]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-uninit.c
re PR tree-optimization/57149 (wrong -Wmaybe-uninitialized warning with -Os)
[thirdparty/gcc.git] / gcc / tree-ssa-uninit.c
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "gimple-pretty-print.h"
31 #include "bitmap.h"
32 #include "pointer-set.h"
33 #include "tree-flow.h"
34 #include "gimple.h"
35 #include "tree-inline.h"
36 #include "hashtab.h"
37 #include "tree-pass.h"
38 #include "diagnostic-core.h"
39
40 /* This implements the pass that does predicate aware warning on uses of
41 possibly uninitialized variables. The pass first collects the set of
42 possibly uninitialized SSA names. For each such name, it walks through
43 all its immediate uses. For each immediate use, it rebuilds the condition
44 expression (the predicate) that guards the use. The predicate is then
45 examined to see if the variable is always defined under that same condition.
46 This is done either by pruning the unrealizable paths that lead to the
47 default definitions or by checking if the predicate set that guards the
48 defining paths is a superset of the use predicate. */
49
50
51 /* Pointer set of potentially undefined ssa names, i.e.,
52 ssa names that are defined by phi with operands that
53 are not defined or potentially undefined. */
54 static struct pointer_set_t *possibly_undefined_names = 0;
55
56 /* Bit mask handling macros. */
57 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
58 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
59 #define MASK_EMPTY(mask) (mask == 0)
60
61 /* Returns the first bit position (starting from LSB)
62 in mask that is non zero. Returns -1 if the mask is empty. */
63 static int
64 get_mask_first_set_bit (unsigned mask)
65 {
66 int pos = 0;
67 if (mask == 0)
68 return -1;
69
70 while ((mask & (1 << pos)) == 0)
71 pos++;
72
73 return pos;
74 }
75 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
76
77
78 /* Return true if T, an SSA_NAME, has an undefined value. */
79
80 bool
81 ssa_undefined_value_p (tree t)
82 {
83 tree var = SSA_NAME_VAR (t);
84
85 if (!var)
86 ;
87 /* Parameters get their initial value from the function entry. */
88 else if (TREE_CODE (var) == PARM_DECL)
89 return false;
90 /* When returning by reference the return address is actually a hidden
91 parameter. */
92 else if (TREE_CODE (var) == RESULT_DECL && DECL_BY_REFERENCE (var))
93 return false;
94 /* Hard register variables get their initial value from the ether. */
95 else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
96 return false;
97
98 /* The value is undefined iff its definition statement is empty. */
99 return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
100 || (possibly_undefined_names
101 && pointer_set_contains (possibly_undefined_names, t)));
102 }
103
104 /* Like ssa_undefined_value_p, but don't return true if TREE_NO_WARNING
105 is set on SSA_NAME_VAR. */
106
107 static inline bool
108 uninit_undefined_value_p (tree t)
109 {
110 if (!ssa_undefined_value_p (t))
111 return false;
112 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
113 return false;
114 return true;
115 }
116
117 /* Checks if the operand OPND of PHI is defined by
118 another phi with one operand defined by this PHI,
119 but the rest operands are all defined. If yes,
120 returns true to skip this this operand as being
121 redundant. Can be enhanced to be more general. */
122
123 static bool
124 can_skip_redundant_opnd (tree opnd, gimple phi)
125 {
126 gimple op_def;
127 tree phi_def;
128 int i, n;
129
130 phi_def = gimple_phi_result (phi);
131 op_def = SSA_NAME_DEF_STMT (opnd);
132 if (gimple_code (op_def) != GIMPLE_PHI)
133 return false;
134 n = gimple_phi_num_args (op_def);
135 for (i = 0; i < n; ++i)
136 {
137 tree op = gimple_phi_arg_def (op_def, i);
138 if (TREE_CODE (op) != SSA_NAME)
139 continue;
140 if (op != phi_def && uninit_undefined_value_p (op))
141 return false;
142 }
143
144 return true;
145 }
146
147 /* Returns a bit mask holding the positions of arguments in PHI
148 that have empty (or possibly empty) definitions. */
149
150 static unsigned
151 compute_uninit_opnds_pos (gimple phi)
152 {
153 size_t i, n;
154 unsigned uninit_opnds = 0;
155
156 n = gimple_phi_num_args (phi);
157 /* Bail out for phi with too many args. */
158 if (n > 32)
159 return 0;
160
161 for (i = 0; i < n; ++i)
162 {
163 tree op = gimple_phi_arg_def (phi, i);
164 if (TREE_CODE (op) == SSA_NAME
165 && uninit_undefined_value_p (op)
166 && !can_skip_redundant_opnd (op, phi))
167 {
168 /* Ignore SSA_NAMEs on abnormal edges to setjmp
169 or nonlocal goto receiver. */
170 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
171 {
172 edge e = gimple_phi_arg_edge (phi, i);
173 if (e->flags & EDGE_ABNORMAL)
174 {
175 gimple last = last_stmt (e->src);
176 if (last && stmt_can_make_abnormal_goto (last))
177 continue;
178 }
179 }
180 MASK_SET_BIT (uninit_opnds, i);
181 }
182 }
183 return uninit_opnds;
184 }
185
186 /* Find the immediate postdominator PDOM of the specified
187 basic block BLOCK. */
188
189 static inline basic_block
190 find_pdom (basic_block block)
191 {
192 if (block == EXIT_BLOCK_PTR)
193 return EXIT_BLOCK_PTR;
194 else
195 {
196 basic_block bb
197 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
198 if (! bb)
199 return EXIT_BLOCK_PTR;
200 return bb;
201 }
202 }
203
204 /* Find the immediate DOM of the specified
205 basic block BLOCK. */
206
207 static inline basic_block
208 find_dom (basic_block block)
209 {
210 if (block == ENTRY_BLOCK_PTR)
211 return ENTRY_BLOCK_PTR;
212 else
213 {
214 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
215 if (! bb)
216 return ENTRY_BLOCK_PTR;
217 return bb;
218 }
219 }
220
221 /* Returns true if BB1 is postdominating BB2 and BB1 is
222 not a loop exit bb. The loop exit bb check is simple and does
223 not cover all cases. */
224
225 static bool
226 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
227 {
228 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
229 return false;
230
231 if (single_pred_p (bb1) && !single_succ_p (bb2))
232 return false;
233
234 return true;
235 }
236
237 /* Find the closest postdominator of a specified BB, which is control
238 equivalent to BB. */
239
240 static inline basic_block
241 find_control_equiv_block (basic_block bb)
242 {
243 basic_block pdom;
244
245 pdom = find_pdom (bb);
246
247 /* Skip the postdominating bb that is also loop exit. */
248 if (!is_non_loop_exit_postdominating (pdom, bb))
249 return NULL;
250
251 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
252 return pdom;
253
254 return NULL;
255 }
256
257 #define MAX_NUM_CHAINS 8
258 #define MAX_CHAIN_LEN 5
259 #define MAX_POSTDOM_CHECK 8
260
261 /* Computes the control dependence chains (paths of edges)
262 for DEP_BB up to the dominating basic block BB (the head node of a
263 chain should be dominated by it). CD_CHAINS is pointer to a
264 dynamic array holding the result chains. CUR_CD_CHAIN is the current
265 chain being computed. *NUM_CHAINS is total number of chains. The
266 function returns true if the information is successfully computed,
267 return false if there is no control dependence or not computed. */
268
269 static bool
270 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
271 vec<edge> *cd_chains,
272 size_t *num_chains,
273 vec<edge> *cur_cd_chain)
274 {
275 edge_iterator ei;
276 edge e;
277 size_t i;
278 bool found_cd_chain = false;
279 size_t cur_chain_len = 0;
280
281 if (EDGE_COUNT (bb->succs) < 2)
282 return false;
283
284 /* Could use a set instead. */
285 cur_chain_len = cur_cd_chain->length ();
286 if (cur_chain_len > MAX_CHAIN_LEN)
287 return false;
288
289 for (i = 0; i < cur_chain_len; i++)
290 {
291 edge e = (*cur_cd_chain)[i];
292 /* cycle detected. */
293 if (e->src == bb)
294 return false;
295 }
296
297 FOR_EACH_EDGE (e, ei, bb->succs)
298 {
299 basic_block cd_bb;
300 int post_dom_check = 0;
301 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
302 continue;
303
304 cd_bb = e->dest;
305 cur_cd_chain->safe_push (e);
306 while (!is_non_loop_exit_postdominating (cd_bb, bb))
307 {
308 if (cd_bb == dep_bb)
309 {
310 /* Found a direct control dependence. */
311 if (*num_chains < MAX_NUM_CHAINS)
312 {
313 cd_chains[*num_chains] = cur_cd_chain->copy ();
314 (*num_chains)++;
315 }
316 found_cd_chain = true;
317 /* check path from next edge. */
318 break;
319 }
320
321 /* Now check if DEP_BB is indirectly control dependent on BB. */
322 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
323 num_chains, cur_cd_chain))
324 {
325 found_cd_chain = true;
326 break;
327 }
328
329 cd_bb = find_pdom (cd_bb);
330 post_dom_check++;
331 if (cd_bb == EXIT_BLOCK_PTR || post_dom_check > MAX_POSTDOM_CHECK)
332 break;
333 }
334 cur_cd_chain->pop ();
335 gcc_assert (cur_cd_chain->length () == cur_chain_len);
336 }
337 gcc_assert (cur_cd_chain->length () == cur_chain_len);
338
339 return found_cd_chain;
340 }
341
342 typedef struct use_pred_info
343 {
344 gimple cond;
345 bool invert;
346 } *use_pred_info_t;
347
348
349
350 /* Converts the chains of control dependence edges into a set of
351 predicates. A control dependence chain is represented by a vector
352 edges. DEP_CHAINS points to an array of dependence chains.
