]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-tailcall.c
2017-05-23 Jan Hubicka <hubicka@ucw.cz>
[thirdparty/gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "gimple-pretty-print.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-into-ssa.h"
38 #include "tree-dfa.h"
39 #include "except.h"
40 #include "dbgcnt.h"
41 #include "cfgloop.h"
42 #include "common/common-target.h"
43 #include "ipa-utils.h"
44
45 /* The file implements the tail recursion elimination. It is also used to
46 analyze the tail calls in general, passing the results to the rtl level
47 where they are used for sibcall optimization.
48
49 In addition to the standard tail recursion elimination, we handle the most
50 trivial cases of making the call tail recursive by creating accumulators.
51 For example the following function
52
53 int sum (int n)
54 {
55 if (n > 0)
56 return n + sum (n - 1);
57 else
58 return 0;
59 }
60
61 is transformed into
62
63 int sum (int n)
64 {
65 int acc = 0;
66
67 while (n > 0)
68 acc += n--;
69
70 return acc;
71 }
72
73 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
74 when we reach the return x statement, we should return a_acc + x * m_acc
75 instead. They are initially initialized to 0 and 1, respectively,
76 so the semantics of the function is obviously preserved. If we are
77 guaranteed that the value of the accumulator never change, we
78 omit the accumulator.
79
80 There are three cases how the function may exit. The first one is
81 handled in adjust_return_value, the other two in adjust_accumulator_values
82 (the second case is actually a special case of the third one and we
83 present it separately just for clarity):
84
85 1) Just return x, where x is not in any of the remaining special shapes.
86 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
87
88 2) return f (...), where f is the current function, is rewritten in a
89 classical tail-recursion elimination way, into assignment of arguments
90 and jump to the start of the function. Values of the accumulators
91 are unchanged.
92
93 3) return a + m * f(...), where a and m do not depend on call to f.
94 To preserve the semantics described before we want this to be rewritten
95 in such a way that we finally return
96
97 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
98
99 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
100 eliminate the tail call to f. Special cases when the value is just
101 added or just multiplied are obtained by setting a = 0 or m = 1.
102
103 TODO -- it is possible to do similar tricks for other operations. */
104
105 /* A structure that describes the tailcall. */
106
107 struct tailcall
108 {
109 /* The iterator pointing to the call statement. */
110 gimple_stmt_iterator call_gsi;
111
112 /* True if it is a call to the current function. */
113 bool tail_recursion;
114
115 /* The return value of the caller is mult * f + add, where f is the return
116 value of the call. */
117 tree mult, add;
118
119 /* Next tailcall in the chain. */
120 struct tailcall *next;
121 };
122
123 /* The variables holding the value of multiplicative and additive
124 accumulator. */
125 static tree m_acc, a_acc;
126
127 static bool optimize_tail_call (struct tailcall *, bool);
128 static void eliminate_tail_call (struct tailcall *);
129
130 /* Returns false when the function is not suitable for tail call optimization
131 from some reason (e.g. if it takes variable number of arguments). */
132
133 static bool
134 suitable_for_tail_opt_p (void)
135 {
136 if (cfun->stdarg)
137 return false;
138
139 return true;
140 }
141 /* Returns false when the function is not suitable for tail call optimization
142 for some reason (e.g. if it takes variable number of arguments).
