]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-tailcall.c
tree-tailcall.c (find_tail_calls): Convert the operands to the type of the result...
[thirdparty/gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "gimple-pretty-print.h"
32 #include "except.h"
33 #include "tree-pass.h"
34 #include "flags.h"
35 #include "langhooks.h"
36 #include "dbgcnt.h"
37 #include "target.h"
38
39 /* The file implements the tail recursion elimination. It is also used to
40 analyze the tail calls in general, passing the results to the rtl level
41 where they are used for sibcall optimization.
42
43 In addition to the standard tail recursion elimination, we handle the most
44 trivial cases of making the call tail recursive by creating accumulators.
45 For example the following function
46
47 int sum (int n)
48 {
49 if (n > 0)
50 return n + sum (n - 1);
51 else
52 return 0;
53 }
54
55 is transformed into
56
57 int sum (int n)
58 {
59 int acc = 0;
60
61 while (n > 0)
62 acc += n--;
63
64 return acc;
65 }
66
67 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
68 when we reach the return x statement, we should return a_acc + x * m_acc
69 instead. They are initially initialized to 0 and 1, respectively,
70 so the semantics of the function is obviously preserved. If we are
71 guaranteed that the value of the accumulator never change, we
72 omit the accumulator.
73
74 There are three cases how the function may exit. The first one is
75 handled in adjust_return_value, the other two in adjust_accumulator_values
76 (the second case is actually a special case of the third one and we
77 present it separately just for clarity):
78
79 1) Just return x, where x is not in any of the remaining special shapes.
80 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
81
82 2) return f (...), where f is the current function, is rewritten in a
83 classical tail-recursion elimination way, into assignment of arguments
84 and jump to the start of the function. Values of the accumulators
85 are unchanged.
86
87 3) return a + m * f(...), where a and m do not depend on call to f.
88 To preserve the semantics described before we want this to be rewritten
89 in such a way that we finally return
90
91 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
92
93 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
94 eliminate the tail call to f. Special cases when the value is just
95 added or just multiplied are obtained by setting a = 0 or m = 1.
96
97 TODO -- it is possible to do similar tricks for other operations. */
98
99 /* A structure that describes the tailcall. */
100
101 struct tailcall
102 {
103 /* The iterator pointing to the call statement. */
104 gimple_stmt_iterator call_gsi;
105
106 /* True if it is a call to the current function. */
107 bool tail_recursion;
108
109 /* The return value of the caller is mult * f + add, where f is the return
110 value of the call. */
111 tree mult, add;
112
113 /* Next tailcall in the chain. */
114 struct tailcall *next;
115 };
116
117 /* The variables holding the value of multiplicative and additive
118 accumulator. */
119 static tree m_acc, a_acc;
120
121 static bool suitable_for_tail_opt_p (void);
122 static bool optimize_tail_call (struct tailcall *, bool);
123 static void eliminate_tail_call (struct tailcall *);
124 static void find_tail_calls (basic_block, struct tailcall **);
125
126 /* Returns false when the function is not suitable for tail call optimization
127 from some reason (e.g. if it takes variable number of arguments). */
128
129 static bool
130 suitable_for_tail_opt_p (void)
131 {
132 if (cfun->stdarg)
133 return false;
134
135 return true;
136 }
137 /* Returns false when the function is not suitable for tail call optimization
138 from some reason (e.g. if it takes variable number of arguments).
