]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-tail-merge.c
Simplify code in gimple_equal_p
[thirdparty/gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2013 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "basic-block.h"
195 #include "flags.h"
196 #include "function.h"
197 #include "gimple.h"
198 #include "gimple-iterator.h"
199 #include "gimple-ssa.h"
200 #include "tree-cfg.h"
201 #include "tree-phinodes.h"
202 #include "ssa-iterators.h"
203 #include "tree-into-ssa.h"
204 #include "tree-ssa-alias.h"
205 #include "params.h"
206 #include "hash-table.h"
207 #include "gimple-pretty-print.h"
208 #include "tree-ssa-sccvn.h"
209 #include "tree-dump.h"
210 #include "cfgloop.h"
211 #include "tree-pass.h"
212
213 /* Describes a group of bbs with the same successors. The successor bbs are
214 cached in succs, and the successor edge flags are cached in succ_flags.
215 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
216 it's marked in inverse.
217 Additionally, the hash value for the struct is cached in hashval, and
218 in_worklist indicates whether it's currently part of worklist. */
219
220 struct same_succ_def
221 {
222 /* The bbs that have the same successor bbs. */
223 bitmap bbs;
224 /* The successor bbs. */
225 bitmap succs;
226 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
227 bb. */
228 bitmap inverse;
229 /* The edge flags for each of the successor bbs. */
230 vec<int> succ_flags;
231 /* Indicates whether the struct is currently in the worklist. */
232 bool in_worklist;
233 /* The hash value of the struct. */
234 hashval_t hashval;
235
236 /* hash_table support. */
237 typedef same_succ_def value_type;
238 typedef same_succ_def compare_type;
239 static inline hashval_t hash (const value_type *);
240 static int equal (const value_type *, const compare_type *);
241 static void remove (value_type *);
242 };
243 typedef struct same_succ_def *same_succ;
244 typedef const struct same_succ_def *const_same_succ;
245
246 /* hash routine for hash_table support, returns hashval of E. */
247
248 inline hashval_t
249 same_succ_def::hash (const value_type *e)
250 {
251 return e->hashval;
252 }
253
254 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
255
256 struct bb_cluster_def
257 {
258 /* The bbs in the cluster. */
259 bitmap bbs;
260 /* The preds of the bbs in the cluster. */
261 bitmap preds;
262 /* Index in all_clusters vector. */
263 int index;
264 /* The bb to replace the cluster with. */
265 basic_block rep_bb;
266 };
267 typedef struct bb_cluster_def *bb_cluster;
268 typedef const struct bb_cluster_def *const_bb_cluster;
269
270 /* Per bb-info. */
271
272 struct aux_bb_info
273 {
274 /* The number of non-debug statements in the bb. */
275 int size;
276 /* The same_succ that this bb is a member of. */
277 same_succ bb_same_succ;
278 /* The cluster that this bb is a member of. */
279 bb_cluster cluster;
280 /* The vop state at the exit of a bb. This is shortlived data, used to
281 communicate data between update_block_by and update_vuses. */
282 tree vop_at_exit;
283 /* The bb that either contains or is dominated by the dependencies of the
284 bb. */
285 basic_block dep_bb;
286 };
287
288 /* Macros to access the fields of struct aux_bb_info. */
289
290 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
291 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
292 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
293 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
294 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
295
296 /* Returns true if the only effect a statement STMT has, is to define locally
297 used SSA_NAMEs. */
298
299 static bool
300 stmt_local_def (gimple stmt)
301 {
302 basic_block bb, def_bb;
303 imm_use_iterator iter;
304 use_operand_p use_p;
305 tree val;
306 def_operand_p def_p;
307
308 if (gimple_has_side_effects (stmt)
309 || gimple_vdef (stmt) != NULL_TREE)
310 return false;
311
312 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
313 if (def_p == NULL)
314 return false;
315
316 val = DEF_FROM_PTR (def_p);
317 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
318 return false;
319
320 def_bb = gimple_bb (stmt);
321
322 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
323 {
324 if (is_gimple_debug (USE_STMT (use_p)))
325 continue;
326 bb = gimple_bb (USE_STMT (use_p));
327 if (bb == def_bb)
328 continue;
329
330 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
331 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
332 continue;
333
334 return false;
335 }
336
337 return true;
338 }
339
340 /* Let GSI skip forwards over local defs. */
341
342 static void
343 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
344 {
345 gimple stmt;
346
347 while (true)
348 {
349 if (gsi_end_p (*gsi))
350 return;
351 stmt = gsi_stmt (*gsi);
352 if (!stmt_local_def (stmt))
353 return;
354 gsi_next_nondebug (gsi);
355 }
356 }
357
358 /* VAL1 and VAL2 are either:
359 - uses in BB1 and BB2, or
360 - phi alternatives for BB1 and BB2.
