]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-tailcall.c
gimple.h (gimple_phi_set_result): Adjust SSA_NAME_DEF_STMT.
[thirdparty/gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "tree-flow.h"
30 #include "gimple-pretty-print.h"
31 #include "except.h"
32 #include "tree-pass.h"
33 #include "flags.h"
34 #include "langhooks.h"
35 #include "dbgcnt.h"
36 #include "target.h"
37 #include "common/common-target.h"
38
39 /* The file implements the tail recursion elimination. It is also used to
40 analyze the tail calls in general, passing the results to the rtl level
41 where they are used for sibcall optimization.
42
43 In addition to the standard tail recursion elimination, we handle the most
44 trivial cases of making the call tail recursive by creating accumulators.
45 For example the following function
46
47 int sum (int n)
48 {
49 if (n > 0)
50 return n + sum (n - 1);
51 else
52 return 0;
53 }
54
55 is transformed into
56
57 int sum (int n)
58 {
59 int acc = 0;
60
61 while (n > 0)
62 acc += n--;
63
64 return acc;
65 }
66
67 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
68 when we reach the return x statement, we should return a_acc + x * m_acc
69 instead. They are initially initialized to 0 and 1, respectively,
70 so the semantics of the function is obviously preserved. If we are
71 guaranteed that the value of the accumulator never change, we
72 omit the accumulator.
73
74 There are three cases how the function may exit. The first one is
75 handled in adjust_return_value, the other two in adjust_accumulator_values
76 (the second case is actually a special case of the third one and we
77 present it separately just for clarity):
78
79 1) Just return x, where x is not in any of the remaining special shapes.
80 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
81
82 2) return f (...), where f is the current function, is rewritten in a
83 classical tail-recursion elimination way, into assignment of arguments
84 and jump to the start of the function. Values of the accumulators
85 are unchanged.
86
87 3) return a + m * f(...), where a and m do not depend on call to f.
88 To preserve the semantics described before we want this to be rewritten
89 in such a way that we finally return
90
91 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
92
93 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
94 eliminate the tail call to f. Special cases when the value is just
95 added or just multiplied are obtained by setting a = 0 or m = 1.
96
97 TODO -- it is possible to do similar tricks for other operations. */
98
99 /* A structure that describes the tailcall. */
100
101 struct tailcall
102 {
103 /* The iterator pointing to the call statement. */
104 gimple_stmt_iterator call_gsi;
105
106 /* True if it is a call to the current function. */
107 bool tail_recursion;
108
109 /* The return value of the caller is mult * f + add, where f is the return
110 value of the call. */
111 tree mult, add;
112
113 /* Next tailcall in the chain. */
114 struct tailcall *next;
115 };
116
117 /* The variables holding the value of multiplicative and additive
118 accumulator. */
119 static tree m_acc, a_acc;
120
121 static bool suitable_for_tail_opt_p (void);
122 static bool optimize_tail_call (struct tailcall *, bool);
123 static void eliminate_tail_call (struct tailcall *);
124 static void find_tail_calls (basic_block, struct tailcall **);
125
126 /* Returns false when the function is not suitable for tail call optimization
127 from some reason (e.g. if it takes variable number of arguments). */
128
129 static bool
130 suitable_for_tail_opt_p (void)
131 {
132 if (cfun->stdarg)
133 return false;
134
135 return true;
136 }
137 /* Returns false when the function is not suitable for tail call optimization
138 from some reason (e.g. if it takes variable number of arguments).
