]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-tail-merge.c
re PR tree-optimization/65388 (Wrong comparison in same_succ_def::equal() tree-ssa...
[thirdparty/gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2015 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "hash-set.h"
193 #include "machmode.h"
194 #include "vec.h"
195 #include "double-int.h"
196 #include "input.h"
197 #include "alias.h"
198 #include "symtab.h"
199 #include "wide-int.h"
200 #include "inchash.h"
201 #include "real.h"
202 #include "tree.h"
203 #include "fold-const.h"
204 #include "stor-layout.h"
205 #include "trans-mem.h"
206 #include "inchash.h"
207 #include "tm_p.h"
208 #include "predict.h"
209 #include "hard-reg-set.h"
210 #include "input.h"
211 #include "function.h"
212 #include "dominance.h"
213 #include "cfg.h"
214 #include "cfganal.h"
215 #include "cfgcleanup.h"
216 #include "basic-block.h"
217 #include "flags.h"
218 #include "hash-table.h"
219 #include "tree-ssa-alias.h"
220 #include "internal-fn.h"
221 #include "tree-eh.h"
222 #include "gimple-expr.h"
223 #include "is-a.h"
224 #include "gimple.h"
225 #include "gimple-iterator.h"
226 #include "gimple-ssa.h"
227 #include "tree-cfg.h"
228 #include "tree-phinodes.h"
229 #include "ssa-iterators.h"
230 #include "tree-into-ssa.h"
231 #include "params.h"
232 #include "gimple-pretty-print.h"
233 #include "tree-ssa-sccvn.h"
234 #include "tree-dump.h"
235 #include "cfgloop.h"
236 #include "tree-pass.h"
237 #include "trans-mem.h"
238
239 /* Describes a group of bbs with the same successors. The successor bbs are
240 cached in succs, and the successor edge flags are cached in succ_flags.
241 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
242 it's marked in inverse.
243 Additionally, the hash value for the struct is cached in hashval, and
244 in_worklist indicates whether it's currently part of worklist. */
245
246 struct same_succ_def
247 {
248 /* The bbs that have the same successor bbs. */
249 bitmap bbs;
250 /* The successor bbs. */
251 bitmap succs;
252 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
253 bb. */
254 bitmap inverse;
255 /* The edge flags for each of the successor bbs. */
256 vec<int> succ_flags;
257 /* Indicates whether the struct is currently in the worklist. */
258 bool in_worklist;
259 /* The hash value of the struct. */
260 hashval_t hashval;
261
262 /* hash_table support. */
263 typedef same_succ_def value_type;
264 typedef same_succ_def compare_type;
265 static inline hashval_t hash (const value_type *);
266 static int equal (const value_type *, const compare_type *);
267 static void remove (value_type *);
268 };
269 typedef struct same_succ_def *same_succ;
270 typedef const struct same_succ_def *const_same_succ;
271
272 /* hash routine for hash_table support, returns hashval of E. */
273
274 inline hashval_t
275 same_succ_def::hash (const value_type *e)
276 {
277 return e->hashval;
278 }
279
280 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
281
282 struct bb_cluster_def
283 {
284 /* The bbs in the cluster. */
285 bitmap bbs;
286 /* The preds of the bbs in the cluster. */
287 bitmap preds;
288 /* Index in all_clusters vector. */
289 int index;
290 /* The bb to replace the cluster with. */
291 basic_block rep_bb;
292 };
293 typedef struct bb_cluster_def *bb_cluster;
294 typedef const struct bb_cluster_def *const_bb_cluster;
295
296 /* Per bb-info. */
297
298 struct aux_bb_info
299 {
300 /* The number of non-debug statements in the bb. */
301 int size;
302 /* The same_succ that this bb is a member of. */
303 same_succ bb_same_succ;
304 /* The cluster that this bb is a member of. */
305 bb_cluster cluster;
306 /* The vop state at the exit of a bb. This is shortlived data, used to
307 communicate data between update_block_by and update_vuses. */
308 tree vop_at_exit;
309 /* The bb that either contains or is dominated by the dependencies of the
310 bb. */
311 basic_block dep_bb;
312 };
313
314 /* Macros to access the fields of struct aux_bb_info. */
315
316 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
317 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
318 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
319 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
320 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
321
322 /* Returns true if the only effect a statement STMT has, is to define locally
323 used SSA_NAMEs. */
324
325 static bool
326 stmt_local_def (gimple stmt)
327 {
328 basic_block bb, def_bb;
329 imm_use_iterator iter;
330 use_operand_p use_p;
331 tree val;
332 def_operand_p def_p;
333
334 if (gimple_vdef (stmt) != NULL_TREE
335 || gimple_has_side_effects (stmt)
336 || gimple_could_trap_p_1 (stmt, false, false)
337 || gimple_vuse (stmt) != NULL_TREE)
338 return false;
339
340 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
341 if (def_p == NULL)
342 return false;
343
344 val = DEF_FROM_PTR (def_p);
345 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
346 return false;
347
348 def_bb = gimple_bb (stmt);
349
350 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
351 {
352 if (is_gimple_debug (USE_STMT (use_p)))
353 continue;
354 bb = gimple_bb (USE_STMT (use_p));
355 if (bb == def_bb)
356 continue;
357
358 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
359 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
360 continue;
361
362 return false;
363 }
364
365 return true;
366 }
367
368 /* Let GSI skip forwards over local defs. */
369
370 static void
371 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
372 {
373 gimple stmt;
374
375 while (true)
376 {
377 if (gsi_end_p (*gsi))
378 return;
379 stmt = gsi_stmt (*gsi);
380 if (!stmt_local_def (stmt))
381 return;
382 gsi_next_nondebug (gsi);
383 }
384 }
385
386 /* VAL1 and VAL2 are either:
387 - uses in BB1 and BB2, or
388 - phi alternatives for BB1 and BB2.
