]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-uninit.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / tree-ssa-uninit.c
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "hard-reg-set.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "tm_p.h"
30 #include "ssa.h"
31 #include "gimple-pretty-print.h"
32 #include "diagnostic-core.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "flags.h"
36 #include "internal-fn.h"
37 #include "gimple-iterator.h"
38 #include "tree-ssa.h"
39 #include "tree-inline.h"
40 #include "params.h"
41 #include "tree-cfg.h"
42
43 /* This implements the pass that does predicate aware warning on uses of
44 possibly uninitialized variables. The pass first collects the set of
45 possibly uninitialized SSA names. For each such name, it walks through
46 all its immediate uses. For each immediate use, it rebuilds the condition
47 expression (the predicate) that guards the use. The predicate is then
48 examined to see if the variable is always defined under that same condition.
49 This is done either by pruning the unrealizable paths that lead to the
50 default definitions or by checking if the predicate set that guards the
51 defining paths is a superset of the use predicate. */
52
53
54 /* Pointer set of potentially undefined ssa names, i.e.,
55 ssa names that are defined by phi with operands that
56 are not defined or potentially undefined. */
57 static hash_set<tree> *possibly_undefined_names = 0;
58
59 /* Bit mask handling macros. */
60 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
61 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
62 #define MASK_EMPTY(mask) (mask == 0)
63
64 /* Returns the first bit position (starting from LSB)
65 in mask that is non zero. Returns -1 if the mask is empty. */
66 static int
67 get_mask_first_set_bit (unsigned mask)
68 {
69 int pos = 0;
70 if (mask == 0)
71 return -1;
72
73 while ((mask & (1 << pos)) == 0)
74 pos++;
75
76 return pos;
77 }
78 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
79
80 /* Return true if T, an SSA_NAME, has an undefined value. */
81 static bool
82 has_undefined_value_p (tree t)
83 {
84 return (ssa_undefined_value_p (t)
85 || (possibly_undefined_names
86 && possibly_undefined_names->contains (t)));
87 }
88
89
90
91 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
92 is set on SSA_NAME_VAR. */
93
94 static inline bool
95 uninit_undefined_value_p (tree t) {
96 if (!has_undefined_value_p (t))
97 return false;
98 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
99 return false;
100 return true;
101 }
102
103 /* Emit warnings for uninitialized variables. This is done in two passes.
104
105 The first pass notices real uses of SSA names with undefined values.
106 Such uses are unconditionally uninitialized, and we can be certain that
107 such a use is a mistake. This pass is run before most optimizations,
108 so that we catch as many as we can.
109
110 The second pass follows PHI nodes to find uses that are potentially
111 uninitialized. In this case we can't necessarily prove that the use
112 is really uninitialized. This pass is run after most optimizations,
113 so that we thread as many jumps and possible, and delete as much dead
114 code as possible, in order to reduce false positives. We also look
115 again for plain uninitialized variables, since optimization may have
116 changed conditionally uninitialized to unconditionally uninitialized. */
117
118 /* Emit a warning for EXPR based on variable VAR at the point in the
119 program T, an SSA_NAME, is used being uninitialized. The exact
120 warning text is in MSGID and DATA is the gimple stmt with info about
121 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
122 gives which argument of the phi node to take the location from. WC
123 is the warning code. */
124
125 static void
126 warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
127 const char *gmsgid, void *data, location_t phiarg_loc)
128 {
129 gimple *context = (gimple *) data;
130 location_t location, cfun_loc;
131 expanded_location xloc, floc;
132
133 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
134 turns in a COMPLEX_EXPR with the not initialized part being
135 set to its previous (undefined) value. */
136 if (is_gimple_assign (context)
137 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
138 return;
139 if (!has_undefined_value_p (t))
140 return;
141
142 /* TREE_NO_WARNING either means we already warned, or the front end
143 wishes to suppress the warning. */
144 if ((context
145 && (gimple_no_warning_p (context)
146 || (gimple_assign_single_p (context)
147 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
148 || TREE_NO_WARNING (expr))
149 return;
150
151 if (context != NULL && gimple_has_location (context))
152 location = gimple_location (context);
153 else if (phiarg_loc != UNKNOWN_LOCATION)
154 location = phiarg_loc;
155 else
156 location = DECL_SOURCE_LOCATION (var);
157 location = linemap_resolve_location (line_table, location,
158 LRK_SPELLING_LOCATION,
159 NULL);
160 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
161 xloc = expand_location (location);
162 floc = expand_location (cfun_loc);
163 if (warning_at (location, wc, gmsgid, expr))
164 {
165 TREE_NO_WARNING (expr) = 1;
166
167 if (location == DECL_SOURCE_LOCATION (var))
168 return;
169 if (xloc.file != floc.file
170 || linemap_location_before_p (line_table,
171 location, cfun_loc)
172 || linemap_location_before_p (line_table,
173 cfun->function_end_locus,
174 location))
175 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
176 }
177 }
178
179 static unsigned int
180 warn_uninitialized_vars (bool warn_possibly_uninitialized)
181 {
182 gimple_stmt_iterator gsi;
183 basic_block bb;
184
185 FOR_EACH_BB_FN (bb, cfun)
186 {
187 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
188 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
189 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
190 {
191 gimple *stmt = gsi_stmt (gsi);
192 use_operand_p use_p;
193 ssa_op_iter op_iter;
194 tree use;
195
196 if (is_gimple_debug (stmt))
197 continue;
198
199 /* We only do data flow with SSA_NAMEs, so that's all we
200 can warn about. */
201 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
202 {
203 use = USE_FROM_PTR (use_p);
204 if (always_executed)
205 warn_uninit (OPT_Wuninitialized, use,
206 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
207 "%qD is used uninitialized in this function",
208 stmt, UNKNOWN_LOCATION);
209 else if (warn_possibly_uninitialized)
210 warn_uninit (OPT_Wmaybe_uninitialized, use,
211 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
212 "%qD may be used uninitialized in this function",
213 stmt, UNKNOWN_LOCATION);
214 }
215
216 /* For memory the only cheap thing we can do is see if we
217 have a use of the default def of the virtual operand.
218 ??? Not so cheap would be to use the alias oracle via
219 walk_aliased_vdefs, if we don't find any aliasing vdef
220 warn as is-used-uninitialized, if we don't find an aliasing
221 vdef that kills our use (stmt_kills_ref_p), warn as
222 may-be-used-uninitialized. But this walk is quadratic and
223 so must be limited which means we would miss warning
224 opportunities. */
225 use = gimple_vuse (stmt);
226 if (use
227 && gimple_assign_single_p (stmt)
228 && !gimple_vdef (stmt)
229 && SSA_NAME_IS_DEFAULT_DEF (use))
230 {
231 tree rhs = gimple_assign_rhs1 (stmt);
232 tree base = get_base_address (rhs);
233
234 /* Do not warn if it can be initialized outside this function. */
235 if (TREE_CODE (base) != VAR_DECL
236 || DECL_HARD_REGISTER (base)
237 || is_global_var (base))
238 continue;
239
240 if (always_executed)
241 warn_uninit (OPT_Wuninitialized, use,
242 gimple_assign_rhs1 (stmt), base,
243 "%qE is used uninitialized in this function",
244 stmt, UNKNOWN_LOCATION);
245 else if (warn_possibly_uninitialized)
246 warn_uninit (OPT_Wmaybe_uninitialized, use,
247 gimple_assign_rhs1 (stmt), base,
248 "%qE may be used uninitialized in this function",
249 stmt, UNKNOWN_LOCATION);
250 }
251 }
252 }
253
254 return 0;
255 }
256
257 /* Checks if the operand OPND of PHI is defined by
258 another phi with one operand defined by this PHI,
259 but the rest operands are all defined. If yes,
260 returns true to skip this operand as being
261 redundant. Can be enhanced to be more general. */
262
263 static bool
264 can_skip_redundant_opnd (tree opnd, gimple *phi)
265 {
266 gimple *op_def;
267 tree phi_def;
268 int i, n;
269
270 phi_def = gimple_phi_result (phi);
271 op_def = SSA_NAME_DEF_STMT (opnd);
272 if (gimple_code (op_def) != GIMPLE_PHI)
273 return false;
274 n = gimple_phi_num_args (op_def);