139 This test must pass in addition to suitable_for_tail_opt_p in order to make
140 tail call discovery happen. */
141
142 static bool
143 suitable_for_tail_call_opt_p (void)
144 {
145 tree param;
146
147 /* alloca (until we have stack slot life analysis) inhibits
148 sibling call optimizations, but not tail recursion. */
149 if (cfun->calls_alloca)
150 return false;
151
152 /* If we are using sjlj exceptions, we may need to add a call to
153 _Unwind_SjLj_Unregister at exit of the function. Which means
154 that we cannot do any sibcall transformations. */
155 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
156 && current_function_has_exception_handlers ())
157 return false;
158
159 /* Any function that calls setjmp might have longjmp called from
160 any called function. ??? We really should represent this
161 properly in the CFG so that this needn't be special cased. */
162 if (cfun->calls_setjmp)
163 return false;
164
165 /* ??? It is OK if the argument of a function is taken in some cases,
166 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
167 for (param = DECL_ARGUMENTS (current_function_decl);
168 param;
169 param = DECL_CHAIN (param))
170 if (TREE_ADDRESSABLE (param))
171 return false;
172
173 return true;
174 }
175
176 /* Checks whether the expression EXPR in stmt AT is independent of the
177 statement pointed to by GSI (in a sense that we already know EXPR's value
178 at GSI). We use the fact that we are only called from the chain of
179 basic blocks that have only single successor. Returns the expression
180 containing the value of EXPR at GSI. */
181
182 static tree
183 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
184 {
185 basic_block bb, call_bb, at_bb;
186 edge e;
187 edge_iterator ei;
188
189 if (is_gimple_min_invariant (expr))
190 return expr;
191
192 if (TREE_CODE (expr) != SSA_NAME)
193 return NULL_TREE;
194
195 /* Mark the blocks in the chain leading to the end. */
196 at_bb = gimple_bb (at);
197 call_bb = gimple_bb (gsi_stmt (gsi));
198 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
199 bb->aux = &bb->aux;
200 bb->aux = &bb->aux;
201
202 while (1)
203 {
204 at = SSA_NAME_DEF_STMT (expr);
205 bb = gimple_bb (at);
206
207 /* The default definition or defined before the chain. */
208 if (!bb || !bb->aux)
209 break;
210
211 if (bb == call_bb)
212 {
213 for (; !gsi_end_p (gsi); gsi_next (&gsi))
214 if (gsi_stmt (gsi) == at)
215 break;
216
217 if (!gsi_end_p (gsi))
218 expr = NULL_TREE;
219 break;
220 }
221
222 if (gimple_code (at) != GIMPLE_PHI)
223 {
224 expr = NULL_TREE;
225 break;
226 }
227
228 FOR_EACH_EDGE (e, ei, bb->preds)
229 if (e->src->aux)
230 break;
231 gcc_assert (e);
232
233 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
234 if (TREE_CODE (expr) != SSA_NAME)
235 {
236 /* The value is a constant. */
237 break;
238 }
239 }
240
241 /* Unmark the blocks. */
242 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
243 bb->aux = NULL;
244 bb->aux = NULL;
245
246 return expr;
247 }
248
249 /* Simulates the effect of an assignment STMT on the return value of the tail
250 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
251 additive factor for the real return value. */
252
253 static bool
254 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
255 tree *a, tree *ass_var)
256 {
257 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
258 tree dest = gimple_assign_lhs (stmt);
259 enum tree_code code = gimple_assign_rhs_code (stmt);
260 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
261 tree src_var = gimple_assign_rhs1 (stmt);
262
263 /* See if this is a simple copy operation of an SSA name to the function
264 result. In that case we may have a simple tail call. Ignore type
265 conversions that can never produce extra code between the function
266 call and the function return. */
267 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
268 && (TREE_CODE (src_var) == SSA_NAME))
269 {
270 /* Reject a tailcall if the type conversion might need
271 additional code. */
272 if (gimple_assign_cast_p (stmt)
273 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
274 return false;
275
276 if (src_var != *ass_var)
277 return false;
278
279 *ass_var = dest;
280 return true;
281 }
282
283 switch (rhs_class)
284 {
285 case GIMPLE_BINARY_RHS:
286 op1 = gimple_assign_rhs2 (stmt);
287
288 /* Fall through. */
289
290 case GIMPLE_UNARY_RHS:
291 op0 = gimple_assign_rhs1 (stmt);
292 break;
293
294 default:
295 return false;
296 }
297
298 /* Accumulator optimizations will reverse the order of operations.
