988 For two pointers that are based on each other the bitmaps will
5989 intersect. */
5990 if (pt1->vars_contains_restrict
5991 && pt2->vars_contains_restrict)
5992 {
5993 gcc_assert (pt1->vars && pt2->vars);
5994 return bitmap_intersect_p (pt1->vars, pt2->vars);
5995 }
5996
5997 return true;
5998 }
5999
6000
6001 /* Dump points-to information to OUTFILE. */
6002
6003 static void
6004 dump_sa_points_to_info (FILE *outfile)
6005 {
6006 unsigned int i;
6007
6008 fprintf (outfile, "\nPoints-to sets\n\n");
6009
6010 if (dump_flags & TDF_STATS)
6011 {
6012 fprintf (outfile, "Stats:\n");
6013 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6014 fprintf (outfile, "Non-pointer vars: %d\n",
6015 stats.nonpointer_vars);
6016 fprintf (outfile, "Statically unified vars: %d\n",
6017 stats.unified_vars_static);
6018 fprintf (outfile, "Dynamically unified vars: %d\n",
6019 stats.unified_vars_dynamic);
6020 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6021 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6022 fprintf (outfile, "Number of implicit edges: %d\n",
6023 stats.num_implicit_edges);
6024 }
6025
6026 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6027 {
6028 varinfo_t vi = get_varinfo (i);
6029 if (!vi->may_have_pointers)
6030 continue;
6031 dump_solution_for_var (outfile, i);
6032 }
6033 }
6034
6035
6036 /* Debug points-to information to stderr. */
6037
6038 DEBUG_FUNCTION void
6039 debug_sa_points_to_info (void)
6040 {
6041 dump_sa_points_to_info (stderr);
6042 }
6043
6044
6045 /* Initialize the always-existing constraint variables for NULL
6046 ANYTHING, READONLY, and INTEGER */
6047
6048 static void
6049 init_base_vars (void)
6050 {
6051 struct constraint_expr lhs, rhs;
6052 varinfo_t var_anything;
6053 varinfo_t var_nothing;
6054 varinfo_t var_readonly;
6055 varinfo_t var_escaped;
6056 varinfo_t var_nonlocal;
6057 varinfo_t var_storedanything;
6058 varinfo_t var_integer;
6059
6060 /* Create the NULL variable, used to represent that a variable points
6061 to NULL. */
6062 var_nothing = new_var_info (NULL_TREE, "NULL");
6063 gcc_assert (var_nothing->id == nothing_id);
6064 var_nothing->is_artificial_var = 1;
6065 var_nothing->offset = 0;
6066 var_nothing->size = ~0;
6067 var_nothing->fullsize = ~0;
6068 var_nothing->is_special_var = 1;
6069 var_nothing->may_have_pointers = 0;
6070 var_nothing->is_global_var = 0;
6071
6072 /* Create the ANYTHING variable, used to represent that a variable
6073 points to some unknown piece of memory. */
6074 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6075 gcc_assert (var_anything->id == anything_id);
6076 var_anything->is_artificial_var = 1;
6077 var_anything->size = ~0;
6078 var_anything->offset = 0;
6079 var_anything->next = NULL;
6080 var_anything->fullsize = ~0;
6081 var_anything->is_special_var = 1;
6082
6083 /* Anything points to anything. This makes deref constraints just
6084 work in the presence of linked list and other p = *p type loops,
6085 by saying that *ANYTHING = ANYTHING. */
6086 lhs.type = SCALAR;
6087 lhs.var = anything_id;
6088 lhs.offset = 0;
6089 rhs.type = ADDRESSOF;
6090 rhs.var = anything_id;
6091 rhs.offset = 0;
6092
6093 /* This specifically does not use process_constraint because
6094 process_constraint ignores all anything = anything constraints, since all
6095 but this one are redundant. */
6096 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6097
6098 /* Create the READONLY variable, used to represent that a variable
6099 points to readonly memory. */
6100 var_readonly = new_var_info (NULL_TREE, "READONLY");
6101 gcc_assert (var_readonly->id == readonly_id);
6102 var_readonly->is_artificial_var = 1;
6103 var_readonly->offset = 0;
6104 var_readonly->size = ~0;
6105 var_readonly->fullsize = ~0;
6106 var_readonly->next = NULL;
