]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vect-generic.c
* gimple.h: Remove all includes.
[thirdparty/gcc.git] / gcc / tree-vect-generic.c
1 /* Lower vector operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "stor-layout.h"
25 #include "tm.h"
26 #include "langhooks.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "tree-eh.h"
31 #include "gimple-expr.h"
32 #include "is-a.h"
33 #include "gimple.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "gimple-ssa.h"
37 #include "tree-cfg.h"
38 #include "stringpool.h"
39 #include "tree-ssanames.h"
40 #include "tree-iterator.h"
41 #include "tree-pass.h"
42 #include "flags.h"
43 #include "diagnostic.h"
44 #include "target.h"
45
46 /* Need to include rtl.h, expr.h, etc. for optabs. */
47 #include "expr.h"
48 #include "optabs.h"
49
50
51 static void expand_vector_operations_1 (gimple_stmt_iterator *);
52
53
54 /* Build a constant of type TYPE, made of VALUE's bits replicated
55 every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision. */
56 static tree
57 build_replicated_const (tree type, tree inner_type, HOST_WIDE_INT value)
58 {
59 int width = tree_to_uhwi (TYPE_SIZE (inner_type));
60 int n = HOST_BITS_PER_WIDE_INT / width;
61 unsigned HOST_WIDE_INT low, high, mask;
62 tree ret;
63
64 gcc_assert (n);
65
66 if (width == HOST_BITS_PER_WIDE_INT)
67 low = value;
68 else
69 {
70 mask = ((HOST_WIDE_INT)1 << width) - 1;
71 low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
72 }
73
74 if (TYPE_PRECISION (type) < HOST_BITS_PER_WIDE_INT)
75 low &= ((HOST_WIDE_INT)1 << TYPE_PRECISION (type)) - 1, high = 0;
76 else if (TYPE_PRECISION (type) == HOST_BITS_PER_WIDE_INT)
77 high = 0;
78 else if (TYPE_PRECISION (type) == HOST_BITS_PER_DOUBLE_INT)
79 high = low;
80 else
81 gcc_unreachable ();
82
83 ret = build_int_cst_wide (type, low, high);
84 return ret;
85 }
86
87 static GTY(()) tree vector_inner_type;
88 static GTY(()) tree vector_last_type;
89 static GTY(()) int vector_last_nunits;
90
91 /* Return a suitable vector types made of SUBPARTS units each of mode
92 "word_mode" (the global variable). */
93 static tree
94 build_word_mode_vector_type (int nunits)
95 {
96 if (!vector_inner_type)
97 vector_inner_type = lang_hooks.types.type_for_mode (word_mode, 1);
98 else if (vector_last_nunits == nunits)
99 {
100 gcc_assert (TREE_CODE (vector_last_type) == VECTOR_TYPE);
101 return vector_last_type;
102 }
103
104 /* We build a new type, but we canonicalize it nevertheless,
105 because it still saves some memory. */
106 vector_last_nunits = nunits;
107 vector_last_type = type_hash_canon (nunits,
108 build_vector_type (vector_inner_type,
109 nunits));
110 return vector_last_type;
111 }
112
113 typedef tree (*elem_op_func) (gimple_stmt_iterator *,
114 tree, tree, tree, tree, tree, enum tree_code);
115
116 static inline tree
117 tree_vec_extract (gimple_stmt_iterator *gsi, tree type,
118 tree t, tree bitsize, tree bitpos)
119 {
120 if (bitpos)
121 return gimplify_build3 (gsi, BIT_FIELD_REF, type, t, bitsize, bitpos);
122 else
123 return gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
124 }
125
126 static tree
127 do_unop (gimple_stmt_iterator *gsi, tree inner_type, tree a,
128 tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
129 enum tree_code code)
130 {
131 a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
132 return gimplify_build1 (gsi, code, inner_type, a);
133 }
134
135 static tree
136 do_binop (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
137 tree bitpos, tree bitsize, enum tree_code code)
138 {
139 if (TREE_CODE (TREE_TYPE (a)) == VECTOR_TYPE)
140 a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
141 if (TREE_CODE (TREE_TYPE (b)) == VECTOR_TYPE)
142 b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
143 return gimplify_build2 (gsi, code, inner_type, a, b);
144 }
145
146 /* Construct expression (A[BITPOS] code B[BITPOS]) ? -1 : 0
147
148 INNER_TYPE is the type of A and B elements
149
150 returned expression is of signed integer type with the
151 size equal to the size of INNER_TYPE. */
152 static tree
153 do_compare (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
154 tree bitpos, tree bitsize, enum tree_code code)
155 {
156 tree comp_type;
157
158 a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
159 b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
160
161 comp_type = build_nonstandard_integer_type
162 (GET_MODE_BITSIZE (TYPE_MODE (inner_type)), 0);
163
164 return gimplify_build3 (gsi, COND_EXPR, comp_type,
165 fold_build2 (code, boolean_type_node, a, b),
166 build_int_cst (comp_type, -1),
167 build_int_cst (comp_type, 0));
168 }
169
170 /* Expand vector addition to scalars. This does bit twiddling
171 in order to increase parallelism:
172
173 a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
174 (a ^ b) & 0x80808080
175
176 a - b = (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
177 (a ^ ~b) & 0x80808080
178
179 -b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)
180
181 This optimization should be done only if 4 vector items or more
182 fit into a word. */
183 static tree
184 do_plus_minus (gimple_stmt_iterator *gsi, tree word_type, tree a, tree b,
185 tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
186 enum tree_code code)
187 {
188 tree inner_type = TREE_TYPE (TREE_TYPE (a));
189 unsigned HOST_WIDE_INT max;
190 tree low_bits, high_bits, a_low, b_low, result_low, signs;
191
192 max = GET_MODE_MASK (TYPE_MODE (inner_type));
193 low_bits = build_replicated_const (word_type, inner_type, max >> 1);
194 high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
195
196 a = tree_vec_extract (gsi, word_type, a, bitsize, bitpos);
197 b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);
198
199 signs = gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, a, b);
200 b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
201 if (code == PLUS_EXPR)
202 a_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, a, low_bits);
203 else
204 {
205 a_low = gimplify_build2 (gsi, BIT_IOR_EXPR, word_type, a, high_bits);
206 signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, signs);
207 }
208
209 signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
210 result_low = gimplify_build2 (gsi, code, word_type, a_low, b_low);
211 return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
212 }
213
214 static tree
215 do_negate (gimple_stmt_iterator *gsi, tree word_type, tree b,
216 tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
217 tree bitsize ATTRIBUTE_UNUSED,
218 enum tree_code code ATTRIBUTE_UNUSED)
219 {
220 tree inner_type = TREE_TYPE (TREE_TYPE (b));
221 HOST_WIDE_INT max;
222 tree low_bits, high_bits, b_low, result_low, signs;
223
224 max = GET_MODE_MASK (TYPE_MODE (inner_type));
225 low_bits = build_replicated_const (word_type, inner_type, max >> 1);