299 We can only do that for floating-point types if we're assuming
300 that addition and multiplication are associative. */
301 if (!flag_associative_math)
302 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
303 return false;
304
305 if (rhs_class == GIMPLE_UNARY_RHS)
306 ;
307 else if (op0 == *ass_var
308 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
309 ;
310 else if (op1 == *ass_var
311 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
312 ;
313 else
314 return false;
315
316 switch (code)
317 {
318 case PLUS_EXPR:
319 *a = non_ass_var;
320 *ass_var = dest;
321 return true;
322
323 case MULT_EXPR:
324 *m = non_ass_var;
325 *ass_var = dest;
326 return true;
327
328 case NEGATE_EXPR:
329 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
330 *m = build_real (TREE_TYPE (op0), dconstm1);
331 else
332 *m = build_int_cst (TREE_TYPE (op0), -1);
333
334 *ass_var = dest;
335 return true;
336
337 case MINUS_EXPR:
338 if (*ass_var == op0)
339 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
340 else
341 {
342 if (FLOAT_TYPE_P (TREE_TYPE (non_ass_var)))
343 *m = build_real (TREE_TYPE (non_ass_var), dconstm1);
344 else
345 *m = build_int_cst (TREE_TYPE (non_ass_var), -1);
346
347 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
348 }
349
350 *ass_var = dest;
351 return true;
352
353 /* TODO -- Handle POINTER_PLUS_EXPR. */
354
355 default:
356 return false;
357 }
358 }
359
360 /* Propagate VAR through phis on edge E. */
361
362 static tree
363 propagate_through_phis (tree var, edge e)
364 {
365 basic_block dest = e->dest;
366 gimple_stmt_iterator gsi;
367
368 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
369 {
370 gimple phi = gsi_stmt (gsi);
371 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
372 return PHI_RESULT (phi);
373 }
374 return var;
375 }
376
377 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
378 added to the start of RET. */
379
380 static void
381 find_tail_calls (basic_block bb, struct tailcall **ret)
382 {
383 tree ass_var = NULL_TREE, ret_var, func, param;
384 gimple stmt, call = NULL;
385 gimple_stmt_iterator gsi, agsi;
386 bool tail_recursion;
387 struct tailcall *nw;
388 edge e;
389 tree m, a;
390 basic_block abb;
391 size_t idx;
392 tree var;
393
394 if (!single_succ_p (bb))
395 return;
396
397 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
398 {
399 stmt = gsi_stmt (gsi);
400
401 /* Ignore labels, returns, clobbers and debug stmts. */
402 if (gimple_code (stmt) == GIMPLE_LABEL
403 || gimple_code (stmt) == GIMPLE_RETURN
404 || gimple_clobber_p (stmt)
405 || is_gimple_debug (stmt))
406 continue;
407
408 /* Check for a call. */
409 if (is_gimple_call (stmt))
410 {
411 call = stmt;
412 ass_var = gimple_call_lhs (stmt);
413 break;
414 }
415
416 /* If the statement references memory or volatile operands, fail. */
417 if (gimple_references_memory_p (stmt)
418 || gimple_has_volatile_ops (stmt))
419 return;
420 }
421
422 if (gsi_end_p (gsi))
423 {
424 edge_iterator ei;
425 /* Recurse to the predecessors. */
426 FOR_EACH_EDGE (e, ei, bb->preds)
427 find_tail_calls (e->src, ret);
428
429 return;
430 }
431
432 /* If the LHS of our call is not just a simple register, we can't
433 transform this into a tail or sibling call. This situation happens,
434 in (e.g.) "*p = foo()" where foo returns a struct. In this case
435 we won't have a temporary here, but we need to carry out the side
436 effect anyway, so tailcall is impossible.
437
438 ??? In some situations (when the struct is returned in memory via
439 invisible argument) we could deal with this, e.g. by passing 'p'
440 itself as that argument to foo, but it's too early to do this here,
441 and expand_call() will not handle it anyway. If it ever can, then
442 we need to revisit this here, to allow that situation. */
443 if (ass_var && !is_gimple_reg (ass_var))
444 return;
445
446 /* We found the call, check whether it is suitable. */
447 tail_recursion = false;
448 func = gimple_call_fndecl (call);
449 if (func == current_function_decl)
450 {
451 tree arg;
452
453 for (param = DECL_ARGUMENTS (func), idx = 0;
454 param && idx < gimple_call_num_args (call);
455 param = DECL_CHAIN (param), idx ++)
456 {
457 arg = gimple_call_arg (call, idx);
458 if (param != arg)
459 {
460 /* Make sure there are no problems with copying. The parameter