389 Return true if the uses have the same gvn value. */
390
391 static bool
392 gvn_uses_equal (tree val1, tree val2)
393 {
394 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
395
396 if (val1 == val2)
397 return true;
398
399 if (vn_valueize (val1) != vn_valueize (val2))
400 return false;
401
402 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
403 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
404 }
405
406 /* Prints E to FILE. */
407
408 static void
409 same_succ_print (FILE *file, const same_succ e)
410 {
411 unsigned int i;
412 bitmap_print (file, e->bbs, "bbs:", "\n");
413 bitmap_print (file, e->succs, "succs:", "\n");
414 bitmap_print (file, e->inverse, "inverse:", "\n");
415 fprintf (file, "flags:");
416 for (i = 0; i < e->succ_flags.length (); ++i)
417 fprintf (file, " %x", e->succ_flags[i]);
418 fprintf (file, "\n");
419 }
420
421 /* Prints same_succ VE to VFILE. */
422
423 inline int
424 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
425 {
426 const same_succ e = *pe;
427 same_succ_print (file, e);
428 return 1;
429 }
430
431 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
432
433 static void
434 update_dep_bb (basic_block use_bb, tree val)
435 {
436 basic_block dep_bb;
437
438 /* Not a dep. */
439 if (TREE_CODE (val) != SSA_NAME)
440 return;
441
442 /* Skip use of global def. */
443 if (SSA_NAME_IS_DEFAULT_DEF (val))
444 return;
445
446 /* Skip use of local def. */
447 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
448 if (dep_bb == use_bb)
449 return;
450
451 if (BB_DEP_BB (use_bb) == NULL
452 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
453 BB_DEP_BB (use_bb) = dep_bb;
454 }
455
456 /* Update BB_DEP_BB, given the dependencies in STMT. */
457
458 static void
459 stmt_update_dep_bb (gimple stmt)
460 {
461 ssa_op_iter iter;
462 use_operand_p use;
463
464 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
465 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
466 }
467
468 /* Calculates hash value for same_succ VE. */
469
470 static hashval_t
471 same_succ_hash (const_same_succ e)
472 {
473 inchash::hash hstate (bitmap_hash (e->succs));
474 int flags;
475 unsigned int i;
476 unsigned int first = bitmap_first_set_bit (e->bbs);
477 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
478 int size = 0;
479 gimple stmt;
480 tree arg;
481 unsigned int s;
482 bitmap_iterator bs;
483
484 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
485 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
486 {
487 stmt = gsi_stmt (gsi);
488 stmt_update_dep_bb (stmt);
489 if (stmt_local_def (stmt))
490 continue;
491 size++;
492
493 hstate.add_int (gimple_code (stmt));
494 if (is_gimple_assign (stmt))
495 hstate.add_int (gimple_assign_rhs_code (stmt));
496 if (!is_gimple_call (stmt))
497 continue;
498 if (gimple_call_internal_p (stmt))
499 hstate.add_int (gimple_call_internal_fn (stmt));
500 else
501 {
502 inchash::add_expr (gimple_call_fn (stmt), hstate);
503 if (gimple_call_chain (stmt))
504 inchash::add_expr (gimple_call_chain (stmt), hstate);
505 }
506 for (i = 0; i < gimple_call_num_args (stmt); i++)
507 {
508 arg = gimple_call_arg (stmt, i);
509 arg = vn_valueize (arg);
510 inchash::add_expr (arg, hstate);
511 }
512 }
513
514 hstate.add_int (size);
515 BB_SIZE (bb) = size;
516
517 for (i = 0; i < e->succ_flags.length (); ++i)
518 {
519 flags = e->succ_flags[i];
520 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
521 hstate.add_int (flags);
522 }
523
524 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
525 {
526 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
527 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
528 !gsi_end_p (gsi);
529 gsi_next (&gsi))
530 {
531 gphi *phi = gsi.phi ();
532 tree lhs = gimple_phi_result (phi);
533 tree val = gimple_phi_arg_def (phi, n);
534
535 if (virtual_operand_p (lhs))
536 continue;
537 update_dep_bb (bb, val);
538 }
539 }
540
541 return hstate.end ();
542 }
543
544 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
545 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
546 the other edge flags. */
547
548 static bool
549 inverse_flags (const_same_succ e1, const_same_succ e2)
550 {
551 int f1a, f1b, f2a, f2b;
552 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
553
554 if (e1->succ_flags.length () != 2)