226 high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
227
228 b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);
229
230 b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
231 signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, b);
232 signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
233 result_low = gimplify_build2 (gsi, MINUS_EXPR, word_type, high_bits, b_low);
234 return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
235 }
236
237 /* Expand a vector operation to scalars, by using many operations
238 whose type is the vector type's inner type. */
239 static tree
240 expand_vector_piecewise (gimple_stmt_iterator *gsi, elem_op_func f,
241 tree type, tree inner_type,
242 tree a, tree b, enum tree_code code)
243 {
244 vec<constructor_elt, va_gc> *v;
245 tree part_width = TYPE_SIZE (inner_type);
246 tree index = bitsize_int (0);
247 int nunits = TYPE_VECTOR_SUBPARTS (type);
248 int delta = tree_to_uhwi (part_width)
249 / tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
250 int i;
251 location_t loc = gimple_location (gsi_stmt (*gsi));
252
253 if (types_compatible_p (gimple_expr_type (gsi_stmt (*gsi)), type))
254 warning_at (loc, OPT_Wvector_operation_performance,
255 "vector operation will be expanded piecewise");
256 else
257 warning_at (loc, OPT_Wvector_operation_performance,
258 "vector operation will be expanded in parallel");
259
260 vec_alloc (v, (nunits + delta - 1) / delta);
261 for (i = 0; i < nunits;
262 i += delta, index = int_const_binop (PLUS_EXPR, index, part_width))
263 {
264 tree result = f (gsi, inner_type, a, b, index, part_width, code);
265 constructor_elt ce = {NULL_TREE, result};
266 v->quick_push (ce);
267 }
268
269 return build_constructor (type, v);
270 }
271
272 /* Expand a vector operation to scalars with the freedom to use
273 a scalar integer type, or to use a different size for the items
274 in the vector type. */
275 static tree
276 expand_vector_parallel (gimple_stmt_iterator *gsi, elem_op_func f, tree type,
277 tree a, tree b,
278 enum tree_code code)
279 {
280 tree result, compute_type;
281 enum machine_mode mode;
282 int n_words = tree_to_uhwi (TYPE_SIZE_UNIT (type)) / UNITS_PER_WORD;
283 location_t loc = gimple_location (gsi_stmt (*gsi));
284
285 /* We have three strategies. If the type is already correct, just do
286 the operation an element at a time. Else, if the vector is wider than
287 one word, do it a word at a time; finally, if the vector is smaller
288 than one word, do it as a scalar. */
289 if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
290 return expand_vector_piecewise (gsi, f,
291 type, TREE_TYPE (type),
292 a, b, code);
293 else if (n_words > 1)
294 {
295 tree word_type = build_word_mode_vector_type (n_words);
296 result = expand_vector_piecewise (gsi, f,
297 word_type, TREE_TYPE (word_type),
298 a, b, code);
299 result = force_gimple_operand_gsi (gsi, result, true, NULL, true,
300 GSI_SAME_STMT);
301 }
302 else
303 {
304 /* Use a single scalar operation with a mode no wider than word_mode. */
305 mode = mode_for_size (tree_to_uhwi (TYPE_SIZE (type)), MODE_INT, 0);
306 compute_type = lang_hooks.types.type_for_mode (mode, 1);
307 result = f (gsi, compute_type, a, b, NULL_TREE, NULL_TREE, code);
308 warning_at (loc, OPT_Wvector_operation_performance,
309 "vector operation will be expanded with a "
310 "single scalar operation");
311 }
312
313 return result;
314 }
315
316 /* Expand a vector operation to scalars; for integer types we can use
317 special bit twiddling tricks to do the sums a word at a time, using
318 function F_PARALLEL instead of F. These tricks are done only if
319 they can process at least four items, that is, only if the vector
320 holds at least four items and if a word can hold four items. */
321 static tree
322 expand_vector_addition (gimple_stmt_iterator *gsi,
323 elem_op_func f, elem_op_func f_parallel,
324 tree type, tree a, tree b, enum tree_code code)
325 {
326 int parts_per_word = UNITS_PER_WORD
327 / tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type)));
328
329 if (INTEGRAL_TYPE_P (TREE_TYPE (type))
330 && parts_per_word >= 4
331 && TYPE_VECTOR_SUBPARTS (type) >= 4)
332 return expand_vector_parallel (gsi, f_parallel,
333 type, a, b, code);
334 else
335 return expand_vector_piecewise (gsi, f,
336 type, TREE_TYPE (type),
337 a, b, code);
338 }
339
340 /* Try to expand vector comparison expression OP0 CODE OP1 by
341 querying optab if the following expression:
342 VEC_COND_EXPR< OP0 CODE OP1, {-1,...}, {0,...}>
343 can be expanded. */
344 static tree
345 expand_vector_comparison (gimple_stmt_iterator *gsi, tree type, tree op0,
346 tree op1, enum tree_code code)
347 {
348 tree t;
349 if (! expand_vec_cond_expr_p (type, TREE_TYPE (op0)))
350 t = expand_vector_piecewise (gsi, do_compare, type,
351 TREE_TYPE (TREE_TYPE (op0)), op0, op1, code);
352 else
353 t = NULL_TREE;
354
355 return t;
356 }
357
358 /* Helper function of expand_vector_divmod. Gimplify a RSHIFT_EXPR in type
359 of OP0 with shift counts in SHIFTCNTS array and return the temporary holding
360 the result if successful, otherwise return NULL_TREE. */
361 static tree
362 add_rshift (gimple_stmt_iterator *gsi, tree type, tree op0, int *shiftcnts)
363 {
364 optab op;
365 unsigned int i, nunits = TYPE_VECTOR_SUBPARTS (type);
366 bool scalar_shift = true;
367
368 for (i = 1; i < nunits; i++)
369 {
370 if (shiftcnts[i] != shiftcnts[0])
371 scalar_shift = false;
372 }
373
374 if (scalar_shift && shiftcnts[0] == 0)
375 return op0;
376
377 if (scalar_shift)
378 {
379 op = optab_for_tree_code (RSHIFT_EXPR, type, optab_scalar);
380 if (op != unknown_optab
381 && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
382 return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0,
383 build_int_cst (NULL_TREE, shiftcnts[0]));
384 }
385
386 op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
387 if (op != unknown_optab
388 && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
389 {
390 tree *vec = XALLOCAVEC (tree, nunits);
391 for (i = 0; i < nunits; i++)
392 vec[i] = build_int_cst (TREE_TYPE (type), shiftcnts[i]);
393 return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0,
394 build_vector (type, vec));
395 }
396
397 return NULL_TREE;
398 }
399
400 /* Try to expand integer vector division by constant using
401 widening multiply, shifts and additions. */
402 static tree
403 expand_vector_divmod (gimple_stmt_iterator *gsi, tree type, tree op0,
404 tree op1, enum tree_code code)
405 {
406 bool use_pow2 = true;
407 bool has_vector_shift = true;
408 int mode = -1, this_mode;
409 int pre_shift = -1, post_shift;
410 unsigned int nunits = TYPE_VECTOR_SUBPARTS (type);
411 int *shifts = XALLOCAVEC (int, nunits * 4);
412 int *pre_shifts = shifts + nunits;
413 int *post_shifts = pre_shifts + nunits;
