]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-tail-merge.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2013 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "stor-layout.h"
194 #include "trans-mem.h"
195 #include "tm_p.h"
196 #include "basic-block.h"
197 #include "flags.h"
198 #include "function.h"
199 #include "gimple.h"
200 #include "gimple-iterator.h"
201 #include "gimple-ssa.h"
202 #include "tree-cfg.h"
203 #include "tree-phinodes.h"
204 #include "ssa-iterators.h"
205 #include "tree-into-ssa.h"
206 #include "tree-ssa-alias.h"
207 #include "params.h"
208 #include "hash-table.h"
209 #include "gimple-pretty-print.h"
210 #include "tree-ssa-sccvn.h"
211 #include "tree-dump.h"
212 #include "cfgloop.h"
213 #include "tree-pass.h"
214 #include "trans-mem.h"
215
216 /* Describes a group of bbs with the same successors. The successor bbs are
217 cached in succs, and the successor edge flags are cached in succ_flags.
218 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
219 it's marked in inverse.
220 Additionally, the hash value for the struct is cached in hashval, and
221 in_worklist indicates whether it's currently part of worklist. */
222
223 struct same_succ_def
224 {
225 /* The bbs that have the same successor bbs. */
226 bitmap bbs;
227 /* The successor bbs. */
228 bitmap succs;
229 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
230 bb. */
231 bitmap inverse;
232 /* The edge flags for each of the successor bbs. */
233 vec<int> succ_flags;
234 /* Indicates whether the struct is currently in the worklist. */
235 bool in_worklist;
236 /* The hash value of the struct. */
237 hashval_t hashval;
238
239 /* hash_table support. */
240 typedef same_succ_def value_type;
241 typedef same_succ_def compare_type;
242 static inline hashval_t hash (const value_type *);
243 static int equal (const value_type *, const compare_type *);
244 static void remove (value_type *);
245 };
246 typedef struct same_succ_def *same_succ;
247 typedef const struct same_succ_def *const_same_succ;
248
249 /* hash routine for hash_table support, returns hashval of E. */
250
251 inline hashval_t
252 same_succ_def::hash (const value_type *e)
253 {
254 return e->hashval;
255 }
256
257 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
258
259 struct bb_cluster_def
260 {
261 /* The bbs in the cluster. */
262 bitmap bbs;
263 /* The preds of the bbs in the cluster. */
264 bitmap preds;
265 /* Index in all_clusters vector. */
266 int index;
267 /* The bb to replace the cluster with. */
268 basic_block rep_bb;
269 };
270 typedef struct bb_cluster_def *bb_cluster;
271 typedef const struct bb_cluster_def *const_bb_cluster;
272
273 /* Per bb-info. */
274
275 struct aux_bb_info
276 {
277 /* The number of non-debug statements in the bb. */
278 int size;
279 /* The same_succ that this bb is a member of. */
280 same_succ bb_same_succ;
281 /* The cluster that this bb is a member of. */
282 bb_cluster cluster;
283 /* The vop state at the exit of a bb. This is shortlived data, used to
284 communicate data between update_block_by and update_vuses. */
285 tree vop_at_exit;
286 /* The bb that either contains or is dominated by the dependencies of the
287 bb. */
288 basic_block dep_bb;
289 };
290
291 /* Macros to access the fields of struct aux_bb_info. */
292
293 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
294 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
295 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
296 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
297 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
298
299 /* Returns true if the only effect a statement STMT has, is to define locally
300 used SSA_NAMEs. */
301
302 static bool
303 stmt_local_def (gimple stmt)
304 {
305 basic_block bb, def_bb;
306 imm_use_iterator iter;
307 use_operand_p use_p;
308 tree val;
309 def_operand_p def_p;
310
311 if (gimple_has_side_effects (stmt)
312 || gimple_vdef (stmt) != NULL_TREE)
313 return false;
314
315 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
316 if (def_p == NULL)
317 return false;
318
319 val = DEF_FROM_PTR (def_p);
320 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
321 return false;
322
323 def_bb = gimple_bb (stmt);
324
325 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
326 {
327 if (is_gimple_debug (USE_STMT (use_p)))
328 continue;
329 bb = gimple_bb (USE_STMT (use_p));
330 if (bb == def_bb)
331 continue;
332
333 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
334 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
335 continue;
336
337 return false;
338 }
339
340 return true;
341 }
342
343 /* Let GSI skip forwards over local defs. */
344
345 static void
346 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
347 {
348 gimple stmt;
349
350 while (true)
351 {
352 if (gsi_end_p (*gsi))
353 return;
354 stmt = gsi_stmt (*gsi);
355 if (!stmt_local_def (stmt))
356 return;
357 gsi_next_nondebug (gsi);
358 }
359 }
360
361 /* VAL1 and VAL2 are either:
362 - uses in BB1 and BB2, or
363 - phi alternatives for BB1 and BB2.
