]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-tail-merge.c
Do not merge BBs with a different EH landing pads (PR
[thirdparty/gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2016 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "backend.h"
192 #include "tree.h"
193 #include "gimple.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
196 #include "ssa.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
199 #include "cfganal.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
204 #include "params.h"
205 #include "tree-ssa-sccvn.h"
206 #include "cfgloop.h"
207 #include "tree-eh.h"
208
209 /* Describes a group of bbs with the same successors. The successor bbs are
210 cached in succs, and the successor edge flags are cached in succ_flags.
211 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
212 it's marked in inverse.
213 Additionally, the hash value for the struct is cached in hashval, and
214 in_worklist indicates whether it's currently part of worklist. */
215
216 struct same_succ : pointer_hash <same_succ>
217 {
218 /* The bbs that have the same successor bbs. */
219 bitmap bbs;
220 /* The successor bbs. */
221 bitmap succs;
222 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
223 bb. */
224 bitmap inverse;
225 /* The edge flags for each of the successor bbs. */
226 vec<int> succ_flags;
227 /* Indicates whether the struct is currently in the worklist. */
228 bool in_worklist;
229 /* The hash value of the struct. */
230 hashval_t hashval;
231
232 /* hash_table support. */
233 static inline hashval_t hash (const same_succ *);
234 static int equal (const same_succ *, const same_succ *);
235 static void remove (same_succ *);
236 };
237
238 /* hash routine for hash_table support, returns hashval of E. */
239
240 inline hashval_t
241 same_succ::hash (const same_succ *e)
242 {
243 return e->hashval;
244 }
245
246 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
247
248 struct bb_cluster
249 {
250 /* The bbs in the cluster. */
251 bitmap bbs;
252 /* The preds of the bbs in the cluster. */
253 bitmap preds;
254 /* Index in all_clusters vector. */
255 int index;
256 /* The bb to replace the cluster with. */
257 basic_block rep_bb;
258 };
259
260 /* Per bb-info. */
261
262 struct aux_bb_info
263 {
264 /* The number of non-debug statements in the bb. */
265 int size;
266 /* The same_succ that this bb is a member of. */
267 same_succ *bb_same_succ;
268 /* The cluster that this bb is a member of. */
269 bb_cluster *cluster;
270 /* The vop state at the exit of a bb. This is shortlived data, used to
271 communicate data between update_block_by and update_vuses. */
272 tree vop_at_exit;
273 /* The bb that either contains or is dominated by the dependencies of the
274 bb. */
275 basic_block dep_bb;
276 };
277
278 /* Macros to access the fields of struct aux_bb_info. */
279
280 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
281 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
282 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
283 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
284 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
285
286 /* Returns true if the only effect a statement STMT has, is to define locally
287 used SSA_NAMEs. */
288
289 static bool
290 stmt_local_def (gimple *stmt)
291 {
292 basic_block bb, def_bb;
293 imm_use_iterator iter;
294 use_operand_p use_p;
295 tree val;
296 def_operand_p def_p;
297
298 if (gimple_vdef (stmt) != NULL_TREE
299 || gimple_has_side_effects (stmt)
300 || gimple_could_trap_p_1 (stmt, false, false)
301 || gimple_vuse (stmt) != NULL_TREE)
302 return false;
303
304 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
305 if (def_p == NULL)
306 return false;
307
308 val = DEF_FROM_PTR (def_p);
309 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
310 return false;
311
312 def_bb = gimple_bb (stmt);
313
314 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
315 {
316 if (is_gimple_debug (USE_STMT (use_p)))
317 continue;
318 bb = gimple_bb (USE_STMT (use_p));
319 if (bb == def_bb)
320 continue;
321
322 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
323 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
324 continue;
325
326 return false;
327 }
328
329 return true;
330 }
331
332 /* Let GSI skip forwards over local defs. */
333
334 static void
335 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
336 {
337 gimple *stmt;
338
339 while (true)
340 {
341 if (gsi_end_p (*gsi))
342 return;
343 stmt = gsi_stmt (*gsi);
344 if (!stmt_local_def (stmt))
345 return;
346 gsi_next_nondebug (gsi);
347 }
348 }
349
350 /* VAL1 and VAL2 are either:
351 - uses in BB1 and BB2, or
352 - phi alternatives for BB1 and BB2.