143 This test must pass in addition to suitable_for_tail_opt_p in order to make
144 tail call discovery happen. */
145
146 static bool
147 suitable_for_tail_call_opt_p (void)
148 {
149 tree param;
150
151 /* alloca (until we have stack slot life analysis) inhibits
152 sibling call optimizations, but not tail recursion. */
153 if (cfun->calls_alloca)
154 return false;
155
156 /* If we are using sjlj exceptions, we may need to add a call to
157 _Unwind_SjLj_Unregister at exit of the function. Which means
158 that we cannot do any sibcall transformations. */
159 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
160 && current_function_has_exception_handlers ())
161 return false;
162
163 /* Any function that calls setjmp might have longjmp called from
164 any called function. ??? We really should represent this
165 properly in the CFG so that this needn't be special cased. */
166 if (cfun->calls_setjmp)
167 return false;
168
169 /* ??? It is OK if the argument of a function is taken in some cases,
170 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
171 for (param = DECL_ARGUMENTS (current_function_decl);
172 param;
173 param = DECL_CHAIN (param))
174 if (TREE_ADDRESSABLE (param))
175 return false;
176
177 return true;
178 }
179
180 /* Checks whether the expression EXPR in stmt AT is independent of the
181 statement pointed to by GSI (in a sense that we already know EXPR's value
182 at GSI). We use the fact that we are only called from the chain of
183 basic blocks that have only single successor. Returns the expression
184 containing the value of EXPR at GSI. */
185
186 static tree
187 independent_of_stmt_p (tree expr, gimple *at, gimple_stmt_iterator gsi,
188 bitmap to_move)
189 {
190 basic_block bb, call_bb, at_bb;
191 edge e;
192 edge_iterator ei;
193
194 if (is_gimple_min_invariant (expr))
195 return expr;
196
197 if (TREE_CODE (expr) != SSA_NAME)
198 return NULL_TREE;
199
200 if (bitmap_bit_p (to_move, SSA_NAME_VERSION (expr)))
201 return expr;
202
203 /* Mark the blocks in the chain leading to the end. */
204 at_bb = gimple_bb (at);
205 call_bb = gimple_bb (gsi_stmt (gsi));
206 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
207 bb->aux = &bb->aux;
208 bb->aux = &bb->aux;
209
210 while (1)
211 {
212 at = SSA_NAME_DEF_STMT (expr);
213 bb = gimple_bb (at);
214
215 /* The default definition or defined before the chain. */
216 if (!bb || !bb->aux)
217 break;
218
219 if (bb == call_bb)
220 {
221 for (; !gsi_end_p (gsi); gsi_next (&gsi))
222 if (gsi_stmt (gsi) == at)
223 break;
224
225 if (!gsi_end_p (gsi))
226 expr = NULL_TREE;
227 break;
228 }
229
230 if (gimple_code (at) != GIMPLE_PHI)
231 {
232 expr = NULL_TREE;
233 break;
234 }
235
236 FOR_EACH_EDGE (e, ei, bb->preds)
237 if (e->src->aux)
238 break;
239 gcc_assert (e);
240
241 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
242 if (TREE_CODE (expr) != SSA_NAME)
243 {
244 /* The value is a constant. */
245 break;
246 }
247 }
248
249 /* Unmark the blocks. */
250 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
251 bb->aux = NULL;
252 bb->aux = NULL;
253
254 return expr;
255 }
256
257 enum par { FAIL, OK, TRY_MOVE };
258
259 /* Simulates the effect of an assignment STMT on the return value of the tail
260 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
261 additive factor for the real return value. */
262
263 static par
264 process_assignment (gassign *stmt,
265 gimple_stmt_iterator call, tree *m,
266 tree *a, tree *ass_var, bitmap to_move)
267 {
268 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
269 tree dest = gimple_assign_lhs (stmt);
270 enum tree_code code = gimple_assign_rhs_code (stmt);
271 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
272 tree src_var = gimple_assign_rhs1 (stmt);
273
274 /* See if this is a simple copy operation of an SSA name to the function
275 result. In that case we may have a simple tail call. Ignore type
276 conversions that can never produce extra code between the function
277 call and the function return. */
278 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
279 && src_var == *ass_var)
280 {
281 /* Reject a tailcall if the type conversion might need
282 additional code. */
283 if (gimple_assign_cast_p (stmt))
284 {
285 if (TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
286 return FAIL;
287
288 /* Even if the type modes are the same, if the precision of the
289 type is smaller than mode's precision,
290 reduce_to_bit_field_precision would generate additional code. */
291 if (INTEGRAL_TYPE_P (TREE_TYPE (dest))
292 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (dest)))
293 > TYPE_PRECISION (TREE_TYPE (dest))))
294 return FAIL;
295 }
296
297 *ass_var = dest;
298 return OK;
299 }
300
301 switch (rhs_class)
302 {
303 case GIMPLE_BINARY_RHS:
304 op1 = gimple_assign_rhs2 (stmt);
305
306 /* Fall through. */
307
308 case GIMPLE_UNARY_RHS:
309 op0 = gimple_assign_rhs1 (stmt);
310 break;
311
312 default:
313 return FAIL;
314 }
315
316 /* Accumulator optimizations will reverse the order of operations.
