]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-threadedge.c
expr.h: Remove prototypes of functions defined in builtins.c.
[thirdparty/gcc.git] / gcc / tree-ssa-threadedge.c
1 /* SSA Jump Threading
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "function.h"
31 #include "timevar.h"
32 #include "dumpfile.h"
33 #include "pointer-set.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-ssa.h"
41 #include "tree-cfg.h"
42 #include "tree-phinodes.h"
43 #include "ssa-iterators.h"
44 #include "stringpool.h"
45 #include "tree-ssanames.h"
46 #include "tree-ssa-propagate.h"
47 #include "tree-ssa-threadupdate.h"
48 #include "langhooks.h"
49 #include "params.h"
50 #include "tree-ssa-threadedge.h"
51 #include "builtins.h"
52
53 /* To avoid code explosion due to jump threading, we limit the
54 number of statements we are going to copy. This variable
55 holds the number of statements currently seen that we'll have
56 to copy as part of the jump threading process. */
57 static int stmt_count;
58
59 /* Array to record value-handles per SSA_NAME. */
60 vec<tree> ssa_name_values;
61
62 /* Set the value for the SSA name NAME to VALUE. */
63
64 void
65 set_ssa_name_value (tree name, tree value)
66 {
67 if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
68 ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
69 if (value && TREE_OVERFLOW_P (value))
70 value = drop_tree_overflow (value);
71 ssa_name_values[SSA_NAME_VERSION (name)] = value;
72 }
73
74 /* Initialize the per SSA_NAME value-handles array. Returns it. */
75 void
76 threadedge_initialize_values (void)
77 {
78 gcc_assert (!ssa_name_values.exists ());
79 ssa_name_values.create (num_ssa_names);
80 }
81
82 /* Free the per SSA_NAME value-handle array. */
83 void
84 threadedge_finalize_values (void)
85 {
86 ssa_name_values.release ();
87 }
88
89 /* Return TRUE if we may be able to thread an incoming edge into
90 BB to an outgoing edge from BB. Return FALSE otherwise. */
91
92 bool
93 potentially_threadable_block (basic_block bb)
94 {
95 gimple_stmt_iterator gsi;
96
97 /* If BB has a single successor or a single predecessor, then
98 there is no threading opportunity. */
99 if (single_succ_p (bb) || single_pred_p (bb))
100 return false;
101
102 /* If BB does not end with a conditional, switch or computed goto,
103 then there is no threading opportunity. */
104 gsi = gsi_last_bb (bb);
105 if (gsi_end_p (gsi)
106 || ! gsi_stmt (gsi)
107 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
108 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
109 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
110 return false;
111
112 return true;
113 }
114
115 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
116 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
117 BB. If no such ASSERT_EXPR is found, return OP. */
118
119 static tree
120 lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
121 {
122 imm_use_iterator imm_iter;
123 gimple use_stmt;
124 use_operand_p use_p;
125
126 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
127 {
128 use_stmt = USE_STMT (use_p);
129 if (use_stmt != stmt
130 && gimple_assign_single_p (use_stmt)
131 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
132 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
133 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
134 {
135 return gimple_assign_lhs (use_stmt);
136 }
137 }
138 return op;
139 }
140
141 /* We record temporary equivalences created by PHI nodes or
142 statements within the target block. Doing so allows us to
143 identify more jump threading opportunities, even in blocks
144 with side effects.
145
146 We keep track of those temporary equivalences in a stack
147 structure so that we can unwind them when we're done processing
148 a particular edge. This routine handles unwinding the data
149 structures. */
150
151 static void
152 remove_temporary_equivalences (vec<tree> *stack)
153 {
154 while (stack->length () > 0)
155 {
156 tree prev_value, dest;
157
158 dest = stack->pop ();
159
160 /* A NULL value indicates we should stop unwinding, otherwise
161 pop off the next entry as they're recorded in pairs. */
162 if (dest == NULL)
163 break;
164
165 prev_value = stack->pop ();
166 set_ssa_name_value (dest, prev_value);
167 }
168 }
169
170 /* Record a temporary equivalence, saving enough information so that
171 we can restore the state of recorded equivalences when we're
172 done processing the current edge. */
173
174 static void
175 record_temporary_equivalence (tree x, tree y, vec<tree> *stack)
176 {
177 tree prev_x = SSA_NAME_VALUE (x);
178
179 /* Y may be NULL if we are invalidating entries in the table. */
180 if (y && TREE_CODE (y) == SSA_NAME)
181 {
182 tree tmp = SSA_NAME_VALUE (y);
183 y = tmp ? tmp : y;
184 }
185
186 set_ssa_name_value (x, y);
187 stack->reserve (2);
188 stack->quick_push (prev_x);
189 stack->quick_push (x);
190 }
191
192 /* Record temporary equivalences created by PHIs at the target of the
193 edge E. Record unwind information for the equivalences onto STACK.
194
195 If a PHI which prevents threading is encountered, then return FALSE
196 indicating we should not thread this edge, else return TRUE.
197
198 If SRC_MAP/DST_MAP exist, then mark the source and destination SSA_NAMEs
199 of any equivalences recorded. We use this to make invalidation after
200 traversing back edges less painful. */
201
202 static bool
203 record_temporary_equivalences_from_phis (edge e, vec<tree> *stack,
204 bool backedge_seen,
205 bitmap src_map, bitmap dst_map)
206 {
207 gimple_stmt_iterator gsi;
208
209 /* Each PHI creates a temporary equivalence, record them.
