]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-tail-merge.c
gimple-walk.h: New File.
[thirdparty/gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2013 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "basic-block.h"
195 #include "flags.h"
196 #include "function.h"
197 #include "gimple.h"
198 #include "gimple-iterator.h"
199 #include "gimple-ssa.h"
200 #include "tree-cfg.h"
201 #include "tree-phinodes.h"
202 #include "ssa-iterators.h"
203 #include "tree-into-ssa.h"
204 #include "tree-ssa-alias.h"
205 #include "params.h"
206 #include "hash-table.h"
207 #include "gimple-pretty-print.h"
208 #include "tree-ssa-sccvn.h"
209 #include "tree-dump.h"
210 #include "cfgloop.h"
211 #include "tree-pass.h"
212
213 /* Describes a group of bbs with the same successors. The successor bbs are
214 cached in succs, and the successor edge flags are cached in succ_flags.
215 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
216 it's marked in inverse.
217 Additionally, the hash value for the struct is cached in hashval, and
218 in_worklist indicates whether it's currently part of worklist. */
219
220 struct same_succ_def
221 {
222 /* The bbs that have the same successor bbs. */
223 bitmap bbs;
224 /* The successor bbs. */
225 bitmap succs;
226 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
227 bb. */
228 bitmap inverse;
229 /* The edge flags for each of the successor bbs. */
230 vec<int> succ_flags;
231 /* Indicates whether the struct is currently in the worklist. */
232 bool in_worklist;
233 /* The hash value of the struct. */
234 hashval_t hashval;
235
236 /* hash_table support. */
237 typedef same_succ_def value_type;
238 typedef same_succ_def compare_type;
239 static inline hashval_t hash (const value_type *);
240 static int equal (const value_type *, const compare_type *);
241 static void remove (value_type *);
242 };
243 typedef struct same_succ_def *same_succ;
244 typedef const struct same_succ_def *const_same_succ;
245
246 /* hash routine for hash_table support, returns hashval of E. */
247
248 inline hashval_t
249 same_succ_def::hash (const value_type *e)
250 {
251 return e->hashval;
252 }
253
254 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
255
256 struct bb_cluster_def
257 {
258 /* The bbs in the cluster. */
259 bitmap bbs;
260 /* The preds of the bbs in the cluster. */
261 bitmap preds;
262 /* Index in all_clusters vector. */
263 int index;
264 /* The bb to replace the cluster with. */
265 basic_block rep_bb;
266 };
267 typedef struct bb_cluster_def *bb_cluster;
268 typedef const struct bb_cluster_def *const_bb_cluster;
269
270 /* Per bb-info. */
271
272 struct aux_bb_info
273 {
274 /* The number of non-debug statements in the bb. */
275 int size;
276 /* The same_succ that this bb is a member of. */
277 same_succ bb_same_succ;
278 /* The cluster that this bb is a member of. */
279 bb_cluster cluster;
280 /* The vop state at the exit of a bb. This is shortlived data, used to
281 communicate data between update_block_by and update_vuses. */
282 tree vop_at_exit;
283 /* The bb that either contains or is dominated by the dependencies of the
284 bb. */
285 basic_block dep_bb;
286 };
287
288 /* Macros to access the fields of struct aux_bb_info. */
289
290 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
291 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
292 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
293 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
294 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
295
296 /* Returns true if the only effect a statement STMT has, is to define locally
297 used SSA_NAMEs. */
298
299 static bool
300 stmt_local_def (gimple stmt)
301 {
302 basic_block bb, def_bb;
303 imm_use_iterator iter;
304 use_operand_p use_p;
305 tree val;
306 def_operand_p def_p;
307
308 if (gimple_has_side_effects (stmt)
309 || gimple_vdef (stmt) != NULL_TREE)
310 return false;
311
312 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
313 if (def_p == NULL)
314 return false;
315
316 val = DEF_FROM_PTR (def_p);
317 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
318 return false;
319
320 def_bb = gimple_bb (stmt);
321
322 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
323 {
324 if (is_gimple_debug (USE_STMT (use_p)))
325 continue;
326 bb = gimple_bb (USE_STMT (use_p));
327 if (bb == def_bb)
328 continue;
329
330 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
331 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
332 continue;
333
334 return false;
335 }
336
337 return true;
338 }
339
340 /* Let GSI skip forwards over local defs. */
341
342 static void
343 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
344 {
345 gimple stmt;
346
347 while (true)
348 {
349 if (gsi_end_p (*gsi))
350 return;
351 stmt = gsi_stmt (*gsi);
352 if (!stmt_local_def (stmt))
353 return;
354 gsi_next_nondebug (gsi);
355 }
356 }
357
358 /* VAL1 and VAL2 are either:
359 - uses in BB1 and BB2, or
360 - phi alternatives for BB1 and BB2.
