]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-structalias.c
2012-09-07 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-ssa-structalias.c
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "tree.h"
32 #include "tree-flow.h"
33 #include "tree-inline.h"
34 #include "diagnostic-core.h"
35 #include "gimple.h"
36 #include "hashtab.h"
37 #include "function.h"
38 #include "cgraph.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "splay-tree.h"
42 #include "params.h"
43 #include "cgraph.h"
44 #include "alias.h"
45 #include "pointer-set.h"
46
47 /* The idea behind this analyzer is to generate set constraints from the
48 program, then solve the resulting constraints in order to generate the
49 points-to sets.
50
51 Set constraints are a way of modeling program analysis problems that
52 involve sets. They consist of an inclusion constraint language,
53 describing the variables (each variable is a set) and operations that
54 are involved on the variables, and a set of rules that derive facts
55 from these operations. To solve a system of set constraints, you derive
56 all possible facts under the rules, which gives you the correct sets
57 as a consequence.
58
59 See "Efficient Field-sensitive pointer analysis for C" by "David
60 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
61 http://citeseer.ist.psu.edu/pearce04efficient.html
62
63 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
64 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
65 http://citeseer.ist.psu.edu/heintze01ultrafast.html
66
67 There are three types of real constraint expressions, DEREF,
68 ADDRESSOF, and SCALAR. Each constraint expression consists
69 of a constraint type, a variable, and an offset.
70
71 SCALAR is a constraint expression type used to represent x, whether
72 it appears on the LHS or the RHS of a statement.
73 DEREF is a constraint expression type used to represent *x, whether
74 it appears on the LHS or the RHS of a statement.
75 ADDRESSOF is a constraint expression used to represent &x, whether
76 it appears on the LHS or the RHS of a statement.
77
78 Each pointer variable in the program is assigned an integer id, and
79 each field of a structure variable is assigned an integer id as well.
80
81 Structure variables are linked to their list of fields through a "next
82 field" in each variable that points to the next field in offset
83 order.
84 Each variable for a structure field has
85
86 1. "size", that tells the size in bits of that field.
87 2. "fullsize, that tells the size in bits of the entire structure.
88 3. "offset", that tells the offset in bits from the beginning of the
89 structure to this field.
90
91 Thus,
92 struct f
93 {
94 int a;
95 int b;
96 } foo;
97 int *bar;
98
99 looks like
100
101 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
102 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
103 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
104
105
106 In order to solve the system of set constraints, the following is
107 done:
108
109 1. Each constraint variable x has a solution set associated with it,
110 Sol(x).
111
112 2. Constraints are separated into direct, copy, and complex.
113 Direct constraints are ADDRESSOF constraints that require no extra
114 processing, such as P = &Q
115 Copy constraints are those of the form P = Q.
116 Complex constraints are all the constraints involving dereferences
117 and offsets (including offsetted copies).
118
119 3. All direct constraints of the form P = &Q are processed, such
120 that Q is added to Sol(P)
121
122 4. All complex constraints for a given constraint variable are stored in a
123 linked list attached to that variable's node.
124
125 5. A directed graph is built out of the copy constraints. Each
126 constraint variable is a node in the graph, and an edge from
127 Q to P is added for each copy constraint of the form P = Q
128
129 6. The graph is then walked, and solution sets are
130 propagated along the copy edges, such that an edge from Q to P
131 causes Sol(P) <- Sol(P) union Sol(Q).
132
133 7. As we visit each node, all complex constraints associated with
134 that node are processed by adding appropriate copy edges to the graph, or the
135 appropriate variables to the solution set.
136
137 8. The process of walking the graph is iterated until no solution
138 sets change.
139
140 Prior to walking the graph in steps 6 and 7, We perform static
141 cycle elimination on the constraint graph, as well
142 as off-line variable substitution.
143
144 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
145 on and turned into anything), but isn't. You can just see what offset
146 inside the pointed-to struct it's going to access.
147
148 TODO: Constant bounded arrays can be handled as if they were structs of the
149 same number of elements.
150
151 TODO: Modeling heap and incoming pointers becomes much better if we
152 add fields to them as we discover them, which we could do.
153
154 TODO: We could handle unions, but to be honest, it's probably not
155 worth the pain or slowdown. */
156
157 /* IPA-PTA optimizations possible.
158
159 When the indirect function called is ANYTHING we can add disambiguation
160 based on the function signatures (or simply the parameter count which
161 is the varinfo size). We also do not need to consider functions that
162 do not have their address taken.
163
164 The is_global_var bit which marks escape points is overly conservative
165 in IPA mode. Split it to is_escape_point and is_global_var - only
166 externally visible globals are escape points in IPA mode. This is
167 also needed to fix the pt_solution_includes_global predicate
168 (and thus ptr_deref_may_alias_global_p).
169
170 The way we introduce DECL_PT_UID to avoid fixing up all points-to
171 sets in the translation unit when we copy a DECL during inlining
172 pessimizes precision. The advantage is that the DECL_PT_UID keeps
173 compile-time and memory usage overhead low - the points-to sets
174 do not grow or get unshared as they would during a fixup phase.
175 An alternative solution is to delay IPA PTA until after all
176 inlining transformations have been applied.
177
178 The way we propagate clobber/use information isn't optimized.
179 It should use a new complex constraint that properly filters
180 out local variables of the callee (though that would make
181 the sets invalid after inlining). OTOH we might as well
182 admit defeat to WHOPR and simply do all the clobber/use analysis
183 and propagation after PTA finished but before we threw away
184 points-to information for memory variables. WHOPR and PTA
185 do not play along well anyway - the whole constraint solving
186 would need to be done in WPA phase and it will be very interesting
187 to apply the results to local SSA names during LTRANS phase.
188
189 We probably should compute a per-function unit-ESCAPE solution
190 propagating it simply like the clobber / uses solutions. The
191 solution can go alongside the non-IPA espaced solution and be
192 used to query which vars escape the unit through a function.
193
194 We never put function decls in points-to sets so we do not
195 keep the set of called functions for indirect calls.
196
197 And probably more. */
198
199 static bool use_field_sensitive = true;
200 static int in_ipa_mode = 0;
201
202 /* Used for predecessor bitmaps. */
203 static bitmap_obstack predbitmap_obstack;
204
205 /* Used for points-to sets. */
206 static bitmap_obstack pta_obstack;
207
208 /* Used for oldsolution members of variables. */
209 static bitmap_obstack oldpta_obstack;
210
211 /* Used for per-solver-iteration bitmaps. */
212 static bitmap_obstack iteration_obstack;
213
214 static unsigned int create_variable_info_for (tree, const char *);
215 typedef struct constraint_graph *constraint_graph_t;
216 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
217
218 struct constraint;
219 typedef struct constraint *constraint_t;
220
221 DEF_VEC_P(constraint_t);
222 DEF_VEC_ALLOC_P(constraint_t,heap);
223
224 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
225 if (a) \
226 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
227
228 static struct constraint_stats
229 {
230 unsigned int total_vars;
231 unsigned int nonpointer_vars;
232 unsigned int unified_vars_static;
233 unsigned int unified_vars_dynamic;
234 unsigned int iterations;
235 unsigned int num_edges;
236 unsigned int num_implicit_edges;
237 unsigned int points_to_sets_created;
238 } stats;
239
240 struct variable_info
241 {
242 /* ID of this variable */
243 unsigned int id;
244
245 /* True if this is a variable created by the constraint analysis, such as
246 heap variables and constraints we had to break up. */
247 unsigned int is_artificial_var : 1;
248
249 /* True if this is a special variable whose solution set should not be
250 changed. */
251 unsigned int is_special_var : 1;
252
253 /* True for variables whose size is not known or variable. */
254 unsigned int is_unknown_size_var : 1;
255
256 /* True for (sub-)fields that represent a whole variable. */
257 unsigned int is_full_var : 1;
258
259 /* True if this is a heap variable. */
260 unsigned int is_heap_var : 1;
261
262 /* True if this field may contain pointers. */
263 unsigned int may_have_pointers : 1;
264
265 /* True if this field has only restrict qualified pointers. */
266 unsigned int only_restrict_pointers : 1;
267
268 /* True if this represents a global variable. */
269 unsigned int is_global_var : 1;
270
271 /* True if this represents a IPA function info. */
272 unsigned int is_fn_info : 1;
273
274 /* A link to the variable for the next field in this structure. */
275 struct variable_info *next;
276
277 /* Offset of this variable, in bits, from the base variable */
278 unsigned HOST_WIDE_INT offset;
279
280 /* Size of the variable, in bits. */
281 unsigned HOST_WIDE_INT size;
282
283 /* Full size of the base variable, in bits. */
284 unsigned HOST_WIDE_INT fullsize;
285
286 /* Name of this variable */
287 const char *name;
288
289 /* Tree that this variable is associated with. */
290 tree decl;
291
292 /* Points-to set for this variable. */
293 bitmap solution;
294
295 /* Old points-to set for this variable. */
296 bitmap oldsolution;
297 };
298 typedef struct variable_info *varinfo_t;
299
300 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
301 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
302 unsigned HOST_WIDE_INT);
303 static varinfo_t lookup_vi_for_tree (tree);
304 static inline bool type_can_have_subvars (const_tree);
305
306 /* Pool of variable info structures. */
307 static alloc_pool variable_info_pool;
308
309 DEF_VEC_P(varinfo_t);
310
311 DEF_VEC_ALLOC_P(varinfo_t, heap);
312
313 /* Table of variable info structures for constraint variables.
314 Indexed directly by variable info id. */
315 static VEC(varinfo_t,heap) *varmap;
316
317 /* Return the varmap element N */
318
319 static inline varinfo_t
320 get_varinfo (unsigned int n)
321 {
322 return VEC_index (varinfo_t, varmap, n);
323 }
324
325 /* Static IDs for the special variables. */
326 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
327 escaped_id = 3, nonlocal_id = 4,
328 storedanything_id = 5, integer_id = 6 };
329
330 /* Return a new variable info structure consisting for a variable
331 named NAME, and using constraint graph node NODE. Append it
332 to the vector of variable info structures. */
333
334 static varinfo_t
335 new_var_info (tree t, const char *name)
336 {
337 unsigned index = VEC_length (varinfo_t, varmap);
338 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
339
340 ret->id = index;
341 ret->name = name;
342 ret->decl = t;
343 /* Vars without decl are artificial and do not have sub-variables. */
344 ret->is_artificial_var = (t == NULL_TREE);
345 ret->is_special_var = false;
346 ret->is_unknown_size_var = false;
347 ret->is_full_var = (t == NULL_TREE);
348 ret->is_heap_var = false;
349 ret->may_have_pointers = true;
350 ret->only_restrict_pointers = false;
351 ret->is_global_var = (t == NULL_TREE);
352 ret->is_fn_info = false;
353 if (t && DECL_P (t))
354 ret->is_global_var = (is_global_var (t)
355 /* We have to treat even local register variables
356 as escape points. */
357 || (TREE_CODE (t) == VAR_DECL
358 && DECL_HARD_REGISTER (t)));
359 ret->solution = BITMAP_ALLOC (&pta_obstack);
360 ret->oldsolution = NULL;
361 ret->next = NULL;
362
363 stats.total_vars++;
364
365 VEC_safe_push (varinfo_t, heap, varmap, ret);
366
367 return ret;
368 }
369
370
371 /* A map mapping call statements to per-stmt variables for uses
372 and clobbers specific to the call. */
373 struct pointer_map_t *call_stmt_vars;
374
375 /* Lookup or create the variable for the call statement CALL. */
376
377 static varinfo_t
378 get_call_vi (gimple call)
379 {
380 void **slot_p;
381 varinfo_t vi, vi2;
382
383 slot_p = pointer_map_insert (call_stmt_vars, call);
384 if (*slot_p)
385 return (varinfo_t) *slot_p;
386
387 vi = new_var_info (NULL_TREE, "CALLUSED");
388 vi->offset = 0;
389 vi->size = 1;
390 vi->fullsize = 2;
391 vi->is_full_var = true;
392
393 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
394 vi2->offset = 1;
395 vi2->size = 1;
396 vi2->fullsize = 2;
397 vi2->is_full_var = true;
398
399 *slot_p = (void *) vi;
400 return vi;
401 }
402
403 /* Lookup the variable for the call statement CALL representing
404 the uses. Returns NULL if there is nothing special about this call. */
405
406 static varinfo_t
407 lookup_call_use_vi (gimple call)
408 {
409 void **slot_p;
410
411 slot_p = pointer_map_contains (call_stmt_vars, call);
412 if (slot_p)
413 return (varinfo_t) *slot_p;
414
415 return NULL;
416 }
417
418 /* Lookup the variable for the call statement CALL representing
419 the clobbers. Returns NULL if there is nothing special about this call. */
420
421 static varinfo_t
422 lookup_call_clobber_vi (gimple call)
423 {
424 varinfo_t uses = lookup_call_use_vi (call);
425 if (!uses)
426 return NULL;
427
428 return uses->next;
429 }
430
431 /* Lookup or create the variable for the call statement CALL representing
432 the uses. */
433
434 static varinfo_t
435 get_call_use_vi (gimple call)
436 {
437 return get_call_vi (call);
438 }
439
440 /* Lookup or create the variable for the call statement CALL representing
441 the clobbers. */
442
443 static varinfo_t ATTRIBUTE_UNUSED
444 get_call_clobber_vi (gimple call)
445 {
446 return get_call_vi (call)->next;
447 }
448
449
450 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
451
452 /* An expression that appears in a constraint. */
453
454 struct constraint_expr
455 {
456 /* Constraint type. */
457 constraint_expr_type type;
458
459 /* Variable we are referring to in the constraint. */
460 unsigned int var;
461
462 /* Offset, in bits, of this constraint from the beginning of
463 variables it ends up referring to.
464
465 IOW, in a deref constraint, we would deref, get the result set,
466 then add OFFSET to each member. */
467 HOST_WIDE_INT offset;
468 };
469
470 /* Use 0x8000... as special unknown offset. */
471 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
472
473 typedef struct constraint_expr ce_s;
474 DEF_VEC_O(ce_s);
475 DEF_VEC_ALLOC_O(ce_s, heap);
476 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
477 static void get_constraint_for (tree, VEC(ce_s, heap) **);
478 static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
479 static void do_deref (VEC (ce_s, heap) **);
480
481 /* Our set constraints are made up of two constraint expressions, one
482 LHS, and one RHS.
483
484 As described in the introduction, our set constraints each represent an
485 operation between set valued variables.
486 */
487 struct constraint
488 {
489 struct constraint_expr lhs;
490 struct constraint_expr rhs;
491 };
492
493 /* List of constraints that we use to build the constraint graph from. */
494
495 static VEC(constraint_t,heap) *constraints;
496 static alloc_pool constraint_pool;
497
498 /* The constraint graph is represented as an array of bitmaps
499 containing successor nodes. */
500
501 struct constraint_graph
502 {
503 /* Size of this graph, which may be different than the number of
504 nodes in the variable map. */
505 unsigned int size;
506
507 /* Explicit successors of each node. */
508 bitmap *succs;
509
510 /* Implicit predecessors of each node (Used for variable
511 substitution). */
512 bitmap *implicit_preds;
513
514 /* Explicit predecessors of each node (Used for variable substitution). */
515 bitmap *preds;
516
517 /* Indirect cycle representatives, or -1 if the node has no indirect
518 cycles. */
519 int *indirect_cycles;
520
521 /* Representative node for a node. rep[a] == a unless the node has
522 been unified. */
523 unsigned int *rep;
524
525 /* Equivalence class representative for a label. This is used for
526 variable substitution. */
527 int *eq_rep;
528
529 /* Pointer equivalence label for a node. All nodes with the same
530 pointer equivalence label can be unified together at some point
531 (either during constraint optimization or after the constraint
532 graph is built). */
533 unsigned int *pe;
534
535 /* Pointer equivalence representative for a label. This is used to
536 handle nodes that are pointer equivalent but not location
537 equivalent. We can unite these once the addressof constraints
538 are transformed into initial points-to sets. */
539 int *pe_rep;
540
541 /* Pointer equivalence label for each node, used during variable
542 substitution. */
543 unsigned int *pointer_label;
544
545 /* Location equivalence label for each node, used during location
546 equivalence finding. */
547 unsigned int *loc_label;
548
549 /* Pointed-by set for each node, used during location equivalence
550 finding. This is pointed-by rather than pointed-to, because it
551 is constructed using the predecessor graph. */
552 bitmap *pointed_by;
553
554 /* Points to sets for pointer equivalence. This is *not* the actual
555 points-to sets for nodes. */
556 bitmap *points_to;
557
558 /* Bitmap of nodes where the bit is set if the node is a direct
559 node. Used for variable substitution. */
560 sbitmap direct_nodes;
561
562 /* Bitmap of nodes where the bit is set if the node is address
563 taken. Used for variable substitution. */
564 bitmap address_taken;
565
566 /* Vector of complex constraints for each graph node. Complex
567 constraints are those involving dereferences or offsets that are
568 not 0. */
569 VEC(constraint_t,heap) **complex;
570 };
571
572 static constraint_graph_t graph;
573
574 /* During variable substitution and the offline version of indirect
575 cycle finding, we create nodes to represent dereferences and
576 address taken constraints. These represent where these start and
577 end. */
578 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
579 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
580
581 /* Return the representative node for NODE, if NODE has been unioned
582 with another NODE.
583 This function performs path compression along the way to finding
584 the representative. */
585
586 static unsigned int
587 find (unsigned int node)
588 {
589 gcc_assert (node < graph->size);
590 if (graph->rep[node] != node)
591 return graph->rep[node] = find (graph->rep[node]);
592 return node;
593 }
594
595 /* Union the TO and FROM nodes to the TO nodes.
596 Note that at some point in the future, we may want to do
597 union-by-rank, in which case we are going to have to return the
598 node we unified to. */
599
600 static bool
601 unite (unsigned int to, unsigned int from)
602 {
603 gcc_assert (to < graph->size && from < graph->size);
604 if (to != from && graph->rep[from] != to)
605 {
606 graph->rep[from] = to;
607 return true;
608 }
609 return false;
610 }
611
612 /* Create a new constraint consisting of LHS and RHS expressions. */
613
614 static constraint_t
615 new_constraint (const struct constraint_expr lhs,
616 const struct constraint_expr rhs)
617 {
618 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
619 ret->lhs = lhs;
620 ret->rhs = rhs;
621 return ret;
622 }
623
624 /* Print out constraint C to FILE. */
625
626 static void
627 dump_constraint (FILE *file, constraint_t c)
628 {
629 if (c->lhs.type == ADDRESSOF)
630 fprintf (file, "&");
631 else if (c->lhs.type == DEREF)
632 fprintf (file, "*");
633 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
634 if (c->lhs.offset == UNKNOWN_OFFSET)
635 fprintf (file, " + UNKNOWN");
636 else if (c->lhs.offset != 0)
637 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
638 fprintf (file, " = ");
639 if (c->rhs.type == ADDRESSOF)
640 fprintf (file, "&");
641 else if (c->rhs.type == DEREF)
642 fprintf (file, "*");
643 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
644 if (c->rhs.offset == UNKNOWN_OFFSET)
645 fprintf (file, " + UNKNOWN");
646 else if (c->rhs.offset != 0)
647 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
648 }
649
650
651 void debug_constraint (constraint_t);
652 void debug_constraints (void);
653 void debug_constraint_graph (void);
654 void debug_solution_for_var (unsigned int);
655 void debug_sa_points_to_info (void);
656
657 /* Print out constraint C to stderr. */
658
659 DEBUG_FUNCTION void
660 debug_constraint (constraint_t c)
661 {
662 dump_constraint (stderr, c);
663 fprintf (stderr, "\n");
664 }
665
666 /* Print out all constraints to FILE */
667
668 static void
669 dump_constraints (FILE *file, int from)
670 {
671 int i;
672 constraint_t c;
673 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
674 if (c)
675 {
676 dump_constraint (file, c);
677 fprintf (file, "\n");
678 }
679 }
680
681 /* Print out all constraints to stderr. */
682
683 DEBUG_FUNCTION void
684 debug_constraints (void)
685 {
686 dump_constraints (stderr, 0);
687 }
688
689 /* Print the constraint graph in dot format. */
690
691 static void
692 dump_constraint_graph (FILE *file)
693 {
694 unsigned int i;
695
696 /* Only print the graph if it has already been initialized: */
697 if (!graph)
698 return;
699
700 /* Prints the header of the dot file: */
701 fprintf (file, "strict digraph {\n");
702 fprintf (file, " node [\n shape = box\n ]\n");
703 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
704 fprintf (file, "\n // List of nodes and complex constraints in "
705 "the constraint graph:\n");
706
707 /* The next lines print the nodes in the graph together with the
708 complex constraints attached to them. */
709 for (i = 0; i < graph->size; i++)
710 {
711 if (find (i) != i)
712 continue;
713 if (i < FIRST_REF_NODE)
714 fprintf (file, "\"%s\"", get_varinfo (i)->name);
715 else
716 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
717 if (graph->complex[i])
718 {
719 unsigned j;
720 constraint_t c;
721 fprintf (file, " [label=\"\\N\\n");
722 for (j = 0; VEC_iterate (constraint_t, graph->complex[i], j, c); ++j)
723 {
724 dump_constraint (file, c);
725 fprintf (file, "\\l");
726 }
727 fprintf (file, "\"]");
728 }
729 fprintf (file, ";\n");
730 }
731
732 /* Go over the edges. */
733 fprintf (file, "\n // Edges in the constraint graph:\n");
734 for (i = 0; i < graph->size; i++)
735 {
736 unsigned j;
737 bitmap_iterator bi;
738 if (find (i) != i)
739 continue;
740 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
741 {
742 unsigned to = find (j);
743 if (i == to)
744 continue;
745 if (i < FIRST_REF_NODE)
746 fprintf (file, "\"%s\"", get_varinfo (i)->name);
747 else
748 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
749 fprintf (file, " -> ");
750 if (to < FIRST_REF_NODE)
751 fprintf (file, "\"%s\"", get_varinfo (to)->name);
752 else
753 fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
754 fprintf (file, ";\n");
755 }
756 }
757
758 /* Prints the tail of the dot file. */
759 fprintf (file, "}\n");
760 }
761
762 /* Print out the constraint graph to stderr. */
763
764 DEBUG_FUNCTION void
765 debug_constraint_graph (void)
766 {
767 dump_constraint_graph (stderr);
768 }
769
770 /* SOLVER FUNCTIONS
771
772 The solver is a simple worklist solver, that works on the following
773 algorithm:
774
775 sbitmap changed_nodes = all zeroes;
776 changed_count = 0;
777 For each node that is not already collapsed:
778 changed_count++;
779 set bit in changed nodes
780
781 while (changed_count > 0)
782 {
783 compute topological ordering for constraint graph
784
785 find and collapse cycles in the constraint graph (updating
786 changed if necessary)
787
788 for each node (n) in the graph in topological order:
789 changed_count--;
790
791 Process each complex constraint associated with the node,
792 updating changed if necessary.
793
794 For each outgoing edge from n, propagate the solution from n to
795 the destination of the edge, updating changed as necessary.
796
797 } */
798
799 /* Return true if two constraint expressions A and B are equal. */
800
801 static bool
802 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
803 {
804 return a.type == b.type && a.var == b.var && a.offset == b.offset;
805 }
806
807 /* Return true if constraint expression A is less than constraint expression
808 B. This is just arbitrary, but consistent, in order to give them an
809 ordering. */
810
811 static bool
812 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
813 {
814 if (a.type == b.type)
815 {
816 if (a.var == b.var)
817 return a.offset < b.offset;
818 else
819 return a.var < b.var;
820 }
821 else
822 return a.type < b.type;
823 }
824
825 /* Return true if constraint A is less than constraint B. This is just
826 arbitrary, but consistent, in order to give them an ordering. */
827
828 static bool
829 constraint_less (const constraint_t a, const constraint_t b)
830 {
831 if (constraint_expr_less (a->lhs, b->lhs))
832 return true;
833 else if (constraint_expr_less (b->lhs, a->lhs))
834 return false;
835 else
836 return constraint_expr_less (a->rhs, b->rhs);
837 }
838
839 /* Return true if two constraints A and B are equal. */
840
841 static bool
842 constraint_equal (struct constraint a, struct constraint b)
843 {
844 return constraint_expr_equal (a.lhs, b.lhs)
845 && constraint_expr_equal (a.rhs, b.rhs);
846 }
847
848
849 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
850
851 static constraint_t
852 constraint_vec_find (VEC(constraint_t,heap) *vec,
853 struct constraint lookfor)
854 {
855 unsigned int place;
856 constraint_t found;
857
858 if (vec == NULL)
859 return NULL;
860
861 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
862 if (place >= VEC_length (constraint_t, vec))
863 return NULL;
864 found = VEC_index (constraint_t, vec, place);
865 if (!constraint_equal (*found, lookfor))
866 return NULL;
867 return found;
868 }
869
870 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
871
872 static void
873 constraint_set_union (VEC(constraint_t,heap) **to,
874 VEC(constraint_t,heap) **from)
875 {
876 int i;
877 constraint_t c;
878
879 FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
880 {
881 if (constraint_vec_find (*to, *c) == NULL)
882 {
883 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
884 constraint_less);
885 VEC_safe_insert (constraint_t, heap, *to, place, c);
886 }
887 }
888 }
889
890 /* Expands the solution in SET to all sub-fields of variables included.
891 Union the expanded result into RESULT. */
892
893 static void
894 solution_set_expand (bitmap result, bitmap set)
895 {
896 bitmap_iterator bi;
897 bitmap vars = NULL;
898 unsigned j;
899
900 /* In a first pass record all variables we need to add all
901 sub-fields off. This avoids quadratic behavior. */
902 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
903 {
904 varinfo_t v = get_varinfo (j);
905 if (v->is_artificial_var
906 || v->is_full_var)
907 continue;
908 v = lookup_vi_for_tree (v->decl);
909 if (vars == NULL)
910 vars = BITMAP_ALLOC (NULL);
911 bitmap_set_bit (vars, v->id);
912 }
913
914 /* In the second pass now do the addition to the solution and
915 to speed up solving add it to the delta as well. */
916 if (vars != NULL)
917 {
918 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
919 {
920 varinfo_t v = get_varinfo (j);
921 for (; v != NULL; v = v->next)
922 bitmap_set_bit (result, v->id);
923 }
924 BITMAP_FREE (vars);
925 }
926 }
927
928 /* Take a solution set SET, add OFFSET to each member of the set, and
929 overwrite SET with the result when done. */
930
931 static void
932 solution_set_add (bitmap set, HOST_WIDE_INT offset)
933 {
934 bitmap result = BITMAP_ALLOC (&iteration_obstack);
935 unsigned int i;
936 bitmap_iterator bi;
937
938 /* If the offset is unknown we have to expand the solution to
939 all subfields. */
940 if (offset == UNKNOWN_OFFSET)
941 {
942 solution_set_expand (set, set);
943 return;
944 }
945
946 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
947 {
948 varinfo_t vi = get_varinfo (i);
949
950 /* If this is a variable with just one field just set its bit
951 in the result. */
952 if (vi->is_artificial_var
953 || vi->is_unknown_size_var
954 || vi->is_full_var)
955 bitmap_set_bit (result, i);
956 else
957 {
958 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
959
960 /* If the offset makes the pointer point to before the
961 variable use offset zero for the field lookup. */
962 if (offset < 0
963 && fieldoffset > vi->offset)
964 fieldoffset = 0;
965
966 if (offset != 0)
967 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
968
969 bitmap_set_bit (result, vi->id);
970 /* If the result is not exactly at fieldoffset include the next
971 field as well. See get_constraint_for_ptr_offset for more
972 rationale. */
973 if (vi->offset != fieldoffset
974 && vi->next != NULL)
975 bitmap_set_bit (result, vi->next->id);
976 }
977 }
978
979 bitmap_copy (set, result);
980 BITMAP_FREE (result);
981 }
982
983 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
984 process. */
985
986 static bool
987 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
988 {
989 if (inc == 0)
990 return bitmap_ior_into (to, from);
991 else
992 {
993 bitmap tmp;
994 bool res;
995
996 tmp = BITMAP_ALLOC (&iteration_obstack);
997 bitmap_copy (tmp, from);
998 solution_set_add (tmp, inc);
999 res = bitmap_ior_into (to, tmp);
1000 BITMAP_FREE (tmp);
1001 return res;
1002 }
1003 }
1004
1005 /* Insert constraint C into the list of complex constraints for graph
1006 node VAR. */
1007
1008 static void
1009 insert_into_complex (constraint_graph_t graph,
1010 unsigned int var, constraint_t c)
1011 {
1012 VEC (constraint_t, heap) *complex = graph->complex[var];
1013 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1014 constraint_less);
1015
1016 /* Only insert constraints that do not already exist. */
1017 if (place >= VEC_length (constraint_t, complex)
1018 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1019 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1020 }
1021
1022
1023 /* Condense two variable nodes into a single variable node, by moving
1024 all associated info from SRC to TO. */
1025
1026 static void
1027 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1028 unsigned int from)
1029 {
1030 unsigned int i;
1031 constraint_t c;
1032
1033 gcc_assert (find (from) == to);
1034
1035 /* Move all complex constraints from src node into to node */
1036 FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
1037 {
1038 /* In complex constraints for node src, we may have either
1039 a = *src, and *src = a, or an offseted constraint which are
1040 always added to the rhs node's constraints. */
1041
1042 if (c->rhs.type == DEREF)
1043 c->rhs.var = to;
1044 else if (c->lhs.type == DEREF)
1045 c->lhs.var = to;
1046 else
1047 c->rhs.var = to;
1048 }
1049 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1050 VEC_free (constraint_t, heap, graph->complex[from]);
1051 graph->complex[from] = NULL;
1052 }
1053
1054
1055 /* Remove edges involving NODE from GRAPH. */
1056
1057 static void
1058 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1059 {
1060 if (graph->succs[node])
1061 BITMAP_FREE (graph->succs[node]);
1062 }
1063
1064 /* Merge GRAPH nodes FROM and TO into node TO. */
1065
1066 static void
1067 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1068 unsigned int from)
1069 {
1070 if (graph->indirect_cycles[from] != -1)
1071 {
1072 /* If we have indirect cycles with the from node, and we have
1073 none on the to node, the to node has indirect cycles from the
1074 from node now that they are unified.