317 We can only do that for floating-point types if we're assuming
318 that addition and multiplication are associative. */
319 if (!flag_associative_math)
320 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
321 return FAIL;
322
323 if (rhs_class == GIMPLE_UNARY_RHS
324 && op0 == *ass_var)
325 ;
326 else if (op0 == *ass_var
327 && (non_ass_var = independent_of_stmt_p (op1, stmt, call,
328 to_move)))
329 ;
330 else if (op1 == *ass_var
331 && (non_ass_var = independent_of_stmt_p (op0, stmt, call,
332 to_move)))
333 ;
334 else
335 return TRY_MOVE;
336
337 switch (code)
338 {
339 case PLUS_EXPR:
340 *a = non_ass_var;
341 *ass_var = dest;
342 return OK;
343
344 case POINTER_PLUS_EXPR:
345 if (op0 != *ass_var)
346 return FAIL;
347 *a = non_ass_var;
348 *ass_var = dest;
349 return OK;
350
351 case MULT_EXPR:
352 *m = non_ass_var;
353 *ass_var = dest;
354 return OK;
355
356 case NEGATE_EXPR:
357 *m = build_minus_one_cst (TREE_TYPE (op0));
358 *ass_var = dest;
359 return OK;
360
361 case MINUS_EXPR:
362 if (*ass_var == op0)
363 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
364 else
365 {
366 *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
367 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
368 }
369
370 *ass_var = dest;
371 return OK;
372
373 default:
374 return FAIL;
375 }
376 }
377
378 /* Propagate VAR through phis on edge E. */
379
380 static tree
381 propagate_through_phis (tree var, edge e)
382 {
383 basic_block dest = e->dest;
384 gphi_iterator gsi;
385
386 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
387 {
388 gphi *phi = gsi.phi ();
389 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
390 return PHI_RESULT (phi);
391 }
392 return var;
393 }
394
395 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
396 added to the start of RET. */
397
398 static void
399 find_tail_calls (basic_block bb, struct tailcall **ret)
400 {
401 tree ass_var = NULL_TREE, ret_var, func, param;
402 gimple *stmt;
403 gcall *call = NULL;
404 gimple_stmt_iterator gsi, agsi;
405 bool tail_recursion;
406 struct tailcall *nw;
407 edge e;
408 tree m, a;
409 basic_block abb;
410 size_t idx;
411 tree var;
412
413 if (!single_succ_p (bb))
414 return;
415
416 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
417 {
418 stmt = gsi_stmt (gsi);
419
420 /* Ignore labels, returns, nops, clobbers and debug stmts. */
421 if (gimple_code (stmt) == GIMPLE_LABEL
422 || gimple_code (stmt) == GIMPLE_RETURN
423 || gimple_code (stmt) == GIMPLE_NOP
424 || gimple_clobber_p (stmt)
425 || is_gimple_debug (stmt))
426 continue;
427
428 /* Check for a call. */
429 if (is_gimple_call (stmt))
430 {
431 call = as_a <gcall *> (stmt);
432 ass_var = gimple_call_lhs (call);
433 break;
434 }
435
436 /* Allow simple copies between local variables, even if they're
437 aggregates. */
438 if (is_gimple_assign (stmt)
439 && auto_var_in_fn_p (gimple_assign_lhs (stmt), cfun->decl)
440 && auto_var_in_fn_p (gimple_assign_rhs1 (stmt), cfun->decl))
441 continue;
442
443 /* If the statement references memory or volatile operands, fail. */
444 if (gimple_references_memory_p (stmt)
445 || gimple_has_volatile_ops (stmt))
446 return;
447 }
448
449 if (gsi_end_p (gsi))
450 {
451 edge_iterator ei;
452 /* Recurse to the predecessors. */
453 FOR_EACH_EDGE (e, ei, bb->preds)
454 find_tail_calls (e->src, ret);
455
456 return;
457 }
458
459 /* If the LHS of our call is not just a simple register or local
460 variable, we can't transform this into a tail or sibling call.
461 This situation happens, in (e.g.) "*p = foo()" where foo returns a
462 struct. In this case we won't have a temporary here, but we need
463 to carry out the side effect anyway, so tailcall is impossible.
