]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vect-patterns.c
[Ada] Define the -fdump-scos option in lang.opt
[thirdparty/gcc.git] / gcc / tree-vect-patterns.c
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "expmed.h"
30 #include "optabs-tree.h"
31 #include "insn-config.h"
32 #include "recog.h" /* FIXME: for insn_data */
33 #include "fold-const.h"
34 #include "stor-layout.h"
35 #include "tree-eh.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "cfgloop.h"
39 #include "tree-vectorizer.h"
40 #include "dumpfile.h"
41 #include "builtins.h"
42 #include "internal-fn.h"
43 #include "case-cfn-macros.h"
44 #include "fold-const-call.h"
45 #include "attribs.h"
46 #include "cgraph.h"
47 #include "omp-simd-clone.h"
48 #include "predict.h"
49
50 /* Return true if we have a useful VR_RANGE range for VAR, storing it
51 in *MIN_VALUE and *MAX_VALUE if so. Note the range in the dump files. */
52
53 static bool
54 vect_get_range_info (tree var, wide_int *min_value, wide_int *max_value)
55 {
56 value_range_kind vr_type = get_range_info (var, min_value, max_value);
57 wide_int nonzero = get_nonzero_bits (var);
58 signop sgn = TYPE_SIGN (TREE_TYPE (var));
59 if (intersect_range_with_nonzero_bits (vr_type, min_value, max_value,
60 nonzero, sgn) == VR_RANGE)
61 {
62 if (dump_enabled_p ())
63 {
64 dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var);
65 dump_printf (MSG_NOTE, " has range [");
66 dump_hex (MSG_NOTE, *min_value);
67 dump_printf (MSG_NOTE, ", ");
68 dump_hex (MSG_NOTE, *max_value);
69 dump_printf (MSG_NOTE, "]\n");
70 }
71 return true;
72 }
73 else
74 {
75 if (dump_enabled_p ())
76 {
77 dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var);
78 dump_printf (MSG_NOTE, " has no range info\n");
79 }
80 return false;
81 }
82 }
83
84 /* Report that we've found an instance of pattern PATTERN in
85 statement STMT. */
86
87 static void
88 vect_pattern_detected (const char *name, gimple *stmt)
89 {
90 if (dump_enabled_p ())
91 dump_printf_loc (MSG_NOTE, vect_location, "%s: detected: %G", name, stmt);
92 }
93
94 /* Associate pattern statement PATTERN_STMT with ORIG_STMT_INFO and
95 return the pattern statement's stmt_vec_info. Set its vector type to
96 VECTYPE if it doesn't have one already. */
97
98 static stmt_vec_info
99 vect_init_pattern_stmt (gimple *pattern_stmt, stmt_vec_info orig_stmt_info,
100 tree vectype)
101 {
102 vec_info *vinfo = orig_stmt_info->vinfo;
103 stmt_vec_info pattern_stmt_info = vinfo->lookup_stmt (pattern_stmt);
104 if (pattern_stmt_info == NULL)
105 pattern_stmt_info = orig_stmt_info->vinfo->add_stmt (pattern_stmt);
106 gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt_info->stmt));
107
108 pattern_stmt_info->pattern_stmt_p = true;
109 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt_info;
110 STMT_VINFO_DEF_TYPE (pattern_stmt_info)
111 = STMT_VINFO_DEF_TYPE (orig_stmt_info);
112 if (!STMT_VINFO_VECTYPE (pattern_stmt_info))
113 STMT_VINFO_VECTYPE (pattern_stmt_info) = vectype;
114 return pattern_stmt_info;
115 }
116
117 /* Set the pattern statement of ORIG_STMT_INFO to PATTERN_STMT.