353 NUM_CHAINS is the size of the chain array. One edge in a dependence
354 chain is mapped to predicate expression represented by use_pred_info_t
355 type. One dependence chain is converted to a composite predicate that
356 is the result of AND operation of use_pred_info_t mapped to each edge.
357 A composite predicate is presented by a vector of use_pred_info_t. On
358 return, *PREDS points to the resulting array of composite predicates.
359 *NUM_PREDS is the number of composite predictes. */
360
361 static bool
362 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
363 size_t num_chains,
364 vec<use_pred_info_t> **preds,
365 size_t *num_preds)
366 {
367 bool has_valid_pred = false;
368 size_t i, j;
369 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
370 return false;
371
372 /* Now convert the control dep chain into a set
373 of predicates. */
374 typedef vec<use_pred_info_t> vec_use_pred_info_t_heap;
375 *preds = XCNEWVEC (vec_use_pred_info_t_heap, num_chains);
376 *num_preds = num_chains;
377
378 for (i = 0; i < num_chains; i++)
379 {
380 vec<edge> one_cd_chain = dep_chains[i];
381
382 has_valid_pred = false;
383 for (j = 0; j < one_cd_chain.length (); j++)
384 {
385 gimple cond_stmt;
386 gimple_stmt_iterator gsi;
387 basic_block guard_bb;
388 use_pred_info_t one_pred;
389 edge e;
390
391 e = one_cd_chain[j];
392 guard_bb = e->src;
393 gsi = gsi_last_bb (guard_bb);
394 if (gsi_end_p (gsi))
395 {
396 has_valid_pred = false;
397 break;
398 }
399 cond_stmt = gsi_stmt (gsi);
400 if (gimple_code (cond_stmt) == GIMPLE_CALL
401 && EDGE_COUNT (e->src->succs) >= 2)
402 {
403 /* Ignore EH edge. Can add assertion
404 on the other edge's flag. */
405 continue;
406 }
407 /* Skip if there is essentially one succesor. */
408 if (EDGE_COUNT (e->src->succs) == 2)
409 {
410 edge e1;
411 edge_iterator ei1;
412 bool skip = false;
413
414 FOR_EACH_EDGE (e1, ei1, e->src->succs)
415 {
416 if (EDGE_COUNT (e1->dest->succs) == 0)
417 {
418 skip = true;
419 break;
420 }
421 }
422 if (skip)
423 continue;
424 }
425 if (gimple_code (cond_stmt) != GIMPLE_COND)
426 {
427 has_valid_pred = false;
428 break;
429 }
430 one_pred = XNEW (struct use_pred_info);
431 one_pred->cond = cond_stmt;
432 one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
433 (*preds)[i].safe_push (one_pred);
434 has_valid_pred = true;
435 }
436
437 if (!has_valid_pred)
438 break;
439 }
440 return has_valid_pred;
441 }
442
443 /* Computes all control dependence chains for USE_BB. The control
444 dependence chains are then converted to an array of composite
445 predicates pointed to by PREDS. PHI_BB is the basic block of
446 the phi whose result is used in USE_BB. */
447
448 static bool
449 find_predicates (vec<use_pred_info_t> **preds,
450 size_t *num_preds,
451 basic_block phi_bb,
452 basic_block use_bb)
453 {
454 size_t num_chains = 0, i;
455 vec<edge> *dep_chains = 0;
456 vec<edge> cur_chain = vNULL;
457 bool has_valid_pred = false;
458 basic_block cd_root = 0;
459
460 typedef vec<edge> vec_edge_heap;
461 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
462
463 /* First find the closest bb that is control equivalent to PHI_BB
464 that also dominates USE_BB. */
465 cd_root = phi_bb;
466 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
467 {
468 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
469 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
470 cd_root = ctrl_eq_bb;
471 else
472 break;
473 }
474
475 compute_control_dep_chain (cd_root, use_bb,
476 dep_chains, &num_chains,
477 &cur_chain);
478
479 has_valid_pred
480 = convert_control_dep_chain_into_preds (dep_chains,
481 num_chains,
482 preds,
483 num_preds);
484 /* Free individual chain */
485 cur_chain.release ();
486 for (i = 0; i < num_chains; i++)
487 dep_chains[i].release ();
488 free (dep_chains);
489 return has_valid_pred;
490 }
491
492 /* Computes the set of incoming edges of PHI that have non empty
493 definitions of a phi chain. The collection will be done
494 recursively on operands that are defined by phis. CD_ROOT
495 is the control dependence root. *EDGES holds the result, and
496 VISITED_PHIS is a pointer set for detecting cycles. */
497
498 static void
499 collect_phi_def_edges (gimple phi, basic_block cd_root,
500 vec<edge> *edges,
501 struct pointer_set_t *visited_phis)
502 {
503 size_t i, n;
504 edge opnd_edge;
505 tree opnd;
506
507 if (pointer_set_insert (visited_phis, phi))
508 return;
509
510 n = gimple_phi_num_args (phi);
511 for (i = 0; i < n; i++)
512 {
513 opnd_edge = gimple_phi_arg_edge (phi, i);
514 opnd = gimple_phi_arg_def (phi, i);
515
516 if (TREE_CODE (opnd) != SSA_NAME)
517 {
518 if (dump_file && (dump_flags & TDF_DETAILS))
519 {
520 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
521 print_gimple_stmt (dump_file, phi, 0, 0);
522 }
523 edges->safe_push (opnd_edge);
524 }
525 else
526 {
527 gimple def = SSA_NAME_DEF_STMT (opnd);
528
529 if (gimple_code (def) == GIMPLE_PHI
530 && dominated_by_p (CDI_DOMINATORS,
531 gimple_bb (def), cd_root))
532 collect_phi_def_edges (def, cd_root, edges,
533 visited_phis);
534 else if (!uninit_undefined_value_p (opnd))
535 {
536 if (dump_file && (dump_flags & TDF_DETAILS))
537 {
538 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
539 print_gimple_stmt (dump_file, phi, 0, 0);
540 }
541 edges->safe_push (opnd_edge);
542 }
543 }
544 }
545 }
546
547 /* For each use edge of PHI, computes all control dependence chains.