275 for (i = 0; i < n; ++i)
276 {
277 tree op = gimple_phi_arg_def (op_def, i);
278 if (TREE_CODE (op) != SSA_NAME)
279 continue;
280 if (op != phi_def && uninit_undefined_value_p (op))
281 return false;
282 }
283
284 return true;
285 }
286
287 /* Returns a bit mask holding the positions of arguments in PHI
288 that have empty (or possibly empty) definitions. */
289
290 static unsigned
291 compute_uninit_opnds_pos (gphi *phi)
292 {
293 size_t i, n;
294 unsigned uninit_opnds = 0;
295
296 n = gimple_phi_num_args (phi);
297 /* Bail out for phi with too many args. */
298 if (n > 32)
299 return 0;
300
301 for (i = 0; i < n; ++i)
302 {
303 tree op = gimple_phi_arg_def (phi, i);
304 if (TREE_CODE (op) == SSA_NAME
305 && uninit_undefined_value_p (op)
306 && !can_skip_redundant_opnd (op, phi))
307 {
308 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
309 {
310 /* Ignore SSA_NAMEs that appear on abnormal edges
311 somewhere. */
312 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
313 continue;
314 }
315 MASK_SET_BIT (uninit_opnds, i);
316 }
317 }
318 return uninit_opnds;
319 }
320
321 /* Find the immediate postdominator PDOM of the specified
322 basic block BLOCK. */
323
324 static inline basic_block
325 find_pdom (basic_block block)
326 {
327 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
328 return EXIT_BLOCK_PTR_FOR_FN (cfun);
329 else
330 {
331 basic_block bb
332 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
333 if (! bb)
334 return EXIT_BLOCK_PTR_FOR_FN (cfun);
335 return bb;
336 }
337 }
338
339 /* Find the immediate DOM of the specified
340 basic block BLOCK. */
341
342 static inline basic_block
343 find_dom (basic_block block)
344 {
345 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
346 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
347 else
348 {
349 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
350 if (! bb)
351 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
352 return bb;
353 }
354 }
355
356 /* Returns true if BB1 is postdominating BB2 and BB1 is
357 not a loop exit bb. The loop exit bb check is simple and does
358 not cover all cases. */
359
360 static bool
361 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
362 {
363 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
364 return false;
365
366 if (single_pred_p (bb1) && !single_succ_p (bb2))
367 return false;
368
369 return true;
370 }
371
372 /* Find the closest postdominator of a specified BB, which is control
373 equivalent to BB. */
374
375 static inline basic_block
376 find_control_equiv_block (basic_block bb)
377 {
378 basic_block pdom;
379
380 pdom = find_pdom (bb);
381
382 /* Skip the postdominating bb that is also loop exit. */
383 if (!is_non_loop_exit_postdominating (pdom, bb))
384 return NULL;
385
386 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
387 return pdom;
388
389 return NULL;
390 }
391
392 #define MAX_NUM_CHAINS 8
393 #define MAX_CHAIN_LEN 5
394 #define MAX_POSTDOM_CHECK 8
395 #define MAX_SWITCH_CASES 40
396
397 /* Computes the control dependence chains (paths of edges)
398 for DEP_BB up to the dominating basic block BB (the head node of a
399 chain should be dominated by it). CD_CHAINS is pointer to an
400 array holding the result chains. CUR_CD_CHAIN is the current
401 chain being computed. *NUM_CHAINS is total number of chains. The
402 function returns true if the information is successfully computed,
403 return false if there is no control dependence or not computed. */
404
405 static bool
406 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
407 vec<edge> *cd_chains,
408 size_t *num_chains,
409 vec<edge> *cur_cd_chain,
410 int *num_calls)
411 {
412 edge_iterator ei;
413 edge e;
414 size_t i;
415 bool found_cd_chain = false;
416 size_t cur_chain_len = 0;
417
418 if (EDGE_COUNT (bb->succs) < 2)
419 return false;
420
421 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
422 return false;
423 ++*num_calls;
424
425 /* Could use a set instead. */
426 cur_chain_len = cur_cd_chain->length ();
427 if (cur_chain_len > MAX_CHAIN_LEN)
428 return false;
429
430 for (i = 0; i < cur_chain_len; i++)
431 {
432 edge e = (*cur_cd_chain)[i];
433 /* Cycle detected. */
434 if (e->src == bb)
435 return false;
436 }
437
438 FOR_EACH_EDGE (e, ei, bb->succs)
439 {
440 basic_block cd_bb;
441 int post_dom_check = 0;
442 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
443 continue;
444
445 cd_bb = e->dest;
446 cur_cd_chain->safe_push (e);
447 while (!is_non_loop_exit_postdominating (cd_bb, bb))
448 {
449 if (cd_bb == dep_bb)
450 {
451 /* Found a direct control dependence. */
452 if (*num_chains < MAX_NUM_CHAINS)
453 {
454 cd_chains[*num_chains] = cur_cd_chain->copy ();
455 (*num_chains)++;
456 }
457 found_cd_chain = true;
458 /* Check path from next edge. */
459 break;
460 }
461
462 /* Now check if DEP_BB is indirectly control dependent on BB. */
463 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
464 num_chains, cur_cd_chain, num_calls))
465 {
466 found_cd_chain = true;
467 break;
468 }
469
470 cd_bb = find_pdom (cd_bb);
471 post_dom_check++;
472 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
473 MAX_POSTDOM_CHECK)
474 break;
475 }
476 cur_cd_chain->pop ();
477 gcc_assert (cur_cd_chain->length () == cur_chain_len);
478 }
479 gcc_assert (cur_cd_chain->length () == cur_chain_len);
480
481 return found_cd_chain;
482 }
483
484 /* The type to represent a simple predicate */
485
486 struct pred_info
487 {
488 tree pred_lhs;
489 tree pred_rhs;
490 enum tree_code cond_code;
491 bool invert;
492 };
493
494 /* The type to represent a sequence of predicates grouped
495 with .AND. operation. */
496
497 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
498
499 /* The type to represent a sequence of pred_chains grouped
500 with .OR. operation. */
501
502 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
503
504 /* Converts the chains of control dependence edges into a set of
505 predicates. A control dependence chain is represented by a vector
506 edges. DEP_CHAINS points to an array of dependence chains.
507 NUM_CHAINS is the size of the chain array. One edge in a dependence
508 chain is mapped to predicate expression represented by pred_info
509 type. One dependence chain is converted to a composite predicate that
510 is the result of AND operation of pred_info mapped to each edge.
511 A composite predicate is presented by a vector of pred_info. On
512 return, *PREDS points to the resulting array of composite predicates.
513 *NUM_PREDS is the number of composite predictes. */
514
515 static bool
516 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
517 size_t num_chains,
518 pred_chain_union *preds)
519 {
520 bool has_valid_pred = false;
521 size_t i, j;
522 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
523 return false;
524
525 /* Now convert the control dep chain into a set
526 of predicates. */
527 preds->reserve (num_chains);
528
529 for (i = 0; i < num_chains; i++)
530 {
531 vec<edge> one_cd_chain = dep_chains[i];
532
533 has_valid_pred = false;
534 pred_chain t_chain = vNULL;
535 for (j = 0; j < one_cd_chain.length (); j++)
536 {
537 gimple *cond_stmt;
538 gimple_stmt_iterator gsi;
539 basic_block guard_bb;
540 pred_info one_pred;
541 edge e;
542
543 e = one_cd_chain[j];
544 guard_bb = e->src;
545 gsi = gsi_last_bb (guard_bb);
546 if (gsi_end_p (gsi))
547 {
548 has_valid_pred = false;
549 break;
550 }
551 cond_stmt = gsi_stmt (gsi);
552 if (is_gimple_call (cond_stmt)
553 && EDGE_COUNT (e->src->succs) >= 2)
554 {
555 /* Ignore EH edge. Can add assertion
556 on the other edge's flag. */
557 continue;
558 }
559 /* Skip if there is essentially one succesor. */
560 if (EDGE_COUNT (e->src->succs) == 2)
561 {
562 edge e1;
563 edge_iterator ei1;
564 bool skip = false;
565
566 FOR_EACH_EDGE (e1, ei1, e->src->succs)
567 {
568 if (EDGE_COUNT (e1->dest->succs) == 0)
569 {
570 skip = true;
571 break;
572 }
573 }
574 if (skip)
575 continue;
576 }
577 if (gimple_code (cond_stmt) == GIMPLE_COND)
578 {
579 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
580 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
581 one_pred.cond_code = gimple_cond_code (cond_stmt);
582 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
583 t_chain.safe_push (one_pred);
584 has_valid_pred = true;
585 }
586 else if (gswitch *gs = dyn_cast <gswitch *> (cond_stmt))
587 {
588 /* Avoid quadratic behavior. */
589 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
590 {
591 has_valid_pred = false;
592 break;
593 }
594 /* Find the case label. */
595 tree l = NULL_TREE;
596 unsigned idx;
597 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
598 {