1075 If indirect cycles exist on both, unify the nodes that they
1076 are in a cycle with, since we know they are in a cycle with
1077 each other. */
1078 if (graph->indirect_cycles[to] == -1)
1079 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1080 }
1081
1082 /* Merge all the successor edges. */
1083 if (graph->succs[from])
1084 {
1085 if (!graph->succs[to])
1086 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1087 bitmap_ior_into (graph->succs[to],
1088 graph->succs[from]);
1089 }
1090
1091 clear_edges_for_node (graph, from);
1092 }
1093
1094
1095 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1096 it doesn't exist in the graph already. */
1097
1098 static void
1099 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1100 unsigned int from)
1101 {
1102 if (to == from)
1103 return;
1104
1105 if (!graph->implicit_preds[to])
1106 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1107
1108 if (bitmap_set_bit (graph->implicit_preds[to], from))
1109 stats.num_implicit_edges++;
1110 }
1111
1112 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1113 it doesn't exist in the graph already.
1114 Return false if the edge already existed, true otherwise. */
1115
1116 static void
1117 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1118 unsigned int from)
1119 {
1120 if (!graph->preds[to])
1121 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1122 bitmap_set_bit (graph->preds[to], from);
1123 }
1124
1125 /* Add a graph edge to GRAPH, going from FROM to TO if
1126 it doesn't exist in the graph already.
1127 Return false if the edge already existed, true otherwise. */
1128
1129 static bool
1130 add_graph_edge (constraint_graph_t graph, unsigned int to,
1131 unsigned int from)
1132 {
1133 if (to == from)
1134 {
1135 return false;
1136 }
1137 else
1138 {
1139 bool r = false;
1140
1141 if (!graph->succs[from])
1142 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1143 if (bitmap_set_bit (graph->succs[from], to))
1144 {
1145 r = true;
1146 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1147 stats.num_edges++;
1148 }
1149 return r;
1150 }
1151 }
1152
1153
1154 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1155
1156 static bool
1157 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1158 unsigned int dest)
1159 {
1160 return (graph->succs[dest]
1161 && bitmap_bit_p (graph->succs[dest], src));
1162 }
1163
1164 /* Initialize the constraint graph structure to contain SIZE nodes. */
1165
1166 static void
1167 init_graph (unsigned int size)
1168 {
1169 unsigned int j;
1170
1171 graph = XCNEW (struct constraint_graph);
1172 graph->size = size;
1173 graph->succs = XCNEWVEC (bitmap, graph->size);
1174 graph->indirect_cycles = XNEWVEC (int, graph->size);
1175 graph->rep = XNEWVEC (unsigned int, graph->size);
1176 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1177 graph->pe = XCNEWVEC (unsigned int, graph->size);
1178 graph->pe_rep = XNEWVEC (int, graph->size);
1179
1180 for (j = 0; j < graph->size; j++)
1181 {
1182 graph->rep[j] = j;
1183 graph->pe_rep[j] = -1;
1184 graph->indirect_cycles[j] = -1;
1185 }
1186 }
1187
1188 /* Build the constraint graph, adding only predecessor edges right now. */
1189
1190 static void
1191 build_pred_graph (void)
1192 {
1193 int i;
1194 constraint_t c;
1195 unsigned int j;
1196
1197 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1198 graph->preds = XCNEWVEC (bitmap, graph->size);
1199 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1200 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1201 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1202 graph->points_to = XCNEWVEC (bitmap, graph->size);
1203 graph->eq_rep = XNEWVEC (int, graph->size);
1204 graph->direct_nodes = sbitmap_alloc (graph->size);
1205 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1206 sbitmap_zero (graph->direct_nodes);
1207
1208 for (j = 0; j < FIRST_REF_NODE; j++)
1209 {
1210 if (!get_varinfo (j)->is_special_var)
1211 SET_BIT (graph->direct_nodes, j);
1212 }
1213
1214 for (j = 0; j < graph->size; j++)
1215 graph->eq_rep[j] = -1;
1216
1217 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1218 graph->indirect_cycles[j] = -1;
1219
1220 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1221 {
1222 struct constraint_expr lhs = c->lhs;
1223 struct constraint_expr rhs = c->rhs;
1224 unsigned int lhsvar = lhs.var;
1225 unsigned int rhsvar = rhs.var;
1226
1227 if (lhs.type == DEREF)
1228 {
1229 /* *x = y. */
1230 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1231 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1232 }
1233 else if (rhs.type == DEREF)
1234 {
1235 /* x = *y */
1236 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1237 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1238 else
1239 RESET_BIT (graph->direct_nodes, lhsvar);
1240 }
1241 else if (rhs.type == ADDRESSOF)
1242 {
1243 varinfo_t v;
1244
1245 /* x = &y */
1246 if (graph->points_to[lhsvar] == NULL)
1247 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1248 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1249
1250 if (graph->pointed_by[rhsvar] == NULL)
1251 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1252 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1253
1254 /* Implicitly, *x = y */
1255 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1256
1257 /* All related variables are no longer direct nodes. */
1258 RESET_BIT (graph->direct_nodes, rhsvar);
1259 v = get_varinfo (rhsvar);
1260 if (!v->is_full_var)
1261 {
1262 v = lookup_vi_for_tree (v->decl);
1263 do
1264 {
1265 RESET_BIT (graph->direct_nodes, v->id);
1266 v = v->next;
1267 }
1268 while (v != NULL);
1269 }
1270 bitmap_set_bit (graph->address_taken, rhsvar);
1271 }
1272 else if (lhsvar > anything_id
1273 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1274 {
1275 /* x = y */
1276 add_pred_graph_edge (graph, lhsvar, rhsvar);
1277 /* Implicitly, *x = *y */
1278 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1279 FIRST_REF_NODE + rhsvar);
1280 }
1281 else if (lhs.offset != 0 || rhs.offset != 0)
1282 {
1283 if (rhs.offset != 0)
1284 RESET_BIT (graph->direct_nodes, lhs.var);
1285 else if (lhs.offset != 0)
1286 RESET_BIT (graph->direct_nodes, rhs.var);
1287 }
1288 }
1289 }
1290
1291 /* Build the constraint graph, adding successor edges. */
1292
1293 static void
1294 build_succ_graph (void)
1295 {
1296 unsigned i, t;
1297 constraint_t c;
1298
1299 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1300 {
1301 struct constraint_expr lhs;
1302 struct constraint_expr rhs;
1303 unsigned int lhsvar;
1304 unsigned int rhsvar;
1305
1306 if (!c)
1307 continue;
1308
1309 lhs = c->lhs;
1310 rhs = c->rhs;
1311 lhsvar = find (lhs.var);
1312 rhsvar = find (rhs.var);
1313
1314 if (lhs.type == DEREF)
1315 {
1316 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1317 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1318 }
1319 else if (rhs.type == DEREF)
1320 {
1321 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1322 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1323 }
1324 else if (rhs.type == ADDRESSOF)
1325 {
1326 /* x = &y */
1327 gcc_assert (find (rhs.var) == rhs.var);
1328 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1329 }
1330 else if (lhsvar > anything_id
1331 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1332 {
1333 add_graph_edge (graph, lhsvar, rhsvar);
1334 }
1335 }
1336
1337 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1338 receive pointers. */
1339 t = find (storedanything_id);
1340 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1341 {
1342 if (!TEST_BIT (graph->direct_nodes, i)
1343 && get_varinfo (i)->may_have_pointers)
1344 add_graph_edge (graph, find (i), t);
1345 }
1346
1347 /* Everything stored to ANYTHING also potentially escapes. */
1348 add_graph_edge (graph, find (escaped_id), t);
1349 }
1350
1351
1352 /* Changed variables on the last iteration. */
1353 static bitmap changed;
1354
1355 /* Strongly Connected Component visitation info. */
1356
1357 struct scc_info
1358 {
1359 sbitmap visited;
1360 sbitmap deleted;
1361 unsigned int *dfs;
1362 unsigned int *node_mapping;
1363 int current_index;
1364 VEC(unsigned,heap) *scc_stack;
1365 };
1366
1367
1368 /* Recursive routine to find strongly connected components in GRAPH.
1369 SI is the SCC info to store the information in, and N is the id of current
1370 graph node we are processing.
1371
1372 This is Tarjan's strongly connected component finding algorithm, as
1373 modified by Nuutila to keep only non-root nodes on the stack.
1374 The algorithm can be found in "On finding the strongly connected
1375 connected components in a directed graph" by Esko Nuutila and Eljas
1376 Soisalon-Soininen, in Information Processing Letters volume 49,
1377 number 1, pages 9-14. */
1378
1379 static void
1380 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1381 {
1382 unsigned int i;
1383 bitmap_iterator bi;
1384 unsigned int my_dfs;
1385
1386 SET_BIT (si->visited, n);
1387 si->dfs[n] = si->current_index ++;
1388 my_dfs = si->dfs[n];
1389
1390 /* Visit all the successors. */
1391 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1392 {
1393 unsigned int w;
1394
1395 if (i > LAST_REF_NODE)
1396 break;
1397
1398 w = find (i);
1399 if (TEST_BIT (si->deleted, w))
1400 continue;
1401
1402 if (!TEST_BIT (si->visited, w))
1403 scc_visit (graph, si, w);
1404 {
1405 unsigned int t = find (w);
1406 unsigned int nnode = find (n);
1407 gcc_assert (nnode == n);
1408
1409 if (si->dfs[t] < si->dfs[nnode])
1410 si->dfs[n] = si->dfs[t];
1411 }
1412 }
1413
1414 /* See if any components have been identified. */
1415 if (si->dfs[n] == my_dfs)
1416 {
1417 if (VEC_length (unsigned, si->scc_stack) > 0
1418 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1419 {
1420 bitmap scc = BITMAP_ALLOC (NULL);
1421 unsigned int lowest_node;
1422 bitmap_iterator bi;
1423
1424 bitmap_set_bit (scc, n);
1425
1426 while (VEC_length (unsigned, si->scc_stack) != 0
1427 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1428 {
1429 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1430
1431 bitmap_set_bit (scc, w);
1432 }
1433
1434 lowest_node = bitmap_first_set_bit (scc);
1435 gcc_assert (lowest_node < FIRST_REF_NODE);
1436
1437 /* Collapse the SCC nodes into a single node, and mark the
1438 indirect cycles. */
1439 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1440 {
1441 if (i < FIRST_REF_NODE)
1442 {
1443 if (unite (lowest_node, i))
1444 unify_nodes (graph, lowest_node, i, false);
1445 }
1446 else
1447 {
1448 unite (lowest_node, i);
1449 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1450 }
1451 }
1452 }
1453 SET_BIT (si->deleted, n);
1454 }
1455 else
1456 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1457 }
1458
1459 /* Unify node FROM into node TO, updating the changed count if
1460 necessary when UPDATE_CHANGED is true. */
1461
1462 static void
1463 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1464 bool update_changed)
1465 {
1466
1467 gcc_assert (to != from && find (to) == to);
1468 if (dump_file && (dump_flags & TDF_DETAILS))
1469 fprintf (dump_file, "Unifying %s to %s\n",
1470 get_varinfo (from)->name,
1471 get_varinfo (to)->name);
1472
1473 if (update_changed)
1474 stats.unified_vars_dynamic++;
1475 else
1476 stats.unified_vars_static++;
1477
1478 merge_graph_nodes (graph, to, from);
1479 merge_node_constraints (graph, to, from);
1480
1481 /* Mark TO as changed if FROM was changed. If TO was already marked
1482 as changed, decrease the changed count. */
1483
1484 if (update_changed
1485 && bitmap_bit_p (changed, from))
1486 {
1487 bitmap_clear_bit (changed, from);
1488 bitmap_set_bit (changed, to);
1489 }
1490 if (get_varinfo (from)->solution)
1491 {
1492 /* If the solution changes because of the merging, we need to mark
1493 the variable as changed. */
1494 if (bitmap_ior_into (get_varinfo (to)->solution,
1495 get_varinfo (from)->solution))
1496 {
1497 if (update_changed)
1498 bitmap_set_bit (changed, to);
1499 }
1500
1501 BITMAP_FREE (get_varinfo (from)->solution);
1502 if (get_varinfo (from)->oldsolution)
1503 BITMAP_FREE (get_varinfo (from)->oldsolution);
1504
1505 if (stats.iterations > 0
1506 && get_varinfo (to)->oldsolution)
1507 BITMAP_FREE (get_varinfo (to)->oldsolution);
1508 }
1509 if (valid_graph_edge (graph, to, to))
1510 {
1511 if (graph->succs[to])
1512 bitmap_clear_bit (graph->succs[to], to);
1513 }
1514 }
1515
1516 /* Information needed to compute the topological ordering of a graph. */
1517
1518 struct topo_info
1519 {
1520 /* sbitmap of visited nodes. */
1521 sbitmap visited;
1522 /* Array that stores the topological order of the graph, *in
1523 reverse*. */
1524 VEC(unsigned,heap) *topo_order;
1525 };
1526
1527
1528 /* Initialize and return a topological info structure. */
1529
1530 static struct topo_info *
1531 init_topo_info (void)
1532 {
1533 size_t size = graph->size;
1534 struct topo_info *ti = XNEW (struct topo_info);
1535 ti->visited = sbitmap_alloc (size);
1536 sbitmap_zero (ti->visited);
1537 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1538 return ti;
1539 }
1540
1541
1542 /* Free the topological sort info pointed to by TI. */
1543
1544 static void
1545 free_topo_info (struct topo_info *ti)
1546 {
1547 sbitmap_free (ti->visited);
1548 VEC_free (unsigned, heap, ti->topo_order);
1549 free (ti);
1550 }
1551
1552 /* Visit the graph in topological order, and store the order in the
1553 topo_info structure. */
1554
1555 static void
1556 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1557 unsigned int n)
1558 {
1559 bitmap_iterator bi;
1560 unsigned int j;
1561
1562 SET_BIT (ti->visited, n);
1563
1564 if (graph->succs[n])
1565 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1566 {
1567 if (!TEST_BIT (ti->visited, j))
1568 topo_visit (graph, ti, j);
1569 }
1570
1571 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1572 }
1573
1574 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1575 starting solution for y. */
1576
1577 static void
1578 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1579 bitmap delta)
1580 {
1581 unsigned int lhs = c->lhs.var;
1582 bool flag = false;
1583 bitmap sol = get_varinfo (lhs)->solution;
1584 unsigned int j;
1585 bitmap_iterator bi;
1586 HOST_WIDE_INT roffset = c->rhs.offset;
1587
1588 /* Our IL does not allow this. */
1589 gcc_assert (c->lhs.offset == 0);
1590
1591 /* If the solution of Y contains anything it is good enough to transfer
1592 this to the LHS. */
1593 if (bitmap_bit_p (delta, anything_id))
1594 {
1595 flag |= bitmap_set_bit (sol, anything_id);
1596 goto done;
1597 }
1598
1599 /* If we do not know at with offset the rhs is dereferenced compute
1600 the reachability set of DELTA, conservatively assuming it is
1601 dereferenced at all valid offsets. */
1602 if (roffset == UNKNOWN_OFFSET)
1603 {
1604 solution_set_expand (delta, delta);
1605 /* No further offset processing is necessary. */
1606 roffset = 0;
1607 }
1608
1609 /* For each variable j in delta (Sol(y)), add
1610 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1611 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1612 {
1613 varinfo_t v = get_varinfo (j);
1614 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1615 unsigned int t;
1616
1617 if (v->is_full_var)
1618 fieldoffset = v->offset;
1619 else if (roffset != 0)
1620 v = first_vi_for_offset (v, fieldoffset);
1621 /* If the access is outside of the variable we can ignore it. */
1622 if (!v)
1623 continue;
1624
1625 do
1626 {
1627 t = find (v->id);
1628
1629 /* Adding edges from the special vars is pointless.
1630 They don't have sets that can change. */
1631 if (get_varinfo (t)->is_special_var)
1632 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1633 /* Merging the solution from ESCAPED needlessly increases
1634 the set. Use ESCAPED as representative instead. */
1635 else if (v->id == escaped_id)
1636 flag |= bitmap_set_bit (sol, escaped_id);
1637 else if (v->may_have_pointers
1638 && add_graph_edge (graph, lhs, t))
1639 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1640
1641 /* If the variable is not exactly at the requested offset
1642 we have to include the next one. */
1643 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1644 || v->next == NULL)
1645 break;
1646
1647 v = v->next;
1648 fieldoffset = v->offset;
1649 }
1650 while (1);
1651 }
1652
1653 done:
1654 /* If the LHS solution changed, mark the var as changed. */
1655 if (flag)
1656 {
1657 get_varinfo (lhs)->solution = sol;
1658 bitmap_set_bit (changed, lhs);
1659 }
1660 }
1661
1662 /* Process a constraint C that represents *(x + off) = y using DELTA
1663 as the starting solution for x. */
1664
1665 static void
1666 do_ds_constraint (constraint_t c, bitmap delta)
1667 {
1668 unsigned int rhs = c->rhs.var;
1669 bitmap sol = get_varinfo (rhs)->solution;
1670 unsigned int j;
1671 bitmap_iterator bi;
1672 HOST_WIDE_INT loff = c->lhs.offset;
1673 bool escaped_p = false;
1674
1675 /* Our IL does not allow this. */
1676 gcc_assert (c->rhs.offset == 0);
1677
1678 /* If the solution of y contains ANYTHING simply use the ANYTHING
1679 solution. This avoids needlessly increasing the points-to sets. */
1680 if (bitmap_bit_p (sol, anything_id))
1681 sol = get_varinfo (find (anything_id))->solution;
1682
1683 /* If the solution for x contains ANYTHING we have to merge the
1684 solution of y into all pointer variables which we do via
1685 STOREDANYTHING. */
1686 if (bitmap_bit_p (delta, anything_id))
1687 {
1688 unsigned t = find (storedanything_id);
1689 if (add_graph_edge (graph, t, rhs))
1690 {
1691 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1692 bitmap_set_bit (changed, t);
1693 }
1694 return;
1695 }
1696
1697 /* If we do not know at with offset the rhs is dereferenced compute
1698 the reachability set of DELTA, conservatively assuming it is
1699 dereferenced at all valid offsets. */
1700 if (loff == UNKNOWN_OFFSET)
1701 {
1702 solution_set_expand (delta, delta);
1703 loff = 0;
1704 }
1705
1706 /* For each member j of delta (Sol(x)), add an edge from y to j and
1707 union Sol(y) into Sol(j) */
1708 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1709 {
1710 varinfo_t v = get_varinfo (j);
1711 unsigned int t;
1712 HOST_WIDE_INT fieldoffset = v->offset + loff;
1713
1714 if (v->is_full_var)
1715 fieldoffset = v->offset;
1716 else if (loff != 0)
1717 v = first_vi_for_offset (v, fieldoffset);
1718 /* If the access is outside of the variable we can ignore it. */
1719 if (!v)
1720 continue;
1721
1722 do
1723 {
1724 if (v->may_have_pointers)
1725 {
1726 /* If v is a global variable then this is an escape point. */
1727 if (v->is_global_var
1728 && !escaped_p)
1729 {
1730 t = find (escaped_id);
1731 if (add_graph_edge (graph, t, rhs)
1732 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1733 bitmap_set_bit (changed, t);
1734 /* Enough to let rhs escape once. */
1735 escaped_p = true;
1736 }
1737
1738 if (v->is_special_var)
1739 break;
1740
1741 t = find (v->id);
1742 if (add_graph_edge (graph, t, rhs)
1743 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1744 bitmap_set_bit (changed, t);
1745 }
1746
1747 /* If the variable is not exactly at the requested offset
1748 we have to include the next one. */
1749 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1750 || v->next == NULL)
1751 break;
1752
1753 v = v->next;
1754 fieldoffset = v->offset;
1755 }
1756 while (1);
1757 }
1758 }
1759
1760 /* Handle a non-simple (simple meaning requires no iteration),
1761 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1762
1763 static void
1764 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1765 {
1766 if (c->lhs.type == DEREF)
1767 {
1768 if (c->rhs.type == ADDRESSOF)
1769 {
1770 gcc_unreachable();
1771 }
1772 else
1773 {
1774 /* *x = y */
1775 do_ds_constraint (c, delta);
1776 }
1777 }
1778 else if (c->rhs.type == DEREF)
1779 {
1780 /* x = *y */
1781 if (!(get_varinfo (c->lhs.var)->is_special_var))
1782 do_sd_constraint (graph, c, delta);
1783 }
1784 else
1785 {
1786 bitmap tmp;
1787 bitmap solution;
1788 bool flag = false;
1789
1790 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1791 solution = get_varinfo (c->rhs.var)->solution;
1792 tmp = get_varinfo (c->lhs.var)->solution;
1793
1794 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1795
1796 if (flag)
1797 {
1798 get_varinfo (c->lhs.var)->solution = tmp;
1799 bitmap_set_bit (changed, c->lhs.var);
1800 }
1801 }
1802 }
1803
1804 /* Initialize and return a new SCC info structure. */
1805
1806 static struct scc_info *
1807 init_scc_info (size_t size)
1808 {
1809 struct scc_info *si = XNEW (struct scc_info);
1810 size_t i;
1811
1812 si->current_index = 0;
1813 si->visited = sbitmap_alloc (size);
1814 sbitmap_zero (si->visited);
1815 si->deleted = sbitmap_alloc (size);
1816 sbitmap_zero (si->deleted);
1817 si->node_mapping = XNEWVEC (unsigned int, size);
1818 si->dfs = XCNEWVEC (unsigned int, size);
1819
1820 for (i = 0; i < size; i++)
1821 si->node_mapping[i] = i;
1822
1823 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1824 return si;
1825 }
1826
1827 /* Free an SCC info structure pointed to by SI */
1828
1829 static void
1830 free_scc_info (struct scc_info *si)
1831 {
1832 sbitmap_free (si->visited);
1833 sbitmap_free (si->deleted);
1834 free (si->node_mapping);
1835 free (si->dfs);
1836 VEC_free (unsigned, heap, si->scc_stack);
1837 free (si);
1838 }
1839
1840
1841 /* Find indirect cycles in GRAPH that occur, using strongly connected
1842 components, and note them in the indirect cycles map.
1843
1844 This technique comes from Ben Hardekopf and Calvin Lin,
1845 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1846 Lines of Code", submitted to PLDI 2007. */
1847
1848 static void
1849 find_indirect_cycles (constraint_graph_t graph)
1850 {
1851 unsigned int i;
1852 unsigned int size = graph->size;
1853 struct scc_info *si = init_scc_info (size);
1854
1855 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1856 if (!TEST_BIT (si->visited, i) && find (i) == i)
1857 scc_visit (graph, si, i);
1858
1859 free_scc_info (si);
1860 }
1861
1862 /* Compute a topological ordering for GRAPH, and store the result in the
1863 topo_info structure TI. */
1864
1865 static void
1866 compute_topo_order (constraint_graph_t graph,
1867 struct topo_info *ti)
1868 {
1869 unsigned int i;
1870 unsigned int size = graph->size;
1871
1872 for (i = 0; i != size; ++i)
1873 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1874 topo_visit (graph, ti, i);
1875 }
1876
1877 /* Structure used to for hash value numbering of pointer equivalence
1878 classes. */
1879
1880 typedef struct equiv_class_label
1881 {
1882 hashval_t hashcode;
1883 unsigned int equivalence_class;
1884 bitmap labels;
1885 } *equiv_class_label_t;
1886 typedef const struct equiv_class_label *const_equiv_class_label_t;
1887
1888 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1889 classes. */
1890 static htab_t pointer_equiv_class_table;
1891
1892 /* A hashtable for mapping a bitmap of labels->location equivalence
1893 classes. */
1894 static htab_t location_equiv_class_table;
1895
1896 /* Hash function for a equiv_class_label_t */
1897
1898 static hashval_t
1899 equiv_class_label_hash (const void *p)
1900 {
1901 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1902 return ecl->hashcode;
1903 }
1904
1905 /* Equality function for two equiv_class_label_t's. */
1906
1907 static int
1908 equiv_class_label_eq (const void *p1, const void *p2)
1909 {
1910 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1911 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1912 return (eql1->hashcode == eql2->hashcode
1913 && bitmap_equal_p (eql1->labels, eql2->labels));
1914 }
1915
1916 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1917 contains. */
1918
1919 static unsigned int
1920 equiv_class_lookup (htab_t table, bitmap labels)
1921 {
1922 void **slot;
1923 struct equiv_class_label ecl;
1924
1925 ecl.labels = labels;
1926 ecl.hashcode = bitmap_hash (labels);
1927
1928 slot = htab_find_slot_with_hash (table, &ecl,
1929 ecl.hashcode, NO_INSERT);
1930 if (!slot)
1931 return 0;
1932 else
1933 return ((equiv_class_label_t) *slot)->equivalence_class;
1934 }
1935
1936
1937 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1938 to TABLE. */
1939
1940 static void
1941 equiv_class_add (htab_t table, unsigned int equivalence_class,
1942 bitmap labels)
1943 {
1944 void **slot;
1945 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1946
1947 ecl->labels = labels;
1948 ecl->equivalence_class = equivalence_class;
1949 ecl->hashcode = bitmap_hash (labels);
1950
1951 slot = htab_find_slot_with_hash (table, ecl,
1952 ecl->hashcode, INSERT);
1953 gcc_assert (!*slot);
1954 *slot = (void *) ecl;
1955 }
1956
1957 /* Perform offline variable substitution.
1958
1959 This is a worst case quadratic time way of identifying variables
1960 that must have equivalent points-to sets, including those caused by
1961 static cycles, and single entry subgraphs, in the constraint graph.
1962
1963 The technique is described in "Exploiting Pointer and Location
1964 Equivalence to Optimize Pointer Analysis. In the 14th International
1965 Static Analysis Symposium (SAS), August 2007." It is known as the
1966 "HU" algorithm, and is equivalent to value numbering the collapsed
1967 constraint graph including evaluating unions.
1968
1969 The general method of finding equivalence classes is as follows:
1970 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1971 Initialize all non-REF nodes to be direct nodes.
1972 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1973 variable}
1974 For each constraint containing the dereference, we also do the same
1975 thing.
1976
1977 We then compute SCC's in the graph and unify nodes in the same SCC,
1978 including pts sets.
1979
1980 For each non-collapsed node x:
1981 Visit all unvisited explicit incoming edges.
1982 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1983 where y->x.
1984 Lookup the equivalence class for pts(x).
1985 If we found one, equivalence_class(x) = found class.
1986 Otherwise, equivalence_class(x) = new class, and new_class is
1987 added to the lookup table.