118 Also set the vector type of PATTERN_STMT to VECTYPE, if it doesn't
119 have one already. */
120
121 static void
122 vect_set_pattern_stmt (gimple *pattern_stmt, stmt_vec_info orig_stmt_info,
123 tree vectype)
124 {
125 STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
126 STMT_VINFO_RELATED_STMT (orig_stmt_info)
127 = vect_init_pattern_stmt (pattern_stmt, orig_stmt_info, vectype);
128 }
129
130 /* Add NEW_STMT to STMT_INFO's pattern definition statements. If VECTYPE
131 is nonnull, record that NEW_STMT's vector type is VECTYPE, which might
132 be different from the vector type of the final pattern statement. */
133
134 static inline void
135 append_pattern_def_seq (stmt_vec_info stmt_info, gimple *new_stmt,
136 tree vectype = NULL_TREE)
137 {
138 vec_info *vinfo = stmt_info->vinfo;
139 if (vectype)
140 {
141 stmt_vec_info new_stmt_info = vinfo->add_stmt (new_stmt);
142 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
143 }
144 gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
145 new_stmt);
146 }
147
148 /* The caller wants to perform new operations on vect_external variable
149 VAR, so that the result of the operations would also be vect_external.
150 Return the edge on which the operations can be performed, if one exists.
151 Return null if the operations should instead be treated as part of
152 the pattern that needs them. */
153
154 static edge
155 vect_get_external_def_edge (vec_info *vinfo, tree var)
156 {
157 edge e = NULL;
158 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
159 {
160 e = loop_preheader_edge (loop_vinfo->loop);
161 if (!SSA_NAME_IS_DEFAULT_DEF (var))
162 {
163 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (var));
164 if (bb == NULL
165 || !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
166 e = NULL;
167 }
168 }
169 return e;
170 }
171
172 /* Return true if the target supports a vector version of CODE,
173 where CODE is known to map to a direct optab. ITYPE specifies
174 the type of (some of) the scalar inputs and OTYPE specifies the
175 type of the scalar result.
176
177 If CODE allows the inputs and outputs to have different type
178 (such as for WIDEN_SUM_EXPR), it is the input mode rather
179 than the output mode that determines the appropriate target pattern.
180 Operand 0 of the target pattern then specifies the mode that the output
181 must have.
182
183 When returning true, set *VECOTYPE_OUT to the vector version of OTYPE.
184 Also set *VECITYPE_OUT to the vector version of ITYPE if VECITYPE_OUT
185 is nonnull. */
186
187 static bool
188 vect_supportable_direct_optab_p (tree otype, tree_code code,
189 tree itype, tree *vecotype_out,
190 tree *vecitype_out = NULL)
191 {
192 tree vecitype = get_vectype_for_scalar_type (itype);
193 if (!vecitype)
194 return false;
195
196 tree vecotype = get_vectype_for_scalar_type (otype);
197 if (!vecotype)
198 return false;
199
200 optab optab = optab_for_tree_code (code, vecitype, optab_default);
201 if (!optab)
202 return false;
203
204 insn_code icode = optab_handler (optab, TYPE_MODE (vecitype));
205 if (icode == CODE_FOR_nothing
206 || insn_data[icode].operand[0].mode != TYPE_MODE (vecotype))
207 return false;
208
209 *vecotype_out = vecotype;
210 if (vecitype_out)
211 *vecitype_out = vecitype;
212 return true;
213 }
214
215 /* Round bit precision PRECISION up to a full element. */
216
217 static unsigned int
218 vect_element_precision (unsigned int precision)
219 {
220 precision = 1 << ceil_log2 (precision);
221 return MAX (precision, BITS_PER_UNIT);
222 }
223
224 /* If OP is defined by a statement that's being considered for vectorization,
225 return information about that statement, otherwise return NULL. */
226
227 static stmt_vec_info
228 vect_get_internal_def (vec_info *vinfo, tree op)
229 {
230 stmt_vec_info def_stmt_info = vinfo->lookup_def (op);
231 if (def_stmt_info
232 && STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def)
233 return def_stmt_info;
234 return NULL;
235 }
236
237 /* Check whether NAME, an ssa-name used in STMT_VINFO,
238 is a result of a type promotion, such that:
239 DEF_STMT: NAME = NOP (name0)
240 If CHECK_SIGN is TRUE, check that either both types are signed or both are
241 unsigned. */
242
243 static bool
244 type_conversion_p (tree name, stmt_vec_info stmt_vinfo, bool check_sign,
245 tree *orig_type, gimple **def_stmt, bool *promotion)
246 {
247 tree type = TREE_TYPE (name);