139 This test must pass in addition to suitable_for_tail_opt_p in order to make
140 tail call discovery happen. */
141
142 static bool
143 suitable_for_tail_call_opt_p (void)
144 {
145 tree param;
146
147 /* alloca (until we have stack slot life analysis) inhibits
148 sibling call optimizations, but not tail recursion. */
149 if (cfun->calls_alloca)
150 return false;
151
152 /* If we are using sjlj exceptions, we may need to add a call to
153 _Unwind_SjLj_Unregister at exit of the function. Which means
154 that we cannot do any sibcall transformations. */
155 if (targetm.except_unwind_info () == UI_SJLJ
156 && current_function_has_exception_handlers ())
157 return false;
158
159 /* Any function that calls setjmp might have longjmp called from
160 any called function. ??? We really should represent this
161 properly in the CFG so that this needn't be special cased. */
162 if (cfun->calls_setjmp)
163 return false;
164
165 /* ??? It is OK if the argument of a function is taken in some cases,
166 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
167 for (param = DECL_ARGUMENTS (current_function_decl);
168 param;
169 param = DECL_CHAIN (param))
170 if (TREE_ADDRESSABLE (param))
171 return false;
172
173 return true;
174 }
175
176 /* Checks whether the expression EXPR in stmt AT is independent of the
177 statement pointed to by GSI (in a sense that we already know EXPR's value
178 at GSI). We use the fact that we are only called from the chain of
179 basic blocks that have only single successor. Returns the expression
180 containing the value of EXPR at GSI. */
181
182 static tree
183 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
184 {
185 basic_block bb, call_bb, at_bb;
186 edge e;
187 edge_iterator ei;
188
189 if (is_gimple_min_invariant (expr))
190 return expr;
191
192 if (TREE_CODE (expr) != SSA_NAME)
193 return NULL_TREE;
194
195 /* Mark the blocks in the chain leading to the end. */
196 at_bb = gimple_bb (at);
197 call_bb = gimple_bb (gsi_stmt (gsi));
198 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
199 bb->aux = &bb->aux;
200 bb->aux = &bb->aux;
201
202 while (1)
203 {
204 at = SSA_NAME_DEF_STMT (expr);
205 bb = gimple_bb (at);
206
207 /* The default definition or defined before the chain. */
208 if (!bb || !bb->aux)
209 break;
210
211 if (bb == call_bb)
212 {
213 for (; !gsi_end_p (gsi); gsi_next (&gsi))
214 if (gsi_stmt (gsi) == at)
215 break;
216
217 if (!gsi_end_p (gsi))
218 expr = NULL_TREE;
219 break;
220 }
221
222 if (gimple_code (at) != GIMPLE_PHI)
223 {
224 expr = NULL_TREE;
225 break;
226 }
227
228 FOR_EACH_EDGE (e, ei, bb->preds)
229 if (e->src->aux)
230 break;
231 gcc_assert (e);
232
233 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
234 if (TREE_CODE (expr) != SSA_NAME)
235 {
236 /* The value is a constant. */
237 break;
238 }
239 }
240
241 /* Unmark the blocks. */
242 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
243 bb->aux = NULL;
244 bb->aux = NULL;
245
246 return expr;
247 }
248
249 /* Simulates the effect of an assignment STMT on the return value of the tail
250 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
251 additive factor for the real return value. */
252
253 static bool
254 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
255 tree *a, tree *ass_var)
256 {
257 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
258 tree dest = gimple_assign_lhs (stmt);
259 enum tree_code code = gimple_assign_rhs_code (stmt);
260 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
261 tree src_var = gimple_assign_rhs1 (stmt);
262
263 /* See if this is a simple copy operation of an SSA name to the function
264 result. In that case we may have a simple tail call. Ignore type
265 conversions that can never produce extra code between the function
266 call and the function return. */
267 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
268 && (TREE_CODE (src_var) == SSA_NAME))
269 {
270 /* Reject a tailcall if the type conversion might need
271 additional code. */
272 if (gimple_assign_cast_p (stmt)
273 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
274 return false;
275
276 if (src_var != *ass_var)
277 return false;
278
279 *ass_var = dest;
280 return true;
281 }
282
283 switch (rhs_class)
284 {
285 case GIMPLE_BINARY_RHS:
286 op1 = gimple_assign_rhs2 (stmt);
287
288 /* Fall through. */
289
290 case GIMPLE_UNARY_RHS:
291 op0 = gimple_assign_rhs1 (stmt);
292 break;
293
294 default:
295 return false;
296 }
297
298 /* Accumulator optimizations will reverse the order of operations.