361 Return true if the uses have the same gvn value. */
362
363 static bool
364 gvn_uses_equal (tree val1, tree val2)
365 {
366 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
367
368 if (val1 == val2)
369 return true;
370
371 if (vn_valueize (val1) != vn_valueize (val2))
372 return false;
373
374 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
375 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
376 }
377
378 /* Prints E to FILE. */
379
380 static void
381 same_succ_print (FILE *file, const same_succ e)
382 {
383 unsigned int i;
384 bitmap_print (file, e->bbs, "bbs:", "\n");
385 bitmap_print (file, e->succs, "succs:", "\n");
386 bitmap_print (file, e->inverse, "inverse:", "\n");
387 fprintf (file, "flags:");
388 for (i = 0; i < e->succ_flags.length (); ++i)
389 fprintf (file, " %x", e->succ_flags[i]);
390 fprintf (file, "\n");
391 }
392
393 /* Prints same_succ VE to VFILE. */
394
395 inline int
396 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
397 {
398 const same_succ e = *pe;
399 same_succ_print (file, e);
400 return 1;
401 }
402
403 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
404
405 static void
406 update_dep_bb (basic_block use_bb, tree val)
407 {
408 basic_block dep_bb;
409
410 /* Not a dep. */
411 if (TREE_CODE (val) != SSA_NAME)
412 return;
413
414 /* Skip use of global def. */
415 if (SSA_NAME_IS_DEFAULT_DEF (val))
416 return;
417
418 /* Skip use of local def. */
419 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
420 if (dep_bb == use_bb)
421 return;
422
423 if (BB_DEP_BB (use_bb) == NULL
424 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
425 BB_DEP_BB (use_bb) = dep_bb;
426 }
427
428 /* Update BB_DEP_BB, given the dependencies in STMT. */
429
430 static void
431 stmt_update_dep_bb (gimple stmt)
432 {
433 ssa_op_iter iter;
434 use_operand_p use;
435
436 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
437 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
438 }
439
440 /* Calculates hash value for same_succ VE. */
441
442 static hashval_t
443 same_succ_hash (const_same_succ e)
444 {
445 hashval_t hashval = bitmap_hash (e->succs);
446 int flags;
447 unsigned int i;
448 unsigned int first = bitmap_first_set_bit (e->bbs);
449 basic_block bb = BASIC_BLOCK (first);
450 int size = 0;
451 gimple_stmt_iterator gsi;
452 gimple stmt;
453 tree arg;
454 unsigned int s;
455 bitmap_iterator bs;
456
457 for (gsi = gsi_start_nondebug_bb (bb);
458 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
459 {
460 stmt = gsi_stmt (gsi);
461 stmt_update_dep_bb (stmt);
462 if (stmt_local_def (stmt))
463 continue;
464 size++;
465
466 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
467 if (is_gimple_assign (stmt))
468 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
469 hashval);
470 if (!is_gimple_call (stmt))
471 continue;
472 if (gimple_call_internal_p (stmt))
473 hashval = iterative_hash_hashval_t
474 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
475 else
476 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
477 for (i = 0; i < gimple_call_num_args (stmt); i++)
478 {
479 arg = gimple_call_arg (stmt, i);
480 arg = vn_valueize (arg);
481 hashval = iterative_hash_expr (arg, hashval);
482 }
483 }
484
485 hashval = iterative_hash_hashval_t (size, hashval);
486 BB_SIZE (bb) = size;
487
488 for (i = 0; i < e->succ_flags.length (); ++i)
489 {
490 flags = e->succ_flags[i];
491 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
492 hashval = iterative_hash_hashval_t (flags, hashval);
493 }
494
495 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
496 {
497 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
498 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
499 gsi_next (&gsi))
500 {
501 gimple phi = gsi_stmt (gsi);
502 tree lhs = gimple_phi_result (phi);
503 tree val = gimple_phi_arg_def (phi, n);
504
505 if (virtual_operand_p (lhs))
506 continue;
507 update_dep_bb (bb, val);
508 }
509 }
510
511 return hashval;
512 }
513
514 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
515 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
516 the other edge flags. */
517
518 static bool
519 inverse_flags (const_same_succ e1, const_same_succ e2)
520 {
521 int f1a, f1b, f2a, f2b;
522 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
523
524 if (e1->succ_flags.length () != 2)
525 return false;
526
527 f1a = e1->succ_flags[0];
528 f1b = e1->succ_flags[1];
529 f2a = e2->succ_flags[0];
530 f2b = e2->succ_flags[1];
531
532 if (f1a == f2a && f1b == f2b)
533 return false;
534
535 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
536 }
537
538 /* Compares SAME_SUCCs E1 and E2. */
539
540 int
541 same_succ_def::equal (const value_type *e1, const compare_type *e2)