361 Return true if the uses have the same gvn value. */
362
363 static bool
364 gvn_uses_equal (tree val1, tree val2)
365 {
366 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
367
368 if (val1 == val2)
369 return true;
370
371 if (vn_valueize (val1) != vn_valueize (val2))
372 return false;
373
374 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
375 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
376 }
377
378 /* Prints E to FILE. */
379
380 static void
381 same_succ_print (FILE *file, const same_succ e)
382 {
383 unsigned int i;
384 bitmap_print (file, e->bbs, "bbs:", "\n");
385 bitmap_print (file, e->succs, "succs:", "\n");
386 bitmap_print (file, e->inverse, "inverse:", "\n");
387 fprintf (file, "flags:");
388 for (i = 0; i < e->succ_flags.length (); ++i)
389 fprintf (file, " %x", e->succ_flags[i]);
390 fprintf (file, "\n");
391 }
392
393 /* Prints same_succ VE to VFILE. */
394
395 inline int
396 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
397 {
398 const same_succ e = *pe;
399 same_succ_print (file, e);
400 return 1;
401 }
402
403 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
404
405 static void
406 update_dep_bb (basic_block use_bb, tree val)
407 {
408 basic_block dep_bb;
409
410 /* Not a dep. */
411 if (TREE_CODE (val) != SSA_NAME)
412 return;
413
414 /* Skip use of global def. */
415 if (SSA_NAME_IS_DEFAULT_DEF (val))
416 return;
417
418 /* Skip use of local def. */
419 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
420 if (dep_bb == use_bb)
421 return;
422
423 if (BB_DEP_BB (use_bb) == NULL
424 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
425 BB_DEP_BB (use_bb) = dep_bb;
426 }
427
428 /* Update BB_DEP_BB, given the dependencies in STMT. */
429
430 static void
431 stmt_update_dep_bb (gimple stmt)
432 {
433 ssa_op_iter iter;
434 use_operand_p use;
435
436 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
437 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
438 }
439
440 /* Calculates hash value for same_succ VE. */
441
442 static hashval_t
443 same_succ_hash (const_same_succ e)
444 {
445 hashval_t hashval = bitmap_hash (e->succs);
446 int flags;
447 unsigned int i;
448 unsigned int first = bitmap_first_set_bit (e->bbs);
449 basic_block bb = BASIC_BLOCK (first);
450 int size = 0;
451 gimple_stmt_iterator gsi;
452 gimple stmt;
453 tree arg;
454 unsigned int s;
455 bitmap_iterator bs;
456
457 for (gsi = gsi_start_nondebug_bb (bb);
458 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
459 {
460 stmt = gsi_stmt (gsi);
461 stmt_update_dep_bb (stmt);
462 if (stmt_local_def (stmt))
463 continue;
464 size++;
465
466 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
467 if (is_gimple_assign (stmt))
468 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
469 hashval);
470 if (!is_gimple_call (stmt))
471 continue;
472 if (gimple_call_internal_p (stmt))
473 hashval = iterative_hash_hashval_t
474 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
475 else
476 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
477 for (i = 0; i < gimple_call_num_args (stmt); i++)
478 {
479 arg = gimple_call_arg (stmt, i);
480 arg = vn_valueize (arg);
481 hashval = iterative_hash_expr (arg, hashval);
482 }
483 }
484
485 hashval = iterative_hash_hashval_t (size, hashval);
486 BB_SIZE (bb) = size;
487
488 for (i = 0; i < e->succ_flags.length (); ++i)
489 {
490 flags = e->succ_flags[i];
491 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
492 hashval = iterative_hash_hashval_t (flags, hashval);
493 }
494
495 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
496 {
497 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
498 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
499 gsi_next (&gsi))
500 {
501 gimple phi = gsi_stmt (gsi);
502 tree lhs = gimple_phi_result (phi);
503 tree val = gimple_phi_arg_def (phi, n);
504
505 if (virtual_operand_p (lhs))
506 continue;
507 update_dep_bb (bb, val);
508 }
509 }
510
511 return hashval;
512 }
513
514 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
515 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
516 the other edge flags. */
517
518 static bool
519 inverse_flags (const_same_succ e1, const_same_succ e2)
520 {
521 int f1a, f1b, f2a, f2b;
522 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
523
524 if (e1->succ_flags.length () != 2)
525 return false;
526
527 f1a = e1->succ_flags[0];
528 f1b = e1->succ_flags[1];
529 f2a = e2->succ_flags[0];
530 f2b = e2->succ_flags[1];
531
532 if (f1a == f2a && f1b == f2b)
533 return false;
534
535 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
536 }
537
538 /* Compares SAME_SUCCs E1 and E2. */
539
540 int
541 same_succ_def::equal (const value_type *e1, const compare_type *e2)