6107 var_readonly->is_special_var = 1;
6108
6109 /* readonly memory points to anything, in order to make deref
6110 easier. In reality, it points to anything the particular
6111 readonly variable can point to, but we don't track this
6112 separately. */
6113 lhs.type = SCALAR;
6114 lhs.var = readonly_id;
6115 lhs.offset = 0;
6116 rhs.type = ADDRESSOF;
6117 rhs.var = readonly_id; /* FIXME */
6118 rhs.offset = 0;
6119 process_constraint (new_constraint (lhs, rhs));
6120
6121 /* Create the ESCAPED variable, used to represent the set of escaped
6122 memory. */
6123 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6124 gcc_assert (var_escaped->id == escaped_id);
6125 var_escaped->is_artificial_var = 1;
6126 var_escaped->offset = 0;
6127 var_escaped->size = ~0;
6128 var_escaped->fullsize = ~0;
6129 var_escaped->is_special_var = 0;
6130
6131 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6132 memory. */
6133 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6134 gcc_assert (var_nonlocal->id == nonlocal_id);
6135 var_nonlocal->is_artificial_var = 1;
6136 var_nonlocal->offset = 0;
6137 var_nonlocal->size = ~0;
6138 var_nonlocal->fullsize = ~0;
6139 var_nonlocal->is_special_var = 1;
6140
6141 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6142 lhs.type = SCALAR;
6143 lhs.var = escaped_id;
6144 lhs.offset = 0;
6145 rhs.type = DEREF;
6146 rhs.var = escaped_id;
6147 rhs.offset = 0;
6148 process_constraint (new_constraint (lhs, rhs));
6149
6150 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6151 whole variable escapes. */
6152 lhs.type = SCALAR;
6153 lhs.var = escaped_id;
6154 lhs.offset = 0;
6155 rhs.type = SCALAR;
6156 rhs.var = escaped_id;
6157 rhs.offset = UNKNOWN_OFFSET;
6158 process_constraint (new_constraint (lhs, rhs));
6159
6160 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6161 everything pointed to by escaped points to what global memory can
6162 point to. */
6163 lhs.type = DEREF;
6164 lhs.var = escaped_id;
6165 lhs.offset = 0;
6166 rhs.type = SCALAR;
6167 rhs.var = nonlocal_id;
6168 rhs.offset = 0;
6169 process_constraint (new_constraint (lhs, rhs));
6170
6171 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6172 global memory may point to global memory and escaped memory. */
6173 lhs.type = SCALAR;
6174 lhs.var = nonlocal_id;
6175 lhs.offset = 0;
6176 rhs.type = ADDRESSOF;
6177 rhs.var = nonlocal_id;
6178 rhs.offset = 0;
6179 process_constraint (new_constraint (lhs, rhs));
6180 rhs.type = ADDRESSOF;
6181 rhs.var = escaped_id;
6182 rhs.offset = 0;
6183 process_constraint (new_constraint (lhs, rhs));
6184
6185 /* Create the STOREDANYTHING variable, used to represent the set of
6186 variables stored to *ANYTHING. */
6187 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6188 gcc_assert (var_storedanything->id == storedanything_id);
6189 var_storedanything->is_artificial_var = 1;
6190 var_storedanything->offset = 0;
6191 var_storedanything->size = ~0;
6192 var_storedanything->fullsize = ~0;
6193 var_storedanything->is_special_var = 0;
6194
6195 /* Create the INTEGER variable, used to represent that a variable points
6196 to what an INTEGER "points to". */
6197 var_integer = new_var_info (NULL_TREE, "INTEGER");
6198 gcc_assert (var_integer->id == integer_id);
6199 var_integer->is_artificial_var = 1;
6200 var_integer->size = ~0;
6201 var_integer->fullsize = ~0;
6202 var_integer->offset = 0;
6203 var_integer->next = NULL;
6204 var_integer->is_special_var = 1;
6205
6206 /* INTEGER = ANYTHING, because we don't know where a dereference of
6207 a random integer will point to. */
6208 lhs.type = SCALAR;
6209 lhs.var = integer_id;
6210 lhs.offset = 0;
6211 rhs.type = ADDRESSOF;
6212 rhs.var = anything_id;
6213 rhs.offset = 0;
6214 process_constraint (new_constraint (lhs, rhs));
6215 }