599 tree tl = gimple_switch_label (gs, idx);
600 if (e->dest == label_to_block (CASE_LABEL (tl)))
601 {
602 if (!l)
603 l = tl;
604 else
605 {
606 l = NULL_TREE;
607 break;
608 }
609 }
610 }
611 /* If more than one label reaches this block or the case
612 label doesn't have a single value (like the default one)
613 fail. */
614 if (!l
615 || !CASE_LOW (l)
616 || (CASE_HIGH (l) && !operand_equal_p (CASE_LOW (l),
617 CASE_HIGH (l), 0)))
618 {
619 has_valid_pred = false;
620 break;
621 }
622 one_pred.pred_lhs = gimple_switch_index (gs);
623 one_pred.pred_rhs = CASE_LOW (l);
624 one_pred.cond_code = EQ_EXPR;
625 one_pred.invert = false;
626 t_chain.safe_push (one_pred);
627 has_valid_pred = true;
628 }
629 else
630 {
631 has_valid_pred = false;
632 break;
633 }
634 }
635
636 if (!has_valid_pred)
637 break;
638 else
639 preds->safe_push (t_chain);
640 }
641 return has_valid_pred;
642 }
643
644 /* Computes all control dependence chains for USE_BB. The control
645 dependence chains are then converted to an array of composite
646 predicates pointed to by PREDS. PHI_BB is the basic block of
647 the phi whose result is used in USE_BB. */
648
649 static bool
650 find_predicates (pred_chain_union *preds,
651 basic_block phi_bb,
652 basic_block use_bb)
653 {
654 size_t num_chains = 0, i;
655 int num_calls = 0;
656 vec<edge> dep_chains[MAX_NUM_CHAINS];
657 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
658 bool has_valid_pred = false;
659 basic_block cd_root = 0;
660
661 /* First find the closest bb that is control equivalent to PHI_BB
662 that also dominates USE_BB. */
663 cd_root = phi_bb;
664 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
665 {
666 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
667 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
668 cd_root = ctrl_eq_bb;
669 else
670 break;
671 }
672
673 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
674 &cur_chain, &num_calls);
675
676 has_valid_pred
677 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
678 for (i = 0; i < num_chains; i++)
679 dep_chains[i].release ();
680 return has_valid_pred;
681 }
682
683 /* Computes the set of incoming edges of PHI that have non empty
684 definitions of a phi chain. The collection will be done
685 recursively on operands that are defined by phis. CD_ROOT
686 is the control dependence root. *EDGES holds the result, and
687 VISITED_PHIS is a pointer set for detecting cycles. */
688
689 static void
690 collect_phi_def_edges (gphi *phi, basic_block cd_root,
691 vec<edge> *edges,
692 hash_set<gimple *> *visited_phis)
693 {
694 size_t i, n;
695 edge opnd_edge;
696 tree opnd;
697
698 if (visited_phis->add (phi))
699 return;
700
701 n = gimple_phi_num_args (phi);
702 for (i = 0; i < n; i++)
703 {
704 opnd_edge = gimple_phi_arg_edge (phi, i);
705 opnd = gimple_phi_arg_def (phi, i);
706
707 if (TREE_CODE (opnd) != SSA_NAME)
708 {
709 if (dump_file && (dump_flags & TDF_DETAILS))
710 {
711 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
712 print_gimple_stmt (dump_file, phi, 0, 0);
713 }
714 edges->safe_push (opnd_edge);
715 }
716 else
717 {
718 gimple *def = SSA_NAME_DEF_STMT (opnd);
719
720 if (gimple_code (def) == GIMPLE_PHI
721 && dominated_by_p (CDI_DOMINATORS,
722 gimple_bb (def), cd_root))
723 collect_phi_def_edges (as_a <gphi *> (def), cd_root, edges,
724 visited_phis);
725 else if (!uninit_undefined_value_p (opnd))
726 {
727 if (dump_file && (dump_flags & TDF_DETAILS))
728 {
729 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
730 print_gimple_stmt (dump_file, phi, 0, 0);
731 }
732 edges->safe_push (opnd_edge);
733 }
734 }
735 }
736 }
737
738 /* For each use edge of PHI, computes all control dependence chains.
739 The control dependence chains are then converted to an array of
740 composite predicates pointed to by PREDS. */
741
742 static bool
743 find_def_preds (pred_chain_union *preds, gphi *phi)
744 {
745 size_t num_chains = 0, i, n;
746 vec<edge> dep_chains[MAX_NUM_CHAINS];
747 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
748 vec<edge> def_edges = vNULL;
749 bool has_valid_pred = false;
750 basic_block phi_bb, cd_root = 0;
751
752 phi_bb = gimple_bb (phi);
753 /* First find the closest dominating bb to be
754 the control dependence root */
755 cd_root = find_dom (phi_bb);
756 if (!cd_root)
757 return false;
758
759 hash_set<gimple *> visited_phis;
760 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
761
762 n = def_edges.length ();
763 if (n == 0)
764 return false;
765
766 for (i = 0; i < n; i++)
767 {
768 size_t prev_nc, j;
769 int num_calls = 0;
770 edge opnd_edge;
771
772 opnd_edge = def_edges[i];
773 prev_nc = num_chains;
774 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
775 &num_chains, &cur_chain, &num_calls);
776
777 /* Now update the newly added chains with
778 the phi operand edge: */
779 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
780 {
781 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
782 dep_chains[num_chains++] = vNULL;
783 for (j = prev_nc; j < num_chains; j++)
784 dep_chains[j].safe_push (opnd_edge);
785 }
786 }
787
788 has_valid_pred
789 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
790 for (i = 0; i < num_chains; i++)
791 dep_chains[i].release ();
792 return has_valid_pred;
793 }
794
795 /* Dumps the predicates (PREDS) for USESTMT. */
796
797 static void
798 dump_predicates (gimple *usestmt, pred_chain_union preds,
799 const char* msg)
800 {
801 size_t i, j;
802 pred_chain one_pred_chain = vNULL;
803 fprintf (dump_file, "%s", msg);
804 print_gimple_stmt (dump_file, usestmt, 0, 0);
805 fprintf (dump_file, "is guarded by :\n\n");
806 size_t num_preds = preds.length ();
807 /* Do some dumping here: */
808 for (i = 0; i < num_preds; i++)
809 {
810 size_t np;
811
812 one_pred_chain = preds[i];
813 np = one_pred_chain.length ();
814
815 for (j = 0; j < np; j++)
816 {
817 pred_info one_pred = one_pred_chain[j];
818 if (one_pred.invert)
819 fprintf (dump_file, " (.NOT.) ");
820 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
821 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
822 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
823 if (j < np - 1)
824 fprintf (dump_file, " (.AND.) ");
825 else
826 fprintf (dump_file, "\n");
827 }
828 if (i < num_preds - 1)
829 fprintf (dump_file, "(.OR.)\n");
830 else
831 fprintf (dump_file, "\n\n");
832 }
833 }
834
835 /* Destroys the predicate set *PREDS. */
836
837 static void
838 destroy_predicate_vecs (pred_chain_union preds)
839 {
840 size_t i;
841
842 size_t n = preds.length ();
843 for (i = 0; i < n; i++)
844 preds[i].release ();
845 preds.release ();
846 }
847
848
849 /* Computes the 'normalized' conditional code with operand
850 swapping and condition inversion. */
851
852 static enum tree_code
853 get_cmp_code (enum tree_code orig_cmp_code,
854 bool swap_cond, bool invert)
855 {
856 enum tree_code tc = orig_cmp_code;
857
858 if (swap_cond)
859 tc = swap_tree_comparison (orig_cmp_code);
860 if (invert)
861 tc = invert_tree_comparison (tc, false);
862
863 switch (tc)
864 {
865 case LT_EXPR:
866 case LE_EXPR:
867 case GT_EXPR:
868 case GE_EXPR:
869 case EQ_EXPR:
870 case NE_EXPR:
871 break;
872 default:
873 return ERROR_MARK;
874 }
875 return tc;
876 }
877
878 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
879 all values in the range satisfies (x CMPC BOUNDARY) == true. */
880
881 static bool
882 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
883 {
884 bool inverted = false;
885 bool is_unsigned;
886 bool result;
887
888 /* Only handle integer constant here. */
889 if (TREE_CODE (val) != INTEGER_CST
890 || TREE_CODE (boundary) != INTEGER_CST)
891 return true;
892
893 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
894
895 if (cmpc == GE_EXPR || cmpc == GT_EXPR
896 || cmpc == NE_EXPR)
897 {
898 cmpc = invert_tree_comparison (cmpc, false);
899 inverted = true;
900 }
901
902 if (is_unsigned)
903 {
904 if (cmpc == EQ_EXPR)
905 result = tree_int_cst_equal (val, boundary);
906 else if (cmpc == LT_EXPR)
907 result = tree_int_cst_lt (val, boundary);
908 else
909 {
910 gcc_assert (cmpc == LE_EXPR);
911 result = tree_int_cst_le (val, boundary);
912 }
913 }
914 else
915 {
916 if (cmpc == EQ_EXPR)
917 result = tree_int_cst_equal (val, boundary);
918 else if (cmpc == LT_EXPR)
919 result = tree_int_cst_lt (val, boundary);
920 else
921 {
922 gcc_assert (cmpc == LE_EXPR);
923 result = (tree_int_cst_equal (val, boundary)
924 || tree_int_cst_lt (val, boundary));
925 }
926 }
927
928 if (inverted)
929 result ^= 1;
930
931 return result;
932 }
933
934 /* Returns true if PRED is common among all the predicate
935 chains (PREDS) (and therefore can be factored out).