299 We can only do that for floating-point types if we're assuming
300 that addition and multiplication are associative. */
301 if (!flag_associative_math)
302 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
303 return false;
304
305 if (rhs_class == GIMPLE_UNARY_RHS)
306 ;
307 else if (op0 == *ass_var
308 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
309 ;
310 else if (op1 == *ass_var
311 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
312 ;
313 else
314 return false;
315
316 switch (code)
317 {
318 case PLUS_EXPR:
319 *a = non_ass_var;
320 *ass_var = dest;
321 return true;
322
323 case MULT_EXPR:
324 *m = non_ass_var;
325 *ass_var = dest;
326 return true;
327
328 case NEGATE_EXPR:
329 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
330 *m = build_real (TREE_TYPE (op0), dconstm1);
331 else
332 *m = build_int_cst (TREE_TYPE (op0), -1);
333
334 *ass_var = dest;
335 return true;
336
337 case MINUS_EXPR:
338 if (*ass_var == op0)
339 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
340 else
341 {
342 if (FLOAT_TYPE_P (TREE_TYPE (non_ass_var)))
343 *m = build_real (TREE_TYPE (non_ass_var), dconstm1);
344 else
345 *m = build_int_cst (TREE_TYPE (non_ass_var), -1);
346
347 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
348 }
349
350 *ass_var = dest;
351 return true;
352
353 /* TODO -- Handle POINTER_PLUS_EXPR. */
354
355 default:
356 return false;
357 }
358 }
359
360 /* Propagate VAR through phis on edge E. */
361
362 static tree
363 propagate_through_phis (tree var, edge e)
364 {
365 basic_block dest = e->dest;
366 gimple_stmt_iterator gsi;
367
368 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
369 {
370 gimple phi = gsi_stmt (gsi);
371 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
372 return PHI_RESULT (phi);
373 }
374 return var;
375 }
376
377 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
378 added to the start of RET. */
379
380 static void
381 find_tail_calls (basic_block bb, struct tailcall **ret)
382 {
383 tree ass_var = NULL_TREE, ret_var, func, param;
384 gimple stmt, call = NULL;
385 gimple_stmt_iterator gsi, agsi;
386 bool tail_recursion;
387 struct tailcall *nw;
388 edge e;
389 tree m, a;
390 basic_block abb;
391 size_t idx;
392 tree var;
393 referenced_var_iterator rvi;
394
395 if (!single_succ_p (bb))
396 return;
397
398 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
399 {
400 stmt = gsi_stmt (gsi);
401
402 /* Ignore labels. */
403 if (gimple_code (stmt) == GIMPLE_LABEL || is_gimple_debug (stmt))
404 continue;
405
406 /* Check for a call. */
407 if (is_gimple_call (stmt))
408 {
409 call = stmt;
410 ass_var = gimple_call_lhs (stmt);
411 break;
412 }
413
414 /* If the statement references memory or volatile operands, fail. */
415 if (gimple_references_memory_p (stmt)
416 || gimple_has_volatile_ops (stmt))
417 return;
418 }
419
420 if (gsi_end_p (gsi))
421 {
422 edge_iterator ei;
423 /* Recurse to the predecessors. */
424 FOR_EACH_EDGE (e, ei, bb->preds)
425 find_tail_calls (e->src, ret);
426
427 return;
428 }
429
430 /* If the LHS of our call is not just a simple register, we can't
431 transform this into a tail or sibling call. This situation happens,
432 in (e.g.) "*p = foo()" where foo returns a struct. In this case
433 we won't have a temporary here, but we need to carry out the side
434 effect anyway, so tailcall is impossible.