6216
6217 /* Initialize things necessary to perform PTA */
6218
6219 static void
6220 init_alias_vars (void)
6221 {
6222 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6223
6224 bitmap_obstack_initialize (&pta_obstack);
6225 bitmap_obstack_initialize (&oldpta_obstack);
6226 bitmap_obstack_initialize (&predbitmap_obstack);
6227
6228 constraint_pool = create_alloc_pool ("Constraint pool",
6229 sizeof (struct constraint), 30);
6230 variable_info_pool = create_alloc_pool ("Variable info pool",
6231 sizeof (struct variable_info), 30);
6232 constraints = VEC_alloc (constraint_t, heap, 8);
6233 varmap = VEC_alloc (varinfo_t, heap, 8);
6234 vi_for_tree = pointer_map_create ();
6235 call_stmt_vars = pointer_map_create ();
6236
6237 memset (&stats, 0, sizeof (stats));
6238 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6239 shared_bitmap_eq, free);
6240 init_base_vars ();
6241 }
6242
6243 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6244 predecessor edges. */
6245
6246 static void
6247 remove_preds_and_fake_succs (constraint_graph_t graph)
6248 {
6249 unsigned int i;
6250
6251 /* Clear the implicit ref and address nodes from the successor
6252 lists. */
6253 for (i = 0; i < FIRST_REF_NODE; i++)
6254 {
6255 if (graph->succs[i])
6256 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6257 FIRST_REF_NODE * 2);
6258 }
6259
6260 /* Free the successor list for the non-ref nodes. */
6261 for (i = FIRST_REF_NODE; i < graph->size; i++)
6262 {
6263 if (graph->succs[i])
6264 BITMAP_FREE (graph->succs[i]);
6265 }
6266
6267 /* Now reallocate the size of the successor list as, and blow away
6268 the predecessor bitmaps. */
6269 graph->size = VEC_length (varinfo_t, varmap);
6270 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6271
6272 free (graph->implicit_preds);
6273 graph->implicit_preds = NULL;
6274 free (graph->preds);
6275 graph->preds = NULL;
6276 bitmap_obstack_release (&predbitmap_obstack);
6277 }
6278
6279 /* Initialize the heapvar for statement mapping. */
6280
6281 static void
6282 init_alias_heapvars (void)
6283 {
6284 if (!heapvar_for_stmt)
6285 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
6286 NULL);
6287 }
6288
6289 /* Delete the heapvar for statement mapping. */
6290
6291 void
6292 delete_alias_heapvars (void)
6293 {
6294 if (heapvar_for_stmt)
6295 htab_delete (heapvar_for_stmt);
6296 heapvar_for_stmt = NULL;
6297 }
6298
6299 /* Solve the constraint set. */
6300
6301 static void
6302 solve_constraints (void)
6303 {
6304 struct scc_info *si;
6305
6306 if (dump_file)
6307 fprintf (dump_file,
6308 "\nCollapsing static cycles and doing variable "
6309 "substitution\n");
6310
6311 init_graph (VEC_length (varinfo_t, varmap) * 2);
6312
6313 if (dump_file)
6314 fprintf (dump_file, "Building predecessor graph\n");
6315 build_pred_graph ();
6316
6317 if (dump_file)
6318 fprintf (dump_file, "Detecting pointer and location "
6319 "equivalences\n");
6320 si = perform_var_substitution (graph);
6321
6322 if (dump_file)
6323 fprintf (dump_file, "Rewriting constraints and unifying "
6324 "variables\n");
6325 rewrite_constraints (graph, si);
6326
6327 build_succ_graph ();
6328 free_var_substitution_info (si);
6329
6330 if (dump_file && (dump_flags & TDF_GRAPH))
6331 dump_constraint_graph (dump_file);
6332
6333 move_complex_constraints (graph);
6334
6335 if (dump_file)
6336 fprintf (dump_file, "Uniting pointer but not location equivalent "
6337 "variables\n");
6338 unite_pointer_equivalences (graph);
6339
6340 if (dump_file)
6341 fprintf (dump_file, "Finding indirect cycles\n");
6342 find_indirect_cycles (graph);
6343
6344 /* Implicit nodes and predecessors are no longer necessary at this
6345 point. */
6346 remove_preds_and_fake_succs (graph);
6347
6348 if (dump_file)
6349 fprintf (dump_file, "Solving graph\n");