210 These are context sensitive equivalences and will be removed
211 later. */
212 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
213 {
214 gimple phi = gsi_stmt (gsi);
215 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
216 tree dst = gimple_phi_result (phi);
217
218 /* If the desired argument is not the same as this PHI's result
219 and it is set by a PHI in E->dest, then we can not thread
220 through E->dest. */
221 if (src != dst
222 && TREE_CODE (src) == SSA_NAME
223 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
224 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
225 return false;
226
227 /* We consider any non-virtual PHI as a statement since it
228 count result in a constant assignment or copy operation. */
229 if (!virtual_operand_p (dst))
230 stmt_count++;
231
232 record_temporary_equivalence (dst, src, stack);
233
234 /* If we have crossed a backedge, then start recording equivalences
235 we might need to invalidate. */
236 if (backedge_seen && TREE_CODE (src) == SSA_NAME)
237 {
238 bitmap_set_bit (src_map, SSA_NAME_VERSION (src));
239 bitmap_set_bit (dst_map, SSA_NAME_VERSION (dst));
240 }
241 }
242 return true;
243 }
244
245 /* Fold the RHS of an assignment statement and return it as a tree.
246 May return NULL_TREE if no simplification is possible. */
247
248 static tree
249 fold_assignment_stmt (gimple stmt)
250 {
251 enum tree_code subcode = gimple_assign_rhs_code (stmt);
252
253 switch (get_gimple_rhs_class (subcode))
254 {
255 case GIMPLE_SINGLE_RHS:
256 return fold (gimple_assign_rhs1 (stmt));
257
258 case GIMPLE_UNARY_RHS:
259 {
260 tree lhs = gimple_assign_lhs (stmt);
261 tree op0 = gimple_assign_rhs1 (stmt);
262 return fold_unary (subcode, TREE_TYPE (lhs), op0);
263 }
264
265 case GIMPLE_BINARY_RHS:
266 {
267 tree lhs = gimple_assign_lhs (stmt);
268 tree op0 = gimple_assign_rhs1 (stmt);
269 tree op1 = gimple_assign_rhs2 (stmt);
270 return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
271 }
272
273 case GIMPLE_TERNARY_RHS:
274 {
275 tree lhs = gimple_assign_lhs (stmt);
276 tree op0 = gimple_assign_rhs1 (stmt);
277 tree op1 = gimple_assign_rhs2 (stmt);
278 tree op2 = gimple_assign_rhs3 (stmt);
279
280 /* Sadly, we have to handle conditional assignments specially
281 here, because fold expects all the operands of an expression
282 to be folded before the expression itself is folded, but we
283 can't just substitute the folded condition here. */
284 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
285 op0 = fold (op0);
286
287 return fold_ternary (subcode, TREE_TYPE (lhs), op0, op1, op2);
288 }
289
290 default:
291 gcc_unreachable ();
292 }
293 }
294
295 /* A new value has been assigned to LHS. If necessary, invalidate any
296 equivalences that are no longer valid. */
297 static void
298 invalidate_equivalences (tree lhs, vec<tree> *stack,
299 bitmap src_map, bitmap dst_map)
300 {
301 /* SRC_MAP contains the source SSA_NAMEs for equivalences created by PHI
302 nodes. If an entry in SRC_MAP changes, there's some destination that
303 has been recorded as equivalent to the source and that equivalency
304 needs to be eliminated. */
305 if (bitmap_bit_p (src_map, SSA_NAME_VERSION (lhs)))
306 {
307 unsigned int i;
308 bitmap_iterator bi;
309
310 /* We know that the LHS of STMT was used as the RHS in an equivalency
311 created by a PHI. All the LHS of such PHIs were recorded into DST_MAP.
312 So we can iterate over them to see if any have the LHS of STMT as
313 an equivalence, and if so, remove the equivalence as it is no longer
314 valid. */
315 EXECUTE_IF_SET_IN_BITMAP (dst_map, 0, i, bi)
316 {
317 if (SSA_NAME_VALUE (ssa_name (i)) == lhs)
318 record_temporary_equivalence (ssa_name (i), NULL_TREE, stack);
319 }
320 }
321 }
322
323 /* Try to simplify each statement in E->dest, ultimately leading to
324 a simplification of the COND_EXPR at the end of E->dest.
325
326 Record unwind information for temporary equivalences onto STACK.
327
328 Use SIMPLIFY (a pointer to a callback function) to further simplify
329 statements using pass specific information.
330
331 We might consider marking just those statements which ultimately
332 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
333 would be recovered by trying to simplify fewer statements.