364 Return true if the uses have the same gvn value. */
365
366 static bool
367 gvn_uses_equal (tree val1, tree val2)
368 {
369 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
370
371 if (val1 == val2)
372 return true;
373
374 if (vn_valueize (val1) != vn_valueize (val2))
375 return false;
376
377 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
378 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
379 }
380
381 /* Prints E to FILE. */
382
383 static void
384 same_succ_print (FILE *file, const same_succ e)
385 {
386 unsigned int i;
387 bitmap_print (file, e->bbs, "bbs:", "\n");
388 bitmap_print (file, e->succs, "succs:", "\n");
389 bitmap_print (file, e->inverse, "inverse:", "\n");
390 fprintf (file, "flags:");
391 for (i = 0; i < e->succ_flags.length (); ++i)
392 fprintf (file, " %x", e->succ_flags[i]);
393 fprintf (file, "\n");
394 }
395
396 /* Prints same_succ VE to VFILE. */
397
398 inline int
399 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
400 {
401 const same_succ e = *pe;
402 same_succ_print (file, e);
403 return 1;
404 }
405
406 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
407
408 static void
409 update_dep_bb (basic_block use_bb, tree val)
410 {
411 basic_block dep_bb;
412
413 /* Not a dep. */
414 if (TREE_CODE (val) != SSA_NAME)
415 return;
416
417 /* Skip use of global def. */
418 if (SSA_NAME_IS_DEFAULT_DEF (val))
419 return;
420
421 /* Skip use of local def. */
422 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
423 if (dep_bb == use_bb)
424 return;
425
426 if (BB_DEP_BB (use_bb) == NULL
427 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
428 BB_DEP_BB (use_bb) = dep_bb;
429 }
430
431 /* Update BB_DEP_BB, given the dependencies in STMT. */
432
433 static void
434 stmt_update_dep_bb (gimple stmt)
435 {
436 ssa_op_iter iter;
437 use_operand_p use;
438
439 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
440 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
441 }
442
443 /* Calculates hash value for same_succ VE. */
444
445 static hashval_t
446 same_succ_hash (const_same_succ e)
447 {
448 hashval_t hashval = bitmap_hash (e->succs);
449 int flags;
450 unsigned int i;
451 unsigned int first = bitmap_first_set_bit (e->bbs);
452 basic_block bb = BASIC_BLOCK (first);
453 int size = 0;
454 gimple_stmt_iterator gsi;
455 gimple stmt;
456 tree arg;
457 unsigned int s;
458 bitmap_iterator bs;
459
460 for (gsi = gsi_start_nondebug_bb (bb);
461 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
462 {
463 stmt = gsi_stmt (gsi);
464 stmt_update_dep_bb (stmt);
465 if (stmt_local_def (stmt))
466 continue;
467 size++;
468
469 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
470 if (is_gimple_assign (stmt))
471 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
472 hashval);
473 if (!is_gimple_call (stmt))
474 continue;
475 if (gimple_call_internal_p (stmt))
476 hashval = iterative_hash_hashval_t
477 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
478 else
479 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
480 for (i = 0; i < gimple_call_num_args (stmt); i++)
481 {
482 arg = gimple_call_arg (stmt, i);
483 arg = vn_valueize (arg);
484 hashval = iterative_hash_expr (arg, hashval);
485 }
486 }
487
488 hashval = iterative_hash_hashval_t (size, hashval);
489 BB_SIZE (bb) = size;
490
491 for (i = 0; i < e->succ_flags.length (); ++i)
492 {
493 flags = e->succ_flags[i];
494 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
495 hashval = iterative_hash_hashval_t (flags, hashval);
496 }
497
498 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
499 {
500 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
501 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
502 gsi_next (&gsi))
503 {
504 gimple phi = gsi_stmt (gsi);
505 tree lhs = gimple_phi_result (phi);
506 tree val = gimple_phi_arg_def (phi, n);
507
508 if (virtual_operand_p (lhs))
509 continue;
510 update_dep_bb (bb, val);
511 }
512 }
513
514 return hashval;
515 }
516
517 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
518 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
519 the other edge flags. */
520
521 static bool
522 inverse_flags (const_same_succ e1, const_same_succ e2)
523 {
524 int f1a, f1b, f2a, f2b;
525 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
526
527 if (e1->succ_flags.length () != 2)
528 return false;
529
530 f1a = e1->succ_flags[0];
531 f1b = e1->succ_flags[1];
532 f2a = e2->succ_flags[0];
533 f2b = e2->succ_flags[1];
534
535 if (f1a == f2a && f1b == f2b)
536 return false;
537
538 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
539 }
540
541 /* Compares SAME_SUCCs E1 and E2. */
542
543 int
544 same_succ_def::equal (const value_type *e1, const compare_type *e2)