1988
1989 All direct nodes with the same equivalence class can be replaced
1990 with a single representative node.
1991 All unlabeled nodes (label == 0) are not pointers and all edges
1992 involving them can be eliminated.
1993 We perform these optimizations during rewrite_constraints
1994
1995 In addition to pointer equivalence class finding, we also perform
1996 location equivalence class finding. This is the set of variables
1997 that always appear together in points-to sets. We use this to
1998 compress the size of the points-to sets. */
1999
2000 /* Current maximum pointer equivalence class id. */
2001 static int pointer_equiv_class;
2002
2003 /* Current maximum location equivalence class id. */
2004 static int location_equiv_class;
2005
2006 /* Recursive routine to find strongly connected components in GRAPH,
2007 and label it's nodes with DFS numbers. */
2008
2009 static void
2010 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2011 {
2012 unsigned int i;
2013 bitmap_iterator bi;
2014 unsigned int my_dfs;
2015
2016 gcc_assert (si->node_mapping[n] == n);
2017 SET_BIT (si->visited, n);
2018 si->dfs[n] = si->current_index ++;
2019 my_dfs = si->dfs[n];
2020
2021 /* Visit all the successors. */
2022 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2023 {
2024 unsigned int w = si->node_mapping[i];
2025
2026 if (TEST_BIT (si->deleted, w))
2027 continue;
2028
2029 if (!TEST_BIT (si->visited, w))
2030 condense_visit (graph, si, w);
2031 {
2032 unsigned int t = si->node_mapping[w];
2033 unsigned int nnode = si->node_mapping[n];
2034 gcc_assert (nnode == n);
2035
2036 if (si->dfs[t] < si->dfs[nnode])
2037 si->dfs[n] = si->dfs[t];
2038 }
2039 }
2040
2041 /* Visit all the implicit predecessors. */
2042 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2043 {
2044 unsigned int w = si->node_mapping[i];
2045
2046 if (TEST_BIT (si->deleted, w))
2047 continue;
2048
2049 if (!TEST_BIT (si->visited, w))
2050 condense_visit (graph, si, w);
2051 {
2052 unsigned int t = si->node_mapping[w];
2053 unsigned int nnode = si->node_mapping[n];
2054 gcc_assert (nnode == n);
2055
2056 if (si->dfs[t] < si->dfs[nnode])
2057 si->dfs[n] = si->dfs[t];
2058 }
2059 }
2060
2061 /* See if any components have been identified. */
2062 if (si->dfs[n] == my_dfs)
2063 {
2064 while (VEC_length (unsigned, si->scc_stack) != 0
2065 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2066 {
2067 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2068 si->node_mapping[w] = n;
2069
2070 if (!TEST_BIT (graph->direct_nodes, w))
2071 RESET_BIT (graph->direct_nodes, n);
2072
2073 /* Unify our nodes. */
2074 if (graph->preds[w])
2075 {
2076 if (!graph->preds[n])
2077 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2078 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2079 }
2080 if (graph->implicit_preds[w])
2081 {
2082 if (!graph->implicit_preds[n])
2083 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2084 bitmap_ior_into (graph->implicit_preds[n],
2085 graph->implicit_preds[w]);
2086 }
2087 if (graph->points_to[w])
2088 {
2089 if (!graph->points_to[n])
2090 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2091 bitmap_ior_into (graph->points_to[n],
2092 graph->points_to[w]);
2093 }
2094 }
2095 SET_BIT (si->deleted, n);
2096 }
2097 else
2098 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2099 }
2100
2101 /* Label pointer equivalences. */
2102
2103 static void
2104 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2105 {
2106 unsigned int i;
2107 bitmap_iterator bi;
2108 SET_BIT (si->visited, n);
2109
2110 if (!graph->points_to[n])
2111 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2112
2113 /* Label and union our incoming edges's points to sets. */
2114 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2115 {
2116 unsigned int w = si->node_mapping[i];
2117 if (!TEST_BIT (si->visited, w))
2118 label_visit (graph, si, w);
2119
2120 /* Skip unused edges */
2121 if (w == n || graph->pointer_label[w] == 0)
2122 continue;
2123
2124 if (graph->points_to[w])
2125 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2126 }
2127 /* Indirect nodes get fresh variables. */
2128 if (!TEST_BIT (graph->direct_nodes, n))
2129 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2130
2131 if (!bitmap_empty_p (graph->points_to[n]))
2132 {
2133 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2134 graph->points_to[n]);
2135 if (!label)
2136 {
2137 label = pointer_equiv_class++;
2138 equiv_class_add (pointer_equiv_class_table,
2139 label, graph->points_to[n]);
2140 }
2141 graph->pointer_label[n] = label;
2142 }
2143 }
2144
2145 /* Perform offline variable substitution, discovering equivalence
2146 classes, and eliminating non-pointer variables. */
2147
2148 static struct scc_info *
2149 perform_var_substitution (constraint_graph_t graph)
2150 {
2151 unsigned int i;
2152 unsigned int size = graph->size;
2153 struct scc_info *si = init_scc_info (size);
2154
2155 bitmap_obstack_initialize (&iteration_obstack);
2156 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2157 equiv_class_label_eq, free);
2158 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2159 equiv_class_label_eq, free);
2160 pointer_equiv_class = 1;
2161 location_equiv_class = 1;
2162
2163 /* Condense the nodes, which means to find SCC's, count incoming
2164 predecessors, and unite nodes in SCC's. */
2165 for (i = 0; i < FIRST_REF_NODE; i++)
2166 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2167 condense_visit (graph, si, si->node_mapping[i]);
2168
2169 sbitmap_zero (si->visited);
2170 /* Actually the label the nodes for pointer equivalences */
2171 for (i = 0; i < FIRST_REF_NODE; i++)
2172 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2173 label_visit (graph, si, si->node_mapping[i]);
2174
2175 /* Calculate location equivalence labels. */
2176 for (i = 0; i < FIRST_REF_NODE; i++)
2177 {
2178 bitmap pointed_by;
2179 bitmap_iterator bi;
2180 unsigned int j;
2181 unsigned int label;
2182
2183 if (!graph->pointed_by[i])
2184 continue;
2185 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2186
2187 /* Translate the pointed-by mapping for pointer equivalence
2188 labels. */
2189 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2190 {
2191 bitmap_set_bit (pointed_by,
2192 graph->pointer_label[si->node_mapping[j]]);
2193 }
2194 /* The original pointed_by is now dead. */
2195 BITMAP_FREE (graph->pointed_by[i]);
2196
2197 /* Look up the location equivalence label if one exists, or make
2198 one otherwise. */
2199 label = equiv_class_lookup (location_equiv_class_table,
2200 pointed_by);
2201 if (label == 0)
2202 {
2203 label = location_equiv_class++;
2204 equiv_class_add (location_equiv_class_table,
2205 label, pointed_by);
2206 }
2207 else
2208 {
2209 if (dump_file && (dump_flags & TDF_DETAILS))
2210 fprintf (dump_file, "Found location equivalence for node %s\n",
2211 get_varinfo (i)->name);
2212 BITMAP_FREE (pointed_by);
2213 }
2214 graph->loc_label[i] = label;
2215
2216 }
2217
2218 if (dump_file && (dump_flags & TDF_DETAILS))
2219 for (i = 0; i < FIRST_REF_NODE; i++)
2220 {
2221 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2222 fprintf (dump_file,
2223 "Equivalence classes for %s node id %d:%s are pointer: %d"
2224 ", location:%d\n",
2225 direct_node ? "Direct node" : "Indirect node", i,
2226 get_varinfo (i)->name,
2227 graph->pointer_label[si->node_mapping[i]],
2228 graph->loc_label[si->node_mapping[i]]);
2229 }
2230
2231 /* Quickly eliminate our non-pointer variables. */
2232
2233 for (i = 0; i < FIRST_REF_NODE; i++)
2234 {
2235 unsigned int node = si->node_mapping[i];
2236
2237 if (graph->pointer_label[node] == 0)
2238 {
2239 if (dump_file && (dump_flags & TDF_DETAILS))
2240 fprintf (dump_file,
2241 "%s is a non-pointer variable, eliminating edges.\n",
2242 get_varinfo (node)->name);
2243 stats.nonpointer_vars++;
2244 clear_edges_for_node (graph, node);
2245 }
2246 }
2247
2248 return si;
2249 }
2250
2251 /* Free information that was only necessary for variable
2252 substitution. */
2253
2254 static void
2255 free_var_substitution_info (struct scc_info *si)
2256 {
2257 free_scc_info (si);
2258 free (graph->pointer_label);
2259 free (graph->loc_label);
2260 free (graph->pointed_by);
2261 free (graph->points_to);
2262 free (graph->eq_rep);
2263 sbitmap_free (graph->direct_nodes);
2264 htab_delete (pointer_equiv_class_table);
2265 htab_delete (location_equiv_class_table);
2266 bitmap_obstack_release (&iteration_obstack);
2267 }
2268
2269 /* Return an existing node that is equivalent to NODE, which has
2270 equivalence class LABEL, if one exists. Return NODE otherwise. */
2271
2272 static unsigned int
2273 find_equivalent_node (constraint_graph_t graph,
2274 unsigned int node, unsigned int label)
2275 {
2276 /* If the address version of this variable is unused, we can
2277 substitute it for anything else with the same label.
2278 Otherwise, we know the pointers are equivalent, but not the
2279 locations, and we can unite them later. */
2280
2281 if (!bitmap_bit_p (graph->address_taken, node))
2282 {
2283 gcc_assert (label < graph->size);
2284
2285 if (graph->eq_rep[label] != -1)
2286 {
2287 /* Unify the two variables since we know they are equivalent. */
2288 if (unite (graph->eq_rep[label], node))
2289 unify_nodes (graph, graph->eq_rep[label], node, false);
2290 return graph->eq_rep[label];
2291 }
2292 else
2293 {
2294 graph->eq_rep[label] = node;
2295 graph->pe_rep[label] = node;
2296 }
2297 }
2298 else
2299 {
2300 gcc_assert (label < graph->size);
2301 graph->pe[node] = label;
2302 if (graph->pe_rep[label] == -1)
2303 graph->pe_rep[label] = node;
2304 }
2305
2306 return node;
2307 }
2308
2309 /* Unite pointer equivalent but not location equivalent nodes in
2310 GRAPH. This may only be performed once variable substitution is
2311 finished. */
2312
2313 static void
2314 unite_pointer_equivalences (constraint_graph_t graph)
2315 {
2316 unsigned int i;
2317
2318 /* Go through the pointer equivalences and unite them to their
2319 representative, if they aren't already. */
2320 for (i = 0; i < FIRST_REF_NODE; i++)
2321 {
2322 unsigned int label = graph->pe[i];
2323 if (label)
2324 {
2325 int label_rep = graph->pe_rep[label];
2326
2327 if (label_rep == -1)
2328 continue;
2329
2330 label_rep = find (label_rep);
2331 if (label_rep >= 0 && unite (label_rep, find (i)))
2332 unify_nodes (graph, label_rep, i, false);
2333 }
2334 }
2335 }
2336
2337 /* Move complex constraints to the GRAPH nodes they belong to. */
2338
2339 static void
2340 move_complex_constraints (constraint_graph_t graph)
2341 {
2342 int i;
2343 constraint_t c;
2344
2345 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2346 {
2347 if (c)
2348 {
2349 struct constraint_expr lhs = c->lhs;
2350 struct constraint_expr rhs = c->rhs;
2351
2352 if (lhs.type == DEREF)
2353 {
2354 insert_into_complex (graph, lhs.var, c);
2355 }
2356 else if (rhs.type == DEREF)
2357 {
2358 if (!(get_varinfo (lhs.var)->is_special_var))
2359 insert_into_complex (graph, rhs.var, c);
2360 }
2361 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2362 && (lhs.offset != 0 || rhs.offset != 0))
2363 {
2364 insert_into_complex (graph, rhs.var, c);
2365 }
2366 }
2367 }
2368 }
2369
2370
2371 /* Optimize and rewrite complex constraints while performing
2372 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2373 result of perform_variable_substitution. */
2374
2375 static void
2376 rewrite_constraints (constraint_graph_t graph,
2377 struct scc_info *si)
2378 {
2379 int i;
2380 unsigned int j;
2381 constraint_t c;
2382
2383 for (j = 0; j < graph->size; j++)
2384 gcc_assert (find (j) == j);
2385
2386 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2387 {
2388 struct constraint_expr lhs = c->lhs;
2389 struct constraint_expr rhs = c->rhs;
2390 unsigned int lhsvar = find (lhs.var);
2391 unsigned int rhsvar = find (rhs.var);
2392 unsigned int lhsnode, rhsnode;
2393 unsigned int lhslabel, rhslabel;
2394
2395 lhsnode = si->node_mapping[lhsvar];
2396 rhsnode = si->node_mapping[rhsvar];
2397 lhslabel = graph->pointer_label[lhsnode];
2398 rhslabel = graph->pointer_label[rhsnode];
2399
2400 /* See if it is really a non-pointer variable, and if so, ignore
2401 the constraint. */
2402 if (lhslabel == 0)
2403 {
2404 if (dump_file && (dump_flags & TDF_DETAILS))
2405 {
2406
2407 fprintf (dump_file, "%s is a non-pointer variable,"
2408 "ignoring constraint:",
2409 get_varinfo (lhs.var)->name);
2410 dump_constraint (dump_file, c);
2411 fprintf (dump_file, "\n");
2412 }
2413 VEC_replace (constraint_t, constraints, i, NULL);
2414 continue;
2415 }
2416
2417 if (rhslabel == 0)
2418 {
2419 if (dump_file && (dump_flags & TDF_DETAILS))
2420 {
2421
2422 fprintf (dump_file, "%s is a non-pointer variable,"
2423 "ignoring constraint:",
2424 get_varinfo (rhs.var)->name);
2425 dump_constraint (dump_file, c);
2426 fprintf (dump_file, "\n");
2427 }
2428 VEC_replace (constraint_t, constraints, i, NULL);
2429 continue;
2430 }
2431
2432 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2433 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2434 c->lhs.var = lhsvar;
2435 c->rhs.var = rhsvar;
2436
2437 }
2438 }
2439
2440 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2441 part of an SCC, false otherwise. */
2442
2443 static bool
2444 eliminate_indirect_cycles (unsigned int node)
2445 {
2446 if (graph->indirect_cycles[node] != -1
2447 && !bitmap_empty_p (get_varinfo (node)->solution))
2448 {
2449 unsigned int i;
2450 VEC(unsigned,heap) *queue = NULL;
2451 int queuepos;
2452 unsigned int to = find (graph->indirect_cycles[node]);
2453 bitmap_iterator bi;
2454
2455 /* We can't touch the solution set and call unify_nodes
2456 at the same time, because unify_nodes is going to do
2457 bitmap unions into it. */
2458
2459 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2460 {
2461 if (find (i) == i && i != to)
2462 {
2463 if (unite (to, i))
2464 VEC_safe_push (unsigned, heap, queue, i);
2465 }
2466 }
2467
2468 for (queuepos = 0;
2469 VEC_iterate (unsigned, queue, queuepos, i);
2470 queuepos++)
2471 {
2472 unify_nodes (graph, to, i, true);
2473 }
2474 VEC_free (unsigned, heap, queue);
2475 return true;
2476 }
2477 return false;
2478 }
2479
2480 /* Solve the constraint graph GRAPH using our worklist solver.
2481 This is based on the PW* family of solvers from the "Efficient Field
2482 Sensitive Pointer Analysis for C" paper.
2483 It works by iterating over all the graph nodes, processing the complex
2484 constraints and propagating the copy constraints, until everything stops
2485 changed. This corresponds to steps 6-8 in the solving list given above. */
2486
2487 static void
2488 solve_graph (constraint_graph_t graph)
2489 {
2490 unsigned int size = graph->size;
2491 unsigned int i;
2492 bitmap pts;
2493
2494 changed = BITMAP_ALLOC (NULL);
2495
2496 /* Mark all initial non-collapsed nodes as changed. */
2497 for (i = 0; i < size; i++)
2498 {
2499 varinfo_t ivi = get_varinfo (i);
2500 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2501 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2502 || VEC_length (constraint_t, graph->complex[i]) > 0))
2503 bitmap_set_bit (changed, i);
2504 }
2505
2506 /* Allocate a bitmap to be used to store the changed bits. */
2507 pts = BITMAP_ALLOC (&pta_obstack);
2508
2509 while (!bitmap_empty_p (changed))
2510 {
2511 unsigned int i;
2512 struct topo_info *ti = init_topo_info ();
2513 stats.iterations++;
2514
2515 bitmap_obstack_initialize (&iteration_obstack);
2516
2517 compute_topo_order (graph, ti);
2518
2519 while (VEC_length (unsigned, ti->topo_order) != 0)
2520 {
2521
2522 i = VEC_pop (unsigned, ti->topo_order);
2523
2524 /* If this variable is not a representative, skip it. */
2525 if (find (i) != i)
2526 continue;
2527
2528 /* In certain indirect cycle cases, we may merge this
2529 variable to another. */
2530 if (eliminate_indirect_cycles (i) && find (i) != i)
2531 continue;
2532
2533 /* If the node has changed, we need to process the
2534 complex constraints and outgoing edges again. */
2535 if (bitmap_clear_bit (changed, i))
2536 {
2537 unsigned int j;
2538 constraint_t c;
2539 bitmap solution;
2540 VEC(constraint_t,heap) *complex = graph->complex[i];
2541 varinfo_t vi = get_varinfo (i);
2542 bool solution_empty;
2543
2544 /* Compute the changed set of solution bits. */
2545 if (vi->oldsolution)
2546 bitmap_and_compl (pts, vi->solution, vi->oldsolution);
2547 else
2548 bitmap_copy (pts, vi->solution);
2549
2550 if (bitmap_empty_p (pts))
2551 continue;
2552
2553 if (vi->oldsolution)
2554 bitmap_ior_into (vi->oldsolution, pts);
2555 else
2556 {
2557 vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
2558 bitmap_copy (vi->oldsolution, pts);
2559 }
2560
2561 solution = vi->solution;
2562 solution_empty = bitmap_empty_p (solution);
2563
2564 /* Process the complex constraints */
2565 FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
2566 {
2567 /* XXX: This is going to unsort the constraints in
2568 some cases, which will occasionally add duplicate
2569 constraints during unification. This does not
2570 affect correctness. */
2571 c->lhs.var = find (c->lhs.var);
2572 c->rhs.var = find (c->rhs.var);
2573
2574 /* The only complex constraint that can change our
2575 solution to non-empty, given an empty solution,
2576 is a constraint where the lhs side is receiving
2577 some set from elsewhere. */
2578 if (!solution_empty || c->lhs.type != DEREF)
2579 do_complex_constraint (graph, c, pts);
2580 }
2581
2582 solution_empty = bitmap_empty_p (solution);
2583
2584 if (!solution_empty)
2585 {
2586 bitmap_iterator bi;
2587 unsigned eff_escaped_id = find (escaped_id);
2588
2589 /* Propagate solution to all successors. */
2590 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2591 0, j, bi)
2592 {
2593 bitmap tmp;
2594 bool flag;
2595
2596 unsigned int to = find (j);
2597 tmp = get_varinfo (to)->solution;
2598 flag = false;
2599
2600 /* Don't try to propagate to ourselves. */
2601 if (to == i)
2602 continue;
2603
2604 /* If we propagate from ESCAPED use ESCAPED as
2605 placeholder. */
2606 if (i == eff_escaped_id)
2607 flag = bitmap_set_bit (tmp, escaped_id);
2608 else
2609 flag = set_union_with_increment (tmp, pts, 0);
2610
2611 if (flag)
2612 {
2613 get_varinfo (to)->solution = tmp;
2614 bitmap_set_bit (changed, to);
2615 }
2616 }
2617 }
2618 }
2619 }
2620 free_topo_info (ti);
2621 bitmap_obstack_release (&iteration_obstack);
2622 }
2623
2624 BITMAP_FREE (pts);
2625 BITMAP_FREE (changed);
2626 bitmap_obstack_release (&oldpta_obstack);
2627 }
2628
2629 /* Map from trees to variable infos. */
2630 static struct pointer_map_t *vi_for_tree;
2631
2632
2633 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2634
2635 static void
2636 insert_vi_for_tree (tree t, varinfo_t vi)
2637 {
2638 void **slot = pointer_map_insert (vi_for_tree, t);
2639 gcc_assert (vi);
2640 gcc_assert (*slot == NULL);
2641 *slot = vi;
2642 }
2643
2644 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2645 exist in the map, return NULL, otherwise, return the varinfo we found. */
2646
2647 static varinfo_t
2648 lookup_vi_for_tree (tree t)
2649 {
2650 void **slot = pointer_map_contains (vi_for_tree, t);
2651 if (slot == NULL)
2652 return NULL;
2653
2654 return (varinfo_t) *slot;
2655 }
2656
2657 /* Return a printable name for DECL */
2658
2659 static const char *
2660 alias_get_name (tree decl)
2661 {
2662 const char *res = NULL;
2663 char *temp;
2664 int num_printed = 0;
2665
2666 if (!dump_file)
2667 return "NULL";
2668
2669 if (TREE_CODE (decl) == SSA_NAME)
2670 {
2671 res = get_name (decl);
2672 if (res)
2673 num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl));
2674 else
2675 num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl));
2676 if (num_printed > 0)
2677 {
2678 res = ggc_strdup (temp);
2679 free (temp);
2680 }
2681 }
2682 else if (DECL_P (decl))
2683 {
2684 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2685 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2686 else
2687 {
2688 res = get_name (decl);
2689 if (!res)
2690 {
2691 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2692 if (num_printed > 0)
2693 {
2694 res = ggc_strdup (temp);
2695 free (temp);
2696 }
2697 }
2698 }
2699 }
2700 if (res != NULL)
2701 return res;
2702
2703 return "NULL";
2704 }
2705
2706 /* Find the variable id for tree T in the map.
2707 If T doesn't exist in the map, create an entry for it and return it. */
2708
2709 static varinfo_t
2710 get_vi_for_tree (tree t)
2711 {
2712 void **slot = pointer_map_contains (vi_for_tree, t);
2713 if (slot == NULL)
2714 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2715
2716 return (varinfo_t) *slot;
2717 }
2718
2719 /* Get a scalar constraint expression for a new temporary variable. */
2720
2721 static struct constraint_expr
2722 new_scalar_tmp_constraint_exp (const char *name)
2723 {
2724 struct constraint_expr tmp;
2725 varinfo_t vi;
2726
2727 vi = new_var_info (NULL_TREE, name);
2728 vi->offset = 0;
2729 vi->size = -1;
2730 vi->fullsize = -1;
2731 vi->is_full_var = 1;
2732
2733 tmp.var = vi->id;
2734 tmp.type = SCALAR;
2735 tmp.offset = 0;
2736
2737 return tmp;
2738 }
2739
2740 /* Get a constraint expression vector from an SSA_VAR_P node.
2741 If address_p is true, the result will be taken its address of. */
2742
2743 static void
2744 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2745 {
2746 struct constraint_expr cexpr;
2747 varinfo_t vi;
2748
2749 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2750 gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t));
2751
2752 /* For parameters, get at the points-to set for the actual parm
2753 decl. */
2754 if (TREE_CODE (t) == SSA_NAME
2755 && SSA_NAME_IS_DEFAULT_DEF (t)
2756 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2757 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL))
2758 {
2759 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2760 return;
2761 }
2762
2763 /* For global variables resort to the alias target. */
2764 if (TREE_CODE (t) == VAR_DECL
2765 && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
2766 {
2767 struct varpool_node *node = varpool_get_node (t);
2768 if (node && node->alias)
2769 {
2770 node = varpool_variable_node (node, NULL);
2771 t = node->symbol.decl;
2772 }
2773 }
2774
2775 vi = get_vi_for_tree (t);
2776 cexpr.var = vi->id;
2777 cexpr.type = SCALAR;
2778 cexpr.offset = 0;
2779 /* If we determine the result is "anything", and we know this is readonly,
2780 say it points to readonly memory instead. */
2781 if (cexpr.var == anything_id && TREE_READONLY (t))
2782 {
2783 gcc_unreachable ();
2784 cexpr.type = ADDRESSOF;
2785 cexpr.var = readonly_id;
2786 }
2787
2788 /* If we are not taking the address of the constraint expr, add all
2789 sub-fiels of the variable as well. */
2790 if (!address_p
2791 && !vi->is_full_var)
2792 {
2793 for (; vi; vi = vi->next)
2794 {
2795 cexpr.var = vi->id;
2796 VEC_safe_push (ce_s, heap, *results, &cexpr);
2797 }
2798 return;
2799 }
2800
2801 VEC_safe_push (ce_s, heap, *results, &cexpr);
2802 }
2803
2804 /* Process constraint T, performing various simplifications and then
2805 adding it to our list of overall constraints. */
2806
2807 static void
2808 process_constraint (constraint_t t)
2809 {
2810 struct constraint_expr rhs = t->rhs;
2811 struct constraint_expr lhs = t->lhs;
2812
2813 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2814 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2815
2816 /* If we didn't get any useful constraint from the lhs we get
2817 &ANYTHING as fallback from get_constraint_for. Deal with
2818 it here by turning it into *ANYTHING. */
2819 if (lhs.type == ADDRESSOF
2820 && lhs.var == anything_id)
2821 lhs.type = DEREF;
2822
2823 /* ADDRESSOF on the lhs is invalid. */
2824 gcc_assert (lhs.type != ADDRESSOF);
2825
2826 /* We shouldn't add constraints from things that cannot have pointers.
2827 It's not completely trivial to avoid in the callers, so do it here. */
2828 if (rhs.type != ADDRESSOF
2829 && !get_varinfo (rhs.var)->may_have_pointers)
2830 return;
2831
2832 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2833 if (!get_varinfo (lhs.var)->may_have_pointers)
2834 return;
2835
2836 /* This can happen in our IR with things like n->a = *p */
2837 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2838 {
2839 /* Split into tmp = *rhs, *lhs = tmp */
2840 struct constraint_expr tmplhs;
2841 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2842 process_constraint (new_constraint (tmplhs, rhs));
2843 process_constraint (new_constraint (lhs, tmplhs));
2844 }
2845 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2846 {
2847 /* Split into tmp = &rhs, *lhs = tmp */
2848 struct constraint_expr tmplhs;
2849 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2850 process_constraint (new_constraint (tmplhs, rhs));
2851 process_constraint (new_constraint (lhs, tmplhs));
2852 }
2853 else
2854 {
2855 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2856 VEC_safe_push (constraint_t, heap, constraints, t);
2857 }
2858 }
2859
2860
2861 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2862 structure. */
2863
2864 static HOST_WIDE_INT
2865 bitpos_of_field (const tree fdecl)
2866 {
2867 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2868 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2869 return -1;
2870
2871 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
2872 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2873 }
2874
2875
2876 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2877 resulting constraint expressions in *RESULTS. */
2878
2879 static void
2880 get_constraint_for_ptr_offset (tree ptr, tree offset,
2881 VEC (ce_s, heap) **results)
2882 {
2883 struct constraint_expr c;
2884 unsigned int j, n;
2885 HOST_WIDE_INT rhsoffset;
2886
2887 /* If we do not do field-sensitive PTA adding offsets to pointers
2888 does not change the points-to solution. */
2889 if (!use_field_sensitive)
2890 {
2891 get_constraint_for_rhs (ptr, results);
2892 return;
2893 }
2894
2895 /* If the offset is not a non-negative integer constant that fits
2896 in a HOST_WIDE_INT, we have to fall back to a conservative
2897 solution which includes all sub-fields of all pointed-to
2898 variables of ptr. */
2899 if (offset == NULL_TREE
2900 || TREE_CODE (offset) != INTEGER_CST)
2901 rhsoffset = UNKNOWN_OFFSET;
2902 else
2903 {
2904 /* Sign-extend the offset. */
2905 double_int soffset = tree_to_double_int (offset)
2906 .sext (TYPE_PRECISION (TREE_TYPE (offset)));
2907 if (!soffset.fits_shwi ())
2908 rhsoffset = UNKNOWN_OFFSET;
2909 else
2910 {
2911 /* Make sure the bit-offset also fits. */
2912 HOST_WIDE_INT rhsunitoffset = soffset.low;
2913 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2914 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2915 rhsoffset = UNKNOWN_OFFSET;
2916 }
2917 }
2918
2919 get_constraint_for_rhs (ptr, results);
2920 if (rhsoffset == 0)
2921 return;
2922
2923 /* As we are eventually appending to the solution do not use
2924 VEC_iterate here. */
2925 n = VEC_length (ce_s, *results);
2926 for (j = 0; j < n; j++)
2927 {
2928 varinfo_t curr;
2929 c = VEC_index (ce_s, *results, j);
2930 curr = get_varinfo (c.var);
2931
2932 if (c.type == ADDRESSOF
2933 /* If this varinfo represents a full variable just use it. */
2934 && curr->is_full_var)
2935 c.offset = 0;
2936 else if (c.type == ADDRESSOF
2937 /* If we do not know the offset add all subfields. */
2938 && rhsoffset == UNKNOWN_OFFSET)
2939 {
2940 varinfo_t temp = lookup_vi_for_tree (curr->decl);
2941 do
2942 {
2943 struct constraint_expr c2;
2944 c2.var = temp->id;
2945 c2.type = ADDRESSOF;
2946 c2.offset = 0;
2947 if (c2.var != c.var)
2948 VEC_safe_push (ce_s, heap, *results, &c2);
2949 temp = temp->next;
2950 }
2951 while (temp);
2952 }
2953 else if (c.type == ADDRESSOF)
2954 {
2955 varinfo_t temp;
2956 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
2957
2958 /* Search the sub-field which overlaps with the
2959 pointed-to offset. If the result is outside of the variable
2960 we have to provide a conservative result, as the variable is
2961 still reachable from the resulting pointer (even though it
2962 technically cannot point to anything). The last and first
2963 sub-fields are such conservative results.