464
465 ??? In some situations (when the struct is returned in memory via
466 invisible argument) we could deal with this, e.g. by passing 'p'
467 itself as that argument to foo, but it's too early to do this here,
468 and expand_call() will not handle it anyway. If it ever can, then
469 we need to revisit this here, to allow that situation. */
470 if (ass_var
471 && !is_gimple_reg (ass_var)
472 && !auto_var_in_fn_p (ass_var, cfun->decl))
473 return;
474
475 /* We found the call, check whether it is suitable. */
476 tail_recursion = false;
477 func = gimple_call_fndecl (call);
478 if (func
479 && !DECL_BUILT_IN (func)
480 && recursive_call_p (current_function_decl, func))
481 {
482 tree arg;
483
484 for (param = DECL_ARGUMENTS (func), idx = 0;
485 param && idx < gimple_call_num_args (call);
486 param = DECL_CHAIN (param), idx ++)
487 {
488 arg = gimple_call_arg (call, idx);
489 if (param != arg)
490 {
491 /* Make sure there are no problems with copying. The parameter
492 have a copyable type and the two arguments must have reasonably
493 equivalent types. The latter requirement could be relaxed if
494 we emitted a suitable type conversion statement. */
495 if (!is_gimple_reg_type (TREE_TYPE (param))
496 || !useless_type_conversion_p (TREE_TYPE (param),
497 TREE_TYPE (arg)))
498 break;
499
500 /* The parameter should be a real operand, so that phi node
501 created for it at the start of the function has the meaning
502 of copying the value. This test implies is_gimple_reg_type
503 from the previous condition, however this one could be
504 relaxed by being more careful with copying the new value
505 of the parameter (emitting appropriate GIMPLE_ASSIGN and
506 updating the virtual operands). */
507 if (!is_gimple_reg (param))
508 break;
509 }
510 }
511 if (idx == gimple_call_num_args (call) && !param)
512 tail_recursion = true;
513 }
514
515 /* Make sure the tail invocation of this function does not indirectly
516 refer to local variables. (Passing variables directly by value
517 is OK.) */
518 FOR_EACH_LOCAL_DECL (cfun, idx, var)
519 {
520 if (TREE_CODE (var) != PARM_DECL
521 && auto_var_in_fn_p (var, cfun->decl)
522 && may_be_aliased (var)
523 && (ref_maybe_used_by_stmt_p (call, var)
524 || call_may_clobber_ref_p (call, var)))
525 return;
526 }
527
528 /* Now check the statements after the call. None of them has virtual
529 operands, so they may only depend on the call through its return
530 value. The return value should also be dependent on each of them,
531 since we are running after dce. */
532 m = NULL_TREE;
533 a = NULL_TREE;
534 auto_bitmap to_move_defs;
535 auto_vec<gimple *> to_move_stmts;
536
537 abb = bb;
538 agsi = gsi;
539 while (1)
540 {
541 tree tmp_a = NULL_TREE;
542 tree tmp_m = NULL_TREE;
543 gsi_next (&agsi);
544
545 while (gsi_end_p (agsi))
546 {
547 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
548 abb = single_succ (abb);
549 agsi = gsi_start_bb (abb);
550 }
551
552 stmt = gsi_stmt (agsi);
553 if (gimple_code (stmt) == GIMPLE_RETURN)
554 break;
555
556 if (gimple_code (stmt) == GIMPLE_LABEL
557 || gimple_code (stmt) == GIMPLE_NOP
558 || gimple_clobber_p (stmt)
559 || is_gimple_debug (stmt))
560 continue;
561
562 if (gimple_code (stmt) != GIMPLE_ASSIGN)
563 return;
564
565 /* This is a gimple assign. */
566 par ret = process_assignment (as_a <gassign *> (stmt), gsi,
567 &tmp_m, &tmp_a, &ass_var, to_move_defs);
568 if (ret == FAIL)
569 return;
570 else if (ret == TRY_MOVE)
571 {
572 if (! tail_recursion)
573 return;
574 for (unsigned opno = 1; opno < gimple_num_ops (stmt); ++opno)
575 {
576 tree op = gimple_op (stmt, opno);
577 if (independent_of_stmt_p (op, stmt, gsi, to_move_defs) != op)
578 return;
579 }
580 bitmap_set_bit (to_move_defs,
581 SSA_NAME_VERSION (gimple_assign_lhs (stmt)));
582 to_move_stmts.safe_push (stmt);
583 continue;
584 }
585
586 if (tmp_a)
587 {
588 tree type = TREE_TYPE (tmp_a);
589 if (a)
590 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
591 else
592 a = tmp_a;
593 }
594 if (tmp_m)
595 {
596 tree type = TREE_TYPE (tmp_m);
597 if (m)
598 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
599 else
600 m = tmp_m;
601
602 if (a)
603 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
604 }
605 }
606
607 /* See if this is a tail call we can handle. */
608 ret_var = gimple_return_retval (as_a <greturn *> (stmt));
609