414 int *shift_temps = post_shifts + nunits;
415 unsigned HOST_WIDE_INT *mulc = XALLOCAVEC (unsigned HOST_WIDE_INT, nunits);
416 int prec = TYPE_PRECISION (TREE_TYPE (type));
417 int dummy_int;
418 unsigned int i, unsignedp = TYPE_UNSIGNED (TREE_TYPE (type));
419 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (TYPE_MODE (TREE_TYPE (type)));
420 tree *vec;
421 tree cur_op, mulcst, tem;
422 optab op;
423
424 if (prec > HOST_BITS_PER_WIDE_INT)
425 return NULL_TREE;
426
427 op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
428 if (op == unknown_optab
429 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
430 has_vector_shift = false;
431
432 /* Analysis phase. Determine if all op1 elements are either power
433 of two and it is possible to expand it using shifts (or for remainder
434 using masking). Additionally compute the multiplicative constants
435 and pre and post shifts if the division is to be expanded using
436 widening or high part multiplication plus shifts. */
437 for (i = 0; i < nunits; i++)
438 {
439 tree cst = VECTOR_CST_ELT (op1, i);
440 unsigned HOST_WIDE_INT ml;
441
442 if (TREE_CODE (cst) != INTEGER_CST || integer_zerop (cst))
443 return NULL_TREE;
444 pre_shifts[i] = 0;
445 post_shifts[i] = 0;
446 mulc[i] = 0;
447 if (use_pow2
448 && (!integer_pow2p (cst) || tree_int_cst_sgn (cst) != 1))
449 use_pow2 = false;
450 if (use_pow2)
451 {
452 shifts[i] = tree_log2 (cst);
453 if (shifts[i] != shifts[0]
454 && code == TRUNC_DIV_EXPR
455 && !has_vector_shift)
456 use_pow2 = false;
457 }
458 if (mode == -2)
459 continue;
460 if (unsignedp)
461 {
462 unsigned HOST_WIDE_INT mh;
463 unsigned HOST_WIDE_INT d = TREE_INT_CST_LOW (cst) & mask;
464
465 if (d >= ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))
466 /* FIXME: Can transform this into op0 >= op1 ? 1 : 0. */
467 return NULL_TREE;
468
469 if (d <= 1)
470 {
471 mode = -2;
472 continue;
473 }
474
475 /* Find a suitable multiplier and right shift count
476 instead of multiplying with D. */
477 mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
478
479 /* If the suggested multiplier is more than SIZE bits, we can
480 do better for even divisors, using an initial right shift. */
481 if ((mh != 0 && (d & 1) == 0)
482 || (!has_vector_shift && pre_shift != -1))
483 {
484 if (has_vector_shift)
485 pre_shift = floor_log2 (d & -d);
486 else if (pre_shift == -1)
487 {
488 unsigned int j;
489 for (j = 0; j < nunits; j++)
490 {
491 tree cst2 = VECTOR_CST_ELT (op1, j);
492 unsigned HOST_WIDE_INT d2;
493 int this_pre_shift;
494
495 if (!tree_fits_uhwi_p (cst2))
496 return NULL_TREE;
497 d2 = tree_to_uhwi (cst2) & mask;
498 if (d2 == 0)
499 return NULL_TREE;
500 this_pre_shift = floor_log2 (d2 & -d2);
501 if (pre_shift == -1 || this_pre_shift < pre_shift)
502 pre_shift = this_pre_shift;
503 }
504 if (i != 0 && pre_shift != 0)
505 {
506 /* Restart. */
507 i = -1U;
508 mode = -1;
509 continue;
510 }
511 }
512 if (pre_shift != 0)
513 {
514 if ((d >> pre_shift) <= 1)
515 {
516 mode = -2;
517 continue;
518 }
519 mh = choose_multiplier (d >> pre_shift, prec,
520 prec - pre_shift,
521 &ml, &post_shift, &dummy_int);
522 gcc_assert (!mh);
523 pre_shifts[i] = pre_shift;
524 }
525 }
526 if (!mh)
527 this_mode = 0;
528 else
529 this_mode = 1;
530 }
531 else
532 {
533 HOST_WIDE_INT d = TREE_INT_CST_LOW (cst);
534 unsigned HOST_WIDE_INT abs_d;
535
536 if (d == -1)
537 return NULL_TREE;
538
539 /* Since d might be INT_MIN, we have to cast to
540 unsigned HOST_WIDE_INT before negating to avoid
541 undefined signed overflow. */
542 abs_d = (d >= 0
543 ? (unsigned HOST_WIDE_INT) d
544 : - (unsigned HOST_WIDE_INT) d);
545
546 /* n rem d = n rem -d */
547 if (code == TRUNC_MOD_EXPR && d < 0)
548 d = abs_d;
549 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (prec - 1))
550 {
551 /* This case is not handled correctly below. */
552 mode = -2;
553 continue;
554 }
555 if (abs_d <= 1)
556 {
557 mode = -2;
558 continue;
559 }
560
561 choose_multiplier (abs_d, prec, prec - 1, &ml,
562 &post_shift, &dummy_int);
563 if (ml >= (unsigned HOST_WIDE_INT) 1 << (prec - 1))
564 {
565 this_mode = 4 + (d < 0);
566 ml |= (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
567 }
568 else
569 this_mode = 2 + (d < 0);
570 }
571 mulc[i] = ml;
572 post_shifts[i] = post_shift;
573 if ((i && !has_vector_shift && post_shifts[0] != post_shift)
574 || post_shift >= prec
575 || pre_shifts[i] >= prec)
576 this_mode = -2;
577
578 if (i == 0)
579 mode = this_mode;
580 else if (mode != this_mode)
581 mode = -2;
582 }
583
584 vec = XALLOCAVEC (tree, nunits);
585
586 if (use_pow2)
587 {
588 tree addend = NULL_TREE;
589 if (!unsignedp)
590 {
591 tree uns_type;
592
593 /* Both division and remainder sequences need
594 op0 < 0 ? mask : 0 computed. It can be either computed as
595 (type) (((uns_type) (op0 >> (prec - 1))) >> (prec - shifts[i]))
596 if none of the shifts is 0, or as the conditional. */
597 for (i = 0; i < nunits; i++)
598 if (shifts[i] == 0)
599 break;
600 uns_type
601 = build_vector_type (build_nonstandard_integer_type (prec, 1),
602 nunits);
603 if (i == nunits && TYPE_MODE (uns_type) == TYPE_MODE (type))
604 {
605 for (i = 0; i < nunits; i++)
606 shift_temps[i] = prec - 1;
607 cur_op = add_rshift (gsi, type, op0, shift_temps);
608 if (cur_op != NULL_TREE)
609 {
610 cur_op = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
611 uns_type, cur_op);
612 for (i = 0; i < nunits; i++)
613 shift_temps[i] = prec - shifts[i];
614 cur_op = add_rshift (gsi, uns_type, cur_op, shift_temps);
615 if (cur_op != NULL_TREE)
616 addend = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
617 type, cur_op);
618 }
619 }
620 if (addend == NULL_TREE
621 && expand_vec_cond_expr_p (type, type))
622 {
623 tree zero, cst, cond;
624 gimple stmt;
625
626 zero = build_zero_cst (type);
627 cond = build2 (LT_EXPR, type, op0, zero);
628 for (i = 0; i < nunits; i++)
629 vec[i] = build_int_cst (TREE_TYPE (type),
630 ((unsigned HOST_WIDE_INT) 1
631 << shifts[i]) - 1);
632 cst = build_vector (type, vec);
633 addend = make_ssa_name (type, NULL);
634 stmt = gimple_build_assign_with_ops (VEC_COND_EXPR, addend,
635 cond, cst, zero);
636 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
637 }
638 }
639 if (code == TRUNC_DIV_EXPR)
640 {
641 if (unsignedp)
642 {
643 /* q = op0 >> shift; */
644 cur_op = add_rshift (gsi, type, op0, shifts);
645 if (cur_op != NULL_TREE)
646 return cur_op;
647 }
648 else if (addend != NULL_TREE)
649 {
650 /* t1 = op0 + addend;
651 q = t1 >> shift; */
652 op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
653 if (op != unknown_optab
654 && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
655 {
656 cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0, addend);
657 cur_op = add_rshift (gsi, type, cur_op, shifts);
658 if (cur_op != NULL_TREE)
659 return cur_op;
660 }
