]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-switch-conversion.c
2015-10-29 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "params.h"
40 #include "flags.h"
41 #include "alias.h"
42 #include "fold-const.h"
43 #include "varasm.h"
44 #include "stor-layout.h"
45 #include "cfganal.h"
46 #include "internal-fn.h"
47 #include "gimplify.h"
48 #include "gimple-iterator.h"
49 #include "gimplify-me.h"
50 #include "tree-cfg.h"
51 #include "cfgloop.h"
52
53 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
54 type in the GIMPLE type system that is language-independent? */
55 #include "langhooks.h"
56
57 \f
58 /* Maximum number of case bit tests.
59 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
60 targetm.case_values_threshold(), or be its own param. */
61 #define MAX_CASE_BIT_TESTS 3
62
63 /* Split the basic block at the statement pointed to by GSIP, and insert
64 a branch to the target basic block of E_TRUE conditional on tree
65 expression COND.
66
67 It is assumed that there is already an edge from the to-be-split
68 basic block to E_TRUE->dest block. This edge is removed, and the
69 profile information on the edge is re-used for the new conditional
70 jump.
71
72 The CFG is updated. The dominator tree will not be valid after
73 this transformation, but the immediate dominators are updated if
74 UPDATE_DOMINATORS is true.
75
76 Returns the newly created basic block. */
77
78 static basic_block
79 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
80 tree cond, edge e_true,
81 bool update_dominators)
82 {
83 tree tmp;
84 gcond *cond_stmt;
85 edge e_false;
86 basic_block new_bb, split_bb = gsi_bb (*gsip);
87 bool dominated_e_true = false;
88
89 gcc_assert (e_true->src == split_bb);
90
91 if (update_dominators
92 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
93 dominated_e_true = true;
94
95 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
96 /*before=*/true, GSI_SAME_STMT);
97 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
98 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
99
100 e_false = split_block (split_bb, cond_stmt);
101 new_bb = e_false->dest;
102 redirect_edge_pred (e_true, split_bb);
103
104 e_true->flags &= ~EDGE_FALLTHRU;
105 e_true->flags |= EDGE_TRUE_VALUE;
106
107 e_false->flags &= ~EDGE_FALLTHRU;
108 e_false->flags |= EDGE_FALSE_VALUE;
109 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
110 e_false->count = split_bb->count - e_true->count;
111 new_bb->count = e_false->count;
112
113 if (update_dominators)
114 {
115 if (dominated_e_true)
116 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
117 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
118 }
119
120 return new_bb;
121 }
122
123
124 /* Return true if a switch should be expanded as a bit test.
125 RANGE is the difference between highest and lowest case.
126 UNIQ is number of unique case node targets, not counting the default case.
127 COUNT is the number of comparisons needed, not counting the default case. */
128
129 static bool
130 expand_switch_using_bit_tests_p (tree range,
131 unsigned int uniq,
132 unsigned int count, bool speed_p)
133 {
134 return (((uniq == 1 && count >= 3)
135 || (uniq == 2 && count >= 5)
136 || (uniq == 3 && count >= 6))
137 && lshift_cheap_p (speed_p)
138 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
139 && compare_tree_int (range, 0) > 0);
140 }
141 \f
142 /* Implement switch statements with bit tests
143
144 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
145 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
146 where CST and MINVAL are integer constants. This is better than a series
147 of compare-and-banch insns in some cases, e.g. we can implement:
148
149 if ((x==4) || (x==6) || (x==9) || (x==11))
150
151 as a single bit test:
152
153 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
154
155 This transformation is only applied if the number of case targets is small,
156 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
157 performed in "word_mode".
158
159 The following example shows the code the transformation generates:
160
161 int bar(int x)
162 {
163 switch (x)
164 {
165 case '0': case '1': case '2': case '3': case '4':
166 case '5': case '6': case '7': case '8': case '9':
167 case 'A': case 'B': case 'C': case 'D': case 'E':
168 case 'F':
169 return 1;
170 }
171 return 0;
172 }
173
174 ==>
175
176 bar (int x)
177 {
178 tmp1 = x - 48;
179 if (tmp1 > (70 - 48)) goto L2;
180 tmp2 = 1 << tmp1;
181 tmp3 = 0b11111100000001111111111;
182 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
183 L1:
184 return 1;
185 L2:
186 return 0;
187 }
188
189 TODO: There are still some improvements to this transformation that could
190 be implemented:
191
192 * A narrower mode than word_mode could be used if that is cheaper, e.g.
193 for x86_64 where a narrower-mode shift may result in smaller code.
194
195 * The compounded constant could be shifted rather than the one. The
196 test would be either on the sign bit or on the least significant bit,
197 depending on the direction of the shift. On some machines, the test
198 for the branch would be free if the bit to test is already set by the
199 shift operation.
200
201 This transformation was contributed by Roger Sayle, see this e-mail:
202 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
203 */
204
205 /* A case_bit_test represents a set of case nodes that may be
206 selected from using a bit-wise comparison. HI and LO hold
207 the integer to be tested against, TARGET_EDGE contains the
208 edge to the basic block to jump to upon success and BITS
209 counts the number of case nodes handled by this test,
210 typically the number of bits set in HI:LO. The LABEL field
211 is used to quickly identify all cases in this set without
212 looking at label_to_block for every case label. */
213
214 struct case_bit_test
215 {
216 wide_int mask;
217 edge target_edge;
218 tree label;
219 int bits;
220 };
221
222 /* Comparison function for qsort to order bit tests by decreasing
223 probability of execution. Our best guess comes from a measured
224 profile. If the profile counts are equal, break even on the
225 number of case nodes, i.e. the node with the most cases gets
226 tested first.