6350
6351 solve_graph (graph);
6352
6353 if (dump_file)
6354 dump_sa_points_to_info (dump_file);
6355 }
6356
6357 /* Create points-to sets for the current function. See the comments
6358 at the start of the file for an algorithmic overview. */
6359
6360 static void
6361 compute_points_to_sets (void)
6362 {
6363 basic_block bb;
6364 unsigned i;
6365 varinfo_t vi;
6366
6367 timevar_push (TV_TREE_PTA);
6368
6369 init_alias_vars ();
6370 init_alias_heapvars ();
6371
6372 intra_create_variable_infos ();
6373
6374 /* Now walk all statements and build the constraint set. */
6375 FOR_EACH_BB (bb)
6376 {
6377 gimple_stmt_iterator gsi;
6378
6379 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6380 {
6381 gimple phi = gsi_stmt (gsi);
6382
6383 if (is_gimple_reg (gimple_phi_result (phi)))
6384 find_func_aliases (phi);
6385 }
6386
6387 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6388 {
6389 gimple stmt = gsi_stmt (gsi);
6390
6391 find_func_aliases (stmt);
6392 }
6393 }
6394
6395 if (dump_file)
6396 {
6397 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6398 dump_constraints (dump_file, 0);
6399 }
6400
6401 /* From the constraints compute the points-to sets. */
6402 solve_constraints ();
6403
6404 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6405 find_what_var_points_to (get_varinfo (escaped_id),
6406 &cfun->gimple_df->escaped);
6407
6408 /* Make sure the ESCAPED solution (which is used as placeholder in
6409 other solutions) does not reference itself. This simplifies
6410 points-to solution queries. */
6411 cfun->gimple_df->escaped.escaped = 0;
6412
6413 /* Mark escaped HEAP variables as global. */
6414 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
6415 if (vi->is_heap_var
6416 && !vi->is_restrict_var
6417 && !vi->is_global_var)
6418 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6419 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6420
6421 /* Compute the points-to sets for pointer SSA_NAMEs. */
6422 for (i = 0; i < num_ssa_names; ++i)
6423 {
6424 tree ptr = ssa_name (i);
6425 if (ptr
6426 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6427 find_what_p_points_to (ptr);
6428 }
6429
6430 /* Compute the call-used/clobbered sets. */
6431 FOR_EACH_BB (bb)
6432 {
6433 gimple_stmt_iterator gsi;
6434
6435 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6436 {
6437 gimple stmt = gsi_stmt (gsi);
6438 struct pt_solution *pt;
6439 if (!is_gimple_call (stmt))
6440 continue;
6441
6442 pt = gimple_call_use_set (stmt);
6443 if (gimple_call_flags (stmt) & ECF_CONST)
6444 memset (pt, 0, sizeof (struct pt_solution));
6445 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6446 {
6447 find_what_var_points_to (vi, pt);
6448 /* Escaped (and thus nonlocal) variables are always
6449 implicitly used by calls. */
6450 /* ??? ESCAPED can be empty even though NONLOCAL
6451 always escaped. */
6452 pt->nonlocal = 1;
6453 pt->escaped = 1;
6454 }
6455 else
6456 {
6457 /* If there is nothing special about this call then
6458 we have made everything that is used also escape. */
6459 *pt = cfun->gimple_df->escaped;
6460 pt->nonlocal = 1;
6461 }
6462
6463 pt = gimple_call_clobber_set (stmt);
6464 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6465 memset (pt, 0, sizeof (struct pt_solution));
6466 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6467 {
6468 find_what_var_points_to (vi, pt);
6469 /* Escaped (and thus nonlocal) variables are always
6470 implicitly clobbered by calls. */
6471 /* ??? ESCAPED can be empty even though NONLOCAL
6472 always escaped. */
6473 pt->nonlocal = 1;
6474 pt->escaped = 1;
6475 }
6476 else
6477 {
6478 /* If there is nothing special about this call then
6479 we have made everything that is used also escape. */
6480 *pt = cfun->gimple_df->escaped;