353 Return true if the uses have the same gvn value. */
354
355 static bool
356 gvn_uses_equal (tree val1, tree val2)
357 {
358 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
359
360 if (val1 == val2)
361 return true;
362
363 if (vn_valueize (val1) != vn_valueize (val2))
364 return false;
365
366 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
367 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
368 }
369
370 /* Prints E to FILE. */
371
372 static void
373 same_succ_print (FILE *file, const same_succ *e)
374 {
375 unsigned int i;
376 bitmap_print (file, e->bbs, "bbs:", "\n");
377 bitmap_print (file, e->succs, "succs:", "\n");
378 bitmap_print (file, e->inverse, "inverse:", "\n");
379 fprintf (file, "flags:");
380 for (i = 0; i < e->succ_flags.length (); ++i)
381 fprintf (file, " %x", e->succ_flags[i]);
382 fprintf (file, "\n");
383 }
384
385 /* Prints same_succ VE to VFILE. */
386
387 inline int
388 ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
389 {
390 const same_succ *e = *pe;
391 same_succ_print (file, e);
392 return 1;
393 }
394
395 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
396
397 static void
398 update_dep_bb (basic_block use_bb, tree val)
399 {
400 basic_block dep_bb;
401
402 /* Not a dep. */
403 if (TREE_CODE (val) != SSA_NAME)
404 return;
405
406 /* Skip use of global def. */
407 if (SSA_NAME_IS_DEFAULT_DEF (val))
408 return;
409
410 /* Skip use of local def. */
411 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
412 if (dep_bb == use_bb)
413 return;
414
415 if (BB_DEP_BB (use_bb) == NULL
416 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
417 BB_DEP_BB (use_bb) = dep_bb;
418 }
419
420 /* Update BB_DEP_BB, given the dependencies in STMT. */
421
422 static void
423 stmt_update_dep_bb (gimple *stmt)
424 {
425 ssa_op_iter iter;
426 use_operand_p use;
427
428 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
429 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
430 }
431
432 /* Calculates hash value for same_succ VE. */
433
434 static hashval_t
435 same_succ_hash (const same_succ *e)
436 {
437 inchash::hash hstate (bitmap_hash (e->succs));
438 int flags;
439 unsigned int i;
440 unsigned int first = bitmap_first_set_bit (e->bbs);
441 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
442 int size = 0;
443 gimple *stmt;
444 tree arg;
445 unsigned int s;
446 bitmap_iterator bs;
447
448 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
449 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
450 {
451 stmt = gsi_stmt (gsi);
452 stmt_update_dep_bb (stmt);
453 if (stmt_local_def (stmt))
454 continue;
455 size++;
456
457 hstate.add_int (gimple_code (stmt));
458 if (is_gimple_assign (stmt))
459 hstate.add_int (gimple_assign_rhs_code (stmt));
460 if (!is_gimple_call (stmt))
461 continue;
462 if (gimple_call_internal_p (stmt))
463 hstate.add_int (gimple_call_internal_fn (stmt));
464 else
465 {
466 inchash::add_expr (gimple_call_fn (stmt), hstate);
467 if (gimple_call_chain (stmt))
468 inchash::add_expr (gimple_call_chain (stmt), hstate);
469 }
470 for (i = 0; i < gimple_call_num_args (stmt); i++)
471 {
472 arg = gimple_call_arg (stmt, i);
473 arg = vn_valueize (arg);
474 inchash::add_expr (arg, hstate);
475 }
476 }
477
478 hstate.add_int (size);
479 BB_SIZE (bb) = size;
480
481 for (i = 0; i < e->succ_flags.length (); ++i)
482 {
483 flags = e->succ_flags[i];
484 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
485 hstate.add_int (flags);
486 }
487
488 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
489 {
490 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
491 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
492 !gsi_end_p (gsi);
493 gsi_next (&gsi))
494 {
495 gphi *phi = gsi.phi ();
496 tree lhs = gimple_phi_result (phi);
497 tree val = gimple_phi_arg_def (phi, n);
498
499 if (virtual_operand_p (lhs))
500 continue;
501 update_dep_bb (bb, val);
502 }
503 }
504
505 return hstate.end ();
506 }
507
508 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
509 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
510 the other edge flags. */
511
512 static bool
513 inverse_flags (const same_succ *e1, const same_succ *e2)
514 {
515 int f1a, f1b, f2a, f2b;
516 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
517
518 if (e1->succ_flags.length () != 2)
519 return false;
520
521 f1a = e1->succ_flags[0];
522 f1b = e1->succ_flags[1];
523 f2a = e2->succ_flags[0];
524 f2b = e2->succ_flags[1];
525
526 if (f1a == f2a && f1b == f2b)
527 return false;
528
529 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
530 }
531
532 /* Compares SAME_SUCCs E1 and E2. */
533
534 int
535 same_succ::equal (const same_succ *e1, const same_succ *e2)
536 {
537 unsigned int i, first1, first2;
538 gimple_stmt_iterator gsi1, gsi2;
539 gimple *s1, *s2;
540 basic_block bb1, bb2;
541
542 if (e1 == e2)
543 return 1;
544
545 if (e1->hashval != e2->hashval)
546 return 0;
547
548 if (e1->succ_flags.length () != e2->succ_flags.length ())
549 return 0;
550
551 if (!bitmap_equal_p (e1->succs, e2->succs))
552 return 0;
553
554 if (!inverse_flags (e1, e2))
555 {
556 for (i = 0; i < e1->succ_flags.length (); ++i)
557 if (e1->succ_flags[i] != e2->succ_flags[i])
558 return 0;
559 }
560
561 first1 = bitmap_first_set_bit (e1->bbs);
562 first2 = bitmap_first_set_bit (e2->bbs);