936 NUM_PRED_CHAIN is the size of array PREDS. */
937
938 static bool
939 find_matching_predicate_in_rest_chains (pred_info pred,
940 pred_chain_union preds,
941 size_t num_pred_chains)
942 {
943 size_t i, j, n;
944
945 /* Trival case. */
946 if (num_pred_chains == 1)
947 return true;
948
949 for (i = 1; i < num_pred_chains; i++)
950 {
951 bool found = false;
952 pred_chain one_chain = preds[i];
953 n = one_chain.length ();
954 for (j = 0; j < n; j++)
955 {
956 pred_info pred2 = one_chain[j];
957 /* Can relax the condition comparison to not
958 use address comparison. However, the most common
959 case is that multiple control dependent paths share
960 a common path prefix, so address comparison should
961 be ok. */
962
963 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
964 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
965 && pred2.invert == pred.invert)
966 {
967 found = true;
968 break;
969 }
970 }
971 if (!found)
972 return false;
973 }
974 return true;
975 }
976
977 /* Forward declaration. */
978 static bool
979 is_use_properly_guarded (gimple *use_stmt,
980 basic_block use_bb,
981 gphi *phi,
982 unsigned uninit_opnds,
983 pred_chain_union *def_preds,
984 hash_set<gphi *> *visited_phis);
985
986 /* Returns true if all uninitialized opnds are pruned. Returns false
987 otherwise. PHI is the phi node with uninitialized operands,
988 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
989 FLAG_DEF is the statement defining the flag guarding the use of the
990 PHI output, BOUNDARY_CST is the const value used in the predicate
991 associated with the flag, CMP_CODE is the comparison code used in
992 the predicate, VISITED_PHIS is the pointer set of phis visited, and
993 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
994 that are also phis.
995
996 Example scenario:
997
998 BB1:
999 flag_1 = phi <0, 1> // (1)
1000 var_1 = phi <undef, some_val>
1001
1002
1003 BB2:
1004 flag_2 = phi <0, flag_1, flag_1> // (2)
1005 var_2 = phi <undef, var_1, var_1>
1006 if (flag_2 == 1)
1007 goto BB3;
1008
1009 BB3:
1010 use of var_2 // (3)
1011
1012 Because some flag arg in (1) is not constant, if we do not look into the
1013 flag phis recursively, it is conservatively treated as unknown and var_1
1014 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
1015 a false warning will be emitted. Checking recursively into (1), the compiler can
1016 find out that only some_val (which is defined) can flow into (3) which is OK.
1017
1018 */
1019
1020 static bool
1021 prune_uninit_phi_opnds_in_unrealizable_paths (gphi *phi,
1022 unsigned uninit_opnds,
1023 gphi *flag_def,
1024 tree boundary_cst,
1025 enum tree_code cmp_code,
1026 hash_set<gphi *> *visited_phis,
1027 bitmap *visited_flag_phis)
1028 {
1029 unsigned i;
1030
1031 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
1032 {
1033 tree flag_arg;
1034
1035 if (!MASK_TEST_BIT (uninit_opnds, i))
1036 continue;
1037
1038 flag_arg = gimple_phi_arg_def (flag_def, i);
1039 if (!is_gimple_constant (flag_arg))
1040 {
1041 gphi *flag_arg_def, *phi_arg_def;
1042 tree phi_arg;
1043 unsigned uninit_opnds_arg_phi;
1044
1045 if (TREE_CODE (flag_arg) != SSA_NAME)
1046 return false;
1047 flag_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1048 if (!flag_arg_def)
1049 return false;
1050
1051 phi_arg = gimple_phi_arg_def (phi, i);
1052 if (TREE_CODE (phi_arg) != SSA_NAME)
1053 return false;
1054
1055 phi_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1056 if (!phi_arg_def)
1057 return false;
1058
1059 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1060 return false;
1061
1062 if (!*visited_flag_phis)
1063 *visited_flag_phis = BITMAP_ALLOC (NULL);
1064
1065 if (bitmap_bit_p (*visited_flag_phis,
1066 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
1067 return false;
1068
1069 bitmap_set_bit (*visited_flag_phis,
1070 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1071
1072 /* Now recursively prune the uninitialized phi args. */
1073 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1074 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1075 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
1076 boundary_cst, cmp_code, visited_phis, visited_flag_phis))
1077 return false;
1078
1079 bitmap_clear_bit (*visited_flag_phis,
1080 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1081 continue;
1082 }
1083
1084 /* Now check if the constant is in the guarded range. */
1085 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1086 {
1087 tree opnd;
1088 gimple *opnd_def;
1089
1090 /* Now that we know that this undefined edge is not
1091 pruned. If the operand is defined by another phi,
1092 we can further prune the incoming edges of that
1093 phi by checking the predicates of this operands. */
1094
1095 opnd = gimple_phi_arg_def (phi, i);
1096 opnd_def = SSA_NAME_DEF_STMT (opnd);
1097 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1098 {
1099 edge opnd_edge;
1100 unsigned uninit_opnds2
1101 = compute_uninit_opnds_pos (opnd_def_phi);
1102 pred_chain_union def_preds = vNULL;
1103 bool ok;
1104 gcc_assert (!MASK_EMPTY (uninit_opnds2));
1105 opnd_edge = gimple_phi_arg_edge (phi, i);
1106 ok = is_use_properly_guarded (phi,
1107 opnd_edge->src,
1108 opnd_def_phi,
1109 uninit_opnds2,
1110 &def_preds,
1111 visited_phis);
1112 destroy_predicate_vecs (def_preds);
1113 if (!ok)
1114 return false;
1115 }
1116 else
1117 return false;
1118 }
1119 }
1120
1121 return true;
1122 }
1123
1124 /* A helper function that determines if the predicate set
1125 of the use is not overlapping with that of the uninit paths.
1126 The most common senario of guarded use is in Example 1:
1127 Example 1:
1128 if (some_cond)
1129 {
1130 x = ...;
1131 flag = true;
1132 }
1133
1134 ... some code ...
1135
1136 if (flag)
1137 use (x);
1138
1139 The real world examples are usually more complicated, but similar
1140 and usually result from inlining:
1141
1142 bool init_func (int * x)
1143 {
1144 if (some_cond)
1145 return false;
1146 *x = ..
1147 return true;
1148 }
1149
1150 void foo(..)
1151 {
1152 int x;
1153
1154 if (!init_func(&x))
1155 return;
1156
1157 .. some_code ...
1158 use (x);
1159 }
1160
1161 Another possible use scenario is in the following trivial example:
1162
1163 Example 2:
1164 if (n > 0)
1165 x = 1;
1166 ...
1167 if (n > 0)
1168 {
1169 if (m < 2)
1170 .. = x;
1171 }
1172
1173 Predicate analysis needs to compute the composite predicate:
1174
1175 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1176 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1177 (the predicate chain for phi operand defs can be computed
1178 starting from a bb that is control equivalent to the phi's
1179 bb and is dominating the operand def.)
1180
1181 and check overlapping:
1182 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1183 <==> false
1184
1185 This implementation provides framework that can handle
1186 scenarios. (Note that many simple cases are handled properly
1187 without the predicate analysis -- this is due to jump threading
1188 transformation which eliminates the merge point thus makes
1189 path sensitive analysis unnecessary.)
