]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vect-loop-manip.c
[31/46] Use stmt_vec_info in function interfaces (part 1)
[thirdparty/gcc.git] / gcc / tree-vect-loop-manip.c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50
51 /*************************************************************************
52 Simple Loop Peeling Utilities
53
54 Utilities to support loop peeling for vectorization purposes.
55 *************************************************************************/
56
57
58 /* Renames the use *OP_P. */
59
60 static void
61 rename_use_op (use_operand_p op_p)
62 {
63 tree new_name;
64
65 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
66 return;
67
68 new_name = get_current_def (USE_FROM_PTR (op_p));
69
70 /* Something defined outside of the loop. */
71 if (!new_name)
72 return;
73
74 /* An ordinary ssa name defined in the loop. */
75
76 SET_USE (op_p, new_name);
77 }
78
79
80 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
81 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
82 true. */
83
84 static void
85 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
86 {
87 gimple *stmt;
88 use_operand_p use_p;
89 ssa_op_iter iter;
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = bb->loop_father;
93 struct loop *outer_loop = NULL;
94
95 if (rename_from_outer_loop)
96 {
97 gcc_assert (loop);
98 outer_loop = loop_outer (loop);
99 }
100
101 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
102 gsi_next (&gsi))
103 {
104 stmt = gsi_stmt (gsi);
105 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
106 rename_use_op (use_p);
107 }
108
109 FOR_EACH_EDGE (e, ei, bb->preds)
110 {
111 if (!flow_bb_inside_loop_p (loop, e->src))
112 {
113 if (!rename_from_outer_loop)
114 continue;
115 if (e->src != outer_loop->header)
116 {
117 if (outer_loop->inner->next)
118 {
119 /* If outer_loop has 2 inner loops, allow there to
120 be an extra basic block which decides which of the
121 two loops to use using LOOP_VECTORIZED. */
122 if (!single_pred_p (e->src)
123 || single_pred (e->src) != outer_loop->header)
124 continue;
125 }
126 }
127 }
128 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
129 gsi_next (&gsi))
130 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
131 }
132 }
133
134
135 struct adjust_info
136 {
137 tree from, to;
138 basic_block bb;
139 };
140
141 /* A stack of values to be adjusted in debug stmts. We have to
142 process them LIFO, so that the closest substitution applies. If we
143 processed them FIFO, without the stack, we might substitute uses
144 with a PHI DEF that would soon become non-dominant, and when we got
145 to the suitable one, it wouldn't have anything to substitute any
146 more. */
147 static vec<adjust_info, va_heap> adjust_vec;
148
149 /* Adjust any debug stmts that referenced AI->from values to use the
150 loop-closed AI->to, if the references are dominated by AI->bb and
151 not by the definition of AI->from. */
152
153 static void
154 adjust_debug_stmts_now (adjust_info *ai)
155 {
156 basic_block bbphi = ai->bb;
157 tree orig_def = ai->from;
158 tree new_def = ai->to;
159 imm_use_iterator imm_iter;
160 gimple *stmt;
161 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
162
163 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
164
165 /* Adjust any debug stmts that held onto non-loop-closed
166 references. */
167 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
168 {
169 use_operand_p use_p;
170 basic_block bbuse;
171
172 if (!is_gimple_debug (stmt))
173 continue;
174
175 gcc_assert (gimple_debug_bind_p (stmt));
176
177 bbuse = gimple_bb (stmt);
178
179 if ((bbuse == bbphi
180 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
181 && !(bbuse == bbdef
182 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
183 {
184 if (new_def)
185 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
186 SET_USE (use_p, new_def);
187 else
188 {
189 gimple_debug_bind_reset_value (stmt);
190 update_stmt (stmt);
191 }
192 }
193 }
194 }
195
196 /* Adjust debug stmts as scheduled before. */
197
198 static void
199 adjust_vec_debug_stmts (void)
200 {
201 if (!MAY_HAVE_DEBUG_BIND_STMTS)
202 return;
203
204 gcc_assert (adjust_vec.exists ());
205
206 while (!adjust_vec.is_empty ())
207 {
208 adjust_debug_stmts_now (&adjust_vec.last ());
209 adjust_vec.pop ();
210 }
211 }
212
213 /* Adjust any debug stmts that referenced FROM values to use the
214 loop-closed TO, if the references are dominated by BB and not by
215 the definition of FROM. If adjust_vec is non-NULL, adjustments
216 will be postponed until adjust_vec_debug_stmts is called. */
217
218 static void
219 adjust_debug_stmts (tree from, tree to, basic_block bb)
220 {
221 adjust_info ai;
222
223 if (MAY_HAVE_DEBUG_BIND_STMTS
224 && TREE_CODE (from) == SSA_NAME
225 && ! SSA_NAME_IS_DEFAULT_DEF (from)
226 && ! virtual_operand_p (from))
227 {
228 ai.from = from;
229 ai.to = to;
230 ai.bb = bb;
231
232 if (adjust_vec.exists ())
233 adjust_vec.safe_push (ai);
234 else
235 adjust_debug_stmts_now (&ai);
236 }
237 }
238
239 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
240 to adjust any debug stmts that referenced the old phi arg,
241 presumably non-loop-closed references left over from other
242 transformations. */
243
244 static void
245 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
246 {
247 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
248
249 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
250
251 if (MAY_HAVE_DEBUG_BIND_STMTS)
252 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
253 gimple_bb (update_phi));
254 }
255
256 /* Define one loop mask MASK from loop LOOP. INIT_MASK is the value that
257 the mask should have during the first iteration and NEXT_MASK is the
258 value that it should have on subsequent iterations. */
259
260 static void
261 vect_set_loop_mask (struct loop *loop, tree mask, tree init_mask,
262 tree next_mask)
263 {
264 gphi *phi = create_phi_node (mask, loop->header);
265 add_phi_arg (phi, init_mask, loop_preheader_edge (loop), UNKNOWN_LOCATION);
266 add_phi_arg (phi, next_mask, loop_latch_edge (loop), UNKNOWN_LOCATION);
267 }
268
269 /* Add SEQ to the end of LOOP's preheader block. */
270
271 static void
272 add_preheader_seq (struct loop *loop, gimple_seq seq)
273 {
274 if (seq)
275 {
276 edge pe = loop_preheader_edge (loop);
277 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
278 gcc_assert (!new_bb);
279 }
280 }
281
282 /* Add SEQ to the beginning of LOOP's header block. */
283
284 static void
285 add_header_seq (struct loop *loop, gimple_seq seq)
286 {
287 if (seq)
288 {
289 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
290 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
291 }
292 }
293
294 /* Return true if the target can interleave elements of two vectors.
295 OFFSET is 0 if the first half of the vectors should be interleaved
296 or 1 if the second half should. When returning true, store the
297 associated permutation in INDICES. */
298
299 static bool
300 interleave_supported_p (vec_perm_indices *indices, tree vectype,
301 unsigned int offset)
302 {
303 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
304 poly_uint64 base = exact_div (nelts, 2) * offset;
305 vec_perm_builder sel (nelts, 2, 3);
306 for (unsigned int i = 0; i < 3; ++i)
307 {
308 sel.quick_push (base + i);
309 sel.quick_push (base + i + nelts);
310 }
311 indices->new_vector (sel, 2, nelts);
312 return can_vec_perm_const_p (TYPE_MODE (vectype), *indices);
313 }
314
315 /* Try to use permutes to define the masks in DEST_RGM using the masks
316 in SRC_RGM, given that the former has twice as many masks as the
317 latter. Return true on success, adding any new statements to SEQ. */
318
319 static bool
320 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_masks *dest_rgm,
321 rgroup_masks *src_rgm)
322 {
323 tree src_masktype = src_rgm->mask_type;
324 tree dest_masktype = dest_rgm->mask_type;
325 machine_mode src_mode = TYPE_MODE (src_masktype);
326 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
327 && optab_handler (vec_unpacku_hi_optab, src_mode) != CODE_FOR_nothing
328 && optab_handler (vec_unpacku_lo_optab, src_mode) != CODE_FOR_nothing)
329 {
330 /* Unpacking the source masks gives at least as many mask bits as
331 we need. We can then VIEW_CONVERT any excess bits away. */
332 tree unpack_masktype = vect_halve_mask_nunits (src_masktype);
333 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
334 {
335 tree src = src_rgm->masks[i / 2];
336 tree dest = dest_rgm->masks[i];
337 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
338 ? VEC_UNPACK_HI_EXPR
339 : VEC_UNPACK_LO_EXPR);
340 gassign *stmt;
341 if (dest_masktype == unpack_masktype)
342 stmt = gimple_build_assign (dest, code, src);
343 else
344 {
345 tree temp = make_ssa_name (unpack_masktype);
346 stmt = gimple_build_assign (temp, code, src);
347 gimple_seq_add_stmt (seq, stmt);
348 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
349 build1 (VIEW_CONVERT_EXPR,
350 dest_masktype, temp));
351 }
352 gimple_seq_add_stmt (seq, stmt);
353 }
354 return true;
355 }
356 vec_perm_indices indices[2];
357 if (dest_masktype == src_masktype
358 && interleave_supported_p (&indices[0], src_masktype, 0)
359 && interleave_supported_p (&indices[1], src_masktype, 1))
360 {
361 /* The destination requires twice as many mask bits as the source, so
362 we can use interleaving permutes to double up the number of bits. */
363 tree masks[2];
364 for (unsigned int i = 0; i < 2; ++i)
365 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
366 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
367 {
368 tree src = src_rgm->masks[i / 2];
369 tree dest = dest_rgm->masks[i];
370 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
371 src, src, masks[i & 1]);
372 gimple_seq_add_stmt (seq, stmt);
373 }
374 return true;
375 }
376 return false;
377 }
378
379 /* Helper for vect_set_loop_condition_masked. Generate definitions for
380 all the masks in RGM and return a mask that is nonzero when the loop
381 needs to iterate. Add any new preheader statements to PREHEADER_SEQ.
382 Use LOOP_COND_GSI to insert code before the exit gcond.
383
384 RGM belongs to loop LOOP. The loop originally iterated NITERS
385 times and has been vectorized according to LOOP_VINFO. Each iteration
386 of the vectorized loop handles VF iterations of the scalar loop.
387
388 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
389 starts with NITERS_SKIP dummy iterations of the scalar loop before
390 the real work starts. The mask elements for these dummy iterations
391 must be 0, to ensure that the extra iterations do not have an effect.