661 }
662 }
663 else
664 {
665 tree mask;
666 for (i = 0; i < nunits; i++)
667 vec[i] = build_int_cst (TREE_TYPE (type),
668 ((unsigned HOST_WIDE_INT) 1
669 << shifts[i]) - 1);
670 mask = build_vector (type, vec);
671 op = optab_for_tree_code (BIT_AND_EXPR, type, optab_default);
672 if (op != unknown_optab
673 && optab_handler (op, TYPE_MODE (type)) != CODE_FOR_nothing)
674 {
675 if (unsignedp)
676 /* r = op0 & mask; */
677 return gimplify_build2 (gsi, BIT_AND_EXPR, type, op0, mask);
678 else if (addend != NULL_TREE)
679 {
680 /* t1 = op0 + addend;
681 t2 = t1 & mask;
682 r = t2 - addend; */
683 op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
684 if (op != unknown_optab
685 && optab_handler (op, TYPE_MODE (type))
686 != CODE_FOR_nothing)
687 {
688 cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0,
689 addend);
690 cur_op = gimplify_build2 (gsi, BIT_AND_EXPR, type,
691 cur_op, mask);
692 op = optab_for_tree_code (MINUS_EXPR, type,
693 optab_default);
694 if (op != unknown_optab
695 && optab_handler (op, TYPE_MODE (type))
696 != CODE_FOR_nothing)
697 return gimplify_build2 (gsi, MINUS_EXPR, type,
698 cur_op, addend);
699 }
700 }
701 }
702 }
703 }
704
705 if (mode == -2 || BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
706 return NULL_TREE;
707
708 if (!can_mult_highpart_p (TYPE_MODE (type), TYPE_UNSIGNED (type)))
709 return NULL_TREE;
710
711 cur_op = op0;
712
713 switch (mode)
714 {
715 case 0:
716 gcc_assert (unsignedp);
717 /* t1 = oprnd0 >> pre_shift;
718 t2 = t1 h* ml;
719 q = t2 >> post_shift; */
720 cur_op = add_rshift (gsi, type, cur_op, pre_shifts);
721 if (cur_op == NULL_TREE)
722 return NULL_TREE;
723 break;
724 case 1:
725 gcc_assert (unsignedp);
726 for (i = 0; i < nunits; i++)
727 {
728 shift_temps[i] = 1;
729 post_shifts[i]--;
730 }
731 break;
732 case 2:
733 case 3:
734 case 4:
735 case 5:
736 gcc_assert (!unsignedp);
737 for (i = 0; i < nunits; i++)
738 shift_temps[i] = prec - 1;
739 break;
740 default:
741 return NULL_TREE;
742 }
743
744 for (i = 0; i < nunits; i++)
745 vec[i] = build_int_cst (TREE_TYPE (type), mulc[i]);
746 mulcst = build_vector (type, vec);
747
748 cur_op = gimplify_build2 (gsi, MULT_HIGHPART_EXPR, type, cur_op, mulcst);
749
750 switch (mode)
751 {
752 case 0:
753 /* t1 = oprnd0 >> pre_shift;
754 t2 = t1 h* ml;
755 q = t2 >> post_shift; */
756 cur_op = add_rshift (gsi, type, cur_op, post_shifts);
757 break;
758 case 1:
759 /* t1 = oprnd0 h* ml;
760 t2 = oprnd0 - t1;
761 t3 = t2 >> 1;
762 t4 = t1 + t3;
763 q = t4 >> (post_shift - 1); */
764 op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
765 if (op == unknown_optab
766 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
767 return NULL_TREE;
768 tem = gimplify_build2 (gsi, MINUS_EXPR, type, op0, cur_op);
769 tem = add_rshift (gsi, type, tem, shift_temps);
770 op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
771 if (op == unknown_optab
772 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
773 return NULL_TREE;
774 tem = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, tem);
775 cur_op = add_rshift (gsi, type, tem, post_shifts);
776 if (cur_op == NULL_TREE)
777 return NULL_TREE;
778 break;
779 case 2:
780 case 3:
781 case 4:
782 case 5:
783 /* t1 = oprnd0 h* ml;
784 t2 = t1; [ iff (mode & 2) != 0 ]
785 t2 = t1 + oprnd0; [ iff (mode & 2) == 0 ]
786 t3 = t2 >> post_shift;
787 t4 = oprnd0 >> (prec - 1);
788 q = t3 - t4; [ iff (mode & 1) == 0 ]
789 q = t4 - t3; [ iff (mode & 1) != 0 ] */
790 if ((mode & 2) == 0)
791 {
792 op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
793 if (op == unknown_optab
794 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
795 return NULL_TREE;
796 cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, op0);
797 }
798 cur_op = add_rshift (gsi, type, cur_op, post_shifts);
799 if (cur_op == NULL_TREE)
800 return NULL_TREE;
801 tem = add_rshift (gsi, type, op0, shift_temps);
802 if (tem == NULL_TREE)
803 return NULL_TREE;
804 op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
805 if (op == unknown_optab
806 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
807 return NULL_TREE;
808 if ((mode & 1) == 0)
809 cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, cur_op, tem);
810 else
811 cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, tem, cur_op);
812 break;
813 default:
814 gcc_unreachable ();
815 }
816
817 if (code == TRUNC_DIV_EXPR)
818 return cur_op;
819
820 /* We divided. Now finish by:
821 t1 = q * oprnd1;
822 r = oprnd0 - t1; */
823 op = optab_for_tree_code (MULT_EXPR, type, optab_default);
824 if (op == unknown_optab
825 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
826 return NULL_TREE;
827 tem = gimplify_build2 (gsi, MULT_EXPR, type, cur_op, op1);
828 op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
829 if (op == unknown_optab
830 || optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing)
831 return NULL_TREE;
832 return gimplify_build2 (gsi, MINUS_EXPR, type, op0, tem);
833 }
834
835 /* Expand a vector condition to scalars, by using many conditions
836 on the vector's elements. */
837 static void
838 expand_vector_condition (gimple_stmt_iterator *gsi)
839 {
840 gimple stmt = gsi_stmt (*gsi);
841 tree type = gimple_expr_type (stmt);
842 tree a = gimple_assign_rhs1 (stmt);
843 tree a1 = a;
844 tree a2;
845 bool a_is_comparison = false;
846 tree b = gimple_assign_rhs2 (stmt);
847 tree c = gimple_assign_rhs3 (stmt);
848 vec<constructor_elt, va_gc> *v;
849 tree constr;
850 tree inner_type = TREE_TYPE (type);
851 tree cond_type = TREE_TYPE (TREE_TYPE (a));
852 tree comp_inner_type = cond_type;
853 tree width = TYPE_SIZE (inner_type);
854 tree index = bitsize_int (0);
855 int nunits = TYPE_VECTOR_SUBPARTS (type);
856 int i;
857 location_t loc = gimple_location (gsi_stmt (*gsi));
858
859 if (!is_gimple_val (a))
860 {
861 gcc_assert (COMPARISON_CLASS_P (a));
862 a_is_comparison = true;
863 a1 = TREE_OPERAND (a, 0);
864 a2 = TREE_OPERAND (a, 1);
865 comp_inner_type = TREE_TYPE (TREE_TYPE (a1));
866 }
867
868 if (expand_vec_cond_expr_p (type, TREE_TYPE (a1)))
869 return;
870
871 /* TODO: try and find a smaller vector type. */
872
873 warning_at (loc, OPT_Wvector_operation_performance,
874 "vector condition will be expanded piecewise");
875
876 vec_alloc (v, nunits);
877 for (i = 0; i < nunits;
878 i++, index = int_const_binop (PLUS_EXPR, index, width))
879 {
880 tree aa, result;
881 tree bb = tree_vec_extract (gsi, inner_type, b, width, index);
882 tree cc = tree_vec_extract (gsi, inner_type, c, width, index);
883 if (a_is_comparison)
884 {
885 tree aa1 = tree_vec_extract (gsi, comp_inner_type, a1, width, index);
886 tree aa2 = tree_vec_extract (gsi, comp_inner_type, a2, width, index);
887 aa = build2 (TREE_CODE (a), cond_type, aa1, aa2);
888 }
889 else
890 aa = tree_vec_extract (gsi, cond_type, a, width, index);