227
228 TODO: Actually this currently runs before a profile is available.
229 Therefore the case-as-bit-tests transformation should be done
230 later in the pass pipeline, or something along the lines of
231 "Efficient and effective branch reordering using profile data"
232 (Yang et. al., 2002) should be implemented (although, how good
233 is a paper is called "Efficient and effective ..." when the
234 latter is implied by the former, but oh well...). */
235
236 static int
237 case_bit_test_cmp (const void *p1, const void *p2)
238 {
239 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
240 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
241
242 if (d2->target_edge->count != d1->target_edge->count)
243 return d2->target_edge->count - d1->target_edge->count;
244 if (d2->bits != d1->bits)
245 return d2->bits - d1->bits;
246
247 /* Stabilize the sort. */
248 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
249 }
250
251 /* Expand a switch statement by a short sequence of bit-wise
252 comparisons. "switch(x)" is effectively converted into
253 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
254 integer constants.
255
256 INDEX_EXPR is the value being switched on.
257
258 MINVAL is the lowest case value of in the case nodes,
259 and RANGE is highest value minus MINVAL. MINVAL and RANGE
260 are not guaranteed to be of the same type as INDEX_EXPR
261 (the gimplifier doesn't change the type of case label values,
262 and MINVAL and RANGE are derived from those values).
263 MAXVAL is MINVAL + RANGE.
264
265 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
266 node targets. */
267
268 static void
269 emit_case_bit_tests (gswitch *swtch, tree index_expr,
270 tree minval, tree range, tree maxval)
271 {
272 struct case_bit_test test[MAX_CASE_BIT_TESTS];
273 unsigned int i, j, k;
274 unsigned int count;
275
276 basic_block switch_bb = gimple_bb (swtch);
277 basic_block default_bb, new_default_bb, new_bb;
278 edge default_edge;
279 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
280
281 vec<basic_block> bbs_to_fix_dom = vNULL;
282
283 tree index_type = TREE_TYPE (index_expr);
284 tree unsigned_index_type = unsigned_type_for (index_type);
285 unsigned int branch_num = gimple_switch_num_labels (swtch);
286
287 gimple_stmt_iterator gsi;
288 gassign *shift_stmt;
289
290 tree idx, tmp, csui;
291 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
292 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
293 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
294 int prec = TYPE_PRECISION (word_type_node);
295 wide_int wone = wi::one (prec);
296
297 memset (&test, 0, sizeof (test));
298
299 /* Get the edge for the default case. */
300 tmp = gimple_switch_default_label (swtch);
301 default_bb = label_to_block (CASE_LABEL (tmp));
302 default_edge = find_edge (switch_bb, default_bb);
303
304 /* Go through all case labels, and collect the case labels, profile
305 counts, and other information we need to build the branch tests. */
306 count = 0;
307 for (i = 1; i < branch_num; i++)
308 {
309 unsigned int lo, hi;
310 tree cs = gimple_switch_label (swtch, i);
311 tree label = CASE_LABEL (cs);
312 edge e = find_edge (switch_bb, label_to_block (label));
313 for (k = 0; k < count; k++)
314 if (e == test[k].target_edge)
315 break;
316
317 if (k == count)
318 {
319 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
320 test[k].mask = wi::zero (prec);
321 test[k].target_edge = e;
322 test[k].label = label;
323 test[k].bits = 1;
324 count++;
325 }
326 else
327 test[k].bits++;
328
329 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
330 CASE_LOW (cs), minval));
331 if (CASE_HIGH (cs) == NULL_TREE)
332 hi = lo;
333 else
334 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
335 CASE_HIGH (cs), minval));
336
337 for (j = lo; j <= hi; j++)
338 test[k].mask |= wi::lshift (wone, j);
339 }
340
341 qsort (test, count, sizeof (*test), case_bit_test_cmp);
342
343 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
344 the minval subtractions, but it might make the mask constants more
345 expensive. So, compare the costs. */
346 if (compare_tree_int (minval, 0) > 0
347 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
348 {
349 int cost_diff;
350 HOST_WIDE_INT m = tree_to_uhwi (minval);
351 rtx reg = gen_raw_REG (word_mode, 10000);
352 bool speed_p = optimize_bb_for_speed_p (gimple_bb (swtch));
353 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
354 GEN_INT (-m)), speed_p);
355 for (i = 0; i < count; i++)
356 {
357 rtx r = immed_wide_int_const (test[i].mask, word_mode);
358 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
359 word_mode, speed_p);
360 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
361 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
362 word_mode, speed_p);
363 }
364 if (cost_diff > 0)
365 {
366 for (i = 0; i < count; i++)
367 test[i].mask = wi::lshift (test[i].mask, m);
368 minval = build_zero_cst (TREE_TYPE (minval));
369 range = maxval;
370 }
371 }
372
373 /* We generate two jumps to the default case label.