545 {
546 unsigned int i, first1, first2;
547 gimple_stmt_iterator gsi1, gsi2;
548 gimple s1, s2;
549 basic_block bb1, bb2;
550
551 if (e1->hashval != e2->hashval)
552 return 0;
553
554 if (e1->succ_flags.length () != e2->succ_flags.length ())
555 return 0;
556
557 if (!bitmap_equal_p (e1->succs, e2->succs))
558 return 0;
559
560 if (!inverse_flags (e1, e2))
561 {
562 for (i = 0; i < e1->succ_flags.length (); ++i)
563 if (e1->succ_flags[i] != e1->succ_flags[i])
564 return 0;
565 }
566
567 first1 = bitmap_first_set_bit (e1->bbs);
568 first2 = bitmap_first_set_bit (e2->bbs);
569
570 bb1 = BASIC_BLOCK (first1);
571 bb2 = BASIC_BLOCK (first2);
572
573 if (BB_SIZE (bb1) != BB_SIZE (bb2))
574 return 0;
575
576 gsi1 = gsi_start_nondebug_bb (bb1);
577 gsi2 = gsi_start_nondebug_bb (bb2);
578 gsi_advance_fw_nondebug_nonlocal (&gsi1);
579 gsi_advance_fw_nondebug_nonlocal (&gsi2);
580 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
581 {
582 s1 = gsi_stmt (gsi1);
583 s2 = gsi_stmt (gsi2);
584 if (gimple_code (s1) != gimple_code (s2))
585 return 0;
586 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
587 return 0;
588 gsi_next_nondebug (&gsi1);
589 gsi_next_nondebug (&gsi2);
590 gsi_advance_fw_nondebug_nonlocal (&gsi1);
591 gsi_advance_fw_nondebug_nonlocal (&gsi2);
592 }
593
594 return 1;
595 }
596
597 /* Alloc and init a new SAME_SUCC. */
598
599 static same_succ
600 same_succ_alloc (void)
601 {
602 same_succ same = XNEW (struct same_succ_def);
603
604 same->bbs = BITMAP_ALLOC (NULL);
605 same->succs = BITMAP_ALLOC (NULL);
606 same->inverse = BITMAP_ALLOC (NULL);
607 same->succ_flags.create (10);
608 same->in_worklist = false;
609
610 return same;
611 }
612
613 /* Delete same_succ E. */
614
615 void
616 same_succ_def::remove (same_succ e)
617 {
618 BITMAP_FREE (e->bbs);
619 BITMAP_FREE (e->succs);
620 BITMAP_FREE (e->inverse);
621 e->succ_flags.release ();
622
623 XDELETE (e);
624 }
625
626 /* Reset same_succ SAME. */
627
628 static void
629 same_succ_reset (same_succ same)
630 {
631 bitmap_clear (same->bbs);
632 bitmap_clear (same->succs);
633 bitmap_clear (same->inverse);
634 same->succ_flags.truncate (0);
635 }
636
637 static hash_table <same_succ_def> same_succ_htab;
638
639 /* Array that is used to store the edge flags for a successor. */
640
641 static int *same_succ_edge_flags;
642
643 /* Bitmap that is used to mark bbs that are recently deleted. */
644
645 static bitmap deleted_bbs;
646
647 /* Bitmap that is used to mark predecessors of bbs that are
648 deleted. */
649
650 static bitmap deleted_bb_preds;
651
652 /* Prints same_succ_htab to stderr. */
653
654 extern void debug_same_succ (void);
655 DEBUG_FUNCTION void
656 debug_same_succ ( void)
657 {
658 same_succ_htab.traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
659 }
660
661
662 /* Vector of bbs to process. */
663
664 static vec<same_succ> worklist;
665
666 /* Prints worklist to FILE. */
667
668 static void
669 print_worklist (FILE *file)
670 {
671 unsigned int i;
672 for (i = 0; i < worklist.length (); ++i)
673 same_succ_print (file, worklist[i]);
674 }
675
676 /* Adds SAME to worklist. */
677
678 static void
679 add_to_worklist (same_succ same)
680 {
681 if (same->in_worklist)
682 return;
683
684 if (bitmap_count_bits (same->bbs) < 2)
685 return;
686
687 same->in_worklist = true;
688 worklist.safe_push (same);
689 }
690
691 /* Add BB to same_succ_htab. */
692
693 static void
694 find_same_succ_bb (basic_block bb, same_succ *same_p)
695 {
696 unsigned int j;
697 bitmap_iterator bj;
698 same_succ same = *same_p;
699 same_succ *slot;
700 edge_iterator ei;
701 edge e;
702
703 if (bb == NULL
704 /* Be conservative with loop structure. It's not evident that this test
705 is sufficient. Before tail-merge, we've just called
706 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
707 set, so there's no guarantee that the loop->latch value is still valid.
708 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
709 start of pre, we've kept that property intact throughout pre, and are
710 keeping it throughout tail-merge using this test. */
711 || bb->loop_father->latch == bb)
712 return;
713 bitmap_set_bit (same->bbs, bb->index);
714 FOR_EACH_EDGE (e, ei, bb->succs)
715 {
716 int index = e->dest->index;
717 bitmap_set_bit (same->succs, index);
718 same_succ_edge_flags[index] = e->flags;
719 }
720 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
721 same->succ_flags.safe_push (same_succ_edge_flags[j]);
722
723 same->hashval = same_succ_hash (same);
724
725 slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
726 if (*slot == NULL)
727 {
728 *slot = same;
729 BB_SAME_SUCC (bb) = same;
730 add_to_worklist (same);
731 *same_p = NULL;
732 }
733 else
734 {
