]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vect-loop-manip.c
tree-ssa.h: New.
[thirdparty/gcc.git] / gcc / tree-vect-loop-manip.c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "diagnostic-core.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-vectorizer.h"
37 #include "langhooks.h"
38
39 /*************************************************************************
40 Simple Loop Peeling Utilities
41
42 Utilities to support loop peeling for vectorization purposes.
43 *************************************************************************/
44
45
46 /* Renames the use *OP_P. */
47
48 static void
49 rename_use_op (use_operand_p op_p)
50 {
51 tree new_name;
52
53 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
54 return;
55
56 new_name = get_current_def (USE_FROM_PTR (op_p));
57
58 /* Something defined outside of the loop. */
59 if (!new_name)
60 return;
61
62 /* An ordinary ssa name defined in the loop. */
63
64 SET_USE (op_p, new_name);
65 }
66
67
68 /* Renames the variables in basic block BB. */
69
70 static void
71 rename_variables_in_bb (basic_block bb)
72 {
73 gimple_stmt_iterator gsi;
74 gimple stmt;
75 use_operand_p use_p;
76 ssa_op_iter iter;
77 edge e;
78 edge_iterator ei;
79 struct loop *loop = bb->loop_father;
80
81 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
82 {
83 stmt = gsi_stmt (gsi);
84 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
85 rename_use_op (use_p);
86 }
87
88 FOR_EACH_EDGE (e, ei, bb->preds)
89 {
90 if (!flow_bb_inside_loop_p (loop, e->src))
91 continue;
92 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
93 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
94 }
95 }
96
97
98 typedef struct
99 {
100 tree from, to;
101 basic_block bb;
102 } adjust_info;
103
104 /* A stack of values to be adjusted in debug stmts. We have to
105 process them LIFO, so that the closest substitution applies. If we
106 processed them FIFO, without the stack, we might substitute uses
107 with a PHI DEF that would soon become non-dominant, and when we got
108 to the suitable one, it wouldn't have anything to substitute any
109 more. */
110 static vec<adjust_info, va_stack> adjust_vec;
111
112 /* Adjust any debug stmts that referenced AI->from values to use the
113 loop-closed AI->to, if the references are dominated by AI->bb and
114 not by the definition of AI->from. */
115
116 static void
117 adjust_debug_stmts_now (adjust_info *ai)
118 {
119 basic_block bbphi = ai->bb;
120 tree orig_def = ai->from;
121 tree new_def = ai->to;
122 imm_use_iterator imm_iter;
123 gimple stmt;
124 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
125
126 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
127
128 /* Adjust any debug stmts that held onto non-loop-closed
129 references. */
130 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
131 {
132 use_operand_p use_p;
133 basic_block bbuse;
134
135 if (!is_gimple_debug (stmt))
136 continue;
137
138 gcc_assert (gimple_debug_bind_p (stmt));
139
140 bbuse = gimple_bb (stmt);
141
142 if ((bbuse == bbphi
143 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
144 && !(bbuse == bbdef
145 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
146 {
147 if (new_def)
148 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
149 SET_USE (use_p, new_def);
150 else
151 {
152 gimple_debug_bind_reset_value (stmt);
153 update_stmt (stmt);
154 }
155 }
156 }
157 }
158
159 /* Adjust debug stmts as scheduled before. */
160
161 static void
162 adjust_vec_debug_stmts (void)
163 {
164 if (!MAY_HAVE_DEBUG_STMTS)
165 return;
166
167 gcc_assert (adjust_vec.exists ());
168
169 while (!adjust_vec.is_empty ())
170 {
171 adjust_debug_stmts_now (&adjust_vec.last ());
172 adjust_vec.pop ();
173 }
174
175 adjust_vec.release ();
176 }
177
178 /* Adjust any debug stmts that referenced FROM values to use the
179 loop-closed TO, if the references are dominated by BB and not by
180 the definition of FROM. If adjust_vec is non-NULL, adjustments
181 will be postponed until adjust_vec_debug_stmts is called. */
182
183 static void
184 adjust_debug_stmts (tree from, tree to, basic_block bb)
185 {
186 adjust_info ai;
187
188 if (MAY_HAVE_DEBUG_STMTS
189 && TREE_CODE (from) == SSA_NAME
190 && ! SSA_NAME_IS_DEFAULT_DEF (from)
191 && ! virtual_operand_p (from))
192 {
193 ai.from = from;
194 ai.to = to;
195 ai.bb = bb;
196
197 if (adjust_vec.exists ())
198 adjust_vec.safe_push (ai);
199 else
200 adjust_debug_stmts_now (&ai);
201 }
202 }
203
204 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
205 to adjust any debug stmts that referenced the old phi arg,
206 presumably non-loop-closed references left over from other
207 transformations. */
208
209 static void
210 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
211 {
212 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
213
214 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
215
216 if (MAY_HAVE_DEBUG_STMTS)
217 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
218 gimple_bb (update_phi));
219 }
220
221
222 /* Update PHI nodes for a guard of the LOOP.
223
224 Input:
225 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
226 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
227 originates from the guard-bb, skips LOOP and reaches the (unique) exit
228 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
229 We denote this bb NEW_MERGE_BB because before the guard code was added
230 it had a single predecessor (the LOOP header), and now it became a merge
231 point of two paths - the path that ends with the LOOP exit-edge, and
232 the path that ends with GUARD_EDGE.
233 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
234 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
235
236 ===> The CFG before the guard-code was added:
237 LOOP_header_bb:
238 loop_body
239 if (exit_loop) goto update_bb
240 else goto LOOP_header_bb
241 update_bb:
242
243 ==> The CFG after the guard-code was added:
244 guard_bb:
245 if (LOOP_guard_condition) goto new_merge_bb
246 else goto LOOP_header_bb
247 LOOP_header_bb:
248 loop_body
249 if (exit_loop_condition) goto new_merge_bb
250 else goto LOOP_header_bb
251 new_merge_bb:
252 goto update_bb
253 update_bb:
254
255 ==> The CFG after this function:
256 guard_bb:
257 if (LOOP_guard_condition) goto new_merge_bb
258 else goto LOOP_header_bb
259 LOOP_header_bb:
260 loop_body
261 if (exit_loop_condition) goto new_exit_bb
262 else goto LOOP_header_bb
263 new_exit_bb:
264 new_merge_bb:
265 goto update_bb
266 update_bb:
267
268 This function:
269 1. creates and updates the relevant phi nodes to account for the new
270 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
271 1.1. Create phi nodes at NEW_MERGE_BB.
272 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
273 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
274 2. preserves loop-closed-ssa-form by creating the required phi nodes
275 at the exit of LOOP (i.e, in NEW_EXIT_BB).
276
277 There are two flavors to this function:
278
279 slpeel_update_phi_nodes_for_guard1:
280 Here the guard controls whether we enter or skip LOOP, where LOOP is a
281 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
282 for variables that have phis in the loop header.
283
284 slpeel_update_phi_nodes_for_guard2:
285 Here the guard controls whether we enter or skip LOOP, where LOOP is an
286 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
287 for variables that have phis in the loop exit.
288
289 I.E., the overall structure is:
290
291 loop1_preheader_bb:
292 guard1 (goto loop1/merge1_bb)
293 loop1
294 loop1_exit_bb:
295 guard2 (goto merge1_bb/merge2_bb)
296 merge1_bb
297 loop2
298 loop2_exit_bb
299 merge2_bb
300 next_bb
301
302 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
303 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
304 that have phis in loop1->header).
305
306 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
307 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
308 that have phis in next_bb). It also adds some of these phis to
309 loop1_exit_bb.
310
311 slpeel_update_phi_nodes_for_guard1 is always called before
312 slpeel_update_phi_nodes_for_guard2. They are both needed in order
313 to create correct data-flow and loop-closed-ssa-form.
314
315 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
316 that change between iterations of a loop (and therefore have a phi-node
317 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
318 phis for variables that are used out of the loop (and therefore have
319 loop-closed exit phis). Some variables may be both updated between
320 iterations and used after the loop. This is why in loop1_exit_bb we
321 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
322 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
323
324 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
325 an original loop. i.e., we have:
326
327 orig_loop
328 guard_bb (goto LOOP/new_merge)
329 new_loop <-- LOOP
330 new_exit
331 new_merge
332 next_bb
333
334 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
335 have:
336
337 new_loop
338 guard_bb (goto LOOP/new_merge)
339 orig_loop <-- LOOP
340 new_exit
341 new_merge
342 next_bb
343
344 The SSA names defined in the original loop have a current
345 reaching definition that that records the corresponding new
346 ssa-name used in the new duplicated loop copy.
347 */
348
349 /* Function slpeel_update_phi_nodes_for_guard1
350
351 Input:
352 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
353 - DEFS - a bitmap of ssa names to mark new names for which we recorded
354 information.