891 result = gimplify_build3 (gsi, COND_EXPR, inner_type, aa, bb, cc);
892 constructor_elt ce = {NULL_TREE, result};
893 v->quick_push (ce);
894 }
895
896 constr = build_constructor (type, v);
897 gimple_assign_set_rhs_from_tree (gsi, constr);
898 update_stmt (gsi_stmt (*gsi));
899 }
900
901 static tree
902 expand_vector_operation (gimple_stmt_iterator *gsi, tree type, tree compute_type,
903 gimple assign, enum tree_code code)
904 {
905 enum machine_mode compute_mode = TYPE_MODE (compute_type);
906
907 /* If the compute mode is not a vector mode (hence we are not decomposing
908 a BLKmode vector to smaller, hardware-supported vectors), we may want
909 to expand the operations in parallel. */
910 if (GET_MODE_CLASS (compute_mode) != MODE_VECTOR_INT
911 && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FLOAT
912 && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FRACT
913 && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UFRACT
914 && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_ACCUM
915 && GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UACCUM)
916 switch (code)
917 {
918 case PLUS_EXPR:
919 case MINUS_EXPR:
920 if (!TYPE_OVERFLOW_TRAPS (type))
921 return expand_vector_addition (gsi, do_binop, do_plus_minus, type,
922 gimple_assign_rhs1 (assign),
923 gimple_assign_rhs2 (assign), code);
924 break;
925
926 case NEGATE_EXPR:
927 if (!TYPE_OVERFLOW_TRAPS (type))
928 return expand_vector_addition (gsi, do_unop, do_negate, type,
929 gimple_assign_rhs1 (assign),
930 NULL_TREE, code);
931 break;
932
933 case BIT_AND_EXPR:
934 case BIT_IOR_EXPR:
935 case BIT_XOR_EXPR:
936 return expand_vector_parallel (gsi, do_binop, type,
937 gimple_assign_rhs1 (assign),
938 gimple_assign_rhs2 (assign), code);
939
940 case BIT_NOT_EXPR:
941 return expand_vector_parallel (gsi, do_unop, type,
942 gimple_assign_rhs1 (assign),
943 NULL_TREE, code);
944 case EQ_EXPR:
945 case NE_EXPR:
946 case GT_EXPR:
947 case LT_EXPR:
948 case GE_EXPR:
949 case LE_EXPR:
950 case UNEQ_EXPR:
951 case UNGT_EXPR:
952 case UNLT_EXPR:
953 case UNGE_EXPR:
954 case UNLE_EXPR:
955 case LTGT_EXPR:
956 case ORDERED_EXPR:
957 case UNORDERED_EXPR:
958 {
959 tree rhs1 = gimple_assign_rhs1 (assign);
960 tree rhs2 = gimple_assign_rhs2 (assign);
961
962 return expand_vector_comparison (gsi, type, rhs1, rhs2, code);
963 }
964
965 case TRUNC_DIV_EXPR:
966 case TRUNC_MOD_EXPR:
967 {
968 tree rhs1 = gimple_assign_rhs1 (assign);
969 tree rhs2 = gimple_assign_rhs2 (assign);
970 tree ret;
971
972 if (!optimize
973 || !VECTOR_INTEGER_TYPE_P (type)
974 || TREE_CODE (rhs2) != VECTOR_CST)
975 break;
976
977 ret = expand_vector_divmod (gsi, type, rhs1, rhs2, code);
978 if (ret != NULL_TREE)
979 return ret;
980 break;
981 }
982
983 default:
984 break;
985 }
986
987 if (TREE_CODE_CLASS (code) == tcc_unary)
988 return expand_vector_piecewise (gsi, do_unop, type, compute_type,
989 gimple_assign_rhs1 (assign),
990 NULL_TREE, code);
991 else
992 return expand_vector_piecewise (gsi, do_binop, type, compute_type,
993 gimple_assign_rhs1 (assign),
994 gimple_assign_rhs2 (assign), code);
995 }
996
997 /* Try to optimize
998 a_5 = { b_7, b_7 + 3, b_7 + 6, b_7 + 9 };
999 style stmts into:
1000 _9 = { b_7, b_7, b_7, b_7 };
1001 a_5 = _9 + { 0, 3, 6, 9 };
1002 because vector splat operation is usually more efficient
1003 than piecewise initialization of the vector. */
1004
1005 static void
1006 optimize_vector_constructor (gimple_stmt_iterator *gsi)
1007 {
1008 gimple stmt = gsi_stmt (*gsi);
1009 tree lhs = gimple_assign_lhs (stmt);
1010 tree rhs = gimple_assign_rhs1 (stmt);
1011 tree type = TREE_TYPE (rhs);
1012 unsigned int i, j, nelts = TYPE_VECTOR_SUBPARTS (type);
1013 bool all_same = true;
1014 constructor_elt *elt;
1015 tree *cst;
1016 gimple g;
1017 tree base = NULL_TREE;
1018
1019 if (nelts <= 2 || CONSTRUCTOR_NELTS (rhs) != nelts)
1020 return;
1021 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs), i, elt)
1022 if (TREE_CODE (elt->value) != SSA_NAME
1023 || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
1024 return;
1025 else
1026 {
1027 tree this_base = elt->value;
1028 if (this_base != CONSTRUCTOR_ELT (rhs, 0)->value)
1029 all_same = false;
1030 for (j = 0; j < nelts + 1; j++)
1031 {
1032 g = SSA_NAME_DEF_STMT (this_base);
1033 if (is_gimple_assign (g)
1034 && gimple_assign_rhs_code (g) == PLUS_EXPR
1035 && TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST
1036 && TREE_CODE (gimple_assign_rhs1 (g)) == SSA_NAME
1037 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
1038 this_base = gimple_assign_rhs1 (g);
1039 else
1040 break;
1041 }
1042 if (i == 0)
1043 base = this_base;
1044 else if (this_base != base)
1045 return;
1046 }
1047 if (all_same)
1048 return;
1049 cst = XALLOCAVEC (tree, nelts);
1050 for (i = 0; i < nelts; i++)
1051 {
1052 tree this_base = CONSTRUCTOR_ELT (rhs, i)->value;;
1053 cst[i] = build_zero_cst (TREE_TYPE (base));
1054 while (this_base != base)
1055 {
1056 g = SSA_NAME_DEF_STMT (this_base);
1057 cst[i] = fold_binary (PLUS_EXPR, TREE_TYPE (base),
1058 cst[i], gimple_assign_rhs2 (g));
1059 if (cst[i] == NULL_TREE
1060 || TREE_CODE (cst[i]) != INTEGER_CST
1061 || TREE_OVERFLOW (cst[i]))
1062 return;
1063 this_base = gimple_assign_rhs1 (g);
1064 }
1065 }
1066 for (i = 0; i < nelts; i++)
1067 CONSTRUCTOR_ELT (rhs, i)->value = base;
1068 g = gimple_build_assign (make_ssa_name (type, NULL), rhs);
1069 gsi_insert_before (gsi, g, GSI_SAME_STMT);
1070 g = gimple_build_assign_with_ops (PLUS_EXPR, lhs, gimple_assign_lhs (g),
1071 build_vector (type, cst));
1072 gsi_replace (gsi, g, false);
1073 }
1074 \f
1075 /* Return a type for the widest vector mode whose components are of type
1076 TYPE, or NULL_TREE if none is found. */
1077
1078 static tree
1079 type_for_widest_vector_mode (tree type, optab op)
1080 {
1081 enum machine_mode inner_mode = TYPE_MODE (type);
1082 enum machine_mode best_mode = VOIDmode, mode;
1083 int best_nunits = 0;
1084
1085 if (SCALAR_FLOAT_MODE_P (inner_mode))
1086 mode = MIN_MODE_VECTOR_FLOAT;
1087 else if (SCALAR_FRACT_MODE_P (inner_mode))
1088 mode = MIN_MODE_VECTOR_FRACT;
1089 else if (SCALAR_UFRACT_MODE_P (inner_mode))
1090 mode = MIN_MODE_VECTOR_UFRACT;
1091 else if (SCALAR_ACCUM_MODE_P (inner_mode))
1092 mode = MIN_MODE_VECTOR_ACCUM;
1093 else if (SCALAR_UACCUM_MODE_P (inner_mode))
1094 mode = MIN_MODE_VECTOR_UACCUM;
1095 else
1096 mode = MIN_MODE_VECTOR_INT;
1097
1098 for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
1099 if (GET_MODE_INNER (mode) == inner_mode
1100 && GET_MODE_NUNITS (mode) > best_nunits
1101 && optab_handler (op, mode) != CODE_FOR_nothing)
1102 best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);
1103
1104 if (best_mode == VOIDmode)
1105 return NULL_TREE;
1106 else
1107 return build_vector_type_for_mode (type, best_mode);