2964 ??? If we always had a sub-field for &object + 1 then
2965 we could represent this in a more precise way. */
2966 if (rhsoffset < 0
2967 && curr->offset < offset)
2968 offset = 0;
2969 temp = first_or_preceding_vi_for_offset (curr, offset);
2970
2971 /* If the found variable is not exactly at the pointed to
2972 result, we have to include the next variable in the
2973 solution as well. Otherwise two increments by offset / 2
2974 do not result in the same or a conservative superset
2975 solution. */
2976 if (temp->offset != offset
2977 && temp->next != NULL)
2978 {
2979 struct constraint_expr c2;
2980 c2.var = temp->next->id;
2981 c2.type = ADDRESSOF;
2982 c2.offset = 0;
2983 VEC_safe_push (ce_s, heap, *results, &c2);
2984 }
2985 c.var = temp->id;
2986 c.offset = 0;
2987 }
2988 else
2989 c.offset = rhsoffset;
2990
2991 VEC_replace (ce_s, *results, j, c);
2992 }
2993 }
2994
2995
2996 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2997 If address_p is true the result will be taken its address of.
2998 If lhs_p is true then the constraint expression is assumed to be used
2999 as the lhs. */
3000
3001 static void
3002 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3003 bool address_p, bool lhs_p)
3004 {
3005 tree orig_t = t;
3006 HOST_WIDE_INT bitsize = -1;
3007 HOST_WIDE_INT bitmaxsize = -1;
3008 HOST_WIDE_INT bitpos;
3009 tree forzero;
3010 struct constraint_expr *result;
3011
3012 /* Some people like to do cute things like take the address of
3013 &0->a.b */
3014 forzero = t;
3015 while (handled_component_p (forzero)
3016 || INDIRECT_REF_P (forzero)
3017 || TREE_CODE (forzero) == MEM_REF)
3018 forzero = TREE_OPERAND (forzero, 0);
3019
3020 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3021 {
3022 struct constraint_expr temp;
3023
3024 temp.offset = 0;
3025 temp.var = integer_id;
3026 temp.type = SCALAR;
3027 VEC_safe_push (ce_s, heap, *results, &temp);
3028 return;
3029 }
3030
3031 /* Handle type-punning through unions. If we are extracting a pointer
3032 from a union via a possibly type-punning access that pointer
3033 points to anything, similar to a conversion of an integer to
3034 a pointer. */
3035 if (!lhs_p)
3036 {
3037 tree u;
3038 for (u = t;
3039 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3040 u = TREE_OPERAND (u, 0))
3041 if (TREE_CODE (u) == COMPONENT_REF
3042 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3043 {
3044 struct constraint_expr temp;
3045
3046 temp.offset = 0;
3047 temp.var = anything_id;
3048 temp.type = ADDRESSOF;
3049 VEC_safe_push (ce_s, heap, *results, &temp);
3050 return;
3051 }
3052 }
3053
3054 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3055
3056 /* Pretend to take the address of the base, we'll take care of
3057 adding the required subset of sub-fields below. */
3058 get_constraint_for_1 (t, results, true, lhs_p);
3059 gcc_assert (VEC_length (ce_s, *results) == 1);
3060 result = &VEC_last (ce_s, *results);
3061
3062 if (result->type == SCALAR
3063 && get_varinfo (result->var)->is_full_var)
3064 /* For single-field vars do not bother about the offset. */
3065 result->offset = 0;
3066 else if (result->type == SCALAR)
3067 {
3068 /* In languages like C, you can access one past the end of an
3069 array. You aren't allowed to dereference it, so we can
3070 ignore this constraint. When we handle pointer subtraction,
3071 we may have to do something cute here. */
3072
3073 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3074 && bitmaxsize != 0)
3075 {
3076 /* It's also not true that the constraint will actually start at the
3077 right offset, it may start in some padding. We only care about
3078 setting the constraint to the first actual field it touches, so
3079 walk to find it. */
3080 struct constraint_expr cexpr = *result;
3081 varinfo_t curr;
3082 VEC_pop (ce_s, *results);
3083 cexpr.offset = 0;
3084 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3085 {
3086 if (ranges_overlap_p (curr->offset, curr->size,
3087 bitpos, bitmaxsize))
3088 {
3089 cexpr.var = curr->id;
3090 VEC_safe_push (ce_s, heap, *results, &cexpr);
3091 if (address_p)
3092 break;
3093 }
3094 }
3095 /* If we are going to take the address of this field then
3096 to be able to compute reachability correctly add at least
3097 the last field of the variable. */
3098 if (address_p
3099 && VEC_length (ce_s, *results) == 0)
3100 {
3101 curr = get_varinfo (cexpr.var);
3102 while (curr->next != NULL)
3103 curr = curr->next;
3104 cexpr.var = curr->id;
3105 VEC_safe_push (ce_s, heap, *results, &cexpr);
3106 }
3107 else if (VEC_length (ce_s, *results) == 0)
3108 /* Assert that we found *some* field there. The user couldn't be
3109 accessing *only* padding. */
3110 /* Still the user could access one past the end of an array
3111 embedded in a struct resulting in accessing *only* padding. */
3112 /* Or accessing only padding via type-punning to a type
3113 that has a filed just in padding space. */
3114 {
3115 cexpr.type = SCALAR;
3116 cexpr.var = anything_id;
3117 cexpr.offset = 0;
3118 VEC_safe_push (ce_s, heap, *results, &cexpr);
3119 }
3120 }
3121 else if (bitmaxsize == 0)
3122 {
3123 if (dump_file && (dump_flags & TDF_DETAILS))
3124 fprintf (dump_file, "Access to zero-sized part of variable,"
3125 "ignoring\n");
3126 }
3127 else
3128 if (dump_file && (dump_flags & TDF_DETAILS))
3129 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3130 }
3131 else if (result->type == DEREF)
3132 {
3133 /* If we do not know exactly where the access goes say so. Note
3134 that only for non-structure accesses we know that we access
3135 at most one subfiled of any variable. */
3136 if (bitpos == -1
3137 || bitsize != bitmaxsize
3138 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3139 || result->offset == UNKNOWN_OFFSET)
3140 result->offset = UNKNOWN_OFFSET;
3141 else
3142 result->offset += bitpos;
3143 }
3144 else if (result->type == ADDRESSOF)
3145 {
3146 /* We can end up here for component references on a
3147 VIEW_CONVERT_EXPR <>(&foobar). */
3148 result->type = SCALAR;
3149 result->var = anything_id;
3150 result->offset = 0;
3151 }
3152 else
3153 gcc_unreachable ();
3154 }
3155
3156
3157 /* Dereference the constraint expression CONS, and return the result.
3158 DEREF (ADDRESSOF) = SCALAR
3159 DEREF (SCALAR) = DEREF
3160 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3161 This is needed so that we can handle dereferencing DEREF constraints. */
3162
3163 static void
3164 do_deref (VEC (ce_s, heap) **constraints)
3165 {
3166 struct constraint_expr *c;
3167 unsigned int i = 0;
3168
3169 FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
3170 {
3171 if (c->type == SCALAR)
3172 c->type = DEREF;
3173 else if (c->type == ADDRESSOF)
3174 c->type = SCALAR;
3175 else if (c->type == DEREF)
3176 {
3177 struct constraint_expr tmplhs;
3178 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3179 process_constraint (new_constraint (tmplhs, *c));
3180 c->var = tmplhs.var;
3181 }
3182 else
3183 gcc_unreachable ();
3184 }
3185 }
3186
3187 /* Given a tree T, return the constraint expression for taking the
3188 address of it. */
3189
3190 static void
3191 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3192 {
3193 struct constraint_expr *c;
3194 unsigned int i;
3195
3196 get_constraint_for_1 (t, results, true, true);
3197
3198 FOR_EACH_VEC_ELT (ce_s, *results, i, c)
3199 {
3200 if (c->type == DEREF)
3201 c->type = SCALAR;
3202 else
3203 c->type = ADDRESSOF;
3204 }
3205 }
3206
3207 /* Given a tree T, return the constraint expression for it. */
3208
3209 static void
3210 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
3211 bool lhs_p)
3212 {
3213 struct constraint_expr temp;
3214
3215 /* x = integer is all glommed to a single variable, which doesn't
3216 point to anything by itself. That is, of course, unless it is an
3217 integer constant being treated as a pointer, in which case, we
3218 will return that this is really the addressof anything. This
3219 happens below, since it will fall into the default case. The only
3220 case we know something about an integer treated like a pointer is
3221 when it is the NULL pointer, and then we just say it points to
3222 NULL.
3223
3224 Do not do that if -fno-delete-null-pointer-checks though, because
3225 in that case *NULL does not fail, so it _should_ alias *anything.
3226 It is not worth adding a new option or renaming the existing one,
3227 since this case is relatively obscure. */
3228 if ((TREE_CODE (t) == INTEGER_CST
3229 && integer_zerop (t))
3230 /* The only valid CONSTRUCTORs in gimple with pointer typed
3231 elements are zero-initializer. But in IPA mode we also
3232 process global initializers, so verify at least. */
3233 || (TREE_CODE (t) == CONSTRUCTOR
3234 && CONSTRUCTOR_NELTS (t) == 0))
3235 {
3236 if (flag_delete_null_pointer_checks)
3237 temp.var = nothing_id;
3238 else
3239 temp.var = nonlocal_id;
3240 temp.type = ADDRESSOF;
3241 temp.offset = 0;
3242 VEC_safe_push (ce_s, heap, *results, &temp);
3243 return;
3244 }
3245
3246 /* String constants are read-only. */
3247 if (TREE_CODE (t) == STRING_CST)
3248 {
3249 temp.var = readonly_id;
3250 temp.type = SCALAR;
3251 temp.offset = 0;
3252 VEC_safe_push (ce_s, heap, *results, &temp);
3253 return;
3254 }
3255
3256 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3257 {
3258 case tcc_expression:
3259 {
3260 switch (TREE_CODE (t))
3261 {
3262 case ADDR_EXPR:
3263 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3264 return;
3265 default:;
3266 }
3267 break;
3268 }
3269 case tcc_reference:
3270 {
3271 switch (TREE_CODE (t))
3272 {
3273 case MEM_REF:
3274 {
3275 struct constraint_expr cs;
3276 varinfo_t vi, curr;
3277 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3278 TREE_OPERAND (t, 1), results);
3279 do_deref (results);
3280
3281 /* If we are not taking the address then make sure to process
3282 all subvariables we might access. */
3283 if (address_p)
3284 return;
3285
3286 cs = VEC_last (ce_s, *results);
3287 if (cs.type == DEREF
3288 && type_can_have_subvars (TREE_TYPE (t)))
3289 {
3290 /* For dereferences this means we have to defer it
3291 to solving time. */
3292 VEC_last (ce_s, *results).offset = UNKNOWN_OFFSET;
3293 return;
3294 }
3295 if (cs.type != SCALAR)
3296 return;
3297
3298 vi = get_varinfo (cs.var);
3299 curr = vi->next;
3300 if (!vi->is_full_var
3301 && curr)
3302 {
3303 unsigned HOST_WIDE_INT size;
3304 if (host_integerp (TYPE_SIZE (TREE_TYPE (t)), 1))
3305 size = TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (t)));
3306 else
3307 size = -1;
3308 for (; curr; curr = curr->next)
3309 {
3310 if (curr->offset - vi->offset < size)
3311 {
3312 cs.var = curr->id;
3313 VEC_safe_push (ce_s, heap, *results, &cs);
3314 }
3315 else
3316 break;
3317 }
3318 }
3319 return;
3320 }
3321 case ARRAY_REF:
3322 case ARRAY_RANGE_REF:
3323 case COMPONENT_REF:
3324 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3325 return;
3326 case VIEW_CONVERT_EXPR:
3327 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3328 lhs_p);
3329 return;
3330 /* We are missing handling for TARGET_MEM_REF here. */
3331 default:;
3332 }
3333 break;
3334 }
3335 case tcc_exceptional:
3336 {
3337 switch (TREE_CODE (t))
3338 {
3339 case SSA_NAME:
3340 {
3341 get_constraint_for_ssa_var (t, results, address_p);
3342 return;
3343 }
3344 case CONSTRUCTOR:
3345 {
3346 unsigned int i;
3347 tree val;
3348 VEC (ce_s, heap) *tmp = NULL;
3349 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3350 {
3351 struct constraint_expr *rhsp;
3352 unsigned j;
3353 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3354 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
3355 VEC_safe_push (ce_s, heap, *results, rhsp);
3356 VEC_truncate (ce_s, tmp, 0);
3357 }
3358 VEC_free (ce_s, heap, tmp);
3359 /* We do not know whether the constructor was complete,
3360 so technically we have to add &NOTHING or &ANYTHING
3361 like we do for an empty constructor as well. */
3362 return;
3363 }
3364 default:;
3365 }
3366 break;
3367 }
3368 case tcc_declaration:
3369 {
3370 get_constraint_for_ssa_var (t, results, address_p);
3371 return;
3372 }
3373 case tcc_constant:
3374 {
3375 /* We cannot refer to automatic variables through constants. */
3376 temp.type = ADDRESSOF;
3377 temp.var = nonlocal_id;
3378 temp.offset = 0;
3379 VEC_safe_push (ce_s, heap, *results, &temp);
3380 return;
3381 }
3382 default:;
3383 }
3384
3385 /* The default fallback is a constraint from anything. */
3386 temp.type = ADDRESSOF;
3387 temp.var = anything_id;
3388 temp.offset = 0;
3389 VEC_safe_push (ce_s, heap, *results, &temp);
3390 }
3391
3392 /* Given a gimple tree T, return the constraint expression vector for it. */
3393
3394 static void
3395 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3396 {
3397 gcc_assert (VEC_length (ce_s, *results) == 0);
3398
3399 get_constraint_for_1 (t, results, false, true);
3400 }
3401
3402 /* Given a gimple tree T, return the constraint expression vector for it
3403 to be used as the rhs of a constraint. */
3404
3405 static void
3406 get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
3407 {
3408 gcc_assert (VEC_length (ce_s, *results) == 0);
3409
3410 get_constraint_for_1 (t, results, false, false);
3411 }
3412
3413
3414 /* Efficiently generates constraints from all entries in *RHSC to all
3415 entries in *LHSC. */
3416
3417 static void
3418 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3419 {
3420 struct constraint_expr *lhsp, *rhsp;
3421 unsigned i, j;
3422
3423 if (VEC_length (ce_s, lhsc) <= 1
3424 || VEC_length (ce_s, rhsc) <= 1)
3425 {
3426 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3427 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
3428 process_constraint (new_constraint (*lhsp, *rhsp));
3429 }
3430 else
3431 {
3432 struct constraint_expr tmp;
3433 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3434 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
3435 process_constraint (new_constraint (tmp, *rhsp));
3436 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3437 process_constraint (new_constraint (*lhsp, tmp));
3438 }
3439 }
3440
3441 /* Handle aggregate copies by expanding into copies of the respective
3442 fields of the structures. */
3443
3444 static void
3445 do_structure_copy (tree lhsop, tree rhsop)
3446 {
3447 struct constraint_expr *lhsp, *rhsp;
3448 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3449 unsigned j;
3450
3451 get_constraint_for (lhsop, &lhsc);
3452 get_constraint_for_rhs (rhsop, &rhsc);
3453 lhsp = &VEC_index (ce_s, lhsc, 0);
3454 rhsp = &VEC_index (ce_s, rhsc, 0);
3455 if (lhsp->type == DEREF
3456 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3457 || rhsp->type == DEREF)
3458 {
3459 if (lhsp->type == DEREF)
3460 {
3461 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3462 lhsp->offset = UNKNOWN_OFFSET;
3463 }
3464 if (rhsp->type == DEREF)
3465 {
3466 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3467 rhsp->offset = UNKNOWN_OFFSET;
3468 }
3469 process_all_all_constraints (lhsc, rhsc);
3470 }
3471 else if (lhsp->type == SCALAR
3472 && (rhsp->type == SCALAR
3473 || rhsp->type == ADDRESSOF))
3474 {
3475 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3476 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3477 unsigned k = 0;
3478 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3479 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3480 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3481 {
3482 varinfo_t lhsv, rhsv;
3483 rhsp = &VEC_index (ce_s, rhsc, k);
3484 lhsv = get_varinfo (lhsp->var);
3485 rhsv = get_varinfo (rhsp->var);
3486 if (lhsv->may_have_pointers
3487 && (lhsv->is_full_var
3488 || rhsv->is_full_var
3489 || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3490 rhsv->offset + lhsoffset, rhsv->size)))
3491 process_constraint (new_constraint (*lhsp, *rhsp));
3492 if (!rhsv->is_full_var
3493 && (lhsv->is_full_var
3494 || (lhsv->offset + rhsoffset + lhsv->size
3495 > rhsv->offset + lhsoffset + rhsv->size)))
3496 {
3497 ++k;
3498 if (k >= VEC_length (ce_s, rhsc))
3499 break;
3500 }
3501 else
3502 ++j;
3503 }
3504 }
3505 else
3506 gcc_unreachable ();
3507
3508 VEC_free (ce_s, heap, lhsc);
3509 VEC_free (ce_s, heap, rhsc);
3510 }
3511
3512 /* Create constraints ID = { rhsc }. */
3513
3514 static void
3515 make_constraints_to (unsigned id, VEC(ce_s, heap) *rhsc)
3516 {
3517 struct constraint_expr *c;
3518 struct constraint_expr includes;
3519 unsigned int j;
3520
3521 includes.var = id;
3522 includes.offset = 0;
3523 includes.type = SCALAR;
3524
3525 FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
3526 process_constraint (new_constraint (includes, *c));
3527 }
3528
3529 /* Create a constraint ID = OP. */
3530
3531 static void
3532 make_constraint_to (unsigned id, tree op)
3533 {
3534 VEC(ce_s, heap) *rhsc = NULL;
3535 get_constraint_for_rhs (op, &rhsc);
3536 make_constraints_to (id, rhsc);
3537 VEC_free (ce_s, heap, rhsc);
3538 }
3539
3540 /* Create a constraint ID = &FROM. */
3541
3542 static void
3543 make_constraint_from (varinfo_t vi, int from)
3544 {
3545 struct constraint_expr lhs, rhs;
3546
3547 lhs.var = vi->id;
3548 lhs.offset = 0;
3549 lhs.type = SCALAR;
3550
3551 rhs.var = from;
3552 rhs.offset = 0;
3553 rhs.type = ADDRESSOF;
3554 process_constraint (new_constraint (lhs, rhs));
3555 }
3556
3557 /* Create a constraint ID = FROM. */
3558
3559 static void
3560 make_copy_constraint (varinfo_t vi, int from)
3561 {
3562 struct constraint_expr lhs, rhs;
3563
3564 lhs.var = vi->id;
3565 lhs.offset = 0;
3566 lhs.type = SCALAR;
3567
3568 rhs.var = from;
3569 rhs.offset = 0;
3570 rhs.type = SCALAR;
3571 process_constraint (new_constraint (lhs, rhs));
3572 }
3573
3574 /* Make constraints necessary to make OP escape. */
3575
3576 static void
3577 make_escape_constraint (tree op)
3578 {
3579 make_constraint_to (escaped_id, op);
3580 }
3581
3582 /* Add constraints to that the solution of VI is transitively closed. */
3583
3584 static void
3585 make_transitive_closure_constraints (varinfo_t vi)
3586 {
3587 struct constraint_expr lhs, rhs;
3588
3589 /* VAR = *VAR; */
3590 lhs.type = SCALAR;
3591 lhs.var = vi->id;
3592 lhs.offset = 0;
3593 rhs.type = DEREF;
3594 rhs.var = vi->id;
3595 rhs.offset = 0;
3596 process_constraint (new_constraint (lhs, rhs));
3597
3598 /* VAR = VAR + UNKNOWN; */
3599 lhs.type = SCALAR;
3600 lhs.var = vi->id;
3601 lhs.offset = 0;
3602 rhs.type = SCALAR;
3603 rhs.var = vi->id;
3604 rhs.offset = UNKNOWN_OFFSET;
3605 process_constraint (new_constraint (lhs, rhs));
3606 }
3607
3608 /* Temporary storage for fake var decls. */
3609 struct obstack fake_var_decl_obstack;
3610
3611 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3612
3613 static tree
3614 build_fake_var_decl (tree type)
3615 {
3616 tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
3617 memset (decl, 0, sizeof (struct tree_var_decl));
3618 TREE_SET_CODE (decl, VAR_DECL);
3619 TREE_TYPE (decl) = type;
3620 DECL_UID (decl) = allocate_decl_uid ();
3621 SET_DECL_PT_UID (decl, -1);
3622 layout_decl (decl, 0);
3623 return decl;
3624 }
3625
3626 /* Create a new artificial heap variable with NAME.
3627 Return the created variable. */
3628
3629 static varinfo_t
3630 make_heapvar (const char *name)
3631 {
3632 varinfo_t vi;
3633 tree heapvar;
3634
3635 heapvar = build_fake_var_decl (ptr_type_node);
3636 DECL_EXTERNAL (heapvar) = 1;
3637
3638 vi = new_var_info (heapvar, name);
3639 vi->is_artificial_var = true;
3640 vi->is_heap_var = true;
3641 vi->is_unknown_size_var = true;
3642 vi->offset = 0;
3643 vi->fullsize = ~0;
3644 vi->size = ~0;
3645 vi->is_full_var = true;
3646 insert_vi_for_tree (heapvar, vi);
3647
3648 return vi;
3649 }
3650
3651 /* Create a new artificial heap variable with NAME and make a
3652 constraint from it to LHS. Set flags according to a tag used
3653 for tracking restrict pointers. */
3654
3655 static varinfo_t
3656 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3657 {
3658 varinfo_t vi = make_heapvar (name);
3659 vi->is_global_var = 1;
3660 vi->may_have_pointers = 1;
3661 make_constraint_from (lhs, vi->id);
3662 return vi;
3663 }
3664
3665 /* Create a new artificial heap variable with NAME and make a
3666 constraint from it to LHS. Set flags according to a tag used
3667 for tracking restrict pointers and make the artificial heap
3668 point to global memory. */
3669
3670 static varinfo_t
3671 make_constraint_from_global_restrict (varinfo_t lhs, const char *name)
3672 {
3673 varinfo_t vi = make_constraint_from_restrict (lhs, name);
3674 make_copy_constraint (vi, nonlocal_id);
3675 return vi;
3676 }
3677
3678 /* In IPA mode there are varinfos for different aspects of reach
3679 function designator. One for the points-to set of the return
3680 value, one for the variables that are clobbered by the function,
3681 one for its uses and one for each parameter (including a single
3682 glob for remaining variadic arguments). */
3683
3684 enum { fi_clobbers = 1, fi_uses = 2,
3685 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3686
3687 /* Get a constraint for the requested part of a function designator FI
3688 when operating in IPA mode. */
3689
3690 static struct constraint_expr
3691 get_function_part_constraint (varinfo_t fi, unsigned part)
3692 {
3693 struct constraint_expr c;
3694
3695 gcc_assert (in_ipa_mode);
3696
3697 if (fi->id == anything_id)
3698 {
3699 /* ??? We probably should have a ANYFN special variable. */
3700 c.var = anything_id;
3701 c.offset = 0;
3702 c.type = SCALAR;
3703 }
3704 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3705 {
3706 varinfo_t ai = first_vi_for_offset (fi, part);
3707 if (ai)
3708 c.var = ai->id;
3709 else
3710 c.var = anything_id;
3711 c.offset = 0;
3712 c.type = SCALAR;
3713 }
3714 else
3715 {
3716 c.var = fi->id;
3717 c.offset = part;
3718 c.type = DEREF;
3719 }
3720
3721 return c;
3722 }
3723
3724 /* For non-IPA mode, generate constraints necessary for a call on the
3725 RHS. */
3726
3727 static void
3728 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3729 {
3730 struct constraint_expr rhsc;
3731 unsigned i;
3732 bool returns_uses = false;
3733
3734 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3735 {
3736 tree arg = gimple_call_arg (stmt, i);
3737 int flags = gimple_call_arg_flags (stmt, i);
3738
3739 /* If the argument is not used we can ignore it. */
3740 if (flags & EAF_UNUSED)
3741 continue;
3742
3743 /* As we compute ESCAPED context-insensitive we do not gain
3744 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3745 set. The argument would still get clobbered through the
3746 escape solution. */
3747 if ((flags & EAF_NOCLOBBER)
3748 && (flags & EAF_NOESCAPE))
3749 {
3750 varinfo_t uses = get_call_use_vi (stmt);
3751 if (!(flags & EAF_DIRECT))
3752 {
3753 varinfo_t tem = new_var_info (NULL_TREE, "callarg");
3754 make_constraint_to (tem->id, arg);
3755 make_transitive_closure_constraints (tem);
3756 make_copy_constraint (uses, tem->id);
3757 }
3758 else
3759 make_constraint_to (uses->id, arg);
3760 returns_uses = true;
3761 }
3762 else if (flags & EAF_NOESCAPE)
3763 {
3764 struct constraint_expr lhs, rhs;
3765 varinfo_t uses = get_call_use_vi (stmt);
3766 varinfo_t clobbers = get_call_clobber_vi (stmt);
3767 varinfo_t tem = new_var_info (NULL_TREE, "callarg");
3768 make_constraint_to (tem->id, arg);
3769 if (!(flags & EAF_DIRECT))
3770 make_transitive_closure_constraints (tem);
3771 make_copy_constraint (uses, tem->id);
3772 make_copy_constraint (clobbers, tem->id);
3773 /* Add *tem = nonlocal, do not add *tem = callused as
3774 EAF_NOESCAPE parameters do not escape to other parameters
3775 and all other uses appear in NONLOCAL as well. */
3776 lhs.type = DEREF;
3777 lhs.var = tem->id;
3778 lhs.offset = 0;
3779 rhs.type = SCALAR;
3780 rhs.var = nonlocal_id;
3781 rhs.offset = 0;
3782 process_constraint (new_constraint (lhs, rhs));
3783 returns_uses = true;
3784 }
3785 else
3786 make_escape_constraint (arg);
3787 }
3788
3789 /* If we added to the calls uses solution make sure we account for
3790 pointers to it to be returned. */
3791 if (returns_uses)
3792 {
3793 rhsc.var = get_call_use_vi (stmt)->id;
3794 rhsc.offset = 0;
3795 rhsc.type = SCALAR;
3796 VEC_safe_push (ce_s, heap, *results, &rhsc);
3797 }
3798
3799 /* The static chain escapes as well. */
3800 if (gimple_call_chain (stmt))
3801 make_escape_constraint (gimple_call_chain (stmt));
3802
3803 /* And if we applied NRV the address of the return slot escapes as well. */
3804 if (gimple_call_return_slot_opt_p (stmt)
3805 && gimple_call_lhs (stmt) != NULL_TREE
3806 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3807 {
3808 VEC(ce_s, heap) *tmpc = NULL;
3809 struct constraint_expr lhsc, *c;
3810 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3811 lhsc.var = escaped_id;
3812 lhsc.offset = 0;
3813 lhsc.type = SCALAR;
3814 FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
3815 process_constraint (new_constraint (lhsc, *c));
3816 VEC_free(ce_s, heap, tmpc);
3817 }
3818
3819 /* Regular functions return nonlocal memory. */
3820 rhsc.var = nonlocal_id;
3821 rhsc.offset = 0;
3822 rhsc.type = SCALAR;
3823 VEC_safe_push (ce_s, heap, *results, &rhsc);
3824 }
3825
3826 /* For non-IPA mode, generate constraints necessary for a call
3827 that returns a pointer and assigns it to LHS. This simply makes
3828 the LHS point to global and escaped variables. */
3829
3830 static void
3831 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3832 tree fndecl)
3833 {
3834 VEC(ce_s, heap) *lhsc = NULL;
3835
3836 get_constraint_for (lhs, &lhsc);
3837 /* If the store is to a global decl make sure to
3838 add proper escape constraints. */
3839 lhs = get_base_address (lhs);
3840 if (lhs
3841 && DECL_P (lhs)
3842 && is_global_var (lhs))
3843 {
3844 struct constraint_expr tmpc;
3845 tmpc.var = escaped_id;
3846 tmpc.offset = 0;
3847 tmpc.type = SCALAR;
3848 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3849 }
3850
3851 /* If the call returns an argument unmodified override the rhs
3852 constraints. */
3853 flags = gimple_call_return_flags (stmt);
3854 if (flags & ERF_RETURNS_ARG
3855 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3856 {
3857 tree arg;
3858 rhsc = NULL;
3859 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3860 get_constraint_for (arg, &rhsc);
3861 process_all_all_constraints (lhsc, rhsc);
3862 VEC_free (ce_s, heap, rhsc);
3863 }
3864 else if (flags & ERF_NOALIAS)
3865 {
3866 varinfo_t vi;
3867 struct constraint_expr tmpc;
3868 rhsc = NULL;
3869 vi = make_heapvar ("HEAP");
3870 /* We delay marking allocated storage global until we know if
3871 it escapes. */
3872 DECL_EXTERNAL (vi->decl) = 0;
3873 vi->is_global_var = 0;
3874 /* If this is not a real malloc call assume the memory was
3875 initialized and thus may point to global memory. All
3876 builtin functions with the malloc attribute behave in a sane way. */
3877 if (!fndecl
3878 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3879 make_constraint_from (vi, nonlocal_id);
3880 tmpc.var = vi->id;
3881 tmpc.offset = 0;
3882 tmpc.type = ADDRESSOF;
3883 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3884 process_all_all_constraints (lhsc, rhsc);
3885 VEC_free (ce_s, heap, rhsc);
3886 }
3887 else
3888 process_all_all_constraints (lhsc, rhsc);
3889
3890 VEC_free (ce_s, heap, lhsc);
3891 }
3892
3893 /* For non-IPA mode, generate constraints necessary for a call of a
3894 const function that returns a pointer in the statement STMT. */
3895
3896 static void
3897 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3898 {
3899 struct constraint_expr rhsc;
3900 unsigned int k;
3901
3902 /* Treat nested const functions the same as pure functions as far
3903 as the static chain is concerned. */
3904 if (gimple_call_chain (stmt))
3905 {
3906 varinfo_t uses = get_call_use_vi (stmt);
3907 make_transitive_closure_constraints (uses);
3908 make_constraint_to (uses->id, gimple_call_chain (stmt));
3909 rhsc.var = uses->id;
3910 rhsc.offset = 0;
3911 rhsc.type = SCALAR;
3912 VEC_safe_push (ce_s, heap, *results, &rhsc);
3913 }
3914
3915 /* May return arguments. */
3916 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3917 {
3918 tree arg = gimple_call_arg (stmt, k);
3919 VEC(ce_s, heap) *argc = NULL;
3920 unsigned i;
3921 struct constraint_expr *argp;
3922 get_constraint_for_rhs (arg, &argc);
3923 FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
3924 VEC_safe_push (ce_s, heap, *results, argp);
3925 VEC_free(ce_s, heap, argc);
3926 }
3927
3928 /* May return addresses of globals. */
3929 rhsc.var = nonlocal_id;
3930 rhsc.offset = 0;
3931 rhsc.type = ADDRESSOF;
3932 VEC_safe_push (ce_s, heap, *results, &rhsc);
3933 }
3934
3935 /* For non-IPA mode, generate constraints necessary for a call to a
3936 pure function in statement STMT. */
3937
3938 static void
3939 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3940 {
3941 struct constraint_expr rhsc;
3942 unsigned i;
3943 varinfo_t uses = NULL;
3944
3945 /* Memory reached from pointer arguments is call-used. */
3946 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3947 {
3948 tree arg = gimple_call_arg (stmt, i);
3949 if (!uses)
3950 {
3951 uses = get_call_use_vi (stmt);
3952 make_transitive_closure_constraints (uses);
3953 }
3954 make_constraint_to (uses->id, arg);
3955 }
3956
3957 /* The static chain is used as well. */
3958 if (gimple_call_chain (stmt))
3959 {
3960 if (!uses)
3961 {
3962 uses = get_call_use_vi (stmt);
3963 make_transitive_closure_constraints (uses);
3964 }
3965 make_constraint_to (uses->id, gimple_call_chain (stmt));
3966 }
3967
3968 /* Pure functions may return call-used and nonlocal memory. */
3969 if (uses)
3970 {
3971 rhsc.var = uses->id;
3972 rhsc.offset = 0;
3973 rhsc.type = SCALAR;
3974 VEC_safe_push (ce_s, heap, *results, &rhsc);
3975 }
3976 rhsc.var = nonlocal_id;
3977 rhsc.offset = 0;
3978 rhsc.type = SCALAR;
3979 VEC_safe_push (ce_s, heap, *results, &rhsc);
3980 }
3981
3982
3983 /* Return the varinfo for the callee of CALL. */
3984
3985 static varinfo_t
3986 get_fi_for_callee (gimple call)
3987 {
3988 tree decl, fn = gimple_call_fn (call);
3989
3990 if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
3991 fn = OBJ_TYPE_REF_EXPR (fn);
3992
3993 /* If we can directly resolve the function being called, do so.