248 tree oprnd0;
249 enum vect_def_type dt;
250
251 stmt_vec_info def_stmt_info;
252 if (!vect_is_simple_use (name, stmt_vinfo->vinfo, &dt, &def_stmt_info,
253 def_stmt))
254 return false;
255
256 if (dt != vect_internal_def
257 && dt != vect_external_def && dt != vect_constant_def)
258 return false;
259
260 if (!*def_stmt)
261 return false;
262
263 if (!is_gimple_assign (*def_stmt))
264 return false;
265
266 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
267 return false;
268
269 oprnd0 = gimple_assign_rhs1 (*def_stmt);
270
271 *orig_type = TREE_TYPE (oprnd0);
272 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
273 || ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
274 return false;
275
276 if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
277 *promotion = true;
278 else
279 *promotion = false;
280
281 if (!vect_is_simple_use (oprnd0, stmt_vinfo->vinfo, &dt))
282 return false;
283
284 return true;
285 }
286
287 /* Holds information about an input operand after some sign changes
288 and type promotions have been peeled away. */
289 class vect_unpromoted_value {
290 public:
291 vect_unpromoted_value ();
292
293 void set_op (tree, vect_def_type, stmt_vec_info = NULL);
294
295 /* The value obtained after peeling away zero or more casts. */
296 tree op;
297
298 /* The type of OP. */
299 tree type;
300
301 /* The definition type of OP. */
302 vect_def_type dt;
303
304 /* If OP is the result of peeling at least one cast, and if the cast
305 of OP itself is a vectorizable statement, CASTER identifies that
306 statement, otherwise it is null. */
307 stmt_vec_info caster;
308 };
309
310 inline vect_unpromoted_value::vect_unpromoted_value ()
311 : op (NULL_TREE),
312 type (NULL_TREE),
313 dt (vect_uninitialized_def),
314 caster (NULL)
315 {
316 }
317
318 /* Set the operand to OP_IN, its definition type to DT_IN, and the
319 statement that casts it to CASTER_IN. */
320
321 inline void
322 vect_unpromoted_value::set_op (tree op_in, vect_def_type dt_in,
323 stmt_vec_info caster_in)
324 {
325 op = op_in;
326 type = TREE_TYPE (op);
327 dt = dt_in;
328 caster = caster_in;
329 }
330
331 /* If OP is a vectorizable SSA name, strip a sequence of integer conversions
332 to reach some vectorizable inner operand OP', continuing as long as it
333 is possible to convert OP' back to OP using a possible sign change
334 followed by a possible promotion P. Return this OP', or null if OP is
335 not a vectorizable SSA name. If there is a promotion P, describe its
336 input in UNPROM, otherwise describe OP' in UNPROM. If SINGLE_USE_P
337 is nonnull, set *SINGLE_USE_P to false if any of the SSA names involved
338 have more than one user.
339
340 A successful return means that it is possible to go from OP' to OP
341 via UNPROM. The cast from OP' to UNPROM is at most a sign change,
342 whereas the cast from UNPROM to OP might be a promotion, a sign
343 change, or a nop.
344
345 E.g. say we have:
346
347 signed short *ptr = ...;
348 signed short C = *ptr;
349 unsigned short B = (unsigned short) C; // sign change
350 signed int A = (signed int) B; // unsigned promotion
351 ...possible other uses of A...
352 unsigned int OP = (unsigned int) A; // sign change
353
354 In this case it's possible to go directly from C to OP using:
355
356 OP = (unsigned int) (unsigned short) C;
357 +------------+ +--------------+
358 promotion sign change
359
360 so OP' would be C. The input to the promotion is B, so UNPROM
361 would describe B. */
362
363 static tree
364 vect_look_through_possible_promotion (vec_info *vinfo, tree op,
365 vect_unpromoted_value *unprom,
366 bool *single_use_p = NULL)
367 {
368 tree res = NULL_TREE;
369 tree op_type = TREE_TYPE (op);
370 unsigned int orig_precision = TYPE_PRECISION (op_type);
371 unsigned int min_precision = orig_precision;
372 stmt_vec_info caster = NULL;
373 while (TREE_CODE (op) == SSA_NAME && INTEGRAL_TYPE_P (op_type))
374 {
375 /* See whether OP is simple enough to vectorize. */
376 stmt_vec_info def_stmt_info;
377 gimple *def_stmt;
378 vect_def_type dt;
379 if (!vect_is_simple_use (op, vinfo, &dt, &def_stmt_info, &def_stmt))
380 break;
381
382 /* If OP is the input of a demotion, skip over it to see whether
383 OP is itself the result of a promotion. If so, the combined
384 effect of the promotion and the demotion might fit the required
385 pattern, otherwise neither operation fits.