548 The control dependence chains are then converted to an array of
549 composite predicates pointed to by PREDS. */
550
551 static bool
552 find_def_preds (vec<use_pred_info_t> **preds,
553 size_t *num_preds, gimple phi)
554 {
555 size_t num_chains = 0, i, n;
556 vec<edge> *dep_chains = 0;
557 vec<edge> cur_chain = vNULL;
558 vec<edge> def_edges = vNULL;
559 bool has_valid_pred = false;
560 basic_block phi_bb, cd_root = 0;
561 struct pointer_set_t *visited_phis;
562
563 typedef vec<edge> vec_edge_heap;
564 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
565
566 phi_bb = gimple_bb (phi);
567 /* First find the closest dominating bb to be
568 the control dependence root */
569 cd_root = find_dom (phi_bb);
570 if (!cd_root)
571 return false;
572
573 visited_phis = pointer_set_create ();
574 collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
575 pointer_set_destroy (visited_phis);
576
577 n = def_edges.length ();
578 if (n == 0)
579 return false;
580
581 for (i = 0; i < n; i++)
582 {
583 size_t prev_nc, j;
584 edge opnd_edge;
585
586 opnd_edge = def_edges[i];
587 prev_nc = num_chains;
588 compute_control_dep_chain (cd_root, opnd_edge->src,
589 dep_chains, &num_chains,
590 &cur_chain);
591 /* Free individual chain */
592 cur_chain.release ();
593
594 /* Now update the newly added chains with
595 the phi operand edge: */
596 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
597 {
598 if (prev_nc == num_chains
599 && num_chains < MAX_NUM_CHAINS)
600 num_chains++;
601 for (j = prev_nc; j < num_chains; j++)
602 {
603 dep_chains[j].safe_push (opnd_edge);
604 }
605 }
606 }
607
608 has_valid_pred
609 = convert_control_dep_chain_into_preds (dep_chains,
610 num_chains,
611 preds,
612 num_preds);
613 for (i = 0; i < num_chains; i++)
614 dep_chains[i].release ();
615 free (dep_chains);
616 return has_valid_pred;
617 }
618
619 /* Dumps the predicates (PREDS) for USESTMT. */
620
621 static void
622 dump_predicates (gimple usestmt, size_t num_preds,
623 vec<use_pred_info_t> *preds,
624 const char* msg)
625 {
626 size_t i, j;
627 vec<use_pred_info_t> one_pred_chain;
628 fprintf (dump_file, msg);
629 print_gimple_stmt (dump_file, usestmt, 0, 0);
630 fprintf (dump_file, "is guarded by :\n");
631 /* do some dumping here: */
632 for (i = 0; i < num_preds; i++)
633 {
634 size_t np;
635
636 one_pred_chain = preds[i];
637 np = one_pred_chain.length ();
638
639 for (j = 0; j < np; j++)
640 {
641 use_pred_info_t one_pred
642 = one_pred_chain[j];
643 if (one_pred->invert)
644 fprintf (dump_file, " (.NOT.) ");
645 print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
646 if (j < np - 1)
647 fprintf (dump_file, "(.AND.)\n");
648 }
649 if (i < num_preds - 1)
650 fprintf (dump_file, "(.OR.)\n");
651 }
652 }
653
654 /* Destroys the predicate set *PREDS. */
655
656 static void
657 destroy_predicate_vecs (size_t n,
658 vec<use_pred_info_t> * preds)
659 {
660 size_t i, j;
661 for (i = 0; i < n; i++)
662 {
663 for (j = 0; j < preds[i].length (); j++)
664 free (preds[i][j]);
665 preds[i].release ();
666 }
667 free (preds);
668 }
669
670
671 /* Computes the 'normalized' conditional code with operand
672 swapping and condition inversion. */
673
674 static enum tree_code
675 get_cmp_code (enum tree_code orig_cmp_code,
676 bool swap_cond, bool invert)
677 {
678 enum tree_code tc = orig_cmp_code;
679
680 if (swap_cond)
681 tc = swap_tree_comparison (orig_cmp_code);
682 if (invert)
683 tc = invert_tree_comparison (tc, false);
684
685 switch (tc)
686 {
687 case LT_EXPR:
688 case LE_EXPR:
689 case GT_EXPR:
690 case GE_EXPR:
691 case EQ_EXPR:
692 case NE_EXPR:
693 break;
694 default:
695 return ERROR_MARK;
696 }
697 return tc;
698 }
699
700 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
701 all values in the range satisfies (x CMPC BOUNDARY) == true. */
702
703 static bool
704 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
705 {
706 bool inverted = false;
707 bool is_unsigned;
708 bool result;
709
710 /* Only handle integer constant here. */
711 if (TREE_CODE (val) != INTEGER_CST
712 || TREE_CODE (boundary) != INTEGER_CST)
713 return true;
714
715 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
716
717 if (cmpc == GE_EXPR || cmpc == GT_EXPR
718 || cmpc == NE_EXPR)
719 {
720 cmpc = invert_tree_comparison (cmpc, false);
721 inverted = true;
722 }
723
724 if (is_unsigned)
725 {
726 if (cmpc == EQ_EXPR)
727 result = tree_int_cst_equal (val, boundary);
728 else if (cmpc == LT_EXPR)
729 result = INT_CST_LT_UNSIGNED (val, boundary);
730 else
731 {
732 gcc_assert (cmpc == LE_EXPR);
733 result = (tree_int_cst_equal (val, boundary)
734 || INT_CST_LT_UNSIGNED (val, boundary));
735 }
736 }
737 else
738 {
739 if (cmpc == EQ_EXPR)
740 result = tree_int_cst_equal (val, boundary);
741 else if (cmpc == LT_EXPR)
742 result = INT_CST_LT (val, boundary);
743 else
744 {
745 gcc_assert (cmpc == LE_EXPR);
746 result = (tree_int_cst_equal (val, boundary)
747 || INT_CST_LT (val, boundary));
748 }
749 }
750
751 if (inverted)
752 result ^= 1;
753
754 return result;
755 }
756
757 /* Returns true if PRED is common among all the predicate
758 chains (PREDS) (and therefore can be factored out).
759 NUM_PRED_CHAIN is the size of array PREDS. */
760
761 static bool
762 find_matching_predicate_in_rest_chains (use_pred_info_t pred,
763 vec<use_pred_info_t> *preds,
764 size_t num_pred_chains)
765 {
766 size_t i, j, n;
767
768 /* trival case */
769 if (num_pred_chains == 1)
770 return true;
771
772 for (i = 1; i < num_pred_chains; i++)
773 {
774 bool found = false;
775 vec<use_pred_info_t> one_chain = preds[i];
776 n = one_chain.length ();
777 for (j = 0; j < n; j++)
778 {
779 use_pred_info_t pred2
780 = one_chain[j];
781 /* can relax the condition comparison to not
782 use address comparison. However, the most common
783 case is that multiple control dependent paths share
784 a common path prefix, so address comparison should
785 be ok. */
786
787 if (pred2->cond == pred->cond
788 && pred2->invert == pred->invert)
789 {
790 found = true;
791 break;
792 }
793 }
794 if (!found)
795 return false;
796 }
797 return true;
798 }
799
800 /* Forward declaration. */
801 static bool
802 is_use_properly_guarded (gimple use_stmt,
803 basic_block use_bb,
804 gimple phi,
805 unsigned uninit_opnds,
806 struct pointer_set_t *visited_phis);
807
808 /* Returns true if all uninitialized opnds are pruned. Returns false
809 otherwise. PHI is the phi node with uninitialized operands,
810 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
811 FLAG_DEF is the statement defining the flag guarding the use of the
812 PHI output, BOUNDARY_CST is the const value used in the predicate
813 associated with the flag, CMP_CODE is the comparison code used in
814 the predicate, VISITED_PHIS is the pointer set of phis visited, and
815 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
816 that are also phis.
817
818 Example scenario:
819
820 BB1:
821 flag_1 = phi <0, 1> // (1)
822 var_1 = phi <undef, some_val>
823
824
825 BB2:
826 flag_2 = phi <0, flag_1, flag_1> // (2)
827 var_2 = phi <undef, var_1, var_1>
828 if (flag_2 == 1)
829 goto BB3;
830
831 BB3:
832 use of var_2 // (3)
833
834 Because some flag arg in (1) is not constant, if we do not look into the
835 flag phis recursively, it is conservatively treated as unknown and var_1
836 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
837 a false warning will be emitted. Checking recursively into (1), the compiler can
838 find out that only some_val (which is defined) can flow into (3) which is OK.