542 {
543 unsigned int i, first1, first2;
544 gimple_stmt_iterator gsi1, gsi2;
545 gimple s1, s2;
546 basic_block bb1, bb2;
547
548 if (e1->hashval != e2->hashval)
549 return 0;
550
551 if (e1->succ_flags.length () != e2->succ_flags.length ())
552 return 0;
553
554 if (!bitmap_equal_p (e1->succs, e2->succs))
555 return 0;
556
557 if (!inverse_flags (e1, e2))
558 {
559 for (i = 0; i < e1->succ_flags.length (); ++i)
560 if (e1->succ_flags[i] != e1->succ_flags[i])
561 return 0;
562 }
563
564 first1 = bitmap_first_set_bit (e1->bbs);
565 first2 = bitmap_first_set_bit (e2->bbs);
566
567 bb1 = BASIC_BLOCK (first1);
568 bb2 = BASIC_BLOCK (first2);
569
570 if (BB_SIZE (bb1) != BB_SIZE (bb2))
571 return 0;
572
573 gsi1 = gsi_start_nondebug_bb (bb1);
574 gsi2 = gsi_start_nondebug_bb (bb2);
575 gsi_advance_fw_nondebug_nonlocal (&gsi1);
576 gsi_advance_fw_nondebug_nonlocal (&gsi2);
577 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
578 {
579 s1 = gsi_stmt (gsi1);
580 s2 = gsi_stmt (gsi2);
581 if (gimple_code (s1) != gimple_code (s2))
582 return 0;
583 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
584 return 0;
585 gsi_next_nondebug (&gsi1);
586 gsi_next_nondebug (&gsi2);
587 gsi_advance_fw_nondebug_nonlocal (&gsi1);
588 gsi_advance_fw_nondebug_nonlocal (&gsi2);
589 }
590
591 return 1;
592 }
593
594 /* Alloc and init a new SAME_SUCC. */
595
596 static same_succ
597 same_succ_alloc (void)
598 {
599 same_succ same = XNEW (struct same_succ_def);
600
601 same->bbs = BITMAP_ALLOC (NULL);
602 same->succs = BITMAP_ALLOC (NULL);
603 same->inverse = BITMAP_ALLOC (NULL);
604 same->succ_flags.create (10);
605 same->in_worklist = false;
606
607 return same;
608 }
609
610 /* Delete same_succ E. */
611
612 void
613 same_succ_def::remove (same_succ e)
614 {
615 BITMAP_FREE (e->bbs);
616 BITMAP_FREE (e->succs);
617 BITMAP_FREE (e->inverse);
618 e->succ_flags.release ();
619
620 XDELETE (e);
621 }
622
623 /* Reset same_succ SAME. */
624
625 static void
626 same_succ_reset (same_succ same)
627 {
628 bitmap_clear (same->bbs);
629 bitmap_clear (same->succs);
630 bitmap_clear (same->inverse);
631 same->succ_flags.truncate (0);
632 }
633
634 static hash_table <same_succ_def> same_succ_htab;
635
636 /* Array that is used to store the edge flags for a successor. */
637
638 static int *same_succ_edge_flags;
639
640 /* Bitmap that is used to mark bbs that are recently deleted. */
641
642 static bitmap deleted_bbs;
643
644 /* Bitmap that is used to mark predecessors of bbs that are
645 deleted. */
646
647 static bitmap deleted_bb_preds;
648
649 /* Prints same_succ_htab to stderr. */
650
651 extern void debug_same_succ (void);
652 DEBUG_FUNCTION void
653 debug_same_succ ( void)
654 {
655 same_succ_htab.traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
656 }
657
658
659 /* Vector of bbs to process. */
660
661 static vec<same_succ> worklist;
662
663 /* Prints worklist to FILE. */
664
665 static void
666 print_worklist (FILE *file)
667 {
668 unsigned int i;
669 for (i = 0; i < worklist.length (); ++i)
670 same_succ_print (file, worklist[i]);
671 }
672
673 /* Adds SAME to worklist. */
674
675 static void
676 add_to_worklist (same_succ same)
677 {
678 if (same->in_worklist)
679 return;
680
681 if (bitmap_count_bits (same->bbs) < 2)
682 return;
683
684 same->in_worklist = true;
685 worklist.safe_push (same);
686 }
687
688 /* Add BB to same_succ_htab. */
689
690 static void
691 find_same_succ_bb (basic_block bb, same_succ *same_p)
692 {
693 unsigned int j;
694 bitmap_iterator bj;
695 same_succ same = *same_p;
696 same_succ *slot;
697 edge_iterator ei;
698 edge e;
699
700 if (bb == NULL
701 /* Be conservative with loop structure. It's not evident that this test
702 is sufficient. Before tail-merge, we've just called
703 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
704 set, so there's no guarantee that the loop->latch value is still valid.
705 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
706 start of pre, we've kept that property intact throughout pre, and are
707 keeping it throughout tail-merge using this test. */
708 || bb->loop_father->latch == bb)
709 return;
710 bitmap_set_bit (same->bbs, bb->index);
711 FOR_EACH_EDGE (e, ei, bb->succs)
712 {
713 int index = e->dest->index;
714 bitmap_set_bit (same->succs, index);
715 same_succ_edge_flags[index] = e->flags;
716 }
717 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
718 same->succ_flags.safe_push (same_succ_edge_flags[j]);
719
720 same->hashval = same_succ_hash (same);
721
722 slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
723 if (*slot == NULL)
724 {
725 *slot = same;
726 BB_SAME_SUCC (bb) = same;
727 add_to_worklist (same);
728 *same_p = NULL;
729 }
730 else