435
436 ??? In some situations (when the struct is returned in memory via
437 invisible argument) we could deal with this, e.g. by passing 'p'
438 itself as that argument to foo, but it's too early to do this here,
439 and expand_call() will not handle it anyway. If it ever can, then
440 we need to revisit this here, to allow that situation. */
441 if (ass_var && !is_gimple_reg (ass_var))
442 return;
443
444 /* We found the call, check whether it is suitable. */
445 tail_recursion = false;
446 func = gimple_call_fndecl (call);
447 if (func == current_function_decl)
448 {
449 tree arg;
450
451 for (param = DECL_ARGUMENTS (func), idx = 0;
452 param && idx < gimple_call_num_args (call);
453 param = DECL_CHAIN (param), idx ++)
454 {
455 arg = gimple_call_arg (call, idx);
456 if (param != arg)
457 {
458 /* Make sure there are no problems with copying. The parameter
459 have a copyable type and the two arguments must have reasonably
460 equivalent types. The latter requirement could be relaxed if
461 we emitted a suitable type conversion statement. */
462 if (!is_gimple_reg_type (TREE_TYPE (param))
463 || !useless_type_conversion_p (TREE_TYPE (param),
464 TREE_TYPE (arg)))
465 break;
466
467 /* The parameter should be a real operand, so that phi node
468 created for it at the start of the function has the meaning
469 of copying the value. This test implies is_gimple_reg_type
470 from the previous condition, however this one could be
471 relaxed by being more careful with copying the new value
472 of the parameter (emitting appropriate GIMPLE_ASSIGN and
473 updating the virtual operands). */
474 if (!is_gimple_reg (param))
475 break;
476 }
477 }
478 if (idx == gimple_call_num_args (call) && !param)
479 tail_recursion = true;
480 }
481
482 /* Make sure the tail invocation of this function does not refer
483 to local variables. */
484 FOR_EACH_REFERENCED_VAR (var, rvi)
485 {
486 if (TREE_CODE (var) != PARM_DECL
487 && auto_var_in_fn_p (var, cfun->decl)
488 && (ref_maybe_used_by_stmt_p (call, var)
489 || call_may_clobber_ref_p (call, var)))
490 return;
491 }
492
493 /* Now check the statements after the call. None of them has virtual
494 operands, so they may only depend on the call through its return
495 value. The return value should also be dependent on each of them,
496 since we are running after dce. */
497 m = NULL_TREE;
498 a = NULL_TREE;
499
500 abb = bb;
501 agsi = gsi;
502 while (1)
503 {
504 tree tmp_a = NULL_TREE;
505 tree tmp_m = NULL_TREE;
506 gsi_next (&agsi);
507
508 while (gsi_end_p (agsi))
509 {
510 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
511 abb = single_succ (abb);
512 agsi = gsi_start_bb (abb);
513 }
514
515 stmt = gsi_stmt (agsi);
516
517 if (gimple_code (stmt) == GIMPLE_LABEL)
518 continue;
519
520 if (gimple_code (stmt) == GIMPLE_RETURN)
521 break;
522
523 if (is_gimple_debug (stmt))
524 continue;
525
526 if (gimple_code (stmt) != GIMPLE_ASSIGN)
527 return;
528
529 /* This is a gimple assign. */
530 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
531 return;
532
533 if (tmp_a)
534 {
535 tree type = TREE_TYPE (tmp_a);
536 if (a)
537 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
538 else
539 a = tmp_a;
540 }
541 if (tmp_m)
542 {
543 tree type = TREE_TYPE (tmp_m);
544 if (m)
545 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
546 else
547 m = tmp_m;
548
549 if (a)
550 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
551 }
552 }
553
554 /* See if this is a tail call we can handle. */
555 ret_var = gimple_return_retval (stmt);
556
557 /* We may proceed if there either is no return value, or the return value
558 is identical to the call's return. */
559 if (ret_var
560 && (ret_var != ass_var))
561 return;
562
563 /* If this is not a tail recursive call, we cannot handle addends or
564 multiplicands. */
565 if (!tail_recursion && (m || a))
566 return;
567
568 nw = XNEW (struct tailcall);
569
570 nw->call_gsi = gsi;
571
572 nw->tail_recursion = tail_recursion;
573
574 nw->mult = m;
575 nw->add = a;
576
577 nw->next = *ret;
578 *ret = nw;
579 }
580