374 Split the default edge, so that we don't have to do any PHI node
375 updating. */
376 new_default_bb = split_edge (default_edge);
377
378 if (update_dom)
379 {
380 bbs_to_fix_dom.create (10);
381 bbs_to_fix_dom.quick_push (switch_bb);
382 bbs_to_fix_dom.quick_push (default_bb);
383 bbs_to_fix_dom.quick_push (new_default_bb);
384 }
385
386 /* Now build the test-and-branch code. */
387
388 gsi = gsi_last_bb (switch_bb);
389
390 /* idx = (unsigned)x - minval. */
391 idx = fold_convert (unsigned_index_type, index_expr);
392 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
393 fold_convert (unsigned_index_type, minval));
394 idx = force_gimple_operand_gsi (&gsi, idx,
395 /*simple=*/true, NULL_TREE,
396 /*before=*/true, GSI_SAME_STMT);
397
398 /* if (idx > range) goto default */
399 range = force_gimple_operand_gsi (&gsi,
400 fold_convert (unsigned_index_type, range),
401 /*simple=*/true, NULL_TREE,
402 /*before=*/true, GSI_SAME_STMT);
403 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
404 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
405 if (update_dom)
406 bbs_to_fix_dom.quick_push (new_bb);
407 gcc_assert (gimple_bb (swtch) == new_bb);
408 gsi = gsi_last_bb (new_bb);
409
410 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
411 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
412 if (update_dom)
413 {
414 vec<basic_block> dom_bbs;
415 basic_block dom_son;
416
417 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
418 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
419 {
420 edge e = find_edge (new_bb, dom_son);
421 if (e && single_pred_p (e->dest))
422 continue;
423 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
424 bbs_to_fix_dom.safe_push (dom_son);
425 }
426 dom_bbs.release ();
427 }
428
429 /* csui = (1 << (word_mode) idx) */
430 csui = make_ssa_name (word_type_node);
431 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
432 fold_convert (word_type_node, idx));
433 tmp = force_gimple_operand_gsi (&gsi, tmp,
434 /*simple=*/false, NULL_TREE,
435 /*before=*/true, GSI_SAME_STMT);
436 shift_stmt = gimple_build_assign (csui, tmp);
437 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
438 update_stmt (shift_stmt);
439
440 /* for each unique set of cases:
441 if (const & csui) goto target */
442 for (k = 0; k < count; k++)
443 {
444 tmp = wide_int_to_tree (word_type_node, test[k].mask);
445 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
446 tmp = force_gimple_operand_gsi (&gsi, tmp,
447 /*simple=*/true, NULL_TREE,
448 /*before=*/true, GSI_SAME_STMT);
449 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
450 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
451 update_dom);
452 if (update_dom)
453 bbs_to_fix_dom.safe_push (new_bb);
454 gcc_assert (gimple_bb (swtch) == new_bb);
455 gsi = gsi_last_bb (new_bb);
456 }
457
458 /* We should have removed all edges now. */
459 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
460
461 /* If nothing matched, go to the default label. */
462 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
463
464 /* The GIMPLE_SWITCH is now redundant. */
465 gsi_remove (&gsi, true);
466
467 if (update_dom)
468 {
469 /* Fix up the dominator tree. */
470 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
471 bbs_to_fix_dom.release ();
472 }
473 }
474 \f
475 /*
476 Switch initialization conversion
477
478 The following pass changes simple initializations of scalars in a switch
479 statement into initializations from a static array. Obviously, the values
480 must be constant and known at compile time and a default branch must be
481 provided. For example, the following code:
482
483 int a,b;
484
485 switch (argc)
486 {
487 case 1:
488 case 2:
489 a_1 = 8;
490 b_1 = 6;
491 break;
492 case 3:
493 a_2 = 9;
494 b_2 = 5;
495 break;
496 case 12:
497 a_3 = 10;
498 b_3 = 4;
499 break;
500 default:
501 a_4 = 16;
502 b_4 = 1;
503 break;
504 }
505 a_5 = PHI <a_1, a_2, a_3, a_4>
506 b_5 = PHI <b_1, b_2, b_3, b_4>
507
508
509 is changed into:
510
511 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
512 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
513 16, 16, 10};
514
515 if (((unsigned) argc) - 1 < 11)
516 {
517 a_6 = CSWTCH02[argc - 1];
518 b_6 = CSWTCH01[argc - 1];
519 }
520 else
521 {
522 a_7 = 16;
523 b_7 = 1;
524 }
525 a_5 = PHI <a_6, a_7>
526 b_b = PHI <b_6, b_7>
527
528 There are further constraints. Specifically, the range of values across all
529 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
530 eight) times the number of the actual switch branches.
531
532 This transformation was contributed by Martin Jambor, see this e-mail:
533 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
534
535 /* The main structure of the pass. */
536 struct switch_conv_info
537 {
538 /* The expression used to decide the switch branch. */
539 tree index_expr;
540
541 /* The following integer constants store the minimum and maximum value
542 covered by the case labels. */
543 tree range_min;
544 tree range_max;
545
546 /* The difference between the above two numbers. Stored here because it
547 is used in all the conversion heuristics, as well as for some of the
548 transformation, and it is expensive to re-compute it all the time. */
549 tree range_size;
550
551 /* Basic block that contains the actual GIMPLE_SWITCH. */
552 basic_block switch_bb;
553
554 /* Basic block that is the target of the default case. */
555 basic_block default_bb;
556
557 /* The single successor block of all branches out of the GIMPLE_SWITCH,
558 if such a block exists. Otherwise NULL. */
559 basic_block final_bb;
560
561 /* The probability of the default edge in the replaced switch. */
562 int default_prob;
563
564 /* The count of the default edge in the replaced switch. */
565 gcov_type default_count;
566
567 /* Combined count of all other (non-default) edges in the replaced switch. */
568 gcov_type other_count;
569
570 /* Number of phi nodes in the final bb (that we'll be replacing). */
571 int phi_count;
572
573 /* Array of default values, in the same order as phi nodes. */
574 tree *default_values;
575
576 /* Constructors of new static arrays. */
577 vec<constructor_elt, va_gc> **constructors;
578
579 /* Array of ssa names that are initialized with a value from a new static
580 array. */
581 tree *target_inbound_names;
582
583 /* Array of ssa names that are initialized with the default value if the
584 switch expression is out of range. */
585 tree *target_outbound_names;
586
587 /* The first load statement that loads a temporary from a new static array.