839
840 */
841
842 static bool
843 prune_uninit_phi_opnds_in_unrealizable_paths (
844 gimple phi, unsigned uninit_opnds,
845 gimple flag_def, tree boundary_cst,
846 enum tree_code cmp_code,
847 struct pointer_set_t *visited_phis,
848 bitmap *visited_flag_phis)
849 {
850 unsigned i;
851
852 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
853 {
854 tree flag_arg;
855
856 if (!MASK_TEST_BIT (uninit_opnds, i))
857 continue;
858
859 flag_arg = gimple_phi_arg_def (flag_def, i);
860 if (!is_gimple_constant (flag_arg))
861 {
862 gimple flag_arg_def, phi_arg_def;
863 tree phi_arg;
864 unsigned uninit_opnds_arg_phi;
865
866 if (TREE_CODE (flag_arg) != SSA_NAME)
867 return false;
868 flag_arg_def = SSA_NAME_DEF_STMT (flag_arg);
869 if (gimple_code (flag_arg_def) != GIMPLE_PHI)
870 return false;
871
872 phi_arg = gimple_phi_arg_def (phi, i);
873 if (TREE_CODE (phi_arg) != SSA_NAME)
874 return false;
875
876 phi_arg_def = SSA_NAME_DEF_STMT (phi_arg);
877 if (gimple_code (phi_arg_def) != GIMPLE_PHI)
878 return false;
879
880 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
881 return false;
882
883 if (!*visited_flag_phis)
884 *visited_flag_phis = BITMAP_ALLOC (NULL);
885
886 if (bitmap_bit_p (*visited_flag_phis,
887 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
888 return false;
889
890 bitmap_set_bit (*visited_flag_phis,
891 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
892
893 /* Now recursively prune the uninitialized phi args. */
894 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
895 if (!prune_uninit_phi_opnds_in_unrealizable_paths (
896 phi_arg_def, uninit_opnds_arg_phi,
897 flag_arg_def, boundary_cst, cmp_code,
898 visited_phis, visited_flag_phis))
899 return false;
900
901 bitmap_clear_bit (*visited_flag_phis,
902 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
903 continue;
904 }
905
906 /* Now check if the constant is in the guarded range. */
907 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
908 {
909 tree opnd;
910 gimple opnd_def;
911
912 /* Now that we know that this undefined edge is not
913 pruned. If the operand is defined by another phi,
914 we can further prune the incoming edges of that
915 phi by checking the predicates of this operands. */
916
917 opnd = gimple_phi_arg_def (phi, i);
918 opnd_def = SSA_NAME_DEF_STMT (opnd);
919 if (gimple_code (opnd_def) == GIMPLE_PHI)
920 {
921 edge opnd_edge;
922 unsigned uninit_opnds2
923 = compute_uninit_opnds_pos (opnd_def);
924 gcc_assert (!MASK_EMPTY (uninit_opnds2));
925 opnd_edge = gimple_phi_arg_edge (phi, i);
926 if (!is_use_properly_guarded (phi,
927 opnd_edge->src,
928 opnd_def,
929 uninit_opnds2,
930 visited_phis))
931 return false;
932 }
933 else
934 return false;
935 }
936 }
937
938 return true;
939 }
940
941 /* A helper function that determines if the predicate set
942 of the use is not overlapping with that of the uninit paths.
943 The most common senario of guarded use is in Example 1:
944 Example 1:
945 if (some_cond)
946 {
947 x = ...;
948 flag = true;
949 }
950
951 ... some code ...
952
953 if (flag)
954 use (x);
955
956 The real world examples are usually more complicated, but similar
957 and usually result from inlining:
958
959 bool init_func (int * x)
960 {
961 if (some_cond)
962 return false;
963 *x = ..
964 return true;
965 }
966
967 void foo(..)
968 {
969 int x;
970
971 if (!init_func(&x))
972 return;
973
974 .. some_code ...
975 use (x);
976 }
977
978 Another possible use scenario is in the following trivial example:
979
980 Example 2:
981 if (n > 0)
982 x = 1;
983 ...
984 if (n > 0)
985 {
986 if (m < 2)
987 .. = x;
988 }
989
990 Predicate analysis needs to compute the composite predicate:
991
992 1) 'x' use predicate: (n > 0) .AND. (m < 2)
993 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
994 (the predicate chain for phi operand defs can be computed
995 starting from a bb that is control equivalent to the phi's
996 bb and is dominating the operand def.)
997
998 and check overlapping:
999 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1000 <==> false
1001
1002 This implementation provides framework that can handle
1003 scenarios. (Note that many simple cases are handled properly
1004 without the predicate analysis -- this is due to jump threading
1005 transformation which eliminates the merge point thus makes
1006 path sensitive analysis unnecessary.)
1007
1008 NUM_PREDS is the number is the number predicate chains, PREDS is
1009 the array of chains, PHI is the phi node whose incoming (undefined)
1010 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1011 uninit operand positions. VISITED_PHIS is the pointer set of phi
1012 stmts being checked. */
1013
1014
1015 static bool
1016 use_pred_not_overlap_with_undef_path_pred (
1017 size_t num_preds,
1018 vec<use_pred_info_t> *preds,
1019 gimple phi, unsigned uninit_opnds,
1020 struct pointer_set_t *visited_phis)
1021 {
1022 unsigned int i, n;
1023 gimple flag_def = 0;
1024 tree boundary_cst = 0;
1025 enum tree_code cmp_code;
1026 bool swap_cond = false;
1027 bool invert = false;
1028 vec<use_pred_info_t> the_pred_chain;
1029 bitmap visited_flag_phis = NULL;
1030 bool all_pruned = false;
1031
1032 gcc_assert (num_preds > 0);
1033 /* Find within the common prefix of multiple predicate chains
1034 a predicate that is a comparison of a flag variable against
1035 a constant. */
1036 the_pred_chain = preds[0];
1037 n = the_pred_chain.length ();
1038 for (i = 0; i < n; i++)
1039 {
1040 gimple cond;
1041 tree cond_lhs, cond_rhs, flag = 0;
1042
1043 use_pred_info_t the_pred
1044 = the_pred_chain[i];
1045
1046 cond = the_pred->cond;
1047 invert = the_pred->invert;
1048 cond_lhs = gimple_cond_lhs (cond);
1049 cond_rhs = gimple_cond_rhs (cond);
1050 cmp_code = gimple_cond_code (cond);
1051
1052 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1053 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1054 {
1055 boundary_cst = cond_rhs;
1056 flag = cond_lhs;
1057 }
1058 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1059 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1060 {
1061 boundary_cst = cond_lhs;
1062 flag = cond_rhs;
1063 swap_cond = true;
1064 }
1065
1066 if (!flag)
1067 continue;
1068
1069 flag_def = SSA_NAME_DEF_STMT (flag);
1070
1071 if (!flag_def)
1072 continue;
1073
1074 if ((gimple_code (flag_def) == GIMPLE_PHI)
1075 && (gimple_bb (flag_def) == gimple_bb (phi))
1076 && find_matching_predicate_in_rest_chains (
1077 the_pred, preds, num_preds))
1078 break;
1079
1080 flag_def = 0;
1081 }
1082
1083 if (!flag_def)
1084 return false;
1085
1086 /* Now check all the uninit incoming edge has a constant flag value
1087 that is in conflict with the use guard/predicate. */
1088 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1089
1090 if (cmp_code == ERROR_MARK)
1091 return false;
1092
1093 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1094 uninit_opnds,
1095 flag_def,
1096 boundary_cst,
1097 cmp_code,
1098 visited_phis,
1099 &visited_flag_phis);
1100
1101 if (visited_flag_phis)
1102 BITMAP_FREE (visited_flag_phis);
1103
1104 return all_pruned;
1105 }
1106
1107 /* Returns true if TC is AND or OR */
1108
1109 static inline bool
1110 is_and_or_or (enum tree_code tc, tree typ)
1111 {
1112 return (tc == BIT_IOR_EXPR
1113 || (tc == BIT_AND_EXPR
1114 && (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
1115 }
1116
1117 typedef struct norm_cond
1118 {