1108 }
1109
1110
1111 /* Build a reference to the element of the vector VECT. Function
1112 returns either the element itself, either BIT_FIELD_REF, or an
1113 ARRAY_REF expression.
1114
1115 GSI is required to insert temporary variables while building a
1116 refernece to the element of the vector VECT.
1117
1118 PTMPVEC is a pointer to the temporary variable for caching
1119 purposes. In case when PTMPVEC is NULL new temporary variable
1120 will be created. */
1121 static tree
1122 vector_element (gimple_stmt_iterator *gsi, tree vect, tree idx, tree *ptmpvec)
1123 {
1124 tree vect_type, vect_elt_type;
1125 gimple asgn;
1126 tree tmpvec;
1127 tree arraytype;
1128 bool need_asgn = true;
1129 unsigned int elements;
1130
1131 vect_type = TREE_TYPE (vect);
1132 vect_elt_type = TREE_TYPE (vect_type);
1133 elements = TYPE_VECTOR_SUBPARTS (vect_type);
1134
1135 if (TREE_CODE (idx) == INTEGER_CST)
1136 {
1137 unsigned HOST_WIDE_INT index;
1138
1139 /* Given that we're about to compute a binary modulus,
1140 we don't care about the high bits of the value. */
1141 index = TREE_INT_CST_LOW (idx);
1142 if (!tree_fits_uhwi_p (idx) || index >= elements)
1143 {
1144 index &= elements - 1;
1145 idx = build_int_cst (TREE_TYPE (idx), index);
1146 }
1147
1148 /* When lowering a vector statement sequence do some easy
1149 simplification by looking through intermediate vector results. */
1150 if (TREE_CODE (vect) == SSA_NAME)
1151 {
1152 gimple def_stmt = SSA_NAME_DEF_STMT (vect);
1153 if (is_gimple_assign (def_stmt)
1154 && (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
1155 || gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR))
1156 vect = gimple_assign_rhs1 (def_stmt);
1157 }
1158
1159 if (TREE_CODE (vect) == VECTOR_CST)
1160 return VECTOR_CST_ELT (vect, index);
1161 else if (TREE_CODE (vect) == CONSTRUCTOR
1162 && (CONSTRUCTOR_NELTS (vect) == 0
1163 || TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (vect, 0)->value))
1164 != VECTOR_TYPE))
1165 {
1166 if (index < CONSTRUCTOR_NELTS (vect))
1167 return CONSTRUCTOR_ELT (vect, index)->value;
1168 return build_zero_cst (vect_elt_type);
1169 }
1170 else
1171 {
1172 tree size = TYPE_SIZE (vect_elt_type);
1173 tree pos = fold_build2 (MULT_EXPR, bitsizetype, bitsize_int (index),
1174 size);
1175 return fold_build3 (BIT_FIELD_REF, vect_elt_type, vect, size, pos);
1176 }
1177 }
1178
1179 if (!ptmpvec)
1180 tmpvec = create_tmp_var (vect_type, "vectmp");
1181 else if (!*ptmpvec)
1182 tmpvec = *ptmpvec = create_tmp_var (vect_type, "vectmp");
1183 else
1184 {
1185 tmpvec = *ptmpvec;
1186 need_asgn = false;
1187 }
1188
1189 if (need_asgn)
1190 {
1191 TREE_ADDRESSABLE (tmpvec) = 1;
1192 asgn = gimple_build_assign (tmpvec, vect);
1193 gsi_insert_before (gsi, asgn, GSI_SAME_STMT);
1194 }
1195
1196 arraytype = build_array_type_nelts (vect_elt_type, elements);
1197 return build4 (ARRAY_REF, vect_elt_type,
1198 build1 (VIEW_CONVERT_EXPR, arraytype, tmpvec),
1199 idx, NULL_TREE, NULL_TREE);
1200 }
1201
1202 /* Check if VEC_PERM_EXPR within the given setting is supported
1203 by hardware, or lower it piecewise.