588 */
589 gimple *arr_ref_first;
590
591 /* The last load statement that loads a temporary from a new static array. */
592 gimple *arr_ref_last;
593
594 /* String reason why the case wasn't a good candidate that is written to the
595 dump file, if there is one. */
596 const char *reason;
597
598 /* Parameters for expand_switch_using_bit_tests. Should be computed
599 the same way as in expand_case. */
600 unsigned int uniq;
601 unsigned int count;
602 };
603
604 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
605
606 static void
607 collect_switch_conv_info (gswitch *swtch, struct switch_conv_info *info)
608 {
609 unsigned int branch_num = gimple_switch_num_labels (swtch);
610 tree min_case, max_case;
611 unsigned int count, i;
612 edge e, e_default;
613 edge_iterator ei;
614
615 memset (info, 0, sizeof (*info));
616
617 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
618 is a default label which is the first in the vector.
619 Collect the bits we can deduce from the CFG. */
620 info->index_expr = gimple_switch_index (swtch);
621 info->switch_bb = gimple_bb (swtch);
622 info->default_bb =
623 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
624 e_default = find_edge (info->switch_bb, info->default_bb);
625 info->default_prob = e_default->probability;
626 info->default_count = e_default->count;
627 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
628 if (e != e_default)
629 info->other_count += e->count;
630
631 /* See if there is one common successor block for all branch
632 targets. If it exists, record it in FINAL_BB.
633 Start with the destination of the default case as guess
634 or its destination in case it is a forwarder block. */
635 if (! single_pred_p (e_default->dest))
636 info->final_bb = e_default->dest;
637 else if (single_succ_p (e_default->dest)
638 && ! single_pred_p (single_succ (e_default->dest)))
639 info->final_bb = single_succ (e_default->dest);
640 /* Require that all switch destinations are either that common
641 FINAL_BB or a forwarder to it. */
642 if (info->final_bb)
643 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
644 {
645 if (e->dest == info->final_bb)
646 continue;
647
648 if (single_pred_p (e->dest)
649 && single_succ_p (e->dest)
650 && single_succ (e->dest) == info->final_bb)
651 continue;
652
653 info->final_bb = NULL;
654 break;
655 }
656
657 /* Get upper and lower bounds of case values, and the covered range. */
658 min_case = gimple_switch_label (swtch, 1);
659 max_case = gimple_switch_label (swtch, branch_num - 1);
660
661 info->range_min = CASE_LOW (min_case);
662 if (CASE_HIGH (max_case) != NULL_TREE)
663 info->range_max = CASE_HIGH (max_case);
664 else
665 info->range_max = CASE_LOW (max_case);
666
667 info->range_size =
668 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
669
670 /* Get a count of the number of case labels. Single-valued case labels
671 simply count as one, but a case range counts double, since it may
672 require two compares if it gets lowered as a branching tree. */
673 count = 0;
674 for (i = 1; i < branch_num; i++)
675 {
676 tree elt = gimple_switch_label (swtch, i);
677 count++;
678 if (CASE_HIGH (elt)
679 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
680 count++;
681 }
682 info->count = count;
683
684 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
685 block. Assume a CFG cleanup would have already removed degenerate
686 switch statements, this allows us to just use EDGE_COUNT. */
687 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
688 }
689
690 /* Checks whether the range given by individual case statements of the SWTCH
691 switch statement isn't too big and whether the number of branches actually
692 satisfies the size of the new array. */
693
694 static bool
695 check_range (struct switch_conv_info *info)
696 {
697 gcc_assert (info->range_size);
698 if (!tree_fits_uhwi_p (info->range_size))
699 {
700 info->reason = "index range way too large or otherwise unusable";
701 return false;
702 }
703
704 if (tree_to_uhwi (info->range_size)
705 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
706 {
707 info->reason = "the maximum range-branch ratio exceeded";
708 return false;
709 }
710
711 return true;
712 }
713
714 /* Checks whether all but the FINAL_BB basic blocks are empty. */
715
716 static bool
717 check_all_empty_except_final (struct switch_conv_info *info)
718 {
719 edge e;
720 edge_iterator ei;
721
722 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
723 {
724 if (e->dest == info->final_bb)
725 continue;
726
727 if (!empty_block_p (e->dest))
728 {
729 info->reason = "bad case - a non-final BB not empty";
730 return false;
731 }
732 }
733
734 return true;
735 }
736
737 /* This function checks whether all required values in phi nodes in final_bb
738 are constants. Required values are those that correspond to a basic block
739 which is a part of the examined switch statement. It returns true if the
740 phi nodes are OK, otherwise false. */
741
742 static bool
743 check_final_bb (struct switch_conv_info *info)
744 {
745 gphi_iterator gsi;
746
747 info->phi_count = 0;
748 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
749 {
750 gphi *phi = gsi.phi ();
751 unsigned int i;
752
753 info->phi_count++;
754
755 for (i = 0; i < gimple_phi_num_args (phi); i++)
756 {
757 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
758
759 if (bb == info->switch_bb
760 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
761 {
762 tree reloc, val;
763
764 val = gimple_phi_arg_def (phi, i);
765 if (!is_gimple_ip_invariant (val))
766 {
767 info->reason = "non-invariant value from a case";
768 return false; /* Non-invariant argument. */
769 }
770 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
771 if ((flag_pic && reloc != null_pointer_node)
772 || (!flag_pic && reloc == NULL_TREE))
773 {
774 if (reloc)
775 info->reason
776 = "value from a case would need runtime relocations";
777 else
778 info->reason
779 = "value from a case is not a valid initializer";
780 return false;
781 }
782 }
783 }
784 }
785
786 return true;
787 }
788
789 /* The following function allocates default_values, target_{in,out}_names and
790 constructors arrays. The last one is also populated with pointers to
791 vectors that will become constructors of new arrays. */
792
793 static void
794 create_temp_arrays (struct switch_conv_info *info)
795 {
796 int i;
797
798 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
799 /* ??? Macros do not support multi argument templates in their
800 argument list. We create a typedef to work around that problem. */
801 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
802 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
803 info->target_inbound_names = info->default_values + info->phi_count;
804 info->target_outbound_names = info->target_inbound_names + info->phi_count;
805 for (i = 0; i < info->phi_count; i++)
806 vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
807 }
808
809 /* Free the arrays created by create_temp_arrays(). The vectors that are
810 created by that function are not freed here, however, because they have
811 already become constructors and must be preserved. */
812
813 static void
814 free_temp_arrays (struct switch_conv_info *info)
815 {
816 XDELETEVEC (info->constructors);
817 XDELETEVEC (info->default_values);
818 }
819
820 /* Populate the array of default values in the order of phi nodes.