386
387 This copes with cases such as the result of an arithmetic
388 operation being truncated before being stored, and where that
389 arithmetic operation has been recognized as an over-widened one. */
390 if (TYPE_PRECISION (op_type) <= min_precision)
391 {
392 /* Use OP as the UNPROM described above if we haven't yet
393 found a promotion, or if using the new input preserves the
394 sign of the previous promotion. */
395 if (!res
396 || TYPE_PRECISION (unprom->type) == orig_precision
397 || TYPE_SIGN (unprom->type) == TYPE_SIGN (op_type))
398 {
399 unprom->set_op (op, dt, caster);
400 min_precision = TYPE_PRECISION (op_type);
401 }
402 /* Stop if we've already seen a promotion and if this
403 conversion does more than change the sign. */
404 else if (TYPE_PRECISION (op_type)
405 != TYPE_PRECISION (unprom->type))
406 break;
407
408 /* The sequence now extends to OP. */
409 res = op;
410 }
411
412 /* See whether OP is defined by a cast. Record it as CASTER if
413 the cast is potentially vectorizable. */
414 if (!def_stmt)
415 break;
416 caster = def_stmt_info;
417
418 /* Ignore pattern statements, since we don't link uses for them. */
419 if (caster
420 && single_use_p
421 && !STMT_VINFO_RELATED_STMT (caster)
422 && !has_single_use (res))
423 *single_use_p = false;
424
425 gassign *assign = dyn_cast <gassign *> (def_stmt);
426 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
427 break;
428
429 /* Continue with the input to the cast. */
430 op = gimple_assign_rhs1 (def_stmt);
431 op_type = TREE_TYPE (op);
432 }
433 return res;
434 }
435
436 /* OP is an integer operand to an operation that returns TYPE, and we
437 want to treat the operation as a widening one. So far we can treat
438 it as widening from *COMMON_TYPE.
439
440 Return true if OP is suitable for such a widening operation,
441 either widening from *COMMON_TYPE or from some supertype of it.
442 Update *COMMON_TYPE to the supertype in the latter case.
443
444 SHIFT_P is true if OP is a shift amount. */
445
446 static bool
447 vect_joust_widened_integer (tree type, bool shift_p, tree op,
448 tree *common_type)
449 {
450 /* Calculate the minimum precision required by OP, without changing
451 the sign of either operand. */
452 unsigned int precision;
453 if (shift_p)
454 {
455 if (!wi::leu_p (wi::to_widest (op), TYPE_PRECISION (type) / 2))
456 return false;
457 precision = TREE_INT_CST_LOW (op);
458 }
459 else
460 {
461 precision = wi::min_precision (wi::to_widest (op),
462 TYPE_SIGN (*common_type));
463 if (precision * 2 > TYPE_PRECISION (type))
464 return false;
465 }
466
467 /* If OP requires a wider type, switch to that type. The checks
468 above ensure that this is still narrower than the result. */
469 precision = vect_element_precision (precision);
470 if (TYPE_PRECISION (*common_type) < precision)
471 *common_type = build_nonstandard_integer_type
472 (precision, TYPE_UNSIGNED (*common_type));
473 return true;
474 }
475