731 {
732 bitmap_set_bit ((*slot)->bbs, bb->index);
733 BB_SAME_SUCC (bb) = *slot;
734 add_to_worklist (*slot);
735 if (inverse_flags (same, *slot))
736 bitmap_set_bit ((*slot)->inverse, bb->index);
737 same_succ_reset (same);
738 }
739 }
740
741 /* Find bbs with same successors. */
742
743 static void
744 find_same_succ (void)
745 {
746 same_succ same = same_succ_alloc ();
747 basic_block bb;
748
749 FOR_EACH_BB (bb)
750 {
751 find_same_succ_bb (bb, &same);
752 if (same == NULL)
753 same = same_succ_alloc ();
754 }
755
756 same_succ_def::remove (same);
757 }
758
759 /* Initializes worklist administration. */
760
761 static void
762 init_worklist (void)
763 {
764 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
765 same_succ_htab.create (n_basic_blocks);
766 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
767 deleted_bbs = BITMAP_ALLOC (NULL);
768 deleted_bb_preds = BITMAP_ALLOC (NULL);
769 worklist.create (n_basic_blocks);
770 find_same_succ ();
771
772 if (dump_file && (dump_flags & TDF_DETAILS))
773 {
774 fprintf (dump_file, "initial worklist:\n");
775 print_worklist (dump_file);
776 }
777 }
778
779 /* Deletes worklist administration. */
780
781 static void
782 delete_worklist (void)
783 {
784 free_aux_for_blocks ();
785 same_succ_htab.dispose ();
786 XDELETEVEC (same_succ_edge_flags);
787 same_succ_edge_flags = NULL;
788 BITMAP_FREE (deleted_bbs);
789 BITMAP_FREE (deleted_bb_preds);
790 worklist.release ();
791 }
792
793 /* Mark BB as deleted, and mark its predecessors. */
794
795 static void
796 mark_basic_block_deleted (basic_block bb)
797 {
798 edge e;
799 edge_iterator ei;
800
801 bitmap_set_bit (deleted_bbs, bb->index);
802
803 FOR_EACH_EDGE (e, ei, bb->preds)
804 bitmap_set_bit (deleted_bb_preds, e->src->index);
805 }
806
807 /* Removes BB from its corresponding same_succ. */
808
809 static void
810 same_succ_flush_bb (basic_block bb)
811 {
812 same_succ same = BB_SAME_SUCC (bb);
813 BB_SAME_SUCC (bb) = NULL;
814 if (bitmap_single_bit_set_p (same->bbs))
815 same_succ_htab.remove_elt_with_hash (same, same->hashval);
816 else
817 bitmap_clear_bit (same->bbs, bb->index);
818 }
819
820 /* Removes all bbs in BBS from their corresponding same_succ. */
821
822 static void
823 same_succ_flush_bbs (bitmap bbs)
824 {
825 unsigned int i;
826 bitmap_iterator bi;
827
828 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
829 same_succ_flush_bb (BASIC_BLOCK (i));
830 }
831
832 /* Release the last vdef in BB, either normal or phi result. */
833
834 static void
835 release_last_vdef (basic_block bb)
836 {
837 gimple_stmt_iterator i;
838
839 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
840 {
841 gimple stmt = gsi_stmt (i);
842 if (gimple_vdef (stmt) == NULL_TREE)
843 continue;
844
845 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
846 return;
847 }
848
849 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
850 {
851 gimple phi = gsi_stmt (i);
852 tree res = gimple_phi_result (phi);
853
854 if (!virtual_operand_p (res))
855 continue;
856
857 mark_virtual_phi_result_for_renaming (phi);
858 return;
859 }
860
861 }
862
863 /* For deleted_bb_preds, find bbs with same successors. */
864
865 static void
866 update_worklist (void)
867 {
868 unsigned int i;
869 bitmap_iterator bi;
870 basic_block bb;
871 same_succ same;
872
873 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
874 bitmap_clear (deleted_bbs);
875
876 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
877 same_succ_flush_bbs (deleted_bb_preds);
878
879 same = same_succ_alloc ();
880 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
881 {
882 bb = BASIC_BLOCK (i);
883 gcc_assert (bb != NULL);
884 find_same_succ_bb (bb, &same);
885 if (same == NULL)
886 same = same_succ_alloc ();
887 }
888 same_succ_def::remove (same);
889 bitmap_clear (deleted_bb_preds);
890 }
891
892 /* Prints cluster C to FILE. */
893
894 static void
895 print_cluster (FILE *file, bb_cluster c)
896 {
897 if (c == NULL)
898 return;
899 bitmap_print (file, c->bbs, "bbs:", "\n");
900 bitmap_print (file, c->preds, "preds:", "\n");
901 }
902
903 /* Prints cluster C to stderr. */
904
905 extern void debug_cluster (bb_cluster);
906 DEBUG_FUNCTION void
907 debug_cluster (bb_cluster c)
908 {
909 print_cluster (stderr, c);
910 }
911
912 /* Update C->rep_bb, given that BB is added to the cluster. */
913
914 static void
915 update_rep_bb (bb_cluster c, basic_block bb)
916 {
917 /* Initial. */
918 if (c->rep_bb == NULL)
919 {
920 c->rep_bb = bb;
921 return;
922 }
923
924 /* Current needs no deps, keep it. */
925 if (BB_DEP_BB (c->rep_bb) == NULL)
926 return;
927
928 /* Bb needs no deps, change rep_bb. */
929 if (BB_DEP_BB (bb) == NULL)
930 {
931 c->rep_bb = bb;
932 return;