821 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
822
823 static void
824 gather_default_values (tree default_case, struct switch_conv_info *info)
825 {
826 gphi_iterator gsi;
827 basic_block bb = label_to_block (CASE_LABEL (default_case));
828 edge e;
829 int i = 0;
830
831 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
832
833 if (bb == info->final_bb)
834 e = find_edge (info->switch_bb, bb);
835 else
836 e = single_succ_edge (bb);
837
838 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
839 {
840 gphi *phi = gsi.phi ();
841 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
842 gcc_assert (val);
843 info->default_values[i++] = val;
844 }
845 }
846
847 /* The following function populates the vectors in the constructors array with
848 future contents of the static arrays. The vectors are populated in the
849 order of phi nodes. SWTCH is the switch statement being converted. */
850
851 static void
852 build_constructors (gswitch *swtch, struct switch_conv_info *info)
853 {
854 unsigned i, branch_num = gimple_switch_num_labels (swtch);
855 tree pos = info->range_min;
856
857 for (i = 1; i < branch_num; i++)
858 {
859 tree cs = gimple_switch_label (swtch, i);
860 basic_block bb = label_to_block (CASE_LABEL (cs));
861 edge e;
862 tree high;
863 gphi_iterator gsi;
864 int j;
865
866 if (bb == info->final_bb)
867 e = find_edge (info->switch_bb, bb);
868 else
869 e = single_succ_edge (bb);
870 gcc_assert (e);
871
872 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
873 {
874 int k;
875 for (k = 0; k < info->phi_count; k++)
876 {
877 constructor_elt elt;
878
879 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
880 elt.value
881 = unshare_expr_without_location (info->default_values[k]);
882 info->constructors[k]->quick_push (elt);
883 }
884
885 pos = int_const_binop (PLUS_EXPR, pos,
886 build_int_cst (TREE_TYPE (pos), 1));
887 }
888 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
889
890 j = 0;
891 if (CASE_HIGH (cs))
892 high = CASE_HIGH (cs);
893 else
894 high = CASE_LOW (cs);
895 for (gsi = gsi_start_phis (info->final_bb);
896 !gsi_end_p (gsi); gsi_next (&gsi))
897 {
898 gphi *phi = gsi.phi ();
899 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
900 tree low = CASE_LOW (cs);
901 pos = CASE_LOW (cs);
902
903 do
904 {
905 constructor_elt elt;
906
907 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
908 elt.value = unshare_expr_without_location (val);
909 info->constructors[j]->quick_push (elt);
910
911 pos = int_const_binop (PLUS_EXPR, pos,
912 build_int_cst (TREE_TYPE (pos), 1));
913 } while (!tree_int_cst_lt (high, pos)
914 && tree_int_cst_lt (low, pos));
915 j++;
916 }
917 }
918 }
919
920 /* If all values in the constructor vector are the same, return the value.