563
564 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
565 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
566
567 if (BB_SIZE (bb1) != BB_SIZE (bb2))
568 return 0;
569
570 gsi1 = gsi_start_nondebug_bb (bb1);
571 gsi2 = gsi_start_nondebug_bb (bb2);
572 gsi_advance_fw_nondebug_nonlocal (&gsi1);
573 gsi_advance_fw_nondebug_nonlocal (&gsi2);
574 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
575 {
576 s1 = gsi_stmt (gsi1);
577 s2 = gsi_stmt (gsi2);
578 if (gimple_code (s1) != gimple_code (s2))
579 return 0;
580 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
581 return 0;
582 gsi_next_nondebug (&gsi1);
583 gsi_next_nondebug (&gsi2);
584 gsi_advance_fw_nondebug_nonlocal (&gsi1);
585 gsi_advance_fw_nondebug_nonlocal (&gsi2);
586 }
587
588 return 1;
589 }
590
591 /* Alloc and init a new SAME_SUCC. */
592
593 static same_succ *
594 same_succ_alloc (void)
595 {
596 same_succ *same = XNEW (struct same_succ);
597
598 same->bbs = BITMAP_ALLOC (NULL);
599 same->succs = BITMAP_ALLOC (NULL);
600 same->inverse = BITMAP_ALLOC (NULL);
601 same->succ_flags.create (10);
602 same->in_worklist = false;
603
604 return same;
605 }
606
607 /* Delete same_succ E. */
608
609 void
610 same_succ::remove (same_succ *e)
611 {
612 BITMAP_FREE (e->bbs);
613 BITMAP_FREE (e->succs);
614 BITMAP_FREE (e->inverse);
615 e->succ_flags.release ();
616
617 XDELETE (e);
618 }
619
620 /* Reset same_succ SAME. */
621
622 static void
623 same_succ_reset (same_succ *same)
624 {
625 bitmap_clear (same->bbs);
626 bitmap_clear (same->succs);
627 bitmap_clear (same->inverse);
628 same->succ_flags.truncate (0);
629 }
630
631 static hash_table<same_succ> *same_succ_htab;
632
633 /* Array that is used to store the edge flags for a successor. */
634
635 static int *same_succ_edge_flags;
636
637 /* Bitmap that is used to mark bbs that are recently deleted. */
638
639 static bitmap deleted_bbs;
640
641 /* Bitmap that is used to mark predecessors of bbs that are
642 deleted. */
643
644 static bitmap deleted_bb_preds;
645
646 /* Prints same_succ_htab to stderr. */
647
648 extern void debug_same_succ (void);
649 DEBUG_FUNCTION void
650 debug_same_succ ( void)
651 {
652 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
653 }
654
655
656 /* Vector of bbs to process. */
657
658 static vec<same_succ *> worklist;
659
660 /* Prints worklist to FILE. */
661
662 static void
663 print_worklist (FILE *file)
664 {
665 unsigned int i;
666 for (i = 0; i < worklist.length (); ++i)
667 same_succ_print (file, worklist[i]);
668 }
669
670 /* Adds SAME to worklist. */
671
672 static void
673 add_to_worklist (same_succ *same)
674 {
675 if (same->in_worklist)
676 return;
677
678 if (bitmap_count_bits (same->bbs) < 2)
679 return;
680
681 same->in_worklist = true;
682 worklist.safe_push (same);
683 }
684
685 /* Add BB to same_succ_htab. */
686
687 static void
688 find_same_succ_bb (basic_block bb, same_succ **same_p)
689 {
690 unsigned int j;
691 bitmap_iterator bj;
692 same_succ *same = *same_p;
693 same_succ **slot;
694 edge_iterator ei;
695 edge e;
696
697 if (bb == NULL
698 /* Be conservative with loop structure. It's not evident that this test
699 is sufficient. Before tail-merge, we've just called
700 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
701 set, so there's no guarantee that the loop->latch value is still valid.
702 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
703 start of pre, we've kept that property intact throughout pre, and are
704 keeping it throughout tail-merge using this test. */
705 || bb->loop_father->latch == bb)
706 return;
707 bitmap_set_bit (same->bbs, bb->index);
708 FOR_EACH_EDGE (e, ei, bb->succs)
709 {
710 int index = e->dest->index;
711 bitmap_set_bit (same->succs, index);
712 same_succ_edge_flags[index] = e->flags;
713 }
714 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
715 same->succ_flags.safe_push (same_succ_edge_flags[j]);
716
717 same->hashval = same_succ_hash (same);
718
719 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
720 if (*slot == NULL)
721 {
722 *slot = same;
723 BB_SAME_SUCC (bb) = same;
724 add_to_worklist (same);
725 *same_p = NULL;
726 }
727 else
728 {
729 bitmap_set_bit ((*slot)->bbs, bb->index);
730 BB_SAME_SUCC (bb) = *slot;
731 add_to_worklist (*slot);
732 if (inverse_flags (same, *slot))
733 bitmap_set_bit ((*slot)->inverse, bb->index);
734 same_succ_reset (same);
735 }
736 }
737
738 /* Find bbs with same successors. */
739
740 static void
741 find_same_succ (void)
742 {
743 same_succ *same = same_succ_alloc ();
744 basic_block bb;
745
746 FOR_EACH_BB_FN (bb, cfun)
747 {
748 find_same_succ_bb (bb, &same);
749 if (same == NULL)
750 same = same_succ_alloc ();
751 }
752
753 same_succ::remove (same);
754 }
755
756 /* Initializes worklist administration. */
757
758 static void
759 init_worklist (void)
760 {
761 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
762 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
763 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
764 deleted_bbs = BITMAP_ALLOC (NULL);
765 deleted_bb_preds = BITMAP_ALLOC (NULL);
766 worklist.create (n_basic_blocks_for_fn (cfun));
767 find_same_succ ();
768
769 if (dump_file && (dump_flags & TDF_DETAILS))
770 {
771 fprintf (dump_file, "initial worklist:\n");
772 print_worklist (dump_file);