555 return false;
556
557 f1a = e1->succ_flags[0];
558 f1b = e1->succ_flags[1];
559 f2a = e2->succ_flags[0];
560 f2b = e2->succ_flags[1];
561
562 if (f1a == f2a && f1b == f2b)
563 return false;
564
565 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
566 }
567
568 /* Compares SAME_SUCCs E1 and E2. */
569
570 int
571 same_succ_def::equal (const value_type *e1, const compare_type *e2)
572 {
573 unsigned int i, first1, first2;
574 gimple_stmt_iterator gsi1, gsi2;
575 gimple s1, s2;
576 basic_block bb1, bb2;
577
578 if (e1->hashval != e2->hashval)
579 return 0;
580
581 if (e1->succ_flags.length () != e2->succ_flags.length ())
582 return 0;
583
584 if (!bitmap_equal_p (e1->succs, e2->succs))
585 return 0;
586
587 if (!inverse_flags (e1, e2))
588 {
589 for (i = 0; i < e1->succ_flags.length (); ++i)
590 if (e1->succ_flags[i] != e2->succ_flags[i])
591 return 0;
592 }
593
594 first1 = bitmap_first_set_bit (e1->bbs);
595 first2 = bitmap_first_set_bit (e2->bbs);
596
597 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
598 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
599
600 if (BB_SIZE (bb1) != BB_SIZE (bb2))
601 return 0;
602
603 gsi1 = gsi_start_nondebug_bb (bb1);
604 gsi2 = gsi_start_nondebug_bb (bb2);
605 gsi_advance_fw_nondebug_nonlocal (&gsi1);
606 gsi_advance_fw_nondebug_nonlocal (&gsi2);
607 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
608 {
609 s1 = gsi_stmt (gsi1);
610 s2 = gsi_stmt (gsi2);
611 if (gimple_code (s1) != gimple_code (s2))
612 return 0;
613 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
614 return 0;
615 gsi_next_nondebug (&gsi1);
616 gsi_next_nondebug (&gsi2);
617 gsi_advance_fw_nondebug_nonlocal (&gsi1);
618 gsi_advance_fw_nondebug_nonlocal (&gsi2);
619 }
620
621 return 1;
622 }
623
624 /* Alloc and init a new SAME_SUCC. */
625
626 static same_succ
627 same_succ_alloc (void)
628 {
629 same_succ same = XNEW (struct same_succ_def);
630
631 same->bbs = BITMAP_ALLOC (NULL);
632 same->succs = BITMAP_ALLOC (NULL);
633 same->inverse = BITMAP_ALLOC (NULL);
634 same->succ_flags.create (10);
635 same->in_worklist = false;
636
637 return same;
638 }
639
640 /* Delete same_succ E. */
641
642 void
643 same_succ_def::remove (same_succ e)
644 {
645 BITMAP_FREE (e->bbs);
646 BITMAP_FREE (e->succs);
647 BITMAP_FREE (e->inverse);
648 e->succ_flags.release ();
649
650 XDELETE (e);
651 }
652
653 /* Reset same_succ SAME. */
654
655 static void
656 same_succ_reset (same_succ same)
657 {
658 bitmap_clear (same->bbs);
659 bitmap_clear (same->succs);
660 bitmap_clear (same->inverse);
661 same->succ_flags.truncate (0);
662 }
663
664 static hash_table<same_succ_def> *same_succ_htab;
665
666 /* Array that is used to store the edge flags for a successor. */
667
668 static int *same_succ_edge_flags;
669
670 /* Bitmap that is used to mark bbs that are recently deleted. */
671
672 static bitmap deleted_bbs;
673
674 /* Bitmap that is used to mark predecessors of bbs that are
675 deleted. */
676
677 static bitmap deleted_bb_preds;
678
679 /* Prints same_succ_htab to stderr. */
680
681 extern void debug_same_succ (void);
682 DEBUG_FUNCTION void
683 debug_same_succ ( void)
684 {
685 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
686 }
687
688
689 /* Vector of bbs to process. */
690
691 static vec<same_succ> worklist;
692
693 /* Prints worklist to FILE. */
694
695 static void
696 print_worklist (FILE *file)
697 {
698 unsigned int i;
699 for (i = 0; i < worklist.length (); ++i)
700 same_succ_print (file, worklist[i]);
701 }
702
703 /* Adds SAME to worklist. */
704
705 static void
706 add_to_worklist (same_succ same)
707 {
708 if (same->in_worklist)
709 return;
710
711 if (bitmap_count_bits (same->bbs) < 2)
712 return;
713
714 same->in_worklist = true;
715 worklist.safe_push (same);
716 }
717
718 /* Add BB to same_succ_htab. */
719
720 static void
721 find_same_succ_bb (basic_block bb, same_succ *same_p)
722 {
723 unsigned int j;
724 bitmap_iterator bj;
725 same_succ same = *same_p;
726 same_succ *slot;
727 edge_iterator ei;
728 edge e;
729
730 if (bb == NULL
731 /* Be conservative with loop structure. It's not evident that this test
732 is sufficient. Before tail-merge, we've just called
733 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
734 set, so there's no guarantee that the loop->latch value is still valid.