1119 vec<gimple> conds;
1120 enum tree_code cond_code;
1121 bool invert;
1122 } *norm_cond_t;
1123
1124
1125 /* Normalizes gimple condition COND. The normalization follows
1126 UD chains to form larger condition expression trees. NORM_COND
1127 holds the normalized result. COND_CODE is the logical opcode
1128 (AND or OR) of the normalized tree. */
1129
1130 static void
1131 normalize_cond_1 (gimple cond,
1132 norm_cond_t norm_cond,
1133 enum tree_code cond_code)
1134 {
1135 enum gimple_code gc;
1136 enum tree_code cur_cond_code;
1137 tree rhs1, rhs2;
1138
1139 gc = gimple_code (cond);
1140 if (gc != GIMPLE_ASSIGN)
1141 {
1142 norm_cond->conds.safe_push (cond);
1143 return;
1144 }
1145
1146 cur_cond_code = gimple_assign_rhs_code (cond);
1147 rhs1 = gimple_assign_rhs1 (cond);
1148 rhs2 = gimple_assign_rhs2 (cond);
1149 if (cur_cond_code == NE_EXPR)
1150 {
1151 if (integer_zerop (rhs2)
1152 && (TREE_CODE (rhs1) == SSA_NAME))
1153 normalize_cond_1 (
1154 SSA_NAME_DEF_STMT (rhs1),
1155 norm_cond, cond_code);
1156 else if (integer_zerop (rhs1)
1157 && (TREE_CODE (rhs2) == SSA_NAME))
1158 normalize_cond_1 (
1159 SSA_NAME_DEF_STMT (rhs2),
1160 norm_cond, cond_code);
1161 else
1162 norm_cond->conds.safe_push (cond);
1163
1164 return;
1165 }
1166
1167 if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
1168 && (cond_code == cur_cond_code || cond_code == ERROR_MARK)
1169 && (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
1170 {
1171 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
1172 norm_cond, cur_cond_code);
1173 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
1174 norm_cond, cur_cond_code);
1175 norm_cond->cond_code = cur_cond_code;
1176 }
1177 else
1178 norm_cond->conds.safe_push (cond);
1179 }
1180
1181 /* See normalize_cond_1 for details. INVERT is a flag to indicate
1182 if COND needs to be inverted or not. */
1183
1184 static void
1185 normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
1186 {
1187 enum tree_code cond_code;
1188
1189 norm_cond->cond_code = ERROR_MARK;
1190 norm_cond->invert = false;
1191 norm_cond->conds.create (0);
1192 gcc_assert (gimple_code (cond) == GIMPLE_COND);
1193 cond_code = gimple_cond_code (cond);
1194 if (invert)
1195 cond_code = invert_tree_comparison (cond_code, false);
1196
1197 if (cond_code == NE_EXPR)
1198 {
1199 if (integer_zerop (gimple_cond_rhs (cond))
1200 && (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
1201 normalize_cond_1 (
1202 SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
1203 norm_cond, ERROR_MARK);
1204 else if (integer_zerop (gimple_cond_lhs (cond))
1205 && (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
1206 normalize_cond_1 (
1207 SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
1208 norm_cond, ERROR_MARK);
1209 else
1210 {
1211 norm_cond->conds.safe_push (cond);
1212 norm_cond->invert = invert;
1213 }
1214 }
1215 else
1216 {
1217 norm_cond->conds.safe_push (cond);
1218 norm_cond->invert = invert;
1219 }
1220
1221 gcc_assert (norm_cond->conds.length () == 1
1222 || is_and_or_or (norm_cond->cond_code, NULL));
1223 }
1224
1225 /* Returns true if the domain for condition COND1 is a subset of
1226 COND2. REVERSE is a flag. when it is true the function checks
1227 if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
1228 to indicate if COND1 and COND2 need to be inverted or not. */
1229
1230 static bool
1231 is_gcond_subset_of (gimple cond1, bool invert1,
1232 gimple cond2, bool invert2,
1233 bool reverse)
1234 {
1235 enum gimple_code gc1, gc2;
1236 enum tree_code cond1_code, cond2_code;
1237 gimple tmp;
1238 tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
1239
1240 /* Take the short cut. */
1241 if (cond1 == cond2)
1242 return true;
1243
1244 if (reverse)
1245 {
1246 tmp = cond1;
1247 cond1 = cond2;
1248 cond2 = tmp;
1249 }
1250
1251 gc1 = gimple_code (cond1);
1252 gc2 = gimple_code (cond2);
1253
1254 if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
1255 || (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
1256 return cond1 == cond2;
1257
1258 cond1_code = ((gc1 == GIMPLE_ASSIGN)
1259 ? gimple_assign_rhs_code (cond1)
1260 : gimple_cond_code (cond1));
1261
1262 cond2_code = ((gc2 == GIMPLE_ASSIGN)
1263 ? gimple_assign_rhs_code (cond2)
1264 : gimple_cond_code (cond2));
1265
1266 if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
1267 || TREE_CODE_CLASS (cond2_code) != tcc_comparison)
1268 return false;
1269
1270 if (invert1)
1271 cond1_code = invert_tree_comparison (cond1_code, false);
1272 if (invert2)
1273 cond2_code = invert_tree_comparison (cond2_code, false);
1274
1275 cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
1276 ? gimple_assign_rhs1 (cond1)
1277 : gimple_cond_lhs (cond1));
1278 cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
1279 ? gimple_assign_rhs2 (cond1)
1280 : gimple_cond_rhs (cond1));
1281 cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
1282 ? gimple_assign_rhs1 (cond2)
1283 : gimple_cond_lhs (cond2));
1284 cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
1285 ? gimple_assign_rhs2 (cond2)
1286 : gimple_cond_rhs (cond2));
1287
1288 /* Assuming const operands have been swapped to the
1289 rhs at this point of the analysis. */
1290
1291 if (cond1_lhs != cond2_lhs)
1292 return false;
1293
1294 if (!is_gimple_constant (cond1_rhs)
1295 || TREE_CODE (cond1_rhs) != INTEGER_CST)
1296 return (cond1_rhs == cond2_rhs);
1297
1298 if (!is_gimple_constant (cond2_rhs)
1299 || TREE_CODE (cond2_rhs) != INTEGER_CST)
1300 return (cond1_rhs == cond2_rhs);
1301
1302 if (cond1_code == EQ_EXPR)
1303 return is_value_included_in (cond1_rhs,
1304 cond2_rhs, cond2_code);
1305 if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
1306 return ((cond2_code == cond1_code)
1307 && tree_int_cst_equal (cond1_rhs, cond2_rhs));
1308
1309 if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
1310 && (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
1311 || ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
1312 && (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
1313 return false;
1314
1315 if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
1316 && cond1_code != LE_EXPR && cond1_code != LT_EXPR)
1317 return false;
1318
1319 if (cond1_code == GT_EXPR)
1320 {
1321 cond1_code = GE_EXPR;
1322 cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
1323 cond1_rhs,
1324 fold_convert (TREE_TYPE (cond1_rhs),
1325 integer_one_node));
1326 }
1327 else if (cond1_code == LT_EXPR)
1328 {
1329 cond1_code = LE_EXPR;
1330 cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
1331 cond1_rhs,
1332 fold_convert (TREE_TYPE (cond1_rhs),
1333 integer_one_node));
1334 }
1335
1336 if (!cond1_rhs)
1337 return false;
1338
1339 gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
1340
1341 if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
1342 cond2_code == LE_EXPR || cond2_code == LT_EXPR)
1343 return is_value_included_in (cond1_rhs,
1344 cond2_rhs, cond2_code);
1345 else if (cond2_code == NE_EXPR)
1346 return
1347 (is_value_included_in (cond1_rhs,
1348 cond2_rhs, cond2_code)
1349 && !is_value_included_in (cond2_rhs,
1350 cond1_rhs, cond1_code));
1351 return false;
1352 }
1353
1354 /* Returns true if the domain of the condition expression
1355 in COND is a subset of any of the sub-conditions
1356 of the normalized condtion NORM_COND. INVERT is a flag
1357 to indicate of the COND needs to be inverted.