476 /* Return true if the common supertype of NEW_TYPE and *COMMON_TYPE
477 is narrower than type, storing the supertype in *COMMON_TYPE if so. */
478
479 static bool
480 vect_joust_widened_type (tree type, tree new_type, tree *common_type)
481 {
482 if (types_compatible_p (*common_type, new_type))
483 return true;
484
485 /* See if *COMMON_TYPE can hold all values of NEW_TYPE. */
486 if ((TYPE_PRECISION (new_type) < TYPE_PRECISION (*common_type))
487 && (TYPE_UNSIGNED (new_type) || !TYPE_UNSIGNED (*common_type)))
488 return true;
489
490 /* See if NEW_TYPE can hold all values of *COMMON_TYPE. */
491 if (TYPE_PRECISION (*common_type) < TYPE_PRECISION (new_type)
492 && (TYPE_UNSIGNED (*common_type) || !TYPE_UNSIGNED (new_type)))
493 {
494 *common_type = new_type;
495 return true;
496 }
497
498 /* We have mismatched signs, with the signed type being
499 no wider than the unsigned type. In this case we need
500 a wider signed type. */
501 unsigned int precision = MAX (TYPE_PRECISION (*common_type),
502 TYPE_PRECISION (new_type));
503 precision *= 2;
504 if (precision * 2 > TYPE_PRECISION (type))
505 return false;
506
507 *common_type = build_nonstandard_integer_type (precision, false);
508 return true;
509 }
510
511 /* Check whether STMT_INFO can be viewed as a tree of integer operations
512 in which each node either performs CODE or WIDENED_CODE, and where
513 each leaf operand is narrower than the result of STMT_INFO. MAX_NOPS
514 specifies the maximum number of leaf operands. SHIFT_P says whether
515 CODE and WIDENED_CODE are some sort of shift.
516
517 If STMT_INFO is such a tree, return the number of leaf operands
518 and describe them in UNPROM[0] onwards. Also set *COMMON_TYPE
519 to a type that (a) is narrower than the result of STMT_INFO and
520 (b) can hold all leaf operand values.
521
522 Return 0 if STMT_INFO isn't such a tree, or if no such COMMON_TYPE
523 exists. */
524
525 static unsigned int
526 vect_widened_op_tree (stmt_vec_info stmt_info, tree_code code,
527 tree_code widened_code, bool shift_p,
528 unsigned int max_nops,
529 vect_unpromoted_value *unprom, tree *common_type)
530 {
531 /* Check for an integer operation with the right code. */
532 vec_info *vinfo = stmt_info->vinfo;
533 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
534 if (!assign)
535 return 0;
536
537 tree_code rhs_code = gimple_assign_rhs_code (assign);
538 if (rhs_code != code && rhs_code != widened_code)
539 return 0;
540
541 tree type = gimple_expr_type (assign);
542 if (!INTEGRAL_TYPE_P (type))
543 return 0;
544
545 /* Assume that both operands will be leaf operands. */
546 max_nops -= 2;
547
548 /* Check the operands. */
549 unsigned int next_op = 0;
550 for (unsigned int i = 0; i < 2; ++i)
551 {
552 vect_unpromoted_value *this_unprom = &unprom[next_op];
553 unsigned int nops = 1;
554 tree op = gimple_op (assign, i + 1);
555 if (i == 1 && TREE_CODE (op) == INTEGER_CST)
556 {
557 /* We already have a common type from earlier operands.