355
356 In the context of the overall structure, we have:
357
358 loop1_preheader_bb:
359 guard1 (goto loop1/merge1_bb)
360 LOOP-> loop1
361 loop1_exit_bb:
362 guard2 (goto merge1_bb/merge2_bb)
363 merge1_bb
364 loop2
365 loop2_exit_bb
366 merge2_bb
367 next_bb
368
369 For each name updated between loop iterations (i.e - for each name that has
370 an entry (loop-header) phi in LOOP) we create a new phi in:
371 1. merge1_bb (to account for the edge from guard1)
372 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
373 */
374
375 static void
376 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
377 bool is_new_loop, basic_block *new_exit_bb)
378 {
379 gimple orig_phi, new_phi;
380 gimple update_phi, update_phi2;
381 tree guard_arg, loop_arg;
382 basic_block new_merge_bb = guard_edge->dest;
383 edge e = EDGE_SUCC (new_merge_bb, 0);
384 basic_block update_bb = e->dest;
385 basic_block orig_bb = loop->header;
386 edge new_exit_e;
387 tree current_new_name;
388 gimple_stmt_iterator gsi_orig, gsi_update;
389
390 /* Create new bb between loop and new_merge_bb. */
391 *new_exit_bb = split_edge (single_exit (loop));
392
393 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
394
395 for (gsi_orig = gsi_start_phis (orig_bb),
396 gsi_update = gsi_start_phis (update_bb);
397 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
398 gsi_next (&gsi_orig), gsi_next (&gsi_update))
399 {
400 source_location loop_locus, guard_locus;
401 tree new_res;
402 orig_phi = gsi_stmt (gsi_orig);
403 update_phi = gsi_stmt (gsi_update);
404
405 /** 1. Handle new-merge-point phis **/
406
407 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
408 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
409 new_phi = create_phi_node (new_res, new_merge_bb);
410
411 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
412 of LOOP. Set the two phi args in NEW_PHI for these edges: */
413 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
414 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
415 EDGE_SUCC (loop->latch,
416 0));
417 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
418 guard_locus
419 = gimple_phi_arg_location_from_edge (orig_phi,
420 loop_preheader_edge (loop));
421
422 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
423 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
424
425 /* 1.3. Update phi in successor block. */
426 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
427 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
428 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
429 update_phi2 = new_phi;
430
431
432 /** 2. Handle loop-closed-ssa-form phis **/
433
434 if (virtual_operand_p (PHI_RESULT (orig_phi)))
435 continue;
436
437 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
438 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
439 new_phi = create_phi_node (new_res, *new_exit_bb);
440
441 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
442 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
443
444 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
445 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
446 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
447 PHI_RESULT (new_phi));
448
449 /* 2.4. Record the newly created name with set_current_def.
450 We want to find a name such that
451 name = get_current_def (orig_loop_name)
452 and to set its current definition as follows:
453 set_current_def (name, new_phi_name)
454
455 If LOOP is a new loop then loop_arg is already the name we're
456 looking for. If LOOP is the original loop, then loop_arg is
457 the orig_loop_name and the relevant name is recorded in its
458 current reaching definition. */
459 if (is_new_loop)
460 current_new_name = loop_arg;
461 else
462 {
463 current_new_name = get_current_def (loop_arg);
464 /* current_def is not available only if the variable does not
465 change inside the loop, in which case we also don't care
466 about recording a current_def for it because we won't be
467 trying to create loop-exit-phis for it. */
468 if (!current_new_name)
469 continue;
470 }
471 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
472
473 set_current_def (current_new_name, PHI_RESULT (new_phi));
474 }
475 }
476
477
478 /* Function slpeel_update_phi_nodes_for_guard2
479
480 Input:
481 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
482
483 In the context of the overall structure, we have:
484
485 loop1_preheader_bb:
486 guard1 (goto loop1/merge1_bb)
487 loop1
488 loop1_exit_bb:
489 guard2 (goto merge1_bb/merge2_bb)
490 merge1_bb
491 LOOP-> loop2
492 loop2_exit_bb
493 merge2_bb
494 next_bb
495
496 For each name used out side the loop (i.e - for each name that has an exit
497 phi in next_bb) we create a new phi in:
498 1. merge2_bb (to account for the edge from guard_bb)
499 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
500 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
501 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
502 */
503
504 static void
505 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
506 bool is_new_loop, basic_block *new_exit_bb)
507 {
508 gimple orig_phi, new_phi;
509 gimple update_phi, update_phi2;
510 tree guard_arg, loop_arg;
511 basic_block new_merge_bb = guard_edge->dest;
512 edge e = EDGE_SUCC (new_merge_bb, 0);
513 basic_block update_bb = e->dest;
514 edge new_exit_e;
515 tree orig_def, orig_def_new_name;
516 tree new_name, new_name2;
517 tree arg;
518 gimple_stmt_iterator gsi;
519
520 /* Create new bb between loop and new_merge_bb. */
521 *new_exit_bb = split_edge (single_exit (loop));
522
523 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
524
525 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
526 {
527 tree new_res;
528 update_phi = gsi_stmt (gsi);
529 orig_phi = update_phi;
530 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
531 /* This loop-closed-phi actually doesn't represent a use
532 out of the loop - the phi arg is a constant. */
533 if (TREE_CODE (orig_def) != SSA_NAME)
534 continue;
535 orig_def_new_name = get_current_def (orig_def);
536 arg = NULL_TREE;
537
538 /** 1. Handle new-merge-point phis **/
539
540 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
541 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
542 new_phi = create_phi_node (new_res, new_merge_bb);
543
544 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
545 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
546 new_name = orig_def;
547 new_name2 = NULL_TREE;
548 if (orig_def_new_name)
549 {
550 new_name = orig_def_new_name;
551 /* Some variables have both loop-entry-phis and loop-exit-phis.
552 Such variables were given yet newer names by phis placed in
553 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
554 new_name2 = get_current_def (get_current_def (orig_name)). */
555 new_name2 = get_current_def (new_name);
556 }
557
558 if (is_new_loop)
559 {
560 guard_arg = orig_def;
561 loop_arg = new_name;
562 }
563 else
564 {
565 guard_arg = new_name;
566 loop_arg = orig_def;
567 }
568 if (new_name2)
569 guard_arg = new_name2;
570
571 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
572 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
573
574 /* 1.3. Update phi in successor block. */
575 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
576 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
577 update_phi2 = new_phi;
578
579
580 /** 2. Handle loop-closed-ssa-form phis **/
581
582 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
583 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
584 new_phi = create_phi_node (new_res, *new_exit_bb);
585
586 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
587 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
588
589 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
590 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
591 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
592 PHI_RESULT (new_phi));
593
594
595 /** 3. Handle loop-closed-ssa-form phis for first loop **/
596
597 /* 3.1. Find the relevant names that need an exit-phi in
598 GUARD_BB, i.e. names for which
599 slpeel_update_phi_nodes_for_guard1 had not already created a
600 phi node. This is the case for names that are used outside
601 the loop (and therefore need an exit phi) but are not updated
602 across loop iterations (and therefore don't have a
603 loop-header-phi).
604
605 slpeel_update_phi_nodes_for_guard1 is responsible for
606 creating loop-exit phis in GUARD_BB for names that have a
607 loop-header-phi. When such a phi is created we also record
608 the new name in its current definition. If this new name
609 exists, then guard_arg was set to this new name (see 1.2
610 above). Therefore, if guard_arg is not this new name, this
611 is an indication that an exit-phi in GUARD_BB was not yet
612 created, so we take care of it here. */
613 if (guard_arg == new_name2)
614 continue;
615 arg = guard_arg;
616
617 /* 3.2. Generate new phi node in GUARD_BB: */
618 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
619 new_phi = create_phi_node (new_res, guard_edge->src);
620
621 /* 3.3. GUARD_BB has one incoming edge: */
622 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
623 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
624 UNKNOWN_LOCATION);
625
626 /* 3.4. Update phi in successor of GUARD_BB: */
627 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
628 == guard_arg);
629 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
630 PHI_RESULT (new_phi));
631 }
632 }
633
634
635 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
636 that starts at zero, increases by one and its limit is NITERS.