933 }
934
935 /* Bb needs last deps earlier than current, change rep_bb. A potential
936 problem with this, is that the first deps might also be earlier, which
937 would mean we prefer longer lifetimes for the deps. To be able to check
938 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
939 BB_DEP_BB, which is really BB_LAST_DEP_BB.
940 The benefit of choosing the bb with last deps earlier, is that it can
941 potentially be used as replacement for more bbs. */
942 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
943 c->rep_bb = bb;
944 }
945
946 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
947
948 static void
949 add_bb_to_cluster (bb_cluster c, basic_block bb)
950 {
951 edge e;
952 edge_iterator ei;
953
954 bitmap_set_bit (c->bbs, bb->index);
955
956 FOR_EACH_EDGE (e, ei, bb->preds)
957 bitmap_set_bit (c->preds, e->src->index);
958
959 update_rep_bb (c, bb);
960 }
961
962 /* Allocate and init new cluster. */
963
964 static bb_cluster
965 new_cluster (void)
966 {
967 bb_cluster c;
968 c = XCNEW (struct bb_cluster_def);
969 c->bbs = BITMAP_ALLOC (NULL);
970 c->preds = BITMAP_ALLOC (NULL);
971 c->rep_bb = NULL;
972 return c;
973 }
974
975 /* Delete clusters. */
976
977 static void
978 delete_cluster (bb_cluster c)
979 {
980 if (c == NULL)
981 return;
982 BITMAP_FREE (c->bbs);
983 BITMAP_FREE (c->preds);
984 XDELETE (c);
985 }
986
987
988 /* Array that contains all clusters. */
989
990 static vec<bb_cluster> all_clusters;
991
992 /* Allocate all cluster vectors. */
993
994 static void
995 alloc_cluster_vectors (void)
996 {
997 all_clusters.create (n_basic_blocks);
998 }
999
1000 /* Reset all cluster vectors. */
1001
1002 static void
1003 reset_cluster_vectors (void)
1004 {
1005 unsigned int i;
1006 basic_block bb;
1007 for (i = 0; i < all_clusters.length (); ++i)
1008 delete_cluster (all_clusters[i]);
1009 all_clusters.truncate (0);
1010 FOR_EACH_BB (bb)
1011 BB_CLUSTER (bb) = NULL;
1012 }
1013
1014 /* Delete all cluster vectors. */
1015
1016 static void
1017 delete_cluster_vectors (void)
1018 {
1019 unsigned int i;
1020 for (i = 0; i < all_clusters.length (); ++i)
1021 delete_cluster (all_clusters[i]);
1022 all_clusters.release ();
1023 }
1024
1025 /* Merge cluster C2 into C1. */
1026
1027 static void
1028 merge_clusters (bb_cluster c1, bb_cluster c2)
1029 {
1030 bitmap_ior_into (c1->bbs, c2->bbs);
1031 bitmap_ior_into (c1->preds, c2->preds);
1032 }
1033
1034 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1035 all_clusters, or merge c with existing cluster. */
1036
1037 static void
1038 set_cluster (basic_block bb1, basic_block bb2)
1039 {
1040 basic_block merge_bb, other_bb;
1041 bb_cluster merge, old, c;
1042
1043 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1044 {
1045 c = new_cluster ();
1046 add_bb_to_cluster (c, bb1);
1047 add_bb_to_cluster (c, bb2);
1048 BB_CLUSTER (bb1) = c;
1049 BB_CLUSTER (bb2) = c;
1050 c->index = all_clusters.length ();
1051 all_clusters.safe_push (c);
1052 }
1053 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1054 {
1055 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1056 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1057 merge = BB_CLUSTER (merge_bb);
1058 add_bb_to_cluster (merge, other_bb);
1059 BB_CLUSTER (other_bb) = merge;
1060 }
1061 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1062 {
1063 unsigned int i;
1064 bitmap_iterator bi;
1065
1066 old = BB_CLUSTER (bb2);
1067 merge = BB_CLUSTER (bb1);
1068 merge_clusters (merge, old);
1069 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1070 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1071 all_clusters[old->index] = NULL;
1072 update_rep_bb (merge, old->rep_bb);
1073 delete_cluster (old);
1074 }
1075 else
1076 gcc_unreachable ();
1077 }
1078
1079 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1080 gimple_bb (s2) are members of SAME_SUCC. */
1081
1082 static bool
1083 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1084 {
1085 unsigned int i;
1086 tree lhs1, lhs2;
1087 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1088 tree t1, t2;
1089 bool inv_cond;
1090 enum tree_code code1, code2;
1091
1092 if (gimple_code (s1) != gimple_code (s2))
1093 return false;
1094
1095 switch (gimple_code (s1))
1096 {
1097 case GIMPLE_CALL:
1098 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1099 return false;
1100 if (!gimple_call_same_target_p (s1, s2))
1101 return false;
1102
1103 /* Eventually, we'll significantly complicate the CFG by adding
1104 back edges to properly model the effects of transaction restart.
1105 For the bulk of optimization this does not matter, but what we
1106 cannot recover from is tail merging blocks between two separate
1107 transactions. Avoid that by making commit not match. */
1108 if (gimple_call_builtin_p (s1, BUILT_IN_TM_COMMIT))
1109 return false;
1110
1111 for (i = 0; i < gimple_call_num_args (s1); ++i)
1112 {
1113 t1 = gimple_call_arg (s1, i);
1114 t2 = gimple_call_arg (s2, i);
1115 if (operand_equal_p (t1, t2, 0))
1116 continue;
1117 if (gvn_uses_equal (t1, t2))
1118 continue;
1119 return false;
1120 }
1121
1122 lhs1 = gimple_get_lhs (s1);
1123 lhs2 = gimple_get_lhs (s2);
1124 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1125 return true;