773 }
774 }
775
776 /* Deletes worklist administration. */
777
778 static void
779 delete_worklist (void)
780 {
781 free_aux_for_blocks ();
782 delete same_succ_htab;
783 same_succ_htab = NULL;
784 XDELETEVEC (same_succ_edge_flags);
785 same_succ_edge_flags = NULL;
786 BITMAP_FREE (deleted_bbs);
787 BITMAP_FREE (deleted_bb_preds);
788 worklist.release ();
789 }
790
791 /* Mark BB as deleted, and mark its predecessors. */
792
793 static void
794 mark_basic_block_deleted (basic_block bb)
795 {
796 edge e;
797 edge_iterator ei;
798
799 bitmap_set_bit (deleted_bbs, bb->index);
800
801 FOR_EACH_EDGE (e, ei, bb->preds)
802 bitmap_set_bit (deleted_bb_preds, e->src->index);
803 }
804
805 /* Removes BB from its corresponding same_succ. */
806
807 static void
808 same_succ_flush_bb (basic_block bb)
809 {
810 same_succ *same = BB_SAME_SUCC (bb);
811 BB_SAME_SUCC (bb) = NULL;
812 if (bitmap_single_bit_set_p (same->bbs))
813 same_succ_htab->remove_elt_with_hash (same, same->hashval);
814 else
815 bitmap_clear_bit (same->bbs, bb->index);
816 }
817
818 /* Removes all bbs in BBS from their corresponding same_succ. */
819
820 static void
821 same_succ_flush_bbs (bitmap bbs)
822 {
823 unsigned int i;
824 bitmap_iterator bi;
825
826 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
827 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
828 }
829
830 /* Release the last vdef in BB, either normal or phi result. */
831
832 static void
833 release_last_vdef (basic_block bb)
834 {
835 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
836 gsi_prev_nondebug (&i))
837 {
838 gimple *stmt = gsi_stmt (i);
839 if (gimple_vdef (stmt) == NULL_TREE)
840 continue;
841
842 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
843 return;
844 }
845
846 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
847 gsi_next (&i))
848 {
849 gphi *phi = i.phi ();
850 tree res = gimple_phi_result (phi);
851
852 if (!virtual_operand_p (res))
853 continue;
854
855 mark_virtual_phi_result_for_renaming (phi);
856 return;
857 }
858 }
859
860 /* For deleted_bb_preds, find bbs with same successors. */
861
862 static void
863 update_worklist (void)
864 {
865 unsigned int i;
866 bitmap_iterator bi;
867 basic_block bb;
868 same_succ *same;
869
870 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
871 bitmap_clear (deleted_bbs);
872
873 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
874 same_succ_flush_bbs (deleted_bb_preds);
875
876 same = same_succ_alloc ();
877 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
878 {
879 bb = BASIC_BLOCK_FOR_FN (cfun, i);
880 gcc_assert (bb != NULL);
881 find_same_succ_bb (bb, &same);
882 if (same == NULL)
883 same = same_succ_alloc ();
884 }
885 same_succ::remove (same);
886 bitmap_clear (deleted_bb_preds);
887 }
888
889 /* Prints cluster C to FILE. */
890
891 static void
892 print_cluster (FILE *file, bb_cluster *c)
893 {
894 if (c == NULL)
895 return;
896 bitmap_print (file, c->bbs, "bbs:", "\n");
897 bitmap_print (file, c->preds, "preds:", "\n");
898 }
899
900 /* Prints cluster C to stderr. */
901
902 extern void debug_cluster (bb_cluster *);
903 DEBUG_FUNCTION void
904 debug_cluster (bb_cluster *c)
905 {
906 print_cluster (stderr, c);
907 }
908
909 /* Update C->rep_bb, given that BB is added to the cluster. */
910
911 static void
912 update_rep_bb (bb_cluster *c, basic_block bb)
913 {
914 /* Initial. */
915 if (c->rep_bb == NULL)
916 {
917 c->rep_bb = bb;
918 return;
919 }
920
921 /* Current needs no deps, keep it. */
922 if (BB_DEP_BB (c->rep_bb) == NULL)
923 return;
924
925 /* Bb needs no deps, change rep_bb. */
926 if (BB_DEP_BB (bb) == NULL)
927 {
928 c->rep_bb = bb;
929 return;
930 }
931
932 /* Bb needs last deps earlier than current, change rep_bb. A potential
933 problem with this, is that the first deps might also be earlier, which
934 would mean we prefer longer lifetimes for the deps. To be able to check
935 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
936 BB_DEP_BB, which is really BB_LAST_DEP_BB.
937 The benefit of choosing the bb with last deps earlier, is that it can
938 potentially be used as replacement for more bbs. */
939 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
940 c->rep_bb = bb;
941 }
942
943 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
944
945 static void
946 add_bb_to_cluster (bb_cluster *c, basic_block bb)
947 {
948 edge e;
949 edge_iterator ei;
950
951 bitmap_set_bit (c->bbs, bb->index);
952
953 FOR_EACH_EDGE (e, ei, bb->preds)
954 bitmap_set_bit (c->preds, e->src->index);
955
956 update_rep_bb (c, bb);
957 }
958
959 /* Allocate and init new cluster. */
960
961 static bb_cluster *
962 new_cluster (void)
963 {
964 bb_cluster *c;
965 c = XCNEW (bb_cluster);
966 c->bbs = BITMAP_ALLOC (NULL);
967 c->preds = BITMAP_ALLOC (NULL);
968 c->rep_bb = NULL;
969 return c;
970 }
971
972 /* Delete clusters. */
973
974 static void
975 delete_cluster (bb_cluster *c)
976 {
977 if (c == NULL)
978 return;
979 BITMAP_FREE (c->bbs);
980 BITMAP_FREE (c->preds);
981 XDELETE (c);
982 }
983
984
985 /* Array that contains all clusters. */
986
987 static vec<bb_cluster *> all_clusters;
988
989 /* Allocate all cluster vectors. */
990
991 static void
992 alloc_cluster_vectors (void)
993 {
994 all_clusters.create (n_basic_blocks_for_fn (cfun));
995 }
996