392
393 It is known that:
394
395 NITERS * RGM->max_nscalars_per_iter
396
397 does not overflow. However, MIGHT_WRAP_P says whether an induction
398 variable that starts at 0 and has step:
399
400 VF * RGM->max_nscalars_per_iter
401
402 might overflow before hitting a value above:
403
404 (NITERS + NITERS_SKIP) * RGM->max_nscalars_per_iter
405
406 This means that we cannot guarantee that such an induction variable
407 would ever hit a value that produces a set of all-false masks for RGM. */
408
409 static tree
410 vect_set_loop_masks_directly (struct loop *loop, loop_vec_info loop_vinfo,
411 gimple_seq *preheader_seq,
412 gimple_stmt_iterator loop_cond_gsi,
413 rgroup_masks *rgm, tree vf,
414 tree niters, tree niters_skip,
415 bool might_wrap_p)
416 {
417 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
418 tree mask_type = rgm->mask_type;
419 unsigned int nscalars_per_iter = rgm->max_nscalars_per_iter;
420 poly_uint64 nscalars_per_mask = TYPE_VECTOR_SUBPARTS (mask_type);
421
422 /* Calculate the maximum number of scalar values that the rgroup
423 handles in total, the number that it handles for each iteration
424 of the vector loop, and the number that it should skip during the
425 first iteration of the vector loop. */
426 tree nscalars_total = niters;
427 tree nscalars_step = vf;
428 tree nscalars_skip = niters_skip;
429 if (nscalars_per_iter != 1)
430 {
431 /* We checked before choosing to use a fully-masked loop that these
432 multiplications don't overflow. */
433 tree factor = build_int_cst (compare_type, nscalars_per_iter);
434 nscalars_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
435 nscalars_total, factor);
436 nscalars_step = gimple_build (preheader_seq, MULT_EXPR, compare_type,
437 nscalars_step, factor);
438 if (nscalars_skip)
439 nscalars_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
440 nscalars_skip, factor);
441 }
442
443 /* Create an induction variable that counts the number of scalars
444 processed. */
445 tree index_before_incr, index_after_incr;
446 gimple_stmt_iterator incr_gsi;
447 bool insert_after;
448 tree zero_index = build_int_cst (compare_type, 0);
449 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
450 create_iv (zero_index, nscalars_step, NULL_TREE, loop, &incr_gsi,
451 insert_after, &index_before_incr, &index_after_incr);
452
453 tree test_index, test_limit, first_limit;
454 gimple_stmt_iterator *test_gsi;
455 if (might_wrap_p)
456 {
457 /* In principle the loop should stop iterating once the incremented
458 IV reaches a value greater than or equal to:
459
460 NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP
461
462 However, there's no guarantee that this addition doesn't overflow
463 the comparison type, or that the IV hits a value above it before
464 wrapping around. We therefore adjust the limit down by one
465 IV step:
466
467 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
468 -[infinite-prec] NSCALARS_STEP
469
470 and compare the IV against this limit _before_ incrementing it.
471 Since the comparison type is unsigned, we actually want the
472 subtraction to saturate at zero:
473
474 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
475 -[sat] NSCALARS_STEP
476
477 And since NSCALARS_SKIP < NSCALARS_STEP, we can reassociate this as:
478
479 NSCALARS_TOTAL -[sat] (NSCALARS_STEP - NSCALARS_SKIP)
480
481 where the rightmost subtraction can be done directly in
482 COMPARE_TYPE. */
483 test_index = index_before_incr;
484 tree adjust = nscalars_step;
485 if (nscalars_skip)
486 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
487 adjust, nscalars_skip);
488 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
489 nscalars_total, adjust);
490 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
491 test_limit, adjust);
492 test_gsi = &incr_gsi;
493
494 /* Get a safe limit for the first iteration. */
495 if (nscalars_skip)
496 {
497 /* The first vector iteration can handle at most NSCALARS_STEP
498 scalars. NSCALARS_STEP <= CONST_LIMIT, and adding
499 NSCALARS_SKIP to that cannot overflow. */
500 tree const_limit = build_int_cst (compare_type,
501 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
502 * nscalars_per_iter);
503 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
504 nscalars_total, const_limit);
505 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
506 first_limit, nscalars_skip);
507 }
508 else
509 /* For the first iteration it doesn't matter whether the IV hits
510 a value above NSCALARS_TOTAL. That only matters for the latch
511 condition. */
512 first_limit = nscalars_total;
513 }
514 else
515 {
516 /* Test the incremented IV, which will always hit a value above
517 the bound before wrapping. */
518 test_index = index_after_incr;
519 test_limit = nscalars_total;
520 if (nscalars_skip)
521 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
522 test_limit, nscalars_skip);
523 test_gsi = &loop_cond_gsi;
524
525 first_limit = test_limit;
526 }
527
528 /* Provide a definition of each mask in the group. */
529 tree next_mask = NULL_TREE;
530 tree mask;
531 unsigned int i;
532 FOR_EACH_VEC_ELT_REVERSE (rgm->masks, i, mask)
533 {
534 /* Previous masks will cover BIAS scalars. This mask covers the
535 next batch. */
536 poly_uint64 bias = nscalars_per_mask * i;
537 tree bias_tree = build_int_cst (compare_type, bias);
538 gimple *tmp_stmt;
539
540 /* See whether the first iteration of the vector loop is known
541 to have a full mask. */
542 poly_uint64 const_limit;
543 bool first_iteration_full
544 = (poly_int_tree_p (first_limit, &const_limit)
545 && known_ge (const_limit, (i + 1) * nscalars_per_mask));
546
547 /* Rather than have a new IV that starts at BIAS and goes up to
548 TEST_LIMIT, prefer to use the same 0-based IV for each mask
549 and adjust the bound down by BIAS. */
550 tree this_test_limit = test_limit;
551 if (i != 0)
552 {
553 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
554 compare_type, this_test_limit,
555 bias_tree);
556 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
557 compare_type, this_test_limit,
558 bias_tree);
559 }
560
561 /* Create the initial mask. First include all scalars that
562 are within the loop limit. */
563 tree init_mask = NULL_TREE;
564 if (!first_iteration_full)
565 {
566 tree start, end;
567 if (first_limit == test_limit)
568 {
569 /* Use a natural test between zero (the initial IV value)
570 and the loop limit. The "else" block would be valid too,
571 but this choice can avoid the need to load BIAS_TREE into
572 a register. */
573 start = zero_index;
574 end = this_test_limit;
575 }
576 else
577 {
578 /* FIRST_LIMIT is the maximum number of scalars handled by the
579 first iteration of the vector loop. Test the portion
580 associated with this mask. */
581 start = bias_tree;
582 end = first_limit;
583 }
584
585 init_mask = make_temp_ssa_name (mask_type, NULL, "max_mask");
586 tmp_stmt = vect_gen_while (init_mask, start, end);
587 gimple_seq_add_stmt (preheader_seq, tmp_stmt);
588 }
589
590 /* Now AND out the bits that are within the number of skipped
591 scalars. */
592 poly_uint64 const_skip;
593 if (nscalars_skip
594 && !(poly_int_tree_p (nscalars_skip, &const_skip)
595 && known_le (const_skip, bias)))
596 {
597 tree unskipped_mask = vect_gen_while_not (preheader_seq, mask_type,
598 bias_tree, nscalars_skip);
599 if (init_mask)
600 init_mask = gimple_build (preheader_seq, BIT_AND_EXPR, mask_type,
601 init_mask, unskipped_mask);
602 else
603 init_mask = unskipped_mask;
604 }
605
606 if (!init_mask)
607 /* First iteration is full. */
608 init_mask = build_minus_one_cst (mask_type);
609
610 /* Get the mask value for the next iteration of the loop. */
611 next_mask = make_temp_ssa_name (mask_type, NULL, "next_mask");
612 gcall *call = vect_gen_while (next_mask, test_index, this_test_limit);
613 gsi_insert_before (test_gsi, call, GSI_SAME_STMT);
614
615 vect_set_loop_mask (loop, mask, init_mask, next_mask);
616 }
617 return next_mask;
618 }
619
620 /* Make LOOP iterate NITERS times using masking and WHILE_ULT calls.
621 LOOP_VINFO describes the vectorization of LOOP. NITERS is the
622 number of iterations of the original scalar loop that should be
623 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are
624 as for vect_set_loop_condition.
625
626 Insert the branch-back condition before LOOP_COND_GSI and return the
627 final gcond. */
628
629 static gcond *
630 vect_set_loop_condition_masked (struct loop *loop, loop_vec_info loop_vinfo,
631 tree niters, tree final_iv,
632 bool niters_maybe_zero,
633 gimple_stmt_iterator loop_cond_gsi)
634 {
635 gimple_seq preheader_seq = NULL;
636 gimple_seq header_seq = NULL;
637
638 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
639 unsigned int compare_precision = TYPE_PRECISION (compare_type);
640 unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
641 tree orig_niters = niters;
642
643 /* Type of the initial value of NITERS. */
644 tree ni_actual_type = TREE_TYPE (niters);
645 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
646
647 /* Convert NITERS to the same size as the compare. */
648 if (compare_precision > ni_actual_precision
649 && niters_maybe_zero)
650 {
651 /* We know that there is always at least one iteration, so if the
652 count is zero then it must have wrapped. Cope with this by
653 subtracting 1 before the conversion and adding 1 to the result. */
654 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
655 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
656 niters, build_minus_one_cst (ni_actual_type));
657 niters = gimple_convert (&preheader_seq, compare_type, niters);
658 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
659 niters, build_one_cst (compare_type));
660 }
661 else
662 niters = gimple_convert (&preheader_seq, compare_type, niters);
663
664 /* Convert skip_niters to the right type. */
665 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
666
667 /* Now calculate the value that the induction variable must be able
668 to hit in order to ensure that we end the loop with an all-false mask.
669 This involves adding the maximum number of inactive trailing scalar
670 iterations. */
671 widest_int iv_limit;
672 bool known_max_iters = max_loop_iterations (loop, &iv_limit);
673 if (known_max_iters)
674 {
675 if (niters_skip)
676 {
677 /* Add the maximum number of skipped iterations to the
678 maximum iteration count. */
679 if (TREE_CODE (niters_skip) == INTEGER_CST)
680 iv_limit += wi::to_widest (niters_skip);
681 else
682 iv_limit += max_vf - 1;
683 }
684 /* IV_LIMIT is the maximum number of latch iterations, which is also
685 the maximum in-range IV value. Round this value down to the previous
686 vector alignment boundary and then add an extra full iteration. */
687 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
688 iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
689 }
690
691 /* Get the vectorization factor in tree form. */
692 tree vf = build_int_cst (compare_type,
693 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
694
695 /* Iterate over all the rgroups and fill in their masks. We could use
696 the first mask from any rgroup for the loop condition; here we
697 arbitrarily pick the last. */
698 tree test_mask = NULL_TREE;
699 rgroup_masks *rgm;
700 unsigned int i;
701 vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
702 FOR_EACH_VEC_ELT (*masks, i, rgm)
703 if (!rgm->masks.is_empty ())
704 {
705 /* First try using permutes. This adds a single vector
706 instruction to the loop for each mask, but needs no extra
707 loop invariants or IVs. */
708 unsigned int nmasks = i + 1;
709 if ((nmasks & 1) == 0)
710 {
711 rgroup_masks *half_rgm = &(*masks)[nmasks / 2 - 1];
712 if (!half_rgm->masks.is_empty ()
713 && vect_maybe_permute_loop_masks (&header_seq, rgm, half_rgm))
714 continue;
715 }
716
717 /* See whether zero-based IV would ever generate all-false masks
718 before wrapping around. */
719 bool might_wrap_p
720 = (!known_max_iters
721 || (wi::min_precision (iv_limit * rgm->max_nscalars_per_iter,
722 UNSIGNED)
723 > compare_precision));
724
725 /* Set up all masks for this group. */
726 test_mask = vect_set_loop_masks_directly (loop, loop_vinfo,
727 &preheader_seq,
728 loop_cond_gsi, rgm, vf,
729 niters, niters_skip,
730 might_wrap_p);
731 }
732
733 /* Emit all accumulated statements. */
734 add_preheader_seq (loop, preheader_seq);
735 add_header_seq (loop, header_seq);
736
737 /* Get a boolean result that tells us whether to iterate. */
738 edge exit_edge = single_exit (loop);
739 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
740 tree zero_mask = build_zero_cst (TREE_TYPE (test_mask));
741 gcond *cond_stmt = gimple_build_cond (code, test_mask, zero_mask,
742 NULL_TREE, NULL_TREE);
743 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
744
745 /* The loop iterates (NITERS - 1) / VF + 1 times.