542 {
543 unsigned int i, first1, first2;
544 gimple_stmt_iterator gsi1, gsi2;
545 gimple s1, s2;
546 basic_block bb1, bb2;
547
548 if (e1->hashval != e2->hashval)
549 return 0;
550
551 if (e1->succ_flags.length () != e2->succ_flags.length ())
552 return 0;
553
554 if (!bitmap_equal_p (e1->succs, e2->succs))
555 return 0;
556
557 if (!inverse_flags (e1, e2))
558 {
559 for (i = 0; i < e1->succ_flags.length (); ++i)
560 if (e1->succ_flags[i] != e1->succ_flags[i])
561 return 0;
562 }
563
564 first1 = bitmap_first_set_bit (e1->bbs);
565 first2 = bitmap_first_set_bit (e2->bbs);
566
567 bb1 = BASIC_BLOCK (first1);
568 bb2 = BASIC_BLOCK (first2);
569
570 if (BB_SIZE (bb1) != BB_SIZE (bb2))
571 return 0;
572
573 gsi1 = gsi_start_nondebug_bb (bb1);
574 gsi2 = gsi_start_nondebug_bb (bb2);
575 gsi_advance_fw_nondebug_nonlocal (&gsi1);
576 gsi_advance_fw_nondebug_nonlocal (&gsi2);
577 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
578 {
579 s1 = gsi_stmt (gsi1);
580 s2 = gsi_stmt (gsi2);
581 if (gimple_code (s1) != gimple_code (s2))
582 return 0;
583 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
584 return 0;
585 gsi_next_nondebug (&gsi1);
586 gsi_next_nondebug (&gsi2);
587 gsi_advance_fw_nondebug_nonlocal (&gsi1);
588 gsi_advance_fw_nondebug_nonlocal (&gsi2);
589 }
590
591 return 1;
592 }
593
594 /* Alloc and init a new SAME_SUCC. */
595
596 static same_succ
597 same_succ_alloc (void)
598 {
599 same_succ same = XNEW (struct same_succ_def);
600
601 same->bbs = BITMAP_ALLOC (NULL);
602 same->succs = BITMAP_ALLOC (NULL);
603 same->inverse = BITMAP_ALLOC (NULL);
604 same->succ_flags.create (10);
605 same->in_worklist = false;
606
607 return same;
608 }
609
610 /* Delete same_succ E. */
611
612 void
613 same_succ_def::remove (same_succ e)
614 {
615 BITMAP_FREE (e->bbs);
616 BITMAP_FREE (e->succs);
617 BITMAP_FREE (e->inverse);
618 e->succ_flags.release ();
619
620 XDELETE (e);
621 }
622
623 /* Reset same_succ SAME. */
624
625 static void
626 same_succ_reset (same_succ same)
627 {
628 bitmap_clear (same->bbs);
629 bitmap_clear (same->succs);
630 bitmap_clear (same->inverse);
631 same->succ_flags.truncate (0);
632 }
633
634 static hash_table <same_succ_def> same_succ_htab;
635
636 /* Array that is used to store the edge flags for a successor. */
637
638 static int *same_succ_edge_flags;
639
640 /* Bitmap that is used to mark bbs that are recently deleted. */
641
642 static bitmap deleted_bbs;
643
644 /* Bitmap that is used to mark predecessors of bbs that are
645 deleted. */
646
647 static bitmap deleted_bb_preds;
648
649 /* Prints same_succ_htab to stderr. */
650
651 extern void debug_same_succ (void);
652 DEBUG_FUNCTION void
653 debug_same_succ ( void)
654 {
655 same_succ_htab.traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
656 }
657
658
659 /* Vector of bbs to process. */
660
661 static vec<same_succ> worklist;
662
663 /* Prints worklist to FILE. */
664
665 static void
666 print_worklist (FILE *file)
667 {
668 unsigned int i;
669 for (i = 0; i < worklist.length (); ++i)
670 same_succ_print (file, worklist[i]);
671 }
672
673 /* Adds SAME to worklist. */
674
675 static void
676 add_to_worklist (same_succ same)
677 {
678 if (same->in_worklist)
679 return;
680
681 if (bitmap_count_bits (same->bbs) < 2)
682 return;
683
684 same->in_worklist = true;
685 worklist.safe_push (same);
686 }
687
688 /* Add BB to same_succ_htab. */
689
690 static void
691 find_same_succ_bb (basic_block bb, same_succ *same_p)
692 {
693 unsigned int j;
694 bitmap_iterator bj;
695 same_succ same = *same_p;
696 same_succ *slot;
697 edge_iterator ei;
698 edge e;
699
700 if (bb == NULL
701 /* Be conservative with loop structure. It's not evident that this test
702 is sufficient. Before tail-merge, we've just called
703 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
704 set, so there's no guarantee that the loop->latch value is still valid.
705 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
706 start of pre, we've kept that property intact throughout pre, and are
707 keeping it throughout tail-merge using this test. */
708 || bb->loop_father->latch == bb)
709 return;
710 bitmap_set_bit (same->bbs, bb->index);
711 FOR_EACH_EDGE (e, ei, bb->succs)
712 {
713 int index = e->dest->index;
714 bitmap_set_bit (same->succs, index);
715 same_succ_edge_flags[index] = e->flags;
716 }
717 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
718 same->succ_flags.safe_push (same_succ_edge_flags[j]);
719
720 same->hashval = same_succ_hash (same);
721
722 slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
723 if (*slot == NULL)
724 {
725 *slot = same;
726 BB_SAME_SUCC (bb) = same;
727 add_to_worklist (same);
728 *same_p = NULL;
729 }
730 else