6481 pt->nonlocal = 1;
6482 }
6483 }
6484 }
6485
6486 timevar_pop (TV_TREE_PTA);
6487 }
6488
6489
6490 /* Delete created points-to sets. */
6491
6492 static void
6493 delete_points_to_sets (void)
6494 {
6495 unsigned int i;
6496
6497 htab_delete (shared_bitmap_table);
6498 if (dump_file && (dump_flags & TDF_STATS))
6499 fprintf (dump_file, "Points to sets created:%d\n",
6500 stats.points_to_sets_created);
6501
6502 pointer_map_destroy (vi_for_tree);
6503 pointer_map_destroy (call_stmt_vars);
6504 bitmap_obstack_release (&pta_obstack);
6505 VEC_free (constraint_t, heap, constraints);
6506
6507 for (i = 0; i < graph->size; i++)
6508 VEC_free (constraint_t, heap, graph->complex[i]);
6509 free (graph->complex);
6510
6511 free (graph->rep);
6512 free (graph->succs);
6513 free (graph->pe);
6514 free (graph->pe_rep);
6515 free (graph->indirect_cycles);
6516 free (graph);
6517
6518 VEC_free (varinfo_t, heap, varmap);
6519 free_alloc_pool (variable_info_pool);
6520 free_alloc_pool (constraint_pool);
6521 }
6522
6523
6524 /* Compute points-to information for every SSA_NAME pointer in the
6525 current function and compute the transitive closure of escaped
6526 variables to re-initialize the call-clobber states of local variables. */
6527
6528 unsigned int
6529 compute_may_aliases (void)
6530 {
6531 if (cfun->gimple_df->ipa_pta)
6532 {
6533 if (dump_file)
6534 {
6535 fprintf (dump_file, "\nNot re-computing points-to information "
6536 "because IPA points-to information is available.\n\n");
6537
6538 /* But still dump what we have remaining it. */
6539 dump_alias_info (dump_file);
6540
6541 if (dump_flags & TDF_DETAILS)
6542 dump_referenced_vars (dump_file);
6543 }
6544
6545 return 0;
6546 }
6547
6548 /* For each pointer P_i, determine the sets of variables that P_i may
6549 point-to. Compute the reachability set of escaped and call-used
6550 variables. */
6551 compute_points_to_sets ();
6552
6553 /* Debugging dumps. */
6554 if (dump_file)
6555 {
6556 dump_alias_info (dump_file);
6557
6558 if (dump_flags & TDF_DETAILS)
6559 dump_referenced_vars (dump_file);
6560 }
6561
6562 /* Deallocate memory used by aliasing data structures and the internal
6563 points-to solution. */
6564 delete_points_to_sets ();
6565
6566 gcc_assert (!need_ssa_update_p (cfun));
6567
6568 return 0;
6569 }
6570
6571 static bool
6572 gate_tree_pta (void)
6573 {
6574 return flag_tree_pta;
6575 }
6576
6577 /* A dummy pass to cause points-to information to be computed via
6578 TODO_rebuild_alias. */
6579
6580 struct gimple_opt_pass pass_build_alias =
6581 {
6582 {
6583 GIMPLE_PASS,
6584 "alias", /* name */
6585 gate_tree_pta, /* gate */
6586 NULL, /* execute */
6587 NULL, /* sub */
6588 NULL, /* next */
6589 0, /* static_pass_number */
6590 TV_NONE, /* tv_id */
6591 PROP_cfg | PROP_ssa, /* properties_required */
6592 0, /* properties_provided */
6593 0, /* properties_destroyed */
6594 0, /* todo_flags_start */
6595 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6596 }
6597 };
6598
6599 /* A dummy pass to cause points-to information to be computed via
6600 TODO_rebuild_alias. */
6601
6602 struct gimple_opt_pass pass_build_ealias =
6603 {
6604 {
6605 GIMPLE_PASS,
6606 "ealias", /* name */
6607 gate_tree_pta, /* gate */
6608 NULL, /* execute */
6609 NULL, /* sub */
6610 NULL, /* next */
6611 0, /* static_pass_number */
6612 TV_NONE, /* tv_id */
6613 PROP_cfg | PROP_ssa, /* properties_required */
6614 0, /* properties_provided */
6615 0, /* properties_destroyed */
6616 0, /* todo_flags_start */
6617 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6618 }
6619 };
6620
6621
6622 /* Return true if we should execute IPA PTA. */
6623 static bool
6624 gate_ipa_pta (void)
6625 {
6626 return (optimize
6627 && flag_ipa_pta
6628 /* Don't bother doing anything if the program has errors. */