746 Subtract one from this to get the latch count. */
747 tree step = build_int_cst (compare_type,
748 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
749 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
750 build_minus_one_cst (compare_type));
751 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
752 niters_minus_one, step);
753
754 if (final_iv)
755 {
756 gassign *assign = gimple_build_assign (final_iv, orig_niters);
757 gsi_insert_on_edge_immediate (single_exit (loop), assign);
758 }
759
760 return cond_stmt;
761 }
762
763 /* Like vect_set_loop_condition, but handle the case in which there
764 are no loop masks. */
765
766 static gcond *
767 vect_set_loop_condition_unmasked (struct loop *loop, tree niters,
768 tree step, tree final_iv,
769 bool niters_maybe_zero,
770 gimple_stmt_iterator loop_cond_gsi)
771 {
772 tree indx_before_incr, indx_after_incr;
773 gcond *cond_stmt;
774 gcond *orig_cond;
775 edge pe = loop_preheader_edge (loop);
776 edge exit_edge = single_exit (loop);
777 gimple_stmt_iterator incr_gsi;
778 bool insert_after;
779 enum tree_code code;
780 tree niters_type = TREE_TYPE (niters);
781
782 orig_cond = get_loop_exit_condition (loop);
783 gcc_assert (orig_cond);
784 loop_cond_gsi = gsi_for_stmt (orig_cond);
785
786 tree init, limit;
787 if (!niters_maybe_zero && integer_onep (step))
788 {
789 /* In this case we can use a simple 0-based IV:
790
791 A:
792 x = 0;
793 do
794 {
795 ...
796 x += 1;
797 }
798 while (x < NITERS); */
799 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
800 init = build_zero_cst (niters_type);
801 limit = niters;
802 }
803 else
804 {
805 /* The following works for all values of NITERS except 0:
806
807 B:
808 x = 0;
809 do
810 {
811 ...
812 x += STEP;
813 }
814 while (x <= NITERS - STEP);
815
816 so that the loop continues to iterate if x + STEP - 1 < NITERS
817 but stops if x + STEP - 1 >= NITERS.
818
819 However, if NITERS is zero, x never hits a value above NITERS - STEP
820 before wrapping around. There are two obvious ways of dealing with
821 this:
822
823 - start at STEP - 1 and compare x before incrementing it
824 - start at -1 and compare x after incrementing it
825
826 The latter is simpler and is what we use. The loop in this case
827 looks like:
828
829 C:
830 x = -1;
831 do
832 {
833 ...
834 x += STEP;
835 }
836 while (x < NITERS - STEP);
837
838 In both cases the loop limit is NITERS - STEP. */
839 gimple_seq seq = NULL;
840 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
841 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
842 if (seq)
843 {
844 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
845 gcc_assert (!new_bb);
846 }
847 if (niters_maybe_zero)
848 {
849 /* Case C. */
850 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
851 init = build_all_ones_cst (niters_type);
852 }
853 else
854 {
855 /* Case B. */
856 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
857 init = build_zero_cst (niters_type);
858 }
859 }
860
861 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
862 create_iv (init, step, NULL_TREE, loop,
863 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
864 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
865 true, NULL_TREE, true,
866 GSI_SAME_STMT);
867 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
868 true, GSI_SAME_STMT);
869
870 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
871 NULL_TREE);
872
873 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
874
875 /* Record the number of latch iterations. */
876 if (limit == niters)
877 /* Case A: the loop iterates NITERS times. Subtract one to get the
878 latch count. */
879 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
880 build_int_cst (niters_type, 1));
881 else
882 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
883 Subtract one from this to get the latch count. */
884 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
885 limit, step);
886
887 if (final_iv)
888 {
889 gassign *assign = gimple_build_assign (final_iv, MINUS_EXPR,
890 indx_after_incr, init);
891 gsi_insert_on_edge_immediate (single_exit (loop), assign);
892 }
893
894 return cond_stmt;
895 }
896
897 /* If we're using fully-masked loops, make LOOP iterate:
898
899 N == (NITERS - 1) / STEP + 1
900
901 times. When NITERS is zero, this is equivalent to making the loop
902 execute (1 << M) / STEP times, where M is the precision of NITERS.
903 NITERS_MAYBE_ZERO is true if this last case might occur.
904
905 If we're not using fully-masked loops, make LOOP iterate:
906
907 N == (NITERS - STEP) / STEP + 1
908
909 times, where NITERS is known to be outside the range [1, STEP - 1].
910 This is equivalent to making the loop execute NITERS / STEP times
911 when NITERS is nonzero and (1 << M) / STEP times otherwise.
912 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
913
914 If FINAL_IV is nonnull, it is an SSA name that should be set to
915 N * STEP on exit from the loop.
916
917 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
918
919 void
920 vect_set_loop_condition (struct loop *loop, loop_vec_info loop_vinfo,
921 tree niters, tree step, tree final_iv,
922 bool niters_maybe_zero)
923 {
924 gcond *cond_stmt;
925 gcond *orig_cond = get_loop_exit_condition (loop);
926 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
927
928 if (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
929 cond_stmt = vect_set_loop_condition_masked (loop, loop_vinfo, niters,
930 final_iv, niters_maybe_zero,
931 loop_cond_gsi);
932 else
933 cond_stmt = vect_set_loop_condition_unmasked (loop, niters, step,
934 final_iv, niters_maybe_zero,
935 loop_cond_gsi);
936
937 /* Remove old loop exit test. */
938 gsi_remove (&loop_cond_gsi, true);
939 free_stmt_vec_info (orig_cond);
940
941 if (dump_enabled_p ())
942 {
943 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: ");
944 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
945 }
946 }
947
948 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
949 For all PHI arguments in FROM->dest and TO->dest from those
950 edges ensure that TO->dest PHI arguments have current_def
951 to that in from. */
952
953 static void
954 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
955 {
956 gimple_stmt_iterator gsi_from, gsi_to;
957
958 for (gsi_from = gsi_start_phis (from->dest),
959 gsi_to = gsi_start_phis (to->dest);
960 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
961 {
962 gimple *from_phi = gsi_stmt (gsi_from);
963 gimple *to_phi = gsi_stmt (gsi_to);
964 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
965 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
966 if (virtual_operand_p (from_arg))
967 {
968 gsi_next (&gsi_from);
969 continue;
970 }
971 if (virtual_operand_p (to_arg))
972 {
973 gsi_next (&gsi_to);
974 continue;
975 }
976 if (TREE_CODE (from_arg) != SSA_NAME)
977 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
978 else
979 {
980 if (get_current_def (to_arg) == NULL_TREE)
981 set_current_def (to_arg, get_current_def (from_arg));
982 }
983 gsi_next (&gsi_from);
984 gsi_next (&gsi_to);
985 }
986
987 gphi *from_phi = get_virtual_phi (from->dest);
988 gphi *to_phi = get_virtual_phi (to->dest);
989 if (from_phi)
990 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
991 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
992 }
993
994
995 /* Given LOOP this function generates a new copy of it and puts it
996 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
997 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
998 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
999 entry or exit of LOOP. */
1000
1001 struct loop *
1002 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
1003 struct loop *scalar_loop, edge e)
1004 {
1005 struct loop *new_loop;
1006 basic_block *new_bbs, *bbs, *pbbs;
1007 bool at_exit;
1008 bool was_imm_dom;
1009 basic_block exit_dest;
1010 edge exit, new_exit;
1011 bool duplicate_outer_loop = false;
1012
1013 exit = single_exit (loop);
1014 at_exit = (e == exit);
1015 if (!at_exit && e != loop_preheader_edge (loop))
1016 return NULL;
1017
1018 if (scalar_loop == NULL)
1019 scalar_loop = loop;
1020
1021 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1022 pbbs = bbs + 1;
1023 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1024 /* Allow duplication of outer loops. */
1025 if (scalar_loop->inner)
1026 duplicate_outer_loop = true;
1027 /* Check whether duplication is possible. */
1028 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
1029 {
1030 free (bbs);
1031 return NULL;
1032 }
1033
1034 /* Generate new loop structure. */
1035 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1036 duplicate_subloops (scalar_loop, new_loop);
1037
1038 exit_dest = exit->dest;
1039 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1040 exit_dest) == loop->header ?
1041 true : false);
1042
1043 /* Also copy the pre-header, this avoids jumping through hoops to
1044 duplicate the loop entry PHI arguments. Create an empty
1045 pre-header unconditionally for this. */
1046 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1047 edge entry_e = single_pred_edge (preheader);
1048 bbs[0] = preheader;
1049 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1050
1051 exit = single_exit (scalar_loop);
1052 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1053 &exit, 1, &new_exit, NULL,
1054 at_exit ? loop->latch : e->src, true);
1055 exit = single_exit (loop);
1056 basic_block new_preheader = new_bbs[0];
1057
1058 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1059
1060 if (scalar_loop != loop)
1061 {
1062 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1063 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1064 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1065 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1066 header) to have current_def set, so copy them over. */
1067 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1068 exit);
1069 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1070 0),
1071 EDGE_SUCC (loop->latch, 0));
1072 }
1073
1074 if (at_exit) /* Add the loop copy at exit. */
1075 {
1076 if (scalar_loop != loop)
1077 {
1078 gphi_iterator gsi;
1079 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1080
1081 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1082 gsi_next (&gsi))
1083 {
1084 gphi *phi = gsi.phi ();
1085 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1086 location_t orig_locus
1087 = gimple_phi_arg_location_from_edge (phi, e);
1088
1089 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1090 }
1091 }
1092 redirect_edge_and_branch_force (e, new_preheader);
1093 flush_pending_stmts (e);
1094 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1095 if (was_imm_dom || duplicate_outer_loop)
1096 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1097
1098 /* And remove the non-necessary forwarder again. Keep the other
1099 one so we have a proper pre-header for the loop at the exit edge. */
1100 redirect_edge_pred (single_succ_edge (preheader),
1101 single_pred (preheader));
1102 delete_basic_block (preheader);
1103 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1104 loop_preheader_edge (scalar_loop)->src);
1105 }
1106 else /* Add the copy at entry. */
1107 {
1108 if (scalar_loop != loop)
1109 {
1110 /* Remove the non-necessary forwarder of scalar_loop again. */
1111 redirect_edge_pred (single_succ_edge (preheader),
1112 single_pred (preheader));
1113 delete_basic_block (preheader);
1114 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1115 loop_preheader_edge (scalar_loop)->src);
1116 preheader = split_edge (loop_preheader_edge (loop));
1117 entry_e = single_pred_edge (preheader);
1118 }
1119
1120 redirect_edge_and_branch_force (entry_e, new_preheader);
1121 flush_pending_stmts (entry_e);
1122 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1123
1124 redirect_edge_and_branch_force (new_exit, preheader);
1125 flush_pending_stmts (new_exit);
1126 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1127
1128 /* And remove the non-necessary forwarder again. Keep the other
1129 one so we have a proper pre-header for the loop at the exit edge. */
1130 redirect_edge_pred (single_succ_edge (new_preheader),
1131 single_pred (new_preheader));
1132 delete_basic_block (new_preheader);
1133 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1134 loop_preheader_edge (new_loop)->src);
1135 }
1136
1137 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1138 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1139 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1140
1141 if (scalar_loop != loop)
1142 {
1143 /* Update new_loop->header PHIs, so that on the preheader
1144 edge they are the ones from loop rather than scalar_loop. */
1145 gphi_iterator gsi_orig, gsi_new;
1146 edge orig_e = loop_preheader_edge (loop);
1147 edge new_e = loop_preheader_edge (new_loop);
1148
1149 for (gsi_orig = gsi_start_phis (loop->header),
1150 gsi_new = gsi_start_phis (new_loop->header);
1151 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1152 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1153 {
1154 gphi *orig_phi = gsi_orig.phi ();
1155 gphi *new_phi = gsi_new.phi ();
1156 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1157 location_t orig_locus
1158 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1159
1160 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1161 }
1162 }
1163
1164 free (new_bbs);
1165 free (bbs);
1166
1167 checking_verify_dominators (CDI_DOMINATORS);
1168
1169 return new_loop;
1170 }
1171
1172
1173 /* Given the condition expression COND, put it as the last statement of
1174 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1175 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1176 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1177 new edge as irreducible if IRREDUCIBLE_P is true. */
1178
1179 static edge
1180 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1181 basic_block guard_to, basic_block dom_bb,
1182 profile_probability probability, bool irreducible_p)
1183 {
1184 gimple_stmt_iterator gsi;
1185 edge new_e, enter_e;
1186 gcond *cond_stmt;
1187 gimple_seq gimplify_stmt_list = NULL;
1188
1189 enter_e = EDGE_SUCC (guard_bb, 0);
1190 enter_e->flags &= ~EDGE_FALLTHRU;
1191 enter_e->flags |= EDGE_FALSE_VALUE;
1192 gsi = gsi_last_bb (guard_bb);
1193
1194 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
1195 NULL_TREE);
1196 if (gimplify_stmt_list)
1197 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1198
1199 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1200 gsi = gsi_last_bb (guard_bb);
1201 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1202
1203 /* Add new edge to connect guard block to the merge/loop-exit block. */
1204 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1205
1206 new_e->probability = probability;
1207 if (irreducible_p)
1208 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1209
1210 enter_e->probability = probability.invert ();
1211 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1212
1213 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1214 if (enter_e->dest->loop_father->header == enter_e->dest)
1215 split_edge (enter_e);
1216
1217 return new_e;
1218 }
1219
1220
1221 /* This function verifies that the following restrictions apply to LOOP:
1222 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1223 for innermost loop and 5 basic blocks for outer-loop.