735 bitmap_set_bit ((*slot)->bbs, bb->index);
736 BB_SAME_SUCC (bb) = *slot;
737 add_to_worklist (*slot);
738 if (inverse_flags (same, *slot))
739 bitmap_set_bit ((*slot)->inverse, bb->index);
740 same_succ_reset (same);
741 }
742 }
743
744 /* Find bbs with same successors. */
745
746 static void
747 find_same_succ (void)
748 {
749 same_succ same = same_succ_alloc ();
750 basic_block bb;
751
752 FOR_EACH_BB (bb)
753 {
754 find_same_succ_bb (bb, &same);
755 if (same == NULL)
756 same = same_succ_alloc ();
757 }
758
759 same_succ_def::remove (same);
760 }
761
762 /* Initializes worklist administration. */
763
764 static void
765 init_worklist (void)
766 {
767 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
768 same_succ_htab.create (n_basic_blocks_for_fn (cfun));
769 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
770 deleted_bbs = BITMAP_ALLOC (NULL);
771 deleted_bb_preds = BITMAP_ALLOC (NULL);
772 worklist.create (n_basic_blocks_for_fn (cfun));
773 find_same_succ ();
774
775 if (dump_file && (dump_flags & TDF_DETAILS))
776 {
777 fprintf (dump_file, "initial worklist:\n");
778 print_worklist (dump_file);
779 }
780 }
781
782 /* Deletes worklist administration. */
783
784 static void
785 delete_worklist (void)
786 {
787 free_aux_for_blocks ();
788 same_succ_htab.dispose ();
789 XDELETEVEC (same_succ_edge_flags);
790 same_succ_edge_flags = NULL;
791 BITMAP_FREE (deleted_bbs);
792 BITMAP_FREE (deleted_bb_preds);
793 worklist.release ();
794 }
795
796 /* Mark BB as deleted, and mark its predecessors. */
797
798 static void
799 mark_basic_block_deleted (basic_block bb)
800 {
801 edge e;
802 edge_iterator ei;
803
804 bitmap_set_bit (deleted_bbs, bb->index);
805
806 FOR_EACH_EDGE (e, ei, bb->preds)
807 bitmap_set_bit (deleted_bb_preds, e->src->index);
808 }
809
810 /* Removes BB from its corresponding same_succ. */
811
812 static void
813 same_succ_flush_bb (basic_block bb)
814 {
815 same_succ same = BB_SAME_SUCC (bb);
816 BB_SAME_SUCC (bb) = NULL;
817 if (bitmap_single_bit_set_p (same->bbs))
818 same_succ_htab.remove_elt_with_hash (same, same->hashval);
819 else
820 bitmap_clear_bit (same->bbs, bb->index);
821 }
822
823 /* Removes all bbs in BBS from their corresponding same_succ. */
824
825 static void
826 same_succ_flush_bbs (bitmap bbs)
827 {
828 unsigned int i;
829 bitmap_iterator bi;
830
831 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
832 same_succ_flush_bb (BASIC_BLOCK (i));
833 }
834
835 /* Release the last vdef in BB, either normal or phi result. */
836
837 static void
838 release_last_vdef (basic_block bb)
839 {
840 gimple_stmt_iterator i;
841
842 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
843 {
844 gimple stmt = gsi_stmt (i);
845 if (gimple_vdef (stmt) == NULL_TREE)
846 continue;
847
848 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
849 return;
850 }
851
852 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
853 {
854 gimple phi = gsi_stmt (i);
855 tree res = gimple_phi_result (phi);
856
857 if (!virtual_operand_p (res))
858 continue;
859
860 mark_virtual_phi_result_for_renaming (phi);
861 return;
862 }
863
864 }
865
866 /* For deleted_bb_preds, find bbs with same successors. */
867
868 static void
869 update_worklist (void)
870 {
871 unsigned int i;
872 bitmap_iterator bi;
873 basic_block bb;
874 same_succ same;
875
876 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
877 bitmap_clear (deleted_bbs);
878
879 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
880 same_succ_flush_bbs (deleted_bb_preds);
881
882 same = same_succ_alloc ();
883 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
884 {
885 bb = BASIC_BLOCK (i);
886 gcc_assert (bb != NULL);
887 find_same_succ_bb (bb, &same);
888 if (same == NULL)
889 same = same_succ_alloc ();
890 }
891 same_succ_def::remove (same);
892 bitmap_clear (deleted_bb_preds);
893 }
894
895 /* Prints cluster C to FILE. */
896
897 static void
898 print_cluster (FILE *file, bb_cluster c)
899 {
900 if (c == NULL)
901 return;
902 bitmap_print (file, c->bbs, "bbs:", "\n");
903 bitmap_print (file, c->preds, "preds:", "\n");
904 }
905
906 /* Prints cluster C to stderr. */
907
908 extern void debug_cluster (bb_cluster);
909 DEBUG_FUNCTION void
910 debug_cluster (bb_cluster c)
911 {
912 print_cluster (stderr, c);
913 }
914
915 /* Update C->rep_bb, given that BB is added to the cluster. */
916
917 static void
918 update_rep_bb (bb_cluster c, basic_block bb)
919 {
920 /* Initial. */
921 if (c->rep_bb == NULL)
922 {
923 c->rep_bb = bb;
924 return;
925 }
926
927 /* Current needs no deps, keep it. */
928 if (BB_DEP_BB (c->rep_bb) == NULL)
929 return;
930
931 /* Bb needs no deps, change rep_bb. */
932 if (BB_DEP_BB (bb) == NULL)
933 {
934 c->rep_bb = bb;
935 return;