610 /* We may proceed if there either is no return value, or the return value
611 is identical to the call's return. */
612 if (ret_var
613 && (ret_var != ass_var))
614 return;
615
616 /* If this is not a tail recursive call, we cannot handle addends or
617 multiplicands. */
618 if (!tail_recursion && (m || a))
619 return;
620
621 /* For pointers only allow additions. */
622 if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
623 return;
624
625 /* Move queued defs. */
626 if (tail_recursion)
627 {
628 unsigned i;
629 FOR_EACH_VEC_ELT (to_move_stmts, i, stmt)
630 {
631 gimple_stmt_iterator mgsi = gsi_for_stmt (stmt);
632 gsi_move_before (&mgsi, &gsi);
633 }
634 }
635
636 nw = XNEW (struct tailcall);
637
638 nw->call_gsi = gsi;
639
640 nw->tail_recursion = tail_recursion;
641
642 nw->mult = m;
643 nw->add = a;
644
645 nw->next = *ret;
646 *ret = nw;
647 }
648
649 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
650
651 static void
652 add_successor_phi_arg (edge e, tree var, tree phi_arg)
653 {
654 gphi_iterator gsi;
655
656 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
657 if (PHI_RESULT (gsi.phi ()) == var)
658 break;
659
660 gcc_assert (!gsi_end_p (gsi));
661 add_phi_arg (gsi.phi (), phi_arg, e, UNKNOWN_LOCATION);
662 }
663
664 /* Creates a GIMPLE statement which computes the operation specified by
665 CODE, ACC and OP1 to a new variable with name LABEL and inserts the
666 statement in the position specified by GSI. Returns the
667 tree node of the statement's result. */
668
669 static tree
670 adjust_return_value_with_ops (enum tree_code code, const char *label,
671 tree acc, tree op1, gimple_stmt_iterator gsi)
672 {
673
674 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
675 tree result = make_temp_ssa_name (ret_type, NULL, label);
676 gassign *stmt;
677
678 if (POINTER_TYPE_P (ret_type))
679 {
680 gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
681 code = POINTER_PLUS_EXPR;
682 }
683 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
684 && code != POINTER_PLUS_EXPR)
685 stmt = gimple_build_assign (result, code, acc, op1);
686 else
687 {
688 tree tem;
689 if (code == POINTER_PLUS_EXPR)
690 tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
691 else
692 tem = fold_build2 (code, TREE_TYPE (op1),
693 fold_convert (TREE_TYPE (op1), acc), op1);
694 tree rhs = fold_convert (ret_type, tem);
695 rhs = force_gimple_operand_gsi (&gsi, rhs,
696 false, NULL, true, GSI_SAME_STMT);
697 stmt = gimple_build_assign (result, rhs);
698 }
699
700 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
701 return result;
702 }
703
704 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
705 the computation specified by CODE and OP1 and insert the statement
706 at the position specified by GSI as a new statement. Returns new SSA name
707 of updated accumulator. */
708
709 static tree
710 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
711 gimple_stmt_iterator gsi)
712 {
713 gassign *stmt;
714 tree var = copy_ssa_name (acc);
715 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
716 stmt = gimple_build_assign (var, code, acc, op1);
717 else
718 {
719 tree rhs = fold_convert (TREE_TYPE (acc),
720 fold_build2 (code,
721 TREE_TYPE (op1),
722 fold_convert (TREE_TYPE (op1), acc),
723 op1));
724 rhs = force_gimple_operand_gsi (&gsi, rhs,
725 false, NULL, false, GSI_CONTINUE_LINKING);
726 stmt = gimple_build_assign (var, rhs);
727 }
728 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
729 return var;
730 }
731
732 /* Adjust the accumulator values according to A and M after GSI, and update
733 the phi nodes on edge BACK. */
734
735 static void
736 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
737 {
738 tree var, a_acc_arg, m_acc_arg;
739
740 if (m)
741 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
742 if (a)
743 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
744
745 a_acc_arg = a_acc;
746 m_acc_arg = m_acc;
747 if (a)
748 {
749 if (m_acc)
750 {
751 if (integer_onep (a))
752 var = m_acc;
753 else
754 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
755 a, gsi);
756 }
757 else
758 var = a;
759
760 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
761 }
762
763 if (m)
764 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
765
766 if (a_acc)
767 add_successor_phi_arg (back, a_acc, a_acc_arg);
768
769 if (m_acc)
770 add_successor_phi_arg (back, m_acc, m_acc_arg);