637
638 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
639
640 void
641 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
642 {
643 tree indx_before_incr, indx_after_incr;
644 gimple cond_stmt;
645 gimple orig_cond;
646 edge exit_edge = single_exit (loop);
647 gimple_stmt_iterator loop_cond_gsi;
648 gimple_stmt_iterator incr_gsi;
649 bool insert_after;
650 tree init = build_int_cst (TREE_TYPE (niters), 0);
651 tree step = build_int_cst (TREE_TYPE (niters), 1);
652 LOC loop_loc;
653 enum tree_code code;
654
655 orig_cond = get_loop_exit_condition (loop);
656 gcc_assert (orig_cond);
657 loop_cond_gsi = gsi_for_stmt (orig_cond);
658
659 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
660 create_iv (init, step, NULL_TREE, loop,
661 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
662
663 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
664 true, NULL_TREE, true,
665 GSI_SAME_STMT);
666 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
667 true, GSI_SAME_STMT);
668
669 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
670 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
671 NULL_TREE);
672
673 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
674
675 /* Remove old loop exit test: */
676 gsi_remove (&loop_cond_gsi, true);
677 free_stmt_vec_info (orig_cond);
678
679 loop_loc = find_loop_location (loop);
680 if (dump_enabled_p ())
681 {
682 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOC)
683 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOC_FILE (loop_loc),
684 LOC_LINE (loop_loc));
685 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
686 }
687 loop->nb_iterations = niters;
688 }
689
690
691 /* Given LOOP this function generates a new copy of it and puts it
692 on E which is either the entry or exit of LOOP. */
693
694 struct loop *
695 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
696 {
697 struct loop *new_loop;
698 basic_block *new_bbs, *bbs;
699 bool at_exit;
700 bool was_imm_dom;
701 basic_block exit_dest;
702 edge exit, new_exit;
703
704 exit = single_exit (loop);
705 at_exit = (e == exit);
706 if (!at_exit && e != loop_preheader_edge (loop))
707 return NULL;
708
709 bbs = XNEWVEC (basic_block, loop->num_nodes + 1);
710 get_loop_body_with_size (loop, bbs, loop->num_nodes);
711
712 /* Check whether duplication is possible. */
713 if (!can_copy_bbs_p (bbs, loop->num_nodes))
714 {
715 free (bbs);
716 return NULL;
717 }
718
719 /* Generate new loop structure. */
720 new_loop = duplicate_loop (loop, loop_outer (loop));
721 duplicate_subloops (loop, new_loop);
722
723 exit_dest = exit->dest;
724 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
725 exit_dest) == loop->header ?
726 true : false);
727
728 /* Also copy the pre-header, this avoids jumping through hoops to
729 duplicate the loop entry PHI arguments. Create an empty
730 pre-header unconditionally for this. */
731 basic_block preheader = split_edge (loop_preheader_edge (loop));
732 edge entry_e = single_pred_edge (preheader);
733 bbs[loop->num_nodes] = preheader;
734 new_bbs = XNEWVEC (basic_block, loop->num_nodes + 1);
735
736 copy_bbs (bbs, loop->num_nodes + 1, new_bbs,
737 &exit, 1, &new_exit, NULL,
738 e->src, true);
739 basic_block new_preheader = new_bbs[loop->num_nodes];
740
741 add_phi_args_after_copy (new_bbs, loop->num_nodes + 1, NULL);
742
743 if (at_exit) /* Add the loop copy at exit. */
744 {
745 redirect_edge_and_branch_force (e, new_preheader);
746 flush_pending_stmts (e);
747 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
748 if (was_imm_dom)
749 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
750
751 /* And remove the non-necessary forwarder again. Keep the other
752 one so we have a proper pre-header for the loop at the exit edge. */
753 redirect_edge_pred (single_succ_edge (preheader), single_pred (preheader));
754 delete_basic_block (preheader);
755 set_immediate_dominator (CDI_DOMINATORS, loop->header,
756 loop_preheader_edge (loop)->src);
757 }
758 else /* Add the copy at entry. */
759 {
760 redirect_edge_and_branch_force (entry_e, new_preheader);
761 flush_pending_stmts (entry_e);
762 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
763
764 redirect_edge_and_branch_force (new_exit, preheader);
765 flush_pending_stmts (new_exit);
766 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
767
768 /* And remove the non-necessary forwarder again. Keep the other
769 one so we have a proper pre-header for the loop at the exit edge. */
770 redirect_edge_pred (single_succ_edge (new_preheader), single_pred (new_preheader));
771 delete_basic_block (new_preheader);
772 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
773 loop_preheader_edge (new_loop)->src);
774 }
775
776 for (unsigned i = 0; i < loop->num_nodes+1; i++)
777 rename_variables_in_bb (new_bbs[i]);
778
779 free (new_bbs);
780 free (bbs);
781
782 #ifdef ENABLE_CHECKING
783 verify_dominators (CDI_DOMINATORS);
784 #endif
785
786 return new_loop;
787 }
788
789
790 /* Given the condition statement COND, put it as the last statement
791 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
792 Assumes that this is the single exit of the guarded loop.
793 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
794
795 static edge
796 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
797 gimple_seq cond_expr_stmt_list,
798 basic_block exit_bb, basic_block dom_bb,
799 int probability)
800 {
801 gimple_stmt_iterator gsi;
802 edge new_e, enter_e;
803 gimple cond_stmt;
804 gimple_seq gimplify_stmt_list = NULL;
805
806 enter_e = EDGE_SUCC (guard_bb, 0);
807 enter_e->flags &= ~EDGE_FALLTHRU;
808 enter_e->flags |= EDGE_FALSE_VALUE;
809 gsi = gsi_last_bb (guard_bb);
810
811 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
812 NULL_TREE);
813 if (gimplify_stmt_list)
814 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
815 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
816 if (cond_expr_stmt_list)
817 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
818
819 gsi = gsi_last_bb (guard_bb);
820 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
821
822 /* Add new edge to connect guard block to the merge/loop-exit block. */
823 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
824
825 new_e->count = guard_bb->count;
826 new_e->probability = probability;
827 new_e->count = apply_probability (enter_e->count, probability);
828 enter_e->count -= new_e->count;
829 enter_e->probability = inverse_probability (probability);
830 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
831 return new_e;
832 }
833
834
835 /* This function verifies that the following restrictions apply to LOOP:
836 (1) it is innermost
837 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
838 (3) it is single entry, single exit
839 (4) its exit condition is the last stmt in the header
840 (5) E is the entry/exit edge of LOOP.
841 */
842
843 bool
844 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
845 {
846 edge exit_e = single_exit (loop);
847 edge entry_e = loop_preheader_edge (loop);
848 gimple orig_cond = get_loop_exit_condition (loop);
849 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
850
851 if (loop->inner
852 /* All loops have an outer scope; the only case loop->outer is NULL is for
853 the function itself. */
854 || !loop_outer (loop)
855 || loop->num_nodes != 2
856 || !empty_block_p (loop->latch)
857 || !single_exit (loop)
858 /* Verify that new loop exit condition can be trivially modified. */
859 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
860 || (e != exit_e && e != entry_e))
861 return false;
862
863 return true;
864 }
865
866 #ifdef ENABLE_CHECKING
867 static void
868 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
869 struct loop *second_loop)
870 {
871 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
872 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
873 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
874
875 /* A guard that controls whether the second_loop is to be executed or skipped
876 is placed in first_loop->exit. first_loop->exit therefore has two
877 successors - one is the preheader of second_loop, and the other is a bb
878 after second_loop.
879 */
880 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
881
882 /* 1. Verify that one of the successors of first_loop->exit is the preheader
883 of second_loop. */
884
885 /* The preheader of new_loop is expected to have two predecessors:
886 first_loop->exit and the block that precedes first_loop. */
887
888 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
889 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
890 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
891 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
892 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
893
894 /* Verify that the other successor of first_loop->exit is after the
895 second_loop. */
896 /* TODO */
897 }
898 #endif
899
900 /* If the run time cost model check determines that vectorization is
901 not profitable and hence scalar loop should be generated then set
902 FIRST_NITERS to prologue peeled iterations. This will allow all the
903 iterations to be executed in the prologue peeled scalar loop. */
904
905 static void
906 set_prologue_iterations (basic_block bb_before_first_loop,
907 tree *first_niters,
908 struct loop *loop,
909 unsigned int th,
910 int probability)
911 {
912 edge e;
913 basic_block cond_bb, then_bb;
914 tree var, prologue_after_cost_adjust_name;
915 gimple_stmt_iterator gsi;
916 gimple newphi;
917 edge e_true, e_false, e_fallthru;
918 gimple cond_stmt;
919 gimple_seq stmts = NULL;
920 tree cost_pre_condition = NULL_TREE;
921 tree scalar_loop_iters =
922 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
923
924 e = single_pred_edge (bb_before_first_loop);
925 cond_bb = split_edge(e);
926
927 e = single_pred_edge (bb_before_first_loop);
928 then_bb = split_edge(e);
929 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
930
931 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
932 EDGE_FALSE_VALUE);
933 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
934
935 e_true = EDGE_PRED (then_bb, 0);
936 e_true->flags &= ~EDGE_FALLTHRU;
937 e_true->flags |= EDGE_TRUE_VALUE;
938
939 e_true->probability = probability;
940 e_false->probability = inverse_probability (probability);
941 e_true->count = apply_probability (cond_bb->count, probability);
942 e_false->count = cond_bb->count - e_true->count;
943 then_bb->frequency = EDGE_FREQUENCY (e_true);
944 then_bb->count = e_true->count;
945
946 e_fallthru = EDGE_SUCC (then_bb, 0);
947 e_fallthru->count = then_bb->count;
948
949 gsi = gsi_last_bb (cond_bb);
950 cost_pre_condition =
951 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
952 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
953 cost_pre_condition =
954 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
955 NULL_TREE, false, GSI_CONTINUE_LINKING);
956 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
957 NULL_TREE, NULL_TREE);
958 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
959
960 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
961 "prologue_after_cost_adjust");
962 prologue_after_cost_adjust_name =
963 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
964
965 gsi = gsi_last_bb (then_bb);
966 if (stmts)
967 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
968
969 newphi = create_phi_node (var, bb_before_first_loop);
970 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
971 UNKNOWN_LOCATION);
972 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
973
974 *first_niters = PHI_RESULT (newphi);
975 }
976
977 /* Function slpeel_tree_peel_loop_to_edge.