1358 REVERSE is a flag. When it is true, the check is reversed --
1359 it returns true if COND is a superset of any of the subconditions
1360 of NORM_COND. */
1361
1362 static bool
1363 is_subset_of_any (gimple cond, bool invert,
1364 norm_cond_t norm_cond, bool reverse)
1365 {
1366 size_t i;
1367 size_t len = norm_cond->conds.length ();
1368
1369 for (i = 0; i < len; i++)
1370 {
1371 if (is_gcond_subset_of (cond, invert,
1372 norm_cond->conds[i],
1373 false, reverse))
1374 return true;
1375 }
1376 return false;
1377 }
1378
1379 /* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
1380 expressions (formed by following UD chains not control
1381 dependence chains). The function returns true of domain
1382 of and expression NORM_COND1 is a subset of NORM_COND2's.
1383 The implementation is conservative, and it returns false if
1384 it the inclusion relationship may not hold. */
1385
1386 static bool
1387 is_or_set_subset_of (norm_cond_t norm_cond1,
1388 norm_cond_t norm_cond2)
1389 {
1390 size_t i;
1391 size_t len = norm_cond1->conds.length ();
1392
1393 for (i = 0; i < len; i++)
1394 {
1395 if (!is_subset_of_any (norm_cond1->conds[i],
1396 false, norm_cond2, false))
1397 return false;
1398 }
1399 return true;
1400 }
1401
1402 /* NORM_COND1 and NORM_COND2 are normalized logical AND
1403 expressions (formed by following UD chains not control
1404 dependence chains). The function returns true of domain
1405 of and expression NORM_COND1 is a subset of NORM_COND2's. */
1406
1407 static bool
1408 is_and_set_subset_of (norm_cond_t norm_cond1,
1409 norm_cond_t norm_cond2)
1410 {
1411 size_t i;
1412 size_t len = norm_cond2->conds.length ();
1413
1414 for (i = 0; i < len; i++)
1415 {
1416 if (!is_subset_of_any (norm_cond2->conds[i],
1417 false, norm_cond1, true))
1418 return false;
1419 }
1420 return true;
1421 }
1422
1423 /* Returns true of the domain if NORM_COND1 is a subset
1424 of that of NORM_COND2. Returns false if it can not be
1425 proved to be so. */
1426
1427 static bool
1428 is_norm_cond_subset_of (norm_cond_t norm_cond1,
1429 norm_cond_t norm_cond2)
1430 {
1431 size_t i;
1432 enum tree_code code1, code2;
1433
1434 code1 = norm_cond1->cond_code;
1435 code2 = norm_cond2->cond_code;
1436
1437 if (code1 == BIT_AND_EXPR)
1438 {
1439 /* Both conditions are AND expressions. */
1440 if (code2 == BIT_AND_EXPR)
1441 return is_and_set_subset_of (norm_cond1, norm_cond2);
1442 /* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
1443 expression. In this case, returns true if any subexpression
1444 of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
1445 else if (code2 == BIT_IOR_EXPR)
1446 {
1447 size_t len1;
1448 len1 = norm_cond1->conds.length ();
1449 for (i = 0; i < len1; i++)
1450 {
1451 gimple cond1 = norm_cond1->conds[i];
1452 if (is_subset_of_any (cond1, false, norm_cond2, false))
1453 return true;
1454 }
1455 return false;
1456 }
1457 else
1458 {
1459 gcc_assert (code2 == ERROR_MARK);
1460 gcc_assert (norm_cond2->conds.length () == 1);
1461 return is_subset_of_any (norm_cond2->conds[0],
1462 norm_cond2->invert, norm_cond1, true);
1463 }
1464 }
1465 /* NORM_COND1 is an OR expression */
1466 else if (code1 == BIT_IOR_EXPR)
1467 {
1468 if (code2 != code1)
1469 return false;
1470
1471 return is_or_set_subset_of (norm_cond1, norm_cond2);
1472 }
1473 else
1474 {
1475 gcc_assert (code1 == ERROR_MARK);
1476 gcc_assert (norm_cond1->conds.length () == 1);
1477 /* Conservatively returns false if NORM_COND1 is non-decomposible
1478 and NORM_COND2 is an AND expression. */
1479 if (code2 == BIT_AND_EXPR)
1480 return false;
1481
1482 if (code2 == BIT_IOR_EXPR)
1483 return is_subset_of_any (norm_cond1->conds[0],
1484 norm_cond1->invert, norm_cond2, false);
1485
1486 gcc_assert (code2 == ERROR_MARK);
1487 gcc_assert (norm_cond2->conds.length () == 1);
1488 return is_gcond_subset_of (norm_cond1->conds[0],
1489 norm_cond1->invert,
1490 norm_cond2->conds[0],
1491 norm_cond2->invert, false);
1492 }
1493 }
1494
1495 /* Returns true of the domain of single predicate expression
1496 EXPR1 is a subset of that of EXPR2. Returns false if it
1497 can not be proved. */
1498
1499 static bool
1500 is_pred_expr_subset_of (use_pred_info_t expr1,
1501 use_pred_info_t expr2)
1502 {
1503 gimple cond1, cond2;
1504 enum tree_code code1, code2;
1505 struct norm_cond norm_cond1, norm_cond2;
1506 bool is_subset = false;
1507
1508 cond1 = expr1->cond;
1509 cond2 = expr2->cond;
1510 code1 = gimple_cond_code (cond1);
1511 code2 = gimple_cond_code (cond2);
1512
1513 if (expr1->invert)
1514 code1 = invert_tree_comparison (code1, false);
1515 if (expr2->invert)
1516 code2 = invert_tree_comparison (code2, false);
1517
1518 /* Fast path -- match exactly */
1519 if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
1520 && (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
1521 && (code1 == code2))
1522 return true;
1523
1524 /* Normalize conditions. To keep NE_EXPR, do not invert
1525 with both need inversion. */
1526 normalize_cond (cond1, &norm_cond1, (expr1->invert));
1527 normalize_cond (cond2, &norm_cond2, (expr2->invert));
1528
1529 is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
1530
1531 /* Free memory */
1532 norm_cond1.conds.release ();
1533 norm_cond2.conds.release ();
1534 return is_subset ;
1535 }
1536
1537 /* Returns true if the domain of PRED1 is a subset
1538 of that of PRED2. Returns false if it can not be proved so. */
1539
1540 static bool
1541 is_pred_chain_subset_of (vec<use_pred_info_t> pred1,
1542 vec<use_pred_info_t> pred2)
1543 {
1544 size_t np1, np2, i1, i2;
1545
1546 np1 = pred1.length ();
1547 np2 = pred2.length ();
1548
1549 for (i2 = 0; i2 < np2; i2++)
1550 {
1551 bool found = false;
1552 use_pred_info_t info2
1553 = pred2[i2];
1554 for (i1 = 0; i1 < np1; i1++)
1555 {
1556 use_pred_info_t info1
1557 = pred1[i1];
1558 if (is_pred_expr_subset_of (info1, info2))
1559 {
1560 found = true;
1561 break;
1562 }
1563 }
1564 if (!found)
1565 return false;
1566 }
1567 return true;
1568 }
1569
1570 /* Returns true if the domain defined by
1571 one pred chain ONE_PRED is a subset of the domain
1572 of *PREDS. It returns false if ONE_PRED's domain is
1573 not a subset of any of the sub-domains of PREDS (
1574 corresponding to each individual chains in it), even
1575 though it may be still be a subset of whole domain
1576 of PREDS which is the union (ORed) of all its subdomains.