731 {
732 bitmap_set_bit ((*slot)->bbs, bb->index);
733 BB_SAME_SUCC (bb) = *slot;
734 add_to_worklist (*slot);
735 if (inverse_flags (same, *slot))
736 bitmap_set_bit ((*slot)->inverse, bb->index);
737 same_succ_reset (same);
738 }
739 }
740
741 /* Find bbs with same successors. */
742
743 static void
744 find_same_succ (void)
745 {
746 same_succ same = same_succ_alloc ();
747 basic_block bb;
748
749 FOR_EACH_BB (bb)
750 {
751 find_same_succ_bb (bb, &same);
752 if (same == NULL)
753 same = same_succ_alloc ();
754 }
755
756 same_succ_def::remove (same);
757 }
758
759 /* Initializes worklist administration. */
760
761 static void
762 init_worklist (void)
763 {
764 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
765 same_succ_htab.create (n_basic_blocks);
766 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
767 deleted_bbs = BITMAP_ALLOC (NULL);
768 deleted_bb_preds = BITMAP_ALLOC (NULL);
769 worklist.create (n_basic_blocks);
770 find_same_succ ();
771
772 if (dump_file && (dump_flags & TDF_DETAILS))
773 {
774 fprintf (dump_file, "initial worklist:\n");
775 print_worklist (dump_file);
776 }
777 }
778
779 /* Deletes worklist administration. */
780
781 static void
782 delete_worklist (void)
783 {
784 free_aux_for_blocks ();
785 same_succ_htab.dispose ();
786 XDELETEVEC (same_succ_edge_flags);
787 same_succ_edge_flags = NULL;
788 BITMAP_FREE (deleted_bbs);
789 BITMAP_FREE (deleted_bb_preds);
790 worklist.release ();
791 }
792
793 /* Mark BB as deleted, and mark its predecessors. */
794
795 static void
796 mark_basic_block_deleted (basic_block bb)
797 {
798 edge e;
799 edge_iterator ei;
800
801 bitmap_set_bit (deleted_bbs, bb->index);
802
803 FOR_EACH_EDGE (e, ei, bb->preds)
804 bitmap_set_bit (deleted_bb_preds, e->src->index);
805 }
806
807 /* Removes BB from its corresponding same_succ. */
808
809 static void
810 same_succ_flush_bb (basic_block bb)
811 {
812 same_succ same = BB_SAME_SUCC (bb);
813 BB_SAME_SUCC (bb) = NULL;
814 if (bitmap_single_bit_set_p (same->bbs))
815 same_succ_htab.remove_elt_with_hash (same, same->hashval);
816 else
817 bitmap_clear_bit (same->bbs, bb->index);
818 }
819
820 /* Removes all bbs in BBS from their corresponding same_succ. */
821
822 static void
823 same_succ_flush_bbs (bitmap bbs)
824 {
825 unsigned int i;
826 bitmap_iterator bi;
827
828 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
829 same_succ_flush_bb (BASIC_BLOCK (i));
830 }
831
832 /* Release the last vdef in BB, either normal or phi result. */
833
834 static void
835 release_last_vdef (basic_block bb)
836 {
837 gimple_stmt_iterator i;
838
839 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
840 {
841 gimple stmt = gsi_stmt (i);
842 if (gimple_vdef (stmt) == NULL_TREE)
843 continue;
844
845 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
846 return;
847 }
848
849 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
850 {
851 gimple phi = gsi_stmt (i);
852 tree res = gimple_phi_result (phi);
853
854 if (!virtual_operand_p (res))
855 continue;
856
857 mark_virtual_phi_result_for_renaming (phi);
858 return;
859 }
860
861 }
862
863 /* For deleted_bb_preds, find bbs with same successors. */
864
865 static void
866 update_worklist (void)
867 {
868 unsigned int i;
869 bitmap_iterator bi;
870 basic_block bb;
871 same_succ same;
872
873 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
874 bitmap_clear (deleted_bbs);
875
876 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
877 same_succ_flush_bbs (deleted_bb_preds);
878
879 same = same_succ_alloc ();
880 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
881 {
882 bb = BASIC_BLOCK (i);
883 gcc_assert (bb != NULL);
884 find_same_succ_bb (bb, &same);
885 if (same == NULL)
886 same = same_succ_alloc ();
887 }
888 same_succ_def::remove (same);
889 bitmap_clear (deleted_bb_preds);
890 }
891
892 /* Prints cluster C to FILE. */
893
894 static void
895 print_cluster (FILE *file, bb_cluster c)
896 {
897 if (c == NULL)
898 return;
899 bitmap_print (file, c->bbs, "bbs:", "\n");
900 bitmap_print (file, c->preds, "preds:", "\n");
901 }
902
903 /* Prints cluster C to stderr. */
904
905 extern void debug_cluster (bb_cluster);
906 DEBUG_FUNCTION void
907 debug_cluster (bb_cluster c)
908 {
909 print_cluster (stderr, c);
910 }
911
912 /* Update C->rep_bb, given that BB is added to the cluster. */
913
914 static void
915 update_rep_bb (bb_cluster c, basic_block bb)
916 {
917 /* Initial. */
918 if (c->rep_bb == NULL)
919 {
920 c->rep_bb = bb;
921 return;
922 }
923
924 /* Current needs no deps, keep it. */
925 if (BB_DEP_BB (c->rep_bb) == NULL)
926 return;
927
928 /* Bb needs no deps, change rep_bb. */
929 if (BB_DEP_BB (bb) == NULL)
930 {
931 c->rep_bb = bb;
932 return;