978
979 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
980 that is placed on the entry (exit) edge E of LOOP. After this transformation
981 we have two loops one after the other - first-loop iterates FIRST_NITERS
982 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
983 If the cost model indicates that it is profitable to emit a scalar
984 loop instead of the vector one, then the prolog (epilog) loop will iterate
985 for the entire unchanged scalar iterations of the loop.
986
987 Input:
988 - LOOP: the loop to be peeled.
989 - E: the exit or entry edge of LOOP.
990 If it is the entry edge, we peel the first iterations of LOOP. In this
991 case first-loop is LOOP, and second-loop is the newly created loop.
992 If it is the exit edge, we peel the last iterations of LOOP. In this
993 case, first-loop is the newly created loop, and second-loop is LOOP.
994 - NITERS: the number of iterations that LOOP iterates.
995 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
996 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
997 for updating the loop bound of the first-loop to FIRST_NITERS. If it
998 is false, the caller of this function may want to take care of this
999 (this can be useful if we don't want new stmts added to first-loop).
1000 - TH: cost model profitability threshold of iterations for vectorization.
1001 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1002 during versioning and hence needs to occur during
1003 prologue generation or whether cost model check
1004 has not occurred during prologue generation and hence
1005 needs to occur during epilogue generation.
1006 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1007 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1008
1009
1010 Output:
1011 The function returns a pointer to the new loop-copy, or NULL if it failed
1012 to perform the transformation.
1013
1014 The function generates two if-then-else guards: one before the first loop,
1015 and the other before the second loop:
1016 The first guard is:
1017 if (FIRST_NITERS == 0) then skip the first loop,
1018 and go directly to the second loop.
1019 The second guard is:
1020 if (FIRST_NITERS == NITERS) then skip the second loop.
1021
1022 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1023 then the generated condition is combined with COND_EXPR and the
1024 statements in COND_EXPR_STMT_LIST are emitted together with it.
1025
1026 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1027 FORNOW the resulting code will not be in loop-closed-ssa form.
1028 */
1029
1030 static struct loop*
1031 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1032 edge e, tree *first_niters,
1033 tree niters, bool update_first_loop_count,
1034 unsigned int th, bool check_profitability,
1035 tree cond_expr, gimple_seq cond_expr_stmt_list,
1036 int bound1, int bound2)
1037 {
1038 struct loop *new_loop = NULL, *first_loop, *second_loop;
1039 edge skip_e;
1040 tree pre_condition = NULL_TREE;
1041 basic_block bb_before_second_loop, bb_after_second_loop;
1042 basic_block bb_before_first_loop;
1043 basic_block bb_between_loops;
1044 basic_block new_exit_bb;
1045 gimple_stmt_iterator gsi;
1046 edge exit_e = single_exit (loop);
1047 LOC loop_loc;
1048 tree cost_pre_condition = NULL_TREE;
1049 /* There are many aspects to how likely the first loop is going to be executed.
1050 Without histogram we can't really do good job. Simply set it to
1051 2/3, so the first loop is not reordered to the end of function and
1052 the hot path through stays short. */
1053 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1054 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1055 int probability_of_second_loop;
1056
1057 if (!slpeel_can_duplicate_loop_p (loop, e))
1058 return NULL;
1059
1060 /* We might have a queued need to update virtual SSA form. As we
1061 delete the update SSA machinery below after doing a regular
1062 incremental SSA update during loop copying make sure we don't
1063 lose that fact.
1064 ??? Needing to update virtual SSA form by renaming is unfortunate
1065 but not all of the vectorizer code inserting new loads / stores
1066 properly assigns virtual operands to those statements. */
1067 update_ssa (TODO_update_ssa_only_virtuals);
1068
1069 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1070 in the exit bb and rename all the uses after the loop. This simplifies
1071 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1072 (but normally loop closed SSA form doesn't require virtual PHIs to be
1073 in the same form). Doing this early simplifies the checking what
1074 uses should be renamed. */
1075 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1076 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1077 {
1078 gimple phi = gsi_stmt (gsi);
1079 for (gsi = gsi_start_phis (exit_e->dest);
1080 !gsi_end_p (gsi); gsi_next (&gsi))
1081 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1082 break;
1083 if (gsi_end_p (gsi))
1084 {
1085 tree new_vop = copy_ssa_name (PHI_RESULT (phi), NULL);
1086 gimple new_phi = create_phi_node (new_vop, exit_e->dest);
1087 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1088 imm_use_iterator imm_iter;
1089 gimple stmt;
1090 use_operand_p use_p;
1091
1092 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1093 gimple_phi_set_result (new_phi, new_vop);
1094 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1095 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1096 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1097 SET_USE (use_p, new_vop);
1098 }
1099 break;
1100 }
1101
1102 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1103 Resulting CFG would be:
1104
1105 first_loop:
1106 do {
1107 } while ...
1108
1109 second_loop:
1110 do {
1111 } while ...
1112
1113 orig_exit_bb:
1114 */
1115
1116 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1117 {
1118 loop_loc = find_loop_location (loop);
1119 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1120 "tree_duplicate_loop_to_edge_cfg failed.\n");
1121 return NULL;
1122 }
1123
1124 if (MAY_HAVE_DEBUG_STMTS)
1125 {
1126 gcc_assert (!adjust_vec.exists ());
1127 vec_stack_alloc (adjust_info, adjust_vec, 32);
1128 }
1129
1130 if (e == exit_e)
1131 {
1132 /* NEW_LOOP was placed after LOOP. */
1133 first_loop = loop;
1134 second_loop = new_loop;
1135 }
1136 else
1137 {
1138 /* NEW_LOOP was placed before LOOP. */
1139 first_loop = new_loop;
1140 second_loop = loop;
1141 }
1142
1143 /* 2. Add the guard code in one of the following ways:
1144
1145 2.a Add the guard that controls whether the first loop is executed.
1146 This occurs when this function is invoked for prologue or epilogue
1147 generation and when the cost model check can be done at compile time.
1148
1149 Resulting CFG would be:
1150
1151 bb_before_first_loop:
1152 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1153 GOTO first-loop
1154
1155 first_loop:
1156 do {
1157 } while ...
1158
1159 bb_before_second_loop:
1160
1161 second_loop:
1162 do {
1163 } while ...
1164
1165 orig_exit_bb:
1166
1167 2.b Add the cost model check that allows the prologue
1168 to iterate for the entire unchanged scalar
1169 iterations of the loop in the event that the cost
1170 model indicates that the scalar loop is more
1171 profitable than the vector one. This occurs when
1172 this function is invoked for prologue generation
1173 and the cost model check needs to be done at run
1174 time.
1175
1176 Resulting CFG after prologue peeling would be:
1177
1178 if (scalar_loop_iterations <= th)
1179 FIRST_NITERS = scalar_loop_iterations
1180
1181 bb_before_first_loop:
1182 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1183 GOTO first-loop
1184
1185 first_loop:
1186 do {
1187 } while ...
1188
1189 bb_before_second_loop:
1190
1191 second_loop:
1192 do {
1193 } while ...
1194
1195 orig_exit_bb:
1196
1197 2.c Add the cost model check that allows the epilogue
1198 to iterate for the entire unchanged scalar
1199 iterations of the loop in the event that the cost
1200 model indicates that the scalar loop is more
1201 profitable than the vector one. This occurs when
1202 this function is invoked for epilogue generation
1203 and the cost model check needs to be done at run
1204 time. This check is combined with any pre-existing
1205 check in COND_EXPR to avoid versioning.
1206
1207 Resulting CFG after prologue peeling would be:
1208
1209 bb_before_first_loop:
1210 if ((scalar_loop_iterations <= th)
1211 ||
1212 FIRST_NITERS == 0) GOTO bb_before_second_loop
1213 GOTO first-loop
1214
1215 first_loop:
1216 do {
1217 } while ...
1218
1219 bb_before_second_loop:
1220
1221 second_loop:
1222 do {
1223 } while ...
1224
1225 orig_exit_bb:
1226 */
1227
1228 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1229 /* Loop copying insterted a forwarder block for us here. */
1230 bb_before_second_loop = single_exit (first_loop)->dest;
1231
1232 probability_of_second_loop = (inverse_probability (first_guard_probability)
1233 + combine_probabilities (second_guard_probability,
1234 first_guard_probability));
1235 /* Theoretically preheader edge of first loop and exit edge should have
1236 same frequencies. Loop exit probablities are however easy to get wrong.