461 have a copyable type and the two arguments must have reasonably
462 equivalent types. The latter requirement could be relaxed if
463 we emitted a suitable type conversion statement. */
464 if (!is_gimple_reg_type (TREE_TYPE (param))
465 || !useless_type_conversion_p (TREE_TYPE (param),
466 TREE_TYPE (arg)))
467 break;
468
469 /* The parameter should be a real operand, so that phi node
470 created for it at the start of the function has the meaning
471 of copying the value. This test implies is_gimple_reg_type
472 from the previous condition, however this one could be
473 relaxed by being more careful with copying the new value
474 of the parameter (emitting appropriate GIMPLE_ASSIGN and
475 updating the virtual operands). */
476 if (!is_gimple_reg (param))
477 break;
478 }
479 }
480 if (idx == gimple_call_num_args (call) && !param)
481 tail_recursion = true;
482 }
483
484 /* Make sure the tail invocation of this function does not refer
485 to local variables. */
486 FOR_EACH_LOCAL_DECL (cfun, idx, var)
487 {
488 if (TREE_CODE (var) != PARM_DECL
489 && auto_var_in_fn_p (var, cfun->decl)
490 && (ref_maybe_used_by_stmt_p (call, var)
491 || call_may_clobber_ref_p (call, var)))
492 return;
493 }
494
495 /* Now check the statements after the call. None of them has virtual
496 operands, so they may only depend on the call through its return
497 value. The return value should also be dependent on each of them,
498 since we are running after dce. */
499 m = NULL_TREE;
500 a = NULL_TREE;
501
502 abb = bb;
503 agsi = gsi;
504 while (1)
505 {
506 tree tmp_a = NULL_TREE;
507 tree tmp_m = NULL_TREE;
508 gsi_next (&agsi);
509
510 while (gsi_end_p (agsi))
511 {
512 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
513 abb = single_succ (abb);
514 agsi = gsi_start_bb (abb);
515 }
516
517 stmt = gsi_stmt (agsi);
518
519 if (gimple_code (stmt) == GIMPLE_LABEL)
520 continue;
521
522 if (gimple_code (stmt) == GIMPLE_RETURN)
523 break;
524
525 if (gimple_clobber_p (stmt))
526 continue;
527
528 if (is_gimple_debug (stmt))
529 continue;
530
531 if (gimple_code (stmt) != GIMPLE_ASSIGN)
532 return;
533
534 /* This is a gimple assign. */
535 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
536 return;
537
538 if (tmp_a)
539 {
540 tree type = TREE_TYPE (tmp_a);
541 if (a)
542 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
543 else
544 a = tmp_a;
545 }
546 if (tmp_m)
547 {
548 tree type = TREE_TYPE (tmp_m);
549 if (m)
550 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
551 else
552 m = tmp_m;
553
554 if (a)
555 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
556 }
557 }
558
559 /* See if this is a tail call we can handle. */
560 ret_var = gimple_return_retval (stmt);
561
562 /* We may proceed if there either is no return value, or the return value
563 is identical to the call's return. */
564 if (ret_var
565 && (ret_var != ass_var))
566 return;
567
568 /* If this is not a tail recursive call, we cannot handle addends or
569 multiplicands. */
570 if (!tail_recursion && (m || a))
571 return;
572
573 nw = XNEW (struct tailcall);
574
575 nw->call_gsi = gsi;
576
577 nw->tail_recursion = tail_recursion;
578
579 nw->mult = m;
580 nw->add = a;
581
582 nw->next = *ret;
583 *ret = nw;
584 }
585
586 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
587
588 static void
589 add_successor_phi_arg (edge e, tree var, tree phi_arg)
590 {
591 gimple_stmt_iterator gsi;
592
593 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
594 if (PHI_RESULT (gsi_stmt (gsi)) == var)
595 break;
596
597 gcc_assert (!gsi_end_p (gsi));
598 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
599 }
600
601 /* Creates a GIMPLE statement which computes the operation specified by
602 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
603 statement in the position specified by GSI and UPDATE. Returns the
604 tree node of the statement's result. */
605
606 static tree
607 adjust_return_value_with_ops (enum tree_code code, const char *label,
608 tree acc, tree op1, gimple_stmt_iterator gsi)
609 {
610
611 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
612 tree tmp = create_tmp_reg (ret_type, label);
613 gimple stmt;
614 tree result;
615
616 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
617 stmt = gimple_build_assign_with_ops (code, tmp, acc, op1);
618 else
619 {