1204
1205 When VEC_PERM_EXPR has the same first and second operands:
1206 VEC_PERM_EXPR <v0, v0, mask> the lowered version would be
1207 {v0[mask[0]], v0[mask[1]], ...}
1208 MASK and V0 must have the same number of elements.
1209
1210 Otherwise VEC_PERM_EXPR <v0, v1, mask> is lowered to
1211 {mask[0] < len(v0) ? v0[mask[0]] : v1[mask[0]], ...}
1212 V0 and V1 must have the same type. MASK, V0, V1 must have the
1213 same number of arguments. */
1214
1215 static void
1216 lower_vec_perm (gimple_stmt_iterator *gsi)
1217 {
1218 gimple stmt = gsi_stmt (*gsi);
1219 tree mask = gimple_assign_rhs3 (stmt);
1220 tree vec0 = gimple_assign_rhs1 (stmt);
1221 tree vec1 = gimple_assign_rhs2 (stmt);
1222 tree vect_type = TREE_TYPE (vec0);
1223 tree mask_type = TREE_TYPE (mask);
1224 tree vect_elt_type = TREE_TYPE (vect_type);
1225 tree mask_elt_type = TREE_TYPE (mask_type);
1226 unsigned int elements = TYPE_VECTOR_SUBPARTS (vect_type);
1227 vec<constructor_elt, va_gc> *v;
1228 tree constr, t, si, i_val;
1229 tree vec0tmp = NULL_TREE, vec1tmp = NULL_TREE, masktmp = NULL_TREE;
1230 bool two_operand_p = !operand_equal_p (vec0, vec1, 0);
1231 location_t loc = gimple_location (gsi_stmt (*gsi));
1232 unsigned i;
1233
1234 if (TREE_CODE (mask) == SSA_NAME)
1235 {
1236 gimple def_stmt = SSA_NAME_DEF_STMT (mask);
1237 if (is_gimple_assign (def_stmt)
1238 && gimple_assign_rhs_code (def_stmt) == VECTOR_CST)
1239 mask = gimple_assign_rhs1 (def_stmt);
1240 }
1241
1242 if (TREE_CODE (mask) == VECTOR_CST)
1243 {
1244 unsigned char *sel_int = XALLOCAVEC (unsigned char, elements);
1245
1246 for (i = 0; i < elements; ++i)
1247 sel_int[i] = (TREE_INT_CST_LOW (VECTOR_CST_ELT (mask, i))
1248 & (2 * elements - 1));
1249
1250 if (can_vec_perm_p (TYPE_MODE (vect_type), false, sel_int))
1251 {
1252 gimple_assign_set_rhs3 (stmt, mask);
1253 update_stmt (stmt);
1254 return;
1255 }
1256 }
1257 else if (can_vec_perm_p (TYPE_MODE (vect_type), true, NULL))
1258 return;
1259
1260 warning_at (loc, OPT_Wvector_operation_performance,
1261 "vector shuffling operation will be expanded piecewise");
1262
1263 vec_alloc (v, elements);
1264 for (i = 0; i < elements; i++)
1265 {
1266 si = size_int (i);
1267 i_val = vector_element (gsi, mask, si, &masktmp);
1268
1269 if (TREE_CODE (i_val) == INTEGER_CST)
1270 {
1271 unsigned HOST_WIDE_INT index;
1272
1273 index = TREE_INT_CST_LOW (i_val);
1274 if (!tree_fits_uhwi_p (i_val) || index >= elements)
1275 i_val = build_int_cst (mask_elt_type, index & (elements - 1));
1276
1277 if (two_operand_p && (index & elements) != 0)
1278 t = vector_element (gsi, vec1, i_val, &vec1tmp);
1279 else
1280 t = vector_element (gsi, vec0, i_val, &vec0tmp);
1281
1282 t = force_gimple_operand_gsi (gsi, t, true, NULL_TREE,
1283 true, GSI_SAME_STMT);
1284 }
1285 else
1286 {
1287 tree cond = NULL_TREE, v0_val;
1288
1289 if (two_operand_p)
1290 {
1291 cond = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
1292 build_int_cst (mask_elt_type, elements));
1293 cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
1294 true, GSI_SAME_STMT);
1295 }
1296
1297 i_val = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
1298 build_int_cst (mask_elt_type, elements - 1));
1299 i_val = force_gimple_operand_gsi (gsi, i_val, true, NULL_TREE,
1300 true, GSI_SAME_STMT);
1301
1302 v0_val = vector_element (gsi, vec0, i_val, &vec0tmp);
1303 v0_val = force_gimple_operand_gsi (gsi, v0_val, true, NULL_TREE,
1304 true, GSI_SAME_STMT);
1305
1306 if (two_operand_p)
1307 {
1308 tree v1_val;
1309
1310 v1_val = vector_element (gsi, vec1, i_val, &vec1tmp);
1311 v1_val = force_gimple_operand_gsi (gsi, v1_val, true, NULL_TREE,
1312 true, GSI_SAME_STMT);
1313
1314 cond = fold_build2 (EQ_EXPR, boolean_type_node,
1315 cond, build_zero_cst (mask_elt_type));
1316 cond = fold_build3 (COND_EXPR, vect_elt_type,
1317 cond, v0_val, v1_val);
1318 t = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
1319 true, GSI_SAME_STMT);
1320 }
1321 else
1322 t = v0_val;
1323 }
1324
1325 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
1326 }
1327
1328 constr = build_constructor (vect_type, v);
1329 gimple_assign_set_rhs_from_tree (gsi, constr);
1330 update_stmt (gsi_stmt (*gsi));
1331 }
1332
1333 /* Process one statement. If we identify a vector operation, expand it. */
1334
1335 static void
1336 expand_vector_operations_1 (gimple_stmt_iterator *gsi)
1337 {
1338 gimple stmt = gsi_stmt (*gsi);
1339 tree lhs, rhs1, rhs2 = NULL, type, compute_type;
1340 enum tree_code code;
1341 enum machine_mode compute_mode;
1342 optab op = unknown_optab;
1343 enum gimple_rhs_class rhs_class;
1344 tree new_rhs;
1345
1346 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1347 return;
1348
1349 code = gimple_assign_rhs_code (stmt);
1350 rhs_class = get_gimple_rhs_class (code);
1351 lhs = gimple_assign_lhs (stmt);
1352
1353 if (code == VEC_PERM_EXPR)
1354 {
1355 lower_vec_perm (gsi);
1356 return;
1357 }
1358
1359 if (code == VEC_COND_EXPR)
1360 {
1361 expand_vector_condition (gsi);
1362 return;
1363 }
1364
1365 if (code == CONSTRUCTOR
1366 && TREE_CODE (lhs) == SSA_NAME
1367 && VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (lhs)))
1368 && !gimple_clobber_p (stmt)
1369 && optimize)
1370 {
1371 optimize_vector_constructor (gsi);
1372 return;
1373 }
1374
1375 if (rhs_class != GIMPLE_UNARY_RHS && rhs_class != GIMPLE_BINARY_RHS)
1376 return;
1377
1378 rhs1 = gimple_assign_rhs1 (stmt);
1379 type = gimple_expr_type (stmt);
1380 if (rhs_class == GIMPLE_BINARY_RHS)
1381 rhs2 = gimple_assign_rhs2 (stmt);
1382
1383 if (TREE_CODE (type) != VECTOR_TYPE)
1384 return;
1385
1386 if (code == NOP_EXPR
1387 || code == FLOAT_EXPR
1388 || code == FIX_TRUNC_EXPR
1389 || code == VIEW_CONVERT_EXPR)
1390 return;
1391
1392 gcc_assert (code != CONVERT_EXPR);
1393
1394 /* The signedness is determined from input argument. */
1395 if (code == VEC_UNPACK_FLOAT_HI_EXPR
1396 || code == VEC_UNPACK_FLOAT_LO_EXPR)
1397 type = TREE_TYPE (rhs1);
1398
1399 /* For widening/narrowing vector operations, the relevant type is of the
1400 arguments, not the widened result. VEC_UNPACK_FLOAT_*_EXPR is
1401 calculated in the same way above. */
1402 if (code == WIDEN_SUM_EXPR
1403 || code == VEC_WIDEN_MULT_HI_EXPR
1404 || code == VEC_WIDEN_MULT_LO_EXPR
1405 || code == VEC_WIDEN_MULT_EVEN_EXPR
1406 || code == VEC_WIDEN_MULT_ODD_EXPR
1407 || code == VEC_UNPACK_HI_EXPR
1408 || code == VEC_UNPACK_LO_EXPR
1409 || code == VEC_PACK_TRUNC_EXPR
1410 || code == VEC_PACK_SAT_EXPR
1411 || code == VEC_PACK_FIX_TRUNC_EXPR
1412 || code == VEC_WIDEN_LSHIFT_HI_EXPR
1413 || code == VEC_WIDEN_LSHIFT_LO_EXPR)
1414 type = TREE_TYPE (rhs1);
1415
1416 /* Choose between vector shift/rotate by vector and vector shift/rotate by
1417 scalar */
1418 if (code == LSHIFT_EXPR
1419 || code == RSHIFT_EXPR
1420 || code == LROTATE_EXPR
1421 || code == RROTATE_EXPR)
1422 {