1577 In other words, the result is conservative. */
1578
1579 static bool
1580 is_included_in (vec<use_pred_info_t> one_pred,
1581 vec<use_pred_info_t> *preds,
1582 size_t n)
1583 {
1584 size_t i;
1585
1586 for (i = 0; i < n; i++)
1587 {
1588 if (is_pred_chain_subset_of (one_pred, preds[i]))
1589 return true;
1590 }
1591
1592 return false;
1593 }
1594
1595 /* compares two predicate sets PREDS1 and PREDS2 and returns
1596 true if the domain defined by PREDS1 is a superset
1597 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1598 PREDS2 respectively. The implementation chooses not to build
1599 generic trees (and relying on the folding capability of the
1600 compiler), but instead performs brute force comparison of
1601 individual predicate chains (won't be a compile time problem
1602 as the chains are pretty short). When the function returns
1603 false, it does not necessarily mean *PREDS1 is not a superset
1604 of *PREDS2, but mean it may not be so since the analysis can
1605 not prove it. In such cases, false warnings may still be
1606 emitted. */
1607
1608 static bool
1609 is_superset_of (vec<use_pred_info_t> *preds1,
1610 size_t n1,
1611 vec<use_pred_info_t> *preds2,
1612 size_t n2)
1613 {
1614 size_t i;
1615 vec<use_pred_info_t> one_pred_chain;
1616
1617 for (i = 0; i < n2; i++)
1618 {
1619 one_pred_chain = preds2[i];
1620 if (!is_included_in (one_pred_chain, preds1, n1))
1621 return false;
1622 }
1623
1624 return true;
1625 }
1626
1627 /* Comparison function used by qsort. It is used to
1628 sort predicate chains to allow predicate
1629 simplification. */
1630
1631 static int
1632 pred_chain_length_cmp (const void *p1, const void *p2)
1633 {
1634 use_pred_info_t i1, i2;
1635 vec<use_pred_info_t> const *chain1
1636 = (vec<use_pred_info_t> const *)p1;
1637 vec<use_pred_info_t> const *chain2
1638 = (vec<use_pred_info_t> const *)p2;
1639
1640 if (chain1->length () != chain2->length ())
1641 return (chain1->length () - chain2->length ());
1642
1643 i1 = (*chain1)[0];
1644 i2 = (*chain2)[0];
1645
1646 /* Allow predicates with similar prefix come together. */
1647 if (!i1->invert && i2->invert)
1648 return -1;
1649 else if (i1->invert && !i2->invert)
1650 return 1;
1651
1652 return gimple_uid (i1->cond) - gimple_uid (i2->cond);
1653 }
1654
1655 /* x OR (!x AND y) is equivalent to x OR y.
1656 This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
1657 into x1 OR x2 OR x3. PREDS is the predicate chains, and N is
1658 the number of chains. Returns true if normalization happens. */
1659
1660 static bool
1661 normalize_preds (vec<use_pred_info_t> *preds, size_t *n)
1662 {
1663 size_t i, j, ll;
1664 vec<use_pred_info_t> pred_chain;
1665 vec<use_pred_info_t> x = vNULL;
1666 use_pred_info_t xj = 0, nxj = 0;
1667
1668 if (*n < 2)
1669 return false;
1670
1671 /* First sort the chains in ascending order of lengths. */
1672 qsort (preds, *n, sizeof (void *), pred_chain_length_cmp);
1673 pred_chain = preds[0];
1674 ll = pred_chain.length ();
1675 if (ll != 1)
1676 {
1677 if (ll == 2)
1678 {
1679 use_pred_info_t xx, yy, xx2, nyy;
1680 vec<use_pred_info_t> pred_chain2 = preds[1];
1681 if (pred_chain2.length () != 2)
1682 return false;
1683
1684 /* See if simplification x AND y OR x AND !y is possible. */
1685 xx = pred_chain[0];
1686 yy = pred_chain[1];
1687 xx2 = pred_chain2[0];
1688 nyy = pred_chain2[1];
1689 if (gimple_cond_lhs (xx->cond) != gimple_cond_lhs (xx2->cond)
1690 || gimple_cond_rhs (xx->cond) != gimple_cond_rhs (xx2->cond)
1691 || gimple_cond_code (xx->cond) != gimple_cond_code (xx2->cond)
1692 || (xx->invert != xx2->invert))
1693 return false;
1694 if (gimple_cond_lhs (yy->cond) != gimple_cond_lhs (nyy->cond)
1695 || gimple_cond_rhs (yy->cond) != gimple_cond_rhs (nyy->cond)
1696 || gimple_cond_code (yy->cond) != gimple_cond_code (nyy->cond)
1697 || (yy->invert == nyy->invert))
1698 return false;
1699
1700 /* Now merge the first two chains. */
1701 free (yy);
1702 free (nyy);
1703 free (xx2);
1704 pred_chain.release ();
1705 pred_chain2.release ();
1706 pred_chain.safe_push (xx);
1707 preds[0] = pred_chain;
1708 for (i = 1; i < *n - 1; i++)
1709 preds[i] = preds[i + 1];
1710
1711 preds[*n - 1].create (0);
1712 *n = *n - 1;
1713 }
1714 else
1715 return false;
1716 }
1717
1718 x.safe_push (pred_chain[0]);
1719
1720 /* The loop extracts x1, x2, x3, etc from chains
1721 x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ... */
1722 for (i = 1; i < *n; i++)
1723 {
1724 pred_chain = preds[i];
1725 if (pred_chain.length () != i + 1)
1726 return false;
1727
1728 for (j = 0; j < i; j++)
1729 {
1730 xj = x[j];
1731 nxj = pred_chain[j];
1732
1733 /* Check if nxj is !xj */
1734 if (gimple_cond_lhs (xj->cond) != gimple_cond_lhs (nxj->cond)
1735 || gimple_cond_rhs (xj->cond) != gimple_cond_rhs (nxj->cond)
1736 || gimple_cond_code (xj->cond) != gimple_cond_code (nxj->cond)
1737 || (xj->invert == nxj->invert))
1738 return false;
1739 }
1740
1741 x.safe_push (pred_chain[i]);
1742 }
1743
1744 /* Now normalize the pred chains using the extraced x1, x2, x3 etc. */
1745 for (j = 0; j < *n; j++)
1746 {
1747 use_pred_info_t t;
1748 xj = x[j];
1749
1750 t = XNEW (struct use_pred_info);
1751 *t = *xj;
1752
1753 x[j] = t;
1754 }
1755
1756 for (i = 0; i < *n; i++)
1757 {
1758 pred_chain = preds[i];
1759 for (j = 0; j < pred_chain.length (); j++)
1760 free (pred_chain[j]);
1761 pred_chain.release ();
1762 /* A new chain. */
1763 pred_chain.safe_push (x[i]);
1764 preds[i] = pred_chain;
1765 }
1766 return true;
1767 }
1768
1769
1770
1771 /* Computes the predicates that guard the use and checks
1772 if the incoming paths that have empty (or possibly
1773 empty) definition can be pruned/filtered. The function returns
1774 true if it can be determined that the use of PHI's def in
1775 USE_STMT is guarded with a predicate set not overlapping with
1776 predicate sets of all runtime paths that do not have a definition.