1237 It is safer to copy value from original loop entry. */
1238 bb_before_second_loop->frequency
1239 = combine_probabilities (bb_before_first_loop->frequency,
1240 probability_of_second_loop);
1241 bb_before_second_loop->count
1242 = apply_probability (bb_before_first_loop->count,
1243 probability_of_second_loop);
1244 single_succ_edge (bb_before_second_loop)->count
1245 = bb_before_second_loop->count;
1246
1247 /* Epilogue peeling. */
1248 if (!update_first_loop_count)
1249 {
1250 pre_condition =
1251 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1252 build_int_cst (TREE_TYPE (*first_niters), 0));
1253 if (check_profitability)
1254 {
1255 tree scalar_loop_iters
1256 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1257 (loop_vec_info_for_loop (loop)));
1258 cost_pre_condition =
1259 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1260 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1261
1262 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1263 cost_pre_condition, pre_condition);
1264 }
1265 if (cond_expr)
1266 {
1267 pre_condition =
1268 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1269 pre_condition,
1270 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1271 cond_expr));
1272 }
1273 }
1274
1275 /* Prologue peeling. */
1276 else
1277 {
1278 if (check_profitability)
1279 set_prologue_iterations (bb_before_first_loop, first_niters,
1280 loop, th, first_guard_probability);
1281
1282 pre_condition =
1283 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1284 build_int_cst (TREE_TYPE (*first_niters), 0));
1285 }
1286
1287 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1288 cond_expr_stmt_list,
1289 bb_before_second_loop, bb_before_first_loop,
1290 inverse_probability (first_guard_probability));
1291 scale_loop_profile (first_loop, first_guard_probability,
1292 check_profitability && (int)th > bound1 ? th : bound1);
1293 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1294 first_loop == new_loop,
1295 &new_exit_bb);
1296
1297
1298 /* 3. Add the guard that controls whether the second loop is executed.
1299 Resulting CFG would be:
1300
1301 bb_before_first_loop:
1302 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1303 GOTO first-loop
1304
1305 first_loop:
1306 do {
1307 } while ...
1308
1309 bb_between_loops:
1310 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1311 GOTO bb_before_second_loop
1312
1313 bb_before_second_loop:
1314
1315 second_loop:
1316 do {
1317 } while ...
1318
1319 bb_after_second_loop:
1320
1321 orig_exit_bb:
1322 */
1323
1324 bb_between_loops = new_exit_bb;
1325 bb_after_second_loop = split_edge (single_exit (second_loop));
1326
1327 pre_condition =
1328 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1329 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1330 bb_after_second_loop, bb_before_first_loop,
1331 inverse_probability (second_guard_probability));
1332 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1333 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1334 second_loop == new_loop, &new_exit_bb);
1335
1336 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1337 */
1338 if (update_first_loop_count)
1339 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1340
1341 delete_update_ssa ();
1342
1343 adjust_vec_debug_stmts ();
1344
1345 return new_loop;
1346 }
1347
1348 /* Function vect_get_loop_location.
1349
1350 Extract the location of the loop in the source code.
1351 If the loop is not well formed for vectorization, an estimated
1352 location is calculated.
1353 Return the loop location if succeed and NULL if not. */
1354
1355 LOC
1356 find_loop_location (struct loop *loop)
1357 {
1358 gimple stmt = NULL;
1359 basic_block bb;
1360 gimple_stmt_iterator si;
1361
1362 if (!loop)
1363 return UNKNOWN_LOC;
1364
1365 stmt = get_loop_exit_condition (loop);
1366
1367 if (stmt
1368 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1369 return gimple_location (stmt);
1370
1371 /* If we got here the loop is probably not "well formed",
1372 try to estimate the loop location */
1373
1374 if (!loop->header)
1375 return UNKNOWN_LOC;
1376
1377 bb = loop->header;
1378
1379 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1380 {
1381 stmt = gsi_stmt (si);
1382 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1383 return gimple_location (stmt);
1384 }
1385
1386 return UNKNOWN_LOC;
1387 }
1388
1389
1390 /* This function builds ni_name = number of iterations loop executes
1391 on the loop preheader. If SEQ is given the stmt is instead emitted
1392 there. */
1393
1394 static tree
1395 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1396 {
1397 tree ni_name, var;
1398 gimple_seq stmts = NULL;
1399 edge pe;
1400 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1401 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1402
1403 var = create_tmp_var (TREE_TYPE (ni), "niters");
1404 ni_name = force_gimple_operand (ni, &stmts, false, var);
1405
1406 pe = loop_preheader_edge (loop);
1407 if (stmts)
1408 {
1409 if (seq)
1410 gimple_seq_add_seq (&seq, stmts);
1411 else
1412 {
1413 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1414 gcc_assert (!new_bb);
1415 }
1416 }
1417
1418 return ni_name;
1419 }
1420
1421
1422 /* This function generates the following statements:
1423
1424 ni_name = number of iterations loop executes
1425 ratio = ni_name / vf
1426 ratio_mult_vf_name = ratio * vf
1427
1428 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1429 if that is non-NULL. */
1430
1431 static void
1432 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1433 tree *ni_name_ptr,
1434 tree *ratio_mult_vf_name_ptr,
1435 tree *ratio_name_ptr,
1436 gimple_seq cond_expr_stmt_list)
1437 {
1438
1439 edge pe;
1440 basic_block new_bb;
1441 gimple_seq stmts;
1442 tree ni_name, ni_minus_gap_name;
1443 tree var;
1444 tree ratio_name;
1445 tree ratio_mult_vf_name;
1446 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1447 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1448 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1449 tree log_vf;
1450
1451 pe = loop_preheader_edge (loop);
1452
1453 /* Generate temporary variable that contains
1454 number of iterations loop executes. */
1455
1456 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1457 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1458
1459 /* If epilogue loop is required because of data accesses with gaps, we
1460 subtract one iteration from the total number of iterations here for
1461 correct calculation of RATIO. */
1462 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1463 {
1464 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1465 ni_name,
1466 build_one_cst (TREE_TYPE (ni_name)));
1467 if (!is_gimple_val (ni_minus_gap_name))
1468 {
1469 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1470
1471 stmts = NULL;
1472 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1473 true, var);
1474 if (cond_expr_stmt_list)
1475 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1476 else
1477 {
1478 pe = loop_preheader_edge (loop);
1479 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1480 gcc_assert (!new_bb);
1481 }
1482 }
1483 }
1484 else
1485 ni_minus_gap_name = ni_name;
1486
1487 /* Create: ratio = ni >> log2(vf) */
1488
1489 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1490 ni_minus_gap_name, log_vf);
1491 if (!is_gimple_val (ratio_name))
1492 {
1493 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1494
1495 stmts = NULL;
1496 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1497 if (cond_expr_stmt_list)
1498 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1499 else
1500 {
1501 pe = loop_preheader_edge (loop);
1502 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1503 gcc_assert (!new_bb);
1504 }
1505 }
1506
1507 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1508
1509 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1510 ratio_name, log_vf);
1511 if (!is_gimple_val (ratio_mult_vf_name))
1512 {
1513 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1514
1515 stmts = NULL;
1516 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1517 true, var);
1518 if (cond_expr_stmt_list)
1519 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1520 else
1521 {
1522 pe = loop_preheader_edge (loop);
1523 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1524 gcc_assert (!new_bb);
1525 }
1526 }
1527
1528 *ni_name_ptr = ni_name;
1529 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1530 *ratio_name_ptr = ratio_name;
1531
1532 return;
1533 }
1534
1535 /* Function vect_can_advance_ivs_p
1536
1537 In case the number of iterations that LOOP iterates is unknown at compile
1538 time, an epilog loop will be generated, and the loop induction variables
1539 (IVs) will be "advanced" to the value they are supposed to take just before
1540 the epilog loop. Here we check that the access function of the loop IVs
1541 and the expression that represents the loop bound are simple enough.
1542 These restrictions will be relaxed in the future. */
1543
1544 bool
1545 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1546 {
1547 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1548 basic_block bb = loop->header;
1549 gimple phi;
1550 gimple_stmt_iterator gsi;
1551
1552 /* Analyze phi functions of the loop header. */
1553
1554 if (dump_enabled_p ())
1555 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:");
1556 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1557 {
1558 tree evolution_part;
1559
1560 phi = gsi_stmt (gsi);
1561 if (dump_enabled_p ())
1562 {
1563 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1564 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1565 }
1566
1567 /* Skip virtual phi's. The data dependences that are associated with
1568 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1569
1570 if (virtual_operand_p (PHI_RESULT (phi)))
1571 {
1572 if (dump_enabled_p ())
1573 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1574 "virtual phi. skip.");
1575 continue;
1576 }
1577
1578 /* Skip reduction phis. */
1579
1580 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1581 {
1582 if (dump_enabled_p ())
1583 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1584 "reduc phi. skip.");
1585 continue;
1586 }
1587
1588 /* Analyze the evolution function. */
1589
1590 evolution_part
1591 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1592 if (evolution_part == NULL_TREE)
1593 {
1594 if (dump_enabled_p ())
1595 dump_printf (MSG_MISSED_OPTIMIZATION,
1596 "No access function or evolution.");
1597 return false;
1598 }
1599
1600 /* FORNOW: We do not transform initial conditions of IVs
1601 which evolution functions are a polynomial of degree >= 2. */
1602
1603 if (tree_is_chrec (evolution_part))
1604 return false;
1605 }
1606
1607 return true;
1608 }
1609
1610
1611 /* Function vect_update_ivs_after_vectorizer.