1224 (2) it is single entry, single exit
1225 (3) its exit condition is the last stmt in the header
1226 (4) E is the entry/exit edge of LOOP.
1227 */
1228
1229 bool
1230 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
1231 {
1232 edge exit_e = single_exit (loop);
1233 edge entry_e = loop_preheader_edge (loop);
1234 gcond *orig_cond = get_loop_exit_condition (loop);
1235 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1236 unsigned int num_bb = loop->inner? 5 : 2;
1237
1238 /* All loops have an outer scope; the only case loop->outer is NULL is for
1239 the function itself. */
1240 if (!loop_outer (loop)
1241 || loop->num_nodes != num_bb
1242 || !empty_block_p (loop->latch)
1243 || !single_exit (loop)
1244 /* Verify that new loop exit condition can be trivially modified. */
1245 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1246 || (e != exit_e && e != entry_e))
1247 return false;
1248
1249 return true;
1250 }
1251
1252 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1253 in the exit bb and rename all the uses after the loop. This simplifies
1254 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1255 (but normally loop closed SSA form doesn't require virtual PHIs to be
1256 in the same form). Doing this early simplifies the checking what
1257 uses should be renamed. */
1258
1259 static void
1260 create_lcssa_for_virtual_phi (struct loop *loop)
1261 {
1262 gphi_iterator gsi;
1263 edge exit_e = single_exit (loop);
1264
1265 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1266 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1267 {
1268 gphi *phi = gsi.phi ();
1269 for (gsi = gsi_start_phis (exit_e->dest);
1270 !gsi_end_p (gsi); gsi_next (&gsi))
1271 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1272 break;
1273 if (gsi_end_p (gsi))
1274 {
1275 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1276 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1277 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1278 imm_use_iterator imm_iter;
1279 gimple *stmt;
1280 use_operand_p use_p;
1281
1282 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_vop)
1283 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vop);
1284 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1285 gimple_phi_set_result (new_phi, new_vop);
1286 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1287 if (stmt != new_phi
1288 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1289 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1290 SET_USE (use_p, new_vop);
1291 }
1292 break;
1293 }
1294
1295 }
1296
1297 /* Function vect_get_loop_location.
1298
1299 Extract the location of the loop in the source code.
1300 If the loop is not well formed for vectorization, an estimated
1301 location is calculated.
1302 Return the loop location if succeed and NULL if not. */
1303
1304 dump_user_location_t
1305 find_loop_location (struct loop *loop)
1306 {
1307 gimple *stmt = NULL;
1308 basic_block bb;
1309 gimple_stmt_iterator si;
1310
1311 if (!loop)
1312 return dump_user_location_t ();
1313
1314 stmt = get_loop_exit_condition (loop);
1315
1316 if (stmt
1317 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1318 return stmt;
1319
1320 /* If we got here the loop is probably not "well formed",
1321 try to estimate the loop location */
1322
1323 if (!loop->header)
1324 return dump_user_location_t ();
1325
1326 bb = loop->header;
1327
1328 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1329 {
1330 stmt = gsi_stmt (si);
1331 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1332 return stmt;
1333 }
1334
1335 return dump_user_location_t ();
1336 }
1337
1338 /* Return true if the phi described by STMT_INFO defines an IV of the
1339 loop to be vectorized. */
1340
1341 static bool
1342 iv_phi_p (stmt_vec_info stmt_info)
1343 {
1344 gphi *phi = as_a <gphi *> (stmt_info->stmt);
1345 if (virtual_operand_p (PHI_RESULT (phi)))
1346 return false;
1347
1348 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1349 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1350 return false;
1351
1352 return true;
1353 }
1354
1355 /* Function vect_can_advance_ivs_p
1356
1357 In case the number of iterations that LOOP iterates is unknown at compile
1358 time, an epilog loop will be generated, and the loop induction variables
1359 (IVs) will be "advanced" to the value they are supposed to take just before
1360 the epilog loop. Here we check that the access function of the loop IVs
1361 and the expression that represents the loop bound are simple enough.
1362 These restrictions will be relaxed in the future. */
1363
1364 bool
1365 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1366 {
1367 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1368 basic_block bb = loop->header;
1369 gphi_iterator gsi;
1370
1371 /* Analyze phi functions of the loop header. */
1372
1373 if (dump_enabled_p ())
1374 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1375 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1376 {
1377 tree evolution_part;
1378
1379 gphi *phi = gsi.phi ();
1380 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1381 if (dump_enabled_p ())
1382 {
1383 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1384 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi_info->stmt, 0);
1385 }
1386
1387 /* Skip virtual phi's. The data dependences that are associated with
1388 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1389
1390 Skip reduction phis. */
1391 if (!iv_phi_p (phi_info))
1392 {
1393 if (dump_enabled_p ())
1394 dump_printf_loc (MSG_NOTE, vect_location,
1395 "reduc or virtual phi. skip.\n");
1396 continue;
1397 }
1398
1399 /* Analyze the evolution function. */
1400
1401 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1402 if (evolution_part == NULL_TREE)
1403 {
1404 if (dump_enabled_p ())
1405 dump_printf (MSG_MISSED_OPTIMIZATION,
1406 "No access function or evolution.\n");
1407 return false;
1408 }
1409
1410 /* FORNOW: We do not transform initial conditions of IVs
1411 which evolution functions are not invariants in the loop. */
1412
1413 if (!expr_invariant_in_loop_p (loop, evolution_part))
1414 {
1415 if (dump_enabled_p ())
1416 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1417 "evolution not invariant in loop.\n");
1418 return false;
1419 }
1420
1421 /* FORNOW: We do not transform initial conditions of IVs
1422 which evolution functions are a polynomial of degree >= 2. */
1423
1424 if (tree_is_chrec (evolution_part))
1425 {
1426 if (dump_enabled_p ())
1427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1428 "evolution is chrec.\n");
1429 return false;
1430 }
1431 }
1432
1433 return true;
1434 }
1435
1436
1437 /* Function vect_update_ivs_after_vectorizer.
1438
1439 "Advance" the induction variables of LOOP to the value they should take
1440 after the execution of LOOP. This is currently necessary because the
1441 vectorizer does not handle induction variables that are used after the
1442 loop. Such a situation occurs when the last iterations of LOOP are
1443 peeled, because:
1444 1. We introduced new uses after LOOP for IVs that were not originally used
1445 after LOOP: the IVs of LOOP are now used by an epilog loop.
1446 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1447 times, whereas the loop IVs should be bumped N times.
1448
1449 Input:
1450 - LOOP - a loop that is going to be vectorized. The last few iterations
1451 of LOOP were peeled.
1452 - NITERS - the number of iterations that LOOP executes (before it is
1453 vectorized). i.e, the number of times the ivs should be bumped.
1454 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1455 coming out from LOOP on which there are uses of the LOOP ivs
1456 (this is the path from LOOP->exit to epilog_loop->preheader).
1457
1458 The new definitions of the ivs are placed in LOOP->exit.
1459 The phi args associated with the edge UPDATE_E in the bb
1460 UPDATE_E->dest are updated accordingly.
1461
1462 Assumption 1: Like the rest of the vectorizer, this function assumes
1463 a single loop exit that has a single predecessor.
1464
1465 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1466 organized in the same order.
1467
1468 Assumption 3: The access function of the ivs is simple enough (see
1469 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1470
1471 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1472 coming out of LOOP on which the ivs of LOOP are used (this is the path
1473 that leads to the epilog loop; other paths skip the epilog loop). This
1474 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1475 needs to have its phis updated.
1476 */
1477
1478 static void
1479 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1480 tree niters, edge update_e)
1481 {
1482 gphi_iterator gsi, gsi1;
1483 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1484 basic_block update_bb = update_e->dest;
1485 basic_block exit_bb = single_exit (loop)->dest;
1486
1487 /* Make sure there exists a single-predecessor exit bb: */
1488 gcc_assert (single_pred_p (exit_bb));
1489 gcc_assert (single_succ_edge (exit_bb) == update_e);
1490
1491 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1492 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1493 gsi_next (&gsi), gsi_next (&gsi1))
1494 {
1495 tree init_expr;
1496 tree step_expr, off;
1497 tree type;
1498 tree var, ni, ni_name;
1499 gimple_stmt_iterator last_gsi;
1500
1501 gphi *phi = gsi.phi ();
1502 gphi *phi1 = gsi1.phi ();
1503 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1504 if (dump_enabled_p ())
1505 {
1506 dump_printf_loc (MSG_NOTE, vect_location,
1507 "vect_update_ivs_after_vectorizer: phi: ");
1508 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1509 }
1510
1511 /* Skip reduction and virtual phis. */
1512 if (!iv_phi_p (phi_info))
1513 {
1514 if (dump_enabled_p ())
1515 dump_printf_loc (MSG_NOTE, vect_location,
1516 "reduc or virtual phi. skip.\n");
1517 continue;
1518 }
1519
1520 type = TREE_TYPE (gimple_phi_result (phi));
1521 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1522 step_expr = unshare_expr (step_expr);
1523
1524 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1525 of degree >= 2 or exponential. */
1526 gcc_assert (!tree_is_chrec (step_expr));
1527
1528 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1529
1530 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1531 fold_convert (TREE_TYPE (step_expr), niters),
1532 step_expr);
1533 if (POINTER_TYPE_P (type))
1534 ni = fold_build_pointer_plus (init_expr, off);
1535 else
1536 ni = fold_build2 (PLUS_EXPR, type,
1537 init_expr, fold_convert (type, off));
1538
1539 var = create_tmp_var (type, "tmp");
1540
1541 last_gsi = gsi_last_bb (exit_bb);
1542 gimple_seq new_stmts = NULL;
1543 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1544 /* Exit_bb shouldn't be empty. */
1545 if (!gsi_end_p (last_gsi))
1546 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1547 else
1548 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
1549
1550 /* Fix phi expressions in the successor bb. */
1551 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1552 }
1553 }
1554
1555 /* Return a gimple value containing the misalignment (measured in vector
1556 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1557 it is away from a perfectly aligned address. Add any new statements
1558 to SEQ. */
1559
1560 static tree
1561 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1562 {
1563 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1564 stmt_vec_info stmt_info = vect_dr_stmt (dr);
1565 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1566
1567 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1568 gcc_assert (target_align != 0);
1569
1570 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1571 tree offset = (negative
1572 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1573 : size_zero_node);
1574 tree start_addr = vect_create_addr_base_for_vector_ref (stmt_info, seq,
1575 offset);
1576 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1577 tree target_align_minus_1 = build_int_cst (type, target_align - 1);
1578 HOST_WIDE_INT elem_size
1579 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1580 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1581
1582 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1583 tree int_start_addr = fold_convert (type, start_addr);
1584 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1585 target_align_minus_1);
1586
1587 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1588 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1589 elem_size_log);
1590
1591 return misalign_in_elems;
1592 }
1593
1594 /* Function vect_gen_prolog_loop_niters
1595
1596 Generate the number of iterations which should be peeled as prolog for the
1597 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1598 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1599 As a result, after the execution of this loop, the data reference DR will
1600 refer to an aligned location. The following computation is generated:
1601
1602 If the misalignment of DR is known at compile time:
1603 addr_mis = int mis = DR_MISALIGNMENT (dr);
1604 Else, compute address misalignment in bytes:
1605 addr_mis = addr & (target_align - 1)
1606
1607 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
1608
1609 (elem_size = element type size; an element is the scalar element whose type
1610 is the inner type of the vectype)
1611
1612 The computations will be emitted at the end of BB. We also compute and
1613 store upper bound (included) of the result in BOUND.