558 Update it to account for OP. */
559 this_unprom->set_op (op, vect_constant_def);
560 if (!vect_joust_widened_integer (type, shift_p, op, common_type))
561 return 0;
562 }
563 else
564 {
565 /* Only allow shifts by constants. */
566 if (shift_p && i == 1)
567 return 0;
568
569 if (!vect_look_through_possible_promotion (stmt_info->vinfo, op,
570 this_unprom))
571 return 0;
572
573 if (TYPE_PRECISION (this_unprom->type) == TYPE_PRECISION (type))
574 {
575 /* The operand isn't widened. If STMT_INFO has the code
576 for an unwidened operation, recursively check whether
577 this operand is a node of the tree. */
578 if (rhs_code != code
579 || max_nops == 0
580 || this_unprom->dt != vect_internal_def)
581 return 0;
582
583 /* Give back the leaf slot allocated above now that we're
584 not treating this as a leaf operand. */
585 max_nops += 1;
586
587 /* Recursively process the definition of the operand. */
588 stmt_vec_info def_stmt_info
589 = vinfo->lookup_def (this_unprom->op);
590 nops = vect_widened_op_tree (def_stmt_info, code, widened_code,
591 shift_p, max_nops, this_unprom,
592 common_type);
593 if (nops == 0)
594 return 0;
595
596 max_nops -= nops;
597 }
598 else
599 {
600 /* Make sure that the operand is narrower than the result. */
601 if (TYPE_PRECISION (this_unprom->type) * 2
602 > TYPE_PRECISION (type))
603 return 0;
604
605 /* Update COMMON_TYPE for the new operand. */
606 if (i == 0)
607 *common_type = this_unprom->type;
608 else if (!vect_joust_widened_type (type, this_unprom->type,
609 common_type))
610 return 0;
611 }
612 }
613 next_op += nops;
614 }
615 return next_op;
616 }
617
618 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
619 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
620
621 static tree
622 vect_recog_temp_ssa_var (tree type, gimple *stmt)
623 {
624 return make_temp_ssa_name (type, stmt, "patt");
625 }
626
627 /* STMT2_INFO describes a type conversion that could be split into STMT1
628 followed by a version of STMT2_INFO that takes NEW_RHS as its first
629 input. Try to do this using pattern statements, returning true on
630 success. */
631
632 static bool
633 vect_split_statement (stmt_vec_info stmt2_info, tree new_rhs,
634 gimple *stmt1, tree vectype)
635 {
636 if (is_pattern_stmt_p (stmt2_info))
637 {
638 /* STMT2_INFO is part of a pattern. Get the statement to which
639 the pattern is attached. */
640 stmt_vec_info orig_stmt2_info = STMT_VINFO_RELATED_STMT (stmt2_info);
641 vect_init_pattern_stmt (stmt1, orig_stmt2_info, vectype);
642
643 if (dump_enabled_p ())
644 dump_printf_loc (MSG_NOTE, vect_location,
645 "Splitting pattern statement: %G", stmt2_info->stmt);
646
647 /* Since STMT2_INFO is a pattern statement, we can change it
648 in-situ without worrying about changing the code for the
649 containing block. */
650 gimple_assign_set_rhs1 (stmt2_info->stmt, new_rhs);
651
652 if (dump_enabled_p ())
653 {
654 dump_printf_loc (MSG_NOTE, vect_location, "into: %G", stmt1);
655 dump_printf_loc (MSG_NOTE, vect_location, "and: %G",
656 stmt2_info->stmt);
657 }
658
659 gimple_seq *def_seq = &STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt2_info);
660 if (STMT_VINFO_RELATED_STMT (orig_stmt2_info) == stmt2_info)
661 /* STMT2_INFO is the actual pattern statement. Add STMT1
662 to the end of the definition sequence. */
663 gimple_seq_add_stmt_without_update (def_seq, stmt1);
664 else
665 {
666 /* STMT2_INFO belongs to the definition sequence. Insert STMT1
667 before it. */
668 gimple_stmt_iterator gsi = gsi_for_stmt (stmt2_info->stmt, def_seq);
669 gsi_insert_before_without_update (&gsi, stmt1, GSI_SAME_STMT);
670 }
671 return true;
672 }
673 else
674 {
675 /* STMT2_INFO doesn't yet have a pattern. Try to create a
676 two-statement pattern now. */
677 gcc_assert (!STMT_VINFO_RELATED_STMT (stmt2_info));
678 tree lhs_type = TREE_TYPE (gimple_get_lhs (stmt2_info->stmt));
679 tree lhs_vectype = get_vectype_for_scalar_type (lhs_type);
680 if (!lhs_vectype)
681 return false;
682
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_NOTE, vect_location,
685 "Splitting statement: %G", stmt2_info->stmt);
686
687 /* Add STMT1 as a singleton pattern definition sequence. */
688 gimple_seq *def_seq = &STMT_VINFO_PATTERN_DEF_SEQ (stmt2_info);
689 vect_init_pattern_stmt (stmt1, stmt2_info, vectype);
690 gimple_seq_add_stmt_without_update (def_seq, stmt1);
691
692 /* Build the second of the two pattern statements. */
693 tree new_lhs = vect_recog_temp_ssa_var (lhs_type, NULL);