1126 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1127 return false;
1128 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1129 return vn_valueize (lhs1) == vn_valueize (lhs2);
1130 return operand_equal_p (lhs1, lhs2, 0);
1131
1132 case GIMPLE_ASSIGN:
1133 lhs1 = gimple_get_lhs (s1);
1134 lhs2 = gimple_get_lhs (s2);
1135 if (TREE_CODE (lhs1) != SSA_NAME
1136 && TREE_CODE (lhs2) != SSA_NAME)
1137 return (vn_valueize (gimple_vdef (s1))
1138 == vn_valueize (gimple_vdef (s2)));
1139 else if (TREE_CODE (lhs1) == SSA_NAME
1140 && TREE_CODE (lhs2) == SSA_NAME)
1141 return vn_valueize (lhs1) == vn_valueize (lhs2);
1142 return false;
1143
1144 case GIMPLE_COND:
1145 t1 = gimple_cond_lhs (s1);
1146 t2 = gimple_cond_lhs (s2);
1147 if (!operand_equal_p (t1, t2, 0)
1148 && !gvn_uses_equal (t1, t2))
1149 return false;
1150
1151 t1 = gimple_cond_rhs (s1);
1152 t2 = gimple_cond_rhs (s2);
1153 if (!operand_equal_p (t1, t2, 0)
1154 && !gvn_uses_equal (t1, t2))
1155 return false;
1156
1157 code1 = gimple_expr_code (s1);
1158 code2 = gimple_expr_code (s2);
1159 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1160 != bitmap_bit_p (same_succ->inverse, bb2->index));
1161 if (inv_cond)
1162 {
1163 bool honor_nans
1164 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1165 code2 = invert_tree_comparison (code2, honor_nans);
1166 }
1167 return code1 == code2;
1168
1169 default:
1170 return false;
1171 }
1172 }
1173
1174 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1175 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1176 processed statements. */
1177
1178 static void
1179 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1180 bool *vuse_escaped)
1181 {
1182 gimple stmt;
1183 tree lvuse;
1184
1185 while (true)
1186 {
1187 if (gsi_end_p (*gsi))
1188 return;
1189 stmt = gsi_stmt (*gsi);
1190
1191 lvuse = gimple_vuse (stmt);
1192 if (lvuse != NULL_TREE)
1193 {
1194 *vuse = lvuse;
1195 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1196 *vuse_escaped = true;
1197 }
1198
1199 if (!stmt_local_def (stmt))
1200 return;
1201 gsi_prev_nondebug (gsi);
1202 }
1203 }
1204
1205 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1206 clusters them. */
1207
1208 static void
1209 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1210 {
1211 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1212 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1213 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1214 bool vuse_escaped = false;
1215
1216 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1217 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1218
1219 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1220 {
1221 gimple stmt1 = gsi_stmt (gsi1);
1222 gimple stmt2 = gsi_stmt (gsi2);
1223
1224 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1225 return;
1226
1227 // We cannot tail-merge the builtins that end transactions.
1228 // ??? The alternative being unsharing of BBs in the tm_init pass.
1229 if (flag_tm
1230 && is_gimple_call (stmt1)
1231 && (gimple_call_flags (stmt1) & ECF_TM_BUILTIN)
1232 && is_tm_ending_fndecl (gimple_call_fndecl (stmt1)))
1233 return;
1234
1235 gsi_prev_nondebug (&gsi1);
1236 gsi_prev_nondebug (&gsi2);
1237 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1238 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1239 }
1240
1241 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1242 return;
1243
1244 /* If the incoming vuses are not the same, and the vuse escaped into an
1245 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1246 which potentially means the semantics of one of the blocks will be changed.
1247 TODO: make this check more precise. */
1248 if (vuse_escaped && vuse1 != vuse2)
1249 return;
1250
1251 if (dump_file)
1252 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1253 bb1->index, bb2->index);
1254
1255 set_cluster (bb1, bb2);
1256 }
1257
1258 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1259 E2 are equal. */
1260
1261 static bool
1262 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1263 {
1264 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1265 gimple_stmt_iterator gsi;
1266
1267 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1268 {
1269 gimple phi = gsi_stmt (gsi);
1270 tree lhs = gimple_phi_result (phi);
1271 tree val1 = gimple_phi_arg_def (phi, n1);
1272 tree val2 = gimple_phi_arg_def (phi, n2);
1273
1274 if (virtual_operand_p (lhs))
1275 continue;
1276
1277 if (operand_equal_for_phi_arg_p (val1, val2))
1278 continue;
1279 if (gvn_uses_equal (val1, val2))
1280 continue;
1281
1282 return false;
1283 }
1284
1285 return true;
1286 }
1287
1288 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1289 phi alternatives for BB1 and BB2 are equal. */
1290
1291 static bool
1292 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1293 {
1294 unsigned int s;
1295 bitmap_iterator bs;
1296 edge e1, e2;
1297 basic_block succ;
1298
1299 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1300 {
1301 succ = BASIC_BLOCK (s);
1302 e1 = find_edge (bb1, succ);
1303 e2 = find_edge (bb2, succ);
1304 if (e1->flags & EDGE_COMPLEX
1305 || e2->flags & EDGE_COMPLEX)
1306 return false;
1307
1308 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1309 the same value. */
1310 if (!same_phi_alternatives_1 (succ, e1, e2))