3994 Otherwise, it must be some sort of indirect expression that
3995 we should still be able to handle. */
3996 decl = gimple_call_addr_fndecl (fn);
3997 if (decl)
3998 return get_vi_for_tree (decl);
3999
4000 /* If the function is anything other than a SSA name pointer we have no
4001 clue and should be getting ANYFN (well, ANYTHING for now). */
4002 if (!fn || TREE_CODE (fn) != SSA_NAME)
4003 return get_varinfo (anything_id);
4004
4005 if (SSA_NAME_IS_DEFAULT_DEF (fn)
4006 && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
4007 || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL))
4008 fn = SSA_NAME_VAR (fn);
4009
4010 return get_vi_for_tree (fn);
4011 }
4012
4013 /* Create constraints for the builtin call T. Return true if the call
4014 was handled, otherwise false. */
4015
4016 static bool
4017 find_func_aliases_for_builtin_call (gimple t)
4018 {
4019 tree fndecl = gimple_call_fndecl (t);
4020 VEC(ce_s, heap) *lhsc = NULL;
4021 VEC(ce_s, heap) *rhsc = NULL;
4022 varinfo_t fi;
4023
4024 if (fndecl != NULL_TREE
4025 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4026 /* ??? All builtins that are handled here need to be handled
4027 in the alias-oracle query functions explicitly! */
4028 switch (DECL_FUNCTION_CODE (fndecl))
4029 {
4030 /* All the following functions return a pointer to the same object
4031 as their first argument points to. The functions do not add
4032 to the ESCAPED solution. The functions make the first argument
4033 pointed to memory point to what the second argument pointed to
4034 memory points to. */
4035 case BUILT_IN_STRCPY:
4036 case BUILT_IN_STRNCPY:
4037 case BUILT_IN_BCOPY:
4038 case BUILT_IN_MEMCPY:
4039 case BUILT_IN_MEMMOVE:
4040 case BUILT_IN_MEMPCPY:
4041 case BUILT_IN_STPCPY:
4042 case BUILT_IN_STPNCPY:
4043 case BUILT_IN_STRCAT:
4044 case BUILT_IN_STRNCAT:
4045 case BUILT_IN_STRCPY_CHK:
4046 case BUILT_IN_STRNCPY_CHK:
4047 case BUILT_IN_MEMCPY_CHK:
4048 case BUILT_IN_MEMMOVE_CHK:
4049 case BUILT_IN_MEMPCPY_CHK:
4050 case BUILT_IN_STPCPY_CHK:
4051 case BUILT_IN_STPNCPY_CHK:
4052 case BUILT_IN_STRCAT_CHK:
4053 case BUILT_IN_STRNCAT_CHK:
4054 case BUILT_IN_TM_MEMCPY:
4055 case BUILT_IN_TM_MEMMOVE:
4056 {
4057 tree res = gimple_call_lhs (t);
4058 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4059 == BUILT_IN_BCOPY ? 1 : 0));
4060 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4061 == BUILT_IN_BCOPY ? 0 : 1));
4062 if (res != NULL_TREE)
4063 {
4064 get_constraint_for (res, &lhsc);
4065 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4066 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4067 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
4068 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
4069 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
4070 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
4071 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4072 else
4073 get_constraint_for (dest, &rhsc);
4074 process_all_all_constraints (lhsc, rhsc);
4075 VEC_free (ce_s, heap, lhsc);
4076 VEC_free (ce_s, heap, rhsc);
4077 }
4078 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4079 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4080 do_deref (&lhsc);
4081 do_deref (&rhsc);
4082 process_all_all_constraints (lhsc, rhsc);
4083 VEC_free (ce_s, heap, lhsc);
4084 VEC_free (ce_s, heap, rhsc);
4085 return true;
4086 }
4087 case BUILT_IN_MEMSET:
4088 case BUILT_IN_MEMSET_CHK:
4089 case BUILT_IN_TM_MEMSET:
4090 {
4091 tree res = gimple_call_lhs (t);
4092 tree dest = gimple_call_arg (t, 0);
4093 unsigned i;
4094 ce_s *lhsp;
4095 struct constraint_expr ac;
4096 if (res != NULL_TREE)
4097 {
4098 get_constraint_for (res, &lhsc);
4099 get_constraint_for (dest, &rhsc);
4100 process_all_all_constraints (lhsc, rhsc);
4101 VEC_free (ce_s, heap, lhsc);
4102 VEC_free (ce_s, heap, rhsc);
4103 }
4104 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4105 do_deref (&lhsc);
4106 if (flag_delete_null_pointer_checks
4107 && integer_zerop (gimple_call_arg (t, 1)))
4108 {
4109 ac.type = ADDRESSOF;
4110 ac.var = nothing_id;
4111 }
4112 else
4113 {
4114 ac.type = SCALAR;
4115 ac.var = integer_id;
4116 }
4117 ac.offset = 0;
4118 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4119 process_constraint (new_constraint (*lhsp, ac));
4120 VEC_free (ce_s, heap, lhsc);
4121 return true;
4122 }
4123 case BUILT_IN_ASSUME_ALIGNED:
4124 {
4125 tree res = gimple_call_lhs (t);
4126 tree dest = gimple_call_arg (t, 0);
4127 if (res != NULL_TREE)
4128 {
4129 get_constraint_for (res, &lhsc);
4130 get_constraint_for (dest, &rhsc);
4131 process_all_all_constraints (lhsc, rhsc);
4132 VEC_free (ce_s, heap, lhsc);
4133 VEC_free (ce_s, heap, rhsc);
4134 }
4135 return true;
4136 }
4137 /* All the following functions do not return pointers, do not
4138 modify the points-to sets of memory reachable from their
4139 arguments and do not add to the ESCAPED solution. */
4140 case BUILT_IN_SINCOS:
4141 case BUILT_IN_SINCOSF:
4142 case BUILT_IN_SINCOSL:
4143 case BUILT_IN_FREXP:
4144 case BUILT_IN_FREXPF:
4145 case BUILT_IN_FREXPL:
4146 case BUILT_IN_GAMMA_R:
4147 case BUILT_IN_GAMMAF_R:
4148 case BUILT_IN_GAMMAL_R:
4149 case BUILT_IN_LGAMMA_R:
4150 case BUILT_IN_LGAMMAF_R:
4151 case BUILT_IN_LGAMMAL_R:
4152 case BUILT_IN_MODF:
4153 case BUILT_IN_MODFF:
4154 case BUILT_IN_MODFL:
4155 case BUILT_IN_REMQUO:
4156 case BUILT_IN_REMQUOF:
4157 case BUILT_IN_REMQUOL:
4158 case BUILT_IN_FREE:
4159 return true;
4160 case BUILT_IN_STRDUP:
4161 case BUILT_IN_STRNDUP:
4162 if (gimple_call_lhs (t))
4163 {
4164 handle_lhs_call (t, gimple_call_lhs (t), gimple_call_flags (t),
4165 NULL, fndecl);
4166 get_constraint_for_ptr_offset (gimple_call_lhs (t),
4167 NULL_TREE, &lhsc);
4168 get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
4169 NULL_TREE, &rhsc);
4170 do_deref (&lhsc);
4171 do_deref (&rhsc);
4172 process_all_all_constraints (lhsc, rhsc);
4173 VEC_free (ce_s, heap, lhsc);
4174 VEC_free (ce_s, heap, rhsc);
4175 return true;
4176 }
4177 break;
4178 /* Trampolines are special - they set up passing the static
4179 frame. */
4180 case BUILT_IN_INIT_TRAMPOLINE:
4181 {
4182 tree tramp = gimple_call_arg (t, 0);
4183 tree nfunc = gimple_call_arg (t, 1);
4184 tree frame = gimple_call_arg (t, 2);
4185 unsigned i;
4186 struct constraint_expr lhs, *rhsp;
4187 if (in_ipa_mode)
4188 {
4189 varinfo_t nfi = NULL;
4190 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4191 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4192 if (nfi)
4193 {
4194 lhs = get_function_part_constraint (nfi, fi_static_chain);
4195 get_constraint_for (frame, &rhsc);
4196 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4197 process_constraint (new_constraint (lhs, *rhsp));
4198 VEC_free (ce_s, heap, rhsc);
4199
4200 /* Make the frame point to the function for
4201 the trampoline adjustment call. */
4202 get_constraint_for (tramp, &lhsc);
4203 do_deref (&lhsc);
4204 get_constraint_for (nfunc, &rhsc);
4205 process_all_all_constraints (lhsc, rhsc);
4206 VEC_free (ce_s, heap, rhsc);
4207 VEC_free (ce_s, heap, lhsc);
4208
4209 return true;
4210 }
4211 }
4212 /* Else fallthru to generic handling which will let
4213 the frame escape. */
4214 break;
4215 }
4216 case BUILT_IN_ADJUST_TRAMPOLINE:
4217 {
4218 tree tramp = gimple_call_arg (t, 0);
4219 tree res = gimple_call_lhs (t);
4220 if (in_ipa_mode && res)
4221 {
4222 get_constraint_for (res, &lhsc);
4223 get_constraint_for (tramp, &rhsc);
4224 do_deref (&rhsc);
4225 process_all_all_constraints (lhsc, rhsc);
4226 VEC_free (ce_s, heap, rhsc);
4227 VEC_free (ce_s, heap, lhsc);
4228 }
4229 return true;
4230 }
4231 CASE_BUILT_IN_TM_STORE (1):
4232 CASE_BUILT_IN_TM_STORE (2):
4233 CASE_BUILT_IN_TM_STORE (4):
4234 CASE_BUILT_IN_TM_STORE (8):
4235 CASE_BUILT_IN_TM_STORE (FLOAT):
4236 CASE_BUILT_IN_TM_STORE (DOUBLE):
4237 CASE_BUILT_IN_TM_STORE (LDOUBLE):
4238 CASE_BUILT_IN_TM_STORE (M64):
4239 CASE_BUILT_IN_TM_STORE (M128):
4240 CASE_BUILT_IN_TM_STORE (M256):
4241 {
4242 tree addr = gimple_call_arg (t, 0);
4243 tree src = gimple_call_arg (t, 1);
4244
4245 get_constraint_for (addr, &lhsc);
4246 do_deref (&lhsc);
4247 get_constraint_for (src, &rhsc);
4248 process_all_all_constraints (lhsc, rhsc);
4249 VEC_free (ce_s, heap, lhsc);
4250 VEC_free (ce_s, heap, rhsc);
4251 return true;
4252 }
4253 CASE_BUILT_IN_TM_LOAD (1):
4254 CASE_BUILT_IN_TM_LOAD (2):
4255 CASE_BUILT_IN_TM_LOAD (4):
4256 CASE_BUILT_IN_TM_LOAD (8):
4257 CASE_BUILT_IN_TM_LOAD (FLOAT):
4258 CASE_BUILT_IN_TM_LOAD (DOUBLE):
4259 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
4260 CASE_BUILT_IN_TM_LOAD (M64):
4261 CASE_BUILT_IN_TM_LOAD (M128):
4262 CASE_BUILT_IN_TM_LOAD (M256):
4263 {
4264 tree dest = gimple_call_lhs (t);
4265 tree addr = gimple_call_arg (t, 0);
4266
4267 get_constraint_for (dest, &lhsc);
4268 get_constraint_for (addr, &rhsc);
4269 do_deref (&rhsc);
4270 process_all_all_constraints (lhsc, rhsc);
4271 VEC_free (ce_s, heap, lhsc);
4272 VEC_free (ce_s, heap, rhsc);
4273 return true;
4274 }
4275 /* Variadic argument handling needs to be handled in IPA
4276 mode as well. */
4277 case BUILT_IN_VA_START:
4278 {
4279 tree valist = gimple_call_arg (t, 0);
4280 struct constraint_expr rhs, *lhsp;
4281 unsigned i;
4282 get_constraint_for (valist, &lhsc);
4283 do_deref (&lhsc);
4284 /* The va_list gets access to pointers in variadic
4285 arguments. Which we know in the case of IPA analysis
4286 and otherwise are just all nonlocal variables. */
4287 if (in_ipa_mode)
4288 {
4289 fi = lookup_vi_for_tree (cfun->decl);
4290 rhs = get_function_part_constraint (fi, ~0);
4291 rhs.type = ADDRESSOF;
4292 }
4293 else
4294 {
4295 rhs.var = nonlocal_id;
4296 rhs.type = ADDRESSOF;
4297 rhs.offset = 0;
4298 }
4299 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4300 process_constraint (new_constraint (*lhsp, rhs));
4301 VEC_free (ce_s, heap, lhsc);
4302 /* va_list is clobbered. */
4303 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4304 return true;
4305 }
4306 /* va_end doesn't have any effect that matters. */
4307 case BUILT_IN_VA_END:
4308 return true;
4309 /* Alternate return. Simply give up for now. */
4310 case BUILT_IN_RETURN:
4311 {
4312 fi = NULL;
4313 if (!in_ipa_mode
4314 || !(fi = get_vi_for_tree (cfun->decl)))
4315 make_constraint_from (get_varinfo (escaped_id), anything_id);
4316 else if (in_ipa_mode
4317 && fi != NULL)
4318 {
4319 struct constraint_expr lhs, rhs;
4320 lhs = get_function_part_constraint (fi, fi_result);
4321 rhs.var = anything_id;
4322 rhs.offset = 0;
4323 rhs.type = SCALAR;
4324 process_constraint (new_constraint (lhs, rhs));
4325 }
4326 return true;
4327 }
4328 /* printf-style functions may have hooks to set pointers to
4329 point to somewhere into the generated string. Leave them
4330 for a later excercise... */
4331 default:
4332 /* Fallthru to general call handling. */;
4333 }
4334
4335 return false;
4336 }
4337
4338 /* Create constraints for the call T. */
4339
4340 static void
4341 find_func_aliases_for_call (gimple t)
4342 {
4343 tree fndecl = gimple_call_fndecl (t);
4344 VEC(ce_s, heap) *lhsc = NULL;
4345 VEC(ce_s, heap) *rhsc = NULL;
4346 varinfo_t fi;
4347
4348 if (fndecl != NULL_TREE
4349 && DECL_BUILT_IN (fndecl)
4350 && find_func_aliases_for_builtin_call (t))
4351 return;
4352
4353 fi = get_fi_for_callee (t);
4354 if (!in_ipa_mode
4355 || (fndecl && !fi->is_fn_info))
4356 {
4357 VEC(ce_s, heap) *rhsc = NULL;
4358 int flags = gimple_call_flags (t);
4359
4360 /* Const functions can return their arguments and addresses
4361 of global memory but not of escaped memory. */
4362 if (flags & (ECF_CONST|ECF_NOVOPS))
4363 {
4364 if (gimple_call_lhs (t))
4365 handle_const_call (t, &rhsc);
4366 }
4367 /* Pure functions can return addresses in and of memory
4368 reachable from their arguments, but they are not an escape
4369 point for reachable memory of their arguments. */
4370 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4371 handle_pure_call (t, &rhsc);
4372 else
4373 handle_rhs_call (t, &rhsc);
4374 if (gimple_call_lhs (t))
4375 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4376 VEC_free (ce_s, heap, rhsc);
4377 }
4378 else
4379 {
4380 tree lhsop;
4381 unsigned j;
4382
4383 /* Assign all the passed arguments to the appropriate incoming
4384 parameters of the function. */
4385 for (j = 0; j < gimple_call_num_args (t); j++)
4386 {
4387 struct constraint_expr lhs ;
4388 struct constraint_expr *rhsp;
4389 tree arg = gimple_call_arg (t, j);
4390
4391 get_constraint_for_rhs (arg, &rhsc);
4392 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4393 while (VEC_length (ce_s, rhsc) != 0)
4394 {
4395 rhsp = &VEC_last (ce_s, rhsc);
4396 process_constraint (new_constraint (lhs, *rhsp));
4397 VEC_pop (ce_s, rhsc);
4398 }
4399 }
4400
4401 /* If we are returning a value, assign it to the result. */
4402 lhsop = gimple_call_lhs (t);
4403 if (lhsop)
4404 {
4405 struct constraint_expr rhs;
4406 struct constraint_expr *lhsp;
4407
4408 get_constraint_for (lhsop, &lhsc);
4409 rhs = get_function_part_constraint (fi, fi_result);
4410 if (fndecl
4411 && DECL_RESULT (fndecl)
4412 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4413 {
4414 VEC(ce_s, heap) *tem = NULL;
4415 VEC_safe_push (ce_s, heap, tem, &rhs);
4416 do_deref (&tem);
4417 rhs = VEC_index (ce_s, tem, 0);
4418 VEC_free(ce_s, heap, tem);
4419 }
4420 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4421 process_constraint (new_constraint (*lhsp, rhs));
4422 }
4423
4424 /* If we pass the result decl by reference, honor that. */
4425 if (lhsop
4426 && fndecl
4427 && DECL_RESULT (fndecl)
4428 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4429 {
4430 struct constraint_expr lhs;
4431 struct constraint_expr *rhsp;
4432
4433 get_constraint_for_address_of (lhsop, &rhsc);
4434 lhs = get_function_part_constraint (fi, fi_result);
4435 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4436 process_constraint (new_constraint (lhs, *rhsp));
4437 VEC_free (ce_s, heap, rhsc);
4438 }
4439
4440 /* If we use a static chain, pass it along. */
4441 if (gimple_call_chain (t))
4442 {
4443 struct constraint_expr lhs;
4444 struct constraint_expr *rhsp;
4445
4446 get_constraint_for (gimple_call_chain (t), &rhsc);
4447 lhs = get_function_part_constraint (fi, fi_static_chain);
4448 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4449 process_constraint (new_constraint (lhs, *rhsp));
4450 }
4451 }
4452 }
4453
4454 /* Walk statement T setting up aliasing constraints according to the
4455 references found in T. This function is the main part of the
4456 constraint builder. AI points to auxiliary alias information used
4457 when building alias sets and computing alias grouping heuristics. */
4458
4459 static void
4460 find_func_aliases (gimple origt)
4461 {
4462 gimple t = origt;
4463 VEC(ce_s, heap) *lhsc = NULL;
4464 VEC(ce_s, heap) *rhsc = NULL;
4465 struct constraint_expr *c;
4466 varinfo_t fi;
4467
4468 /* Now build constraints expressions. */
4469 if (gimple_code (t) == GIMPLE_PHI)
4470 {
4471 size_t i;
4472 unsigned int j;
4473
4474 /* For a phi node, assign all the arguments to
4475 the result. */
4476 get_constraint_for (gimple_phi_result (t), &lhsc);
4477 for (i = 0; i < gimple_phi_num_args (t); i++)
4478 {
4479 tree strippedrhs = PHI_ARG_DEF (t, i);
4480
4481 STRIP_NOPS (strippedrhs);
4482 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4483
4484 FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
4485 {
4486 struct constraint_expr *c2;
4487 while (VEC_length (ce_s, rhsc) > 0)
4488 {
4489 c2 = &VEC_last (ce_s, rhsc);
4490 process_constraint (new_constraint (*c, *c2));
4491 VEC_pop (ce_s, rhsc);
4492 }
4493 }
4494 }
4495 }
4496 /* In IPA mode, we need to generate constraints to pass call
4497 arguments through their calls. There are two cases,
4498 either a GIMPLE_CALL returning a value, or just a plain
4499 GIMPLE_CALL when we are not.
4500
4501 In non-ipa mode, we need to generate constraints for each
4502 pointer passed by address. */
4503 else if (is_gimple_call (t))
4504 find_func_aliases_for_call (t);
4505
4506 /* Otherwise, just a regular assignment statement. Only care about
4507 operations with pointer result, others are dealt with as escape
4508 points if they have pointer operands. */
4509 else if (is_gimple_assign (t))
4510 {
4511 /* Otherwise, just a regular assignment statement. */
4512 tree lhsop = gimple_assign_lhs (t);
4513 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4514
4515 if (rhsop && TREE_CLOBBER_P (rhsop))
4516 /* Ignore clobbers, they don't actually store anything into
4517 the LHS. */
4518 ;
4519 else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4520 do_structure_copy (lhsop, rhsop);
4521 else
4522 {
4523 enum tree_code code = gimple_assign_rhs_code (t);
4524
4525 get_constraint_for (lhsop, &lhsc);
4526
4527 if (code == POINTER_PLUS_EXPR)
4528 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4529 gimple_assign_rhs2 (t), &rhsc);
4530 else if (code == BIT_AND_EXPR
4531 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4532 {
4533 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4534 the pointer. Handle it by offsetting it by UNKNOWN. */
4535 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4536 NULL_TREE, &rhsc);
4537 }
4538 else if ((CONVERT_EXPR_CODE_P (code)
4539 && !(POINTER_TYPE_P (gimple_expr_type (t))
4540 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4541 || gimple_assign_single_p (t))
4542 get_constraint_for_rhs (rhsop, &rhsc);
4543 else if (code == COND_EXPR)
4544 {
4545 /* The result is a merge of both COND_EXPR arms. */
4546 VEC (ce_s, heap) *tmp = NULL;
4547 struct constraint_expr *rhsp;
4548 unsigned i;
4549 get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc);
4550 get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp);
4551 FOR_EACH_VEC_ELT (ce_s, tmp, i, rhsp)
4552 VEC_safe_push (ce_s, heap, rhsc, rhsp);
4553 VEC_free (ce_s, heap, tmp);
4554 }
4555 else if (truth_value_p (code))
4556 /* Truth value results are not pointer (parts). Or at least
4557 very very unreasonable obfuscation of a part. */
4558 ;
4559 else
4560 {
4561 /* All other operations are merges. */
4562 VEC (ce_s, heap) *tmp = NULL;
4563 struct constraint_expr *rhsp;
4564 unsigned i, j;
4565 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4566 for (i = 2; i < gimple_num_ops (t); ++i)
4567 {
4568 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4569 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
4570 VEC_safe_push (ce_s, heap, rhsc, rhsp);
4571 VEC_truncate (ce_s, tmp, 0);
4572 }
4573 VEC_free (ce_s, heap, tmp);
4574 }
4575 process_all_all_constraints (lhsc, rhsc);
4576 }
4577 /* If there is a store to a global variable the rhs escapes. */
4578 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4579 && DECL_P (lhsop)
4580 && is_global_var (lhsop)
4581 && (!in_ipa_mode
4582 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4583 make_escape_constraint (rhsop);
4584 }
4585 /* Handle escapes through return. */
4586 else if (gimple_code (t) == GIMPLE_RETURN
4587 && gimple_return_retval (t) != NULL_TREE)
4588 {
4589 fi = NULL;
4590 if (!in_ipa_mode
4591 || !(fi = get_vi_for_tree (cfun->decl)))
4592 make_escape_constraint (gimple_return_retval (t));
4593 else if (in_ipa_mode
4594 && fi != NULL)
4595 {
4596 struct constraint_expr lhs ;
4597 struct constraint_expr *rhsp;
4598 unsigned i;
4599
4600 lhs = get_function_part_constraint (fi, fi_result);
4601 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4602 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4603 process_constraint (new_constraint (lhs, *rhsp));
4604 }
4605 }
4606 /* Handle asms conservatively by adding escape constraints to everything. */
4607 else if (gimple_code (t) == GIMPLE_ASM)
4608 {
4609 unsigned i, noutputs;
4610 const char **oconstraints;
4611 const char *constraint;
4612 bool allows_mem, allows_reg, is_inout;
4613
4614 noutputs = gimple_asm_noutputs (t);
4615 oconstraints = XALLOCAVEC (const char *, noutputs);
4616
4617 for (i = 0; i < noutputs; ++i)
4618 {
4619 tree link = gimple_asm_output_op (t, i);
4620 tree op = TREE_VALUE (link);
4621
4622 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4623 oconstraints[i] = constraint;
4624 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4625 &allows_reg, &is_inout);
4626
4627 /* A memory constraint makes the address of the operand escape. */
4628 if (!allows_reg && allows_mem)
4629 make_escape_constraint (build_fold_addr_expr (op));
4630
4631 /* The asm may read global memory, so outputs may point to
4632 any global memory. */
4633 if (op)
4634 {
4635 VEC(ce_s, heap) *lhsc = NULL;
4636 struct constraint_expr rhsc, *lhsp;
4637 unsigned j;
4638 get_constraint_for (op, &lhsc);
4639 rhsc.var = nonlocal_id;
4640 rhsc.offset = 0;
4641 rhsc.type = SCALAR;
4642 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4643 process_constraint (new_constraint (*lhsp, rhsc));
4644 VEC_free (ce_s, heap, lhsc);
4645 }
4646 }
4647 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4648 {
4649 tree link = gimple_asm_input_op (t, i);
4650 tree op = TREE_VALUE (link);
4651
4652 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4653
4654 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4655 &allows_mem, &allows_reg);
4656
4657 /* A memory constraint makes the address of the operand escape. */
4658 if (!allows_reg && allows_mem)
4659 make_escape_constraint (build_fold_addr_expr (op));
4660 /* Strictly we'd only need the constraint to ESCAPED if
4661 the asm clobbers memory, otherwise using something
4662 along the lines of per-call clobbers/uses would be enough. */
4663 else if (op)
4664 make_escape_constraint (op);
4665 }
4666 }
4667
4668 VEC_free (ce_s, heap, rhsc);
4669 VEC_free (ce_s, heap, lhsc);
4670 }
4671
4672
4673 /* Create a constraint adding to the clobber set of FI the memory
4674 pointed to by PTR. */
4675
4676 static void
4677 process_ipa_clobber (varinfo_t fi, tree ptr)
4678 {
4679 VEC(ce_s, heap) *ptrc = NULL;
4680 struct constraint_expr *c, lhs;
4681 unsigned i;
4682 get_constraint_for_rhs (ptr, &ptrc);
4683 lhs = get_function_part_constraint (fi, fi_clobbers);
4684 FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
4685 process_constraint (new_constraint (lhs, *c));
4686 VEC_free (ce_s, heap, ptrc);
4687 }
4688
4689 /* Walk statement T setting up clobber and use constraints according to the
4690 references found in T. This function is a main part of the
4691 IPA constraint builder. */
4692
4693 static void
4694 find_func_clobbers (gimple origt)
4695 {
4696 gimple t = origt;
4697 VEC(ce_s, heap) *lhsc = NULL;
4698 VEC(ce_s, heap) *rhsc = NULL;
4699 varinfo_t fi;
4700
4701 /* Add constraints for clobbered/used in IPA mode.