694 gassign *new_stmt2 = gimple_build_assign (new_lhs, NOP_EXPR, new_rhs);
695 vect_set_pattern_stmt (new_stmt2, stmt2_info, lhs_vectype);
696
697 if (dump_enabled_p ())
698 {
699 dump_printf_loc (MSG_NOTE, vect_location,
700 "into pattern statements: %G", stmt1);
701 dump_printf_loc (MSG_NOTE, vect_location, "and: %G", new_stmt2);
702 }
703
704 return true;
705 }
706 }
707
708 /* Convert UNPROM to TYPE and return the result, adding new statements
709 to STMT_INFO's pattern definition statements if no better way is
710 available. VECTYPE is the vector form of TYPE. */
711
712 static tree
713 vect_convert_input (stmt_vec_info stmt_info, tree type,
714 vect_unpromoted_value *unprom, tree vectype)
715 {
716 /* Check for a no-op conversion. */
717 if (types_compatible_p (type, TREE_TYPE (unprom->op)))
718 return unprom->op;
719
720 /* Allow the caller to create constant vect_unpromoted_values. */
721 if (TREE_CODE (unprom->op) == INTEGER_CST)
722 return wide_int_to_tree (type, wi::to_widest (unprom->op));
723
724 tree input = unprom->op;
725 if (unprom->caster)
726 {
727 tree lhs = gimple_get_lhs (unprom->caster->stmt);
728 tree lhs_type = TREE_TYPE (lhs);
729
730 /* If the result of the existing cast is the right width, use it
731 instead of the source of the cast. */
732 if (TYPE_PRECISION (lhs_type) == TYPE_PRECISION (type))
733 input = lhs;
734 /* If the precision we want is between the source and result
735 precisions of the existing cast, try splitting the cast into
736 two and tapping into a mid-way point. */
737 else if (TYPE_PRECISION (lhs_type) > TYPE_PRECISION (type)
738 && TYPE_PRECISION (type) > TYPE_PRECISION (unprom->type))
739 {
740 /* In order to preserve the semantics of the original cast,
741 give the mid-way point the same signedness as the input value.
742
743 It would be possible to use a signed type here instead if
744 TYPE is signed and UNPROM->TYPE is unsigned, but that would
745 make the sign of the midtype sensitive to the order in
746 which we process the statements, since the signedness of
747 TYPE is the signedness required by just one of possibly
748 many users. Also, unsigned promotions are usually as cheap
749 as or cheaper than signed ones, so it's better to keep an
750 unsigned promotion. */
751 tree midtype = build_nonstandard_integer_type
752 (TYPE_PRECISION (type), TYPE_UNSIGNED (unprom->type));
753 tree vec_midtype = get_vectype_for_scalar_type (midtype);
754 if (vec_midtype)
755 {
756 input = vect_recog_temp_ssa_var (midtype, NULL);
757 gassign *new_stmt = gimple_build_assign (input, NOP_EXPR,
758 unprom->op);
759 if (!vect_split_statement (unprom->caster, input, new_stmt,
760 vec_midtype))
761 append_pattern_def_seq (stmt_info, new_stmt, vec_midtype);
762 }
763 }
764
765 /* See if we can reuse an existing result. */
766 if (types_compatible_p (type, TREE_TYPE (input)))
767 return input;
768 }
769
770 /* We need a new conversion statement. */
771 tree new_op = vect_recog_temp_ssa_var (type, NULL);
772 gassign *new_stmt = gimple_build_assign (new_op, NOP_EXPR, input);
773
774 /* If OP is an external value, see if we can insert the new statement
775 on an incoming edge. */
776 if (input == unprom->op && unprom->dt == vect_external_def)
777 if (edge e = vect_get_external_def_edge (stmt_info->vinfo, input))
778 {
779 basic_block new_bb = gsi_insert_on_edge_immediate (e, new_stmt);
780 gcc_assert (!new_bb);
781 return new_op;
782 }
783
784 /* As a (common) last resort, add the statement to the pattern itself. */
785 append_pattern_def_seq (stmt_info, new_stmt, vectype);
786 return new_op;
787 }
788
789 /* Invoke vect_convert_input for N elements of UNPROM and store the
790 result in the corresponding elements of RESULT. */
791
792 static void
793 vect_convert_inputs (stmt_vec_info stmt_info, unsigned int n,
794 tree *result, tree type, vect_unpromoted_value *unprom,
795 tree vectype)
796 {
797 for (unsigned int i = 0; i < n; ++i)
798 {
799 unsigned int j;
800 for (j = 0; j < i; ++j)
801 if (unprom[j].op == unprom[i].op)
802 break;
803 if (j < i)
804 result[i] = result[j];
805 else
806 result[i] = vect_convert_input (stmt_info, type, &unprom[i], vectype);
807 }
808 }
809
810 /* The caller has created a (possibly empty) sequence of pattern definition
811 statements followed by a single statement PATTERN_STMT. Cast the result
812 of this final statement to TYPE. If a new statement is needed, add
813 PATTERN_STMT to the end of STMT_INFO's pattern definition statements
814 and return the new statement, otherwise return PATTERN_STMT as-is.