1190
1191 NUM_PREDS is the number is the number predicate chains, PREDS is
1192 the array of chains, PHI is the phi node whose incoming (undefined)
1193 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1194 uninit operand positions. VISITED_PHIS is the pointer set of phi
1195 stmts being checked. */
1196
1197
1198 static bool
1199 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1200 gphi *phi, unsigned uninit_opnds,
1201 hash_set<gphi *> *visited_phis)
1202 {
1203 unsigned int i, n;
1204 gimple *flag_def = 0;
1205 tree boundary_cst = 0;
1206 enum tree_code cmp_code;
1207 bool swap_cond = false;
1208 bool invert = false;
1209 pred_chain the_pred_chain = vNULL;
1210 bitmap visited_flag_phis = NULL;
1211 bool all_pruned = false;
1212 size_t num_preds = preds.length ();
1213
1214 gcc_assert (num_preds > 0);
1215 /* Find within the common prefix of multiple predicate chains
1216 a predicate that is a comparison of a flag variable against
1217 a constant. */
1218 the_pred_chain = preds[0];
1219 n = the_pred_chain.length ();
1220 for (i = 0; i < n; i++)
1221 {
1222 tree cond_lhs, cond_rhs, flag = 0;
1223
1224 pred_info the_pred = the_pred_chain[i];
1225
1226 invert = the_pred.invert;
1227 cond_lhs = the_pred.pred_lhs;
1228 cond_rhs = the_pred.pred_rhs;
1229 cmp_code = the_pred.cond_code;
1230
1231 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1232 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1233 {
1234 boundary_cst = cond_rhs;
1235 flag = cond_lhs;
1236 }
1237 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1238 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1239 {
1240 boundary_cst = cond_lhs;
1241 flag = cond_rhs;
1242 swap_cond = true;
1243 }
1244
1245 if (!flag)
1246 continue;
1247
1248 flag_def = SSA_NAME_DEF_STMT (flag);
1249
1250 if (!flag_def)
1251 continue;
1252
1253 if ((gimple_code (flag_def) == GIMPLE_PHI)
1254 && (gimple_bb (flag_def) == gimple_bb (phi))
1255 && find_matching_predicate_in_rest_chains (the_pred, preds,
1256 num_preds))
1257 break;
1258
1259 flag_def = 0;
1260 }
1261
1262 if (!flag_def)
1263 return false;
1264
1265 /* Now check all the uninit incoming edge has a constant flag value
1266 that is in conflict with the use guard/predicate. */
1267 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1268
1269 if (cmp_code == ERROR_MARK)
1270 return false;
1271
1272 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1273 uninit_opnds,
1274 as_a <gphi *> (flag_def),
1275 boundary_cst,
1276 cmp_code,
1277 visited_phis,
1278 &visited_flag_phis);
1279
1280 if (visited_flag_phis)
1281 BITMAP_FREE (visited_flag_phis);
1282
1283 return all_pruned;
1284 }
1285
1286 /* The helper function returns true if two predicates X1 and X2
1287 are equivalent. It assumes the expressions have already
1288 properly re-associated. */
1289
1290 static inline bool
1291 pred_equal_p (pred_info x1, pred_info x2)
1292 {
1293 enum tree_code c1, c2;
1294 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1295 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1296 return false;
1297
1298 c1 = x1.cond_code;
1299 if (x1.invert != x2.invert
1300 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
1301 c2 = invert_tree_comparison (x2.cond_code, false);
1302 else
1303 c2 = x2.cond_code;
1304
1305 return c1 == c2;
1306 }
1307
1308 /* Returns true if the predication is testing !=. */
1309
1310 static inline bool
1311 is_neq_relop_p (pred_info pred)
1312 {
1313
1314 return (pred.cond_code == NE_EXPR && !pred.invert)
1315 || (pred.cond_code == EQ_EXPR && pred.invert);
1316 }
1317
1318 /* Returns true if pred is of the form X != 0. */
1319
1320 static inline bool
1321 is_neq_zero_form_p (pred_info pred)
1322 {
1323 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1324 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1325 return false;
1326 return true;
1327 }
1328
1329 /* The helper function returns true if two predicates X1
1330 is equivalent to X2 != 0. */
1331
1332 static inline bool
1333 pred_expr_equal_p (pred_info x1, tree x2)
1334 {
1335 if (!is_neq_zero_form_p (x1))
1336 return false;
1337
1338 return operand_equal_p (x1.pred_lhs, x2, 0);
1339 }
1340
1341 /* Returns true of the domain of single predicate expression
1342 EXPR1 is a subset of that of EXPR2. Returns false if it
1343 can not be proved. */
1344
1345 static bool
1346 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1347 {
1348 enum tree_code code1, code2;
1349
1350 if (pred_equal_p (expr1, expr2))
1351 return true;
1352
1353 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1354 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1355 return false;
1356
1357 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1358 return false;
1359
1360 code1 = expr1.cond_code;
1361 if (expr1.invert)
1362 code1 = invert_tree_comparison (code1, false);
1363 code2 = expr2.cond_code;
1364 if (expr2.invert)
1365 code2 = invert_tree_comparison (code2, false);
1366
1367 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR)
1368 && code2 == BIT_AND_EXPR)
1369 return wi::eq_p (expr1.pred_rhs,
1370 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
1371
1372 if (code1 != code2 && code2 != NE_EXPR)
1373 return false;
1374
1375 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1376 return true;
1377
1378 return false;
1379 }
1380
1381 /* Returns true if the domain of PRED1 is a subset
1382 of that of PRED2. Returns false if it can not be proved so. */
1383
1384 static bool
1385 is_pred_chain_subset_of (pred_chain pred1,
1386 pred_chain pred2)
1387 {
1388 size_t np1, np2, i1, i2;
1389
1390 np1 = pred1.length ();
1391 np2 = pred2.length ();
1392
1393 for (i2 = 0; i2 < np2; i2++)
1394 {
1395 bool found = false;
1396 pred_info info2 = pred2[i2];
1397 for (i1 = 0; i1 < np1; i1++)
1398 {
1399 pred_info info1 = pred1[i1];
1400 if (is_pred_expr_subset_of (info1, info2))
1401 {
1402 found = true;
1403 break;
1404 }
1405 }
1406 if (!found)
1407 return false;
1408 }
1409 return true;
1410 }
1411
1412 /* Returns true if the domain defined by
1413 one pred chain ONE_PRED is a subset of the domain
1414 of *PREDS. It returns false if ONE_PRED's domain is
1415 not a subset of any of the sub-domains of PREDS
1416 (corresponding to each individual chains in it), even
1417 though it may be still be a subset of whole domain
1418 of PREDS which is the union (ORed) of all its subdomains.
1419 In other words, the result is conservative. */
1420
1421 static bool
1422 is_included_in (pred_chain one_pred, pred_chain_union preds)
1423 {
1424 size_t i;
1425 size_t n = preds.length ();
1426
1427 for (i = 0; i < n; i++)
1428 {
1429 if (is_pred_chain_subset_of (one_pred, preds[i]))
1430 return true;
1431 }
1432
1433 return false;
1434 }
1435
1436 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1437 true if the domain defined by PREDS1 is a superset
1438 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1439 PREDS2 respectively. The implementation chooses not to build
1440 generic trees (and relying on the folding capability of the
1441 compiler), but instead performs brute force comparison of
1442 individual predicate chains (won't be a compile time problem
1443 as the chains are pretty short). When the function returns
1444 false, it does not necessarily mean *PREDS1 is not a superset
1445 of *PREDS2, but mean it may not be so since the analysis can
1446 not prove it. In such cases, false warnings may still be
1447 emitted. */
1448
1449 static bool
1450 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1451 {
1452 size_t i, n2;
1453 pred_chain one_pred_chain = vNULL;
1454
1455 n2 = preds2.length ();
1456
1457 for (i = 0; i < n2; i++)
1458 {
1459 one_pred_chain = preds2[i];
1460 if (!is_included_in (one_pred_chain, preds1))
1461 return false;
1462 }
1463
1464 return true;
1465 }
1466
1467 /* Returns true if TC is AND or OR. */
1468
1469 static inline bool
1470 is_and_or_or_p (enum tree_code tc, tree type)
1471 {
1472 return (tc == BIT_IOR_EXPR
1473 || (tc == BIT_AND_EXPR
1474 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1475 }
1476
1477 /* Returns true if X1 is the negate of X2. */
1478
1479 static inline bool
1480 pred_neg_p (pred_info x1, pred_info x2)
1481 {
1482 enum tree_code c1, c2;
1483 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1484 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1485 return false;
1486
1487 c1 = x1.cond_code;
1488 if (x1.invert == x2.invert)
1489 c2 = invert_tree_comparison (x2.cond_code, false);
1490 else
1491 c2 = x2.cond_code;
1492
1493 return c1 == c2;
1494 }
1495
1496 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1497 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1498 3) X OR (!X AND Y) is equivalent to (X OR Y);
1499 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1500 (x != 0 AND y != 0)
1501 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1502 (X AND Y) OR Z
1503
1504 PREDS is the predicate chains, and N is the number of chains. */
1505
1506 /* Helper function to implement rule 1 above. ONE_CHAIN is
1507 the AND predication to be simplified. */
1508
1509 static void
1510 simplify_pred (pred_chain *one_chain)
1511 {
1512 size_t i, j, n;
1513 bool simplified = false;
1514 pred_chain s_chain = vNULL;
1515
1516 n = one_chain->length ();
1517
1518 for (i = 0; i < n; i++)
1519 {
1520 pred_info *a_pred = &(*one_chain)[i];
1521
1522 if (!a_pred->pred_lhs)
1523 continue;
1524 if (!is_neq_zero_form_p (*a_pred))
1525 continue;
1526
1527 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1528 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1529 continue;
1530 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1531 {
1532 for (j = 0; j < n; j++)
1533 {
1534 pred_info *b_pred = &(*one_chain)[j];
1535
1536 if (!b_pred->pred_lhs)
1537 continue;
1538 if (!is_neq_zero_form_p (*b_pred))
1539 continue;
1540
1541 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1542 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1543 {
1544 /* Mark a_pred for removal. */
1545 a_pred->pred_lhs = NULL;
1546 a_pred->pred_rhs = NULL;
1547 simplified = true;
1548 break;
1549 }
1550 }
1551 }
1552 }
1553
1554 if (!simplified)
1555 return;
1556
1557 for (i = 0; i < n; i++)
1558 {
1559 pred_info *a_pred = &(*one_chain)[i];
1560 if (!a_pred->pred_lhs)
1561 continue;
1562 s_chain.safe_push (*a_pred);
1563 }
1564
1565 one_chain->release ();
1566 *one_chain = s_chain;