936 }
937
938 /* Bb needs last deps earlier than current, change rep_bb. A potential
939 problem with this, is that the first deps might also be earlier, which
940 would mean we prefer longer lifetimes for the deps. To be able to check
941 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
942 BB_DEP_BB, which is really BB_LAST_DEP_BB.
943 The benefit of choosing the bb with last deps earlier, is that it can
944 potentially be used as replacement for more bbs. */
945 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
946 c->rep_bb = bb;
947 }
948
949 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
950
951 static void
952 add_bb_to_cluster (bb_cluster c, basic_block bb)
953 {
954 edge e;
955 edge_iterator ei;
956
957 bitmap_set_bit (c->bbs, bb->index);
958
959 FOR_EACH_EDGE (e, ei, bb->preds)
960 bitmap_set_bit (c->preds, e->src->index);
961
962 update_rep_bb (c, bb);
963 }
964
965 /* Allocate and init new cluster. */
966
967 static bb_cluster
968 new_cluster (void)
969 {
970 bb_cluster c;
971 c = XCNEW (struct bb_cluster_def);
972 c->bbs = BITMAP_ALLOC (NULL);
973 c->preds = BITMAP_ALLOC (NULL);
974 c->rep_bb = NULL;
975 return c;
976 }
977
978 /* Delete clusters. */
979
980 static void
981 delete_cluster (bb_cluster c)
982 {
983 if (c == NULL)
984 return;
985 BITMAP_FREE (c->bbs);
986 BITMAP_FREE (c->preds);
987 XDELETE (c);
988 }
989
990
991 /* Array that contains all clusters. */
992
993 static vec<bb_cluster> all_clusters;
994
995 /* Allocate all cluster vectors. */
996
997 static void
998 alloc_cluster_vectors (void)
999 {
1000 all_clusters.create (n_basic_blocks_for_fn (cfun));
1001 }
1002
1003 /* Reset all cluster vectors. */
1004
1005 static void
1006 reset_cluster_vectors (void)
1007 {
1008 unsigned int i;
1009 basic_block bb;
1010 for (i = 0; i < all_clusters.length (); ++i)
1011 delete_cluster (all_clusters[i]);
1012 all_clusters.truncate (0);
1013 FOR_EACH_BB (bb)
1014 BB_CLUSTER (bb) = NULL;
1015 }
1016
1017 /* Delete all cluster vectors. */
1018
1019 static void
1020 delete_cluster_vectors (void)
1021 {
1022 unsigned int i;
1023 for (i = 0; i < all_clusters.length (); ++i)
1024 delete_cluster (all_clusters[i]);
1025 all_clusters.release ();
1026 }
1027
1028 /* Merge cluster C2 into C1. */
1029
1030 static void
1031 merge_clusters (bb_cluster c1, bb_cluster c2)
1032 {
1033 bitmap_ior_into (c1->bbs, c2->bbs);
1034 bitmap_ior_into (c1->preds, c2->preds);
1035 }
1036
1037 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1038 all_clusters, or merge c with existing cluster. */
1039
1040 static void
1041 set_cluster (basic_block bb1, basic_block bb2)
1042 {
1043 basic_block merge_bb, other_bb;
1044 bb_cluster merge, old, c;
1045
1046 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1047 {
1048 c = new_cluster ();
1049 add_bb_to_cluster (c, bb1);
1050 add_bb_to_cluster (c, bb2);
1051 BB_CLUSTER (bb1) = c;
1052 BB_CLUSTER (bb2) = c;
1053 c->index = all_clusters.length ();
1054 all_clusters.safe_push (c);
1055 }
1056 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1057 {
1058 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1059 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1060 merge = BB_CLUSTER (merge_bb);
1061 add_bb_to_cluster (merge, other_bb);
1062 BB_CLUSTER (other_bb) = merge;
1063 }
1064 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1065 {
1066 unsigned int i;
1067 bitmap_iterator bi;
1068
1069 old = BB_CLUSTER (bb2);
1070 merge = BB_CLUSTER (bb1);
1071 merge_clusters (merge, old);
1072 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1073 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1074 all_clusters[old->index] = NULL;
1075 update_rep_bb (merge, old->rep_bb);
1076 delete_cluster (old);
1077 }
1078 else
1079 gcc_unreachable ();
1080 }
1081
1082 /* Return true if gimple operands T1 and T2 have the same value. */
1083
1084 static bool
1085 gimple_operand_equal_value_p (tree t1, tree t2)
1086 {
1087 if (t1 == t2)
1088 return true;
1089
1090 if (t1 == NULL_TREE
1091 || t2 == NULL_TREE)
1092 return false;
1093
1094 if (operand_equal_p (t1, t2, 0))
1095 return true;
1096
1097 return gvn_uses_equal (t1, t2);
1098 }
1099
1100 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1101 gimple_bb (s2) are members of SAME_SUCC. */
1102
1103 static bool
1104 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1105 {
1106 unsigned int i;
1107 tree lhs1, lhs2;
1108 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1109 tree t1, t2;
1110 bool inv_cond;
1111 enum tree_code code1, code2;
1112
1113 if (gimple_code (s1) != gimple_code (s2))
1114 return false;
1115
1116 switch (gimple_code (s1))
1117 {
1118 case GIMPLE_CALL:
1119 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1120 return false;
1121 if (!gimple_call_same_target_p (s1, s2))
1122 return false;
1123
1124 for (i = 0; i < gimple_call_num_args (s1); ++i)
1125 {
1126 t1 = gimple_call_arg (s1, i);
1127 t2 = gimple_call_arg (s2, i);
1128 if (gimple_operand_equal_value_p (t1, t2))
1129 continue;
1130 return false;
1131 }
1132
1133 lhs1 = gimple_get_lhs (s1);
1134 lhs2 = gimple_get_lhs (s2);
1135 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1136 return true;
1137 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1138 return false;