581 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
582
583 static void
584 add_successor_phi_arg (edge e, tree var, tree phi_arg)
585 {
586 gimple_stmt_iterator gsi;
587
588 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
589 if (PHI_RESULT (gsi_stmt (gsi)) == var)
590 break;
591
592 gcc_assert (!gsi_end_p (gsi));
593 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
594 }
595
596 /* Creates a GIMPLE statement which computes the operation specified by
597 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
598 statement in the position specified by GSI and UPDATE. Returns the
599 tree node of the statement's result. */
600
601 static tree
602 adjust_return_value_with_ops (enum tree_code code, const char *label,
603 tree acc, tree op1, gimple_stmt_iterator gsi)
604 {
605
606 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
607 tree tmp = create_tmp_reg (ret_type, label);
608 gimple stmt;
609 tree result;
610
611 add_referenced_var (tmp);
612
613 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
614 stmt = gimple_build_assign_with_ops (code, tmp, acc, op1);
615 else
616 {
617 tree rhs = fold_convert (TREE_TYPE (acc),
618 fold_build2 (code,
619 TREE_TYPE (op1),
620 fold_convert (TREE_TYPE (op1), acc),
621 op1));
622 rhs = force_gimple_operand_gsi (&gsi, rhs,
623 false, NULL, true, GSI_CONTINUE_LINKING);
624 stmt = gimple_build_assign (NULL_TREE, rhs);
625 }
626
627 result = make_ssa_name (tmp, stmt);
628 gimple_assign_set_lhs (stmt, result);
629 update_stmt (stmt);
630 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
631 return result;
632 }
633
634 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
635 the computation specified by CODE and OP1 and insert the statement
636 at the position specified by GSI as a new statement. Returns new SSA name
637 of updated accumulator. */
638
639 static tree
640 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
641 gimple_stmt_iterator gsi)
642 {
643 gimple stmt;
644 tree var;
645 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
646 stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1);
647 else
648 {
649 tree rhs = fold_convert (TREE_TYPE (acc),
650 fold_build2 (code,
651 TREE_TYPE (op1),
652 fold_convert (TREE_TYPE (op1), acc),
653 op1));
654 rhs = force_gimple_operand_gsi (&gsi, rhs,
655 false, NULL, false, GSI_CONTINUE_LINKING);
656 stmt = gimple_build_assign (NULL_TREE, rhs);
657 }
658 var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
659 gimple_assign_set_lhs (stmt, var);
660 update_stmt (stmt);
661 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
662 return var;
663 }
664
665 /* Adjust the accumulator values according to A and M after GSI, and update
666 the phi nodes on edge BACK. */
667
668 static void
669 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
670 {
671 tree var, a_acc_arg, m_acc_arg;
672
673 if (m)
674 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
675 if (a)
676 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
677
678 a_acc_arg = a_acc;
679 m_acc_arg = m_acc;
680 if (a)
681 {
682 if (m_acc)
683 {
684 if (integer_onep (a))
685 var = m_acc;
686 else
687 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
688 a, gsi);
689 }
690 else
691 var = a;
692
693 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
694 }
695
696 if (m)
697 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
698
699 if (a_acc)
700 add_successor_phi_arg (back, a_acc, a_acc_arg);
701
702 if (m_acc)
703 add_successor_phi_arg (back, m_acc, m_acc_arg);
704 }
705
706 /* Adjust value of the return at the end of BB according to M and A
707 accumulators. */
708
709 static void
710 adjust_return_value (basic_block bb, tree m, tree a)
711 {
712 tree retval;
713 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
714 gimple_stmt_iterator gsi = gsi_last_bb (bb);
715
716 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
717
718 retval = gimple_return_retval (ret_stmt);
719 if (!retval || retval == error_mark_node)
720 return;
721
722 if (m)
723 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
724 gsi);
725 if (a)