1567 }
1568
1569 /* The helper function implements the rule 2 for the
1570 OR predicate PREDS.
1571
1572 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1573
1574 static bool
1575 simplify_preds_2 (pred_chain_union *preds)
1576 {
1577 size_t i, j, n;
1578 bool simplified = false;
1579 pred_chain_union s_preds = vNULL;
1580
1581 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1582 (X AND Y) OR (X AND !Y) is equivalent to X. */
1583
1584 n = preds->length ();
1585 for (i = 0; i < n; i++)
1586 {
1587 pred_info x, y;
1588 pred_chain *a_chain = &(*preds)[i];
1589
1590 if (a_chain->length () != 2)
1591 continue;
1592
1593 x = (*a_chain)[0];
1594 y = (*a_chain)[1];
1595
1596 for (j = 0; j < n; j++)
1597 {
1598 pred_chain *b_chain;
1599 pred_info x2, y2;
1600
1601 if (j == i)
1602 continue;
1603
1604 b_chain = &(*preds)[j];
1605 if (b_chain->length () != 2)
1606 continue;
1607
1608 x2 = (*b_chain)[0];
1609 y2 = (*b_chain)[1];
1610
1611 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1612 {
1613 /* Kill a_chain. */
1614 a_chain->release ();
1615 b_chain->release ();
1616 b_chain->safe_push (x);
1617 simplified = true;
1618 break;
1619 }
1620 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1621 {
1622 /* Kill a_chain. */
1623 a_chain->release ();
1624 b_chain->release ();
1625 b_chain->safe_push (y);
1626 simplified = true;
1627 break;
1628 }
1629 }
1630 }
1631 /* Now clean up the chain. */
1632 if (simplified)
1633 {
1634 for (i = 0; i < n; i++)
1635 {
1636 if ((*preds)[i].is_empty ())
1637 continue;
1638 s_preds.safe_push ((*preds)[i]);
1639 }
1640 preds->release ();
1641 (*preds) = s_preds;
1642 s_preds = vNULL;
1643 }
1644
1645 return simplified;
1646 }
1647
1648 /* The helper function implements the rule 2 for the
1649 OR predicate PREDS.
1650
1651 3) x OR (!x AND y) is equivalent to x OR y. */
1652
1653 static bool
1654 simplify_preds_3 (pred_chain_union *preds)
1655 {
1656 size_t i, j, n;
1657 bool simplified = false;
1658
1659 /* Now iteratively simplify X OR (!X AND Z ..)
1660 into X OR (Z ...). */
1661
1662 n = preds->length ();
1663 if (n < 2)
1664 return false;
1665
1666 for (i = 0; i < n; i++)
1667 {
1668 pred_info x;
1669 pred_chain *a_chain = &(*preds)[i];
1670
1671 if (a_chain->length () != 1)
1672 continue;
1673
1674 x = (*a_chain)[0];
1675
1676 for (j = 0; j < n; j++)
1677 {
1678 pred_chain *b_chain;
1679 pred_info x2;
1680 size_t k;
1681
1682 if (j == i)
1683 continue;
1684
1685 b_chain = &(*preds)[j];
1686 if (b_chain->length () < 2)
1687 continue;
1688
1689 for (k = 0; k < b_chain->length (); k++)
1690 {
1691 x2 = (*b_chain)[k];
1692 if (pred_neg_p (x, x2))
1693 {
1694 b_chain->unordered_remove (k);
1695 simplified = true;
1696 break;
1697 }
1698 }
1699 }
1700 }
1701 return simplified;
1702 }
1703
1704 /* The helper function implements the rule 4 for the
1705 OR predicate PREDS.
1706
1707 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1708 (x != 0 ANd y != 0). */
1709
1710 static bool
1711 simplify_preds_4 (pred_chain_union *preds)
1712 {
1713 size_t i, j, n;
1714 bool simplified = false;
1715 pred_chain_union s_preds = vNULL;
1716 gimple *def_stmt;
1717
1718 n = preds->length ();
1719 for (i = 0; i < n; i++)
1720 {
1721 pred_info z;
1722 pred_chain *a_chain = &(*preds)[i];
1723
1724 if (a_chain->length () != 1)
1725 continue;
1726
1727 z = (*a_chain)[0];
1728
1729 if (!is_neq_zero_form_p (z))
1730 continue;
1731
1732 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1733 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1734 continue;
1735
1736 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1737 continue;
1738
1739 for (j = 0; j < n; j++)
1740 {
1741 pred_chain *b_chain;
1742 pred_info x2, y2;
1743
1744 if (j == i)
1745 continue;
1746
1747 b_chain = &(*preds)[j];
1748 if (b_chain->length () != 2)
1749 continue;
1750
1751 x2 = (*b_chain)[0];
1752 y2 = (*b_chain)[1];
1753 if (!is_neq_zero_form_p (x2)
1754 || !is_neq_zero_form_p (y2))
1755 continue;
1756
1757 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1758 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1759 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1760 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1761 {
1762 /* Kill a_chain. */
1763 a_chain->release ();
1764 simplified = true;
1765 break;
1766 }
1767 }
1768 }
1769 /* Now clean up the chain. */
1770 if (simplified)
1771 {
1772 for (i = 0; i < n; i++)
1773 {
1774 if ((*preds)[i].is_empty ())
1775 continue;
1776 s_preds.safe_push ((*preds)[i]);
1777 }
1778 preds->release ();
1779 (*preds) = s_preds;
1780 s_preds = vNULL;
1781 }
1782
1783 return simplified;
1784 }
1785
1786
1787 /* This function simplifies predicates in PREDS. */
1788
1789 static void
1790 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
1791 {
1792 size_t i, n;
1793 bool changed = false;
1794
1795 if (dump_file && dump_flags & TDF_DETAILS)
1796 {
1797 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1798 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1799 }
1800
1801 for (i = 0; i < preds->length (); i++)
1802 simplify_pred (&(*preds)[i]);
1803
1804 n = preds->length ();
1805 if (n < 2)
1806 return;
1807
1808 do
1809 {
1810 changed = false;
1811 if (simplify_preds_2 (preds))
1812 changed = true;
1813
1814 /* Now iteratively simplify X OR (!X AND Z ..)
1815 into X OR (Z ...). */
1816 if (simplify_preds_3 (preds))
1817 changed = true;
1818
1819 if (simplify_preds_4 (preds))
1820 changed = true;
1821
1822 } while (changed);
1823
1824 return;
1825 }
1826
1827 /* This is a helper function which attempts to normalize predicate chains
1828 by following UD chains. It basically builds up a big tree of either IOR
1829 operations or AND operations, and convert the IOR tree into a
1830 pred_chain_union or BIT_AND tree into a pred_chain.
1831 Example:
1832
1833 _3 = _2 RELOP1 _1;
1834 _6 = _5 RELOP2 _4;
1835 _9 = _8 RELOP3 _7;
1836 _10 = _3 | _6;
1837 _12 = _9 | _0;
1838 _t = _10 | _12;
1839
1840 then _t != 0 will be normalized into a pred_chain_union
1841
1842 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1843
1844 Similarly given,
1845
1846 _3 = _2 RELOP1 _1;
1847 _6 = _5 RELOP2 _4;
1848 _9 = _8 RELOP3 _7;
1849 _10 = _3 & _6;
1850 _12 = _9 & _0;
1851
1852 then _t != 0 will be normalized into a pred_chain:
1853 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1854
1855 */
1856
1857 /* This is a helper function that stores a PRED into NORM_PREDS. */
1858
1859 inline static void
1860 push_pred (pred_chain_union *norm_preds, pred_info pred)
1861 {
1862 pred_chain pred_chain = vNULL;
1863 pred_chain.safe_push (pred);
1864 norm_preds->safe_push (pred_chain);
1865 }
1866
1867 /* A helper function that creates a predicate of the form
1868 OP != 0 and push it WORK_LIST. */
1869
1870 inline static void
1871 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1872 hash_set<tree> *mark_set)
1873 {
1874 if (mark_set->contains (op))
1875 return;
1876 mark_set->add (op);
1877
1878 pred_info arg_pred;
1879 arg_pred.pred_lhs = op;
1880 arg_pred.pred_rhs = integer_zero_node;
1881 arg_pred.cond_code = NE_EXPR;
1882 arg_pred.invert = false;
1883 work_list->safe_push (arg_pred);
1884 }
1885
1886 /* A helper that generates a pred_info from a gimple assignment
1887 CMP_ASSIGN with comparison rhs. */
1888
1889 static pred_info
1890 get_pred_info_from_cmp (gimple *cmp_assign)
1891 {
1892 pred_info n_pred;
1893 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1894 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1895 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1896 n_pred.invert = false;
1897 return n_pred;
1898 }
1899
1900 /* Returns true if the PHI is a degenerated phi with
1901 all args with the same value (relop). In that case, *PRED