334
335 If we are able to simplify a statement into the form
336 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
337 a context sensitive equivalence which may help us simplify
338 later statements in E->dest. */
339
340 static gimple
341 record_temporary_equivalences_from_stmts_at_dest (edge e,
342 vec<tree> *stack,
343 tree (*simplify) (gimple,
344 gimple),
345 bool backedge_seen,
346 bitmap src_map,
347 bitmap dst_map)
348 {
349 gimple stmt = NULL;
350 gimple_stmt_iterator gsi;
351 int max_stmt_count;
352
353 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
354
355 /* Walk through each statement in the block recording equivalences
356 we discover. Note any equivalences we discover are context
357 sensitive (ie, are dependent on traversing E) and must be unwound
358 when we're finished processing E. */
359 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
360 {
361 tree cached_lhs = NULL;
362
363 stmt = gsi_stmt (gsi);
364
365 /* Ignore empty statements and labels. */
366 if (gimple_code (stmt) == GIMPLE_NOP
367 || gimple_code (stmt) == GIMPLE_LABEL
368 || is_gimple_debug (stmt))
369 continue;
370
371 /* If the statement has volatile operands, then we assume we
372 can not thread through this block. This is overly
373 conservative in some ways. */
374 if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
375 return NULL;
376
377 /* If duplicating this block is going to cause too much code
378 expansion, then do not thread through this block. */
379 stmt_count++;
380 if (stmt_count > max_stmt_count)
381 return NULL;
382
383 /* If this is not a statement that sets an SSA_NAME to a new
384 value, then do not try to simplify this statement as it will
385 not simplify in any way that is helpful for jump threading. */
386 if ((gimple_code (stmt) != GIMPLE_ASSIGN
387 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
388 && (gimple_code (stmt) != GIMPLE_CALL
389 || gimple_call_lhs (stmt) == NULL_TREE
390 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
391 {
392 /* STMT might still have DEFS and we need to invalidate any known
393 equivalences for them.
394
395 Consider if STMT is a GIMPLE_ASM with one or more outputs that
396 feeds a conditional inside a loop. We might derive an equivalence
397 due to the conditional. */
398 tree op;
399 ssa_op_iter iter;
400
401 if (backedge_seen)
402 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
403 {
404 /* This call only invalidates equivalences created by
405 PHI nodes. This is by design to keep the cost of
406 of invalidation reasonable. */
407 invalidate_equivalences (op, stack, src_map, dst_map);
408
409 /* However, conditionals can imply values for real
410 operands as well. And those won't be recorded in the
411 maps. In fact, those equivalences may be recorded totally
412 outside the threading code. We can just create a new
413 temporary NULL equivalence here. */
414 record_temporary_equivalence (op, NULL_TREE, stack);
415 }
416
417 continue;
418 }
419
420 /* The result of __builtin_object_size depends on all the arguments
421 of a phi node. Temporarily using only one edge produces invalid
422 results. For example
423
424 if (x < 6)
425 goto l;
426 else
427 goto l;
428
429 l:
430 r = PHI <&w[2].a[1](2), &a.a[6](3)>
431 __builtin_object_size (r, 0)
432
433 The result of __builtin_object_size is defined to be the maximum of
434 remaining bytes. If we use only one edge on the phi, the result will
435 change to be the remaining bytes for the corresponding phi argument.
436
437 Similarly for __builtin_constant_p:
438
439 r = PHI <1(2), 2(3)>
440 __builtin_constant_p (r)
441
442 Both PHI arguments are constant, but x ? 1 : 2 is still not
443 constant. */
444
445 if (is_gimple_call (stmt))
446 {
447 tree fndecl = gimple_call_fndecl (stmt);
448 if (fndecl
449 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
450 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
451 {
452 if (backedge_seen)
453 {
454 tree lhs = gimple_get_lhs (stmt);
455 record_temporary_equivalence (lhs, NULL_TREE, stack);
456 invalidate_equivalences (lhs, stack, src_map, dst_map);
457 }
458 continue;
459 }
460 }
461
462 /* At this point we have a statement which assigns an RHS to an
463 SSA_VAR on the LHS. We want to try and simplify this statement
464 to expose more context sensitive equivalences which in turn may
465 allow us to simplify the condition at the end of the loop.
466
467 Handle simple copy operations as well as implied copies from
468 ASSERT_EXPRs. */
469 if (gimple_assign_single_p (stmt)
470 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
471 cached_lhs = gimple_assign_rhs1 (stmt);
472 else if (gimple_assign_single_p (stmt)
473 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
474 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
475 else
476 {
477 /* A statement that is not a trivial copy or ASSERT_EXPR.
478 We're going to temporarily copy propagate the operands
479 and see if that allows us to simplify this statement. */
480 tree *copy;
481 ssa_op_iter iter;
482 use_operand_p use_p;
483 unsigned int num, i = 0;
484
485 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
486 copy = XCNEWVEC (tree, num);
487
488 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
489 the operands. */
490 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
491 {
492 tree tmp = NULL;
493 tree use = USE_FROM_PTR (use_p);
494
495 copy[i++] = use;
496 if (TREE_CODE (use) == SSA_NAME)
497 tmp = SSA_NAME_VALUE (use);
498 if (tmp)
499 SET_USE (use_p, tmp);
500 }
501
502 /* Try to fold/lookup the new expression. Inserting the
503 expression into the hash table is unlikely to help. */
504 if (is_gimple_call (stmt))
505 cached_lhs = fold_call_stmt (stmt, false);
506 else
507 cached_lhs = fold_assignment_stmt (stmt);
508
509 if (!cached_lhs
510 || (TREE_CODE (cached_lhs) != SSA_NAME
511 && !is_gimple_min_invariant (cached_lhs)))
512 cached_lhs = (*simplify) (stmt, stmt);
513
514 /* Restore the statement's original uses/defs. */
515 i = 0;
516 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
517 SET_USE (use_p, copy[i++]);
518
519 free (copy);
520 }
521
522 /* Record the context sensitive equivalence if we were able
523 to simplify this statement.