726 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
727 gsi);
728 gimple_return_set_retval (ret_stmt, retval);
729 update_stmt (ret_stmt);
730 }
731
732 /* Subtract COUNT and FREQUENCY from the basic block and it's
733 outgoing edge. */
734 static void
735 decrease_profile (basic_block bb, gcov_type count, int frequency)
736 {
737 edge e;
738 bb->count -= count;
739 if (bb->count < 0)
740 bb->count = 0;
741 bb->frequency -= frequency;
742 if (bb->frequency < 0)
743 bb->frequency = 0;
744 if (!single_succ_p (bb))
745 {
746 gcc_assert (!EDGE_COUNT (bb->succs));
747 return;
748 }
749 e = single_succ_edge (bb);
750 e->count -= count;
751 if (e->count < 0)
752 e->count = 0;
753 }
754
755 /* Returns true if argument PARAM of the tail recursive call needs to be copied
756 when the call is eliminated. */
757
758 static bool
759 arg_needs_copy_p (tree param)
760 {
761 tree def;
762
763 if (!is_gimple_reg (param) || !var_ann (param))
764 return false;
765
766 /* Parameters that are only defined but never used need not be copied. */
767 def = gimple_default_def (cfun, param);
768 if (!def)
769 return false;
770
771 return true;
772 }
773
774 /* Eliminates tail call described by T. TMP_VARS is a list of
775 temporary variables used to copy the function arguments. */
776
777 static void
778 eliminate_tail_call (struct tailcall *t)
779 {
780 tree param, rslt;
781 gimple stmt, call;
782 tree arg;
783 size_t idx;
784 basic_block bb, first;
785 edge e;
786 gimple phi;
787 gimple_stmt_iterator gsi;
788 gimple orig_stmt;
789
790 stmt = orig_stmt = gsi_stmt (t->call_gsi);
791 bb = gsi_bb (t->call_gsi);
792
793 if (dump_file && (dump_flags & TDF_DETAILS))
794 {
795 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
796 bb->index);
797 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
798 fprintf (dump_file, "\n");
799 }
800
801 gcc_assert (is_gimple_call (stmt));
802
803 first = single_succ (ENTRY_BLOCK_PTR);
804
805 /* Remove the code after call_gsi that will become unreachable. The
806 possibly unreachable code in other blocks is removed later in
807 cfg cleanup. */
808 gsi = t->call_gsi;
809 gsi_next (&gsi);
810 while (!gsi_end_p (gsi))
811 {
812 gimple t = gsi_stmt (gsi);
813 /* Do not remove the return statement, so that redirect_edge_and_branch
814 sees how the block ends. */
815 if (gimple_code (t) == GIMPLE_RETURN)
816 break;
817
818 gsi_remove (&gsi, true);
819 release_defs (t);
820 }
821
822 /* Number of executions of function has reduced by the tailcall. */
823 e = single_succ_edge (gsi_bb (t->call_gsi));
824 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
825 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
826 if (e->dest != EXIT_BLOCK_PTR)
827 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
828
829 /* Replace the call by a jump to the start of function. */
830 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
831 first);
832 gcc_assert (e);
833 PENDING_STMT (e) = NULL;
834
835 /* Add phi node entries for arguments. The ordering of the phi nodes should
836 be the same as the ordering of the arguments. */
837 for (param = DECL_ARGUMENTS (current_function_decl),
838 idx = 0, gsi = gsi_start_phis (first);
839 param;
840 param = DECL_CHAIN (param), idx++)
841 {
842 if (!arg_needs_copy_p (param))
843 continue;
844
845 arg = gimple_call_arg (stmt, idx);
846 phi = gsi_stmt (gsi);
847 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
848
849 add_phi_arg (phi, arg, e, gimple_location (stmt));
850 gsi_next (&gsi);
851 }
852
853 /* Update the values of accumulators. */
854 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
855
856 call = gsi_stmt (t->call_gsi);
857 rslt = gimple_call_lhs (call);
858 if (rslt != NULL_TREE)
859 {
860 /* Result of the call will no longer be defined. So adjust the
861 SSA_NAME_DEF_STMT accordingly. */
862 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
863 }
864
865 gsi_remove (&t->call_gsi, true);
866 release_defs (call);
867 }
868
869 /* Add phi nodes for the virtual operands defined in the function to the
870 header of the loop created by tail recursion elimination.