933 }
934
935 /* Bb needs last deps earlier than current, change rep_bb. A potential
936 problem with this, is that the first deps might also be earlier, which
937 would mean we prefer longer lifetimes for the deps. To be able to check
938 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
939 BB_DEP_BB, which is really BB_LAST_DEP_BB.
940 The benefit of choosing the bb with last deps earlier, is that it can
941 potentially be used as replacement for more bbs. */
942 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
943 c->rep_bb = bb;
944 }
945
946 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
947
948 static void
949 add_bb_to_cluster (bb_cluster c, basic_block bb)
950 {
951 edge e;
952 edge_iterator ei;
953
954 bitmap_set_bit (c->bbs, bb->index);
955
956 FOR_EACH_EDGE (e, ei, bb->preds)
957 bitmap_set_bit (c->preds, e->src->index);
958
959 update_rep_bb (c, bb);
960 }
961
962 /* Allocate and init new cluster. */
963
964 static bb_cluster
965 new_cluster (void)
966 {
967 bb_cluster c;
968 c = XCNEW (struct bb_cluster_def);
969 c->bbs = BITMAP_ALLOC (NULL);
970 c->preds = BITMAP_ALLOC (NULL);
971 c->rep_bb = NULL;
972 return c;
973 }
974
975 /* Delete clusters. */
976
977 static void
978 delete_cluster (bb_cluster c)
979 {
980 if (c == NULL)
981 return;
982 BITMAP_FREE (c->bbs);
983 BITMAP_FREE (c->preds);
984 XDELETE (c);
985 }
986
987
988 /* Array that contains all clusters. */
989
990 static vec<bb_cluster> all_clusters;
991
992 /* Allocate all cluster vectors. */
993
994 static void
995 alloc_cluster_vectors (void)
996 {
997 all_clusters.create (n_basic_blocks);
998 }
999
1000 /* Reset all cluster vectors. */
1001
1002 static void
1003 reset_cluster_vectors (void)
1004 {
1005 unsigned int i;
1006 basic_block bb;
1007 for (i = 0; i < all_clusters.length (); ++i)
1008 delete_cluster (all_clusters[i]);
1009 all_clusters.truncate (0);
1010 FOR_EACH_BB (bb)
1011 BB_CLUSTER (bb) = NULL;
1012 }
1013
1014 /* Delete all cluster vectors. */
1015
1016 static void
1017 delete_cluster_vectors (void)
1018 {
1019 unsigned int i;
1020 for (i = 0; i < all_clusters.length (); ++i)
1021 delete_cluster (all_clusters[i]);
1022 all_clusters.release ();
1023 }
1024
1025 /* Merge cluster C2 into C1. */
1026
1027 static void
1028 merge_clusters (bb_cluster c1, bb_cluster c2)
1029 {
1030 bitmap_ior_into (c1->bbs, c2->bbs);
1031 bitmap_ior_into (c1->preds, c2->preds);
1032 }
1033
1034 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1035 all_clusters, or merge c with existing cluster. */
1036
1037 static void
1038 set_cluster (basic_block bb1, basic_block bb2)
1039 {
1040 basic_block merge_bb, other_bb;
1041 bb_cluster merge, old, c;
1042
1043 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1044 {
1045 c = new_cluster ();
1046 add_bb_to_cluster (c, bb1);
1047 add_bb_to_cluster (c, bb2);
1048 BB_CLUSTER (bb1) = c;
1049 BB_CLUSTER (bb2) = c;
1050 c->index = all_clusters.length ();
1051 all_clusters.safe_push (c);
1052 }
1053 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1054 {
1055 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1056 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1057 merge = BB_CLUSTER (merge_bb);
1058 add_bb_to_cluster (merge, other_bb);
1059 BB_CLUSTER (other_bb) = merge;
1060 }
1061 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1062 {
1063 unsigned int i;
1064 bitmap_iterator bi;
1065
1066 old = BB_CLUSTER (bb2);
1067 merge = BB_CLUSTER (bb1);
1068 merge_clusters (merge, old);
1069 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1070 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1071 all_clusters[old->index] = NULL;
1072 update_rep_bb (merge, old->rep_bb);
1073 delete_cluster (old);
1074 }
1075 else
1076 gcc_unreachable ();
1077 }
1078
1079 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1080 gimple_bb (s2) are members of SAME_SUCC. */
1081
1082 static bool
1083 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1084 {
1085 unsigned int i;
1086 tree lhs1, lhs2;
1087 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1088 tree t1, t2;
1089 bool equal, inv_cond;
1090 enum tree_code code1, code2;
1091
1092 if (gimple_code (s1) != gimple_code (s2))
1093 return false;
1094
1095 switch (gimple_code (s1))
1096 {
1097 case GIMPLE_CALL:
1098 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1099 return false;
1100 if (!gimple_call_same_target_p (s1, s2))
1101 return false;
1102
1103 /* Eventually, we'll significantly complicate the CFG by adding
1104 back edges to properly model the effects of transaction restart.
1105 For the bulk of optimization this does not matter, but what we
1106 cannot recover from is tail merging blocks between two separate
1107 transactions. Avoid that by making commit not match. */
1108 if (gimple_call_builtin_p (s1, BUILT_IN_TM_COMMIT))
1109 return false;
1110
1111 equal = true;
1112 for (i = 0; i < gimple_call_num_args (s1); ++i)
1113 {
1114 t1 = gimple_call_arg (s1, i);
1115 t2 = gimple_call_arg (s2, i);
1116 if (operand_equal_p (t1, t2, 0))
1117 continue;
1118 if (gvn_uses_equal (t1, t2))
1119 continue;
1120 equal = false;
1121 break;
1122 }
1123 if (!equal)
1124 return false;
1125
1126 lhs1 = gimple_get_lhs (s1);
1127 lhs2 = gimple_get_lhs (s2);
1128 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1129 return true;