1612
1613 "Advance" the induction variables of LOOP to the value they should take
1614 after the execution of LOOP. This is currently necessary because the
1615 vectorizer does not handle induction variables that are used after the
1616 loop. Such a situation occurs when the last iterations of LOOP are
1617 peeled, because:
1618 1. We introduced new uses after LOOP for IVs that were not originally used
1619 after LOOP: the IVs of LOOP are now used by an epilog loop.
1620 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1621 times, whereas the loop IVs should be bumped N times.
1622
1623 Input:
1624 - LOOP - a loop that is going to be vectorized. The last few iterations
1625 of LOOP were peeled.
1626 - NITERS - the number of iterations that LOOP executes (before it is
1627 vectorized). i.e, the number of times the ivs should be bumped.
1628 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1629 coming out from LOOP on which there are uses of the LOOP ivs
1630 (this is the path from LOOP->exit to epilog_loop->preheader).
1631
1632 The new definitions of the ivs are placed in LOOP->exit.
1633 The phi args associated with the edge UPDATE_E in the bb
1634 UPDATE_E->dest are updated accordingly.
1635
1636 Assumption 1: Like the rest of the vectorizer, this function assumes
1637 a single loop exit that has a single predecessor.
1638
1639 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1640 organized in the same order.
1641
1642 Assumption 3: The access function of the ivs is simple enough (see
1643 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1644
1645 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1646 coming out of LOOP on which the ivs of LOOP are used (this is the path
1647 that leads to the epilog loop; other paths skip the epilog loop). This
1648 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1649 needs to have its phis updated.
1650 */
1651
1652 static void
1653 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1654 edge update_e)
1655 {
1656 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1657 basic_block exit_bb = single_exit (loop)->dest;
1658 gimple phi, phi1;
1659 gimple_stmt_iterator gsi, gsi1;
1660 basic_block update_bb = update_e->dest;
1661
1662 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1663
1664 /* Make sure there exists a single-predecessor exit bb: */
1665 gcc_assert (single_pred_p (exit_bb));
1666
1667 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1668 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1669 gsi_next (&gsi), gsi_next (&gsi1))
1670 {
1671 tree init_expr;
1672 tree step_expr, off;
1673 tree type;
1674 tree var, ni, ni_name;
1675 gimple_stmt_iterator last_gsi;
1676 stmt_vec_info stmt_info;
1677
1678 phi = gsi_stmt (gsi);
1679 phi1 = gsi_stmt (gsi1);
1680 if (dump_enabled_p ())
1681 {
1682 dump_printf_loc (MSG_NOTE, vect_location,
1683 "vect_update_ivs_after_vectorizer: phi: ");
1684 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1685 }
1686
1687 /* Skip virtual phi's. */
1688 if (virtual_operand_p (PHI_RESULT (phi)))
1689 {
1690 if (dump_enabled_p ())
1691 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1692 "virtual phi. skip.");
1693 continue;
1694 }
1695
1696 /* Skip reduction phis. */
1697 stmt_info = vinfo_for_stmt (phi);
1698 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1699 {
1700 if (dump_enabled_p ())
1701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1702 "reduc phi. skip.");
1703 continue;
1704 }
1705
1706 type = TREE_TYPE (gimple_phi_result (phi));
1707 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1708 step_expr = unshare_expr (step_expr);
1709
1710 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1711 of degree >= 2 or exponential. */
1712 gcc_assert (!tree_is_chrec (step_expr));
1713
1714 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1715
1716 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1717 fold_convert (TREE_TYPE (step_expr), niters),
1718 step_expr);
1719 if (POINTER_TYPE_P (type))
1720 ni = fold_build_pointer_plus (init_expr, off);
1721 else
1722 ni = fold_build2 (PLUS_EXPR, type,
1723 init_expr, fold_convert (type, off));
1724
1725 var = create_tmp_var (type, "tmp");
1726
1727 last_gsi = gsi_last_bb (exit_bb);
1728 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1729 true, GSI_SAME_STMT);
1730
1731 /* Fix phi expressions in the successor bb. */
1732 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1733 }
1734 }
1735
1736 /* Function vect_do_peeling_for_loop_bound
1737
1738 Peel the last iterations of the loop represented by LOOP_VINFO.
1739 The peeled iterations form a new epilog loop. Given that the loop now
1740 iterates NITERS times, the new epilog loop iterates
1741 NITERS % VECTORIZATION_FACTOR times.
1742
1743 The original loop will later be made to iterate
1744 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1745
1746 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1747 test. */
1748
1749 void
1750 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1751 unsigned int th, bool check_profitability)
1752 {
1753 tree ni_name, ratio_mult_vf_name;
1754 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1755 struct loop *new_loop;
1756 edge update_e;
1757 basic_block preheader;
1758 int loop_num;
1759 int max_iter;
1760 tree cond_expr = NULL_TREE;
1761 gimple_seq cond_expr_stmt_list = NULL;
1762
1763 if (dump_enabled_p ())
1764 dump_printf_loc (MSG_NOTE, vect_location,
1765 "=== vect_do_peeling_for_loop_bound ===");
1766
1767 initialize_original_copy_tables ();
1768
1769 /* Generate the following variables on the preheader of original loop:
1770
1771 ni_name = number of iteration the original loop executes
1772 ratio = ni_name / vf
1773 ratio_mult_vf_name = ratio * vf */
1774 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1775 &ratio_mult_vf_name, ratio,
1776 cond_expr_stmt_list);
1777
1778 loop_num = loop->num;
1779
1780 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1781 &ratio_mult_vf_name, ni_name, false,
1782 th, check_profitability,
1783 cond_expr, cond_expr_stmt_list,
1784 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1785 gcc_assert (new_loop);
1786 gcc_assert (loop_num == loop->num);
1787 #ifdef ENABLE_CHECKING
1788 slpeel_verify_cfg_after_peeling (loop, new_loop);
1789 #endif
1790
1791 /* A guard that controls whether the new_loop is to be executed or skipped
1792 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1793 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1794 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1795 is on the path where the LOOP IVs are used and need to be updated. */
1796
1797 preheader = loop_preheader_edge (new_loop)->src;
1798 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1799 update_e = EDGE_PRED (preheader, 0);
1800 else
1801 update_e = EDGE_PRED (preheader, 1);
1802
1803 /* Update IVs of original loop as if they were advanced
1804 by ratio_mult_vf_name steps. */
1805 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1806
1807 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1808 and this means N-2 loopback edge executions.
1809
1810 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1811 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1812 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1813 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1814 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1815 if (check_profitability)
1816 max_iter = MAX (max_iter, (int) th - 1);
1817 record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
1818 dump_printf (MSG_NOTE,
1819 "Setting upper bound of nb iterations for epilogue "
1820 "loop to %d\n", max_iter);
1821
1822 /* After peeling we have to reset scalar evolution analyzer. */
1823 scev_reset ();
1824
1825 free_original_copy_tables ();
1826 }
1827
1828
1829 /* Function vect_gen_niters_for_prolog_loop
1830
1831 Set the number of iterations for the loop represented by LOOP_VINFO
1832 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1833 and the misalignment of DR - the data reference recorded in
1834 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1835 this loop, the data reference DR will refer to an aligned location.
1836
1837 The following computation is generated:
1838
1839 If the misalignment of DR is known at compile time:
1840 addr_mis = int mis = DR_MISALIGNMENT (dr);
1841 Else, compute address misalignment in bytes:
1842 addr_mis = addr & (vectype_align - 1)
1843
1844 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1845
1846 (elem_size = element type size; an element is the scalar element whose type
1847 is the inner type of the vectype)
1848
1849 When the step of the data-ref in the loop is not 1 (as in interleaved data
1850 and SLP), the number of iterations of the prolog must be divided by the step
1851 (which is equal to the size of interleaved group).
1852
1853 The above formulas assume that VF == number of elements in the vector. This
1854 may not hold when there are multiple-types in the loop.