771 }
772
773 /* Adjust value of the return at the end of BB according to M and A
774 accumulators. */
775
776 static void
777 adjust_return_value (basic_block bb, tree m, tree a)
778 {
779 tree retval;
780 greturn *ret_stmt = as_a <greturn *> (gimple_seq_last_stmt (bb_seq (bb)));
781 gimple_stmt_iterator gsi = gsi_last_bb (bb);
782
783 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
784
785 retval = gimple_return_retval (ret_stmt);
786 if (!retval || retval == error_mark_node)
787 return;
788
789 if (m)
790 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
791 gsi);
792 if (a)
793 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
794 gsi);
795 gimple_return_set_retval (ret_stmt, retval);
796 update_stmt (ret_stmt);
797 }
798
799 /* Subtract COUNT and FREQUENCY from the basic block and it's
800 outgoing edge. */
801 static void
802 decrease_profile (basic_block bb, profile_count count, int frequency)
803 {
804 edge e;
805 bb->count = bb->count - count;
806 bb->frequency -= frequency;
807 if (bb->frequency < 0)
808 bb->frequency = 0;
809 if (!single_succ_p (bb))
810 {
811 gcc_assert (!EDGE_COUNT (bb->succs));
812 return;
813 }
814 e = single_succ_edge (bb);
815 e->count -= count;
816 }
817
818 /* Returns true if argument PARAM of the tail recursive call needs to be copied
819 when the call is eliminated. */
820
821 static bool
822 arg_needs_copy_p (tree param)
823 {
824 tree def;
825
826 if (!is_gimple_reg (param))
827 return false;
828
829 /* Parameters that are only defined but never used need not be copied. */
830 def = ssa_default_def (cfun, param);
831 if (!def)
832 return false;
833
834 return true;
835 }
836
837 /* Eliminates tail call described by T. TMP_VARS is a list of
838 temporary variables used to copy the function arguments. */
839
840 static void
841 eliminate_tail_call (struct tailcall *t)
842 {
843 tree param, rslt;
844 gimple *stmt, *call;
845 tree arg;
846 size_t idx;
847 basic_block bb, first;
848 edge e;
849 gphi *phi;
850 gphi_iterator gpi;
851 gimple_stmt_iterator gsi;
852 gimple *orig_stmt;
853
854 stmt = orig_stmt = gsi_stmt (t->call_gsi);
855 bb = gsi_bb (t->call_gsi);
856
857 if (dump_file && (dump_flags & TDF_DETAILS))
858 {
859 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
860 bb->index);
861 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
862 fprintf (dump_file, "\n");
863 }
864
865 gcc_assert (is_gimple_call (stmt));
866
867 first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
868
869 /* Remove the code after call_gsi that will become unreachable. The
870 possibly unreachable code in other blocks is removed later in
871 cfg cleanup. */
872 gsi = t->call_gsi;
873 gimple_stmt_iterator gsi2 = gsi_last_bb (gimple_bb (gsi_stmt (gsi)));
874 while (gsi_stmt (gsi2) != gsi_stmt (gsi))
875 {
876 gimple *t = gsi_stmt (gsi2);
877 /* Do not remove the return statement, so that redirect_edge_and_branch
878 sees how the block ends. */
879 if (gimple_code (t) != GIMPLE_RETURN)
880 {
881 gimple_stmt_iterator gsi3 = gsi2;
882 gsi_prev (&gsi2);
883 gsi_remove (&gsi3, true);
884 release_defs (t);
885 }
886 else
887 gsi_prev (&gsi2);
888 }
889
890 /* Number of executions of function has reduced by the tailcall. */
891 e = single_succ_edge (gsi_bb (t->call_gsi));
892 decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), e->count, EDGE_FREQUENCY (e));
893 decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), e->count,
894 EDGE_FREQUENCY (e));
895 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
896 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
897
898 /* Replace the call by a jump to the start of function. */
899 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
900 first);
901 gcc_assert (e);
902 PENDING_STMT (e) = NULL;
903
904 /* Add phi node entries for arguments. The ordering of the phi nodes should
905 be the same as the ordering of the arguments. */
906 for (param = DECL_ARGUMENTS (current_function_decl),
907 idx = 0, gpi = gsi_start_phis (first);
908 param;
909 param = DECL_CHAIN (param), idx++)
910 {
911 if (!arg_needs_copy_p (param))
912 continue;
913
914 arg = gimple_call_arg (stmt, idx);
915 phi = gpi.phi ();
916 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
917
918 add_phi_arg (phi, arg, e, gimple_location (stmt));
919 gsi_next (&gpi);
920 }
921
922 /* Update the values of accumulators. */