1311 return false;
1312 }
1313
1314 return true;
1315 }
1316
1317 /* Return true if BB has non-vop phis. */
1318
1319 static bool
1320 bb_has_non_vop_phi (basic_block bb)
1321 {
1322 gimple_seq phis = phi_nodes (bb);
1323 gimple phi;
1324
1325 if (phis == NULL)
1326 return false;
1327
1328 if (!gimple_seq_singleton_p (phis))
1329 return true;
1330
1331 phi = gimple_seq_first_stmt (phis);
1332 return !virtual_operand_p (gimple_phi_result (phi));
1333 }
1334
1335 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1336 invariant that uses in FROM are dominates by their defs. */
1337
1338 static bool
1339 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1340 {
1341 basic_block cd, dep_bb = BB_DEP_BB (to);
1342 edge_iterator ei;
1343 edge e;
1344 bitmap from_preds = BITMAP_ALLOC (NULL);
1345
1346 if (dep_bb == NULL)
1347 return true;
1348
1349 FOR_EACH_EDGE (e, ei, from->preds)
1350 bitmap_set_bit (from_preds, e->src->index);
1351 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1352 BITMAP_FREE (from_preds);
1353
1354 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1355 }
1356
1357 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1358 replacement bb) and vice versa maintains the invariant that uses in the
1359 replacement are dominates by their defs. */
1360
1361 static bool
1362 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1363 {
1364 if (BB_CLUSTER (bb1) != NULL)
1365 bb1 = BB_CLUSTER (bb1)->rep_bb;
1366
1367 if (BB_CLUSTER (bb2) != NULL)
1368 bb2 = BB_CLUSTER (bb2)->rep_bb;
1369
1370 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1371 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1372 }
1373
1374 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1375
1376 static void
1377 find_clusters_1 (same_succ same_succ)
1378 {
1379 basic_block bb1, bb2;
1380 unsigned int i, j;
1381 bitmap_iterator bi, bj;
1382 int nr_comparisons;
1383 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1384
1385 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1386 {
1387 bb1 = BASIC_BLOCK (i);
1388
1389 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1390 phi-nodes in bb1 and bb2, with the same alternatives for the same
1391 preds. */
1392 if (bb_has_non_vop_phi (bb1))
1393 continue;
1394
1395 nr_comparisons = 0;
1396 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1397 {
1398 bb2 = BASIC_BLOCK (j);
1399
1400 if (bb_has_non_vop_phi (bb2))
1401 continue;
1402
1403 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1404 continue;
1405
1406 /* Limit quadratic behaviour. */
1407 nr_comparisons++;
1408 if (nr_comparisons > max_comparisons)
1409 break;
1410
1411 /* This is a conservative dependency check. We could test more
1412 precise for allowed replacement direction. */
1413 if (!deps_ok_for_redirect (bb1, bb2))
1414 continue;
1415
1416 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1417 continue;
1418
1419 find_duplicate (same_succ, bb1, bb2);
1420 }
1421 }
1422 }
1423
1424 /* Find clusters of bbs which can be merged. */
1425
1426 static void
1427 find_clusters (void)
1428 {
1429 same_succ same;
1430
1431 while (!worklist.is_empty ())
1432 {
1433 same = worklist.pop ();
1434 same->in_worklist = false;
1435 if (dump_file && (dump_flags & TDF_DETAILS))
1436 {
1437 fprintf (dump_file, "processing worklist entry\n");
1438 same_succ_print (dump_file, same);
1439 }
1440 find_clusters_1 (same);
1441 }
1442 }
1443
1444 /* Returns the vop phi of BB, if any. */
1445
1446 static gimple
1447 vop_phi (basic_block bb)
1448 {
1449 gimple stmt;
1450 gimple_stmt_iterator gsi;
1451 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1452 {
1453 stmt = gsi_stmt (gsi);
1454 if (! virtual_operand_p (gimple_phi_result (stmt)))
1455 continue;
1456 return stmt;
1457 }
1458 return NULL;
1459 }
1460
1461 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1462
1463 static void
1464 replace_block_by (basic_block bb1, basic_block bb2)
1465 {
1466 edge pred_edge;
1467 edge e1, e2;
1468 edge_iterator ei;
1469 unsigned int i;
1470 gimple bb2_phi;
1471
1472 bb2_phi = vop_phi (bb2);
1473
1474 /* Mark the basic block as deleted. */
1475 mark_basic_block_deleted (bb1);
1476
1477 /* Redirect the incoming edges of bb1 to bb2. */
1478 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1479 {
1480 pred_edge = EDGE_PRED (bb1, i - 1);
1481 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1482 gcc_assert (pred_edge != NULL);
1483
1484 if (bb2_phi == NULL)
1485 continue;
1486
1487 /* The phi might have run out of capacity when the redirect added an
1488 argument, which means it could have been replaced. Refresh it. */
1489 bb2_phi = vop_phi (bb2);
1490
1491 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1492 pred_edge, UNKNOWN_LOCATION);
1493 }
1494
1495 bb2->frequency += bb1->frequency;
1496 if (bb2->frequency > BB_FREQ_MAX)
1497 bb2->frequency = BB_FREQ_MAX;
1498
1499 bb2->count += bb1->count;
1500
1501 /* Merge the outgoing edge counts from bb1 onto bb2. */
1502 gcov_type out_sum = 0;
1503 FOR_EACH_EDGE (e1, ei, bb1->succs)
1504 {
1505 e2 = find_edge (bb2, e1->dest);
1506 gcc_assert (e2);
1507 e2->count += e1->count;
1508 out_sum += e2->count;
1509 }
1510 /* Recompute the edge probabilities from the new merged edge count.