921 Otherwise return NULL_TREE. Not supposed to be called for empty
922 vectors. */
923
924 static tree
925 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
926 {
927 unsigned int i;
928 tree prev = NULL_TREE;
929 constructor_elt *elt;
930
931 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
932 {
933 if (!prev)
934 prev = elt->value;
935 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
936 return NULL_TREE;
937 }
938 return prev;
939 }
940
941 /* Return type which should be used for array elements, either TYPE,
942 or for integral type some smaller integral type that can still hold
943 all the constants. */
944
945 static tree
946 array_value_type (gswitch *swtch, tree type, int num,
947 struct switch_conv_info *info)
948 {
949 unsigned int i, len = vec_safe_length (info->constructors[num]);
950 constructor_elt *elt;
951 machine_mode mode;
952 int sign = 0;
953 tree smaller_type;
954
955 if (!INTEGRAL_TYPE_P (type))
956 return type;
957
958 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
959 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
960 return type;
961
962 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
963 return type;
964
965 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
966 {
967 wide_int cst;
968
969 if (TREE_CODE (elt->value) != INTEGER_CST)
970 return type;
971
972 cst = elt->value;
973 while (1)
974 {
975 unsigned int prec = GET_MODE_BITSIZE (mode);
976 if (prec > HOST_BITS_PER_WIDE_INT)
977 return type;
978
979 if (sign >= 0 && cst == wi::zext (cst, prec))
980 {
981 if (sign == 0 && cst == wi::sext (cst, prec))
982 break;
983 sign = 1;
984 break;
985 }
986 if (sign <= 0 && cst == wi::sext (cst, prec))
987 {
988 sign = -1;
989 break;
990 }
991
992 if (sign == 1)
993 sign = 0;
994
995 mode = GET_MODE_WIDER_MODE (mode);
996 if (mode == VOIDmode
997 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
998 return type;
999 }
1000 }
1001
1002 if (sign == 0)
1003 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1004 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1005 if (GET_MODE_SIZE (TYPE_MODE (type))
1006 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1007 return type;
1008
1009 return smaller_type;
1010 }
1011
1012 /* Create an appropriate array type and declaration and assemble a static array
1013 variable. Also create a load statement that initializes the variable in
1014 question with a value from the static array. SWTCH is the switch statement
1015 being converted, NUM is the index to arrays of constructors, default values
1016 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1017 of the index of the new array, PHI is the phi node of the final BB that
1018 corresponds to the value that will be loaded from the created array. TIDX
1019 is an ssa name of a temporary variable holding the index for loads from the
1020 new array. */
1021
1022 static void
1023 build_one_array (gswitch *swtch, int num, tree arr_index_type,
1024 gphi *phi, tree tidx, struct switch_conv_info *info)
1025 {
1026 tree name, cst;
1027 gimple *load;
1028 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1029 location_t loc = gimple_location (swtch);
1030
1031 gcc_assert (info->default_values[num]);
1032
1033 name = copy_ssa_name (PHI_RESULT (phi));
1034 info->target_inbound_names[num] = name;
1035
1036 cst = constructor_contains_same_values_p (info->constructors[num]);
1037 if (cst)
1038 load = gimple_build_assign (name, cst);
1039 else
1040 {
1041 tree array_type, ctor, decl, value_type, fetch, default_type;
1042
1043 default_type = TREE_TYPE (info->default_values[num]);
1044 value_type = array_value_type (swtch, default_type, num, info);
1045 array_type = build_array_type (value_type, arr_index_type);
1046 if (default_type != value_type)
1047 {
1048 unsigned int i;
1049 constructor_elt *elt;
1050
1051 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1052 elt->value = fold_convert (value_type, elt->value);
1053 }
1054 ctor = build_constructor (array_type, info->constructors[num]);
1055 TREE_CONSTANT (ctor) = true;
1056 TREE_STATIC (ctor) = true;
1057
1058 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1059 TREE_STATIC (decl) = 1;
1060 DECL_INITIAL (decl) = ctor;
1061
1062 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1063 DECL_ARTIFICIAL (decl) = 1;
1064 DECL_IGNORED_P (decl) = 1;
1065 TREE_CONSTANT (decl) = 1;
1066 TREE_READONLY (decl) = 1;
1067 DECL_IGNORED_P (decl) = 1;
1068 varpool_node::finalize_decl (decl);
1069
1070 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1071 NULL_TREE);
1072 if (default_type != value_type)
1073 {
1074 fetch = fold_convert (default_type, fetch);
1075 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1076 true, GSI_SAME_STMT);
1077 }
1078 load = gimple_build_assign (name, fetch);
1079 }
1080
1081 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1082 update_stmt (load);
1083 info->arr_ref_last = load;
1084 }
1085
1086 /* Builds and initializes static arrays initialized with values gathered from
1087 the SWTCH switch statement. Also creates statements that load values from
1088 them. */
1089
1090 static void
1091 build_arrays (gswitch *swtch, struct switch_conv_info *info)
1092 {
1093 tree arr_index_type;
1094 tree tidx, sub, utype;
1095 gimple *stmt;
1096 gimple_stmt_iterator gsi;
1097 gphi_iterator gpi;
1098 int i;
1099 location_t loc = gimple_location (swtch);
1100
1101 gsi = gsi_for_stmt (swtch);
1102
1103 /* Make sure we do not generate arithmetics in a subrange. */
1104 utype = TREE_TYPE (info->index_expr);
1105 if (TREE_TYPE (utype))
1106 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1107 else
1108 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1109
1110 arr_index_type = build_index_type (info->range_size);
1111 tidx = make_ssa_name (utype);
1112 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1113 fold_convert_loc (loc, utype, info->index_expr),
1114 fold_convert_loc (loc, utype, info->range_min));
1115 sub = force_gimple_operand_gsi (&gsi, sub,
1116 false, NULL, true, GSI_SAME_STMT);
1117 stmt = gimple_build_assign (tidx, sub);
1118
1119 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1120 update_stmt (stmt);
1121 info->arr_ref_first = stmt;
1122
1123 for (gpi = gsi_start_phis (info->final_bb), i = 0;
1124 !gsi_end_p (gpi); gsi_next (&gpi), i++)
1125 build_one_array (swtch, i, arr_index_type, gpi.phi (), tidx, info);
1126 }
1127
1128 /* Generates and appropriately inserts loads of default values at the position
1129 given by BSI. Returns the last inserted statement. */
1130
1131 static gassign *
1132 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1133 {
1134 int i;
1135 gassign *assign = NULL;
1136
1137 for (i = 0; i < info->phi_count; i++)
1138 {
1139 tree name = copy_ssa_name (info->target_inbound_names[i]);
1140 info->target_outbound_names[i] = name;
1141 assign = gimple_build_assign (name, info->default_values[i]);
1142 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1143 update_stmt (assign);
1144 }
1145 return assign;
1146 }
1147
1148 /* Deletes the unused bbs and edges that now contain the switch statement and
1149 its empty branch bbs. BBD is the now dead BB containing the original switch
1150 statement, FINAL is the last BB of the converted switch statement (in terms
1151 of succession). */
1152
1153 static void
1154 prune_bbs (basic_block bbd, basic_block final)
1155 {
1156 edge_iterator ei;
1157 edge e;
1158
1159 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1160 {
1161 basic_block bb;
1162 bb = e->dest;
1163 remove_edge (e);
1164 if (bb != final)
1165 delete_basic_block (bb);
1166 }
1167 delete_basic_block (bbd);
1168 }
1169
1170 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1171 from the basic block loading values from an array and E2F from the basic
1172 block loading default values. BBF is the last switch basic block (see the
1173 bbf description in the comment below). */
1174
1175 static void
1176 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1177 struct switch_conv_info *info)
1178 {
1179 gphi_iterator gsi;
1180 int i;
1181
1182 for (gsi = gsi_start_phis (bbf), i = 0;
1183 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1184 {
1185 gphi *phi = gsi.phi ();
1186 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1187 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1188 }
1189 }
1190
1191 /* Creates a check whether the switch expression value actually falls into the
1192 range given by all the cases. If it does not, the temporaries are loaded
1193 with default values instead. SWTCH is the switch statement being converted.