735 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
736 start of pre, we've kept that property intact throughout pre, and are
737 keeping it throughout tail-merge using this test. */
738 || bb->loop_father->latch == bb)
739 return;
740 bitmap_set_bit (same->bbs, bb->index);
741 FOR_EACH_EDGE (e, ei, bb->succs)
742 {
743 int index = e->dest->index;
744 bitmap_set_bit (same->succs, index);
745 same_succ_edge_flags[index] = e->flags;
746 }
747 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
748 same->succ_flags.safe_push (same_succ_edge_flags[j]);
749
750 same->hashval = same_succ_hash (same);
751
752 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
753 if (*slot == NULL)
754 {
755 *slot = same;
756 BB_SAME_SUCC (bb) = same;
757 add_to_worklist (same);
758 *same_p = NULL;
759 }
760 else
761 {
762 bitmap_set_bit ((*slot)->bbs, bb->index);
763 BB_SAME_SUCC (bb) = *slot;
764 add_to_worklist (*slot);
765 if (inverse_flags (same, *slot))
766 bitmap_set_bit ((*slot)->inverse, bb->index);
767 same_succ_reset (same);
768 }
769 }
770
771 /* Find bbs with same successors. */
772
773 static void
774 find_same_succ (void)
775 {
776 same_succ same = same_succ_alloc ();
777 basic_block bb;
778
779 FOR_EACH_BB_FN (bb, cfun)
780 {
781 find_same_succ_bb (bb, &same);
782 if (same == NULL)
783 same = same_succ_alloc ();
784 }
785
786 same_succ_def::remove (same);
787 }
788
789 /* Initializes worklist administration. */
790
791 static void
792 init_worklist (void)
793 {
794 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
795 same_succ_htab = new hash_table<same_succ_def> (n_basic_blocks_for_fn (cfun));
796 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
797 deleted_bbs = BITMAP_ALLOC (NULL);
798 deleted_bb_preds = BITMAP_ALLOC (NULL);
799 worklist.create (n_basic_blocks_for_fn (cfun));
800 find_same_succ ();
801
802 if (dump_file && (dump_flags & TDF_DETAILS))
803 {
804 fprintf (dump_file, "initial worklist:\n");
805 print_worklist (dump_file);
806 }
807 }
808
809 /* Deletes worklist administration. */
810
811 static void
812 delete_worklist (void)
813 {
814 free_aux_for_blocks ();
815 delete same_succ_htab;
816 same_succ_htab = NULL;
817 XDELETEVEC (same_succ_edge_flags);
818 same_succ_edge_flags = NULL;
819 BITMAP_FREE (deleted_bbs);
820 BITMAP_FREE (deleted_bb_preds);
821 worklist.release ();
822 }
823
824 /* Mark BB as deleted, and mark its predecessors. */
825
826 static void
827 mark_basic_block_deleted (basic_block bb)
828 {
829 edge e;
830 edge_iterator ei;
831
832 bitmap_set_bit (deleted_bbs, bb->index);
833
834 FOR_EACH_EDGE (e, ei, bb->preds)
835 bitmap_set_bit (deleted_bb_preds, e->src->index);
836 }
837
838 /* Removes BB from its corresponding same_succ. */
839
840 static void
841 same_succ_flush_bb (basic_block bb)
842 {
843 same_succ same = BB_SAME_SUCC (bb);
844 BB_SAME_SUCC (bb) = NULL;
845 if (bitmap_single_bit_set_p (same->bbs))
846 same_succ_htab->remove_elt_with_hash (same, same->hashval);
847 else
848 bitmap_clear_bit (same->bbs, bb->index);
849 }
850
851 /* Removes all bbs in BBS from their corresponding same_succ. */
852
853 static void
854 same_succ_flush_bbs (bitmap bbs)
855 {
856 unsigned int i;
857 bitmap_iterator bi;
858
859 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
860 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
861 }
862
863 /* Release the last vdef in BB, either normal or phi result. */
864
865 static void
866 release_last_vdef (basic_block bb)
867 {
868 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
869 gsi_prev_nondebug (&i))
870 {
871 gimple stmt = gsi_stmt (i);
872 if (gimple_vdef (stmt) == NULL_TREE)
873 continue;
874
875 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
876 return;
877 }
878
879 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
880 gsi_next (&i))
881 {
882 gphi *phi = i.phi ();
883 tree res = gimple_phi_result (phi);
884
885 if (!virtual_operand_p (res))
886 continue;
887
888 mark_virtual_phi_result_for_renaming (phi);
889 return;
890 }
891
892 }
893
894 /* For deleted_bb_preds, find bbs with same successors. */
895
896 static void
897 update_worklist (void)
898 {
899 unsigned int i;
900 bitmap_iterator bi;
901 basic_block bb;
902 same_succ same;
903
904 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
905 bitmap_clear (deleted_bbs);
906
907 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
908 same_succ_flush_bbs (deleted_bb_preds);
909
910 same = same_succ_alloc ();
911 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
912 {
913 bb = BASIC_BLOCK_FOR_FN (cfun, i);
914 gcc_assert (bb != NULL);
915 find_same_succ_bb (bb, &same);
916 if (same == NULL)
917 same = same_succ_alloc ();
918 }
919 same_succ_def::remove (same);
920 bitmap_clear (deleted_bb_preds);
921 }
922
923 /* Prints cluster C to FILE. */
924
925 static void
926 print_cluster (FILE *file, bb_cluster c)
927 {
928 if (c == NULL)
929 return;
930 bitmap_print (file, c->bbs, "bbs:", "\n");
931 bitmap_print (file, c->preds, "preds:", "\n");
932 }
933
934 /* Prints cluster C to stderr. */
935
936 extern void debug_cluster (bb_cluster);
937 DEBUG_FUNCTION void
938 debug_cluster (bb_cluster c)
939 {
940 print_cluster (stderr, c);
941 }
942
943 /* Update C->rep_bb, given that BB is added to the cluster. */
944
945 static void
946 update_rep_bb (bb_cluster c, basic_block bb)
947 {
948 /* Initial. */
949 if (c->rep_bb == NULL)
950 {
951 c->rep_bb = bb;
952 return;
953 }
954
955 /* Current needs no deps, keep it. */
956 if (BB_DEP_BB (c->rep_bb) == NULL)
957 return;
958
959 /* Bb needs no deps, change rep_bb. */
960 if (BB_DEP_BB (bb) == NULL)
961 {
962 c->rep_bb = bb;
963 return;