620 tree rhs = fold_convert (TREE_TYPE (acc),
621 fold_build2 (code,
622 TREE_TYPE (op1),
623 fold_convert (TREE_TYPE (op1), acc),
624 op1));
625 rhs = force_gimple_operand_gsi (&gsi, rhs,
626 false, NULL, true, GSI_CONTINUE_LINKING);
627 stmt = gimple_build_assign (NULL_TREE, rhs);
628 }
629
630 result = make_ssa_name (tmp, stmt);
631 gimple_assign_set_lhs (stmt, result);
632 update_stmt (stmt);
633 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
634 return result;
635 }
636
637 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
638 the computation specified by CODE and OP1 and insert the statement
639 at the position specified by GSI as a new statement. Returns new SSA name
640 of updated accumulator. */
641
642 static tree
643 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
644 gimple_stmt_iterator gsi)
645 {
646 gimple stmt;
647 tree var;
648 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
649 stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1);
650 else
651 {
652 tree rhs = fold_convert (TREE_TYPE (acc),
653 fold_build2 (code,
654 TREE_TYPE (op1),
655 fold_convert (TREE_TYPE (op1), acc),
656 op1));
657 rhs = force_gimple_operand_gsi (&gsi, rhs,
658 false, NULL, false, GSI_CONTINUE_LINKING);
659 stmt = gimple_build_assign (NULL_TREE, rhs);
660 }
661 var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
662 gimple_assign_set_lhs (stmt, var);
663 update_stmt (stmt);
664 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
665 return var;
666 }
667
668 /* Adjust the accumulator values according to A and M after GSI, and update
669 the phi nodes on edge BACK. */
670
671 static void
672 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
673 {
674 tree var, a_acc_arg, m_acc_arg;
675
676 if (m)
677 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
678 if (a)
679 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
680
681 a_acc_arg = a_acc;
682 m_acc_arg = m_acc;
683 if (a)
684 {
685 if (m_acc)
686 {
687 if (integer_onep (a))
688 var = m_acc;
689 else
690 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
691 a, gsi);
692 }
693 else
694 var = a;
695
696 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
697 }
698
699 if (m)
700 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
701
702 if (a_acc)
703 add_successor_phi_arg (back, a_acc, a_acc_arg);
704
705 if (m_acc)
706 add_successor_phi_arg (back, m_acc, m_acc_arg);
707 }
708
709 /* Adjust value of the return at the end of BB according to M and A
710 accumulators. */
711
712 static void
713 adjust_return_value (basic_block bb, tree m, tree a)
714 {
715 tree retval;
716 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
717 gimple_stmt_iterator gsi = gsi_last_bb (bb);
718
719 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
720
721 retval = gimple_return_retval (ret_stmt);
722 if (!retval || retval == error_mark_node)
723 return;
724
725 if (m)
726 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
727 gsi);
728 if (a)
729 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
730 gsi);
731 gimple_return_set_retval (ret_stmt, retval);
732 update_stmt (ret_stmt);
733 }
734
735 /* Subtract COUNT and FREQUENCY from the basic block and it's
736 outgoing edge. */
737 static void
738 decrease_profile (basic_block bb, gcov_type count, int frequency)
739 {
740 edge e;
741 bb->count -= count;
742 if (bb->count < 0)
743 bb->count = 0;
744 bb->frequency -= frequency;
745 if (bb->frequency < 0)
746 bb->frequency = 0;
747 if (!single_succ_p (bb))
748 {
749 gcc_assert (!EDGE_COUNT (bb->succs));
750 return;
751 }
752 e = single_succ_edge (bb);
753 e->count -= count;
754 if (e->count < 0)
755 e->count = 0;
756 }
757
758 /* Returns true if argument PARAM of the tail recursive call needs to be copied
759 when the call is eliminated. */
760
761 static bool
762 arg_needs_copy_p (tree param)
763 {
764 tree def;
765
766 if (!is_gimple_reg (param))
767 return false;
768
769 /* Parameters that are only defined but never used need not be copied. */
770 def = ssa_default_def (cfun, param);
771 if (!def)
772 return false;
773
774 return true;
775 }
776
777 /* Eliminates tail call described by T. TMP_VARS is a list of
778 temporary variables used to copy the function arguments. */
779
780 static void
781 eliminate_tail_call (struct tailcall *t)
782 {
783 tree param, rslt;
784 gimple stmt, call;