1855 In this case, for some data-references in the loop the VF does not represent
1856 the number of elements that fit in the vector. Therefore, instead of VF we
1857 use TYPE_VECTOR_SUBPARTS. */
1858
1859 static tree
1860 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1861 {
1862 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1863 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1864 tree var;
1865 gimple_seq stmts;
1866 tree iters, iters_name;
1867 edge pe;
1868 basic_block new_bb;
1869 gimple dr_stmt = DR_STMT (dr);
1870 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1871 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1872 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1873 tree niters_type = TREE_TYPE (loop_niters);
1874 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1875
1876 pe = loop_preheader_edge (loop);
1877
1878 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1879 {
1880 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
1881
1882 if (dump_enabled_p ())
1883 dump_printf_loc (MSG_NOTE, vect_location,
1884 "known peeling = %d.", npeel);
1885
1886 iters = build_int_cst (niters_type, npeel);
1887 *bound = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
1888 }
1889 else
1890 {
1891 gimple_seq new_stmts = NULL;
1892 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1893 tree offset = negative
1894 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
1895 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1896 &new_stmts, offset, loop);
1897 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1898 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1899 HOST_WIDE_INT elem_size =
1900 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1901 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1902 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1903 tree nelements_tree = build_int_cst (type, nelements);
1904 tree byte_misalign;
1905 tree elem_misalign;
1906
1907 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1908 gcc_assert (!new_bb);
1909
1910 /* Create: byte_misalign = addr & (vectype_align - 1) */
1911 byte_misalign =
1912 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1913 vectype_align_minus_1);
1914
1915 /* Create: elem_misalign = byte_misalign / element_size */
1916 elem_misalign =
1917 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1918
1919 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1920 if (negative)
1921 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1922 else
1923 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1924 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1925 iters = fold_convert (niters_type, iters);
1926 *bound = nelements;
1927 }
1928
1929 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1930 /* If the loop bound is known at compile time we already verified that it is
1931 greater than vf; since the misalignment ('iters') is at most vf, there's
1932 no need to generate the MIN_EXPR in this case. */
1933 if (TREE_CODE (loop_niters) != INTEGER_CST)
1934 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1935
1936 if (dump_enabled_p ())
1937 {
1938 dump_printf_loc (MSG_NOTE, vect_location,
1939 "niters for prolog loop: ");
1940 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1941 }
1942
1943 var = create_tmp_var (niters_type, "prolog_loop_niters");
1944 stmts = NULL;
1945 iters_name = force_gimple_operand (iters, &stmts, false, var);
1946
1947 /* Insert stmt on loop preheader edge. */
1948 if (stmts)
1949 {
1950 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1951 gcc_assert (!new_bb);
1952 }
1953
1954 return iters_name;
1955 }
1956
1957
1958 /* Function vect_update_init_of_dr
1959
1960 NITERS iterations were peeled from LOOP. DR represents a data reference
1961 in LOOP. This function updates the information recorded in DR to
1962 account for the fact that the first NITERS iterations had already been
1963 executed. Specifically, it updates the OFFSET field of DR. */
1964
1965 static void
1966 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1967 {
1968 tree offset = DR_OFFSET (dr);
1969
1970 niters = fold_build2 (MULT_EXPR, sizetype,
1971 fold_convert (sizetype, niters),
1972 fold_convert (sizetype, DR_STEP (dr)));
1973 offset = fold_build2 (PLUS_EXPR, sizetype,
1974 fold_convert (sizetype, offset), niters);
1975 DR_OFFSET (dr) = offset;
1976 }
1977
1978
1979 /* Function vect_update_inits_of_drs
1980
1981 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1982 This function updates the information recorded for the data references in
1983 the loop to account for the fact that the first NITERS iterations had
1984 already been executed. Specifically, it updates the initial_condition of
1985 the access_function of all the data_references in the loop. */
1986
1987 static void
1988 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1989 {
1990 unsigned int i;
1991 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1992 struct data_reference *dr;
1993
1994 if (dump_enabled_p ())
1995 dump_printf_loc (MSG_NOTE, vect_location,
1996 "=== vect_update_inits_of_dr ===");
1997
1998 FOR_EACH_VEC_ELT (datarefs, i, dr)
1999 vect_update_init_of_dr (dr, niters);
2000 }
2001
2002
2003 /* Function vect_do_peeling_for_alignment
2004
2005 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2006 'niters' is set to the misalignment of one of the data references in the
2007 loop, thereby forcing it to refer to an aligned location at the beginning
2008 of the execution of this loop. The data reference for which we are
2009 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2010
2011 void
2012 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo,
2013 unsigned int th, bool check_profitability)
2014 {
2015 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2016 tree niters_of_prolog_loop, ni_name;
2017 tree n_iters;
2018 tree wide_prolog_niters;
2019 struct loop *new_loop;
2020 int max_iter;
2021 int bound = 0;
2022
2023 if (dump_enabled_p ())
2024 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2025 "loop peeled for vectorization to enhance"
2026 " alignment\n");
2027
2028 initialize_original_copy_tables ();
2029
2030 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2031 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2032 ni_name,
2033 &bound);
2034
2035 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2036 new_loop =
2037 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2038 &niters_of_prolog_loop, ni_name, true,
2039 th, check_profitability, NULL_TREE, NULL,
2040 bound,
2041 0);
2042
2043 gcc_assert (new_loop);
2044 #ifdef ENABLE_CHECKING
2045 slpeel_verify_cfg_after_peeling (new_loop, loop);
2046 #endif
2047 /* For vectorization factor N, we need to copy at most N-1 values
2048 for alignment and this means N-2 loopback edge executions. */
2049 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2050 if (check_profitability)
2051 max_iter = MAX (max_iter, (int) th - 1);
2052 record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
2053 dump_printf (MSG_NOTE,
2054 "Setting upper bound of nb iterations for prologue "
2055 "loop to %d\n", max_iter);
2056
2057 /* Update number of times loop executes. */
2058 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2059 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2060 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2061
2062 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2063 wide_prolog_niters = niters_of_prolog_loop;
2064 else
2065 {
2066 gimple_seq seq = NULL;
2067 edge pe = loop_preheader_edge (loop);
2068 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2069 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2070 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2071 var);
2072 if (seq)
2073 {
2074 /* Insert stmt on loop preheader edge. */
2075 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2076 gcc_assert (!new_bb);
2077 }
2078 }
2079
2080 /* Update the init conditions of the access functions of all data refs. */
2081 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2082
2083 /* After peeling we have to reset scalar evolution analyzer. */
2084 scev_reset ();
2085
2086 free_original_copy_tables ();
2087 }
2088
2089
2090 /* Function vect_create_cond_for_align_checks.
2091
2092 Create a conditional expression that represents the alignment checks for
2093 all of data references (array element references) whose alignment must be
2094 checked at runtime.
2095
2096 Input:
2097 COND_EXPR - input conditional expression. New conditions will be chained
2098 with logical AND operation.
2099 LOOP_VINFO - two fields of the loop information are used.
2100 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2101 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2102
2103 Output:
2104 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2105 expression.
2106 The returned value is the conditional expression to be used in the if
2107 statement that controls which version of the loop gets executed at runtime.
2108
2109 The algorithm makes two assumptions:
2110 1) The number of bytes "n" in a vector is a power of 2.
2111 2) An address "a" is aligned if a%n is zero and that this
2112 test can be done as a&(n-1) == 0. For example, for 16
2113 byte vectors the test is a&0xf == 0. */
2114
2115 static void
2116 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2117 tree *cond_expr,
2118 gimple_seq *cond_expr_stmt_list)
2119 {
2120 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2121 vec<gimple> may_misalign_stmts
2122 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2123 gimple ref_stmt;
2124 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2125 tree mask_cst;
2126 unsigned int i;
2127 tree int_ptrsize_type;
2128 char tmp_name[20];
2129 tree or_tmp_name = NULL_TREE;
2130 tree and_tmp_name;
2131 gimple and_stmt;
2132 tree ptrsize_zero;
2133 tree part_cond_expr;
2134
2135 /* Check that mask is one less than a power of 2, i.e., mask is
2136 all zeros followed by all ones. */
2137 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2138
2139 int_ptrsize_type = signed_type_for (ptr_type_node);
2140
2141 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2142 of the first vector of the i'th data reference. */
2143
2144 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2145 {
2146 gimple_seq new_stmt_list = NULL;
2147 tree addr_base;
2148 tree addr_tmp_name;
2149 tree new_or_tmp_name;
2150 gimple addr_stmt, or_stmt;
2151 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2152 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2153 bool negative = tree_int_cst_compare
2154 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2155 tree offset = negative
2156 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2157
2158 /* create: addr_tmp = (int)(address_of_first_vector) */
2159 addr_base =
2160 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2161 offset, loop);
2162 if (new_stmt_list != NULL)
2163 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2164
2165 sprintf (tmp_name, "addr2int%d", i);
2166 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2167 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2168 addr_base, NULL_TREE);
2169 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2170
2171 /* The addresses are OR together. */
2172
2173 if (or_tmp_name != NULL_TREE)
2174 {
2175 /* create: or_tmp = or_tmp | addr_tmp */
2176 sprintf (tmp_name, "orptrs%d", i);
2177 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2178 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2179 new_or_tmp_name,
2180 or_tmp_name, addr_tmp_name);
2181 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2182 or_tmp_name = new_or_tmp_name;
2183 }
2184 else
2185 or_tmp_name = addr_tmp_name;
2186
2187 } /* end for i */
2188
2189 mask_cst = build_int_cst (int_ptrsize_type, mask);
2190
2191 /* create: and_tmp = or_tmp & mask */
2192 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2193
2194 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2195 or_tmp_name, mask_cst);
2196 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2197
2198 /* Make and_tmp the left operand of the conditional test against zero.