997 /* Reset all cluster vectors. */
998
999 static void
1000 reset_cluster_vectors (void)
1001 {
1002 unsigned int i;
1003 basic_block bb;
1004 for (i = 0; i < all_clusters.length (); ++i)
1005 delete_cluster (all_clusters[i]);
1006 all_clusters.truncate (0);
1007 FOR_EACH_BB_FN (bb, cfun)
1008 BB_CLUSTER (bb) = NULL;
1009 }
1010
1011 /* Delete all cluster vectors. */
1012
1013 static void
1014 delete_cluster_vectors (void)
1015 {
1016 unsigned int i;
1017 for (i = 0; i < all_clusters.length (); ++i)
1018 delete_cluster (all_clusters[i]);
1019 all_clusters.release ();
1020 }
1021
1022 /* Merge cluster C2 into C1. */
1023
1024 static void
1025 merge_clusters (bb_cluster *c1, bb_cluster *c2)
1026 {
1027 bitmap_ior_into (c1->bbs, c2->bbs);
1028 bitmap_ior_into (c1->preds, c2->preds);
1029 }
1030
1031 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1032 all_clusters, or merge c with existing cluster. */
1033
1034 static void
1035 set_cluster (basic_block bb1, basic_block bb2)
1036 {
1037 basic_block merge_bb, other_bb;
1038 bb_cluster *merge, *old, *c;
1039
1040 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1041 {
1042 c = new_cluster ();
1043 add_bb_to_cluster (c, bb1);
1044 add_bb_to_cluster (c, bb2);
1045 BB_CLUSTER (bb1) = c;
1046 BB_CLUSTER (bb2) = c;
1047 c->index = all_clusters.length ();
1048 all_clusters.safe_push (c);
1049 }
1050 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1051 {
1052 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1053 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1054 merge = BB_CLUSTER (merge_bb);
1055 add_bb_to_cluster (merge, other_bb);
1056 BB_CLUSTER (other_bb) = merge;
1057 }
1058 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1059 {
1060 unsigned int i;
1061 bitmap_iterator bi;
1062
1063 old = BB_CLUSTER (bb2);
1064 merge = BB_CLUSTER (bb1);
1065 merge_clusters (merge, old);
1066 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1067 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1068 all_clusters[old->index] = NULL;
1069 update_rep_bb (merge, old->rep_bb);
1070 delete_cluster (old);
1071 }
1072 else
1073 gcc_unreachable ();
1074 }
1075
1076 /* Return true if gimple operands T1 and T2 have the same value. */
1077
1078 static bool
1079 gimple_operand_equal_value_p (tree t1, tree t2)
1080 {
1081 if (t1 == t2)
1082 return true;
1083
1084 if (t1 == NULL_TREE
1085 || t2 == NULL_TREE)
1086 return false;
1087
1088 if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS))
1089 return true;
1090
1091 return gvn_uses_equal (t1, t2);
1092 }
1093
1094 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1095 gimple_bb (s2) are members of SAME_SUCC. */
1096
1097 static bool
1098 gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
1099 {
1100 unsigned int i;
1101 tree lhs1, lhs2;
1102 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1103 tree t1, t2;
1104 bool inv_cond;
1105 enum tree_code code1, code2;
1106
1107 if (gimple_code (s1) != gimple_code (s2))
1108 return false;
1109
1110 switch (gimple_code (s1))
1111 {
1112 case GIMPLE_CALL:
1113 if (!gimple_call_same_target_p (s1, s2))
1114 return false;
1115
1116 t1 = gimple_call_chain (s1);
1117 t2 = gimple_call_chain (s2);
1118 if (!gimple_operand_equal_value_p (t1, t2))
1119 return false;
1120
1121 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1122 return false;
1123
1124 for (i = 0; i < gimple_call_num_args (s1); ++i)
1125 {
1126 t1 = gimple_call_arg (s1, i);
1127 t2 = gimple_call_arg (s2, i);
1128 if (!gimple_operand_equal_value_p (t1, t2))
1129 return false;
1130 }
1131
1132 lhs1 = gimple_get_lhs (s1);
1133 lhs2 = gimple_get_lhs (s2);
1134 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1135 return true;
1136 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1137 return false;
1138 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1139 return vn_valueize (lhs1) == vn_valueize (lhs2);
1140 return operand_equal_p (lhs1, lhs2, 0);
1141
1142 case GIMPLE_ASSIGN:
1143 lhs1 = gimple_get_lhs (s1);
1144 lhs2 = gimple_get_lhs (s2);
1145 if (TREE_CODE (lhs1) != SSA_NAME
1146 && TREE_CODE (lhs2) != SSA_NAME)
1147 return (operand_equal_p (lhs1, lhs2, 0)
1148 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1149 gimple_assign_rhs1 (s2)));
1150 else if (TREE_CODE (lhs1) == SSA_NAME
1151 && TREE_CODE (lhs2) == SSA_NAME)
1152 return operand_equal_p (gimple_assign_rhs1 (s1),
1153 gimple_assign_rhs1 (s2), 0);
1154 return false;
1155
1156 case GIMPLE_COND:
1157 t1 = gimple_cond_lhs (s1);
1158 t2 = gimple_cond_lhs (s2);
1159 if (!gimple_operand_equal_value_p (t1, t2))
1160 return false;
1161
1162 t1 = gimple_cond_rhs (s1);
1163 t2 = gimple_cond_rhs (s2);
1164 if (!gimple_operand_equal_value_p (t1, t2))
1165 return false;
1166
1167 code1 = gimple_expr_code (s1);
1168 code2 = gimple_expr_code (s2);
1169 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1170 != bitmap_bit_p (same_succ->inverse, bb2->index));
1171 if (inv_cond)
1172 {
1173 bool honor_nans = HONOR_NANS (t1);
1174 code2 = invert_tree_comparison (code2, honor_nans);
1175 }
1176 return code1 == code2;
1177
1178 default:
1179 return false;
1180 }
1181 }
1182
1183 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1184 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1185 processed statements. */
1186
1187 static void