1194
1195 bb0 is the bb with the switch statement, however, we'll end it with a
1196 condition instead.
1197
1198 bb1 is the bb to be used when the range check went ok. It is derived from
1199 the switch BB
1200
1201 bb2 is the bb taken when the expression evaluated outside of the range
1202 covered by the created arrays. It is populated by loads of default
1203 values.
1204
1205 bbF is a fall through for both bb1 and bb2 and contains exactly what
1206 originally followed the switch statement.
1207
1208 bbD contains the switch statement (in the end). It is unreachable but we
1209 still need to strip off its edges.
1210 */
1211
1212 static void
1213 gen_inbound_check (gswitch *swtch, struct switch_conv_info *info)
1214 {
1215 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1216 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1217 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1218 glabel *label1, *label2, *label3;
1219 tree utype, tidx;
1220 tree bound;
1221
1222 gcond *cond_stmt;
1223
1224 gassign *last_assign;
1225 gimple_stmt_iterator gsi;
1226 basic_block bb0, bb1, bb2, bbf, bbd;
1227 edge e01, e02, e21, e1d, e1f, e2f;
1228 location_t loc = gimple_location (swtch);
1229
1230 gcc_assert (info->default_values);
1231
1232 bb0 = gimple_bb (swtch);
1233
1234 tidx = gimple_assign_lhs (info->arr_ref_first);
1235 utype = TREE_TYPE (tidx);
1236
1237 /* (end of) block 0 */
1238 gsi = gsi_for_stmt (info->arr_ref_first);
1239 gsi_next (&gsi);
1240
1241 bound = fold_convert_loc (loc, utype, info->range_size);
1242 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1243 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1244 update_stmt (cond_stmt);
1245
1246 /* block 2 */
1247 label2 = gimple_build_label (label_decl2);
1248 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1249 last_assign = gen_def_assigns (&gsi, info);
1250
1251 /* block 1 */
1252 label1 = gimple_build_label (label_decl1);
1253 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1254
1255 /* block F */
1256 gsi = gsi_start_bb (info->final_bb);
1257 label3 = gimple_build_label (label_decl3);
1258 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1259
1260 /* cfg fix */
1261 e02 = split_block (bb0, cond_stmt);
1262 bb2 = e02->dest;
1263
1264 e21 = split_block (bb2, last_assign);
1265 bb1 = e21->dest;
1266 remove_edge (e21);
1267
1268 e1d = split_block (bb1, info->arr_ref_last);
1269 bbd = e1d->dest;
1270 remove_edge (e1d);
1271
1272 /* flags and profiles of the edge for in-range values */
1273 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1274 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1275 e01->count = info->other_count;
1276
1277 /* flags and profiles of the edge taking care of out-of-range values */
1278 e02->flags &= ~EDGE_FALLTHRU;
1279 e02->flags |= EDGE_FALSE_VALUE;
1280 e02->probability = info->default_prob;
1281 e02->count = info->default_count;
1282
1283 bbf = info->final_bb;
1284
1285 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1286 e1f->probability = REG_BR_PROB_BASE;
1287 e1f->count = info->other_count;
1288
1289 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1290 e2f->probability = REG_BR_PROB_BASE;
1291 e2f->count = info->default_count;
1292
1293 /* frequencies of the new BBs */
1294 bb1->frequency = EDGE_FREQUENCY (e01);
1295 bb2->frequency = EDGE_FREQUENCY (e02);
1296 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1297
1298 /* Tidy blocks that have become unreachable. */
1299 prune_bbs (bbd, info->final_bb);
1300
1301 /* Fixup the PHI nodes in bbF. */
1302 fix_phi_nodes (e1f, e2f, bbf, info);
1303
1304 /* Fix the dominator tree, if it is available. */
1305 if (dom_info_available_p (CDI_DOMINATORS))
1306 {
1307 vec<basic_block> bbs_to_fix_dom;
1308
1309 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1310 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1311 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1312 /* If bbD was the immediate dominator ... */
1313 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1314
1315 bbs_to_fix_dom.create (4);
1316 bbs_to_fix_dom.quick_push (bb0);
1317 bbs_to_fix_dom.quick_push (bb1);
1318 bbs_to_fix_dom.quick_push (bb2);
1319 bbs_to_fix_dom.quick_push (bbf);
1320
1321 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1322 bbs_to_fix_dom.release ();
1323 }
1324 }
1325
1326 /* The following function is invoked on every switch statement (the current one
1327 is given in SWTCH) and runs the individual phases of switch conversion on it
1328 one after another until one fails or the conversion is completed.