524
525 If we have traversed a backedge at some point during threading,
526 then always enter something here. Either a real equivalence,
527 or a NULL_TREE equivalence which is effectively invalidation of
528 prior equivalences. */
529 if (cached_lhs
530 && (TREE_CODE (cached_lhs) == SSA_NAME
531 || is_gimple_min_invariant (cached_lhs)))
532 record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
533 else if (backedge_seen)
534 record_temporary_equivalence (gimple_get_lhs (stmt), NULL_TREE, stack);
535
536 if (backedge_seen)
537 invalidate_equivalences (gimple_get_lhs (stmt), stack,
538 src_map, dst_map);
539 }
540 return stmt;
541 }
542
543 /* Once we have passed a backedge in the CFG when threading, we do not want to
544 utilize edge equivalences for simplification purpose. They are no longer
545 necessarily valid. We use this callback rather than the ones provided by
546 DOM/VRP to achieve that effect. */
547 static tree
548 dummy_simplify (gimple stmt1 ATTRIBUTE_UNUSED, gimple stmt2 ATTRIBUTE_UNUSED)
549 {
550 return NULL_TREE;
551 }
552
553 /* Simplify the control statement at the end of the block E->dest.
554
555 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
556 is available to use/clobber in DUMMY_COND.
557
558 Use SIMPLIFY (a pointer to a callback function) to further simplify
559 a condition using pass specific information.
560
561 Return the simplified condition or NULL if simplification could
562 not be performed. */
563
564 static tree
565 simplify_control_stmt_condition (edge e,
566 gimple stmt,
567 gimple dummy_cond,
568 tree (*simplify) (gimple, gimple),
569 bool handle_dominating_asserts)
570 {
571 tree cond, cached_lhs;
572 enum gimple_code code = gimple_code (stmt);
573
574 /* For comparisons, we have to update both operands, then try
575 to simplify the comparison. */
576 if (code == GIMPLE_COND)
577 {
578 tree op0, op1;
579 enum tree_code cond_code;
580
581 op0 = gimple_cond_lhs (stmt);
582 op1 = gimple_cond_rhs (stmt);
583 cond_code = gimple_cond_code (stmt);
584
585 /* Get the current value of both operands. */
586 if (TREE_CODE (op0) == SSA_NAME)
587 {
588 tree tmp = SSA_NAME_VALUE (op0);
589 if (tmp)
590 op0 = tmp;
591 }
592
593 if (TREE_CODE (op1) == SSA_NAME)
594 {
595 tree tmp = SSA_NAME_VALUE (op1);
596 if (tmp)
597 op1 = tmp;
598 }
599
600 if (handle_dominating_asserts)
601 {
602 /* Now see if the operand was consumed by an ASSERT_EXPR
603 which dominates E->src. If so, we want to replace the
604 operand with the LHS of the ASSERT_EXPR. */
605 if (TREE_CODE (op0) == SSA_NAME)
606 op0 = lhs_of_dominating_assert (op0, e->src, stmt);
607
608 if (TREE_CODE (op1) == SSA_NAME)
609 op1 = lhs_of_dominating_assert (op1, e->src, stmt);
610 }
611
612 /* We may need to canonicalize the comparison. For
613 example, op0 might be a constant while op1 is an
614 SSA_NAME. Failure to canonicalize will cause us to
615 miss threading opportunities. */
616 if (tree_swap_operands_p (op0, op1, false))
617 {
618 tree tmp;
619 cond_code = swap_tree_comparison (cond_code);
620 tmp = op0;
621 op0 = op1;
622 op1 = tmp;
623 }
624
625 /* Stuff the operator and operands into our dummy conditional
626 expression. */
627 gimple_cond_set_code (dummy_cond, cond_code);
628 gimple_cond_set_lhs (dummy_cond, op0);
629 gimple_cond_set_rhs (dummy_cond, op1);
630
631 /* We absolutely do not care about any type conversions
632 we only care about a zero/nonzero value. */
633 fold_defer_overflow_warnings ();
634
635 cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
636 if (cached_lhs)
637 while (CONVERT_EXPR_P (cached_lhs))
638 cached_lhs = TREE_OPERAND (cached_lhs, 0);
639
640 fold_undefer_overflow_warnings ((cached_lhs
641 && is_gimple_min_invariant (cached_lhs)),
642 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
643
644 /* If we have not simplified the condition down to an invariant,
645 then use the pass specific callback to simplify the condition. */
646 if (!cached_lhs
647 || !is_gimple_min_invariant (cached_lhs))
648 cached_lhs = (*simplify) (dummy_cond, stmt);
649
650 return cached_lhs;
651 }
652
653 if (code == GIMPLE_SWITCH)
654 cond = gimple_switch_index (stmt);
655 else if (code == GIMPLE_GOTO)
656 cond = gimple_goto_dest (stmt);
657 else
658 gcc_unreachable ();
659
660 /* We can have conditionals which just test the state of a variable
661 rather than use a relational operator. These are simpler to handle. */
662 if (TREE_CODE (cond) == SSA_NAME)
663 {
664 cached_lhs = cond;
665
666 /* Get the variable's current value from the equivalence chains.