1511 Use the sum of the new merged edge counts computed above instead
1512 of bb2's merged count, in case there are profile count insanities
1513 making the bb count inconsistent with the edge weights. */
1514 FOR_EACH_EDGE (e2, ei, bb2->succs)
1515 {
1516 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1517 }
1518
1519 /* Do updates that use bb1, before deleting bb1. */
1520 release_last_vdef (bb1);
1521 same_succ_flush_bb (bb1);
1522
1523 delete_basic_block (bb1);
1524 }
1525
1526 /* Bbs for which update_debug_stmt need to be called. */
1527
1528 static bitmap update_bbs;
1529
1530 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1531 number of bbs removed. */
1532
1533 static int
1534 apply_clusters (void)
1535 {
1536 basic_block bb1, bb2;
1537 bb_cluster c;
1538 unsigned int i, j;
1539 bitmap_iterator bj;
1540 int nr_bbs_removed = 0;
1541
1542 for (i = 0; i < all_clusters.length (); ++i)
1543 {
1544 c = all_clusters[i];
1545 if (c == NULL)
1546 continue;
1547
1548 bb2 = c->rep_bb;
1549 bitmap_set_bit (update_bbs, bb2->index);
1550
1551 bitmap_clear_bit (c->bbs, bb2->index);
1552 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1553 {
1554 bb1 = BASIC_BLOCK (j);
1555 bitmap_clear_bit (update_bbs, bb1->index);
1556
1557 replace_block_by (bb1, bb2);
1558 nr_bbs_removed++;
1559 }
1560 }
1561
1562 return nr_bbs_removed;
1563 }
1564
1565 /* Resets debug statement STMT if it has uses that are not dominated by their
1566 defs. */
1567
1568 static void
1569 update_debug_stmt (gimple stmt)
1570 {
1571 use_operand_p use_p;
1572 ssa_op_iter oi;
1573 basic_block bbdef, bbuse;
1574 gimple def_stmt;
1575 tree name;
1576
1577 if (!gimple_debug_bind_p (stmt))
1578 return;
1579
1580 bbuse = gimple_bb (stmt);
1581 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1582 {
1583 name = USE_FROM_PTR (use_p);
1584 gcc_assert (TREE_CODE (name) == SSA_NAME);
1585
1586 def_stmt = SSA_NAME_DEF_STMT (name);
1587 gcc_assert (def_stmt != NULL);
1588
1589 bbdef = gimple_bb (def_stmt);
1590 if (bbdef == NULL || bbuse == bbdef
1591 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1592 continue;
1593
1594 gimple_debug_bind_reset_value (stmt);
1595 update_stmt (stmt);
1596 }
1597 }
1598
1599 /* Resets all debug statements that have uses that are not
1600 dominated by their defs. */
1601
1602 static void
1603 update_debug_stmts (void)
1604 {
1605 basic_block bb;
1606 bitmap_iterator bi;
1607 unsigned int i;
1608
1609 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1610 {
1611 gimple stmt;
1612 gimple_stmt_iterator gsi;
1613
1614 bb = BASIC_BLOCK (i);
1615 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1616 {
1617 stmt = gsi_stmt (gsi);
1618 if (!is_gimple_debug (stmt))
1619 continue;
1620 update_debug_stmt (stmt);
1621 }
1622 }
1623 }
1624
1625 /* Runs tail merge optimization. */
1626
1627 unsigned int
1628 tail_merge_optimize (unsigned int todo)
1629 {
1630 int nr_bbs_removed_total = 0;
1631 int nr_bbs_removed;
1632 bool loop_entered = false;
1633 int iteration_nr = 0;
1634 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1635
1636 if (!flag_tree_tail_merge
1637 || max_iterations == 0
1638 /* We try to be conservative with respect to loop structure, since:
1639 - the cases where tail-merging could both affect loop structure and be
1640 beneficial are rare,
1641 - it prevents us from having to fixup the loops using
1642 loops_state_set (LOOPS_NEED_FIXUP), and
1643 - keeping loop structure may allow us to simplify the pass.
1644 In order to be conservative, we need loop information. In rare cases
1645 (about 7 test-cases in the g++ testsuite) there is none (because
1646 loop_optimizer_finalize has been called before tail-merge, and
1647 PROP_loops is not set), so we bail out. */
1648 || current_loops == NULL)
1649 return 0;
1650
1651 timevar_push (TV_TREE_TAIL_MERGE);
1652
1653 if (!dom_info_available_p (CDI_DOMINATORS))
1654 {
1655 /* PRE can leave us with unreachable blocks, remove them now. */
1656 delete_unreachable_blocks ();
1657 calculate_dominance_info (CDI_DOMINATORS);
1658 }
1659 init_worklist ();
1660
1661 while (!worklist.is_empty ())
1662 {
1663 if (!loop_entered)
1664 {
1665 loop_entered = true;
1666 alloc_cluster_vectors ();
1667 update_bbs = BITMAP_ALLOC (NULL);
1668 }
1669 else
1670 reset_cluster_vectors ();
1671
1672 iteration_nr++;
1673 if (dump_file && (dump_flags & TDF_DETAILS))
1674 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1675
1676 find_clusters ();
1677 gcc_assert (worklist.is_empty ());
1678 if (all_clusters.is_empty ())
1679 break;
1680
1681 nr_bbs_removed = apply_clusters ();
1682 nr_bbs_removed_total += nr_bbs_removed;
1683 if (nr_bbs_removed == 0)
1684 break;
1685
1686 free_dominance_info (CDI_DOMINATORS);
1687
1688 if (iteration_nr == max_iterations)
1689 break;
1690
1691 calculate_dominance_info (CDI_DOMINATORS);
1692 update_worklist ();
1693 }
1694
1695 if (dump_file && (dump_flags & TDF_DETAILS))
1696 fprintf (dump_file, "htab collision / search: %f\n",
1697 same_succ_htab.collisions ());
1698
1699 if (nr_bbs_removed_total > 0)
1700 {
1701 if (MAY_HAVE_DEBUG_STMTS)
1702 {
1703 calculate_dominance_info (CDI_DOMINATORS);
1704 update_debug_stmts ();
1705 }
1706
1707 if (dump_file && (dump_flags & TDF_DETAILS))
1708 {
1709 fprintf (dump_file, "Before TODOs.\n");
1710 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1711 }
1712
1713 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow);
1714 mark_virtual_operands_for_renaming (cfun);
1715 }
1716
1717 delete_worklist ();
1718 if (loop_entered)
1719 {
1720 delete_cluster_vectors ();
1721 BITMAP_FREE (update_bbs);
1722 }
1723
1724 timevar_pop (TV_TREE_TAIL_MERGE);
1725
1726 return todo;
1727 }