785 tree arg;
786 size_t idx;
787 basic_block bb, first;
788 edge e;
789 gimple phi;
790 gimple_stmt_iterator gsi;
791 gimple orig_stmt;
792
793 stmt = orig_stmt = gsi_stmt (t->call_gsi);
794 bb = gsi_bb (t->call_gsi);
795
796 if (dump_file && (dump_flags & TDF_DETAILS))
797 {
798 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
799 bb->index);
800 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
801 fprintf (dump_file, "\n");
802 }
803
804 gcc_assert (is_gimple_call (stmt));
805
806 first = single_succ (ENTRY_BLOCK_PTR);
807
808 /* Remove the code after call_gsi that will become unreachable. The
809 possibly unreachable code in other blocks is removed later in
810 cfg cleanup. */
811 gsi = t->call_gsi;
812 gsi_next (&gsi);
813 while (!gsi_end_p (gsi))
814 {
815 gimple t = gsi_stmt (gsi);
816 /* Do not remove the return statement, so that redirect_edge_and_branch
817 sees how the block ends. */
818 if (gimple_code (t) == GIMPLE_RETURN)
819 break;
820
821 gsi_remove (&gsi, true);
822 release_defs (t);
823 }
824
825 /* Number of executions of function has reduced by the tailcall. */
826 e = single_succ_edge (gsi_bb (t->call_gsi));
827 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
828 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
829 if (e->dest != EXIT_BLOCK_PTR)
830 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
831
832 /* Replace the call by a jump to the start of function. */
833 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
834 first);
835 gcc_assert (e);
836 PENDING_STMT (e) = NULL;
837
838 /* Add phi node entries for arguments. The ordering of the phi nodes should
839 be the same as the ordering of the arguments. */
840 for (param = DECL_ARGUMENTS (current_function_decl),
841 idx = 0, gsi = gsi_start_phis (first);
842 param;
843 param = DECL_CHAIN (param), idx++)
844 {
845 if (!arg_needs_copy_p (param))
846 continue;
847
848 arg = gimple_call_arg (stmt, idx);
849 phi = gsi_stmt (gsi);
850 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
851
852 add_phi_arg (phi, arg, e, gimple_location (stmt));
853 gsi_next (&gsi);
854 }
855
856 /* Update the values of accumulators. */
857 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
858
859 call = gsi_stmt (t->call_gsi);
860 rslt = gimple_call_lhs (call);
861 if (rslt != NULL_TREE)
862 {
863 /* Result of the call will no longer be defined. So adjust the
864 SSA_NAME_DEF_STMT accordingly. */
865 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
866 }
867
868 gsi_remove (&t->call_gsi, true);
869 release_defs (call);
870 }
871
872 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
873 mark the tailcalls for the sibcall optimization. */
874
875 static bool
876 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
877 {
878 if (t->tail_recursion)
879 {
880 eliminate_tail_call (t);
881 return true;
882 }
883
884 if (opt_tailcalls)
885 {
886 gimple stmt = gsi_stmt (t->call_gsi);
887
888 gimple_call_set_tail (stmt, true);
889 if (dump_file && (dump_flags & TDF_DETAILS))
890 {
891 fprintf (dump_file, "Found tail call ");
892 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
893 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
894 }
895 }
896
897 return false;
898 }
899
900 /* Creates a tail-call accumulator of the same type as the return type of the
901 current function. LABEL is the name used to creating the temporary
902 variable for the accumulator. The accumulator will be inserted in the
903 phis of a basic block BB with single predecessor with an initial value
904 INIT converted to the current function return type. */
905
906 static tree
907 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
908 {
909 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
910 tree tmp = create_tmp_reg (ret_type, label);
911 gimple phi;
912
913 phi = create_phi_node (tmp, bb);
914 /* RET_TYPE can be a float when -ffast-maths is enabled. */
915 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
916 UNKNOWN_LOCATION);
917 return PHI_RESULT (phi);
918 }
919
920 /* Optimizes tail calls in the function, turning the tail recursion
921 into iteration. */
922
923 static unsigned int
924 tree_optimize_tail_calls_1 (bool opt_tailcalls)
925 {
926 edge e;
927 bool phis_constructed = false;
928 struct tailcall *tailcalls = NULL, *act, *next;
929 bool changed = false;