1614
1615 When the step of the data-ref in the loop is not 1 (as in interleaved data
1616 and SLP), the number of iterations of the prolog must be divided by the step
1617 (which is equal to the size of interleaved group).
1618
1619 The above formulas assume that VF == number of elements in the vector. This
1620 may not hold when there are multiple-types in the loop.
1621 In this case, for some data-references in the loop the VF does not represent
1622 the number of elements that fit in the vector. Therefore, instead of VF we
1623 use TYPE_VECTOR_SUBPARTS. */
1624
1625 static tree
1626 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1627 basic_block bb, int *bound)
1628 {
1629 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1630 tree var;
1631 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1632 gimple_seq stmts = NULL, new_stmts = NULL;
1633 tree iters, iters_name;
1634 stmt_vec_info stmt_info = vect_dr_stmt (dr);
1635 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1636 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1637
1638 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1639 {
1640 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1641
1642 if (dump_enabled_p ())
1643 dump_printf_loc (MSG_NOTE, vect_location,
1644 "known peeling = %d.\n", npeel);
1645
1646 iters = build_int_cst (niters_type, npeel);
1647 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1648 }
1649 else
1650 {
1651 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1652 tree type = TREE_TYPE (misalign_in_elems);
1653 HOST_WIDE_INT elem_size
1654 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1655 HOST_WIDE_INT align_in_elems = target_align / elem_size;
1656 tree align_in_elems_minus_1 = build_int_cst (type, align_in_elems - 1);
1657 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
1658
1659 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1660 & (align_in_elems - 1)). */
1661 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1662 if (negative)
1663 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1664 align_in_elems_tree);
1665 else
1666 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1667 misalign_in_elems);
1668 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1669 iters = fold_convert (niters_type, iters);
1670 *bound = align_in_elems - 1;
1671 }
1672
1673 if (dump_enabled_p ())
1674 {
1675 dump_printf_loc (MSG_NOTE, vect_location,
1676 "niters for prolog loop: ");
1677 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1678 dump_printf (MSG_NOTE, "\n");
1679 }
1680
1681 var = create_tmp_var (niters_type, "prolog_loop_niters");
1682 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1683
1684 if (new_stmts)
1685 gimple_seq_add_seq (&stmts, new_stmts);
1686 if (stmts)
1687 {
1688 gcc_assert (single_succ_p (bb));
1689 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1690 if (gsi_end_p (gsi))
1691 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1692 else
1693 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1694 }
1695 return iters_name;
1696 }
1697
1698
1699 /* Function vect_update_init_of_dr
1700
1701 If CODE is PLUS, the vector loop starts NITERS iterations after the
1702 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1703 iterations before the scalar one (using masking to skip inactive
1704 elements). This function updates the information recorded in DR to
1705 account for the difference. Specifically, it updates the OFFSET
1706 field of DR. */
1707
1708 static void
1709 vect_update_init_of_dr (struct data_reference *dr, tree niters, tree_code code)
1710 {
1711 tree offset = DR_OFFSET (dr);
1712
1713 niters = fold_build2 (MULT_EXPR, sizetype,
1714 fold_convert (sizetype, niters),
1715 fold_convert (sizetype, DR_STEP (dr)));
1716 offset = fold_build2 (code, sizetype,
1717 fold_convert (sizetype, offset), niters);
1718 DR_OFFSET (dr) = offset;
1719 }
1720
1721
1722 /* Function vect_update_inits_of_drs
1723
1724 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1725 CODE and NITERS are as for vect_update_inits_of_dr. */
1726
1727 static void
1728 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1729 tree_code code)
1730 {
1731 unsigned int i;
1732 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1733 struct data_reference *dr;
1734
1735 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
1736
1737 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1738 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1739 {
1740 gimple_seq seq;
1741 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1742 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1743
1744 niters = fold_convert (sizetype, niters);
1745 niters = force_gimple_operand (niters, &seq, false, var);
1746 if (seq)
1747 {
1748 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1749 gcc_assert (!new_bb);
1750 }
1751 }
1752
1753 FOR_EACH_VEC_ELT (datarefs, i, dr)
1754 {
1755 gimple *stmt = DR_STMT (dr);
1756 if (!STMT_VINFO_GATHER_SCATTER_P (vinfo_for_stmt (stmt)))
1757 vect_update_init_of_dr (dr, niters, code);
1758 }
1759 }
1760
1761 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
1762 by masking. This involves calculating the number of iterations to
1763 be peeled and then aligning all memory references appropriately. */
1764
1765 void
1766 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1767 {
1768 tree misalign_in_elems;
1769 tree type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
1770
1771 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1772
1773 /* From the information recorded in LOOP_VINFO get the number of iterations
1774 that need to be skipped via masking. */
1775 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1776 {
1777 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1778 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1779 misalign_in_elems = build_int_cst (type, misalign);
1780 }
1781 else
1782 {
1783 gimple_seq seq1 = NULL, seq2 = NULL;
1784 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1785 misalign_in_elems = fold_convert (type, misalign_in_elems);
1786 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1787 &seq2, true, NULL_TREE);
1788 gimple_seq_add_seq (&seq1, seq2);
1789 if (seq1)
1790 {
1791 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1792 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1793 gcc_assert (!new_bb);
1794 }
1795 }
1796
1797 if (dump_enabled_p ())
1798 {
1799 dump_printf_loc (MSG_NOTE, vect_location,
1800 "misalignment for fully-masked loop: ");
1801 dump_generic_expr (MSG_NOTE, TDF_SLIM, misalign_in_elems);
1802 dump_printf (MSG_NOTE, "\n");
1803 }
1804
1805 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1806
1807 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1808 }
1809
1810 /* This function builds ni_name = number of iterations. Statements
1811 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1812 it to TRUE if new ssa_var is generated. */
1813
1814 tree
1815 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1816 {
1817 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1818 if (TREE_CODE (ni) == INTEGER_CST)
1819 return ni;
1820 else
1821 {
1822 tree ni_name, var;
1823 gimple_seq stmts = NULL;
1824 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1825
1826 var = create_tmp_var (TREE_TYPE (ni), "niters");
1827 ni_name = force_gimple_operand (ni, &stmts, false, var);
1828 if (stmts)
1829 {
1830 gsi_insert_seq_on_edge_immediate (pe, stmts);
1831 if (new_var_p != NULL)
1832 *new_var_p = true;
1833 }
1834
1835 return ni_name;
1836 }
1837 }
1838
1839 /* Calculate the number of iterations above which vectorized loop will be
1840 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1841 of prolog loop. If it's integer const, the integer number is also passed
1842 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1843 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1844 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1845 threshold below which the scalar (rather than vectorized) loop will be
1846 executed. This function stores the upper bound (inclusive) of the result
1847 in BOUND_SCALAR. */
1848
1849 static tree
1850 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1851 int bound_prolog, poly_int64 bound_epilog, int th,
1852 poly_uint64 *bound_scalar,
1853 bool check_profitability)
1854 {
1855 tree type = TREE_TYPE (niters_prolog);
1856 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1857 build_int_cst (type, bound_epilog));
1858
1859 *bound_scalar = bound_prolog + bound_epilog;
1860 if (check_profitability)
1861 {
1862 /* TH indicates the minimum niters of vectorized loop, while we
1863 compute the maximum niters of scalar loop. */
1864 th--;
1865 /* Peeling for constant times. */
1866 if (int_niters_prolog >= 0)
1867 {
1868 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
1869 return build_int_cst (type, *bound_scalar);
1870 }
1871 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1872 and BOUND_EPILOG are inclusive upper bounds. */
1873 if (known_ge (th, bound_prolog + bound_epilog))
1874 {
1875 *bound_scalar = th;
1876 return build_int_cst (type, th);
1877 }
1878 /* Need to do runtime comparison. */
1879 else if (maybe_gt (th, bound_epilog))
1880 {
1881 *bound_scalar = upper_bound (*bound_scalar, th);
1882 return fold_build2 (MAX_EXPR, type,
1883 build_int_cst (type, th), niters);
1884 }
1885 }
1886 return niters;
1887 }
1888
1889 /* NITERS is the number of times that the original scalar loop executes
1890 after peeling. Work out the maximum number of iterations N that can
1891 be handled by the vectorized form of the loop and then either:
1892
1893 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
1894
1895 niters_vector = N
1896
1897 b) set *STEP_VECTOR_PTR to one and generate:
1898
1899 niters_vector = N / vf
1900
1901 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
1902 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
1903 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
1904
1905 void
1906 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1907 tree *niters_vector_ptr, tree *step_vector_ptr,
1908 bool niters_no_overflow)
1909 {
1910 tree ni_minus_gap, var;
1911 tree niters_vector, step_vector, type = TREE_TYPE (niters);
1912 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1913 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1914 tree log_vf = NULL_TREE;
1915
1916 /* If epilogue loop is required because of data accesses with gaps, we
1917 subtract one iteration from the total number of iterations here for
1918 correct calculation of RATIO. */
1919 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1920 {
1921 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1922 build_one_cst (type));
1923 if (!is_gimple_val (ni_minus_gap))
1924 {
1925 var = create_tmp_var (type, "ni_gap");
1926 gimple *stmts = NULL;
1927 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1928 true, var);
1929 gsi_insert_seq_on_edge_immediate (pe, stmts);
1930 }
1931 }
1932 else
1933 ni_minus_gap = niters;
1934
1935 unsigned HOST_WIDE_INT const_vf;
1936 if (vf.is_constant (&const_vf)
1937 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
1938 {
1939 /* Create: niters >> log2(vf) */
1940 /* If it's known that niters == number of latch executions + 1 doesn't
1941 overflow, we can generate niters >> log2(vf); otherwise we generate
1942 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1943 will be at least one. */
1944 log_vf = build_int_cst (type, exact_log2 (const_vf));
1945 if (niters_no_overflow)
1946 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1947 else
1948 niters_vector
1949 = fold_build2 (PLUS_EXPR, type,
1950 fold_build2 (RSHIFT_EXPR, type,
1951 fold_build2 (MINUS_EXPR, type,
1952 ni_minus_gap,
1953 build_int_cst (type, vf)),
1954 log_vf),
1955 build_int_cst (type, 1));
1956 step_vector = build_one_cst (type);
1957 }
1958 else
1959 {
1960 niters_vector = ni_minus_gap;
1961 step_vector = build_int_cst (type, vf);
1962 }
1963
1964 if (!is_gimple_val (niters_vector))
1965 {
1966 var = create_tmp_var (type, "bnd");
1967 gimple_seq stmts = NULL;
1968 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1969 gsi_insert_seq_on_edge_immediate (pe, stmts);
1970 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1971 we set range information to make niters analyzer's life easier. */
1972 if (stmts != NULL && log_vf)
1973 set_range_info (niters_vector, VR_RANGE,
1974 wi::to_wide (build_int_cst (type, 1)),
1975 wi::to_wide (fold_build2 (RSHIFT_EXPR, type,
1976 TYPE_MAX_VALUE (type),
1977 log_vf)));
1978 }
1979 *niters_vector_ptr = niters_vector;
1980 *step_vector_ptr = step_vector;
1981
1982 return;
1983 }
1984
1985 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1986 loop specified by LOOP_VINFO after vectorization, compute the number
1987 of iterations before vectorization (niters_vector * vf) and store it
1988 to NITERS_VECTOR_MULT_VF_PTR. */
1989
1990 static void
1991 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1992 tree niters_vector,
1993 tree *niters_vector_mult_vf_ptr)
1994 {
1995 /* We should be using a step_vector of VF if VF is variable. */
1996 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
1997 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1998 tree type = TREE_TYPE (niters_vector);
1999 tree log_vf = build_int_cst (type, exact_log2 (vf));
2000 basic_block exit_bb = single_exit (loop)->dest;
2001
2002 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2003 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2004 niters_vector, log_vf);
2005 if (!is_gimple_val (niters_vector_mult_vf))
2006 {
2007 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2008 gimple_seq stmts = NULL;
2009 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2010 &stmts, true, var);
2011 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2012 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2013 }
2014 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2015 }
2016
2017 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2018 from SECOND/FIRST and puts it at the original loop's preheader/exit
2019 edge, the two loops are arranged as below:
2020
2021 preheader_a:
2022 first_loop:
2023 header_a:
2024 i_1 = PHI<i_0, i_2>;
2025 ...