871
872 Originally, we used to add phi nodes only for call clobbered variables,
873 as the value of the non-call clobbered ones obviously cannot be used
874 or changed within the recursive call. However, the local variables
875 from multiple calls now share the same location, so the virtual ssa form
876 requires us to say that the location dies on further iterations of the loop,
877 which requires adding phi nodes.
878 */
879 static void
880 add_virtual_phis (void)
881 {
882 referenced_var_iterator rvi;
883 tree var;
884
885 /* The problematic part is that there is no way how to know what
886 to put into phi nodes (there in fact does not have to be such
887 ssa name available). A solution would be to have an artificial
888 use/kill for all virtual operands in EXIT node. Unless we have
889 this, we cannot do much better than to rebuild the ssa form for
890 possibly affected virtual ssa names from scratch. */
891
892 FOR_EACH_REFERENCED_VAR (var, rvi)
893 {
894 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
895 mark_sym_for_renaming (var);
896 }
897 }
898
899 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
900 mark the tailcalls for the sibcall optimization. */
901
902 static bool
903 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
904 {
905 if (t->tail_recursion)
906 {
907 eliminate_tail_call (t);
908 return true;
909 }
910
911 if (opt_tailcalls)
912 {
913 gimple stmt = gsi_stmt (t->call_gsi);
914
915 gimple_call_set_tail (stmt, true);
916 if (dump_file && (dump_flags & TDF_DETAILS))
917 {
918 fprintf (dump_file, "Found tail call ");
919 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
920 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
921 }
922 }
923
924 return false;
925 }
926
927 /* Creates a tail-call accumulator of the same type as the return type of the
928 current function. LABEL is the name used to creating the temporary
929 variable for the accumulator. The accumulator will be inserted in the
930 phis of a basic block BB with single predecessor with an initial value
931 INIT converted to the current function return type. */
932
933 static tree
934 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
935 {
936 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
937 tree tmp = create_tmp_reg (ret_type, label);
938 gimple phi;
939
940 add_referenced_var (tmp);
941 phi = create_phi_node (tmp, bb);
942 /* RET_TYPE can be a float when -ffast-maths is enabled. */
943 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
944 UNKNOWN_LOCATION);
945 return PHI_RESULT (phi);
946 }
947
948 /* Optimizes tail calls in the function, turning the tail recursion
949 into iteration. */
950
951 static unsigned int
952 tree_optimize_tail_calls_1 (bool opt_tailcalls)
953 {
954 edge e;
955 bool phis_constructed = false;
956 struct tailcall *tailcalls = NULL, *act, *next;
957 bool changed = false;
958 basic_block first = single_succ (ENTRY_BLOCK_PTR);
959 tree param;
960 gimple stmt;
961 edge_iterator ei;
962
963 if (!suitable_for_tail_opt_p ())
964 return 0;
965 if (opt_tailcalls)
966 opt_tailcalls = suitable_for_tail_call_opt_p ();
967
968 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
969 {
970 /* Only traverse the normal exits, i.e. those that end with return
971 statement. */
972 stmt = last_stmt (e->src);
973
974 if (stmt
975 && gimple_code (stmt) == GIMPLE_RETURN)
976 find_tail_calls (e->src, &tailcalls);