1139 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1140 return vn_valueize (lhs1) == vn_valueize (lhs2);
1141 return operand_equal_p (lhs1, lhs2, 0);
1142
1143 case GIMPLE_ASSIGN:
1144 lhs1 = gimple_get_lhs (s1);
1145 lhs2 = gimple_get_lhs (s2);
1146 if (TREE_CODE (lhs1) != SSA_NAME
1147 && TREE_CODE (lhs2) != SSA_NAME)
1148 {
1149 /* If the vdef is the same, it's the same statement. */
1150 if (vn_valueize (gimple_vdef (s1))
1151 == vn_valueize (gimple_vdef (s2)))
1152 return true;
1153
1154 /* Test for structural equality. */
1155 return (operand_equal_p (lhs1, lhs2, 0)
1156 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1157 gimple_assign_rhs1 (s2)));
1158 }
1159 else if (TREE_CODE (lhs1) == SSA_NAME
1160 && TREE_CODE (lhs2) == SSA_NAME)
1161 return vn_valueize (lhs1) == vn_valueize (lhs2);
1162 return false;
1163
1164 case GIMPLE_COND:
1165 t1 = gimple_cond_lhs (s1);
1166 t2 = gimple_cond_lhs (s2);
1167 if (!gimple_operand_equal_value_p (t1, t2))
1168 return false;
1169
1170 t1 = gimple_cond_rhs (s1);
1171 t2 = gimple_cond_rhs (s2);
1172 if (!gimple_operand_equal_value_p (t1, t2))
1173 return false;
1174
1175 code1 = gimple_expr_code (s1);
1176 code2 = gimple_expr_code (s2);
1177 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1178 != bitmap_bit_p (same_succ->inverse, bb2->index));
1179 if (inv_cond)
1180 {
1181 bool honor_nans
1182 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1183 code2 = invert_tree_comparison (code2, honor_nans);
1184 }
1185 return code1 == code2;
1186
1187 default:
1188 return false;
1189 }
1190 }
1191
1192 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1193 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1194 processed statements. */
1195
1196 static void
1197 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1198 bool *vuse_escaped)
1199 {
1200 gimple stmt;
1201 tree lvuse;
1202
1203 while (true)
1204 {
1205 if (gsi_end_p (*gsi))
1206 return;
1207 stmt = gsi_stmt (*gsi);
1208
1209 lvuse = gimple_vuse (stmt);
1210 if (lvuse != NULL_TREE)
1211 {
1212 *vuse = lvuse;
1213 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1214 *vuse_escaped = true;
1215 }
1216
1217 if (!stmt_local_def (stmt))
1218 return;
1219 gsi_prev_nondebug (gsi);
1220 }
1221 }
1222
1223 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1224 clusters them. */
1225
1226 static void
1227 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1228 {
1229 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1230 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1231 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1232 bool vuse_escaped = false;
1233
1234 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1235 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1236
1237 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1238 {
1239 gimple stmt1 = gsi_stmt (gsi1);
1240 gimple stmt2 = gsi_stmt (gsi2);
1241
1242 /* What could be better than to this this here is to blacklist the bb
1243 containing the stmt, when encountering the stmt f.i. in
1244 same_succ_hash. */
1245 if (is_tm_ending (stmt1)
1246 || is_tm_ending (stmt2))
1247 return;
1248
1249 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1250 return;
1251
1252 gsi_prev_nondebug (&gsi1);
1253 gsi_prev_nondebug (&gsi2);
1254 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1255 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1256 }
1257
1258 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1259 return;
1260
1261 /* If the incoming vuses are not the same, and the vuse escaped into an
1262 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1263 which potentially means the semantics of one of the blocks will be changed.
1264 TODO: make this check more precise. */
1265 if (vuse_escaped && vuse1 != vuse2)
1266 return;
1267
1268 if (dump_file)
1269 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1270 bb1->index, bb2->index);
1271
1272 set_cluster (bb1, bb2);
1273 }
1274
1275 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1276 E2 are equal. */
1277
1278 static bool
1279 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1280 {
1281 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1282 gimple_stmt_iterator gsi;
1283
1284 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1285 {
1286 gimple phi = gsi_stmt (gsi);
1287 tree lhs = gimple_phi_result (phi);
1288 tree val1 = gimple_phi_arg_def (phi, n1);
1289 tree val2 = gimple_phi_arg_def (phi, n2);
1290
1291 if (virtual_operand_p (lhs))
1292 continue;
1293
1294 if (operand_equal_for_phi_arg_p (val1, val2))
1295 continue;
1296 if (gvn_uses_equal (val1, val2))
1297 continue;
1298
1299 return false;
1300 }
1301
1302 return true;
1303 }
1304
1305 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1306 phi alternatives for BB1 and BB2 are equal. */
1307
1308 static bool
1309 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1310 {
1311 unsigned int s;
1312 bitmap_iterator bs;
1313 edge e1, e2;
1314 basic_block succ;
1315
1316 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1317 {
1318 succ = BASIC_BLOCK (s);
1319 e1 = find_edge (bb1, succ);
1320 e2 = find_edge (bb2, succ);
1321 if (e1->flags & EDGE_COMPLEX
1322 || e2->flags & EDGE_COMPLEX)
1323 return false;
1324
1325 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1326 the same value. */