667
668 It is possible to get loops in the SSA_NAME_VALUE chains
669 (consider threading the backedge of a loop where we have
670 a loop invariant SSA_NAME used in the condition. */
671 if (cached_lhs
672 && TREE_CODE (cached_lhs) == SSA_NAME
673 && SSA_NAME_VALUE (cached_lhs))
674 cached_lhs = SSA_NAME_VALUE (cached_lhs);
675
676 /* If we're dominated by a suitable ASSERT_EXPR, then
677 update CACHED_LHS appropriately. */
678 if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
679 cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
680
681 /* If we haven't simplified to an invariant yet, then use the
682 pass specific callback to try and simplify it further. */
683 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
684 cached_lhs = (*simplify) (stmt, stmt);
685 }
686 else
687 cached_lhs = NULL;
688
689 return cached_lhs;
690 }
691
692 /* Copy debug stmts from DEST's chain of single predecessors up to
693 SRC, so that we don't lose the bindings as PHI nodes are introduced
694 when DEST gains new predecessors. */
695 void
696 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
697 {
698 if (!MAY_HAVE_DEBUG_STMTS)
699 return;
700
701 if (!single_pred_p (dest))
702 return;
703
704 gcc_checking_assert (dest != src);
705
706 gimple_stmt_iterator gsi = gsi_after_labels (dest);
707 int i = 0;
708 const int alloc_count = 16; // ?? Should this be a PARAM?
709
710 /* Estimate the number of debug vars overridden in the beginning of
711 DEST, to tell how many we're going to need to begin with. */
712 for (gimple_stmt_iterator si = gsi;
713 i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
714 {
715 gimple stmt = gsi_stmt (si);
716 if (!is_gimple_debug (stmt))
717 break;
718 i++;
719 }
720
721 auto_vec<tree, alloc_count> fewvars;
722 pointer_set_t *vars = NULL;
723
724 /* If we're already starting with 3/4 of alloc_count, go for a
725 pointer_set, otherwise start with an unordered stack-allocated
726 VEC. */
727 if (i * 4 > alloc_count * 3)
728 vars = pointer_set_create ();
729
730 /* Now go through the initial debug stmts in DEST again, this time
731 actually inserting in VARS or FEWVARS. Don't bother checking for
732 duplicates in FEWVARS. */
733 for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
734 {
735 gimple stmt = gsi_stmt (si);
736 if (!is_gimple_debug (stmt))
737 break;
738
739 tree var;
740
741 if (gimple_debug_bind_p (stmt))
742 var = gimple_debug_bind_get_var (stmt);
743 else if (gimple_debug_source_bind_p (stmt))
744 var = gimple_debug_source_bind_get_var (stmt);
745 else
746 gcc_unreachable ();
747
748 if (vars)
749 pointer_set_insert (vars, var);
750 else
751 fewvars.quick_push (var);
752 }
753
754 basic_block bb = dest;
755
756 do
757 {
758 bb = single_pred (bb);
759 for (gimple_stmt_iterator si = gsi_last_bb (bb);
760 !gsi_end_p (si); gsi_prev (&si))
761 {
762 gimple stmt = gsi_stmt (si);
763 if (!is_gimple_debug (stmt))
764 continue;
765
766 tree var;
767
768 if (gimple_debug_bind_p (stmt))
769 var = gimple_debug_bind_get_var (stmt);
770 else if (gimple_debug_source_bind_p (stmt))
771 var = gimple_debug_source_bind_get_var (stmt);
772 else
773 gcc_unreachable ();
774
775 /* Discard debug bind overlaps. ??? Unlike stmts from src,
776 copied into a new block that will precede BB, debug bind
777 stmts in bypassed BBs may actually be discarded if
778 they're overwritten by subsequent debug bind stmts, which
779 might be a problem once we introduce stmt frontier notes
780 or somesuch. Adding `&& bb == src' to the condition
781 below will preserve all potentially relevant debug
782 notes. */
783 if (vars && pointer_set_insert (vars, var))
784 continue;
785 else if (!vars)
786 {
787 int i = fewvars.length ();
788 while (i--)
789 if (fewvars[i] == var)
790 break;
791 if (i >= 0)
792 continue;
793
794 if (fewvars.length () < (unsigned) alloc_count)
795 fewvars.quick_push (var);
796 else
797 {
798 vars = pointer_set_create ();
799 for (i = 0; i < alloc_count; i++)
800 pointer_set_insert (vars, fewvars[i]);
801 fewvars.release ();
802 pointer_set_insert (vars, var);
803 }
804 }
805
806 stmt = gimple_copy (stmt);
807 /* ??? Should we drop the location of the copy to denote
808 they're artificial bindings? */
809 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
810 }
811 }
812 while (bb != src && single_pred_p (bb));
813
814 if (vars)
815 pointer_set_destroy (vars);
816 else if (fewvars.exists ())
817 fewvars.release ();
818 }
819
820 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
821 need not be duplicated as part of the CFG/SSA updating process).