1329 Returns NULL on success, or a pointer to a string with the reason why the
1330 conversion failed. */
1331
1332 static const char *
1333 process_switch (gswitch *swtch)
1334 {
1335 struct switch_conv_info info;
1336
1337 /* Group case labels so that we get the right results from the heuristics
1338 that decide on the code generation approach for this switch. */
1339 group_case_labels_stmt (swtch);
1340
1341 /* If this switch is now a degenerate case with only a default label,
1342 there is nothing left for us to do. */
1343 if (gimple_switch_num_labels (swtch) < 2)
1344 return "switch is a degenerate case";
1345
1346 collect_switch_conv_info (swtch, &info);
1347
1348 /* No error markers should reach here (they should be filtered out
1349 during gimplification). */
1350 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1351
1352 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1353 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1354
1355 if (info.uniq <= MAX_CASE_BIT_TESTS)
1356 {
1357 if (expand_switch_using_bit_tests_p (info.range_size,
1358 info.uniq, info.count,
1359 optimize_bb_for_speed_p
1360 (gimple_bb (swtch))))
1361 {
1362 if (dump_file)
1363 fputs (" expanding as bit test is preferable\n", dump_file);
1364 emit_case_bit_tests (swtch, info.index_expr, info.range_min,
1365 info.range_size, info.range_max);
1366 loops_state_set (LOOPS_NEED_FIXUP);
1367 return NULL;
1368 }
1369
1370 if (info.uniq <= 2)
1371 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1372 return " expanding as jumps is preferable";
1373 }
1374
1375 /* If there is no common successor, we cannot do the transformation. */
1376 if (! info.final_bb)
1377 return "no common successor to all case label target blocks found";
1378
1379 /* Check the case label values are within reasonable range: */
1380 if (!check_range (&info))
1381 {
1382 gcc_assert (info.reason);
1383 return info.reason;
1384 }
1385
1386 /* For all the cases, see whether they are empty, the assignments they
1387 represent constant and so on... */
1388 if (! check_all_empty_except_final (&info))
1389 {
1390 gcc_assert (info.reason);
1391 return info.reason;
1392 }
1393 if (!check_final_bb (&info))
1394 {
1395 gcc_assert (info.reason);
1396 return info.reason;
1397 }
1398
1399 /* At this point all checks have passed and we can proceed with the
1400 transformation. */
1401
1402 create_temp_arrays (&info);
1403 gather_default_values (gimple_switch_default_label (swtch), &info);
1404 build_constructors (swtch, &info);
1405
1406 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1407 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1408
1409 /* Cleanup: */
1410 free_temp_arrays (&info);
1411 return NULL;
1412 }
1413
1414 /* The main function of the pass scans statements for switches and invokes
1415 process_switch on them. */
1416
1417 namespace {
1418
1419 const pass_data pass_data_convert_switch =
1420 {
1421 GIMPLE_PASS, /* type */
1422 "switchconv", /* name */
1423 OPTGROUP_NONE, /* optinfo_flags */
1424 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1425 ( PROP_cfg | PROP_ssa ), /* properties_required */
1426 0, /* properties_provided */
1427 0, /* properties_destroyed */
1428 0, /* todo_flags_start */
1429 TODO_update_ssa, /* todo_flags_finish */
1430 };
1431
1432 class pass_convert_switch : public gimple_opt_pass
1433 {
1434 public:
1435 pass_convert_switch (gcc::context *ctxt)
1436 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1437 {}
1438
1439 /* opt_pass methods: */
1440 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
1441 virtual unsigned int execute (function *);
1442
1443 }; // class pass_convert_switch
1444
1445 unsigned int
1446 pass_convert_switch::execute (function *fun)
1447 {
1448 basic_block bb;
1449
1450 FOR_EACH_BB_FN (bb, fun)
1451 {
1452 const char *failure_reason;
1453 gimple *stmt = last_stmt (bb);
1454 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1455 {
1456 if (dump_file)
1457 {
1458 expanded_location loc = expand_location (gimple_location (stmt));
1459
1460 fprintf (dump_file, "beginning to process the following "
1461 "SWITCH statement (%s:%d) : ------- \n",
1462 loc.file, loc.line);
1463 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1464 putc ('\n', dump_file);
1465 }
1466
1467 failure_reason = process_switch (as_a <gswitch *> (stmt));
1468 if (! failure_reason)
1469 {
1470 if (dump_file)
1471 {
1472 fputs ("Switch converted\n", dump_file);
1473 fputs ("--------------------------------\n", dump_file);
1474 }
1475
1476 /* Make no effort to update the post-dominator tree. It is actually not
1477 that hard for the transformations we have performed, but it is not
1478 supported by iterate_fix_dominators. */
1479 free_dominance_info (CDI_POST_DOMINATORS);
1480 }
1481 else
1482 {
1483 if (dump_file)
1484 {
1485 fputs ("Bailing out - ", dump_file);
1486 fputs (failure_reason, dump_file);
1487 fputs ("\n--------------------------------\n", dump_file);
1488 }
1489 }
1490 }
1491 }
1492
1493 return 0;
1494 }
1495
1496 } // anon namespace
1497
1498 gimple_opt_pass *
1499 make_pass_convert_switch (gcc::context *ctxt)
1500 {
1501 return new pass_convert_switch (ctxt);
1502 }