1130 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1131 return false;
1132 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1133 return vn_valueize (lhs1) == vn_valueize (lhs2);
1134 return operand_equal_p (lhs1, lhs2, 0);
1135
1136 case GIMPLE_ASSIGN:
1137 lhs1 = gimple_get_lhs (s1);
1138 lhs2 = gimple_get_lhs (s2);
1139 if (TREE_CODE (lhs1) != SSA_NAME
1140 && TREE_CODE (lhs2) != SSA_NAME)
1141 return (vn_valueize (gimple_vdef (s1))
1142 == vn_valueize (gimple_vdef (s2)));
1143 else if (TREE_CODE (lhs1) == SSA_NAME
1144 && TREE_CODE (lhs2) == SSA_NAME)
1145 return vn_valueize (lhs1) == vn_valueize (lhs2);
1146 return false;
1147
1148 case GIMPLE_COND:
1149 t1 = gimple_cond_lhs (s1);
1150 t2 = gimple_cond_lhs (s2);
1151 if (!operand_equal_p (t1, t2, 0)
1152 && !gvn_uses_equal (t1, t2))
1153 return false;
1154
1155 t1 = gimple_cond_rhs (s1);
1156 t2 = gimple_cond_rhs (s2);
1157 if (!operand_equal_p (t1, t2, 0)
1158 && !gvn_uses_equal (t1, t2))
1159 return false;
1160
1161 code1 = gimple_expr_code (s1);
1162 code2 = gimple_expr_code (s2);
1163 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1164 != bitmap_bit_p (same_succ->inverse, bb2->index));
1165 if (inv_cond)
1166 {
1167 bool honor_nans
1168 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1169 code2 = invert_tree_comparison (code2, honor_nans);
1170 }
1171 return code1 == code2;
1172
1173 default:
1174 return false;
1175 }
1176 }
1177
1178 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1179 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1180 processed statements. */
1181
1182 static void
1183 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1184 bool *vuse_escaped)
1185 {
1186 gimple stmt;
1187 tree lvuse;
1188
1189 while (true)
1190 {
1191 if (gsi_end_p (*gsi))
1192 return;
1193 stmt = gsi_stmt (*gsi);
1194
1195 lvuse = gimple_vuse (stmt);
1196 if (lvuse != NULL_TREE)
1197 {
1198 *vuse = lvuse;
1199 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1200 *vuse_escaped = true;
1201 }
1202
1203 if (!stmt_local_def (stmt))
1204 return;
1205 gsi_prev_nondebug (gsi);
1206 }
1207 }
1208
1209 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1210 clusters them. */
1211
1212 static void
1213 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1214 {
1215 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1216 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1217 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1218 bool vuse_escaped = false;
1219
1220 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1221 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1222
1223 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1224 {
1225 gimple stmt1 = gsi_stmt (gsi1);
1226 gimple stmt2 = gsi_stmt (gsi2);
1227
1228 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1229 return;
1230
1231 // We cannot tail-merge the builtins that end transactions.
1232 // ??? The alternative being unsharing of BBs in the tm_init pass.
1233 if (flag_tm
1234 && is_gimple_call (stmt1)
1235 && (gimple_call_flags (stmt1) & ECF_TM_BUILTIN)
1236 && is_tm_ending_fndecl (gimple_call_fndecl (stmt1)))
1237 return;
1238
1239 gsi_prev_nondebug (&gsi1);
1240 gsi_prev_nondebug (&gsi2);
1241 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1242 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1243 }
1244
1245 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1246 return;
1247
1248 /* If the incoming vuses are not the same, and the vuse escaped into an
1249 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1250 which potentially means the semantics of one of the blocks will be changed.
1251 TODO: make this check more precise. */
1252 if (vuse_escaped && vuse1 != vuse2)
1253 return;
1254
1255 if (dump_file)
1256 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1257 bb1->index, bb2->index);
1258
1259 set_cluster (bb1, bb2);
1260 }
1261
1262 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1263 E2 are equal. */
1264
1265 static bool
1266 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1267 {
1268 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1269 gimple_stmt_iterator gsi;
1270
1271 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1272 {
1273 gimple phi = gsi_stmt (gsi);
1274 tree lhs = gimple_phi_result (phi);
1275 tree val1 = gimple_phi_arg_def (phi, n1);
1276 tree val2 = gimple_phi_arg_def (phi, n2);
1277
1278 if (virtual_operand_p (lhs))
1279 continue;
1280
1281 if (operand_equal_for_phi_arg_p (val1, val2))
1282 continue;
1283 if (gvn_uses_equal (val1, val2))
1284 continue;
1285
1286 return false;
1287 }
1288
1289 return true;
1290 }
1291
1292 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1293 phi alternatives for BB1 and BB2 are equal. */
1294
1295 static bool
1296 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1297 {
1298 unsigned int s;
1299 bitmap_iterator bs;
1300 edge e1, e2;
1301 basic_block succ;
1302
1303 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1304 {
1305 succ = BASIC_BLOCK (s);
1306 e1 = find_edge (bb1, succ);
1307 e2 = find_edge (bb2, succ);
1308 if (e1->flags & EDGE_COMPLEX
1309 || e2->flags & EDGE_COMPLEX)
1310 return false;
1311
1312 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1313 the same value. */