822
823 If it is threadable, add it to PATH and VISITED and recurse, ultimately
824 returning TRUE from the toplevel call. Otherwise do nothing and
825 return false.
826
827 DUMMY_COND, HANDLE_DOMINATING_ASSERTS and SIMPLIFY are used to
828 try and simplify the condition at the end of TAKEN_EDGE->dest. */
829 static bool
830 thread_around_empty_blocks (edge taken_edge,
831 gimple dummy_cond,
832 bool handle_dominating_asserts,
833 tree (*simplify) (gimple, gimple),
834 bitmap visited,
835 vec<jump_thread_edge *> *path,
836 bool *backedge_seen_p)
837 {
838 basic_block bb = taken_edge->dest;
839 gimple_stmt_iterator gsi;
840 gimple stmt;
841 tree cond;
842
843 /* The key property of these blocks is that they need not be duplicated
844 when threading. Thus they can not have visible side effects such
845 as PHI nodes. */
846 if (!gsi_end_p (gsi_start_phis (bb)))
847 return false;
848
849 /* Skip over DEBUG statements at the start of the block. */
850 gsi = gsi_start_nondebug_bb (bb);
851
852 /* If the block has no statements, but does have a single successor, then
853 it's just a forwarding block and we can thread through it trivially.
854
855 However, note that just threading through empty blocks with single
856 successors is not inherently profitable. For the jump thread to
857 be profitable, we must avoid a runtime conditional.
858
859 By taking the return value from the recursive call, we get the
860 desired effect of returning TRUE when we found a profitable jump
861 threading opportunity and FALSE otherwise.
862
863 This is particularly important when this routine is called after
864 processing a joiner block. Returning TRUE too aggressively in
865 that case results in pointless duplication of the joiner block. */
866 if (gsi_end_p (gsi))
867 {
868 if (single_succ_p (bb))
869 {
870 taken_edge = single_succ_edge (bb);
871 if (!bitmap_bit_p (visited, taken_edge->dest->index))
872 {
873 jump_thread_edge *x
874 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
875 path->safe_push (x);
876 bitmap_set_bit (visited, taken_edge->dest->index);
877 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
878 if (*backedge_seen_p)
879 simplify = dummy_simplify;
880 return thread_around_empty_blocks (taken_edge,
881 dummy_cond,
882 handle_dominating_asserts,
883 simplify,
884 visited,
885 path,
886 backedge_seen_p);
887 }
888 }
889
890 /* We have a block with no statements, but multiple successors? */
891 return false;
892 }
893
894 /* The only real statements this block can have are a control
895 flow altering statement. Anything else stops the thread. */
896 stmt = gsi_stmt (gsi);
897 if (gimple_code (stmt) != GIMPLE_COND
898 && gimple_code (stmt) != GIMPLE_GOTO
899 && gimple_code (stmt) != GIMPLE_SWITCH)
900 return false;
901
902 /* If we have traversed a backedge, then we do not want to look
903 at certain expressions in the table that can not be relied upon.
904 Luckily the only code that looked at those expressions is the
905 SIMPLIFY callback, which we replace if we can no longer use it. */
906 if (*backedge_seen_p)
907 simplify = dummy_simplify;
908
909 /* Extract and simplify the condition. */
910 cond = simplify_control_stmt_condition (taken_edge, stmt, dummy_cond,
911 simplify, handle_dominating_asserts);
912
913 /* If the condition can be statically computed and we have not already
914 visited the destination edge, then add the taken edge to our thread
915 path. */
916 if (cond && is_gimple_min_invariant (cond))
917 {
918 taken_edge = find_taken_edge (bb, cond);
919
920 if (bitmap_bit_p (visited, taken_edge->dest->index))
921 return false;
922 bitmap_set_bit (visited, taken_edge->dest->index);
923
924 jump_thread_edge *x
925 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
926 path->safe_push (x);
927 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
928 if (*backedge_seen_p)
929 simplify = dummy_simplify;
930
931 thread_around_empty_blocks (taken_edge,
932 dummy_cond,
933 handle_dominating_asserts,
934 simplify,
935 visited,
936 path,
937 backedge_seen_p);
938 return true;
939 }
940
941 return false;
942 }
943
944 /* We are exiting E->src, see if E->dest ends with a conditional
945 jump which has a known value when reached via E.
946
947 E->dest can have arbitrary side effects which, if threading is
948 successful, will be maintained.
949
950 Special care is necessary if E is a back edge in the CFG as we
951 may have already recorded equivalences for E->dest into our
952 various tables, including the result of the conditional at
953 the end of E->dest. Threading opportunities are severely
954 limited in that case to avoid short-circuiting the loop
955 incorrectly.
956
957 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
958 to avoid allocating memory.
959
960 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
961 the simplified condition with left-hand sides of ASSERT_EXPRs they are
962 used in.
963
964 STACK is used to undo temporary equivalences created during the walk of
965 E->dest.
966
967 SIMPLIFY is a pass-specific function used to simplify statements.
968
969 Our caller is responsible for restoring the state of the expression
970 and const_and_copies stacks.