1423 optab opv;
1424
1425 /* Check whether we have vector <op> {x,x,x,x} where x
1426 could be a scalar variable or a constant. Transform
1427 vector <op> {x,x,x,x} ==> vector <op> scalar. */
1428 if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
1429 {
1430 tree first;
1431 gimple def_stmt;
1432
1433 if ((TREE_CODE (rhs2) == VECTOR_CST
1434 && (first = uniform_vector_p (rhs2)) != NULL_TREE)
1435 || (TREE_CODE (rhs2) == SSA_NAME
1436 && (def_stmt = SSA_NAME_DEF_STMT (rhs2))
1437 && gimple_assign_single_p (def_stmt)
1438 && (first = uniform_vector_p
1439 (gimple_assign_rhs1 (def_stmt))) != NULL_TREE))
1440 {
1441 gimple_assign_set_rhs2 (stmt, first);
1442 update_stmt (stmt);
1443 rhs2 = first;
1444 }
1445 }
1446
1447 opv = optab_for_tree_code (code, type, optab_vector);
1448 if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
1449 op = opv;
1450 else
1451 {
1452 op = optab_for_tree_code (code, type, optab_scalar);
1453
1454 /* The rtl expander will expand vector/scalar as vector/vector
1455 if necessary. Don't bother converting the stmt here. */
1456 if (optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing
1457 && optab_handler (opv, TYPE_MODE (type)) != CODE_FOR_nothing)
1458 return;
1459 }
1460 }
1461 else
1462 op = optab_for_tree_code (code, type, optab_default);
1463
1464 /* Optabs will try converting a negation into a subtraction, so
1465 look for it as well. TODO: negation of floating-point vectors
1466 might be turned into an exclusive OR toggling the sign bit. */
1467 if (op == unknown_optab
1468 && code == NEGATE_EXPR
1469 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
1470 op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
1471
1472 /* For very wide vectors, try using a smaller vector mode. */
1473 compute_type = type;
1474 if (!VECTOR_MODE_P (TYPE_MODE (type)) && op)
1475 {
1476 tree vector_compute_type
1477 = type_for_widest_vector_mode (TREE_TYPE (type), op);
1478 if (vector_compute_type != NULL_TREE
1479 && (TYPE_VECTOR_SUBPARTS (vector_compute_type)
1480 < TYPE_VECTOR_SUBPARTS (compute_type))
1481 && (optab_handler (op, TYPE_MODE (vector_compute_type))
1482 != CODE_FOR_nothing))
1483 compute_type = vector_compute_type;
1484 }
1485
1486 /* If we are breaking a BLKmode vector into smaller pieces,
1487 type_for_widest_vector_mode has already looked into the optab,
1488 so skip these checks. */
1489 if (compute_type == type)
1490 {
1491 compute_mode = TYPE_MODE (compute_type);
1492 if (VECTOR_MODE_P (compute_mode))
1493 {
1494 if (op && optab_handler (op, compute_mode) != CODE_FOR_nothing)
1495 return;
1496 if (code == MULT_HIGHPART_EXPR
1497 && can_mult_highpart_p (compute_mode,
1498 TYPE_UNSIGNED (compute_type)))
1499 return;
1500 }
1501 /* There is no operation in hardware, so fall back to scalars. */
1502 compute_type = TREE_TYPE (type);
1503 }
1504
1505 gcc_assert (code != VEC_LSHIFT_EXPR && code != VEC_RSHIFT_EXPR);
1506 new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);
1507
1508 /* Leave expression untouched for later expansion. */
1509 if (new_rhs == NULL_TREE)
1510 return;
1511
1512 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
1513 new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
1514 new_rhs);
1515
1516 /* NOTE: We should avoid using gimple_assign_set_rhs_from_tree. One
1517 way to do it is change expand_vector_operation and its callees to
1518 return a tree_code, RHS1 and RHS2 instead of a tree. */
1519 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
1520 update_stmt (gsi_stmt (*gsi));
1521 }
1522 \f
1523 /* Use this to lower vector operations introduced by the vectorizer,
1524 if it may need the bit-twiddling tricks implemented in this file. */
1525
1526 static bool
1527 gate_expand_vector_operations_ssa (void)
1528 {
1529 return !(cfun->curr_properties & PROP_gimple_lvec);
1530 }
1531
1532 static unsigned int
1533 expand_vector_operations (void)
1534 {
1535 gimple_stmt_iterator gsi;
1536 basic_block bb;
1537 bool cfg_changed = false;
1538
1539 FOR_EACH_BB (bb)
1540 {
1541 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1542 {
1543 expand_vector_operations_1 (&gsi);
1544 /* ??? If we do not cleanup EH then we will ICE in
1545 verification. But in reality we have created wrong-code
1546 as we did not properly transition EH info and edges to
1547 the piecewise computations. */
1548 if (maybe_clean_eh_stmt (gsi_stmt (gsi))
1549 && gimple_purge_dead_eh_edges (bb))
1550 cfg_changed = true;
1551 }
1552 }
1553
1554 return cfg_changed ? TODO_cleanup_cfg : 0;
1555 }
1556
1557 namespace {
1558
1559 const pass_data pass_data_lower_vector =
1560 {
1561 GIMPLE_PASS, /* type */
1562 "veclower", /* name */
1563 OPTGROUP_VEC, /* optinfo_flags */
1564 true, /* has_gate */
1565 true, /* has_execute */
1566 TV_NONE, /* tv_id */
1567 PROP_cfg, /* properties_required */
1568 PROP_gimple_lvec, /* properties_provided */
1569 0, /* properties_destroyed */
1570 0, /* todo_flags_start */
1571 ( TODO_update_ssa | TODO_verify_ssa
1572 | TODO_verify_stmts
1573 | TODO_verify_flow
1574 | TODO_cleanup_cfg ), /* todo_flags_finish */
1575 };
1576
1577 class pass_lower_vector : public gimple_opt_pass
1578 {
1579 public:
1580 pass_lower_vector (gcc::context *ctxt)
1581 : gimple_opt_pass (pass_data_lower_vector, ctxt)
1582 {}
1583
1584 /* opt_pass methods: */
1585 bool gate () { return gate_expand_vector_operations_ssa (); }
1586 unsigned int execute () { return expand_vector_operations (); }
1587
1588 }; // class pass_lower_vector
1589
1590 } // anon namespace
1591
1592 gimple_opt_pass *
1593 make_pass_lower_vector (gcc::context *ctxt)
1594 {
1595 return new pass_lower_vector (ctxt);
1596 }
1597
1598 namespace {
1599
1600 const pass_data pass_data_lower_vector_ssa =
1601 {
1602 GIMPLE_PASS, /* type */
1603 "veclower2", /* name */
1604 OPTGROUP_VEC, /* optinfo_flags */
1605 false, /* has_gate */
1606 true, /* has_execute */
1607 TV_NONE, /* tv_id */
1608 PROP_cfg, /* properties_required */
1609 PROP_gimple_lvec, /* properties_provided */
1610 0, /* properties_destroyed */
1611 0, /* todo_flags_start */
1612 ( TODO_update_ssa | TODO_verify_ssa
1613 | TODO_verify_stmts
1614 | TODO_verify_flow
1615 | TODO_cleanup_cfg ), /* todo_flags_finish */
1616 };
1617
1618 class pass_lower_vector_ssa : public gimple_opt_pass
1619 {
1620 public:
1621 pass_lower_vector_ssa (gcc::context *ctxt)
1622 : gimple_opt_pass (pass_data_lower_vector_ssa, ctxt)
1623 {}
1624
1625 /* opt_pass methods: */
1626 opt_pass * clone () { return new pass_lower_vector_ssa (m_ctxt); }
1627 unsigned int execute () { return expand_vector_operations (); }
1628
1629 }; // class pass_lower_vector_ssa
1630
1631 } // anon namespace
1632
1633 gimple_opt_pass *
1634 make_pass_lower_vector_ssa (gcc::context *ctxt)
1635 {
1636 return new pass_lower_vector_ssa (ctxt);
1637 }
1638
1639 #include "gt-tree-vect-generic.h"