1314 if (!same_phi_alternatives_1 (succ, e1, e2))
1315 return false;
1316 }
1317
1318 return true;
1319 }
1320
1321 /* Return true if BB has non-vop phis. */
1322
1323 static bool
1324 bb_has_non_vop_phi (basic_block bb)
1325 {
1326 gimple_seq phis = phi_nodes (bb);
1327 gimple phi;
1328
1329 if (phis == NULL)
1330 return false;
1331
1332 if (!gimple_seq_singleton_p (phis))
1333 return true;
1334
1335 phi = gimple_seq_first_stmt (phis);
1336 return !virtual_operand_p (gimple_phi_result (phi));
1337 }
1338
1339 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1340 invariant that uses in FROM are dominates by their defs. */
1341
1342 static bool
1343 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1344 {
1345 basic_block cd, dep_bb = BB_DEP_BB (to);
1346 edge_iterator ei;
1347 edge e;
1348 bitmap from_preds = BITMAP_ALLOC (NULL);
1349
1350 if (dep_bb == NULL)
1351 return true;
1352
1353 FOR_EACH_EDGE (e, ei, from->preds)
1354 bitmap_set_bit (from_preds, e->src->index);
1355 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1356 BITMAP_FREE (from_preds);
1357
1358 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1359 }
1360
1361 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1362 replacement bb) and vice versa maintains the invariant that uses in the
1363 replacement are dominates by their defs. */
1364
1365 static bool
1366 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1367 {
1368 if (BB_CLUSTER (bb1) != NULL)
1369 bb1 = BB_CLUSTER (bb1)->rep_bb;
1370
1371 if (BB_CLUSTER (bb2) != NULL)
1372 bb2 = BB_CLUSTER (bb2)->rep_bb;
1373
1374 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1375 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1376 }
1377
1378 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1379
1380 static void
1381 find_clusters_1 (same_succ same_succ)
1382 {
1383 basic_block bb1, bb2;
1384 unsigned int i, j;
1385 bitmap_iterator bi, bj;
1386 int nr_comparisons;
1387 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1388
1389 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1390 {
1391 bb1 = BASIC_BLOCK (i);
1392
1393 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1394 phi-nodes in bb1 and bb2, with the same alternatives for the same
1395 preds. */
1396 if (bb_has_non_vop_phi (bb1))
1397 continue;
1398
1399 nr_comparisons = 0;
1400 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1401 {
1402 bb2 = BASIC_BLOCK (j);
1403
1404 if (bb_has_non_vop_phi (bb2))
1405 continue;
1406
1407 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1408 continue;
1409
1410 /* Limit quadratic behaviour. */
1411 nr_comparisons++;
1412 if (nr_comparisons > max_comparisons)
1413 break;
1414
1415 /* This is a conservative dependency check. We could test more
1416 precise for allowed replacement direction. */
1417 if (!deps_ok_for_redirect (bb1, bb2))
1418 continue;
1419
1420 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1421 continue;
1422
1423 find_duplicate (same_succ, bb1, bb2);
1424 }
1425 }
1426 }
1427
1428 /* Find clusters of bbs which can be merged. */
1429
1430 static void
1431 find_clusters (void)
1432 {
1433 same_succ same;
1434
1435 while (!worklist.is_empty ())
1436 {
1437 same = worklist.pop ();
1438 same->in_worklist = false;
1439 if (dump_file && (dump_flags & TDF_DETAILS))
1440 {
1441 fprintf (dump_file, "processing worklist entry\n");
1442 same_succ_print (dump_file, same);
1443 }
1444 find_clusters_1 (same);
1445 }
1446 }
1447
1448 /* Returns the vop phi of BB, if any. */
1449
1450 static gimple
1451 vop_phi (basic_block bb)
1452 {
1453 gimple stmt;
1454 gimple_stmt_iterator gsi;
1455 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1456 {
1457 stmt = gsi_stmt (gsi);
1458 if (! virtual_operand_p (gimple_phi_result (stmt)))
1459 continue;
1460 return stmt;
1461 }
1462 return NULL;
1463 }
1464
1465 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1466
1467 static void
1468 replace_block_by (basic_block bb1, basic_block bb2)
1469 {
1470 edge pred_edge;
1471 edge e1, e2;
1472 edge_iterator ei;
1473 unsigned int i;
1474 gimple bb2_phi;
1475
1476 bb2_phi = vop_phi (bb2);
1477
1478 /* Mark the basic block as deleted. */
1479 mark_basic_block_deleted (bb1);
1480
1481 /* Redirect the incoming edges of bb1 to bb2. */
1482 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1483 {
1484 pred_edge = EDGE_PRED (bb1, i - 1);
1485 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1486 gcc_assert (pred_edge != NULL);
1487
1488 if (bb2_phi == NULL)
1489 continue;
1490
1491 /* The phi might have run out of capacity when the redirect added an
1492 argument, which means it could have been replaced. Refresh it. */
1493 bb2_phi = vop_phi (bb2);
1494
1495 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1496 pred_edge, UNKNOWN_LOCATION);
1497 }
1498
1499 bb2->frequency += bb1->frequency;
1500 if (bb2->frequency > BB_FREQ_MAX)
1501 bb2->frequency = BB_FREQ_MAX;
1502
1503 bb2->count += bb1->count;
1504
1505 /* Merge the outgoing edge counts from bb1 onto bb2. */
1506 gcov_type out_sum = 0;
1507 FOR_EACH_EDGE (e1, ei, bb1->succs)
1508 {
1509 e2 = find_edge (bb2, e1->dest);
1510 gcc_assert (e2);
1511 e2->count += e1->count;
1512 out_sum += e2->count;
1513 }
1514 /* Recompute the edge probabilities from the new merged edge count.