964 }
965
966 /* Bb needs last deps earlier than current, change rep_bb. A potential
967 problem with this, is that the first deps might also be earlier, which
968 would mean we prefer longer lifetimes for the deps. To be able to check
969 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
970 BB_DEP_BB, which is really BB_LAST_DEP_BB.
971 The benefit of choosing the bb with last deps earlier, is that it can
972 potentially be used as replacement for more bbs. */
973 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
974 c->rep_bb = bb;
975 }
976
977 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
978
979 static void
980 add_bb_to_cluster (bb_cluster c, basic_block bb)
981 {
982 edge e;
983 edge_iterator ei;
984
985 bitmap_set_bit (c->bbs, bb->index);
986
987 FOR_EACH_EDGE (e, ei, bb->preds)
988 bitmap_set_bit (c->preds, e->src->index);
989
990 update_rep_bb (c, bb);
991 }
992
993 /* Allocate and init new cluster. */
994
995 static bb_cluster
996 new_cluster (void)
997 {
998 bb_cluster c;
999 c = XCNEW (struct bb_cluster_def);
1000 c->bbs = BITMAP_ALLOC (NULL);
1001 c->preds = BITMAP_ALLOC (NULL);
1002 c->rep_bb = NULL;
1003 return c;
1004 }
1005
1006 /* Delete clusters. */
1007
1008 static void
1009 delete_cluster (bb_cluster c)
1010 {
1011 if (c == NULL)
1012 return;
1013 BITMAP_FREE (c->bbs);
1014 BITMAP_FREE (c->preds);
1015 XDELETE (c);
1016 }
1017
1018
1019 /* Array that contains all clusters. */
1020
1021 static vec<bb_cluster> all_clusters;
1022
1023 /* Allocate all cluster vectors. */
1024
1025 static void
1026 alloc_cluster_vectors (void)
1027 {
1028 all_clusters.create (n_basic_blocks_for_fn (cfun));
1029 }
1030
1031 /* Reset all cluster vectors. */
1032
1033 static void
1034 reset_cluster_vectors (void)
1035 {
1036 unsigned int i;
1037 basic_block bb;
1038 for (i = 0; i < all_clusters.length (); ++i)
1039 delete_cluster (all_clusters[i]);
1040 all_clusters.truncate (0);
1041 FOR_EACH_BB_FN (bb, cfun)
1042 BB_CLUSTER (bb) = NULL;
1043 }
1044
1045 /* Delete all cluster vectors. */
1046
1047 static void
1048 delete_cluster_vectors (void)
1049 {
1050 unsigned int i;
1051 for (i = 0; i < all_clusters.length (); ++i)
1052 delete_cluster (all_clusters[i]);
1053 all_clusters.release ();
1054 }
1055
1056 /* Merge cluster C2 into C1. */
1057
1058 static void
1059 merge_clusters (bb_cluster c1, bb_cluster c2)
1060 {
1061 bitmap_ior_into (c1->bbs, c2->bbs);
1062 bitmap_ior_into (c1->preds, c2->preds);
1063 }
1064
1065 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1066 all_clusters, or merge c with existing cluster. */
1067
1068 static void
1069 set_cluster (basic_block bb1, basic_block bb2)
1070 {
1071 basic_block merge_bb, other_bb;
1072 bb_cluster merge, old, c;
1073
1074 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1075 {
1076 c = new_cluster ();
1077 add_bb_to_cluster (c, bb1);
1078 add_bb_to_cluster (c, bb2);
1079 BB_CLUSTER (bb1) = c;
1080 BB_CLUSTER (bb2) = c;
1081 c->index = all_clusters.length ();
1082 all_clusters.safe_push (c);
1083 }
1084 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1085 {
1086 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1087 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1088 merge = BB_CLUSTER (merge_bb);
1089 add_bb_to_cluster (merge, other_bb);
1090 BB_CLUSTER (other_bb) = merge;
1091 }
1092 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1093 {
1094 unsigned int i;
1095 bitmap_iterator bi;
1096
1097 old = BB_CLUSTER (bb2);
1098 merge = BB_CLUSTER (bb1);
1099 merge_clusters (merge, old);
1100 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1101 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1102 all_clusters[old->index] = NULL;
1103 update_rep_bb (merge, old->rep_bb);
1104 delete_cluster (old);
1105 }
1106 else
1107 gcc_unreachable ();
1108 }
1109
1110 /* Return true if gimple operands T1 and T2 have the same value. */
1111
1112 static bool
1113 gimple_operand_equal_value_p (tree t1, tree t2)
1114 {
1115 if (t1 == t2)
1116 return true;
1117
1118 if (t1 == NULL_TREE
1119 || t2 == NULL_TREE)
1120 return false;
1121
1122 if (operand_equal_p (t1, t2, 0))
1123 return true;
1124
1125 return gvn_uses_equal (t1, t2);
1126 }
1127
1128 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1129 gimple_bb (s2) are members of SAME_SUCC. */
1130
1131 static bool
1132 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1133 {
1134 unsigned int i;
1135 tree lhs1, lhs2;
1136 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1137 tree t1, t2;
1138 bool inv_cond;
1139 enum tree_code code1, code2;
1140
1141 if (gimple_code (s1) != gimple_code (s2))
1142 return false;
1143
1144 switch (gimple_code (s1))
1145 {
1146 case GIMPLE_CALL:
1147 if (!gimple_call_same_target_p (s1, s2))
1148 return false;
1149
1150 t1 = gimple_call_chain (s1);
1151 t2 = gimple_call_chain (s2);
1152 if (!gimple_operand_equal_value_p (t1, t2))
1153 return false;
1154
1155 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1156 return false;
1157
1158 for (i = 0; i < gimple_call_num_args (s1); ++i)
1159 {
1160 t1 = gimple_call_arg (s1, i);
1161 t2 = gimple_call_arg (s2, i);
1162 if (!gimple_operand_equal_value_p (t1, t2))
1163 return false;
1164 }
1165
1166 lhs1 = gimple_get_lhs (s1);
1167 lhs2 = gimple_get_lhs (s2);