1902 will be updated to that value. */
1903
1904 static bool
1905 is_degenerated_phi (gimple *phi, pred_info *pred_p)
1906 {
1907 int i, n;
1908 tree op0;
1909 gimple *def0;
1910 pred_info pred0;
1911
1912 n = gimple_phi_num_args (phi);
1913 op0 = gimple_phi_arg_def (phi, 0);
1914
1915 if (TREE_CODE (op0) != SSA_NAME)
1916 return false;
1917
1918 def0 = SSA_NAME_DEF_STMT (op0);
1919 if (gimple_code (def0) != GIMPLE_ASSIGN)
1920 return false;
1921 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
1922 != tcc_comparison)
1923 return false;
1924 pred0 = get_pred_info_from_cmp (def0);
1925
1926 for (i = 1; i < n; ++i)
1927 {
1928 gimple *def;
1929 pred_info pred;
1930 tree op = gimple_phi_arg_def (phi, i);
1931
1932 if (TREE_CODE (op) != SSA_NAME)
1933 return false;
1934
1935 def = SSA_NAME_DEF_STMT (op);
1936 if (gimple_code (def) != GIMPLE_ASSIGN)
1937 return false;
1938 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
1939 != tcc_comparison)
1940 return false;
1941 pred = get_pred_info_from_cmp (def);
1942 if (!pred_equal_p (pred, pred0))
1943 return false;
1944 }
1945
1946 *pred_p = pred0;
1947 return true;
1948 }
1949
1950 /* Normalize one predicate PRED
1951 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1952 2) otherwise if PRED is of the form x != 0, follow x's definition
1953 and put normalized predicates into WORK_LIST. */
1954
1955 static void
1956 normalize_one_pred_1 (pred_chain_union *norm_preds,
1957 pred_chain *norm_chain,
1958 pred_info pred,
1959 enum tree_code and_or_code,
1960 vec<pred_info, va_heap, vl_ptr> *work_list,
1961 hash_set<tree> *mark_set)
1962 {
1963 if (!is_neq_zero_form_p (pred))
1964 {
1965 if (and_or_code == BIT_IOR_EXPR)
1966 push_pred (norm_preds, pred);
1967 else
1968 norm_chain->safe_push (pred);
1969 return;
1970 }
1971
1972 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1973
1974 if (gimple_code (def_stmt) == GIMPLE_PHI
1975 && is_degenerated_phi (def_stmt, &pred))
1976 work_list->safe_push (pred);
1977 else if (gimple_code (def_stmt) == GIMPLE_PHI
1978 && and_or_code == BIT_IOR_EXPR)
1979 {
1980 int i, n;
1981 n = gimple_phi_num_args (def_stmt);
1982
1983 /* If we see non zero constant, we should punt. The predicate
1984 * should be one guarding the phi edge. */
1985 for (i = 0; i < n; ++i)
1986 {
1987 tree op = gimple_phi_arg_def (def_stmt, i);
1988 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1989 {
1990 push_pred (norm_preds, pred);
1991 return;
1992 }
1993 }
1994
1995 for (i = 0; i < n; ++i)
1996 {
1997 tree op = gimple_phi_arg_def (def_stmt, i);
1998 if (integer_zerop (op))
1999 continue;
2000
2001 push_to_worklist (op, work_list, mark_set);
2002 }
2003 }
2004 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2005 {
2006 if (and_or_code == BIT_IOR_EXPR)
2007 push_pred (norm_preds, pred);
2008 else
2009 norm_chain->safe_push (pred);
2010 }
2011 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2012 {
2013 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2014 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2015 {
2016 /* But treat x & 3 as condition. */
2017 if (and_or_code == BIT_AND_EXPR)
2018 {
2019 pred_info n_pred;
2020 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2021 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2022 n_pred.cond_code = and_or_code;
2023 n_pred.invert = false;
2024 norm_chain->safe_push (n_pred);
2025 }
2026 }
2027 else
2028 {
2029 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2030 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2031 }
2032 }
2033 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2034 == tcc_comparison)
2035 {
2036 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2037 if (and_or_code == BIT_IOR_EXPR)
2038 push_pred (norm_preds, n_pred);
2039 else
2040 norm_chain->safe_push (n_pred);
2041 }
2042 else
2043 {
2044 if (and_or_code == BIT_IOR_EXPR)
2045 push_pred (norm_preds, pred);
2046 else
2047 norm_chain->safe_push (pred);
2048 }
2049 }
2050
2051 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2052
2053 static void
2054 normalize_one_pred (pred_chain_union *norm_preds,
2055 pred_info pred)
2056 {
2057 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2058 enum tree_code and_or_code = ERROR_MARK;
2059 pred_chain norm_chain = vNULL;
2060
2061 if (!is_neq_zero_form_p (pred))
2062 {
2063 push_pred (norm_preds, pred);
2064 return;
2065 }
2066
2067 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2068 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2069 and_or_code = gimple_assign_rhs_code (def_stmt);
2070 if (and_or_code != BIT_IOR_EXPR
2071 && and_or_code != BIT_AND_EXPR)
2072 {
2073 if (TREE_CODE_CLASS (and_or_code)
2074 == tcc_comparison)
2075 {
2076 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2077 push_pred (norm_preds, n_pred);
2078 }
2079 else
2080 push_pred (norm_preds, pred);
2081 return;
2082 }
2083
2084 work_list.safe_push (pred);
2085 hash_set<tree> mark_set;
2086
2087 while (!work_list.is_empty ())
2088 {
2089 pred_info a_pred = work_list.pop ();
2090 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
2091 and_or_code, &work_list, &mark_set);
2092 }
2093 if (and_or_code == BIT_AND_EXPR)
2094 norm_preds->safe_push (norm_chain);
2095
2096 work_list.release ();
2097 }
2098
2099 static void
2100 normalize_one_pred_chain (pred_chain_union *norm_preds,
2101 pred_chain one_chain)
2102 {
2103 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2104 hash_set<tree> mark_set;
2105 pred_chain norm_chain = vNULL;
2106 size_t i;
2107
2108 for (i = 0; i < one_chain.length (); i++)
2109 {
2110 work_list.safe_push (one_chain[i]);
2111 mark_set.add (one_chain[i].pred_lhs);
2112 }
2113
2114 while (!work_list.is_empty ())
2115 {
2116 pred_info a_pred = work_list.pop ();
2117 normalize_one_pred_1 (0, &norm_chain, a_pred,
2118 BIT_AND_EXPR, &work_list, &mark_set);
2119 }
2120
2121 norm_preds->safe_push (norm_chain);
2122 work_list.release ();
2123 }
2124
2125 /* Normalize predicate chains PREDS and returns the normalized one. */
2126
2127 static pred_chain_union
2128 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
2129 {
2130 pred_chain_union norm_preds = vNULL;
2131 size_t n = preds.length ();
2132 size_t i;
2133
2134 if (dump_file && dump_flags & TDF_DETAILS)
2135 {
2136 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2137 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2138 }
2139
2140 for (i = 0; i < n; i++)
2141 {
2142 if (preds[i].length () != 1)
2143 normalize_one_pred_chain (&norm_preds, preds[i]);
2144 else
2145 {
2146 normalize_one_pred (&norm_preds, preds[i][0]);
2147 preds[i].release ();
2148 }
2149 }
2150
2151 if (dump_file)
2152 {
2153 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2154 dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2155 }
2156
2157 preds.release ();
2158 return norm_preds;
2159 }
2160
2161
2162 /* Computes the predicates that guard the use and checks
2163 if the incoming paths that have empty (or possibly
2164 empty) definition can be pruned/filtered. The function returns
2165 true if it can be determined that the use of PHI's def in
2166 USE_STMT is guarded with a predicate set not overlapping with
2167 predicate sets of all runtime paths that do not have a definition.
2168
2169 Returns false if it is not or it can not be determined. USE_BB is
2170 the bb of the use (for phi operand use, the bb is not the bb of
2171 the phi stmt, but the src bb of the operand edge).
2172
2173 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2174 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2175 set of phis being visited.
2176
2177 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2178 If *DEF_PREDS is the empty vector, the defining predicate chains of