971
972 Positive return value is success. Zero return value is failure, but
973 the block can still be duplicated as a joiner in a jump thread path,
974 negative indicates the block should not be duplicated and thus is not
975 suitable for a joiner in a jump threading path. */
976
977 static int
978 thread_through_normal_block (edge e,
979 gimple dummy_cond,
980 bool handle_dominating_asserts,
981 vec<tree> *stack,
982 tree (*simplify) (gimple, gimple),
983 vec<jump_thread_edge *> *path,
984 bitmap visited,
985 bool *backedge_seen_p,
986 bitmap src_map,
987 bitmap dst_map)
988 {
989 /* If we have traversed a backedge, then we do not want to look
990 at certain expressions in the table that can not be relied upon.
991 Luckily the only code that looked at those expressions is the
992 SIMPLIFY callback, which we replace if we can no longer use it. */
993 if (*backedge_seen_p)
994 simplify = dummy_simplify;
995
996 /* PHIs create temporary equivalences. */
997 if (!record_temporary_equivalences_from_phis (e, stack, *backedge_seen_p,
998 src_map, dst_map))
999 return 0;
1000
1001 /* Now walk each statement recording any context sensitive
1002 temporary equivalences we can detect. */
1003 gimple stmt
1004 = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify,
1005 *backedge_seen_p,
1006 src_map, dst_map);
1007
1008 /* If we didn't look at all the statements, the most likely reason is
1009 there were too many and thus duplicating this block is not profitable.
1010
1011 Also note if we do not look at all the statements, then we may not
1012 have invalidated equivalences that are no longer valid if we threaded
1013 around a loop. Thus we must signal to our caller that this block
1014 is not suitable for use as a joiner in a threading path. */
1015 if (!stmt)
1016 return -1;
1017
1018 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
1019 will be taken. */
1020 if (gimple_code (stmt) == GIMPLE_COND
1021 || gimple_code (stmt) == GIMPLE_GOTO
1022 || gimple_code (stmt) == GIMPLE_SWITCH)
1023 {
1024 tree cond;
1025
1026 /* Extract and simplify the condition. */
1027 cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify,
1028 handle_dominating_asserts);
1029
1030 if (cond && is_gimple_min_invariant (cond))
1031 {
1032 edge taken_edge = find_taken_edge (e->dest, cond);
1033 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
1034
1035 /* DEST could be NULL for a computed jump to an absolute
1036 address. */
1037 if (dest == NULL
1038 || dest == e->dest
1039 || bitmap_bit_p (visited, dest->index))
1040 return 0;
1041
1042 /* Only push the EDGE_START_JUMP_THREAD marker if this is
1043 first edge on the path. */
1044 if (path->length () == 0)
1045 {
1046 jump_thread_edge *x
1047 = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1048 path->safe_push (x);
1049 *backedge_seen_p |= ((e->flags & EDGE_DFS_BACK) != 0);
1050 }
1051
1052 jump_thread_edge *x
1053 = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
1054 path->safe_push (x);
1055 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
1056 if (*backedge_seen_p)
1057 simplify = dummy_simplify;
1058
1059 /* See if we can thread through DEST as well, this helps capture
1060 secondary effects of threading without having to re-run DOM or
1061 VRP.
1062
1063 We don't want to thread back to a block we have already
1064 visited. This may be overly conservative. */
1065 bitmap_set_bit (visited, dest->index);
1066 bitmap_set_bit (visited, e->dest->index);
1067 thread_around_empty_blocks (taken_edge,
1068 dummy_cond,
1069 handle_dominating_asserts,
1070 simplify,
1071 visited,
1072 path,
1073 backedge_seen_p);
1074 return 1;
1075 }
1076 }
1077 return 0;
1078 }
1079
1080 /* We are exiting E->src, see if E->dest ends with a conditional
1081 jump which has a known value when reached via E.
1082
1083 Special care is necessary if E is a back edge in the CFG as we
1084 may have already recorded equivalences for E->dest into our
1085 various tables, including the result of the conditional at
1086 the end of E->dest. Threading opportunities are severely
1087 limited in that case to avoid short-circuiting the loop
1088 incorrectly.
1089
1090 Note it is quite common for the first block inside a loop to
1091 end with a conditional which is either always true or always
1092 false when reached via the loop backedge. Thus we do not want
1093 to blindly disable threading across a loop backedge.
1094
1095 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1096 to avoid allocating memory.
1097
1098 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
1099 the simplified condition with left-hand sides of ASSERT_EXPRs they are
1100 used in.