1168 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1169 return true;
1170 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1171 return false;
1172 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1173 return vn_valueize (lhs1) == vn_valueize (lhs2);
1174 return operand_equal_p (lhs1, lhs2, 0);
1175
1176 case GIMPLE_ASSIGN:
1177 lhs1 = gimple_get_lhs (s1);
1178 lhs2 = gimple_get_lhs (s2);
1179 if (TREE_CODE (lhs1) != SSA_NAME
1180 && TREE_CODE (lhs2) != SSA_NAME)
1181 return (operand_equal_p (lhs1, lhs2, 0)
1182 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1183 gimple_assign_rhs1 (s2)));
1184 else if (TREE_CODE (lhs1) == SSA_NAME
1185 && TREE_CODE (lhs2) == SSA_NAME)
1186 return operand_equal_p (gimple_assign_rhs1 (s1),
1187 gimple_assign_rhs1 (s2), 0);
1188 return false;
1189
1190 case GIMPLE_COND:
1191 t1 = gimple_cond_lhs (s1);
1192 t2 = gimple_cond_lhs (s2);
1193 if (!gimple_operand_equal_value_p (t1, t2))
1194 return false;
1195
1196 t1 = gimple_cond_rhs (s1);
1197 t2 = gimple_cond_rhs (s2);
1198 if (!gimple_operand_equal_value_p (t1, t2))
1199 return false;
1200
1201 code1 = gimple_expr_code (s1);
1202 code2 = gimple_expr_code (s2);
1203 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1204 != bitmap_bit_p (same_succ->inverse, bb2->index));
1205 if (inv_cond)
1206 {
1207 bool honor_nans = HONOR_NANS (t1);
1208 code2 = invert_tree_comparison (code2, honor_nans);
1209 }
1210 return code1 == code2;
1211
1212 default:
1213 return false;
1214 }
1215 }
1216
1217 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1218 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1219 processed statements. */
1220
1221 static void
1222 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1223 bool *vuse_escaped)
1224 {
1225 gimple stmt;
1226 tree lvuse;
1227
1228 while (true)
1229 {
1230 if (gsi_end_p (*gsi))
1231 return;
1232 stmt = gsi_stmt (*gsi);
1233
1234 lvuse = gimple_vuse (stmt);
1235 if (lvuse != NULL_TREE)
1236 {
1237 *vuse = lvuse;
1238 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1239 *vuse_escaped = true;
1240 }
1241
1242 if (!stmt_local_def (stmt))
1243 return;
1244 gsi_prev_nondebug (gsi);
1245 }
1246 }
1247
1248 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1249 clusters them. */
1250
1251 static void
1252 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1253 {
1254 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1255 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1256 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1257 bool vuse_escaped = false;
1258
1259 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1260 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1261
1262 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1263 {
1264 gimple stmt1 = gsi_stmt (gsi1);
1265 gimple stmt2 = gsi_stmt (gsi2);
1266
1267 /* What could be better than to this this here is to blacklist the bb
1268 containing the stmt, when encountering the stmt f.i. in
1269 same_succ_hash. */
1270 if (is_tm_ending (stmt1)
1271 || is_tm_ending (stmt2))
1272 return;
1273
1274 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1275 return;
1276
1277 gsi_prev_nondebug (&gsi1);
1278 gsi_prev_nondebug (&gsi2);
1279 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1280 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1281 }
1282
1283 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1284 return;
1285
1286 /* If the incoming vuses are not the same, and the vuse escaped into an
1287 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1288 which potentially means the semantics of one of the blocks will be changed.
1289 TODO: make this check more precise. */
1290 if (vuse_escaped && vuse1 != vuse2)
1291 return;
1292
1293 if (dump_file)
1294 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1295 bb1->index, bb2->index);
1296
1297 set_cluster (bb1, bb2);
1298 }
1299
1300 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1301 E2 are equal. */
1302
1303 static bool
1304 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1305 {
1306 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1307 gphi_iterator gsi;
1308
1309 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1310 {
1311 gphi *phi = gsi.phi ();
1312 tree lhs = gimple_phi_result (phi);
1313 tree val1 = gimple_phi_arg_def (phi, n1);
1314 tree val2 = gimple_phi_arg_def (phi, n2);
1315
1316 if (virtual_operand_p (lhs))
1317 continue;
1318
1319 if (operand_equal_for_phi_arg_p (val1, val2))
1320 continue;
1321 if (gvn_uses_equal (val1, val2))
1322 continue;
1323
1324 return false;
1325 }
1326
1327 return true;
1328 }
1329
1330 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1331 phi alternatives for BB1 and BB2 are equal. */
1332
1333 static bool
1334 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1335 {
1336 unsigned int s;
1337 bitmap_iterator bs;
1338 edge e1, e2;
1339 basic_block succ;
1340
1341 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1342 {
1343 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1344 e1 = find_edge (bb1, succ);
1345 e2 = find_edge (bb2, succ);
1346 if (e1->flags & EDGE_COMPLEX
1347 || e2->flags & EDGE_COMPLEX)
1348 return false;
1349
1350 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1351 the same value. */
1352 if (!same_phi_alternatives_1 (succ, e1, e2))