2026 i_2 = i_1 + 1;
2027 if (cond_a)
2028 goto latch_a;
2029 else
2030 goto between_bb;
2031 latch_a:
2032 goto header_a;
2033
2034 between_bb:
2035 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2036
2037 second_loop:
2038 header_b:
2039 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2040 or with i_2 if no LCSSA phi is created
2041 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2042 ...
2043 i_4 = i_3 + 1;
2044 if (cond_b)
2045 goto latch_b;
2046 else
2047 goto exit_bb;
2048 latch_b:
2049 goto header_b;
2050
2051 exit_bb:
2052
2053 This function creates loop closed SSA for the first loop; update the
2054 second loop's PHI nodes by replacing argument on incoming edge with the
2055 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2056 is false, Loop closed ssa phis will only be created for non-iv phis for
2057 the first loop.
2058
2059 This function assumes exit bb of the first loop is preheader bb of the
2060 second loop, i.e, between_bb in the example code. With PHIs updated,
2061 the second loop will execute rest iterations of the first. */
2062
2063 static void
2064 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2065 struct loop *first, struct loop *second,
2066 bool create_lcssa_for_iv_phis)
2067 {
2068 gphi_iterator gsi_update, gsi_orig;
2069 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2070
2071 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2072 edge second_preheader_e = loop_preheader_edge (second);
2073 basic_block between_bb = single_exit (first)->dest;
2074
2075 gcc_assert (between_bb == second_preheader_e->src);
2076 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2077 /* Either the first loop or the second is the loop to be vectorized. */
2078 gcc_assert (loop == first || loop == second);
2079
2080 for (gsi_orig = gsi_start_phis (first->header),
2081 gsi_update = gsi_start_phis (second->header);
2082 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2083 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2084 {
2085 gphi *orig_phi = gsi_orig.phi ();
2086 gphi *update_phi = gsi_update.phi ();
2087
2088 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2089 /* Generate lcssa PHI node for the first loop. */
2090 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
2091 stmt_vec_info vect_phi_info = loop_vinfo->lookup_stmt (vect_phi);
2092 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi_info))
2093 {
2094 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2095 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2096 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2097 arg = new_res;
2098 }
2099
2100 /* Update PHI node in the second loop by replacing arg on the loop's
2101 incoming edge. */
2102 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2103 }
2104 }
2105
2106 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2107 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2108 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2109 appear like below:
2110
2111 guard_bb:
2112 if (cond)
2113 goto merge_bb;
2114 else
2115 goto skip_loop;
2116
2117 skip_loop:
2118 header_a:
2119 i_1 = PHI<i_0, i_2>;
2120 ...
2121 i_2 = i_1 + 1;
2122 if (cond_a)
2123 goto latch_a;
2124 else
2125 goto exit_a;
2126 latch_a:
2127 goto header_a;
2128
2129 exit_a:
2130 i_5 = PHI<i_2>;
2131
2132 merge_bb:
2133 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2134
2135 update_loop:
2136 header_b:
2137 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2138 ...
2139 i_4 = i_3 + 1;
2140 if (cond_b)
2141 goto latch_b;
2142 else
2143 goto exit_bb;
2144 latch_b:
2145 goto header_b;
2146
2147 exit_bb:
2148
2149 This function creates PHI nodes at merge_bb and replaces the use of i_5
2150 in the update_loop's PHI node with the result of new PHI result. */
2151
2152 static void
2153 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
2154 struct loop *update_loop,
2155 edge guard_edge, edge merge_edge)
2156 {
2157 source_location merge_loc, guard_loc;
2158 edge orig_e = loop_preheader_edge (skip_loop);
2159 edge update_e = loop_preheader_edge (update_loop);
2160 gphi_iterator gsi_orig, gsi_update;
2161
2162 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2163 gsi_update = gsi_start_phis (update_loop->header));
2164 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2165 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2166 {
2167 gphi *orig_phi = gsi_orig.phi ();
2168 gphi *update_phi = gsi_update.phi ();
2169
2170 /* Generate new phi node at merge bb of the guard. */
2171 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2172 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2173
2174 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2175 args in NEW_PHI for these edges. */
2176 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2177 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2178 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2179 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2180 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2181 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2182
2183 /* Update phi in UPDATE_PHI. */
2184 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2185 }
2186 }
2187
2188 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2189 this function searches for the corresponding lcssa phi node in exit
2190 bb of LOOP. If it is found, return the phi result; otherwise return
2191 NULL. */
2192
2193 static tree
2194 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
2195 gphi *lcssa_phi)
2196 {
2197 gphi_iterator gsi;
2198 edge e = single_exit (loop);
2199
2200 gcc_assert (single_pred_p (e->dest));
2201 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2202 {
2203 gphi *phi = gsi.phi ();
2204 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2205 PHI_ARG_DEF (lcssa_phi, 0), 0))
2206 return PHI_RESULT (phi);
2207 }
2208 return NULL_TREE;
2209 }
2210
2211 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2212 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2213 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2214 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2215 The CFG looks like:
2216
2217 loop:
2218 header_a:
2219 i_1 = PHI<i_0, i_2>;
2220 ...
2221 i_2 = i_1 + 1;
2222 if (cond_a)
2223 goto latch_a;
2224 else
2225 goto exit_a;
2226 latch_a:
2227 goto header_a;
2228
2229 exit_a:
2230
2231 guard_bb:
2232 if (cond)
2233 goto merge_bb;
2234 else
2235 goto epilog_loop;
2236
2237 ;; fall_through_bb
2238
2239 epilog_loop:
2240 header_b:
2241 i_3 = PHI<i_2, i_4>;
2242 ...
2243 i_4 = i_3 + 1;
2244 if (cond_b)
2245 goto latch_b;
2246 else
2247 goto merge_bb;
2248 latch_b:
2249 goto header_b;
2250
2251 merge_bb:
2252 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2253
2254 exit_bb:
2255 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2256
2257 For each name used out side EPILOG (i.e - for each name that has a lcssa
2258 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2259 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2260 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2261 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2262 in exit_bb will also be updated. */
2263
2264 static void
2265 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
2266 edge guard_edge, edge merge_edge)
2267 {
2268 gphi_iterator gsi;
2269 basic_block merge_bb = guard_edge->dest;
2270
2271 gcc_assert (single_succ_p (merge_bb));
2272 edge e = single_succ_edge (merge_bb);
2273 basic_block exit_bb = e->dest;
2274 gcc_assert (single_pred_p (exit_bb));
2275 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2276
2277 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2278 {
2279 gphi *update_phi = gsi.phi ();
2280 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2281 /* This loop-closed-phi actually doesn't represent a use out of the
2282 loop - the phi arg is a constant. */
2283 if (TREE_CODE (old_arg) != SSA_NAME)
2284 continue;
2285
2286 tree merge_arg = get_current_def (old_arg);
2287 if (!merge_arg)
2288 merge_arg = old_arg;
2289
2290 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2291 /* If the var is live after loop but not a reduction, we simply
2292 use the old arg. */
2293 if (!guard_arg)
2294 guard_arg = old_arg;
2295
2296 /* Create new phi node in MERGE_BB: */
2297 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2298 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2299
2300 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2301 the two PHI args in merge_phi for these edges. */
2302 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2303 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2304
2305 /* Update the original phi in exit_bb. */
2306 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2307 }
2308 }
2309
2310 /* EPILOG loop is duplicated from the original loop for vectorizing,
2311 the arg of its loop closed ssa PHI needs to be updated. */
2312
2313 static void
2314 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
2315 {
2316 gphi_iterator gsi;
2317 basic_block exit_bb = single_exit (epilog)->dest;
2318
2319 gcc_assert (single_pred_p (exit_bb));
2320 edge e = EDGE_PRED (exit_bb, 0);
2321 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2322 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2323 }
2324
2325 /* Function vect_do_peeling.
2326
2327 Input:
2328 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2329
2330 preheader:
2331 LOOP:
2332 header_bb:
2333 loop_body
2334 if (exit_loop_cond) goto exit_bb
2335 else goto header_bb
2336 exit_bb:
2337
2338 - NITERS: The number of iterations of the loop.
2339 - NITERSM1: The number of iterations of the loop's latch.
2340 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2341 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2342 CHECK_PROFITABILITY is true.
2343 Output:
2344 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2345 iterate after vectorization; see vect_set_loop_condition for details.
2346 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2347 should be set to the number of scalar iterations handled by the
2348 vector loop. The SSA name is only used on exit from the loop.
2349
2350 This function peels prolog and epilog from the loop, adds guards skipping
2351 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2352 would look like:
2353
2354 guard_bb_1:
2355 if (prefer_scalar_loop) goto merge_bb_1
2356 else goto guard_bb_2
2357
2358 guard_bb_2:
2359 if (skip_prolog) goto merge_bb_2
2360 else goto prolog_preheader
2361
2362 prolog_preheader:
2363 PROLOG:
2364 prolog_header_bb:
2365 prolog_body
2366 if (exit_prolog_cond) goto prolog_exit_bb
2367 else goto prolog_header_bb
2368 prolog_exit_bb:
2369
2370 merge_bb_2:
2371
2372 vector_preheader:
2373 VECTOR LOOP:
2374 vector_header_bb:
2375 vector_body
2376 if (exit_vector_cond) goto vector_exit_bb
2377 else goto vector_header_bb
2378 vector_exit_bb:
2379
2380 guard_bb_3:
2381 if (skip_epilog) goto merge_bb_3
2382 else goto epilog_preheader
2383
2384 merge_bb_1:
2385
2386 epilog_preheader:
2387 EPILOG:
2388 epilog_header_bb:
2389 epilog_body
2390 if (exit_epilog_cond) goto merge_bb_3
2391 else goto epilog_header_bb
2392
2393 merge_bb_3:
2394
2395 Note this function peels prolog and epilog only if it's necessary,
2396 as well as guards.