1777 Returns false if it is not or it can not be determined. USE_BB is
1778 the bb of the use (for phi operand use, the bb is not the bb of
1779 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
1780 is a bit vector. If an operand of PHI is uninitialized, the
1781 corresponding bit in the vector is 1. VISIED_PHIS is a pointer
1782 set of phis being visted. */
1783
1784 static bool
1785 is_use_properly_guarded (gimple use_stmt,
1786 basic_block use_bb,
1787 gimple phi,
1788 unsigned uninit_opnds,
1789 struct pointer_set_t *visited_phis)
1790 {
1791 basic_block phi_bb;
1792 vec<use_pred_info_t> *preds = 0;
1793 vec<use_pred_info_t> *def_preds = 0;
1794 size_t num_preds = 0, num_def_preds = 0;
1795 bool has_valid_preds = false;
1796 bool is_properly_guarded = false;
1797
1798 if (pointer_set_insert (visited_phis, phi))
1799 return false;
1800
1801 phi_bb = gimple_bb (phi);
1802
1803 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
1804 return false;
1805
1806 has_valid_preds = find_predicates (&preds, &num_preds,
1807 phi_bb, use_bb);
1808
1809 if (!has_valid_preds)
1810 {
1811 destroy_predicate_vecs (num_preds, preds);
1812 return false;
1813 }
1814
1815 if (dump_file)
1816 dump_predicates (use_stmt, num_preds, preds,
1817 "\nUse in stmt ");
1818
1819 has_valid_preds = find_def_preds (&def_preds,
1820 &num_def_preds, phi);
1821
1822 if (has_valid_preds)
1823 {
1824 bool normed;
1825 if (dump_file)
1826 dump_predicates (phi, num_def_preds, def_preds,
1827 "Operand defs of phi ");
1828
1829 normed = normalize_preds (def_preds, &num_def_preds);
1830 if (normed && dump_file)
1831 {
1832 fprintf (dump_file, "\nNormalized to\n");
1833 dump_predicates (phi, num_def_preds, def_preds,
1834 "Operand defs of phi ");
1835 }
1836 is_properly_guarded =
1837 is_superset_of (def_preds, num_def_preds,
1838 preds, num_preds);
1839 }
1840
1841 /* further prune the dead incoming phi edges. */
1842 if (!is_properly_guarded)
1843 is_properly_guarded
1844 = use_pred_not_overlap_with_undef_path_pred (
1845 num_preds, preds, phi, uninit_opnds, visited_phis);
1846
1847 destroy_predicate_vecs (num_preds, preds);
1848 destroy_predicate_vecs (num_def_preds, def_preds);
1849 return is_properly_guarded;
1850 }
1851
1852 /* Searches through all uses of a potentially
1853 uninitialized variable defined by PHI and returns a use
1854 statement if the use is not properly guarded. It returns
1855 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
1856 holding the position(s) of uninit PHI operands. WORKLIST
1857 is the vector of candidate phis that may be updated by this
1858 function. ADDED_TO_WORKLIST is the pointer set tracking
1859 if the new phi is already in the worklist. */
1860
1861 static gimple
1862 find_uninit_use (gimple phi, unsigned uninit_opnds,
1863 vec<gimple> *worklist,
1864 struct pointer_set_t *added_to_worklist)
1865 {
1866 tree phi_result;
1867 use_operand_p use_p;
1868 gimple use_stmt;
1869 imm_use_iterator iter;
1870
1871 phi_result = gimple_phi_result (phi);
1872
1873 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
1874 {
1875 struct pointer_set_t *visited_phis;
1876 basic_block use_bb;
1877
1878 use_stmt = USE_STMT (use_p);
1879 if (is_gimple_debug (use_stmt))
1880 continue;
1881
1882 visited_phis = pointer_set_create ();
1883
1884 if (gimple_code (use_stmt) == GIMPLE_PHI)
1885 use_bb = gimple_phi_arg_edge (use_stmt,
1886 PHI_ARG_INDEX_FROM_USE (use_p))->src;
1887 else
1888 use_bb = gimple_bb (use_stmt);
1889
1890 if (is_use_properly_guarded (use_stmt,
1891 use_bb,
1892 phi,
1893 uninit_opnds,
1894 visited_phis))
1895 {
1896 pointer_set_destroy (visited_phis);
1897 continue;
1898 }
1899 pointer_set_destroy (visited_phis);
1900
1901 if (dump_file && (dump_flags & TDF_DETAILS))
1902 {
1903 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
1904 print_gimple_stmt (dump_file, use_stmt, 0, 0);
1905 }
1906 /* Found one real use, return. */
1907 if (gimple_code (use_stmt) != GIMPLE_PHI)
1908 return use_stmt;
1909
1910 /* Found a phi use that is not guarded,
1911 add the phi to the worklist. */
1912 if (!pointer_set_insert (added_to_worklist,
1913 use_stmt))
1914 {
1915 if (dump_file && (dump_flags & TDF_DETAILS))
1916 {
1917 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
1918 print_gimple_stmt (dump_file, use_stmt, 0, 0);
1919 }
1920
1921 worklist->safe_push (use_stmt);
1922 pointer_set_insert (possibly_undefined_names, phi_result);
1923 }
1924 }
1925
1926 return NULL;
1927 }
1928
1929 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1930 and gives warning if there exists a runtime path from the entry to a
1931 use of the PHI def that does not contain a definition. In other words,
1932 the warning is on the real use. The more dead paths that can be pruned
1933 by the compiler, the fewer false positives the warning is. WORKLIST
1934 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
1935 a pointer set tracking if the new phi is added to the worklist or not. */
1936
1937 static void
1938 warn_uninitialized_phi (gimple phi, vec<gimple> *worklist,
1939 struct pointer_set_t *added_to_worklist)
1940 {
1941 unsigned uninit_opnds;
1942 gimple uninit_use_stmt = 0;
1943 tree uninit_op;
1944
1945 /* Don't look at virtual operands. */
1946 if (virtual_operand_p (gimple_phi_result (phi)))
1947 return;
1948
1949 uninit_opnds = compute_uninit_opnds_pos (phi);
1950
1951 if (MASK_EMPTY (uninit_opnds))
1952 return;
1953
1954 if (dump_file && (dump_flags & TDF_DETAILS))
1955 {
1956 fprintf (dump_file, "[CHECK]: examining phi: ");
1957 print_gimple_stmt (dump_file, phi, 0, 0);
1958 }
1959
1960 /* Now check if we have any use of the value without proper guard. */
1961 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
1962 worklist, added_to_worklist);
1963
1964 /* All uses are properly guarded. */
1965 if (!uninit_use_stmt)
1966 return;
1967
1968 uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
1969 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
1970 return;
1971 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
1972 SSA_NAME_VAR (uninit_op),
1973 "%qD may be used uninitialized in this function",
1974 uninit_use_stmt);
1975
1976 }
1977
1978
1979 /* Entry point to the late uninitialized warning pass. */
1980
1981 static unsigned int
1982 execute_late_warn_uninitialized (void)
1983 {
1984 basic_block bb;
1985 gimple_stmt_iterator gsi;
1986 vec<gimple> worklist = vNULL;
1987 struct pointer_set_t *added_to_worklist;
1988
1989 calculate_dominance_info (CDI_DOMINATORS);
1990 calculate_dominance_info (CDI_POST_DOMINATORS);
1991 /* Re-do the plain uninitialized variable check, as optimization may have
1992 straightened control flow. Do this first so that we don't accidentally
1993 get a "may be" warning when we'd have seen an "is" warning later. */
1994 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1995
1996 timevar_push (TV_TREE_UNINIT);
1997
1998 possibly_undefined_names = pointer_set_create ();
1999 added_to_worklist = pointer_set_create ();
2000
2001 /* Initialize worklist */
2002 FOR_EACH_BB (bb)
2003 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2004 {
2005 gimple phi = gsi_stmt (gsi);
2006 size_t n, i;
2007
2008 n = gimple_phi_num_args (phi);
2009
2010 /* Don't look at virtual operands. */
2011 if (virtual_operand_p (gimple_phi_result (phi)))
2012 continue;
2013
2014 for (i = 0; i < n; ++i)
2015 {
2016 tree op = gimple_phi_arg_def (phi, i);
2017 if (TREE_CODE (op) == SSA_NAME
2018 && uninit_undefined_value_p (op))
2019 {
2020 worklist.safe_push (phi);
2021 pointer_set_insert (added_to_worklist, phi);
2022 if (dump_file && (dump_flags & TDF_DETAILS))
2023 {
2024 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2025 print_gimple_stmt (dump_file, phi, 0, 0);
2026 }
2027 break;
2028 }
2029 }
2030 }
2031
2032 while (worklist.length () != 0)
2033 {
2034 gimple cur_phi = 0;
2035 cur_phi = worklist.pop ();
2036 warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
2037 }
2038
2039 worklist.release ();
2040 pointer_set_destroy (added_to_worklist);
2041 pointer_set_destroy (possibly_undefined_names);
2042 possibly_undefined_names = NULL;
2043 free_dominance_info (CDI_POST_DOMINATORS);
2044 timevar_pop (TV_TREE_UNINIT);
2045 return 0;
2046 }
2047
2048 static bool
2049 gate_warn_uninitialized (void)
2050 {
2051 return warn_uninitialized != 0;
2052 }
2053
2054 struct gimple_opt_pass pass_late_warn_uninitialized =
2055 {
2056 {
2057 GIMPLE_PASS,
2058 "uninit", /* name */
2059 OPTGROUP_NONE, /* optinfo_flags */
2060 gate_warn_uninitialized, /* gate */
2061 execute_late_warn_uninitialized, /* execute */
2062 NULL, /* sub */
2063 NULL, /* next */
2064 0, /* static_pass_number */
2065 TV_NONE, /* tv_id */
2066 PROP_ssa, /* properties_required */
2067 0, /* properties_provided */
2068 0, /* properties_destroyed */
2069 0, /* todo_flags_start */
2070 0 /* todo_flags_finish */
2071 }
2072 };