977 }
978
979 /* Construct the phi nodes and accumulators if necessary. */
980 a_acc = m_acc = NULL_TREE;
981 for (act = tailcalls; act; act = act->next)
982 {
983 if (!act->tail_recursion)
984 continue;
985
986 if (!phis_constructed)
987 {
988 /* Ensure that there is only one predecessor of the block
989 or if there are existing degenerate PHI nodes. */
990 if (!single_pred_p (first)
991 || !gimple_seq_empty_p (phi_nodes (first)))
992 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
993
994 /* Copy the args if needed. */
995 for (param = DECL_ARGUMENTS (current_function_decl);
996 param;
997 param = DECL_CHAIN (param))
998 if (arg_needs_copy_p (param))
999 {
1000 tree name = gimple_default_def (cfun, param);
1001 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
1002 gimple phi;
1003
1004 set_default_def (param, new_name);
1005 phi = create_phi_node (name, first);
1006 SSA_NAME_DEF_STMT (name) = phi;
1007 add_phi_arg (phi, new_name, single_pred_edge (first),
1008 EXPR_LOCATION (param));
1009 }
1010 phis_constructed = true;
1011 }
1012
1013 if (act->add && !a_acc)
1014 a_acc = create_tailcall_accumulator ("add_acc", first,
1015 integer_zero_node);
1016
1017 if (act->mult && !m_acc)
1018 m_acc = create_tailcall_accumulator ("mult_acc", first,
1019 integer_one_node);
1020 }
1021
1022 for (; tailcalls; tailcalls = next)
1023 {
1024 next = tailcalls->next;
1025 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1026 free (tailcalls);
1027 }
1028
1029 if (a_acc || m_acc)
1030 {
1031 /* Modify the remaining return statements. */
1032 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1033 {
1034 stmt = last_stmt (e->src);
1035
1036 if (stmt
1037 && gimple_code (stmt) == GIMPLE_RETURN)
1038 adjust_return_value (e->src, m_acc, a_acc);
1039 }
1040 }
1041
1042 if (changed)
1043 free_dominance_info (CDI_DOMINATORS);
1044
1045 if (phis_constructed)
1046 add_virtual_phis ();
1047 if (changed)
1048 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1049 return 0;
1050 }
1051
1052 static unsigned int
1053 execute_tail_recursion (void)
1054 {
1055 return tree_optimize_tail_calls_1 (false);
1056 }
1057
1058 static bool
1059 gate_tail_calls (void)
1060 {
1061 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1062 }
1063
1064 static unsigned int
1065 execute_tail_calls (void)
1066 {
1067 return tree_optimize_tail_calls_1 (true);
1068 }
1069
1070 struct gimple_opt_pass pass_tail_recursion =
1071 {
1072 {
1073 GIMPLE_PASS,
1074 "tailr", /* name */
1075 gate_tail_calls, /* gate */
1076 execute_tail_recursion, /* execute */
1077 NULL, /* sub */
1078 NULL, /* next */
1079 0, /* static_pass_number */
1080 TV_NONE, /* tv_id */
1081 PROP_cfg | PROP_ssa, /* properties_required */
1082 0, /* properties_provided */
1083 0, /* properties_destroyed */
1084 0, /* todo_flags_start */
1085 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1086 }
1087 };
1088
1089 struct gimple_opt_pass pass_tail_calls =
1090 {
1091 {
1092 GIMPLE_PASS,
1093 "tailc", /* name */
1094 gate_tail_calls, /* gate */
1095 execute_tail_calls, /* execute */
1096 NULL, /* sub */
1097 NULL, /* next */
1098 0, /* static_pass_number */
1099 TV_NONE, /* tv_id */
1100 PROP_cfg | PROP_ssa, /* properties_required */
1101 0, /* properties_provided */
1102 0, /* properties_destroyed */
1103 0, /* todo_flags_start */
1104 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1105 }
1106 };