923 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
924
925 call = gsi_stmt (t->call_gsi);
926 rslt = gimple_call_lhs (call);
927 if (rslt != NULL_TREE && TREE_CODE (rslt) == SSA_NAME)
928 {
929 /* Result of the call will no longer be defined. So adjust the
930 SSA_NAME_DEF_STMT accordingly. */
931 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
932 }
933
934 gsi_remove (&t->call_gsi, true);
935 release_defs (call);
936 }
937
938 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
939 mark the tailcalls for the sibcall optimization. */
940
941 static bool
942 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
943 {
944 if (t->tail_recursion)
945 {
946 eliminate_tail_call (t);
947 return true;
948 }
949
950 if (opt_tailcalls)
951 {
952 gcall *stmt = as_a <gcall *> (gsi_stmt (t->call_gsi));
953
954 gimple_call_set_tail (stmt, true);
955 cfun->tail_call_marked = true;
956 if (dump_file && (dump_flags & TDF_DETAILS))
957 {
958 fprintf (dump_file, "Found tail call ");
959 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
960 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
961 }
962 }
963
964 return false;
965 }
966
967 /* Creates a tail-call accumulator of the same type as the return type of the
968 current function. LABEL is the name used to creating the temporary
969 variable for the accumulator. The accumulator will be inserted in the
970 phis of a basic block BB with single predecessor with an initial value
971 INIT converted to the current function return type. */
972
973 static tree
974 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
975 {
976 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
977 if (POINTER_TYPE_P (ret_type))
978 ret_type = sizetype;
979
980 tree tmp = make_temp_ssa_name (ret_type, NULL, label);
981 gphi *phi;
982
983 phi = create_phi_node (tmp, bb);
984 /* RET_TYPE can be a float when -ffast-maths is enabled. */
985 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
986 UNKNOWN_LOCATION);
987 return PHI_RESULT (phi);
988 }
989
990 /* Optimizes tail calls in the function, turning the tail recursion
991 into iteration. */
992
993 static unsigned int
994 tree_optimize_tail_calls_1 (bool opt_tailcalls)
995 {
996 edge e;
997 bool phis_constructed = false;
998 struct tailcall *tailcalls = NULL, *act, *next;
999 bool changed = false;
1000 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1001 tree param;
1002 gimple *stmt;
1003 edge_iterator ei;
1004
1005 if (!suitable_for_tail_opt_p ())
1006 return 0;
1007 if (opt_tailcalls)
1008 opt_tailcalls = suitable_for_tail_call_opt_p ();
1009
1010 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1011 {
1012 /* Only traverse the normal exits, i.e. those that end with return
1013 statement. */
1014 stmt = last_stmt (e->src);
1015
1016 if (stmt
1017 && gimple_code (stmt) == GIMPLE_RETURN)
1018 find_tail_calls (e->src, &tailcalls);
1019 }
1020
1021 /* Construct the phi nodes and accumulators if necessary. */
1022 a_acc = m_acc = NULL_TREE;
1023 for (act = tailcalls; act; act = act->next)
1024 {
1025 if (!act->tail_recursion)
1026 continue;
1027
1028 if (!phis_constructed)
1029 {
1030 /* Ensure that there is only one predecessor of the block
1031 or if there are existing degenerate PHI nodes. */
1032 if (!single_pred_p (first)
1033 || !gimple_seq_empty_p (phi_nodes (first)))
1034 first =
1035 split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1036
1037 /* Copy the args if needed. */
1038 for (param = DECL_ARGUMENTS (current_function_decl);
1039 param;
1040 param = DECL_CHAIN (param))
1041 if (arg_needs_copy_p (param))
1042 {
1043 tree name = ssa_default_def (cfun, param);
1044 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
1045 gphi *phi;
1046
1047 set_ssa_default_def (cfun, param, new_name);
1048 phi = create_phi_node (name, first);
1049 add_phi_arg (phi, new_name, single_pred_edge (first),
1050 EXPR_LOCATION (param));
1051 }
1052 phis_constructed = true;
1053 }
1054
1055 if (act->add && !a_acc)
1056 a_acc = create_tailcall_accumulator ("add_acc", first,
1057 integer_zero_node);
1058
1059 if (act->mult && !m_acc)
1060 m_acc = create_tailcall_accumulator ("mult_acc", first,
1061 integer_one_node);
1062 }
1063
1064 if (a_acc || m_acc)
1065 {
1066 /* When the tail call elimination using accumulators is performed,
1067 statements adding the accumulated value are inserted at all exits.