1353 return false;
1354 }
1355
1356 return true;
1357 }
1358
1359 /* Return true if BB has non-vop phis. */
1360
1361 static bool
1362 bb_has_non_vop_phi (basic_block bb)
1363 {
1364 gimple_seq phis = phi_nodes (bb);
1365 gimple phi;
1366
1367 if (phis == NULL)
1368 return false;
1369
1370 if (!gimple_seq_singleton_p (phis))
1371 return true;
1372
1373 phi = gimple_seq_first_stmt (phis);
1374 return !virtual_operand_p (gimple_phi_result (phi));
1375 }
1376
1377 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1378 invariant that uses in FROM are dominates by their defs. */
1379
1380 static bool
1381 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1382 {
1383 basic_block cd, dep_bb = BB_DEP_BB (to);
1384 edge_iterator ei;
1385 edge e;
1386 bitmap from_preds = BITMAP_ALLOC (NULL);
1387
1388 if (dep_bb == NULL)
1389 return true;
1390
1391 FOR_EACH_EDGE (e, ei, from->preds)
1392 bitmap_set_bit (from_preds, e->src->index);
1393 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1394 BITMAP_FREE (from_preds);
1395
1396 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1397 }
1398
1399 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1400 replacement bb) and vice versa maintains the invariant that uses in the
1401 replacement are dominates by their defs. */
1402
1403 static bool
1404 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1405 {
1406 if (BB_CLUSTER (bb1) != NULL)
1407 bb1 = BB_CLUSTER (bb1)->rep_bb;
1408
1409 if (BB_CLUSTER (bb2) != NULL)
1410 bb2 = BB_CLUSTER (bb2)->rep_bb;
1411
1412 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1413 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1414 }
1415
1416 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1417
1418 static void
1419 find_clusters_1 (same_succ same_succ)
1420 {
1421 basic_block bb1, bb2;
1422 unsigned int i, j;
1423 bitmap_iterator bi, bj;
1424 int nr_comparisons;
1425 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1426
1427 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1428 {
1429 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1430
1431 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1432 phi-nodes in bb1 and bb2, with the same alternatives for the same
1433 preds. */
1434 if (bb_has_non_vop_phi (bb1))
1435 continue;
1436
1437 nr_comparisons = 0;
1438 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1439 {
1440 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1441
1442 if (bb_has_non_vop_phi (bb2))
1443 continue;
1444
1445 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1446 continue;
1447
1448 /* Limit quadratic behaviour. */
1449 nr_comparisons++;
1450 if (nr_comparisons > max_comparisons)
1451 break;
1452
1453 /* This is a conservative dependency check. We could test more
1454 precise for allowed replacement direction. */
1455 if (!deps_ok_for_redirect (bb1, bb2))
1456 continue;
1457
1458 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1459 continue;
1460
1461 find_duplicate (same_succ, bb1, bb2);
1462 }
1463 }
1464 }
1465
1466 /* Find clusters of bbs which can be merged. */
1467
1468 static void
1469 find_clusters (void)
1470 {
1471 same_succ same;
1472
1473 while (!worklist.is_empty ())
1474 {
1475 same = worklist.pop ();
1476 same->in_worklist = false;
1477 if (dump_file && (dump_flags & TDF_DETAILS))
1478 {
1479 fprintf (dump_file, "processing worklist entry\n");
1480 same_succ_print (dump_file, same);
1481 }
1482 find_clusters_1 (same);
1483 }
1484 }
1485
1486 /* Returns the vop phi of BB, if any. */
1487
1488 static gphi *
1489 vop_phi (basic_block bb)
1490 {
1491 gphi *stmt;
1492 gphi_iterator gsi;
1493 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1494 {
1495 stmt = gsi.phi ();
1496 if (! virtual_operand_p (gimple_phi_result (stmt)))
1497 continue;
1498 return stmt;
1499 }
1500 return NULL;
1501 }
1502
1503 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1504
1505 static void
1506 replace_block_by (basic_block bb1, basic_block bb2)
1507 {
1508 edge pred_edge;
1509 edge e1, e2;
1510 edge_iterator ei;
1511 unsigned int i;
1512 gphi *bb2_phi;
1513
1514 bb2_phi = vop_phi (bb2);
1515
1516 /* Mark the basic block as deleted. */
1517 mark_basic_block_deleted (bb1);
1518
1519 /* Redirect the incoming edges of bb1 to bb2. */
1520 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1521 {
1522 pred_edge = EDGE_PRED (bb1, i - 1);
1523 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1524 gcc_assert (pred_edge != NULL);
1525
1526 if (bb2_phi == NULL)
1527 continue;
1528
1529 /* The phi might have run out of capacity when the redirect added an
1530 argument, which means it could have been replaced. Refresh it. */
1531 bb2_phi = vop_phi (bb2);
1532
1533 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1534 pred_edge, UNKNOWN_LOCATION);
1535 }
1536
1537 bb2->frequency += bb1->frequency;
1538 if (bb2->frequency > BB_FREQ_MAX)
1539 bb2->frequency = BB_FREQ_MAX;
1540
1541 bb2->count += bb1->count;
1542
1543 /* Merge the outgoing edge counts from bb1 onto bb2. */
1544 gcov_type out_sum = 0;
1545 FOR_EACH_EDGE (e1, ei, bb1->succs)
1546 {
1547 e2 = find_edge (bb2, e1->dest);
1548 gcc_assert (e2);
1549 e2->count += e1->count;
1550 out_sum += e2->count;
1551 }
1552 /* Recompute the edge probabilities from the new merged edge count.