4702 We are not interested in what automatic variables are clobbered
4703 or used as we only use the information in the caller to which
4704 they do not escape. */
4705 gcc_assert (in_ipa_mode);
4706
4707 /* If the stmt refers to memory in any way it better had a VUSE. */
4708 if (gimple_vuse (t) == NULL_TREE)
4709 return;
4710
4711 /* We'd better have function information for the current function. */
4712 fi = lookup_vi_for_tree (cfun->decl);
4713 gcc_assert (fi != NULL);
4714
4715 /* Account for stores in assignments and calls. */
4716 if (gimple_vdef (t) != NULL_TREE
4717 && gimple_has_lhs (t))
4718 {
4719 tree lhs = gimple_get_lhs (t);
4720 tree tem = lhs;
4721 while (handled_component_p (tem))
4722 tem = TREE_OPERAND (tem, 0);
4723 if ((DECL_P (tem)
4724 && !auto_var_in_fn_p (tem, cfun->decl))
4725 || INDIRECT_REF_P (tem)
4726 || (TREE_CODE (tem) == MEM_REF
4727 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4728 && auto_var_in_fn_p
4729 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4730 {
4731 struct constraint_expr lhsc, *rhsp;
4732 unsigned i;
4733 lhsc = get_function_part_constraint (fi, fi_clobbers);
4734 get_constraint_for_address_of (lhs, &rhsc);
4735 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4736 process_constraint (new_constraint (lhsc, *rhsp));
4737 VEC_free (ce_s, heap, rhsc);
4738 }
4739 }
4740
4741 /* Account for uses in assigments and returns. */
4742 if (gimple_assign_single_p (t)
4743 || (gimple_code (t) == GIMPLE_RETURN
4744 && gimple_return_retval (t) != NULL_TREE))
4745 {
4746 tree rhs = (gimple_assign_single_p (t)
4747 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4748 tree tem = rhs;
4749 while (handled_component_p (tem))
4750 tem = TREE_OPERAND (tem, 0);
4751 if ((DECL_P (tem)
4752 && !auto_var_in_fn_p (tem, cfun->decl))
4753 || INDIRECT_REF_P (tem)
4754 || (TREE_CODE (tem) == MEM_REF
4755 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4756 && auto_var_in_fn_p
4757 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4758 {
4759 struct constraint_expr lhs, *rhsp;
4760 unsigned i;
4761 lhs = get_function_part_constraint (fi, fi_uses);
4762 get_constraint_for_address_of (rhs, &rhsc);
4763 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4764 process_constraint (new_constraint (lhs, *rhsp));
4765 VEC_free (ce_s, heap, rhsc);
4766 }
4767 }
4768
4769 if (is_gimple_call (t))
4770 {
4771 varinfo_t cfi = NULL;
4772 tree decl = gimple_call_fndecl (t);
4773 struct constraint_expr lhs, rhs;
4774 unsigned i, j;
4775
4776 /* For builtins we do not have separate function info. For those
4777 we do not generate escapes for we have to generate clobbers/uses. */
4778 if (decl
4779 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4780 switch (DECL_FUNCTION_CODE (decl))
4781 {
4782 /* The following functions use and clobber memory pointed to
4783 by their arguments. */
4784 case BUILT_IN_STRCPY:
4785 case BUILT_IN_STRNCPY:
4786 case BUILT_IN_BCOPY:
4787 case BUILT_IN_MEMCPY:
4788 case BUILT_IN_MEMMOVE:
4789 case BUILT_IN_MEMPCPY:
4790 case BUILT_IN_STPCPY:
4791 case BUILT_IN_STPNCPY:
4792 case BUILT_IN_STRCAT:
4793 case BUILT_IN_STRNCAT:
4794 case BUILT_IN_STRCPY_CHK:
4795 case BUILT_IN_STRNCPY_CHK:
4796 case BUILT_IN_MEMCPY_CHK:
4797 case BUILT_IN_MEMMOVE_CHK:
4798 case BUILT_IN_MEMPCPY_CHK:
4799 case BUILT_IN_STPCPY_CHK:
4800 case BUILT_IN_STPNCPY_CHK:
4801 case BUILT_IN_STRCAT_CHK:
4802 case BUILT_IN_STRNCAT_CHK:
4803 {
4804 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4805 == BUILT_IN_BCOPY ? 1 : 0));
4806 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4807 == BUILT_IN_BCOPY ? 0 : 1));
4808 unsigned i;
4809 struct constraint_expr *rhsp, *lhsp;
4810 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4811 lhs = get_function_part_constraint (fi, fi_clobbers);
4812 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4813 process_constraint (new_constraint (lhs, *lhsp));
4814 VEC_free (ce_s, heap, lhsc);
4815 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4816 lhs = get_function_part_constraint (fi, fi_uses);
4817 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4818 process_constraint (new_constraint (lhs, *rhsp));
4819 VEC_free (ce_s, heap, rhsc);
4820 return;
4821 }
4822 /* The following function clobbers memory pointed to by
4823 its argument. */
4824 case BUILT_IN_MEMSET:
4825 case BUILT_IN_MEMSET_CHK:
4826 {
4827 tree dest = gimple_call_arg (t, 0);
4828 unsigned i;
4829 ce_s *lhsp;
4830 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4831 lhs = get_function_part_constraint (fi, fi_clobbers);
4832 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4833 process_constraint (new_constraint (lhs, *lhsp));
4834 VEC_free (ce_s, heap, lhsc);
4835 return;
4836 }
4837 /* The following functions clobber their second and third
4838 arguments. */
4839 case BUILT_IN_SINCOS:
4840 case BUILT_IN_SINCOSF:
4841 case BUILT_IN_SINCOSL:
4842 {
4843 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4844 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4845 return;
4846 }
4847 /* The following functions clobber their second argument. */
4848 case BUILT_IN_FREXP:
4849 case BUILT_IN_FREXPF:
4850 case BUILT_IN_FREXPL:
4851 case BUILT_IN_LGAMMA_R:
4852 case BUILT_IN_LGAMMAF_R:
4853 case BUILT_IN_LGAMMAL_R:
4854 case BUILT_IN_GAMMA_R:
4855 case BUILT_IN_GAMMAF_R:
4856 case BUILT_IN_GAMMAL_R:
4857 case BUILT_IN_MODF:
4858 case BUILT_IN_MODFF:
4859 case BUILT_IN_MODFL:
4860 {
4861 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4862 return;
4863 }
4864 /* The following functions clobber their third argument. */
4865 case BUILT_IN_REMQUO:
4866 case BUILT_IN_REMQUOF:
4867 case BUILT_IN_REMQUOL:
4868 {
4869 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4870 return;
4871 }
4872 /* The following functions neither read nor clobber memory. */
4873 case BUILT_IN_ASSUME_ALIGNED:
4874 case BUILT_IN_FREE:
4875 return;
4876 /* Trampolines are of no interest to us. */
4877 case BUILT_IN_INIT_TRAMPOLINE:
4878 case BUILT_IN_ADJUST_TRAMPOLINE:
4879 return;
4880 case BUILT_IN_VA_START:
4881 case BUILT_IN_VA_END:
4882 return;
4883 /* printf-style functions may have hooks to set pointers to
4884 point to somewhere into the generated string. Leave them
4885 for a later excercise... */
4886 default:
4887 /* Fallthru to general call handling. */;
4888 }
4889
4890 /* Parameters passed by value are used. */
4891 lhs = get_function_part_constraint (fi, fi_uses);
4892 for (i = 0; i < gimple_call_num_args (t); i++)
4893 {
4894 struct constraint_expr *rhsp;
4895 tree arg = gimple_call_arg (t, i);
4896
4897 if (TREE_CODE (arg) == SSA_NAME
4898 || is_gimple_min_invariant (arg))
4899 continue;
4900
4901 get_constraint_for_address_of (arg, &rhsc);
4902 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4903 process_constraint (new_constraint (lhs, *rhsp));
4904 VEC_free (ce_s, heap, rhsc);
4905 }
4906
4907 /* Build constraints for propagating clobbers/uses along the
4908 callgraph edges. */
4909 cfi = get_fi_for_callee (t);
4910 if (cfi->id == anything_id)
4911 {
4912 if (gimple_vdef (t))
4913 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4914 anything_id);
4915 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4916 anything_id);
4917 return;
4918 }
4919
4920 /* For callees without function info (that's external functions),
4921 ESCAPED is clobbered and used. */
4922 if (gimple_call_fndecl (t)
4923 && !cfi->is_fn_info)
4924 {
4925 varinfo_t vi;
4926
4927 if (gimple_vdef (t))
4928 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4929 escaped_id);
4930 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4931
4932 /* Also honor the call statement use/clobber info. */
4933 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4934 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4935 vi->id);
4936 if ((vi = lookup_call_use_vi (t)) != NULL)
4937 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4938 vi->id);
4939 return;
4940 }
4941
4942 /* Otherwise the caller clobbers and uses what the callee does.
4943 ??? This should use a new complex constraint that filters
4944 local variables of the callee. */
4945 if (gimple_vdef (t))
4946 {
4947 lhs = get_function_part_constraint (fi, fi_clobbers);
4948 rhs = get_function_part_constraint (cfi, fi_clobbers);
4949 process_constraint (new_constraint (lhs, rhs));
4950 }
4951 lhs = get_function_part_constraint (fi, fi_uses);
4952 rhs = get_function_part_constraint (cfi, fi_uses);
4953 process_constraint (new_constraint (lhs, rhs));
4954 }
4955 else if (gimple_code (t) == GIMPLE_ASM)
4956 {
4957 /* ??? Ick. We can do better. */
4958 if (gimple_vdef (t))
4959 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4960 anything_id);
4961 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4962 anything_id);
4963 }
4964
4965 VEC_free (ce_s, heap, rhsc);
4966 }
4967
4968
4969 /* Find the first varinfo in the same variable as START that overlaps with
4970 OFFSET. Return NULL if we can't find one. */
4971
4972 static varinfo_t
4973 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4974 {
4975 /* If the offset is outside of the variable, bail out. */
4976 if (offset >= start->fullsize)
4977 return NULL;
4978
4979 /* If we cannot reach offset from start, lookup the first field
4980 and start from there. */
4981 if (start->offset > offset)
4982 start = lookup_vi_for_tree (start->decl);
4983
4984 while (start)
4985 {
4986 /* We may not find a variable in the field list with the actual
4987 offset when when we have glommed a structure to a variable.
4988 In that case, however, offset should still be within the size
4989 of the variable. */
4990 if (offset >= start->offset
4991 && (offset - start->offset) < start->size)
4992 return start;
4993
4994 start= start->next;
4995 }
4996
4997 return NULL;
4998 }
4999
5000 /* Find the first varinfo in the same variable as START that overlaps with
5001 OFFSET. If there is no such varinfo the varinfo directly preceding
5002 OFFSET is returned. */
5003
5004 static varinfo_t
5005 first_or_preceding_vi_for_offset (varinfo_t start,
5006 unsigned HOST_WIDE_INT offset)
5007 {
5008 /* If we cannot reach offset from start, lookup the first field
5009 and start from there. */
5010 if (start->offset > offset)
5011 start = lookup_vi_for_tree (start->decl);
5012
5013 /* We may not find a variable in the field list with the actual
5014 offset when when we have glommed a structure to a variable.
5015 In that case, however, offset should still be within the size
5016 of the variable.
5017 If we got beyond the offset we look for return the field
5018 directly preceding offset which may be the last field. */
5019 while (start->next
5020 && offset >= start->offset
5021 && !((offset - start->offset) < start->size))
5022 start = start->next;
5023
5024 return start;
5025 }
5026
5027
5028 /* This structure is used during pushing fields onto the fieldstack
5029 to track the offset of the field, since bitpos_of_field gives it
5030 relative to its immediate containing type, and we want it relative
5031 to the ultimate containing object. */
5032
5033 struct fieldoff
5034 {
5035 /* Offset from the base of the base containing object to this field. */
5036 HOST_WIDE_INT offset;
5037
5038 /* Size, in bits, of the field. */
5039 unsigned HOST_WIDE_INT size;
5040
5041 unsigned has_unknown_size : 1;
5042
5043 unsigned must_have_pointers : 1;
5044
5045 unsigned may_have_pointers : 1;
5046
5047 unsigned only_restrict_pointers : 1;
5048 };
5049 typedef struct fieldoff fieldoff_s;
5050
5051 DEF_VEC_O(fieldoff_s);
5052 DEF_VEC_ALLOC_O(fieldoff_s,heap);
5053
5054 /* qsort comparison function for two fieldoff's PA and PB */
5055
5056 static int
5057 fieldoff_compare (const void *pa, const void *pb)
5058 {
5059 const fieldoff_s *foa = (const fieldoff_s *)pa;
5060 const fieldoff_s *fob = (const fieldoff_s *)pb;
5061 unsigned HOST_WIDE_INT foasize, fobsize;
5062
5063 if (foa->offset < fob->offset)
5064 return -1;
5065 else if (foa->offset > fob->offset)
5066 return 1;
5067
5068 foasize = foa->size;
5069 fobsize = fob->size;
5070 if (foasize < fobsize)
5071 return -1;
5072 else if (foasize > fobsize)
5073 return 1;
5074 return 0;
5075 }
5076
5077 /* Sort a fieldstack according to the field offset and sizes. */
5078 static void
5079 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
5080 {
5081 VEC_qsort (fieldoff_s, fieldstack, fieldoff_compare);
5082 }
5083
5084 /* Return true if T is a type that can have subvars. */
5085
5086 static inline bool
5087 type_can_have_subvars (const_tree t)
5088 {
5089 /* Aggregates without overlapping fields can have subvars. */
5090 return TREE_CODE (t) == RECORD_TYPE;
5091 }
5092
5093 /* Return true if V is a tree that we can have subvars for.
5094 Normally, this is any aggregate type. Also complex
5095 types which are not gimple registers can have subvars. */
5096
5097 static inline bool
5098 var_can_have_subvars (const_tree v)
5099 {
5100 /* Volatile variables should never have subvars. */
5101 if (TREE_THIS_VOLATILE (v))
5102 return false;
5103
5104 /* Non decls or memory tags can never have subvars. */
5105 if (!DECL_P (v))
5106 return false;
5107
5108 return type_can_have_subvars (TREE_TYPE (v));
5109 }
5110
5111 /* Return true if T is a type that does contain pointers. */
5112
5113 static bool
5114 type_must_have_pointers (tree type)
5115 {
5116 if (POINTER_TYPE_P (type))
5117 return true;
5118
5119 if (TREE_CODE (type) == ARRAY_TYPE)
5120 return type_must_have_pointers (TREE_TYPE (type));
5121
5122 /* A function or method can have pointers as arguments, so track
5123 those separately. */
5124 if (TREE_CODE (type) == FUNCTION_TYPE
5125 || TREE_CODE (type) == METHOD_TYPE)
5126 return true;
5127
5128 return false;
5129 }
5130
5131 static bool
5132 field_must_have_pointers (tree t)
5133 {
5134 return type_must_have_pointers (TREE_TYPE (t));
5135 }
5136
5137 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5138 the fields of TYPE onto fieldstack, recording their offsets along
5139 the way.
5140
5141 OFFSET is used to keep track of the offset in this entire
5142 structure, rather than just the immediately containing structure.
5143 Returns false if the caller is supposed to handle the field we
5144 recursed for. */
5145
5146 static bool
5147 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
5148 HOST_WIDE_INT offset)
5149 {
5150 tree field;
5151 bool empty_p = true;
5152
5153 if (TREE_CODE (type) != RECORD_TYPE)
5154 return false;
5155
5156 /* If the vector of fields is growing too big, bail out early.
5157 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5158 sure this fails. */
5159 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5160 return false;
5161
5162 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5163 if (TREE_CODE (field) == FIELD_DECL)
5164 {
5165 bool push = false;
5166 HOST_WIDE_INT foff = bitpos_of_field (field);
5167
5168 if (!var_can_have_subvars (field)
5169 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5170 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5171 push = true;
5172 else if (!push_fields_onto_fieldstack
5173 (TREE_TYPE (field), fieldstack, offset + foff)
5174 && (DECL_SIZE (field)
5175 && !integer_zerop (DECL_SIZE (field))))
5176 /* Empty structures may have actual size, like in C++. So
5177 see if we didn't push any subfields and the size is
5178 nonzero, push the field onto the stack. */
5179 push = true;
5180
5181 if (push)
5182 {
5183 fieldoff_s *pair = NULL;
5184 bool has_unknown_size = false;
5185 bool must_have_pointers_p;
5186
5187 if (!VEC_empty (fieldoff_s, *fieldstack))
5188 pair = &VEC_last (fieldoff_s, *fieldstack);
5189
5190 /* If there isn't anything at offset zero, create sth. */
5191 if (!pair
5192 && offset + foff != 0)
5193 {
5194 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5195 pair->offset = 0;
5196 pair->size = offset + foff;
5197 pair->has_unknown_size = false;
5198 pair->must_have_pointers = false;
5199 pair->may_have_pointers = false;
5200 pair->only_restrict_pointers = false;
5201 }
5202
5203 if (!DECL_SIZE (field)
5204 || !host_integerp (DECL_SIZE (field), 1))
5205 has_unknown_size = true;
5206
5207 /* If adjacent fields do not contain pointers merge them. */
5208 must_have_pointers_p = field_must_have_pointers (field);
5209 if (pair
5210 && !has_unknown_size
5211 && !must_have_pointers_p
5212 && !pair->must_have_pointers
5213 && !pair->has_unknown_size
5214 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5215 {
5216 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5217 }
5218 else
5219 {
5220 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5221 pair->offset = offset + foff;
5222 pair->has_unknown_size = has_unknown_size;
5223 if (!has_unknown_size)
5224 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5225 else
5226 pair->size = -1;
5227 pair->must_have_pointers = must_have_pointers_p;
5228 pair->may_have_pointers = true;
5229 pair->only_restrict_pointers
5230 = (!has_unknown_size
5231 && POINTER_TYPE_P (TREE_TYPE (field))
5232 && TYPE_RESTRICT (TREE_TYPE (field)));
5233 }
5234 }
5235
5236 empty_p = false;
5237 }
5238
5239 return !empty_p;
5240 }
5241
5242 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5243 if it is a varargs function. */
5244
5245 static unsigned int
5246 count_num_arguments (tree decl, bool *is_varargs)
5247 {
5248 unsigned int num = 0;
5249 tree t;
5250
5251 /* Capture named arguments for K&R functions. They do not
5252 have a prototype and thus no TYPE_ARG_TYPES. */
5253 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5254 ++num;
5255
5256 /* Check if the function has variadic arguments. */
5257 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5258 if (TREE_VALUE (t) == void_type_node)
5259 break;
5260 if (!t)
5261 *is_varargs = true;
5262
5263 return num;
5264 }
5265
5266 /* Creation function node for DECL, using NAME, and return the index
5267 of the variable we've created for the function. */
5268
5269 static varinfo_t
5270 create_function_info_for (tree decl, const char *name)
5271 {
5272 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5273 varinfo_t vi, prev_vi;
5274 tree arg;
5275 unsigned int i;
5276 bool is_varargs = false;
5277 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5278
5279 /* Create the variable info. */
5280
5281 vi = new_var_info (decl, name);
5282 vi->offset = 0;
5283 vi->size = 1;
5284 vi->fullsize = fi_parm_base + num_args;
5285 vi->is_fn_info = 1;
5286 vi->may_have_pointers = false;
5287 if (is_varargs)
5288 vi->fullsize = ~0;
5289 insert_vi_for_tree (vi->decl, vi);
5290
5291 prev_vi = vi;
5292
5293 /* Create a variable for things the function clobbers and one for
5294 things the function uses. */
5295 {
5296 varinfo_t clobbervi, usevi;
5297 const char *newname;
5298 char *tempname;
5299
5300 asprintf (&tempname, "%s.clobber", name);
5301 newname = ggc_strdup (tempname);
5302 free (tempname);
5303
5304 clobbervi = new_var_info (NULL, newname);
5305 clobbervi->offset = fi_clobbers;
5306 clobbervi->size = 1;
5307 clobbervi->fullsize = vi->fullsize;
5308 clobbervi->is_full_var = true;
5309 clobbervi->is_global_var = false;
5310 gcc_assert (prev_vi->offset < clobbervi->offset);
5311 prev_vi->next = clobbervi;
5312 prev_vi = clobbervi;
5313
5314 asprintf (&tempname, "%s.use", name);
5315 newname = ggc_strdup (tempname);
5316 free (tempname);
5317
5318 usevi = new_var_info (NULL, newname);
5319 usevi->offset = fi_uses;
5320 usevi->size = 1;
5321 usevi->fullsize = vi->fullsize;
5322 usevi->is_full_var = true;
5323 usevi->is_global_var = false;
5324 gcc_assert (prev_vi->offset < usevi->offset);
5325 prev_vi->next = usevi;
5326 prev_vi = usevi;
5327 }
5328
5329 /* And one for the static chain. */
5330 if (fn->static_chain_decl != NULL_TREE)
5331 {
5332 varinfo_t chainvi;
5333 const char *newname;
5334 char *tempname;
5335
5336 asprintf (&tempname, "%s.chain", name);
5337 newname = ggc_strdup (tempname);
5338 free (tempname);
5339
5340 chainvi = new_var_info (fn->static_chain_decl, newname);
5341 chainvi->offset = fi_static_chain;
5342 chainvi->size = 1;
5343 chainvi->fullsize = vi->fullsize;
5344 chainvi->is_full_var = true;
5345 chainvi->is_global_var = false;
5346 gcc_assert (prev_vi->offset < chainvi->offset);
5347 prev_vi->next = chainvi;
5348 prev_vi = chainvi;
5349 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5350 }
5351
5352 /* Create a variable for the return var. */
5353 if (DECL_RESULT (decl) != NULL
5354 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5355 {
5356 varinfo_t resultvi;
5357 const char *newname;
5358 char *tempname;
5359 tree resultdecl = decl;
5360
5361 if (DECL_RESULT (decl))
5362 resultdecl = DECL_RESULT (decl);
5363
5364 asprintf (&tempname, "%s.result", name);
5365 newname = ggc_strdup (tempname);
5366 free (tempname);
5367
5368 resultvi = new_var_info (resultdecl, newname);
5369 resultvi->offset = fi_result;
5370 resultvi->size = 1;
5371 resultvi->fullsize = vi->fullsize;
5372 resultvi->is_full_var = true;
5373 if (DECL_RESULT (decl))
5374 resultvi->may_have_pointers = true;
5375 gcc_assert (prev_vi->offset < resultvi->offset);
5376 prev_vi->next = resultvi;
5377 prev_vi = resultvi;
5378 if (DECL_RESULT (decl))
5379 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5380 }
5381
5382 /* Set up variables for each argument. */
5383 arg = DECL_ARGUMENTS (decl);
5384 for (i = 0; i < num_args; i++)
5385 {
5386 varinfo_t argvi;
5387 const char *newname;
5388 char *tempname;
5389 tree argdecl = decl;
5390
5391 if (arg)
5392 argdecl = arg;
5393
5394 asprintf (&tempname, "%s.arg%d", name, i);
5395 newname = ggc_strdup (tempname);
5396 free (tempname);
5397
5398 argvi = new_var_info (argdecl, newname);
5399 argvi->offset = fi_parm_base + i;
5400 argvi->size = 1;
5401 argvi->is_full_var = true;
5402 argvi->fullsize = vi->fullsize;
5403 if (arg)
5404 argvi->may_have_pointers = true;
5405 gcc_assert (prev_vi->offset < argvi->offset);
5406 prev_vi->next = argvi;
5407 prev_vi = argvi;
5408 if (arg)
5409 {
5410 insert_vi_for_tree (arg, argvi);
5411 arg = DECL_CHAIN (arg);
5412 }
5413 }
5414
5415 /* Add one representative for all further args. */
5416 if (is_varargs)
5417 {
5418 varinfo_t argvi;
5419 const char *newname;
5420 char *tempname;
5421 tree decl;
5422
5423 asprintf (&tempname, "%s.varargs", name);
5424 newname = ggc_strdup (tempname);
5425 free (tempname);
5426
5427 /* We need sth that can be pointed to for va_start. */
5428 decl = build_fake_var_decl (ptr_type_node);
5429
5430 argvi = new_var_info (decl, newname);
5431 argvi->offset = fi_parm_base + num_args;
5432 argvi->size = ~0;
5433 argvi->is_full_var = true;
5434 argvi->is_heap_var = true;
5435 argvi->fullsize = vi->fullsize;
5436 gcc_assert (prev_vi->offset < argvi->offset);
5437 prev_vi->next = argvi;
5438 prev_vi = argvi;
5439 }
5440
5441 return vi;
5442 }
5443
5444
5445 /* Return true if FIELDSTACK contains fields that overlap.