1188 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1189 bool *vuse_escaped)
1190 {
1191 gimple *stmt;
1192 tree lvuse;
1193
1194 while (true)
1195 {
1196 if (gsi_end_p (*gsi))
1197 return;
1198 stmt = gsi_stmt (*gsi);
1199
1200 lvuse = gimple_vuse (stmt);
1201 if (lvuse != NULL_TREE)
1202 {
1203 *vuse = lvuse;
1204 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1205 *vuse_escaped = true;
1206 }
1207
1208 if (!stmt_local_def (stmt))
1209 return;
1210 gsi_prev_nondebug (gsi);
1211 }
1212 }
1213
1214 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1215 STMT2 are allowed to be merged. */
1216
1217 static bool
1218 merge_stmts_p (gimple *stmt1, gimple *stmt2)
1219 {
1220 /* What could be better than this here is to blacklist the bb
1221 containing the stmt, when encountering the stmt f.i. in
1222 same_succ_hash. */
1223 if (is_tm_ending (stmt1))
1224 return false;
1225
1226 /* Verify EH landing pads. */
1227 if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2))
1228 return false;
1229
1230 if (is_gimple_call (stmt1)
1231 && gimple_call_internal_p (stmt1))
1232 switch (gimple_call_internal_fn (stmt1))
1233 {
1234 case IFN_UBSAN_NULL:
1235 case IFN_UBSAN_BOUNDS:
1236 case IFN_UBSAN_VPTR:
1237 case IFN_UBSAN_CHECK_ADD:
1238 case IFN_UBSAN_CHECK_SUB:
1239 case IFN_UBSAN_CHECK_MUL:
1240 case IFN_UBSAN_OBJECT_SIZE:
1241 case IFN_ASAN_CHECK:
1242 /* For these internal functions, gimple_location is an implicit
1243 parameter, which will be used explicitly after expansion.
1244 Merging these statements may cause confusing line numbers in
1245 sanitizer messages. */
1246 return gimple_location (stmt1) == gimple_location (stmt2);
1247 default:
1248 break;
1249 }
1250
1251 return true;
1252 }
1253
1254 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1255 clusters them. */
1256
1257 static void
1258 find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
1259 {
1260 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1261 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1262 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1263 bool vuse_escaped = false;
1264
1265 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1266 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1267
1268 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1269 {
1270 gimple *stmt1 = gsi_stmt (gsi1);
1271 gimple *stmt2 = gsi_stmt (gsi2);
1272
1273 if (gimple_code (stmt1) == GIMPLE_LABEL
1274 && gimple_code (stmt2) == GIMPLE_LABEL)
1275 break;
1276
1277 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1278 return;
1279
1280 if (!merge_stmts_p (stmt1, stmt2))
1281 return;
1282
1283 gsi_prev_nondebug (&gsi1);
1284 gsi_prev_nondebug (&gsi2);
1285 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1286 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1287 }
1288
1289 while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1290 {
1291 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1292 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1293 return;
1294 gsi_prev (&gsi1);
1295 }
1296 while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL)
1297 {
1298 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2)));
1299 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1300 return;
1301 gsi_prev (&gsi2);
1302 }
1303 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1304 return;
1305
1306 /* If the incoming vuses are not the same, and the vuse escaped into an
1307 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1308 which potentially means the semantics of one of the blocks will be changed.
1309 TODO: make this check more precise. */
1310 if (vuse_escaped && vuse1 != vuse2)
1311 return;
1312
1313 if (dump_file)
1314 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1315 bb1->index, bb2->index);
1316
1317 set_cluster (bb1, bb2);
1318 }
1319
1320 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1321 E2 are equal. */
1322
1323 static bool
1324 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1325 {
1326 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1327 gphi_iterator gsi;
1328
1329 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1330 {
1331 gphi *phi = gsi.phi ();
1332 tree lhs = gimple_phi_result (phi);
1333 tree val1 = gimple_phi_arg_def (phi, n1);
1334 tree val2 = gimple_phi_arg_def (phi, n2);
1335
1336 if (virtual_operand_p (lhs))
1337 continue;
1338
1339 if (operand_equal_for_phi_arg_p (val1, val2))
1340 continue;
1341 if (gvn_uses_equal (val1, val2))
1342 continue;
1343
1344 return false;
1345 }
1346
1347 return true;
1348 }
1349
1350 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1351 phi alternatives for BB1 and BB2 are equal. */
1352
1353 static bool
1354 same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
1355 {
1356 unsigned int s;
1357 bitmap_iterator bs;
1358 edge e1, e2;
1359 basic_block succ;
1360
1361 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1362 {
1363 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1364 e1 = find_edge (bb1, succ);
1365 e2 = find_edge (bb2, succ);
1366 if (e1->flags & EDGE_COMPLEX
1367 || e2->flags & EDGE_COMPLEX)
1368 return false;
1369
1370 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1371 the same value. */
1372 if (!same_phi_alternatives_1 (succ, e1, e2))
1373 return false;
1374 }
1375