2179 PHI will be computed and stored into *DEF_PREDS as needed.
2180
2181 VISITED_PHIS is a pointer set of phis being visited. */
2182
2183 static bool
2184 is_use_properly_guarded (gimple *use_stmt,
2185 basic_block use_bb,
2186 gphi *phi,
2187 unsigned uninit_opnds,
2188 pred_chain_union *def_preds,
2189 hash_set<gphi *> *visited_phis)
2190 {
2191 basic_block phi_bb;
2192 pred_chain_union preds = vNULL;
2193 bool has_valid_preds = false;
2194 bool is_properly_guarded = false;
2195
2196 if (visited_phis->add (phi))
2197 return false;
2198
2199 phi_bb = gimple_bb (phi);
2200
2201 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2202 return false;
2203
2204 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2205
2206 if (!has_valid_preds)
2207 {
2208 destroy_predicate_vecs (preds);
2209 return false;
2210 }
2211
2212 /* Try to prune the dead incoming phi edges. */
2213 is_properly_guarded
2214 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2215 visited_phis);
2216
2217 if (is_properly_guarded)
2218 {
2219 destroy_predicate_vecs (preds);
2220 return true;
2221 }
2222
2223 if (def_preds->is_empty ())
2224 {
2225 has_valid_preds = find_def_preds (def_preds, phi);
2226
2227 if (!has_valid_preds)
2228 {
2229 destroy_predicate_vecs (preds);
2230 return false;
2231 }
2232
2233 simplify_preds (def_preds, phi, false);
2234 *def_preds = normalize_preds (*def_preds, phi, false);
2235 }
2236
2237 simplify_preds (&preds, use_stmt, true);
2238 preds = normalize_preds (preds, use_stmt, true);
2239
2240 is_properly_guarded = is_superset_of (*def_preds, preds);
2241
2242 destroy_predicate_vecs (preds);
2243 return is_properly_guarded;
2244 }
2245
2246 /* Searches through all uses of a potentially
2247 uninitialized variable defined by PHI and returns a use
2248 statement if the use is not properly guarded. It returns
2249 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2250 holding the position(s) of uninit PHI operands. WORKLIST
2251 is the vector of candidate phis that may be updated by this
2252 function. ADDED_TO_WORKLIST is the pointer set tracking
2253 if the new phi is already in the worklist. */
2254
2255 static gimple *
2256 find_uninit_use (gphi *phi, unsigned uninit_opnds,
2257 vec<gphi *> *worklist,
2258 hash_set<gphi *> *added_to_worklist)
2259 {
2260 tree phi_result;
2261 use_operand_p use_p;
2262 gimple *use_stmt;
2263 imm_use_iterator iter;
2264 pred_chain_union def_preds = vNULL;
2265 gimple *ret = NULL;
2266
2267 phi_result = gimple_phi_result (phi);
2268
2269 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2270 {
2271 basic_block use_bb;
2272
2273 use_stmt = USE_STMT (use_p);
2274 if (is_gimple_debug (use_stmt))
2275 continue;
2276
2277 if (gphi *use_phi = dyn_cast <gphi *> (use_stmt))
2278 use_bb = gimple_phi_arg_edge (use_phi,
2279 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2280 else
2281 use_bb = gimple_bb (use_stmt);
2282
2283 hash_set<gphi *> visited_phis;
2284 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2285 &def_preds, &visited_phis))
2286 continue;
2287
2288 if (dump_file && (dump_flags & TDF_DETAILS))
2289 {
2290 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2291 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2292 }
2293 /* Found one real use, return. */
2294 if (gimple_code (use_stmt) != GIMPLE_PHI)
2295 {
2296 ret = use_stmt;
2297 break;
2298 }
2299
2300 /* Found a phi use that is not guarded,
2301 add the phi to the worklist. */
2302 if (!added_to_worklist->add (as_a <gphi *> (use_stmt)))
2303 {
2304 if (dump_file && (dump_flags & TDF_DETAILS))
2305 {
2306 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2307 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2308 }
2309
2310 worklist->safe_push (as_a <gphi *> (use_stmt));
2311 possibly_undefined_names->add (phi_result);
2312 }
2313 }
2314
2315 destroy_predicate_vecs (def_preds);
2316 return ret;
2317 }
2318
2319 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2320 and gives warning if there exists a runtime path from the entry to a
2321 use of the PHI def that does not contain a definition. In other words,
2322 the warning is on the real use. The more dead paths that can be pruned
2323 by the compiler, the fewer false positives the warning is. WORKLIST
2324 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2325 a pointer set tracking if the new phi is added to the worklist or not. */
2326
2327 static void
2328 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2329 hash_set<gphi *> *added_to_worklist)
2330 {
2331 unsigned uninit_opnds;
2332 gimple *uninit_use_stmt = 0;
2333 tree uninit_op;
2334 int phiarg_index;
2335 location_t loc;
2336
2337 /* Don't look at virtual operands. */
2338 if (virtual_operand_p (gimple_phi_result (phi)))
2339 return;
2340
2341 uninit_opnds = compute_uninit_opnds_pos (phi);
2342
2343 if (MASK_EMPTY (uninit_opnds))
2344 return;
2345
2346 if (dump_file && (dump_flags & TDF_DETAILS))
2347 {
2348 fprintf (dump_file, "[CHECK]: examining phi: ");
2349 print_gimple_stmt (dump_file, phi, 0, 0);
2350 }
2351
2352 /* Now check if we have any use of the value without proper guard. */
2353 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2354 worklist, added_to_worklist);
2355
2356 /* All uses are properly guarded. */
2357 if (!uninit_use_stmt)
2358 return;
2359
2360 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2361 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
2362 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2363 return;
2364 if (gimple_phi_arg_has_location (phi, phiarg_index))
2365 loc = gimple_phi_arg_location (phi, phiarg_index);
2366 else
2367 loc = UNKNOWN_LOCATION;
2368 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2369 SSA_NAME_VAR (uninit_op),
2370 "%qD may be used uninitialized in this function",
2371 uninit_use_stmt, loc);
2372
2373 }
2374
2375 static bool
2376 gate_warn_uninitialized (void)
2377 {
2378 return warn_uninitialized || warn_maybe_uninitialized;
2379 }
2380
2381 namespace {
2382
2383 const pass_data pass_data_late_warn_uninitialized =
2384 {
2385 GIMPLE_PASS, /* type */
2386 "uninit", /* name */
2387 OPTGROUP_NONE, /* optinfo_flags */
2388 TV_NONE, /* tv_id */
2389 PROP_ssa, /* properties_required */
2390 0, /* properties_provided */
2391 0, /* properties_destroyed */
2392 0, /* todo_flags_start */
2393 0, /* todo_flags_finish */
2394 };
2395
2396 class pass_late_warn_uninitialized : public gimple_opt_pass
2397 {
2398 public:
2399 pass_late_warn_uninitialized (gcc::context *ctxt)
2400 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2401 {}
2402
2403 /* opt_pass methods: */
2404 opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2405 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2406 virtual unsigned int execute (function *);
2407
2408 }; // class pass_late_warn_uninitialized
2409
2410 unsigned int
2411 pass_late_warn_uninitialized::execute (function *fun)
2412 {
2413 basic_block bb;
2414 gphi_iterator gsi;
2415 vec<gphi *> worklist = vNULL;
2416
2417 calculate_dominance_info (CDI_DOMINATORS);
2418 calculate_dominance_info (CDI_POST_DOMINATORS);
2419 /* Re-do the plain uninitialized variable check, as optimization may have
2420 straightened control flow. Do this first so that we don't accidentally
2421 get a "may be" warning when we'd have seen an "is" warning later. */
2422 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2423
2424 timevar_push (TV_TREE_UNINIT);
2425
2426 possibly_undefined_names = new hash_set<tree>;
2427 hash_set<gphi *> added_to_worklist;
2428
2429 /* Initialize worklist */
2430 FOR_EACH_BB_FN (bb, fun)
2431 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2432 {
2433 gphi *phi = gsi.phi ();
2434 size_t n, i;
2435
2436 n = gimple_phi_num_args (phi);
2437
2438 /* Don't look at virtual operands. */
2439 if (virtual_operand_p (gimple_phi_result (phi)))
2440 continue;
2441
2442 for (i = 0; i < n; ++i)
2443 {
2444 tree op = gimple_phi_arg_def (phi, i);
2445 if (TREE_CODE (op) == SSA_NAME
2446 && uninit_undefined_value_p (op))
2447 {
2448 worklist.safe_push (phi);
2449 added_to_worklist.add (phi);
2450 if (dump_file && (dump_flags & TDF_DETAILS))
2451 {
2452 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2453 print_gimple_stmt (dump_file, phi, 0, 0);
2454 }
2455 break;
2456 }
2457 }
2458 }
2459
2460 while (worklist.length () != 0)
2461 {
2462 gphi *cur_phi = 0;
2463 cur_phi = worklist.pop ();
2464 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
2465 }
2466
2467 worklist.release ();
2468 delete possibly_undefined_names;
2469 possibly_undefined_names = NULL;
2470 free_dominance_info (CDI_POST_DOMINATORS);
2471 timevar_pop (TV_TREE_UNINIT);
2472 return 0;
2473 }
2474
2475 } // anon namespace
2476
2477 gimple_opt_pass *
2478 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2479 {
2480 return new pass_late_warn_uninitialized (ctxt);
2481 }
2482
2483
2484 static unsigned int
2485 execute_early_warn_uninitialized (void)
2486 {
2487 /* Currently, this pass runs always but
2488 execute_late_warn_uninitialized only runs with optimization. With
2489 optimization we want to warn about possible uninitialized as late
2490 as possible, thus don't do it here. However, without
2491 optimization we need to warn here about "may be uninitialized". */
2492 calculate_dominance_info (CDI_POST_DOMINATORS);
2493
2494 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2495
2496 /* Post-dominator information can not be reliably updated. Free it
2497 after the use. */
2498
2499 free_dominance_info (CDI_POST_DOMINATORS);
2500 return 0;
2501 }
2502
2503
2504 namespace {
2505
2506 const pass_data pass_data_early_warn_uninitialized =
2507 {
2508 GIMPLE_PASS, /* type */
2509 "*early_warn_uninitialized", /* name */
2510 OPTGROUP_NONE, /* optinfo_flags */
2511 TV_TREE_UNINIT, /* tv_id */
2512 PROP_ssa, /* properties_required */
2513 0, /* properties_provided */
2514 0, /* properties_destroyed */
2515 0, /* todo_flags_start */
2516 0, /* todo_flags_finish */
2517 };
2518
2519 class pass_early_warn_uninitialized : public gimple_opt_pass
2520 {
2521 public:
2522 pass_early_warn_uninitialized (gcc::context *ctxt)
2523 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2524 {}
2525
2526 /* opt_pass methods: */
2527 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2528 virtual unsigned int execute (function *)
2529 {
2530 return execute_early_warn_uninitialized ();
2531 }
2532
2533 }; // class pass_early_warn_uninitialized
2534
2535 } // anon namespace
2536
2537 gimple_opt_pass *
2538 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2539 {
2540 return new pass_early_warn_uninitialized (ctxt);
2541 }