6629 && !seen_error ());
6630 }
6631
6632 /* IPA PTA solutions for ESCAPED. */
6633 struct pt_solution ipa_escaped_pt
6634 = { true, false, false, false, false, false, false, NULL };
6635
6636 /* Execute the driver for IPA PTA. */
6637 static unsigned int
6638 ipa_pta_execute (void)
6639 {
6640 struct cgraph_node *node;
6641 struct varpool_node *var;
6642 int from;
6643
6644 in_ipa_mode = 1;
6645
6646 init_alias_heapvars ();
6647 init_alias_vars ();
6648
6649 /* Build the constraints. */
6650 for (node = cgraph_nodes; node; node = node->next)
6651 {
6652 struct cgraph_node *alias;
6653 varinfo_t vi;
6654
6655 /* Nodes without a body are not interesting. Especially do not
6656 visit clones at this point for now - we get duplicate decls
6657 there for inline clones at least. */
6658 if (!gimple_has_body_p (node->decl)
6659 || node->clone_of)
6660 continue;
6661
6662 vi = create_function_info_for (node->decl,
6663 alias_get_name (node->decl));
6664
6665 /* Associate the varinfo node with all aliases. */
6666 for (alias = node->same_body; alias; alias = alias->next)
6667 insert_vi_for_tree (alias->decl, vi);
6668 }
6669
6670 /* Create constraints for global variables and their initializers. */
6671 for (var = varpool_nodes; var; var = var->next)
6672 {
6673 struct varpool_node *alias;
6674 varinfo_t vi;
6675
6676 vi = get_vi_for_tree (var->decl);
6677
6678 /* Associate the varinfo node with all aliases. */
6679 for (alias = var->extra_name; alias; alias = alias->next)
6680 insert_vi_for_tree (alias->decl, vi);
6681 }
6682
6683 if (dump_file)
6684 {
6685 fprintf (dump_file,
6686 "Generating constraints for global initializers\n\n");
6687 dump_constraints (dump_file, 0);
6688 fprintf (dump_file, "\n");
6689 }
6690 from = VEC_length (constraint_t, constraints);
6691
6692 for (node = cgraph_nodes; node; node = node->next)
6693 {
6694 struct function *func;
6695 basic_block bb;
6696 tree old_func_decl;
6697
6698 /* Nodes without a body are not interesting. */
6699 if (!gimple_has_body_p (node->decl)
6700 || node->clone_of)
6701 continue;
6702
6703 if (dump_file)
6704 {
6705 fprintf (dump_file,
6706 "Generating constraints for %s", cgraph_node_name (node));
6707 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6708 fprintf (dump_file, " (%s)",
6709 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6710 fprintf (dump_file, "\n");
6711 }
6712
6713 func = DECL_STRUCT_FUNCTION (node->decl);
6714 old_func_decl = current_function_decl;
6715 push_cfun (func);
6716 current_function_decl = node->decl;
6717
6718 /* For externally visible functions use local constraints for
6719 their arguments. For local functions we see all callers
6720 and thus do not need initial constraints for parameters. */
6721 if (node->local.externally_visible)
6722 intra_create_variable_infos ();
6723
6724 /* Build constriants for the function body. */
6725 FOR_EACH_BB_FN (bb, func)
6726 {
6727 gimple_stmt_iterator gsi;
6728
6729 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6730 gsi_next (&gsi))
6731 {
6732 gimple phi = gsi_stmt (gsi);
6733
6734 if (is_gimple_reg (gimple_phi_result (phi)))
6735 find_func_aliases (phi);
6736 }
6737
6738 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6739 {
6740 gimple stmt = gsi_stmt (gsi);
6741
6742 find_func_aliases (stmt);
6743 find_func_clobbers (stmt);
6744 }
6745 }
6746
6747 current_function_decl = old_func_decl;
6748 pop_cfun ();
6749
6750 if (dump_file)
6751 {
6752 fprintf (dump_file, "\n");
6753 dump_constraints (dump_file, from);
6754 fprintf (dump_file, "\n");
6755 }
6756 from = VEC_length (constraint_t, constraints);
6757 }
6758
6759 /* From the constraints compute the points-to sets. */
6760 solve_constraints ();
6761
6762 /* Compute the global points-to sets for ESCAPED.