1376 return true;
1377 }
1378
1379 /* Return true if BB has non-vop phis. */
1380
1381 static bool
1382 bb_has_non_vop_phi (basic_block bb)
1383 {
1384 gimple_seq phis = phi_nodes (bb);
1385 gimple *phi;
1386
1387 if (phis == NULL)
1388 return false;
1389
1390 if (!gimple_seq_singleton_p (phis))
1391 return true;
1392
1393 phi = gimple_seq_first_stmt (phis);
1394 return !virtual_operand_p (gimple_phi_result (phi));
1395 }
1396
1397 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1398 invariant that uses in FROM are dominates by their defs. */
1399
1400 static bool
1401 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1402 {
1403 basic_block cd, dep_bb = BB_DEP_BB (to);
1404 edge_iterator ei;
1405 edge e;
1406
1407 if (dep_bb == NULL)
1408 return true;
1409
1410 bitmap from_preds = BITMAP_ALLOC (NULL);
1411 FOR_EACH_EDGE (e, ei, from->preds)
1412 bitmap_set_bit (from_preds, e->src->index);
1413 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1414 BITMAP_FREE (from_preds);
1415
1416 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1417 }
1418
1419 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1420 replacement bb) and vice versa maintains the invariant that uses in the
1421 replacement are dominates by their defs. */
1422
1423 static bool
1424 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1425 {
1426 if (BB_CLUSTER (bb1) != NULL)
1427 bb1 = BB_CLUSTER (bb1)->rep_bb;
1428
1429 if (BB_CLUSTER (bb2) != NULL)
1430 bb2 = BB_CLUSTER (bb2)->rep_bb;
1431
1432 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1433 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1434 }
1435
1436 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1437
1438 static void
1439 find_clusters_1 (same_succ *same_succ)
1440 {
1441 basic_block bb1, bb2;
1442 unsigned int i, j;
1443 bitmap_iterator bi, bj;
1444 int nr_comparisons;
1445 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1446
1447 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1448 {
1449 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1450
1451 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1452 phi-nodes in bb1 and bb2, with the same alternatives for the same
1453 preds. */
1454 if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1))
1455 continue;
1456
1457 nr_comparisons = 0;
1458 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1459 {
1460 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1461
1462 if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2))
1463 continue;
1464
1465 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1466 continue;
1467
1468 /* Limit quadratic behavior. */
1469 nr_comparisons++;
1470 if (nr_comparisons > max_comparisons)
1471 break;
1472
1473 /* This is a conservative dependency check. We could test more
1474 precise for allowed replacement direction. */
1475 if (!deps_ok_for_redirect (bb1, bb2))
1476 continue;
1477
1478 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1479 continue;
1480
1481 find_duplicate (same_succ, bb1, bb2);
1482 }
1483 }
1484 }
1485
1486 /* Find clusters of bbs which can be merged. */
1487
1488 static void
1489 find_clusters (void)
1490 {
1491 same_succ *same;
1492
1493 while (!worklist.is_empty ())
1494 {
1495 same = worklist.pop ();
1496 same->in_worklist = false;
1497 if (dump_file && (dump_flags & TDF_DETAILS))
1498 {
1499 fprintf (dump_file, "processing worklist entry\n");
1500 same_succ_print (dump_file, same);
1501 }
1502 find_clusters_1 (same);
1503 }
1504 }
1505
1506 /* Returns the vop phi of BB, if any. */
1507
1508 static gphi *
1509 vop_phi (basic_block bb)
1510 {
1511 gphi *stmt;
1512 gphi_iterator gsi;
1513 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1514 {
1515 stmt = gsi.phi ();
1516 if (! virtual_operand_p (gimple_phi_result (stmt)))
1517 continue;
1518 return stmt;
1519 }
1520 return NULL;
1521 }
1522
1523 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1524
1525 static void
1526 replace_block_by (basic_block bb1, basic_block bb2)
1527 {
1528 edge pred_edge;
1529 edge e1, e2;
1530 edge_iterator ei;
1531 unsigned int i;
1532 gphi *bb2_phi;
1533
1534 bb2_phi = vop_phi (bb2);
1535
1536 /* Mark the basic block as deleted. */
1537 mark_basic_block_deleted (bb1);
1538
1539 /* Redirect the incoming edges of bb1 to bb2. */
1540 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1541 {
1542 pred_edge = EDGE_PRED (bb1, i - 1);
1543 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1544 gcc_assert (pred_edge != NULL);
1545
1546 if (bb2_phi == NULL)
1547 continue;
1548
1549 /* The phi might have run out of capacity when the redirect added an
1550 argument, which means it could have been replaced. Refresh it. */
1551 bb2_phi = vop_phi (bb2);
1552
1553 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1554 pred_edge, UNKNOWN_LOCATION);
1555 }
1556
1557 bb2->frequency += bb1->frequency;
1558 if (bb2->frequency > BB_FREQ_MAX)
1559 bb2->frequency = BB_FREQ_MAX;
1560
1561 bb2->count += bb1->count;
1562
1563 /* Merge the outgoing edge counts from bb1 onto bb2. */
1564 gcov_type out_sum = 0;
1565 FOR_EACH_EDGE (e1, ei, bb1->succs)
1566 {
1567 e2 = find_edge (bb2, e1->dest);
1568 gcc_assert (e2);
1569 e2->count += e1->count;
1570 out_sum += e2->count;
1571 }
1572 /* Recompute the edge probabilities from the new merged edge count.