1327 if (!same_phi_alternatives_1 (succ, e1, e2))
1328 return false;
1329 }
1330
1331 return true;
1332 }
1333
1334 /* Return true if BB has non-vop phis. */
1335
1336 static bool
1337 bb_has_non_vop_phi (basic_block bb)
1338 {
1339 gimple_seq phis = phi_nodes (bb);
1340 gimple phi;
1341
1342 if (phis == NULL)
1343 return false;
1344
1345 if (!gimple_seq_singleton_p (phis))
1346 return true;
1347
1348 phi = gimple_seq_first_stmt (phis);
1349 return !virtual_operand_p (gimple_phi_result (phi));
1350 }
1351
1352 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1353 invariant that uses in FROM are dominates by their defs. */
1354
1355 static bool
1356 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1357 {
1358 basic_block cd, dep_bb = BB_DEP_BB (to);
1359 edge_iterator ei;
1360 edge e;
1361 bitmap from_preds = BITMAP_ALLOC (NULL);
1362
1363 if (dep_bb == NULL)
1364 return true;
1365
1366 FOR_EACH_EDGE (e, ei, from->preds)
1367 bitmap_set_bit (from_preds, e->src->index);
1368 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1369 BITMAP_FREE (from_preds);
1370
1371 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1372 }
1373
1374 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1375 replacement bb) and vice versa maintains the invariant that uses in the
1376 replacement are dominates by their defs. */
1377
1378 static bool
1379 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1380 {
1381 if (BB_CLUSTER (bb1) != NULL)
1382 bb1 = BB_CLUSTER (bb1)->rep_bb;
1383
1384 if (BB_CLUSTER (bb2) != NULL)
1385 bb2 = BB_CLUSTER (bb2)->rep_bb;
1386
1387 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1388 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1389 }
1390
1391 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1392
1393 static void
1394 find_clusters_1 (same_succ same_succ)
1395 {
1396 basic_block bb1, bb2;
1397 unsigned int i, j;
1398 bitmap_iterator bi, bj;
1399 int nr_comparisons;
1400 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1401
1402 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1403 {
1404 bb1 = BASIC_BLOCK (i);
1405
1406 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1407 phi-nodes in bb1 and bb2, with the same alternatives for the same
1408 preds. */
1409 if (bb_has_non_vop_phi (bb1))
1410 continue;
1411
1412 nr_comparisons = 0;
1413 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1414 {
1415 bb2 = BASIC_BLOCK (j);
1416
1417 if (bb_has_non_vop_phi (bb2))
1418 continue;
1419
1420 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1421 continue;
1422
1423 /* Limit quadratic behaviour. */
1424 nr_comparisons++;
1425 if (nr_comparisons > max_comparisons)
1426 break;
1427
1428 /* This is a conservative dependency check. We could test more
1429 precise for allowed replacement direction. */
1430 if (!deps_ok_for_redirect (bb1, bb2))
1431 continue;
1432
1433 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1434 continue;
1435
1436 find_duplicate (same_succ, bb1, bb2);
1437 }
1438 }
1439 }
1440
1441 /* Find clusters of bbs which can be merged. */
1442
1443 static void
1444 find_clusters (void)
1445 {
1446 same_succ same;
1447
1448 while (!worklist.is_empty ())
1449 {
1450 same = worklist.pop ();
1451 same->in_worklist = false;
1452 if (dump_file && (dump_flags & TDF_DETAILS))
1453 {
1454 fprintf (dump_file, "processing worklist entry\n");
1455 same_succ_print (dump_file, same);
1456 }
1457 find_clusters_1 (same);
1458 }
1459 }
1460
1461 /* Returns the vop phi of BB, if any. */
1462
1463 static gimple
1464 vop_phi (basic_block bb)
1465 {
1466 gimple stmt;
1467 gimple_stmt_iterator gsi;
1468 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1469 {
1470 stmt = gsi_stmt (gsi);
1471 if (! virtual_operand_p (gimple_phi_result (stmt)))
1472 continue;
1473 return stmt;
1474 }
1475 return NULL;
1476 }
1477
1478 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1479
1480 static void
1481 replace_block_by (basic_block bb1, basic_block bb2)
1482 {
1483 edge pred_edge;
1484 edge e1, e2;
1485 edge_iterator ei;
1486 unsigned int i;
1487 gimple bb2_phi;
1488
1489 bb2_phi = vop_phi (bb2);
1490
1491 /* Mark the basic block as deleted. */
1492 mark_basic_block_deleted (bb1);
1493
1494 /* Redirect the incoming edges of bb1 to bb2. */
1495 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1496 {
1497 pred_edge = EDGE_PRED (bb1, i - 1);
1498 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1499 gcc_assert (pred_edge != NULL);
1500
1501 if (bb2_phi == NULL)
1502 continue;
1503
1504 /* The phi might have run out of capacity when the redirect added an
1505 argument, which means it could have been replaced. Refresh it. */
1506 bb2_phi = vop_phi (bb2);
1507
1508 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1509 pred_edge, UNKNOWN_LOCATION);
1510 }
1511
1512 bb2->frequency += bb1->frequency;
1513 if (bb2->frequency > BB_FREQ_MAX)
1514 bb2->frequency = BB_FREQ_MAX;
1515
1516 bb2->count += bb1->count;
1517
1518 /* Merge the outgoing edge counts from bb1 onto bb2. */
1519 gcov_type out_sum = 0;
1520 FOR_EACH_EDGE (e1, ei, bb1->succs)
1521 {
1522 e2 = find_edge (bb2, e1->dest);
1523 gcc_assert (e2);
1524 e2->count += e1->count;
1525 out_sum += e2->count;
1526 }
1527 /* Recompute the edge probabilities from the new merged edge count.