6763 ??? Note that the computed escape set is not correct
6764 for the whole unit as we fail to consider graph edges to
6765 externally visible functions. */
6766 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6767
6768 /* Make sure the ESCAPED solution (which is used as placeholder in
6769 other solutions) does not reference itself. This simplifies
6770 points-to solution queries. */
6771 ipa_escaped_pt.ipa_escaped = 0;
6772
6773 /* Assign the points-to sets to the SSA names in the unit. */
6774 for (node = cgraph_nodes; node; node = node->next)
6775 {
6776 tree ptr;
6777 struct function *fn;
6778 unsigned i;
6779 varinfo_t fi;
6780 basic_block bb;
6781 struct pt_solution uses, clobbers;
6782 struct cgraph_edge *e;
6783
6784 /* Nodes without a body are not interesting. */
6785 if (!gimple_has_body_p (node->decl)
6786 || node->clone_of)
6787 continue;
6788
6789 fn = DECL_STRUCT_FUNCTION (node->decl);
6790
6791 /* Compute the points-to sets for pointer SSA_NAMEs. */
6792 for (i = 0; VEC_iterate (tree, fn->gimple_df->ssa_names, i, ptr); ++i)
6793 {
6794 if (ptr
6795 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6796 find_what_p_points_to (ptr);
6797 }
6798
6799 /* Compute the call-use and call-clobber sets for all direct calls. */
6800 fi = lookup_vi_for_tree (node->decl);
6801 gcc_assert (fi->is_fn_info);
6802 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6803 &clobbers);
6804 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6805 for (e = node->callers; e; e = e->next_caller)
6806 {
6807 if (!e->call_stmt)
6808 continue;
6809
6810 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6811 *gimple_call_use_set (e->call_stmt) = uses;
6812 }
6813
6814 /* Compute the call-use and call-clobber sets for indirect calls
6815 and calls to external functions. */
6816 FOR_EACH_BB_FN (bb, fn)
6817 {
6818 gimple_stmt_iterator gsi;
6819
6820 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6821 {
6822 gimple stmt = gsi_stmt (gsi);
6823 struct pt_solution *pt;
6824 varinfo_t vi;
6825 tree decl;
6826
6827 if (!is_gimple_call (stmt))
6828 continue;
6829
6830 /* Handle direct calls to external functions. */
6831 decl = gimple_call_fndecl (stmt);
6832 if (decl
6833 && (!(fi = lookup_vi_for_tree (decl))
6834 || !fi->is_fn_info))
6835 {
6836 pt = gimple_call_use_set (stmt);
6837 if (gimple_call_flags (stmt) & ECF_CONST)
6838 memset (pt, 0, sizeof (struct pt_solution));
6839 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6840 {
6841 find_what_var_points_to (vi, pt);
6842 /* Escaped (and thus nonlocal) variables are always
6843 implicitly used by calls. */
6844 /* ??? ESCAPED can be empty even though NONLOCAL
6845 always escaped. */
6846 pt->nonlocal = 1;
6847 pt->ipa_escaped = 1;
6848 }
6849 else
6850 {
6851 /* If there is nothing special about this call then
6852 we have made everything that is used also escape. */
6853 *pt = ipa_escaped_pt;
6854 pt->nonlocal = 1;
6855 }
6856