5446 FIELDSTACK is assumed to be sorted by offset. */
5447
5448 static bool
5449 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5450 {
5451 fieldoff_s *fo = NULL;
5452 unsigned int i;
5453 HOST_WIDE_INT lastoffset = -1;
5454
5455 FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
5456 {
5457 if (fo->offset == lastoffset)
5458 return true;
5459 lastoffset = fo->offset;
5460 }
5461 return false;
5462 }
5463
5464 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5465 This will also create any varinfo structures necessary for fields
5466 of DECL. */
5467
5468 static varinfo_t
5469 create_variable_info_for_1 (tree decl, const char *name)
5470 {
5471 varinfo_t vi, newvi;
5472 tree decl_type = TREE_TYPE (decl);
5473 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5474 VEC (fieldoff_s,heap) *fieldstack = NULL;
5475 fieldoff_s *fo;
5476 unsigned int i;
5477
5478 if (!declsize
5479 || !host_integerp (declsize, 1))
5480 {
5481 vi = new_var_info (decl, name);
5482 vi->offset = 0;
5483 vi->size = ~0;
5484 vi->fullsize = ~0;
5485 vi->is_unknown_size_var = true;
5486 vi->is_full_var = true;
5487 vi->may_have_pointers = true;
5488 return vi;
5489 }
5490
5491 /* Collect field information. */
5492 if (use_field_sensitive
5493 && var_can_have_subvars (decl)
5494 /* ??? Force us to not use subfields for global initializers
5495 in IPA mode. Else we'd have to parse arbitrary initializers. */
5496 && !(in_ipa_mode
5497 && is_global_var (decl)
5498 && DECL_INITIAL (decl)))
5499 {
5500 fieldoff_s *fo = NULL;
5501 bool notokay = false;
5502 unsigned int i;
5503
5504 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5505
5506 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5507 if (fo->has_unknown_size
5508 || fo->offset < 0)
5509 {
5510 notokay = true;
5511 break;
5512 }
5513
5514 /* We can't sort them if we have a field with a variable sized type,
5515 which will make notokay = true. In that case, we are going to return
5516 without creating varinfos for the fields anyway, so sorting them is a
5517 waste to boot. */
5518 if (!notokay)
5519 {
5520 sort_fieldstack (fieldstack);
5521 /* Due to some C++ FE issues, like PR 22488, we might end up
5522 what appear to be overlapping fields even though they,
5523 in reality, do not overlap. Until the C++ FE is fixed,
5524 we will simply disable field-sensitivity for these cases. */
5525 notokay = check_for_overlaps (fieldstack);
5526 }
5527
5528 if (notokay)
5529 VEC_free (fieldoff_s, heap, fieldstack);
5530 }
5531
5532 /* If we didn't end up collecting sub-variables create a full
5533 variable for the decl. */
5534 if (VEC_length (fieldoff_s, fieldstack) <= 1
5535 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5536 {
5537 vi = new_var_info (decl, name);
5538 vi->offset = 0;
5539 vi->may_have_pointers = true;
5540 vi->fullsize = TREE_INT_CST_LOW (declsize);
5541 vi->size = vi->fullsize;
5542 vi->is_full_var = true;
5543 VEC_free (fieldoff_s, heap, fieldstack);
5544 return vi;
5545 }
5546
5547 vi = new_var_info (decl, name);
5548 vi->fullsize = TREE_INT_CST_LOW (declsize);
5549 for (i = 0, newvi = vi;
5550 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5551 ++i, newvi = newvi->next)
5552 {
5553 const char *newname = "NULL";
5554 char *tempname;
5555
5556 if (dump_file)
5557 {
5558 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5559 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5560 newname = ggc_strdup (tempname);
5561 free (tempname);
5562 }
5563 newvi->name = newname;
5564 newvi->offset = fo->offset;
5565 newvi->size = fo->size;
5566 newvi->fullsize = vi->fullsize;
5567 newvi->may_have_pointers = fo->may_have_pointers;
5568 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5569 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5570 newvi->next = new_var_info (decl, name);
5571 }
5572
5573 VEC_free (fieldoff_s, heap, fieldstack);
5574
5575 return vi;
5576 }
5577
5578 static unsigned int
5579 create_variable_info_for (tree decl, const char *name)
5580 {
5581 varinfo_t vi = create_variable_info_for_1 (decl, name);
5582 unsigned int id = vi->id;
5583
5584 insert_vi_for_tree (decl, vi);
5585
5586 if (TREE_CODE (decl) != VAR_DECL)
5587 return id;
5588
5589 /* Create initial constraints for globals. */
5590 for (; vi; vi = vi->next)
5591 {
5592 if (!vi->may_have_pointers
5593 || !vi->is_global_var)
5594 continue;
5595
5596 /* Mark global restrict qualified pointers. */
5597 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5598 && TYPE_RESTRICT (TREE_TYPE (decl)))
5599 || vi->only_restrict_pointers)
5600 {
5601 make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
5602 continue;
5603 }
5604
5605 /* In non-IPA mode the initializer from nonlocal is all we need. */
5606 if (!in_ipa_mode
5607 || DECL_HARD_REGISTER (decl))
5608 make_copy_constraint (vi, nonlocal_id);
5609
5610 /* In IPA mode parse the initializer and generate proper constraints
5611 for it. */
5612 else
5613 {
5614 struct varpool_node *vnode = varpool_get_node (decl);
5615
5616 /* For escaped variables initialize them from nonlocal. */
5617 if (!varpool_all_refs_explicit_p (vnode))
5618 make_copy_constraint (vi, nonlocal_id);
5619
5620 /* If this is a global variable with an initializer and we are in
5621 IPA mode generate constraints for it. */
5622 if (DECL_INITIAL (decl)
5623 && vnode->analyzed)
5624 {
5625 VEC (ce_s, heap) *rhsc = NULL;
5626 struct constraint_expr lhs, *rhsp;
5627 unsigned i;
5628 get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
5629 lhs.var = vi->id;
5630 lhs.offset = 0;
5631 lhs.type = SCALAR;
5632 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5633 process_constraint (new_constraint (lhs, *rhsp));
5634 /* If this is a variable that escapes from the unit
5635 the initializer escapes as well. */
5636 if (!varpool_all_refs_explicit_p (vnode))
5637 {
5638 lhs.var = escaped_id;
5639 lhs.offset = 0;
5640 lhs.type = SCALAR;
5641 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5642 process_constraint (new_constraint (lhs, *rhsp));
5643 }
5644 VEC_free (ce_s, heap, rhsc);
5645 }
5646 }
5647 }
5648
5649 return id;
5650 }
5651
5652 /* Print out the points-to solution for VAR to FILE. */
5653
5654 static void
5655 dump_solution_for_var (FILE *file, unsigned int var)
5656 {
5657 varinfo_t vi = get_varinfo (var);
5658 unsigned int i;
5659 bitmap_iterator bi;
5660
5661 /* Dump the solution for unified vars anyway, this avoids difficulties
5662 in scanning dumps in the testsuite. */
5663 fprintf (file, "%s = { ", vi->name);
5664 vi = get_varinfo (find (var));
5665 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5666 fprintf (file, "%s ", get_varinfo (i)->name);
5667 fprintf (file, "}");
5668
5669 /* But note when the variable was unified. */
5670 if (vi->id != var)
5671 fprintf (file, " same as %s", vi->name);
5672
5673 fprintf (file, "\n");
5674 }
5675
5676 /* Print the points-to solution for VAR to stdout. */
5677
5678 DEBUG_FUNCTION void
5679 debug_solution_for_var (unsigned int var)
5680 {
5681 dump_solution_for_var (stdout, var);
5682 }
5683
5684 /* Create varinfo structures for all of the variables in the
5685 function for intraprocedural mode. */
5686
5687 static void
5688 intra_create_variable_infos (void)
5689 {
5690 tree t;
5691
5692 /* For each incoming pointer argument arg, create the constraint ARG
5693 = NONLOCAL or a dummy variable if it is a restrict qualified
5694 passed-by-reference argument. */
5695 for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
5696 {
5697 varinfo_t p = get_vi_for_tree (t);
5698
5699 /* For restrict qualified pointers to objects passed by
5700 reference build a real representative for the pointed-to object.
5701 Treat restrict qualified references the same. */
5702 if (TYPE_RESTRICT (TREE_TYPE (t))
5703 && ((DECL_BY_REFERENCE (t) && POINTER_TYPE_P (TREE_TYPE (t)))
5704 || TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE)
5705 && !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t))))
5706 {
5707 struct constraint_expr lhsc, rhsc;
5708 varinfo_t vi;
5709 tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t)));
5710 DECL_EXTERNAL (heapvar) = 1;
5711 vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS");
5712 insert_vi_for_tree (heapvar, vi);
5713 lhsc.var = p->id;
5714 lhsc.type = SCALAR;
5715 lhsc.offset = 0;
5716 rhsc.var = vi->id;
5717 rhsc.type = ADDRESSOF;
5718 rhsc.offset = 0;
5719 process_constraint (new_constraint (lhsc, rhsc));
5720 for (; vi; vi = vi->next)
5721 if (vi->may_have_pointers)
5722 {
5723 if (vi->only_restrict_pointers)
5724 make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
5725 else
5726 make_copy_constraint (vi, nonlocal_id);
5727 }
5728 continue;
5729 }
5730
5731 if (POINTER_TYPE_P (TREE_TYPE (t))
5732 && TYPE_RESTRICT (TREE_TYPE (t)))
5733 make_constraint_from_global_restrict (p, "PARM_RESTRICT");
5734 else
5735 {
5736 for (; p; p = p->next)
5737 {
5738 if (p->only_restrict_pointers)
5739 make_constraint_from_global_restrict (p, "PARM_RESTRICT");
5740 else if (p->may_have_pointers)
5741 make_constraint_from (p, nonlocal_id);
5742 }
5743 }
5744 }
5745
5746 /* Add a constraint for a result decl that is passed by reference. */
5747 if (DECL_RESULT (cfun->decl)
5748 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5749 {
5750 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5751
5752 for (p = result_vi; p; p = p->next)
5753 make_constraint_from (p, nonlocal_id);
5754 }
5755
5756 /* Add a constraint for the incoming static chain parameter. */
5757 if (cfun->static_chain_decl != NULL_TREE)
5758 {
5759 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5760
5761 for (p = chain_vi; p; p = p->next)
5762 make_constraint_from (p, nonlocal_id);
5763 }
5764 }
5765
5766 /* Structure used to put solution bitmaps in a hashtable so they can
5767 be shared among variables with the same points-to set. */
5768
5769 typedef struct shared_bitmap_info
5770 {
5771 bitmap pt_vars;
5772 hashval_t hashcode;
5773 } *shared_bitmap_info_t;
5774 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5775
5776 static htab_t shared_bitmap_table;
5777
5778 /* Hash function for a shared_bitmap_info_t */
5779
5780 static hashval_t
5781 shared_bitmap_hash (const void *p)
5782 {
5783 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5784 return bi->hashcode;
5785 }
5786
5787 /* Equality function for two shared_bitmap_info_t's. */
5788
5789 static int
5790 shared_bitmap_eq (const void *p1, const void *p2)
5791 {
5792 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5793 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5794 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5795 }
5796
5797 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5798 existing instance if there is one, NULL otherwise. */
5799
5800 static bitmap
5801 shared_bitmap_lookup (bitmap pt_vars)
5802 {
5803 void **slot;
5804 struct shared_bitmap_info sbi;
5805
5806 sbi.pt_vars = pt_vars;
5807 sbi.hashcode = bitmap_hash (pt_vars);
5808
5809 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5810 sbi.hashcode, NO_INSERT);
5811 if (!slot)
5812 return NULL;
5813 else
5814 return ((shared_bitmap_info_t) *slot)->pt_vars;
5815 }
5816
5817
5818 /* Add a bitmap to the shared bitmap hashtable. */
5819
5820 static void
5821 shared_bitmap_add (bitmap pt_vars)
5822 {
5823 void **slot;
5824 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5825
5826 sbi->pt_vars = pt_vars;
5827 sbi->hashcode = bitmap_hash (pt_vars);
5828
5829 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5830 sbi->hashcode, INSERT);
5831 gcc_assert (!*slot);
5832 *slot = (void *) sbi;
5833 }
5834
5835
5836 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5837
5838 static void
5839 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5840 {
5841 unsigned int i;
5842 bitmap_iterator bi;
5843
5844 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5845 {
5846 varinfo_t vi = get_varinfo (i);
5847
5848 /* The only artificial variables that are allowed in a may-alias
5849 set are heap variables. */
5850 if (vi->is_artificial_var && !vi->is_heap_var)
5851 continue;
5852
5853 if (TREE_CODE (vi->decl) == VAR_DECL
5854 || TREE_CODE (vi->decl) == PARM_DECL
5855 || TREE_CODE (vi->decl) == RESULT_DECL)
5856 {
5857 /* If we are in IPA mode we will not recompute points-to
5858 sets after inlining so make sure they stay valid. */
5859 if (in_ipa_mode
5860 && !DECL_PT_UID_SET_P (vi->decl))
5861 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5862
5863 /* Add the decl to the points-to set. Note that the points-to
5864 set contains global variables. */
5865 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5866 if (vi->is_global_var)
5867 pt->vars_contains_global = true;
5868 }
5869 }
5870 }
5871
5872
5873 /* Compute the points-to solution *PT for the variable VI. */
5874
5875 static void
5876 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5877 {
5878 unsigned int i;
5879 bitmap_iterator bi;
5880 bitmap finished_solution;
5881 bitmap result;
5882 varinfo_t vi;
5883
5884 memset (pt, 0, sizeof (struct pt_solution));
5885
5886 /* This variable may have been collapsed, let's get the real
5887 variable. */
5888 vi = get_varinfo (find (orig_vi->id));
5889
5890 /* Translate artificial variables into SSA_NAME_PTR_INFO
5891 attributes. */
5892 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5893 {
5894 varinfo_t vi = get_varinfo (i);
5895
5896 if (vi->is_artificial_var)
5897 {
5898 if (vi->id == nothing_id)
5899 pt->null = 1;
5900 else if (vi->id == escaped_id)
5901 {
5902 if (in_ipa_mode)
5903 pt->ipa_escaped = 1;
5904 else
5905 pt->escaped = 1;
5906 }
5907 else if (vi->id == nonlocal_id)
5908 pt->nonlocal = 1;
5909 else if (vi->is_heap_var)
5910 /* We represent heapvars in the points-to set properly. */
5911 ;
5912 else if (vi->id == readonly_id)
5913 /* Nobody cares. */
5914 ;
5915 else if (vi->id == anything_id
5916 || vi->id == integer_id)
5917 pt->anything = 1;
5918 }
5919 }
5920
5921 /* Instead of doing extra work, simply do not create
5922 elaborate points-to information for pt_anything pointers. */
5923 if (pt->anything)
5924 return;
5925
5926 /* Share the final set of variables when possible. */
5927 finished_solution = BITMAP_GGC_ALLOC ();
5928 stats.points_to_sets_created++;
5929
5930 set_uids_in_ptset (finished_solution, vi->solution, pt);
5931 result = shared_bitmap_lookup (finished_solution);
5932 if (!result)
5933 {
5934 shared_bitmap_add (finished_solution);
5935 pt->vars = finished_solution;
5936 }
5937 else
5938 {
5939 pt->vars = result;
5940 bitmap_clear (finished_solution);
5941 }
5942 }
5943
5944 /* Given a pointer variable P, fill in its points-to set. */
5945
5946 static void
5947 find_what_p_points_to (tree p)
5948 {
5949 struct ptr_info_def *pi;
5950 tree lookup_p = p;
5951 varinfo_t vi;
5952
5953 /* For parameters, get at the points-to set for the actual parm
5954 decl. */
5955 if (TREE_CODE (p) == SSA_NAME
5956 && SSA_NAME_IS_DEFAULT_DEF (p)
5957 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5958 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
5959 lookup_p = SSA_NAME_VAR (p);
5960
5961 vi = lookup_vi_for_tree (lookup_p);
5962 if (!vi)
5963 return;
5964
5965 pi = get_ptr_info (p);
5966 find_what_var_points_to (vi, &pi->pt);
5967 }
5968
5969
5970 /* Query statistics for points-to solutions. */
5971
5972 static struct {
5973 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5974 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5975 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5976 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5977 } pta_stats;
5978
5979 void
5980 dump_pta_stats (FILE *s)
5981 {
5982 fprintf (s, "\nPTA query stats:\n");
5983 fprintf (s, " pt_solution_includes: "
5984 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5985 HOST_WIDE_INT_PRINT_DEC" queries\n",
5986 pta_stats.pt_solution_includes_no_alias,
5987 pta_stats.pt_solution_includes_no_alias
5988 + pta_stats.pt_solution_includes_may_alias);
5989 fprintf (s, " pt_solutions_intersect: "
5990 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5991 HOST_WIDE_INT_PRINT_DEC" queries\n",
5992 pta_stats.pt_solutions_intersect_no_alias,
5993 pta_stats.pt_solutions_intersect_no_alias
5994 + pta_stats.pt_solutions_intersect_may_alias);
5995 }
5996
5997
5998 /* Reset the points-to solution *PT to a conservative default
5999 (point to anything). */
6000
6001 void
6002 pt_solution_reset (struct pt_solution *pt)
6003 {
6004 memset (pt, 0, sizeof (struct pt_solution));
6005 pt->anything = true;
6006 }
6007
6008 /* Set the points-to solution *PT to point only to the variables
6009 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
6010 global variables and VARS_CONTAINS_RESTRICT specifies whether
6011 it contains restrict tag variables. */
6012
6013 void
6014 pt_solution_set (struct pt_solution *pt, bitmap vars, bool vars_contains_global)
6015 {
6016 memset (pt, 0, sizeof (struct pt_solution));
6017 pt->vars = vars;
6018 pt->vars_contains_global = vars_contains_global;
6019 }
6020
6021 /* Set the points-to solution *PT to point only to the variable VAR. */
6022
6023 void
6024 pt_solution_set_var (struct pt_solution *pt, tree var)
6025 {
6026 memset (pt, 0, sizeof (struct pt_solution));
6027 pt->vars = BITMAP_GGC_ALLOC ();
6028 bitmap_set_bit (pt->vars, DECL_PT_UID (var));
6029 pt->vars_contains_global = is_global_var (var);
6030 }
6031
6032 /* Computes the union of the points-to solutions *DEST and *SRC and
6033 stores the result in *DEST. This changes the points-to bitmap
6034 of *DEST and thus may not be used if that might be shared.
6035 The points-to bitmap of *SRC and *DEST will not be shared after
6036 this function if they were not before. */
6037
6038 static void
6039 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
6040 {
6041 dest->anything |= src->anything;
6042 if (dest->anything)
6043 {
6044 pt_solution_reset (dest);
6045 return;
6046 }
6047
6048 dest->nonlocal |= src->nonlocal;
6049 dest->escaped |= src->escaped;
6050 dest->ipa_escaped |= src->ipa_escaped;
6051 dest->null |= src->null;
6052 dest->vars_contains_global |= src->vars_contains_global;
6053 if (!src->vars)
6054 return;
6055
6056 if (!dest->vars)
6057 dest->vars = BITMAP_GGC_ALLOC ();
6058 bitmap_ior_into (dest->vars, src->vars);
6059 }
6060
6061 /* Return true if the points-to solution *PT is empty. */
6062
6063 bool
6064 pt_solution_empty_p (struct pt_solution *pt)
6065 {
6066 if (pt->anything
6067 || pt->nonlocal)
6068 return false;
6069
6070 if (pt->vars
6071 && !bitmap_empty_p (pt->vars))
6072 return false;
6073
6074 /* If the solution includes ESCAPED, check if that is empty. */
6075 if (pt->escaped
6076 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6077 return false;
6078
6079 /* If the solution includes ESCAPED, check if that is empty. */
6080 if (pt->ipa_escaped
6081 && !pt_solution_empty_p (&ipa_escaped_pt))
6082 return false;
6083
6084 return true;
6085 }
6086
6087 /* Return true if the points-to solution *PT only point to a single var, and
6088 return the var uid in *UID. */
6089
6090 bool
6091 pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
6092 {
6093 if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
6094 || pt->null || pt->vars == NULL
6095 || !bitmap_single_bit_set_p (pt->vars))
6096 return false;
6097
6098 *uid = bitmap_first_set_bit (pt->vars);
6099 return true;
6100 }
6101
6102 /* Return true if the points-to solution *PT includes global memory. */
6103
6104 bool
6105 pt_solution_includes_global (struct pt_solution *pt)
6106 {
6107 if (pt->anything
6108 || pt->nonlocal
6109 || pt->vars_contains_global)
6110 return true;
6111
6112 if (pt->escaped)
6113 return pt_solution_includes_global (&cfun->gimple_df->escaped);
6114
6115 if (pt->ipa_escaped)
6116 return pt_solution_includes_global (&ipa_escaped_pt);
6117
6118 /* ??? This predicate is not correct for the IPA-PTA solution
6119 as we do not properly distinguish between unit escape points
6120 and global variables. */
6121 if (cfun->gimple_df->ipa_pta)
6122 return true;
6123
6124 return false;
6125 }
6126
6127 /* Return true if the points-to solution *PT includes the variable
6128 declaration DECL. */
6129
6130 static bool
6131 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6132 {
6133 if (pt->anything)
6134 return true;
6135
6136 if (pt->nonlocal
6137 && is_global_var (decl))
6138 return true;
6139
6140 if (pt->vars
6141 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6142 return true;
6143
6144 /* If the solution includes ESCAPED, check it. */
6145 if (pt->escaped
6146 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6147 return true;
6148
6149 /* If the solution includes ESCAPED, check it. */
6150 if (pt->ipa_escaped
6151 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6152 return true;
6153
6154 return false;
6155 }
6156
6157 bool
6158 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6159 {
6160 bool res = pt_solution_includes_1 (pt, decl);
6161 if (res)
6162 ++pta_stats.pt_solution_includes_may_alias;
6163 else
6164 ++pta_stats.pt_solution_includes_no_alias;
6165 return res;
6166 }
6167
6168 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6169 intersection. */
6170
6171 static bool
6172 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6173 {
6174 if (pt1->anything || pt2->anything)
6175 return true;
6176
6177 /* If either points to unknown global memory and the other points to
6178 any global memory they alias. */
6179 if ((pt1->nonlocal
6180 && (pt2->nonlocal
6181 || pt2->vars_contains_global))
6182 || (pt2->nonlocal
6183 && pt1->vars_contains_global))
6184 return true;
6185
6186 /* Check the escaped solution if required. */
6187 if ((pt1->escaped || pt2->escaped)
6188 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6189 {
6190 /* If both point to escaped memory and that solution
6191 is not empty they alias. */
6192 if (pt1->escaped && pt2->escaped)
6193 return true;
6194
6195 /* If either points to escaped memory see if the escaped solution
6196 intersects with the other. */
6197 if ((pt1->escaped
6198 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
6199 || (pt2->escaped
6200 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
6201 return true;
6202 }
6203
6204 /* Check the escaped solution if required.