930 basic_block first = single_succ (ENTRY_BLOCK_PTR);
931 tree param;
932 gimple stmt;
933 edge_iterator ei;
934
935 if (!suitable_for_tail_opt_p ())
936 return 0;
937 if (opt_tailcalls)
938 opt_tailcalls = suitable_for_tail_call_opt_p ();
939
940 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
941 {
942 /* Only traverse the normal exits, i.e. those that end with return
943 statement. */
944 stmt = last_stmt (e->src);
945
946 if (stmt
947 && gimple_code (stmt) == GIMPLE_RETURN)
948 find_tail_calls (e->src, &tailcalls);
949 }
950
951 /* Construct the phi nodes and accumulators if necessary. */
952 a_acc = m_acc = NULL_TREE;
953 for (act = tailcalls; act; act = act->next)
954 {
955 if (!act->tail_recursion)
956 continue;
957
958 if (!phis_constructed)
959 {
960 /* Ensure that there is only one predecessor of the block
961 or if there are existing degenerate PHI nodes. */
962 if (!single_pred_p (first)
963 || !gimple_seq_empty_p (phi_nodes (first)))
964 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
965
966 /* Copy the args if needed. */
967 for (param = DECL_ARGUMENTS (current_function_decl);
968 param;
969 param = DECL_CHAIN (param))
970 if (arg_needs_copy_p (param))
971 {
972 tree name = ssa_default_def (cfun, param);
973 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
974 gimple phi;
975
976 set_ssa_default_def (cfun, param, new_name);
977 phi = create_phi_node (name, first);
978 add_phi_arg (phi, new_name, single_pred_edge (first),
979 EXPR_LOCATION (param));
980 }
981 phis_constructed = true;
982 }
983
984 if (act->add && !a_acc)
985 a_acc = create_tailcall_accumulator ("add_acc", first,
986 integer_zero_node);
987
988 if (act->mult && !m_acc)
989 m_acc = create_tailcall_accumulator ("mult_acc", first,
990 integer_one_node);
991 }
992
993 if (a_acc || m_acc)
994 {
995 /* When the tail call elimination using accumulators is performed,
996 statements adding the accumulated value are inserted at all exits.
997 This turns all other tail calls to non-tail ones. */
998 opt_tailcalls = false;
999 }
1000
1001 for (; tailcalls; tailcalls = next)
1002 {
1003 next = tailcalls->next;
1004 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1005 free (tailcalls);
1006 }
1007
1008 if (a_acc || m_acc)
1009 {
1010 /* Modify the remaining return statements. */
1011 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1012 {
1013 stmt = last_stmt (e->src);
1014
1015 if (stmt
1016 && gimple_code (stmt) == GIMPLE_RETURN)
1017 adjust_return_value (e->src, m_acc, a_acc);
1018 }
1019 }
1020
1021 if (changed)
1022 free_dominance_info (CDI_DOMINATORS);
1023
1024 /* Add phi nodes for the virtual operands defined in the function to the
1025 header of the loop created by tail recursion elimination. Do so
1026 by triggering the SSA renamer. */
1027 if (phis_constructed)
1028 mark_virtual_operands_for_renaming (cfun);
1029
1030 if (changed)
1031 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1032 return 0;
1033 }
1034
1035 static unsigned int
1036 execute_tail_recursion (void)
1037 {
1038 return tree_optimize_tail_calls_1 (false);
1039 }
1040
1041 static bool
1042 gate_tail_calls (void)
1043 {
1044 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1045 }
1046
1047 static unsigned int
1048 execute_tail_calls (void)
1049 {
1050 return tree_optimize_tail_calls_1 (true);
1051 }
1052
1053 struct gimple_opt_pass pass_tail_recursion =
1054 {
1055 {
1056 GIMPLE_PASS,
1057 "tailr", /* name */
1058 gate_tail_calls, /* gate */
1059 execute_tail_recursion, /* execute */
1060 NULL, /* sub */
1061 NULL, /* next */
1062 0, /* static_pass_number */
1063 TV_NONE, /* tv_id */
1064 PROP_cfg | PROP_ssa, /* properties_required */
1065 0, /* properties_provided */
1066 0, /* properties_destroyed */
1067 0, /* todo_flags_start */
1068 TODO_verify_ssa /* todo_flags_finish */
1069 }
1070 };
1071
1072 struct gimple_opt_pass pass_tail_calls =
1073 {
1074 {
1075 GIMPLE_PASS,
1076 "tailc", /* name */
1077 gate_tail_calls, /* gate */
1078 execute_tail_calls, /* execute */
1079 NULL, /* sub */
1080 NULL, /* next */
1081 0, /* static_pass_number */
1082 TV_NONE, /* tv_id */
1083 PROP_cfg | PROP_ssa, /* properties_required */
1084 0, /* properties_provided */
1085 0, /* properties_destroyed */
1086 0, /* todo_flags_start */
1087 TODO_verify_ssa /* todo_flags_finish */
1088 }
1089 };