6857 pt = gimple_call_clobber_set (stmt);
6858 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6859 memset (pt, 0, sizeof (struct pt_solution));
6860 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6861 {
6862 find_what_var_points_to (vi, pt);
6863 /* Escaped (and thus nonlocal) variables are always
6864 implicitly clobbered by calls. */
6865 /* ??? ESCAPED can be empty even though NONLOCAL
6866 always escaped. */
6867 pt->nonlocal = 1;
6868 pt->ipa_escaped = 1;
6869 }
6870 else
6871 {
6872 /* If there is nothing special about this call then
6873 we have made everything that is used also escape. */
6874 *pt = ipa_escaped_pt;
6875 pt->nonlocal = 1;
6876 }
6877 }
6878
6879 /* Handle indirect calls. */
6880 if (!decl
6881 && (fi = get_fi_for_callee (stmt)))
6882 {
6883 /* We need to accumulate all clobbers/uses of all possible
6884 callees. */
6885 fi = get_varinfo (find (fi->id));
6886 /* If we cannot constrain the set of functions we'll end up
6887 calling we end up using/clobbering everything. */
6888 if (bitmap_bit_p (fi->solution, anything_id)
6889 || bitmap_bit_p (fi->solution, nonlocal_id)
6890 || bitmap_bit_p (fi->solution, escaped_id))
6891 {
6892 pt_solution_reset (gimple_call_clobber_set (stmt));
6893 pt_solution_reset (gimple_call_use_set (stmt));
6894 }
6895 else
6896 {
6897 bitmap_iterator bi;
6898 unsigned i;
6899 struct pt_solution *uses, *clobbers;
6900
6901 uses = gimple_call_use_set (stmt);
6902 clobbers = gimple_call_clobber_set (stmt);
6903 memset (uses, 0, sizeof (struct pt_solution));
6904 memset (clobbers, 0, sizeof (struct pt_solution));
6905 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
6906 {
6907 struct pt_solution sol;
6908
6909 vi = get_varinfo (i);
6910 if (!vi->is_fn_info)
6911 {
6912 /* ??? We could be more precise here? */
6913 uses->nonlocal = 1;
6914 uses->ipa_escaped = 1;
6915 clobbers->nonlocal = 1;
6916 clobbers->ipa_escaped = 1;
6917 continue;
6918 }
6919
6920 if (!uses->anything)
6921 {
6922 find_what_var_points_to
6923 (first_vi_for_offset (vi, fi_uses), &sol);
6924 pt_solution_ior_into (uses, &sol);
6925 }
6926 if (!clobbers->anything)
6927 {
6928 find_what_var_points_to
6929 (first_vi_for_offset (vi, fi_clobbers), &sol);
6930 pt_solution_ior_into (clobbers, &sol);
6931 }
6932 }
6933 }
6934 }
6935 }
6936 }
6937
6938 fn->gimple_df->ipa_pta = true;
6939 }
6940
6941 delete_points_to_sets ();
6942
6943 in_ipa_mode = 0;
6944
6945 return 0;
6946 }
6947
6948 struct simple_ipa_opt_pass pass_ipa_pta =
6949 {
6950 {
6951 SIMPLE_IPA_PASS,
6952 "pta", /* name */
6953 gate_ipa_pta, /* gate */
6954 ipa_pta_execute, /* execute */
6955 NULL, /* sub */
6956 NULL, /* next */
6957 0, /* static_pass_number */
6958 TV_IPA_PTA, /* tv_id */
6959 0, /* properties_required */
6960 0, /* properties_provided */
6961 0, /* properties_destroyed */
6962 0, /* todo_flags_start */
6963 TODO_update_ssa /* todo_flags_finish */
6964 }
6965 };
6966
6967
6968 #include "gt-tree-ssa-structalias.h"