1553 Use the sum of the new merged edge counts computed above instead
1554 of bb2's merged count, in case there are profile count insanities
1555 making the bb count inconsistent with the edge weights. */
1556 FOR_EACH_EDGE (e2, ei, bb2->succs)
1557 {
1558 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1559 }
1560
1561 /* Do updates that use bb1, before deleting bb1. */
1562 release_last_vdef (bb1);
1563 same_succ_flush_bb (bb1);
1564
1565 delete_basic_block (bb1);
1566 }
1567
1568 /* Bbs for which update_debug_stmt need to be called. */
1569
1570 static bitmap update_bbs;
1571
1572 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1573 number of bbs removed. */
1574
1575 static int
1576 apply_clusters (void)
1577 {
1578 basic_block bb1, bb2;
1579 bb_cluster c;
1580 unsigned int i, j;
1581 bitmap_iterator bj;
1582 int nr_bbs_removed = 0;
1583
1584 for (i = 0; i < all_clusters.length (); ++i)
1585 {
1586 c = all_clusters[i];
1587 if (c == NULL)
1588 continue;
1589
1590 bb2 = c->rep_bb;
1591 bitmap_set_bit (update_bbs, bb2->index);
1592
1593 bitmap_clear_bit (c->bbs, bb2->index);
1594 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1595 {
1596 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1597 bitmap_clear_bit (update_bbs, bb1->index);
1598
1599 replace_block_by (bb1, bb2);
1600 nr_bbs_removed++;
1601 }
1602 }
1603
1604 return nr_bbs_removed;
1605 }
1606
1607 /* Resets debug statement STMT if it has uses that are not dominated by their
1608 defs. */
1609
1610 static void
1611 update_debug_stmt (gimple stmt)
1612 {
1613 use_operand_p use_p;
1614 ssa_op_iter oi;
1615 basic_block bbuse;
1616
1617 if (!gimple_debug_bind_p (stmt))
1618 return;
1619
1620 bbuse = gimple_bb (stmt);
1621 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1622 {
1623 tree name = USE_FROM_PTR (use_p);
1624 gimple def_stmt = SSA_NAME_DEF_STMT (name);
1625 basic_block bbdef = gimple_bb (def_stmt);
1626 if (bbdef == NULL || bbuse == bbdef
1627 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1628 continue;
1629
1630 gimple_debug_bind_reset_value (stmt);
1631 update_stmt (stmt);
1632 break;
1633 }
1634 }
1635
1636 /* Resets all debug statements that have uses that are not
1637 dominated by their defs. */
1638
1639 static void
1640 update_debug_stmts (void)
1641 {
1642 basic_block bb;
1643 bitmap_iterator bi;
1644 unsigned int i;
1645
1646 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1647 {
1648 gimple stmt;
1649 gimple_stmt_iterator gsi;
1650
1651 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1652 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1653 {
1654 stmt = gsi_stmt (gsi);
1655 if (!is_gimple_debug (stmt))
1656 continue;
1657 update_debug_stmt (stmt);
1658 }
1659 }
1660 }
1661
1662 /* Runs tail merge optimization. */
1663
1664 unsigned int
1665 tail_merge_optimize (unsigned int todo)
1666 {
1667 int nr_bbs_removed_total = 0;
1668 int nr_bbs_removed;
1669 bool loop_entered = false;
1670 int iteration_nr = 0;
1671 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1672
1673 if (!flag_tree_tail_merge
1674 || max_iterations == 0)
1675 return 0;
1676
1677 timevar_push (TV_TREE_TAIL_MERGE);
1678
1679 if (!dom_info_available_p (CDI_DOMINATORS))
1680 {
1681 /* PRE can leave us with unreachable blocks, remove them now. */
1682 delete_unreachable_blocks ();
1683 calculate_dominance_info (CDI_DOMINATORS);
1684 }
1685 init_worklist ();
1686
1687 while (!worklist.is_empty ())
1688 {
1689 if (!loop_entered)
1690 {
1691 loop_entered = true;
1692 alloc_cluster_vectors ();
1693 update_bbs = BITMAP_ALLOC (NULL);
1694 }
1695 else
1696 reset_cluster_vectors ();
1697
1698 iteration_nr++;
1699 if (dump_file && (dump_flags & TDF_DETAILS))
1700 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1701
1702 find_clusters ();
1703 gcc_assert (worklist.is_empty ());
1704 if (all_clusters.is_empty ())
1705 break;
1706
1707 nr_bbs_removed = apply_clusters ();
1708 nr_bbs_removed_total += nr_bbs_removed;
1709 if (nr_bbs_removed == 0)
1710 break;
1711
1712 free_dominance_info (CDI_DOMINATORS);
1713
1714 if (iteration_nr == max_iterations)
1715 break;
1716
1717 calculate_dominance_info (CDI_DOMINATORS);
1718 update_worklist ();
1719 }
1720
1721 if (dump_file && (dump_flags & TDF_DETAILS))
1722 fprintf (dump_file, "htab collision / search: %f\n",
1723 same_succ_htab->collisions ());
1724
1725 if (nr_bbs_removed_total > 0)
1726 {
1727 if (MAY_HAVE_DEBUG_STMTS)
1728 {
1729 calculate_dominance_info (CDI_DOMINATORS);
1730 update_debug_stmts ();
1731 }
1732
1733 if (dump_file && (dump_flags & TDF_DETAILS))
1734 {
1735 fprintf (dump_file, "Before TODOs.\n");
1736 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1737 }
1738
1739 mark_virtual_operands_for_renaming (cfun);
1740 }
1741
1742 delete_worklist ();
1743 if (loop_entered)
1744 {
1745 delete_cluster_vectors ();
1746 BITMAP_FREE (update_bbs);
1747 }
1748
1749 timevar_pop (TV_TREE_TAIL_MERGE);
1750
1751 return todo;
1752 }