1101
1102 STACK is used to undo temporary equivalences created during the walk of
1103 E->dest.
1104
1105 SIMPLIFY is a pass-specific function used to simplify statements. */
1106
1107 void
1108 thread_across_edge (gimple dummy_cond,
1109 edge e,
1110 bool handle_dominating_asserts,
1111 vec<tree> *stack,
1112 tree (*simplify) (gimple, gimple))
1113 {
1114 bitmap visited = BITMAP_ALLOC (NULL);
1115 bitmap src_map = BITMAP_ALLOC (NULL);
1116 bitmap dst_map = BITMAP_ALLOC (NULL);
1117 bool backedge_seen;
1118
1119 stmt_count = 0;
1120
1121 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1122 bitmap_clear (visited);
1123 bitmap_set_bit (visited, e->src->index);
1124 bitmap_set_bit (visited, e->dest->index);
1125 backedge_seen = ((e->flags & EDGE_DFS_BACK) != 0);
1126 if (backedge_seen)
1127 simplify = dummy_simplify;
1128
1129 int threaded = thread_through_normal_block (e, dummy_cond,
1130 handle_dominating_asserts,
1131 stack, simplify, path,
1132 visited, &backedge_seen,
1133 src_map, dst_map);
1134 if (threaded > 0)
1135 {
1136 propagate_threaded_block_debug_into (path->last ()->e->dest,
1137 e->dest);
1138 remove_temporary_equivalences (stack);
1139 BITMAP_FREE (visited);
1140 BITMAP_FREE (src_map);
1141 BITMAP_FREE (dst_map);
1142 register_jump_thread (path);
1143 return;
1144 }
1145 else
1146 {
1147 /* Negative and zero return values indicate no threading was possible,
1148 thus there should be no edges on the thread path and no need to walk
1149 through the vector entries. */
1150 gcc_assert (path->length () == 0);
1151 path->release ();
1152
1153 /* A negative status indicates the target block was deemed too big to
1154 duplicate. Just quit now rather than trying to use the block as
1155 a joiner in a jump threading path.
1156
1157 This prevents unnecessary code growth, but more importantly if we
1158 do not look at all the statements in the block, then we may have
1159 missed some invalidations if we had traversed a backedge! */
1160 if (threaded < 0)
1161 {
1162 BITMAP_FREE (visited);
1163 BITMAP_FREE (src_map);
1164 BITMAP_FREE (dst_map);
1165 remove_temporary_equivalences (stack);
1166 return;
1167 }
1168 }
1169
1170 /* We were unable to determine what out edge from E->dest is taken. However,
1171 we might still be able to thread through successors of E->dest. This
1172 often occurs when E->dest is a joiner block which then fans back out
1173 based on redundant tests.
1174
1175 If so, we'll copy E->dest and redirect the appropriate predecessor to
1176 the copy. Within the copy of E->dest, we'll thread one or more edges
1177 to points deeper in the CFG.
1178
1179 This is a stopgap until we have a more structured approach to path
1180 isolation. */
1181 {
1182 edge taken_edge;
1183 edge_iterator ei;
1184 bool found;
1185
1186 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1187 we can safely redirect any of the edges. Just punt those cases. */
1188 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1189 if (taken_edge->flags & EDGE_ABNORMAL)
1190 {
1191 remove_temporary_equivalences (stack);
1192 BITMAP_FREE (visited);
1193 BITMAP_FREE (src_map);
1194 BITMAP_FREE (dst_map);
1195 return;
1196 }
1197
1198 /* We need to restore the state of the maps to this point each loop
1199 iteration. */
1200 bitmap src_map_copy = BITMAP_ALLOC (NULL);
1201 bitmap dst_map_copy = BITMAP_ALLOC (NULL);
1202 bitmap_copy (src_map_copy, src_map);
1203 bitmap_copy (dst_map_copy, dst_map);
1204
1205 /* Look at each successor of E->dest to see if we can thread through it. */
1206 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1207 {
1208 /* Push a fresh marker so we can unwind the equivalences created
1209 for each of E->dest's successors. */
1210 stack->safe_push (NULL_TREE);
1211 bitmap_copy (src_map, src_map_copy);
1212 bitmap_copy (dst_map, dst_map_copy);
1213
1214 /* Avoid threading to any block we have already visited. */
1215 bitmap_clear (visited);
1216 bitmap_set_bit (visited, e->src->index);
1217 bitmap_set_bit (visited, e->dest->index);
1218 bitmap_set_bit (visited, taken_edge->dest->index);
1219 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1220
1221 /* Record whether or not we were able to thread through a successor
1222 of E->dest. */
1223 jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1224 path->safe_push (x);
1225
1226 x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1227 path->safe_push (x);
1228 found = false;
1229 backedge_seen = ((e->flags & EDGE_DFS_BACK) != 0);
1230 backedge_seen |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
1231 if (backedge_seen)
1232 simplify = dummy_simplify;
1233 found = thread_around_empty_blocks (taken_edge,
1234 dummy_cond,
1235 handle_dominating_asserts,
1236 simplify,
1237 visited,
1238 path,
1239 &backedge_seen);
1240
1241 if (backedge_seen)
1242 simplify = dummy_simplify;
1243
1244 if (!found)
1245 found = thread_through_normal_block (path->last ()->e, dummy_cond,
1246 handle_dominating_asserts,
1247 stack, simplify, path, visited,
1248 &backedge_seen,
1249 src_map, dst_map) > 0;
1250
1251 /* If we were able to thread through a successor of E->dest, then
1252 record the jump threading opportunity. */
1253 if (found)
1254 {
1255 propagate_threaded_block_debug_into (path->last ()->e->dest,
1256 taken_edge->dest);
1257 register_jump_thread (path);
1258 }
1259 else
1260 {
1261 delete_jump_thread_path (path);
1262 }
1263
1264 /* And unwind the equivalence table. */
1265 remove_temporary_equivalences (stack);
1266 }
1267 BITMAP_FREE (visited);
1268 BITMAP_FREE (src_map);
1269 BITMAP_FREE (dst_map);
1270 BITMAP_FREE (src_map_copy);
1271 BITMAP_FREE (dst_map_copy);
1272 }
1273
1274 remove_temporary_equivalences (stack);
1275 }