1528 Use the sum of the new merged edge counts computed above instead
1529 of bb2's merged count, in case there are profile count insanities
1530 making the bb count inconsistent with the edge weights. */
1531 FOR_EACH_EDGE (e2, ei, bb2->succs)
1532 {
1533 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1534 }
1535
1536 /* Do updates that use bb1, before deleting bb1. */
1537 release_last_vdef (bb1);
1538 same_succ_flush_bb (bb1);
1539
1540 delete_basic_block (bb1);
1541 }
1542
1543 /* Bbs for which update_debug_stmt need to be called. */
1544
1545 static bitmap update_bbs;
1546
1547 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1548 number of bbs removed. */
1549
1550 static int
1551 apply_clusters (void)
1552 {
1553 basic_block bb1, bb2;
1554 bb_cluster c;
1555 unsigned int i, j;
1556 bitmap_iterator bj;
1557 int nr_bbs_removed = 0;
1558
1559 for (i = 0; i < all_clusters.length (); ++i)
1560 {
1561 c = all_clusters[i];
1562 if (c == NULL)
1563 continue;
1564
1565 bb2 = c->rep_bb;
1566 bitmap_set_bit (update_bbs, bb2->index);
1567
1568 bitmap_clear_bit (c->bbs, bb2->index);
1569 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1570 {
1571 bb1 = BASIC_BLOCK (j);
1572 bitmap_clear_bit (update_bbs, bb1->index);
1573
1574 replace_block_by (bb1, bb2);
1575 nr_bbs_removed++;
1576 }
1577 }
1578
1579 return nr_bbs_removed;
1580 }
1581
1582 /* Resets debug statement STMT if it has uses that are not dominated by their
1583 defs. */
1584
1585 static void
1586 update_debug_stmt (gimple stmt)
1587 {
1588 use_operand_p use_p;
1589 ssa_op_iter oi;
1590 basic_block bbdef, bbuse;
1591 gimple def_stmt;
1592 tree name;
1593
1594 if (!gimple_debug_bind_p (stmt))
1595 return;
1596
1597 bbuse = gimple_bb (stmt);
1598 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1599 {
1600 name = USE_FROM_PTR (use_p);
1601 gcc_assert (TREE_CODE (name) == SSA_NAME);
1602
1603 def_stmt = SSA_NAME_DEF_STMT (name);
1604 gcc_assert (def_stmt != NULL);
1605
1606 bbdef = gimple_bb (def_stmt);
1607 if (bbdef == NULL || bbuse == bbdef
1608 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1609 continue;
1610
1611 gimple_debug_bind_reset_value (stmt);
1612 update_stmt (stmt);
1613 }
1614 }
1615
1616 /* Resets all debug statements that have uses that are not
1617 dominated by their defs. */
1618
1619 static void
1620 update_debug_stmts (void)
1621 {
1622 basic_block bb;
1623 bitmap_iterator bi;
1624 unsigned int i;
1625
1626 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1627 {
1628 gimple stmt;
1629 gimple_stmt_iterator gsi;
1630
1631 bb = BASIC_BLOCK (i);
1632 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1633 {
1634 stmt = gsi_stmt (gsi);
1635 if (!is_gimple_debug (stmt))
1636 continue;
1637 update_debug_stmt (stmt);
1638 }
1639 }
1640 }
1641
1642 /* Runs tail merge optimization. */
1643
1644 unsigned int
1645 tail_merge_optimize (unsigned int todo)
1646 {
1647 int nr_bbs_removed_total = 0;
1648 int nr_bbs_removed;
1649 bool loop_entered = false;
1650 int iteration_nr = 0;
1651 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1652
1653 if (!flag_tree_tail_merge
1654 || max_iterations == 0
1655 /* We try to be conservative with respect to loop structure, since:
1656 - the cases where tail-merging could both affect loop structure and be
1657 beneficial are rare,
1658 - it prevents us from having to fixup the loops using
1659 loops_state_set (LOOPS_NEED_FIXUP), and
1660 - keeping loop structure may allow us to simplify the pass.
1661 In order to be conservative, we need loop information. In rare cases
1662 (about 7 test-cases in the g++ testsuite) there is none (because
1663 loop_optimizer_finalize has been called before tail-merge, and
1664 PROP_loops is not set), so we bail out. */
1665 || current_loops == NULL)
1666 return 0;
1667
1668 timevar_push (TV_TREE_TAIL_MERGE);
1669
1670 if (!dom_info_available_p (CDI_DOMINATORS))
1671 {
1672 /* PRE can leave us with unreachable blocks, remove them now. */
1673 delete_unreachable_blocks ();
1674 calculate_dominance_info (CDI_DOMINATORS);
1675 }
1676 init_worklist ();
1677
1678 while (!worklist.is_empty ())
1679 {
1680 if (!loop_entered)
1681 {
1682 loop_entered = true;
1683 alloc_cluster_vectors ();
1684 update_bbs = BITMAP_ALLOC (NULL);
1685 }
1686 else
1687 reset_cluster_vectors ();
1688
1689 iteration_nr++;
1690 if (dump_file && (dump_flags & TDF_DETAILS))
1691 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1692
1693 find_clusters ();
1694 gcc_assert (worklist.is_empty ());
1695 if (all_clusters.is_empty ())
1696 break;
1697
1698 nr_bbs_removed = apply_clusters ();
1699 nr_bbs_removed_total += nr_bbs_removed;
1700 if (nr_bbs_removed == 0)
1701 break;
1702
1703 free_dominance_info (CDI_DOMINATORS);
1704
1705 if (iteration_nr == max_iterations)
1706 break;
1707
1708 calculate_dominance_info (CDI_DOMINATORS);
1709 update_worklist ();
1710 }
1711
1712 if (dump_file && (dump_flags & TDF_DETAILS))
1713 fprintf (dump_file, "htab collision / search: %f\n",
1714 same_succ_htab.collisions ());
1715
1716 if (nr_bbs_removed_total > 0)
1717 {
1718 if (MAY_HAVE_DEBUG_STMTS)
1719 {
1720 calculate_dominance_info (CDI_DOMINATORS);
1721 update_debug_stmts ();
1722 }
1723
1724 if (dump_file && (dump_flags & TDF_DETAILS))
1725 {
1726 fprintf (dump_file, "Before TODOs.\n");
1727 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1728 }
1729
1730 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow);
1731 mark_virtual_operands_for_renaming (cfun);
1732 }
1733
1734 delete_worklist ();
1735 if (loop_entered)
1736 {
1737 delete_cluster_vectors ();
1738 BITMAP_FREE (update_bbs);
1739 }
1740
1741 timevar_pop (TV_TREE_TAIL_MERGE);
1742
1743 return todo;
1744 }