2397 Returns created epilogue or NULL.
2398
2399 TODO: Guard for prefer_scalar_loop should be emitted along with
2400 versioning conditions if loop versioning is needed. */
2401
2402
2403 struct loop *
2404 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2405 tree *niters_vector, tree *step_vector,
2406 tree *niters_vector_mult_vf_var, int th,
2407 bool check_profitability, bool niters_no_overflow)
2408 {
2409 edge e, guard_e;
2410 tree type = TREE_TYPE (niters), guard_cond;
2411 basic_block guard_bb, guard_to;
2412 profile_probability prob_prolog, prob_vector, prob_epilog;
2413 int estimated_vf;
2414 int prolog_peeling = 0;
2415 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2416 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2417
2418 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2419 poly_uint64 bound_epilog = 0;
2420 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2421 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2422 bound_epilog += vf - 1;
2423 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2424 bound_epilog += 1;
2425 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2426 poly_uint64 bound_scalar = bound_epilog;
2427
2428 if (!prolog_peeling && !epilog_peeling)
2429 return NULL;
2430
2431 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2432 estimated_vf = vect_vf_for_cost (loop_vinfo);
2433 if (estimated_vf == 2)
2434 estimated_vf = 3;
2435 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2436 .apply_scale (estimated_vf - 1, estimated_vf);
2437
2438 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
2439 struct loop *first_loop = loop;
2440 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2441 create_lcssa_for_virtual_phi (loop);
2442 update_ssa (TODO_update_ssa_only_virtuals);
2443
2444 if (MAY_HAVE_DEBUG_BIND_STMTS)
2445 {
2446 gcc_assert (!adjust_vec.exists ());
2447 adjust_vec.create (32);
2448 }
2449 initialize_original_copy_tables ();
2450
2451 /* Record the anchor bb at which the guard should be placed if the scalar
2452 loop might be preferred. */
2453 basic_block anchor = loop_preheader_edge (loop)->src;
2454
2455 /* Generate the number of iterations for the prolog loop. We do this here
2456 so that we can also get the upper bound on the number of iterations. */
2457 tree niters_prolog;
2458 int bound_prolog = 0;
2459 if (prolog_peeling)
2460 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2461 &bound_prolog);
2462 else
2463 niters_prolog = build_int_cst (type, 0);
2464
2465 /* Prolog loop may be skipped. */
2466 bool skip_prolog = (prolog_peeling != 0);
2467 /* Skip to epilog if scalar loop may be preferred. It's only needed
2468 when we peel for epilog loop and when it hasn't been checked with
2469 loop versioning. */
2470 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2471 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2472 bound_prolog + bound_epilog)
2473 : !LOOP_REQUIRES_VERSIONING (loop_vinfo));
2474 /* Epilog loop must be executed if the number of iterations for epilog
2475 loop is known at compile time, otherwise we need to add a check at
2476 the end of vector loop and skip to the end of epilog loop. */
2477 bool skip_epilog = (prolog_peeling < 0
2478 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2479 || !vf.is_constant ());
2480 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2481 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2482 skip_epilog = false;
2483
2484 if (skip_vector)
2485 {
2486 split_edge (loop_preheader_edge (loop));
2487
2488 /* Due to the order in which we peel prolog and epilog, we first
2489 propagate probability to the whole loop. The purpose is to
2490 avoid adjusting probabilities of both prolog and vector loops
2491 separately. Note in this case, the probability of epilog loop
2492 needs to be scaled back later. */
2493 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
2494 if (prob_vector.initialized_p ())
2495 {
2496 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2497 scale_loop_profile (loop, prob_vector, 0);
2498 }
2499 }
2500
2501 dump_user_location_t loop_loc = find_loop_location (loop);
2502 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2503 if (prolog_peeling)
2504 {
2505 e = loop_preheader_edge (loop);
2506 if (!slpeel_can_duplicate_loop_p (loop, e))
2507 {
2508 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2509 "loop can't be duplicated to preheader edge.\n");
2510 gcc_unreachable ();
2511 }
2512 /* Peel prolog and put it on preheader edge of loop. */
2513 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2514 if (!prolog)
2515 {
2516 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2517 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2518 gcc_unreachable ();
2519 }
2520 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2521 first_loop = prolog;
2522 reset_original_copy_tables ();
2523
2524 /* Update the number of iterations for prolog loop. */
2525 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
2526 vect_set_loop_condition (prolog, NULL, niters_prolog,
2527 step_prolog, NULL_TREE, false);
2528
2529 /* Skip the prolog loop. */
2530 if (skip_prolog)
2531 {
2532 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2533 niters_prolog, build_int_cst (type, 0));
2534 guard_bb = loop_preheader_edge (prolog)->src;
2535 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
2536 guard_to = split_edge (loop_preheader_edge (loop));
2537 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2538 guard_to, guard_bb,
2539 prob_prolog.invert (),
2540 irred_flag);
2541 e = EDGE_PRED (guard_to, 0);
2542 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2543 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
2544
2545 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2546 scale_loop_profile (prolog, prob_prolog, bound_prolog);
2547 }
2548 /* Update init address of DRs. */
2549 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
2550 /* Update niters for vector loop. */
2551 LOOP_VINFO_NITERS (loop_vinfo)
2552 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2553 LOOP_VINFO_NITERSM1 (loop_vinfo)
2554 = fold_build2 (MINUS_EXPR, type,
2555 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
2556 bool new_var_p = false;
2557 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2558 /* It's guaranteed that vector loop bound before vectorization is at
2559 least VF, so set range information for newly generated var. */
2560 if (new_var_p)
2561 set_range_info (niters, VR_RANGE,
2562 wi::to_wide (build_int_cst (type, vf)),
2563 wi::to_wide (TYPE_MAX_VALUE (type)));
2564
2565 /* Prolog iterates at most bound_prolog times, latch iterates at
2566 most bound_prolog - 1 times. */
2567 record_niter_bound (prolog, bound_prolog - 1, false, true);
2568 delete_update_ssa ();
2569 adjust_vec_debug_stmts ();
2570 scev_reset ();
2571 }
2572
2573 if (epilog_peeling)
2574 {
2575 e = single_exit (loop);
2576 if (!slpeel_can_duplicate_loop_p (loop, e))
2577 {
2578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2579 "loop can't be duplicated to exit edge.\n");
2580 gcc_unreachable ();
2581 }
2582 /* Peel epilog and put it on exit edge of loop. */
2583 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2584 if (!epilog)
2585 {
2586 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2587 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2588 gcc_unreachable ();
2589 }
2590 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2591
2592 /* Scalar version loop may be preferred. In this case, add guard
2593 and skip to epilog. Note this only happens when the number of
2594 iterations of loop is unknown at compile time, otherwise this
2595 won't be vectorized. */
2596 if (skip_vector)
2597 {
2598 /* Additional epilogue iteration is peeled if gap exists. */
2599 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
2600 bound_prolog, bound_epilog,
2601 th, &bound_scalar,
2602 check_profitability);
2603 /* Build guard against NITERSM1 since NITERS may overflow. */
2604 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
2605 guard_bb = anchor;
2606 guard_to = split_edge (loop_preheader_edge (epilog));
2607 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2608 guard_to, guard_bb,
2609 prob_vector.invert (),
2610 irred_flag);
2611 e = EDGE_PRED (guard_to, 0);
2612 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2613 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
2614
2615 /* Simply propagate profile info from guard_bb to guard_to which is
2616 a merge point of control flow. */
2617 guard_to->count = guard_bb->count;
2618
2619 /* Scale probability of epilog loop back.
2620 FIXME: We should avoid scaling down and back up. Profile may
2621 get lost if we scale down to 0. */
2622 basic_block *bbs = get_loop_body (epilog);
2623 for (unsigned int i = 0; i < epilog->num_nodes; i++)
2624 bbs[i]->count = bbs[i]->count.apply_scale
2625 (bbs[i]->count,
2626 bbs[i]->count.apply_probability
2627 (prob_vector));
2628 free (bbs);
2629 }
2630
2631 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
2632 tree niters_vector_mult_vf;
2633 /* If loop is peeled for non-zero constant times, now niters refers to
2634 orig_niters - prolog_peeling, it won't overflow even the orig_niters
2635 overflows. */
2636 niters_no_overflow |= (prolog_peeling > 0);
2637 vect_gen_vector_loop_niters (loop_vinfo, niters,
2638 niters_vector, step_vector,
2639 niters_no_overflow);
2640 if (!integer_onep (*step_vector))
2641 {
2642 /* On exit from the loop we will have an easy way of calcalating
2643 NITERS_VECTOR / STEP * STEP. Install a dummy definition
2644 until then. */
2645 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
2646 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
2647 *niters_vector_mult_vf_var = niters_vector_mult_vf;
2648 }
2649 else
2650 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
2651 &niters_vector_mult_vf);
2652 /* Update IVs of original loop as if they were advanced by
2653 niters_vector_mult_vf steps. */
2654 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
2655 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
2656 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
2657 update_e);
2658
2659 if (skip_epilog)
2660 {
2661 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2662 niters, niters_vector_mult_vf);
2663 guard_bb = single_exit (loop)->dest;
2664 guard_to = split_edge (single_exit (epilog));
2665 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
2666 skip_vector ? anchor : guard_bb,
2667 prob_epilog.invert (),
2668 irred_flag);
2669 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
2670 single_exit (epilog));
2671 /* Only need to handle basic block before epilog loop if it's not
2672 the guard_bb, which is the case when skip_vector is true. */
2673 if (guard_bb != bb_before_epilog)
2674 {
2675 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
2676
2677 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
2678 }
2679 scale_loop_profile (epilog, prob_epilog, 0);
2680 }
2681 else
2682 slpeel_update_phi_nodes_for_lcssa (epilog);
2683
2684 unsigned HOST_WIDE_INT bound;
2685 if (bound_scalar.is_constant (&bound))
2686 {
2687 gcc_assert (bound != 0);
2688 /* -1 to convert loop iterations to latch iterations. */
2689 record_niter_bound (epilog, bound - 1, false, true);
2690 }
2691
2692 delete_update_ssa ();
2693 adjust_vec_debug_stmts ();
2694 scev_reset ();
2695 }
2696 adjust_vec.release ();
2697 free_original_copy_tables ();
2698
2699 return epilog;
2700 }
2701
2702 /* Function vect_create_cond_for_niters_checks.
2703
2704 Create a conditional expression that represents the run-time checks for
2705 loop's niter. The loop is guaranteed to terminate if the run-time
2706 checks hold.
2707
2708 Input:
2709 COND_EXPR - input conditional expression. New conditions will be chained
2710 with logical AND operation. If it is NULL, then the function
2711 is used to return the number of alias checks.
2712 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2713 to be checked.
2714
2715 Output:
2716 COND_EXPR - conditional expression.
2717
2718 The returned COND_EXPR is the conditional expression to be used in the
2719 if statement that controls which version of the loop gets executed at
2720 runtime. */
2721
2722 static void
2723 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
2724 {
2725 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
2726
2727 if (*cond_expr)
2728 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2729 *cond_expr, part_cond_expr);
2730 else
2731 *cond_expr = part_cond_expr;
2732 }
2733
2734 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2735 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
2736
2737 static void
2738 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
2739 {
2740 if (*cond_expr)
2741 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2742 *cond_expr, part_cond_expr);
2743 else
2744 *cond_expr = part_cond_expr;
2745 }
2746
2747 /* Function vect_create_cond_for_align_checks.
2748
2749 Create a conditional expression that represents the alignment checks for
2750 all of data references (array element references) whose alignment must be
2751 checked at runtime.
2752
2753 Input:
2754 COND_EXPR - input conditional expression. New conditions will be chained
2755 with logical AND operation.
2756 LOOP_VINFO - two fields of the loop information are used.
2757 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2758 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2759
2760 Output:
2761 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2762 expression.