1573 Use the sum of the new merged edge counts computed above instead
1574 of bb2's merged count, in case there are profile count insanities
1575 making the bb count inconsistent with the edge weights. */
1576 FOR_EACH_EDGE (e2, ei, bb2->succs)
1577 {
1578 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1579 }
1580
1581 /* Move over any user labels from bb1 after the bb2 labels. */
1582 gimple_stmt_iterator gsi1 = gsi_start_bb (bb1);
1583 if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1584 {
1585 gimple_stmt_iterator gsi2 = gsi_after_labels (bb2);
1586 while (!gsi_end_p (gsi1)
1587 && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1588 {
1589 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1590 gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label));
1591 if (DECL_ARTIFICIAL (label))
1592 gsi_next (&gsi1);
1593 else
1594 gsi_move_before (&gsi1, &gsi2);
1595 }
1596 }
1597
1598 /* Clear range info from all stmts in BB2 -- this transformation
1599 could make them out of date. */
1600 reset_flow_sensitive_info_in_bb (bb2);
1601
1602 /* Do updates that use bb1, before deleting bb1. */
1603 release_last_vdef (bb1);
1604 same_succ_flush_bb (bb1);
1605
1606 delete_basic_block (bb1);
1607 }
1608
1609 /* Bbs for which update_debug_stmt need to be called. */
1610
1611 static bitmap update_bbs;
1612
1613 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1614 number of bbs removed. */
1615
1616 static int
1617 apply_clusters (void)
1618 {
1619 basic_block bb1, bb2;
1620 bb_cluster *c;
1621 unsigned int i, j;
1622 bitmap_iterator bj;
1623 int nr_bbs_removed = 0;
1624
1625 for (i = 0; i < all_clusters.length (); ++i)
1626 {
1627 c = all_clusters[i];
1628 if (c == NULL)
1629 continue;
1630
1631 bb2 = c->rep_bb;
1632 bitmap_set_bit (update_bbs, bb2->index);
1633
1634 bitmap_clear_bit (c->bbs, bb2->index);
1635 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1636 {
1637 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1638 bitmap_clear_bit (update_bbs, bb1->index);
1639
1640 replace_block_by (bb1, bb2);
1641 nr_bbs_removed++;
1642 }
1643 }
1644
1645 return nr_bbs_removed;
1646 }
1647
1648 /* Resets debug statement STMT if it has uses that are not dominated by their
1649 defs. */
1650
1651 static void
1652 update_debug_stmt (gimple *stmt)
1653 {
1654 use_operand_p use_p;
1655 ssa_op_iter oi;
1656 basic_block bbuse;
1657
1658 if (!gimple_debug_bind_p (stmt))
1659 return;
1660
1661 bbuse = gimple_bb (stmt);
1662 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1663 {
1664 tree name = USE_FROM_PTR (use_p);
1665 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1666 basic_block bbdef = gimple_bb (def_stmt);
1667 if (bbdef == NULL || bbuse == bbdef
1668 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1669 continue;
1670
1671 gimple_debug_bind_reset_value (stmt);
1672 update_stmt (stmt);
1673 break;
1674 }
1675 }
1676
1677 /* Resets all debug statements that have uses that are not
1678 dominated by their defs. */
1679
1680 static void
1681 update_debug_stmts (void)
1682 {
1683 basic_block bb;
1684 bitmap_iterator bi;
1685 unsigned int i;
1686
1687 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1688 {
1689 gimple *stmt;
1690 gimple_stmt_iterator gsi;
1691
1692 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1693 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1694 {
1695 stmt = gsi_stmt (gsi);
1696 if (!is_gimple_debug (stmt))
1697 continue;
1698 update_debug_stmt (stmt);
1699 }
1700 }
1701 }
1702
1703 /* Runs tail merge optimization. */
1704
1705 unsigned int
1706 tail_merge_optimize (unsigned int todo)
1707 {
1708 int nr_bbs_removed_total = 0;
1709 int nr_bbs_removed;
1710 bool loop_entered = false;
1711 int iteration_nr = 0;
1712 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1713
1714 if (!flag_tree_tail_merge
1715 || max_iterations == 0)
1716 return 0;
1717
1718 timevar_push (TV_TREE_TAIL_MERGE);
1719
1720 if (!dom_info_available_p (CDI_DOMINATORS))
1721 {
1722 /* PRE can leave us with unreachable blocks, remove them now. */
1723 delete_unreachable_blocks ();
1724 calculate_dominance_info (CDI_DOMINATORS);
1725 }
1726 init_worklist ();
1727
1728 while (!worklist.is_empty ())
1729 {
1730 if (!loop_entered)
1731 {
1732 loop_entered = true;
1733 alloc_cluster_vectors ();
1734 update_bbs = BITMAP_ALLOC (NULL);
1735 }
1736 else
1737 reset_cluster_vectors ();
1738
1739 iteration_nr++;
1740 if (dump_file && (dump_flags & TDF_DETAILS))
1741 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1742
1743 find_clusters ();
1744 gcc_assert (worklist.is_empty ());
1745 if (all_clusters.is_empty ())
1746 break;
1747
1748 nr_bbs_removed = apply_clusters ();
1749 nr_bbs_removed_total += nr_bbs_removed;
1750 if (nr_bbs_removed == 0)
1751 break;
1752
1753 free_dominance_info (CDI_DOMINATORS);
1754
1755 if (iteration_nr == max_iterations)
1756 break;
1757
1758 calculate_dominance_info (CDI_DOMINATORS);
1759 update_worklist ();
1760 }
1761
1762 if (dump_file && (dump_flags & TDF_DETAILS))
1763 fprintf (dump_file, "htab collision / search: %f\n",
1764 same_succ_htab->collisions ());
1765
1766 if (nr_bbs_removed_total > 0)
1767 {
1768 if (MAY_HAVE_DEBUG_STMTS)
1769 {
1770 calculate_dominance_info (CDI_DOMINATORS);
1771 update_debug_stmts ();
1772 }
1773
1774 if (dump_file && (dump_flags & TDF_DETAILS))
1775 {
1776 fprintf (dump_file, "Before TODOs.\n");
1777 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1778 }
1779
1780 mark_virtual_operands_for_renaming (cfun);
1781 }
1782
1783 delete_worklist ();
1784 if (loop_entered)
1785 {
1786 delete_cluster_vectors ();
1787 BITMAP_FREE (update_bbs);
1788 }
1789
1790 timevar_pop (TV_TREE_TAIL_MERGE);
1791
1792 return todo;
1793 }