1068 This turns all other tail calls to non-tail ones. */
1069 opt_tailcalls = false;
1070 }
1071
1072 for (; tailcalls; tailcalls = next)
1073 {
1074 next = tailcalls->next;
1075 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1076 free (tailcalls);
1077 }
1078
1079 if (a_acc || m_acc)
1080 {
1081 /* Modify the remaining return statements. */
1082 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1083 {
1084 stmt = last_stmt (e->src);
1085
1086 if (stmt
1087 && gimple_code (stmt) == GIMPLE_RETURN)
1088 adjust_return_value (e->src, m_acc, a_acc);
1089 }
1090 }
1091
1092 if (changed)
1093 {
1094 /* We may have created new loops. Make them magically appear. */
1095 loops_state_set (LOOPS_NEED_FIXUP);
1096 free_dominance_info (CDI_DOMINATORS);
1097 }
1098
1099 /* Add phi nodes for the virtual operands defined in the function to the
1100 header of the loop created by tail recursion elimination. Do so
1101 by triggering the SSA renamer. */
1102 if (phis_constructed)
1103 mark_virtual_operands_for_renaming (cfun);
1104
1105 if (changed)
1106 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1107 return 0;
1108 }
1109
1110 static bool
1111 gate_tail_calls (void)
1112 {
1113 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1114 }
1115
1116 static unsigned int
1117 execute_tail_calls (void)
1118 {
1119 return tree_optimize_tail_calls_1 (true);
1120 }
1121
1122 namespace {
1123
1124 const pass_data pass_data_tail_recursion =
1125 {
1126 GIMPLE_PASS, /* type */
1127 "tailr", /* name */
1128 OPTGROUP_NONE, /* optinfo_flags */
1129 TV_NONE, /* tv_id */
1130 ( PROP_cfg | PROP_ssa ), /* properties_required */
1131 0, /* properties_provided */
1132 0, /* properties_destroyed */
1133 0, /* todo_flags_start */
1134 0, /* todo_flags_finish */
1135 };
1136
1137 class pass_tail_recursion : public gimple_opt_pass
1138 {
1139 public:
1140 pass_tail_recursion (gcc::context *ctxt)
1141 : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1142 {}
1143
1144 /* opt_pass methods: */
1145 opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
1146 virtual bool gate (function *) { return gate_tail_calls (); }
1147 virtual unsigned int execute (function *)
1148 {
1149 return tree_optimize_tail_calls_1 (false);
1150 }
1151
1152 }; // class pass_tail_recursion
1153
1154 } // anon namespace
1155
1156 gimple_opt_pass *
1157 make_pass_tail_recursion (gcc::context *ctxt)
1158 {
1159 return new pass_tail_recursion (ctxt);
1160 }
1161
1162 namespace {
1163
1164 const pass_data pass_data_tail_calls =
1165 {
1166 GIMPLE_PASS, /* type */
1167 "tailc", /* name */
1168 OPTGROUP_NONE, /* optinfo_flags */
1169 TV_NONE, /* tv_id */
1170 ( PROP_cfg | PROP_ssa ), /* properties_required */
1171 0, /* properties_provided */
1172 0, /* properties_destroyed */
1173 0, /* todo_flags_start */
1174 0, /* todo_flags_finish */
1175 };
1176
1177 class pass_tail_calls : public gimple_opt_pass
1178 {
1179 public:
1180 pass_tail_calls (gcc::context *ctxt)
1181 : gimple_opt_pass (pass_data_tail_calls, ctxt)
1182 {}
1183
1184 /* opt_pass methods: */
1185 virtual bool gate (function *) { return gate_tail_calls (); }
1186 virtual unsigned int execute (function *) { return execute_tail_calls (); }
1187
1188 }; // class pass_tail_calls
1189
1190 } // anon namespace
1191
1192 gimple_opt_pass *
1193 make_pass_tail_calls (gcc::context *ctxt)
1194 {
1195 return new pass_tail_calls (ctxt);
1196 }