6205 ??? Do we need to check the local against the IPA escaped sets? */
6206 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6207 && !pt_solution_empty_p (&ipa_escaped_pt))
6208 {
6209 /* If both point to escaped memory and that solution
6210 is not empty they alias. */
6211 if (pt1->ipa_escaped && pt2->ipa_escaped)
6212 return true;
6213
6214 /* If either points to escaped memory see if the escaped solution
6215 intersects with the other. */
6216 if ((pt1->ipa_escaped
6217 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6218 || (pt2->ipa_escaped
6219 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6220 return true;
6221 }
6222
6223 /* Now both pointers alias if their points-to solution intersects. */
6224 return (pt1->vars
6225 && pt2->vars
6226 && bitmap_intersect_p (pt1->vars, pt2->vars));
6227 }
6228
6229 bool
6230 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6231 {
6232 bool res = pt_solutions_intersect_1 (pt1, pt2);
6233 if (res)
6234 ++pta_stats.pt_solutions_intersect_may_alias;
6235 else
6236 ++pta_stats.pt_solutions_intersect_no_alias;
6237 return res;
6238 }
6239
6240
6241 /* Dump points-to information to OUTFILE. */
6242
6243 static void
6244 dump_sa_points_to_info (FILE *outfile)
6245 {
6246 unsigned int i;
6247
6248 fprintf (outfile, "\nPoints-to sets\n\n");
6249
6250 if (dump_flags & TDF_STATS)
6251 {
6252 fprintf (outfile, "Stats:\n");
6253 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6254 fprintf (outfile, "Non-pointer vars: %d\n",
6255 stats.nonpointer_vars);
6256 fprintf (outfile, "Statically unified vars: %d\n",
6257 stats.unified_vars_static);
6258 fprintf (outfile, "Dynamically unified vars: %d\n",
6259 stats.unified_vars_dynamic);
6260 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6261 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6262 fprintf (outfile, "Number of implicit edges: %d\n",
6263 stats.num_implicit_edges);
6264 }
6265
6266 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6267 {
6268 varinfo_t vi = get_varinfo (i);
6269 if (!vi->may_have_pointers)
6270 continue;
6271 dump_solution_for_var (outfile, i);
6272 }
6273 }
6274
6275
6276 /* Debug points-to information to stderr. */
6277
6278 DEBUG_FUNCTION void
6279 debug_sa_points_to_info (void)
6280 {
6281 dump_sa_points_to_info (stderr);
6282 }
6283
6284
6285 /* Initialize the always-existing constraint variables for NULL
6286 ANYTHING, READONLY, and INTEGER */
6287
6288 static void
6289 init_base_vars (void)
6290 {
6291 struct constraint_expr lhs, rhs;
6292 varinfo_t var_anything;
6293 varinfo_t var_nothing;
6294 varinfo_t var_readonly;
6295 varinfo_t var_escaped;
6296 varinfo_t var_nonlocal;
6297 varinfo_t var_storedanything;
6298 varinfo_t var_integer;
6299
6300 /* Create the NULL variable, used to represent that a variable points
6301 to NULL. */
6302 var_nothing = new_var_info (NULL_TREE, "NULL");
6303 gcc_assert (var_nothing->id == nothing_id);
6304 var_nothing->is_artificial_var = 1;
6305 var_nothing->offset = 0;
6306 var_nothing->size = ~0;
6307 var_nothing->fullsize = ~0;
6308 var_nothing->is_special_var = 1;
6309 var_nothing->may_have_pointers = 0;
6310 var_nothing->is_global_var = 0;
6311
6312 /* Create the ANYTHING variable, used to represent that a variable
6313 points to some unknown piece of memory. */
6314 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6315 gcc_assert (var_anything->id == anything_id);
6316 var_anything->is_artificial_var = 1;
6317 var_anything->size = ~0;
6318 var_anything->offset = 0;
6319 var_anything->next = NULL;
6320 var_anything->fullsize = ~0;
6321 var_anything->is_special_var = 1;
6322
6323 /* Anything points to anything. This makes deref constraints just
6324 work in the presence of linked list and other p = *p type loops,
6325 by saying that *ANYTHING = ANYTHING. */
6326 lhs.type = SCALAR;
6327 lhs.var = anything_id;
6328 lhs.offset = 0;
6329 rhs.type = ADDRESSOF;
6330 rhs.var = anything_id;
6331 rhs.offset = 0;
6332
6333 /* This specifically does not use process_constraint because
6334 process_constraint ignores all anything = anything constraints, since all
6335 but this one are redundant. */
6336 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6337
6338 /* Create the READONLY variable, used to represent that a variable
6339 points to readonly memory. */
6340 var_readonly = new_var_info (NULL_TREE, "READONLY");
6341 gcc_assert (var_readonly->id == readonly_id);
6342 var_readonly->is_artificial_var = 1;
6343 var_readonly->offset = 0;
6344 var_readonly->size = ~0;
6345 var_readonly->fullsize = ~0;
6346 var_readonly->next = NULL;
6347 var_readonly->is_special_var = 1;
6348
6349 /* readonly memory points to anything, in order to make deref
6350 easier. In reality, it points to anything the particular
6351 readonly variable can point to, but we don't track this
6352 separately. */
6353 lhs.type = SCALAR;
6354 lhs.var = readonly_id;
6355 lhs.offset = 0;
6356 rhs.type = ADDRESSOF;
6357 rhs.var = readonly_id; /* FIXME */
6358 rhs.offset = 0;
6359 process_constraint (new_constraint (lhs, rhs));
6360
6361 /* Create the ESCAPED variable, used to represent the set of escaped
6362 memory. */
6363 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6364 gcc_assert (var_escaped->id == escaped_id);
6365 var_escaped->is_artificial_var = 1;
6366 var_escaped->offset = 0;
6367 var_escaped->size = ~0;
6368 var_escaped->fullsize = ~0;
6369 var_escaped->is_special_var = 0;
6370
6371 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6372 memory. */
6373 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6374 gcc_assert (var_nonlocal->id == nonlocal_id);
6375 var_nonlocal->is_artificial_var = 1;
6376 var_nonlocal->offset = 0;
6377 var_nonlocal->size = ~0;
6378 var_nonlocal->fullsize = ~0;
6379 var_nonlocal->is_special_var = 1;
6380
6381 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6382 lhs.type = SCALAR;
6383 lhs.var = escaped_id;
6384 lhs.offset = 0;
6385 rhs.type = DEREF;
6386 rhs.var = escaped_id;
6387 rhs.offset = 0;
6388 process_constraint (new_constraint (lhs, rhs));
6389
6390 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6391 whole variable escapes. */
6392 lhs.type = SCALAR;
6393 lhs.var = escaped_id;
6394 lhs.offset = 0;
6395 rhs.type = SCALAR;
6396 rhs.var = escaped_id;
6397 rhs.offset = UNKNOWN_OFFSET;
6398 process_constraint (new_constraint (lhs, rhs));
6399
6400 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6401 everything pointed to by escaped points to what global memory can
6402 point to. */
6403 lhs.type = DEREF;
6404 lhs.var = escaped_id;
6405 lhs.offset = 0;
6406 rhs.type = SCALAR;
6407 rhs.var = nonlocal_id;
6408 rhs.offset = 0;
6409 process_constraint (new_constraint (lhs, rhs));
6410
6411 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6412 global memory may point to global memory and escaped memory. */
6413 lhs.type = SCALAR;
6414 lhs.var = nonlocal_id;
6415 lhs.offset = 0;
6416 rhs.type = ADDRESSOF;
6417 rhs.var = nonlocal_id;
6418 rhs.offset = 0;
6419 process_constraint (new_constraint (lhs, rhs));
6420 rhs.type = ADDRESSOF;
6421 rhs.var = escaped_id;
6422 rhs.offset = 0;
6423 process_constraint (new_constraint (lhs, rhs));
6424
6425 /* Create the STOREDANYTHING variable, used to represent the set of
6426 variables stored to *ANYTHING. */
6427 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6428 gcc_assert (var_storedanything->id == storedanything_id);
6429 var_storedanything->is_artificial_var = 1;
6430 var_storedanything->offset = 0;
6431 var_storedanything->size = ~0;
6432 var_storedanything->fullsize = ~0;
6433 var_storedanything->is_special_var = 0;
6434
6435 /* Create the INTEGER variable, used to represent that a variable points
6436 to what an INTEGER "points to". */
6437 var_integer = new_var_info (NULL_TREE, "INTEGER");
6438 gcc_assert (var_integer->id == integer_id);
6439 var_integer->is_artificial_var = 1;
6440 var_integer->size = ~0;
6441 var_integer->fullsize = ~0;
6442 var_integer->offset = 0;
6443 var_integer->next = NULL;
6444 var_integer->is_special_var = 1;
6445
6446 /* INTEGER = ANYTHING, because we don't know where a dereference of
6447 a random integer will point to. */
6448 lhs.type = SCALAR;
6449 lhs.var = integer_id;
6450 lhs.offset = 0;
6451 rhs.type = ADDRESSOF;
6452 rhs.var = anything_id;
6453 rhs.offset = 0;
6454 process_constraint (new_constraint (lhs, rhs));
6455 }
6456
6457 /* Initialize things necessary to perform PTA */
6458
6459 static void
6460 init_alias_vars (void)
6461 {
6462 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6463
6464 bitmap_obstack_initialize (&pta_obstack);
6465 bitmap_obstack_initialize (&oldpta_obstack);
6466 bitmap_obstack_initialize (&predbitmap_obstack);
6467
6468 constraint_pool = create_alloc_pool ("Constraint pool",
6469 sizeof (struct constraint), 30);
6470 variable_info_pool = create_alloc_pool ("Variable info pool",
6471 sizeof (struct variable_info), 30);
6472 constraints = VEC_alloc (constraint_t, heap, 8);
6473 varmap = VEC_alloc (varinfo_t, heap, 8);
6474 vi_for_tree = pointer_map_create ();
6475 call_stmt_vars = pointer_map_create ();
6476
6477 memset (&stats, 0, sizeof (stats));
6478 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6479 shared_bitmap_eq, free);
6480 init_base_vars ();
6481
6482 gcc_obstack_init (&fake_var_decl_obstack);
6483 }
6484
6485 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6486 predecessor edges. */
6487
6488 static void
6489 remove_preds_and_fake_succs (constraint_graph_t graph)
6490 {
6491 unsigned int i;
6492
6493 /* Clear the implicit ref and address nodes from the successor
6494 lists. */
6495 for (i = 0; i < FIRST_REF_NODE; i++)
6496 {
6497 if (graph->succs[i])
6498 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6499 FIRST_REF_NODE * 2);
6500 }
6501
6502 /* Free the successor list for the non-ref nodes. */
6503 for (i = FIRST_REF_NODE; i < graph->size; i++)
6504 {
6505 if (graph->succs[i])
6506 BITMAP_FREE (graph->succs[i]);
6507 }
6508
6509 /* Now reallocate the size of the successor list as, and blow away
6510 the predecessor bitmaps. */
6511 graph->size = VEC_length (varinfo_t, varmap);
6512 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6513
6514 free (graph->implicit_preds);
6515 graph->implicit_preds = NULL;
6516 free (graph->preds);
6517 graph->preds = NULL;
6518 bitmap_obstack_release (&predbitmap_obstack);
6519 }
6520
6521 /* Solve the constraint set. */
6522
6523 static void
6524 solve_constraints (void)
6525 {
6526 struct scc_info *si;
6527
6528 if (dump_file)
6529 fprintf (dump_file,
6530 "\nCollapsing static cycles and doing variable "
6531 "substitution\n");
6532
6533 init_graph (VEC_length (varinfo_t, varmap) * 2);
6534
6535 if (dump_file)
6536 fprintf (dump_file, "Building predecessor graph\n");
6537 build_pred_graph ();
6538
6539 if (dump_file)
6540 fprintf (dump_file, "Detecting pointer and location "
6541 "equivalences\n");
6542 si = perform_var_substitution (graph);
6543
6544 if (dump_file)
6545 fprintf (dump_file, "Rewriting constraints and unifying "
6546 "variables\n");
6547 rewrite_constraints (graph, si);
6548
6549 build_succ_graph ();
6550
6551 free_var_substitution_info (si);
6552
6553 /* Attach complex constraints to graph nodes. */
6554 move_complex_constraints (graph);
6555
6556 if (dump_file)
6557 fprintf (dump_file, "Uniting pointer but not location equivalent "
6558 "variables\n");
6559 unite_pointer_equivalences (graph);
6560
6561 if (dump_file)
6562 fprintf (dump_file, "Finding indirect cycles\n");
6563 find_indirect_cycles (graph);
6564
6565 /* Implicit nodes and predecessors are no longer necessary at this
6566 point. */
6567 remove_preds_and_fake_succs (graph);
6568
6569 if (dump_file && (dump_flags & TDF_GRAPH))
6570 {
6571 fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
6572 "in dot format:\n");
6573 dump_constraint_graph (dump_file);
6574 fprintf (dump_file, "\n\n");
6575 }
6576
6577 if (dump_file)
6578 fprintf (dump_file, "Solving graph\n");
6579
6580 solve_graph (graph);
6581
6582 if (dump_file && (dump_flags & TDF_GRAPH))
6583 {
6584 fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
6585 "in dot format:\n");
6586 dump_constraint_graph (dump_file);
6587 fprintf (dump_file, "\n\n");
6588 }
6589
6590 if (dump_file)
6591 dump_sa_points_to_info (dump_file);
6592 }
6593
6594 /* Create points-to sets for the current function. See the comments
6595 at the start of the file for an algorithmic overview. */
6596
6597 static void
6598 compute_points_to_sets (void)
6599 {
6600 basic_block bb;
6601 unsigned i;
6602 varinfo_t vi;
6603
6604 timevar_push (TV_TREE_PTA);
6605
6606 init_alias_vars ();
6607
6608 intra_create_variable_infos ();
6609
6610 /* Now walk all statements and build the constraint set. */
6611 FOR_EACH_BB (bb)
6612 {
6613 gimple_stmt_iterator gsi;
6614
6615 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6616 {
6617 gimple phi = gsi_stmt (gsi);
6618
6619 if (! virtual_operand_p (gimple_phi_result (phi)))
6620 find_func_aliases (phi);
6621 }
6622
6623 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6624 {
6625 gimple stmt = gsi_stmt (gsi);
6626
6627 find_func_aliases (stmt);
6628 }
6629 }
6630
6631 if (dump_file)
6632 {
6633 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6634 dump_constraints (dump_file, 0);
6635 }
6636
6637 /* From the constraints compute the points-to sets. */
6638 solve_constraints ();
6639
6640 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6641 find_what_var_points_to (get_varinfo (escaped_id),
6642 &cfun->gimple_df->escaped);
6643
6644 /* Make sure the ESCAPED solution (which is used as placeholder in
6645 other solutions) does not reference itself. This simplifies
6646 points-to solution queries. */
6647 cfun->gimple_df->escaped.escaped = 0;
6648
6649 /* Mark escaped HEAP variables as global. */
6650 FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
6651 if (vi->is_heap_var
6652 && !vi->is_global_var)
6653 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6654 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6655
6656 /* Compute the points-to sets for pointer SSA_NAMEs. */
6657 for (i = 0; i < num_ssa_names; ++i)
6658 {
6659 tree ptr = ssa_name (i);
6660 if (ptr
6661 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6662 find_what_p_points_to (ptr);
6663 }
6664
6665 /* Compute the call-used/clobbered sets. */
6666 FOR_EACH_BB (bb)
6667 {
6668 gimple_stmt_iterator gsi;
6669
6670 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6671 {
6672 gimple stmt = gsi_stmt (gsi);
6673 struct pt_solution *pt;
6674 if (!is_gimple_call (stmt))
6675 continue;
6676
6677 pt = gimple_call_use_set (stmt);
6678 if (gimple_call_flags (stmt) & ECF_CONST)
6679 memset (pt, 0, sizeof (struct pt_solution));
6680 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6681 {
6682 find_what_var_points_to (vi, pt);
6683 /* Escaped (and thus nonlocal) variables are always
6684 implicitly used by calls. */
6685 /* ??? ESCAPED can be empty even though NONLOCAL
6686 always escaped. */
6687 pt->nonlocal = 1;
6688 pt->escaped = 1;
6689 }
6690 else
6691 {
6692 /* If there is nothing special about this call then
6693 we have made everything that is used also escape. */
6694 *pt = cfun->gimple_df->escaped;
6695 pt->nonlocal = 1;
6696 }
6697
6698 pt = gimple_call_clobber_set (stmt);
6699 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6700 memset (pt, 0, sizeof (struct pt_solution));
6701 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6702 {
6703 find_what_var_points_to (vi, pt);
6704 /* Escaped (and thus nonlocal) variables are always
6705 implicitly clobbered by calls. */
6706 /* ??? ESCAPED can be empty even though NONLOCAL
6707 always escaped. */
6708 pt->nonlocal = 1;
6709 pt->escaped = 1;
6710 }
6711 else
6712 {
6713 /* If there is nothing special about this call then
6714 we have made everything that is used also escape. */
6715 *pt = cfun->gimple_df->escaped;
6716 pt->nonlocal = 1;
6717 }
6718 }
6719 }
6720
6721 timevar_pop (TV_TREE_PTA);
6722 }
6723
6724
6725 /* Delete created points-to sets. */
6726
6727 static void
6728 delete_points_to_sets (void)
6729 {
6730 unsigned int i;
6731
6732 htab_delete (shared_bitmap_table);
6733 if (dump_file && (dump_flags & TDF_STATS))
6734 fprintf (dump_file, "Points to sets created:%d\n",
6735 stats.points_to_sets_created);
6736
6737 pointer_map_destroy (vi_for_tree);
6738 pointer_map_destroy (call_stmt_vars);
6739 bitmap_obstack_release (&pta_obstack);
6740 VEC_free (constraint_t, heap, constraints);
6741
6742 for (i = 0; i < graph->size; i++)
6743 VEC_free (constraint_t, heap, graph->complex[i]);
6744 free (graph->complex);
6745
6746 free (graph->rep);
6747 free (graph->succs);
6748 free (graph->pe);
6749 free (graph->pe_rep);
6750 free (graph->indirect_cycles);
6751 free (graph);
6752
6753 VEC_free (varinfo_t, heap, varmap);
6754 free_alloc_pool (variable_info_pool);
6755 free_alloc_pool (constraint_pool);
6756
6757 obstack_free (&fake_var_decl_obstack, NULL);
6758 }
6759
6760
6761 /* Compute points-to information for every SSA_NAME pointer in the
6762 current function and compute the transitive closure of escaped
6763 variables to re-initialize the call-clobber states of local variables. */
6764
6765 unsigned int
6766 compute_may_aliases (void)
6767 {
6768 if (cfun->gimple_df->ipa_pta)
6769 {
6770 if (dump_file)
6771 {
6772 fprintf (dump_file, "\nNot re-computing points-to information "
6773 "because IPA points-to information is available.\n\n");
6774
6775 /* But still dump what we have remaining it. */
6776 dump_alias_info (dump_file);
6777 }
6778
6779 return 0;
6780 }
6781
6782 /* For each pointer P_i, determine the sets of variables that P_i may
6783 point-to. Compute the reachability set of escaped and call-used
6784 variables. */
6785 compute_points_to_sets ();
6786
6787 /* Debugging dumps. */
6788 if (dump_file)
6789 dump_alias_info (dump_file);
6790
6791 /* Deallocate memory used by aliasing data structures and the internal
6792 points-to solution. */
6793 delete_points_to_sets ();
6794
6795 gcc_assert (!need_ssa_update_p (cfun));
6796
6797 return 0;
6798 }
6799
6800 static bool
6801 gate_tree_pta (void)
6802 {
6803 return flag_tree_pta;
6804 }
6805
6806 /* A dummy pass to cause points-to information to be computed via
6807 TODO_rebuild_alias. */
6808
6809 struct gimple_opt_pass pass_build_alias =
6810 {
6811 {
6812 GIMPLE_PASS,
6813 "alias", /* name */
6814 gate_tree_pta, /* gate */
6815 NULL, /* execute */
6816 NULL, /* sub */
6817 NULL, /* next */
6818 0, /* static_pass_number */
6819 TV_NONE, /* tv_id */
6820 PROP_cfg | PROP_ssa, /* properties_required */
6821 0, /* properties_provided */
6822 0, /* properties_destroyed */
6823 0, /* todo_flags_start */
6824 TODO_rebuild_alias /* todo_flags_finish */
6825 }
6826 };
6827
6828 /* A dummy pass to cause points-to information to be computed via
6829 TODO_rebuild_alias. */
6830
6831 struct gimple_opt_pass pass_build_ealias =
6832 {
6833 {
6834 GIMPLE_PASS,
6835 "ealias", /* name */
6836 gate_tree_pta, /* gate */
6837 NULL, /* execute */
6838 NULL, /* sub */
6839 NULL, /* next */
6840 0, /* static_pass_number */
6841 TV_NONE, /* tv_id */
6842 PROP_cfg | PROP_ssa, /* properties_required */
6843 0, /* properties_provided */
6844 0, /* properties_destroyed */
6845 0, /* todo_flags_start */
6846 TODO_rebuild_alias /* todo_flags_finish */
6847 }
6848 };
6849
6850
6851 /* Return true if we should execute IPA PTA. */
6852 static bool
6853 gate_ipa_pta (void)
6854 {
6855 return (optimize
6856 && flag_ipa_pta
6857 /* Don't bother doing anything if the program has errors. */
6858 && !seen_error ());
6859 }
6860
6861 /* IPA PTA solutions for ESCAPED. */
6862 struct pt_solution ipa_escaped_pt
6863 = { true, false, false, false, false, false, NULL };
6864
6865 /* Associate node with varinfo DATA. Worker for
6866 cgraph_for_node_and_aliases. */
6867 static bool
6868 associate_varinfo_to_alias (struct cgraph_node *node, void *data)
6869 {
6870 if (node->alias || node->thunk.thunk_p)
6871 insert_vi_for_tree (node->symbol.decl, (varinfo_t)data);
6872 return false;
6873 }
6874
6875 /* Execute the driver for IPA PTA. */
6876 static unsigned int
6877 ipa_pta_execute (void)
6878 {
6879 struct cgraph_node *node;
6880 struct varpool_node *var;
6881 int from;
6882
6883 in_ipa_mode = 1;
6884
6885 init_alias_vars ();
6886
6887 if (dump_file && (dump_flags & TDF_DETAILS))
6888 {
6889 dump_symtab (dump_file);
6890 fprintf (dump_file, "\n");
6891 }
6892
6893 /* Build the constraints. */
6894 FOR_EACH_DEFINED_FUNCTION (node)
6895 {
6896 varinfo_t vi;
6897 /* Nodes without a body are not interesting. Especially do not
6898 visit clones at this point for now - we get duplicate decls
6899 there for inline clones at least. */
6900 if (!cgraph_function_with_gimple_body_p (node))
6901 continue;
6902
6903 gcc_assert (!node->clone_of);
6904
6905 vi = create_function_info_for (node->symbol.decl,
6906 alias_get_name (node->symbol.decl));
6907 cgraph_for_node_and_aliases (node, associate_varinfo_to_alias, vi, true);
6908 }
6909
6910 /* Create constraints for global variables and their initializers. */
6911 FOR_EACH_VARIABLE (var)
6912 {
6913 if (var->alias)
6914 continue;
6915
6916 get_vi_for_tree (var->symbol.decl);
6917 }
6918
6919 if (dump_file)
6920 {
6921 fprintf (dump_file,
6922 "Generating constraints for global initializers\n\n");
6923 dump_constraints (dump_file, 0);
6924 fprintf (dump_file, "\n");
6925 }
6926 from = VEC_length (constraint_t, constraints);
6927
6928 FOR_EACH_DEFINED_FUNCTION (node)
6929 {
6930 struct function *func;
6931 basic_block bb;
6932 tree old_func_decl;
6933
6934 /* Nodes without a body are not interesting. */
6935 if (!cgraph_function_with_gimple_body_p (node))
6936 continue;
6937
6938 if (dump_file)
6939 {
6940 fprintf (dump_file,
6941 "Generating constraints for %s", cgraph_node_name (node));
6942 if (DECL_ASSEMBLER_NAME_SET_P (node->symbol.decl))
6943 fprintf (dump_file, " (%s)",
6944 IDENTIFIER_POINTER
6945 (DECL_ASSEMBLER_NAME (node->symbol.decl)));
6946 fprintf (dump_file, "\n");
6947 }
6948
6949 func = DECL_STRUCT_FUNCTION (node->symbol.decl);
6950 old_func_decl = current_function_decl;
6951 push_cfun (func);
6952 current_function_decl = node->symbol.decl;
6953
6954 /* For externally visible or attribute used annotated functions use
6955 local constraints for their arguments.
6956 For local functions we see all callers and thus do not need initial
6957 constraints for parameters. */
6958 if (node->symbol.used_from_other_partition
6959 || node->symbol.externally_visible
6960 || node->symbol.force_output)
6961 {
6962 intra_create_variable_infos ();
6963
6964 /* We also need to make function return values escape. Nothing
6965 escapes by returning from main though. */
6966 if (!MAIN_NAME_P (DECL_NAME (node->symbol.decl)))
6967 {
6968 varinfo_t fi, rvi;
6969 fi = lookup_vi_for_tree (node->symbol.decl);
6970 rvi = first_vi_for_offset (fi, fi_result);
6971 if (rvi && rvi->offset == fi_result)
6972 {
6973 struct constraint_expr includes;
6974 struct constraint_expr var;
6975 includes.var = escaped_id;
6976 includes.offset = 0;
6977 includes.type = SCALAR;
6978 var.var = rvi->id;
6979 var.offset = 0;
6980 var.type = SCALAR;
6981 process_constraint (new_constraint (includes, var));
6982 }
6983 }
6984 }
6985
6986 /* Build constriants for the function body. */
6987 FOR_EACH_BB_FN (bb, func)
6988 {
6989 gimple_stmt_iterator gsi;
6990
6991 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6992 gsi_next (&gsi))
6993 {
6994 gimple phi = gsi_stmt (gsi);
6995
6996 if (! virtual_operand_p (gimple_phi_result (phi)))
6997 find_func_aliases (phi);
6998 }
6999
7000 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7001 {
7002 gimple stmt = gsi_stmt (gsi);
7003
7004 find_func_aliases (stmt);
7005 find_func_clobbers (stmt);
7006 }
7007 }
7008
7009 current_function_decl = old_func_decl;
7010 pop_cfun ();
7011
7012 if (dump_file)
7013 {
7014 fprintf (dump_file, "\n");
7015 dump_constraints (dump_file, from);
7016 fprintf (dump_file, "\n");
7017 }
7018 from = VEC_length (constraint_t, constraints);
7019 }
7020
7021 /* From the constraints compute the points-to sets. */
7022 solve_constraints ();
7023
7024 /* Compute the global points-to sets for ESCAPED.
7025 ??? Note that the computed escape set is not correct
7026 for the whole unit as we fail to consider graph edges to
7027 externally visible functions. */
7028 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
7029
7030 /* Make sure the ESCAPED solution (which is used as placeholder in
7031 other solutions) does not reference itself. This simplifies
7032 points-to solution queries. */
7033 ipa_escaped_pt.ipa_escaped = 0;
7034
7035 /* Assign the points-to sets to the SSA names in the unit. */
7036 FOR_EACH_DEFINED_FUNCTION (node)
7037 {
7038 tree ptr;
7039 struct function *fn;
7040 unsigned i;
7041 varinfo_t fi;
7042 basic_block bb;
7043 struct pt_solution uses, clobbers;
7044 struct cgraph_edge *e;
7045
7046 /* Nodes without a body are not interesting. */
7047 if (!cgraph_function_with_gimple_body_p (node))
7048 continue;
7049
7050 fn = DECL_STRUCT_FUNCTION (node->symbol.decl);
7051
7052 /* Compute the points-to sets for pointer SSA_NAMEs. */
7053 FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
7054 {
7055 if (ptr
7056 && POINTER_TYPE_P (TREE_TYPE (ptr)))
7057 find_what_p_points_to (ptr);
7058 }
7059
7060 /* Compute the call-use and call-clobber sets for all direct calls. */
7061 fi = lookup_vi_for_tree (node->symbol.decl);
7062 gcc_assert (fi->is_fn_info);
7063 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
7064 &clobbers);
7065 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
7066 for (e = node->callers; e; e = e->next_caller)
7067 {
7068 if (!e->call_stmt)
7069 continue;
7070
7071 *gimple_call_clobber_set (e->call_stmt) = clobbers;
7072 *gimple_call_use_set (e->call_stmt) = uses;
7073 }
7074
7075 /* Compute the call-use and call-clobber sets for indirect calls
7076 and calls to external functions. */
7077 FOR_EACH_BB_FN (bb, fn)
7078 {
7079 gimple_stmt_iterator gsi;
7080
7081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7082 {
7083 gimple stmt = gsi_stmt (gsi);
7084 struct pt_solution *pt;
7085 varinfo_t vi;
7086 tree decl;
7087
7088 if (!is_gimple_call (stmt))
7089 continue;
7090
7091 /* Handle direct calls to external functions. */
7092 decl = gimple_call_fndecl (stmt);
7093 if (decl
7094 && (!(fi = lookup_vi_for_tree (decl))
7095 || !fi->is_fn_info))
7096 {
7097 pt = gimple_call_use_set (stmt);
7098 if (gimple_call_flags (stmt) & ECF_CONST)
7099 memset (pt, 0, sizeof (struct pt_solution));
7100 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7101 {
7102 find_what_var_points_to (vi, pt);
7103 /* Escaped (and thus nonlocal) variables are always
7104 implicitly used by calls. */
7105 /* ??? ESCAPED can be empty even though NONLOCAL
7106 always escaped. */
7107 pt->nonlocal = 1;
7108 pt->ipa_escaped = 1;
7109 }
7110 else
7111 {
7112 /* If there is nothing special about this call then
7113 we have made everything that is used also escape. */
7114 *pt = ipa_escaped_pt;
7115 pt->nonlocal = 1;
7116 }
7117
7118 pt = gimple_call_clobber_set (stmt);
7119 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7120 memset (pt, 0, sizeof (struct pt_solution));
7121 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7122 {
7123 find_what_var_points_to (vi, pt);
7124 /* Escaped (and thus nonlocal) variables are always
7125 implicitly clobbered by calls. */
7126 /* ??? ESCAPED can be empty even though NONLOCAL
7127 always escaped. */
7128 pt->nonlocal = 1;
7129 pt->ipa_escaped = 1;
7130 }
7131 else
7132 {
7133 /* If there is nothing special about this call then
7134 we have made everything that is used also escape. */
7135 *pt = ipa_escaped_pt;
7136 pt->nonlocal = 1;
7137 }
7138 }
7139
7140 /* Handle indirect calls. */
7141 if (!decl
7142 && (fi = get_fi_for_callee (stmt)))
7143 {
7144 /* We need to accumulate all clobbers/uses of all possible
7145 callees. */
7146 fi = get_varinfo (find (fi->id));
7147 /* If we cannot constrain the set of functions we'll end up
7148 calling we end up using/clobbering everything. */
7149 if (bitmap_bit_p (fi->solution, anything_id)
7150 || bitmap_bit_p (fi->solution, nonlocal_id)
7151 || bitmap_bit_p (fi->solution, escaped_id))
7152 {
7153 pt_solution_reset (gimple_call_clobber_set (stmt));
7154 pt_solution_reset (gimple_call_use_set (stmt));
7155 }
7156 else
7157 {
7158 bitmap_iterator bi;
7159 unsigned i;
7160 struct pt_solution *uses, *clobbers;
7161
7162 uses = gimple_call_use_set (stmt);
7163 clobbers = gimple_call_clobber_set (stmt);
7164 memset (uses, 0, sizeof (struct pt_solution));
7165 memset (clobbers, 0, sizeof (struct pt_solution));
7166 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7167 {
7168 struct pt_solution sol;
7169
7170 vi = get_varinfo (i);
7171 if (!vi->is_fn_info)
7172 {
7173 /* ??? We could be more precise here? */
7174 uses->nonlocal = 1;
7175 uses->ipa_escaped = 1;
7176 clobbers->nonlocal = 1;
7177 clobbers->ipa_escaped = 1;
7178 continue;
7179 }
7180
7181 if (!uses->anything)
7182 {
7183 find_what_var_points_to
7184 (first_vi_for_offset (vi, fi_uses), &sol);
7185 pt_solution_ior_into (uses, &sol);
7186 }
7187 if (!clobbers->anything)
7188 {
7189 find_what_var_points_to
7190 (first_vi_for_offset (vi, fi_clobbers), &sol);
7191 pt_solution_ior_into (clobbers, &sol);
7192 }
7193 }
7194 }
7195 }
7196 }
7197 }
7198
7199 fn->gimple_df->ipa_pta = true;
7200 }
7201
7202 delete_points_to_sets ();
7203
7204 in_ipa_mode = 0;
7205
7206 return 0;
7207 }
7208
7209 struct simple_ipa_opt_pass pass_ipa_pta =
7210 {
7211 {
7212 SIMPLE_IPA_PASS,
7213 "pta", /* name */
7214 gate_ipa_pta, /* gate */
7215 ipa_pta_execute, /* execute */
7216 NULL, /* sub */
7217 NULL, /* next */
7218 0, /* static_pass_number */
7219 TV_IPA_PTA, /* tv_id */
7220 0, /* properties_required */
7221 0, /* properties_provided */
7222 0, /* properties_destroyed */
7223 0, /* todo_flags_start */
7224 TODO_update_ssa /* todo_flags_finish */
7225 }
7226 };