2763 The returned value is the conditional expression to be used in the if
2764 statement that controls which version of the loop gets executed at runtime.
2765
2766 The algorithm makes two assumptions:
2767 1) The number of bytes "n" in a vector is a power of 2.
2768 2) An address "a" is aligned if a%n is zero and that this
2769 test can be done as a&(n-1) == 0. For example, for 16
2770 byte vectors the test is a&0xf == 0. */
2771
2772 static void
2773 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2774 tree *cond_expr,
2775 gimple_seq *cond_expr_stmt_list)
2776 {
2777 vec<stmt_vec_info> may_misalign_stmts
2778 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2779 stmt_vec_info stmt_info;
2780 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2781 tree mask_cst;
2782 unsigned int i;
2783 tree int_ptrsize_type;
2784 char tmp_name[20];
2785 tree or_tmp_name = NULL_TREE;
2786 tree and_tmp_name;
2787 gimple *and_stmt;
2788 tree ptrsize_zero;
2789 tree part_cond_expr;
2790
2791 /* Check that mask is one less than a power of 2, i.e., mask is
2792 all zeros followed by all ones. */
2793 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2794
2795 int_ptrsize_type = signed_type_for (ptr_type_node);
2796
2797 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2798 of the first vector of the i'th data reference. */
2799
2800 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
2801 {
2802 gimple_seq new_stmt_list = NULL;
2803 tree addr_base;
2804 tree addr_tmp_name;
2805 tree new_or_tmp_name;
2806 gimple *addr_stmt, *or_stmt;
2807 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2808 bool negative = tree_int_cst_compare
2809 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
2810 tree offset = negative
2811 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2812
2813 /* create: addr_tmp = (int)(address_of_first_vector) */
2814 addr_base =
2815 vect_create_addr_base_for_vector_ref (stmt_info, &new_stmt_list,
2816 offset);
2817 if (new_stmt_list != NULL)
2818 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2819
2820 sprintf (tmp_name, "addr2int%d", i);
2821 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2822 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2823 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2824
2825 /* The addresses are OR together. */
2826
2827 if (or_tmp_name != NULL_TREE)
2828 {
2829 /* create: or_tmp = or_tmp | addr_tmp */
2830 sprintf (tmp_name, "orptrs%d", i);
2831 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2832 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2833 or_tmp_name, addr_tmp_name);
2834 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2835 or_tmp_name = new_or_tmp_name;
2836 }
2837 else
2838 or_tmp_name = addr_tmp_name;
2839
2840 } /* end for i */
2841
2842 mask_cst = build_int_cst (int_ptrsize_type, mask);
2843
2844 /* create: and_tmp = or_tmp & mask */
2845 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2846
2847 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2848 or_tmp_name, mask_cst);
2849 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2850
2851 /* Make and_tmp the left operand of the conditional test against zero.
2852 if and_tmp has a nonzero bit then some address is unaligned. */
2853 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2854 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2855 and_tmp_name, ptrsize_zero);
2856 chain_cond_expr (cond_expr, part_cond_expr);
2857 }
2858
2859 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2860 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2861 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2862 and this new condition are true. Treat a null *COND_EXPR as "true". */
2863
2864 static void
2865 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2866 {
2867 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2868 unsigned int i;
2869 vec_object_pair *pair;
2870 FOR_EACH_VEC_ELT (pairs, i, pair)
2871 {
2872 tree addr1 = build_fold_addr_expr (pair->first);
2873 tree addr2 = build_fold_addr_expr (pair->second);
2874 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2875 addr1, addr2);
2876 chain_cond_expr (cond_expr, part_cond_expr);
2877 }
2878 }
2879
2880 /* Create an expression that is true when all lower-bound conditions for
2881 the vectorized loop are met. Chain this condition with *COND_EXPR. */
2882
2883 static void
2884 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
2885 {
2886 vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
2887 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
2888 {
2889 tree expr = lower_bounds[i].expr;
2890 tree type = unsigned_type_for (TREE_TYPE (expr));
2891 expr = fold_convert (type, expr);
2892 poly_uint64 bound = lower_bounds[i].min_value;
2893 if (!lower_bounds[i].unsigned_p)
2894 {
2895 expr = fold_build2 (PLUS_EXPR, type, expr,
2896 build_int_cstu (type, bound - 1));
2897 bound += bound - 1;
2898 }
2899 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
2900 build_int_cstu (type, bound));
2901 chain_cond_expr (cond_expr, part_cond_expr);
2902 }
2903 }
2904
2905 /* Function vect_create_cond_for_alias_checks.
2906
2907 Create a conditional expression that represents the run-time checks for
2908 overlapping of address ranges represented by a list of data references
2909 relations passed as input.
2910
2911 Input:
2912 COND_EXPR - input conditional expression. New conditions will be chained
2913 with logical AND operation. If it is NULL, then the function
2914 is used to return the number of alias checks.
2915 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2916 to be checked.
2917
2918 Output:
2919 COND_EXPR - conditional expression.
2920
2921 The returned COND_EXPR is the conditional expression to be used in the if
2922 statement that controls which version of the loop gets executed at runtime.
2923 */
2924
2925 void
2926 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2927 {
2928 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2929 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2930
2931 if (comp_alias_ddrs.is_empty ())
2932 return;
2933
2934 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2935 &comp_alias_ddrs, cond_expr);
2936 if (dump_enabled_p ())
2937 dump_printf_loc (MSG_NOTE, vect_location,
2938 "created %u versioning for alias checks.\n",
2939 comp_alias_ddrs.length ());
2940 }
2941
2942
2943 /* Function vect_loop_versioning.
2944
2945 If the loop has data references that may or may not be aligned or/and
2946 has data reference relations whose independence was not proven then
2947 two versions of the loop need to be generated, one which is vectorized
2948 and one which isn't. A test is then generated to control which of the
2949 loops is executed. The test checks for the alignment of all of the
2950 data references that may or may not be aligned. An additional
2951 sequence of runtime tests is generated for each pairs of DDRs whose
2952 independence was not proven. The vectorized version of loop is
2953 executed only if both alias and alignment tests are passed.
2954
2955 The test generated to check which version of loop is executed
2956 is modified to also check for profitability as indicated by the
2957 cost model threshold TH.
2958
2959 The versioning precondition(s) are placed in *COND_EXPR and
2960 *COND_EXPR_STMT_LIST. */
2961
2962 void
2963 vect_loop_versioning (loop_vec_info loop_vinfo,
2964 unsigned int th, bool check_profitability,
2965 poly_uint64 versioning_threshold)
2966 {
2967 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2968 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2969 basic_block condition_bb;
2970 gphi_iterator gsi;
2971 gimple_stmt_iterator cond_exp_gsi;
2972 basic_block merge_bb;
2973 basic_block new_exit_bb;
2974 edge new_exit_e, e;
2975 gphi *orig_phi, *new_phi;
2976 tree cond_expr = NULL_TREE;
2977 gimple_seq cond_expr_stmt_list = NULL;
2978 tree arg;
2979 profile_probability prob = profile_probability::likely ();
2980 gimple_seq gimplify_stmt_list = NULL;
2981 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2982 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2983 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2984 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2985
2986 if (check_profitability)
2987 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2988 build_int_cst (TREE_TYPE (scalar_loop_iters),
2989 th - 1));
2990 if (maybe_ne (versioning_threshold, 0U))
2991 {
2992 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2993 build_int_cst (TREE_TYPE (scalar_loop_iters),
2994 versioning_threshold - 1));
2995 if (cond_expr)
2996 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
2997 expr, cond_expr);
2998 else
2999 cond_expr = expr;
3000 }
3001
3002 if (version_niter)
3003 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3004
3005 if (cond_expr)
3006 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
3007 is_gimple_condexpr, NULL_TREE);
3008
3009 if (version_align)
3010 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3011 &cond_expr_stmt_list);
3012
3013 if (version_alias)
3014 {
3015 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3016 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3017 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3018 }
3019
3020 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3021 &gimplify_stmt_list,
3022 is_gimple_condexpr, NULL_TREE);
3023 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3024
3025 initialize_original_copy_tables ();
3026 if (scalar_loop)
3027 {
3028 edge scalar_e;
3029 basic_block preheader, scalar_preheader;
3030
3031 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
3032 scale LOOP's frequencies instead. */
3033 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
3034 prob, prob.invert (), prob, prob.invert (), true);
3035 scale_loop_frequencies (loop, prob);
3036 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
3037 while we need to move it above LOOP's preheader. */
3038 e = loop_preheader_edge (loop);
3039 scalar_e = loop_preheader_edge (scalar_loop);
3040 /* The vector loop preheader might not be empty, since new
3041 invariants could have been created while analyzing the loop. */
3042 gcc_assert (single_pred_p (e->src));
3043 gcc_assert (empty_block_p (scalar_e->src)
3044 && single_pred_p (scalar_e->src));
3045 gcc_assert (single_pred_p (condition_bb));
3046 preheader = e->src;
3047 scalar_preheader = scalar_e->src;
3048 scalar_e = find_edge (condition_bb, scalar_preheader);
3049 e = single_pred_edge (preheader);
3050 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
3051 scalar_preheader);
3052 redirect_edge_and_branch_force (scalar_e, preheader);
3053 redirect_edge_and_branch_force (e, condition_bb);
3054 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
3055 single_pred (condition_bb));
3056 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
3057 single_pred (scalar_preheader));
3058 set_immediate_dominator (CDI_DOMINATORS, preheader,
3059 condition_bb);
3060 }
3061 else
3062 nloop = loop_version (loop, cond_expr, &condition_bb,
3063 prob, prob.invert (), prob, prob.invert (), true);
3064
3065 if (version_niter)
3066 {
3067 /* The versioned loop could be infinite, we need to clear existing
3068 niter information which is copied from the original loop. */
3069 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3070 vect_free_loop_info_assumptions (nloop);
3071 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
3072 loop_constraint_set (loop, LOOP_C_INFINITE);
3073 }
3074
3075 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
3076 && dump_enabled_p ())
3077 {
3078 if (version_alias)
3079 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
3080 "loop versioned for vectorization because of "
3081 "possible aliasing\n");
3082 if (version_align)
3083 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
3084 "loop versioned for vectorization to enhance "
3085 "alignment\n");
3086
3087 }
3088 free_original_copy_tables ();
3089
3090 /* Loop versioning violates an assumption we try to maintain during
3091 vectorization - that the loop exit block has a single predecessor.
3092 After versioning, the exit block of both loop versions is the same
3093 basic block (i.e. it has two predecessors). Just in order to simplify
3094 following transformations in the vectorizer, we fix this situation
3095 here by adding a new (empty) block on the exit-edge of the loop,
3096 with the proper loop-exit phis to maintain loop-closed-form.
3097 If loop versioning wasn't done from loop, but scalar_loop instead,
3098 merge_bb will have already just a single successor. */
3099
3100 merge_bb = single_exit (loop)->dest;
3101 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
3102 {
3103 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3104 new_exit_bb = split_edge (single_exit (loop));
3105 new_exit_e = single_exit (loop);
3106 e = EDGE_SUCC (new_exit_bb, 0);
3107
3108 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
3109 {
3110 tree new_res;
3111 orig_phi = gsi.phi ();
3112 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3113 new_phi = create_phi_node (new_res, new_exit_bb);
3114 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3115 add_phi_arg (new_phi, arg, new_exit_e,
3116 gimple_phi_arg_location_from_edge (orig_phi, e));
3117 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3118 }
3119 }
3120
3121 /* End loop-exit-fixes after versioning. */
3122
3123 if (cond_expr_stmt_list)
3124 {
3125 cond_exp_gsi = gsi_last_bb (condition_bb);
3126 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3127 GSI_SAME_STMT);
3128 }
3129 update_ssa (TODO_update_ssa);
3130 }