1515 Use the sum of the new merged edge counts computed above instead
1516 of bb2's merged count, in case there are profile count insanities
1517 making the bb count inconsistent with the edge weights. */
1518 FOR_EACH_EDGE (e2, ei, bb2->succs)
1519 {
1520 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1521 }
1522
1523 /* Do updates that use bb1, before deleting bb1. */
1524 release_last_vdef (bb1);
1525 same_succ_flush_bb (bb1);
1526
1527 delete_basic_block (bb1);
1528 }
1529
1530 /* Bbs for which update_debug_stmt need to be called. */
1531
1532 static bitmap update_bbs;
1533
1534 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1535 number of bbs removed. */
1536
1537 static int
1538 apply_clusters (void)
1539 {
1540 basic_block bb1, bb2;
1541 bb_cluster c;
1542 unsigned int i, j;
1543 bitmap_iterator bj;
1544 int nr_bbs_removed = 0;
1545
1546 for (i = 0; i < all_clusters.length (); ++i)
1547 {
1548 c = all_clusters[i];
1549 if (c == NULL)
1550 continue;
1551
1552 bb2 = c->rep_bb;
1553 bitmap_set_bit (update_bbs, bb2->index);
1554
1555 bitmap_clear_bit (c->bbs, bb2->index);
1556 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1557 {
1558 bb1 = BASIC_BLOCK (j);
1559 bitmap_clear_bit (update_bbs, bb1->index);
1560
1561 replace_block_by (bb1, bb2);
1562 nr_bbs_removed++;
1563 }
1564 }
1565
1566 return nr_bbs_removed;
1567 }
1568
1569 /* Resets debug statement STMT if it has uses that are not dominated by their
1570 defs. */
1571
1572 static void
1573 update_debug_stmt (gimple stmt)
1574 {
1575 use_operand_p use_p;
1576 ssa_op_iter oi;
1577 basic_block bbdef, bbuse;
1578 gimple def_stmt;
1579 tree name;
1580
1581 if (!gimple_debug_bind_p (stmt))
1582 return;
1583
1584 bbuse = gimple_bb (stmt);
1585 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1586 {
1587 name = USE_FROM_PTR (use_p);
1588 gcc_assert (TREE_CODE (name) == SSA_NAME);
1589
1590 def_stmt = SSA_NAME_DEF_STMT (name);
1591 gcc_assert (def_stmt != NULL);
1592
1593 bbdef = gimple_bb (def_stmt);
1594 if (bbdef == NULL || bbuse == bbdef
1595 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1596 continue;
1597
1598 gimple_debug_bind_reset_value (stmt);
1599 update_stmt (stmt);
1600 }
1601 }
1602
1603 /* Resets all debug statements that have uses that are not
1604 dominated by their defs. */
1605
1606 static void
1607 update_debug_stmts (void)
1608 {
1609 basic_block bb;
1610 bitmap_iterator bi;
1611 unsigned int i;
1612
1613 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1614 {
1615 gimple stmt;
1616 gimple_stmt_iterator gsi;
1617
1618 bb = BASIC_BLOCK (i);
1619 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1620 {
1621 stmt = gsi_stmt (gsi);
1622 if (!is_gimple_debug (stmt))
1623 continue;
1624 update_debug_stmt (stmt);
1625 }
1626 }
1627 }
1628
1629 /* Runs tail merge optimization. */
1630
1631 unsigned int
1632 tail_merge_optimize (unsigned int todo)
1633 {
1634 int nr_bbs_removed_total = 0;
1635 int nr_bbs_removed;
1636 bool loop_entered = false;
1637 int iteration_nr = 0;
1638 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1639
1640 if (!flag_tree_tail_merge
1641 || max_iterations == 0
1642 /* We try to be conservative with respect to loop structure, since:
1643 - the cases where tail-merging could both affect loop structure and be
1644 beneficial are rare,
1645 - it prevents us from having to fixup the loops using
1646 loops_state_set (LOOPS_NEED_FIXUP), and
1647 - keeping loop structure may allow us to simplify the pass.
1648 In order to be conservative, we need loop information. In rare cases
1649 (about 7 test-cases in the g++ testsuite) there is none (because
1650 loop_optimizer_finalize has been called before tail-merge, and
1651 PROP_loops is not set), so we bail out. */
1652 || current_loops == NULL)
1653 return 0;
1654
1655 timevar_push (TV_TREE_TAIL_MERGE);
1656
1657 if (!dom_info_available_p (CDI_DOMINATORS))
1658 {
1659 /* PRE can leave us with unreachable blocks, remove them now. */
1660 delete_unreachable_blocks ();
1661 calculate_dominance_info (CDI_DOMINATORS);
1662 }
1663 init_worklist ();
1664
1665 while (!worklist.is_empty ())
1666 {
1667 if (!loop_entered)
1668 {
1669 loop_entered = true;
1670 alloc_cluster_vectors ();
1671 update_bbs = BITMAP_ALLOC (NULL);
1672 }
1673 else
1674 reset_cluster_vectors ();
1675
1676 iteration_nr++;
1677 if (dump_file && (dump_flags & TDF_DETAILS))
1678 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1679
1680 find_clusters ();
1681 gcc_assert (worklist.is_empty ());
1682 if (all_clusters.is_empty ())
1683 break;
1684
1685 nr_bbs_removed = apply_clusters ();
1686 nr_bbs_removed_total += nr_bbs_removed;
1687 if (nr_bbs_removed == 0)
1688 break;
1689
1690 free_dominance_info (CDI_DOMINATORS);
1691
1692 if (iteration_nr == max_iterations)
1693 break;
1694
1695 calculate_dominance_info (CDI_DOMINATORS);
1696 update_worklist ();
1697 }
1698
1699 if (dump_file && (dump_flags & TDF_DETAILS))
1700 fprintf (dump_file, "htab collision / search: %f\n",
1701 same_succ_htab.collisions ());
1702
1703 if (nr_bbs_removed_total > 0)
1704 {
1705 if (MAY_HAVE_DEBUG_STMTS)
1706 {
1707 calculate_dominance_info (CDI_DOMINATORS);
1708 update_debug_stmts ();
1709 }
1710
1711 if (dump_file && (dump_flags & TDF_DETAILS))
1712 {
1713 fprintf (dump_file, "Before TODOs.\n");
1714 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1715 }
1716
1717 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow);
1718 mark_virtual_operands_for_renaming (cfun);
1719 }
1720
1721 delete_worklist ();
1722 if (loop_entered)
1723 {
1724 delete_cluster_vectors ();
1725 BITMAP_FREE (update_bbs);
1726 }
1727
1728 timevar_pop (TV_TREE_TAIL_MERGE);
1729
1730 return todo;
1731 }