2199 if and_tmp has a nonzero bit then some address is unaligned. */
2200 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2201 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2202 and_tmp_name, ptrsize_zero);
2203 if (*cond_expr)
2204 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2205 *cond_expr, part_cond_expr);
2206 else
2207 *cond_expr = part_cond_expr;
2208 }
2209
2210
2211 /* Function vect_vfa_segment_size.
2212
2213 Create an expression that computes the size of segment
2214 that will be accessed for a data reference. The functions takes into
2215 account that realignment loads may access one more vector.
2216
2217 Input:
2218 DR: The data reference.
2219 LENGTH_FACTOR: segment length to consider.
2220
2221 Return an expression whose value is the size of segment which will be
2222 accessed by DR. */
2223
2224 static tree
2225 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2226 {
2227 tree segment_length;
2228
2229 if (integer_zerop (DR_STEP (dr)))
2230 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2231 else
2232 segment_length = size_binop (MULT_EXPR,
2233 fold_convert (sizetype, DR_STEP (dr)),
2234 fold_convert (sizetype, length_factor));
2235
2236 if (vect_supportable_dr_alignment (dr, false)
2237 == dr_explicit_realign_optimized)
2238 {
2239 tree vector_size = TYPE_SIZE_UNIT
2240 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2241
2242 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2243 }
2244 return segment_length;
2245 }
2246
2247
2248 /* Function vect_create_cond_for_alias_checks.
2249
2250 Create a conditional expression that represents the run-time checks for
2251 overlapping of address ranges represented by a list of data references
2252 relations passed as input.
2253
2254 Input:
2255 COND_EXPR - input conditional expression. New conditions will be chained
2256 with logical AND operation.
2257 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2258 to be checked.
2259
2260 Output:
2261 COND_EXPR - conditional expression.
2262
2263 The returned value is the conditional expression to be used in the if
2264 statement that controls which version of the loop gets executed at runtime.
2265 */
2266
2267 static void
2268 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2269 {
2270 vec<ddr_p> may_alias_ddrs =
2271 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2272 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2273 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2274
2275 ddr_p ddr;
2276 unsigned int i;
2277 tree part_cond_expr, length_factor;
2278
2279 /* Create expression
2280 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2281 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2282 &&
2283 ...
2284 &&
2285 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2286 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2287
2288 if (may_alias_ddrs.is_empty ())
2289 return;
2290
2291 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2292 {
2293 struct data_reference *dr_a, *dr_b;
2294 gimple dr_group_first_a, dr_group_first_b;
2295 tree addr_base_a, addr_base_b;
2296 tree segment_length_a, segment_length_b;
2297 gimple stmt_a, stmt_b;
2298 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2299
2300 dr_a = DDR_A (ddr);
2301 stmt_a = DR_STMT (DDR_A (ddr));
2302 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2303 if (dr_group_first_a)
2304 {
2305 stmt_a = dr_group_first_a;
2306 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2307 }
2308
2309 dr_b = DDR_B (ddr);
2310 stmt_b = DR_STMT (DDR_B (ddr));
2311 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2312 if (dr_group_first_b)
2313 {
2314 stmt_b = dr_group_first_b;
2315 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2316 }
2317
2318 addr_base_a
2319 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a),
2320 size_binop (PLUS_EXPR, DR_OFFSET (dr_a),
2321 DR_INIT (dr_a)));
2322 addr_base_b
2323 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b),
2324 size_binop (PLUS_EXPR, DR_OFFSET (dr_b),
2325 DR_INIT (dr_b)));
2326
2327 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2328 length_factor = scalar_loop_iters;
2329 else
2330 length_factor = size_int (vect_factor);
2331 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2332 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2333
2334 if (dump_enabled_p ())
2335 {
2336 dump_printf_loc (MSG_NOTE, vect_location,
2337 "create runtime check for data references ");
2338 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
2339 dump_printf (MSG_NOTE, " and ");
2340 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
2341 }
2342
2343 seg_a_min = addr_base_a;
2344 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2345 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2346 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2347
2348 seg_b_min = addr_base_b;
2349 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2350 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2351 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2352
2353 part_cond_expr =
2354 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2355 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2356 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2357
2358 if (*cond_expr)
2359 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2360 *cond_expr, part_cond_expr);
2361 else
2362 *cond_expr = part_cond_expr;
2363 }
2364
2365 if (dump_enabled_p ())
2366 dump_printf_loc (MSG_NOTE, vect_location,
2367 "created %u versioning for alias checks.\n",
2368 may_alias_ddrs.length ());
2369 }
2370
2371
2372 /* Function vect_loop_versioning.
2373
2374 If the loop has data references that may or may not be aligned or/and
2375 has data reference relations whose independence was not proven then
2376 two versions of the loop need to be generated, one which is vectorized
2377 and one which isn't. A test is then generated to control which of the
2378 loops is executed. The test checks for the alignment of all of the
2379 data references that may or may not be aligned. An additional
2380 sequence of runtime tests is generated for each pairs of DDRs whose
2381 independence was not proven. The vectorized version of loop is
2382 executed only if both alias and alignment tests are passed.
2383
2384 The test generated to check which version of loop is executed
2385 is modified to also check for profitability as indicated by the
2386 cost model initially.
2387
2388 The versioning precondition(s) are placed in *COND_EXPR and
2389 *COND_EXPR_STMT_LIST. */
2390
2391 void
2392 vect_loop_versioning (loop_vec_info loop_vinfo,
2393 unsigned int th, bool check_profitability)
2394 {
2395 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2396 basic_block condition_bb;
2397 gimple_stmt_iterator gsi, cond_exp_gsi;
2398 basic_block merge_bb;
2399 basic_block new_exit_bb;
2400 edge new_exit_e, e;
2401 gimple orig_phi, new_phi;
2402 tree cond_expr = NULL_TREE;
2403 gimple_seq cond_expr_stmt_list = NULL;
2404 tree arg;
2405 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2406 gimple_seq gimplify_stmt_list = NULL;
2407 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2408 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2409 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2410
2411 if (check_profitability)
2412 {
2413 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2414 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2415 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2416 is_gimple_condexpr, NULL_TREE);
2417 }
2418
2419 if (version_align)
2420 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2421 &cond_expr_stmt_list);
2422
2423 if (version_alias)
2424 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2425
2426 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2427 is_gimple_condexpr, NULL_TREE);
2428 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2429
2430 initialize_original_copy_tables ();
2431 loop_version (loop, cond_expr, &condition_bb,
2432 prob, prob, REG_BR_PROB_BASE - prob, true);
2433
2434 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOC
2435 && dump_enabled_p ())
2436 {
2437 if (version_alias)
2438 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2439 "loop versioned for vectorization because of "
2440 "possible aliasing\n");
2441 if (version_align)
2442 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2443 "loop versioned for vectorization to enhance "
2444 "alignment\n");
2445
2446 }
2447 free_original_copy_tables();
2448
2449 /* Loop versioning violates an assumption we try to maintain during
2450 vectorization - that the loop exit block has a single predecessor.
2451 After versioning, the exit block of both loop versions is the same
2452 basic block (i.e. it has two predecessors). Just in order to simplify
2453 following transformations in the vectorizer, we fix this situation
2454 here by adding a new (empty) block on the exit-edge of the loop,
2455 with the proper loop-exit phis to maintain loop-closed-form. */
2456
2457 merge_bb = single_exit (loop)->dest;
2458 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2459 new_exit_bb = split_edge (single_exit (loop));
2460 new_exit_e = single_exit (loop);
2461 e = EDGE_SUCC (new_exit_bb, 0);
2462
2463 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2464 {
2465 tree new_res;
2466 orig_phi = gsi_stmt (gsi);
2467 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
2468 new_phi = create_phi_node (new_res, new_exit_bb);
2469 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2470 add_phi_arg (new_phi, arg, new_exit_e,
2471 gimple_phi_arg_location_from_edge (orig_phi, e));
2472 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2473 }
2474
2475 /* End loop-exit-fixes after versioning. */
2476
2477 if (cond_expr_stmt_list)
2478 {
2479 cond_exp_gsi = gsi_last_bb (condition_bb);
2480 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2481 GSI_SAME_STMT);
2482 }
2483 update_ssa (TODO_update_ssa);
2484 }