815 VECITYPE is the vector form of PATTERN_STMT's result type. */
816
817 static gimple *
818 vect_convert_output (stmt_vec_info stmt_info, tree type, gimple *pattern_stmt,
819 tree vecitype)
820 {
821 tree lhs = gimple_get_lhs (pattern_stmt);
822 if (!types_compatible_p (type, TREE_TYPE (lhs)))
823 {
824 append_pattern_def_seq (stmt_info, pattern_stmt, vecitype);
825 tree cast_var = vect_recog_temp_ssa_var (type, NULL);
826 pattern_stmt = gimple_build_assign (cast_var, NOP_EXPR, lhs);
827 }
828 return pattern_stmt;
829 }
830
831 /* Return true if STMT_VINFO describes a reduction for which reassociation
832 is allowed. If STMT_INFO is part of a group, assume that it's part of
833 a reduction chain and optimistically assume that all statements
834 except the last allow reassociation. */
835
836 static bool
837 vect_reassociating_reduction_p (stmt_vec_info stmt_vinfo)
838 {
839 return (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
840 ? STMT_VINFO_REDUC_TYPE (stmt_vinfo) != FOLD_LEFT_REDUCTION
841 : REDUC_GROUP_FIRST_ELEMENT (stmt_vinfo) != NULL);
842 }
843
844 /* As above, but also require it to have code CODE and to be a reduction
845 in the outermost loop. When returning true, store the operands in
846 *OP0_OUT and *OP1_OUT. */
847
848 static bool
849 vect_reassociating_reduction_p (stmt_vec_info stmt_info, tree_code code,
850 tree *op0_out, tree *op1_out)
851 {
852 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
853 if (!loop_info)
854 return false;
855
856 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
857 if (!assign || gimple_assign_rhs_code (assign) != code)
858 return false;
859
860 /* We don't allow changing the order of the computation in the inner-loop
861 when doing outer-loop vectorization. */
862 class loop *loop = LOOP_VINFO_LOOP (loop_info);
863 if (loop && nested_in_vect_loop_p (loop, stmt_info))
864 return false;
865
866 if (!vect_reassociating_reduction_p (stmt_info))
867 return false;
868
869 *op0_out = gimple_assign_rhs1 (assign);
870 *op1_out = gimple_assign_rhs2 (assign);
871 return true;
872 }
873
874 /* Function vect_recog_dot_prod_pattern
875
876 Try to find the following pattern:
877
878 type x_t, y_t;
879 TYPE1 prod;
880 TYPE2 sum = init;
881 loop:
882 sum_0 = phi <init, sum_1>
883 S1 x_t = ...
884 S2 y_t = ...
885 S3 x_T = (TYPE1) x_t;
886 S4 y_T = (TYPE1) y_t;
887 S5 prod = x_T * y_T;
888 [S6 prod = (TYPE2) prod; #optional]
889 S7 sum_1 = prod + sum_0;
890
891 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
892 same size of 'TYPE1' or bigger. This is a special case of a reduction
893 computation.
894
895 Input:
896
897 * STMT_VINFO: The stmt from which the pattern search begins. In the
898 example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
899 will be detected.
900
901 Output:
902
903 * TYPE_OUT: The type of the output of this pattern.
904
905 * Return value: A new stmt that will be used to replace the sequence of
906 stmts that constitute the pattern. In this case it will be:
907 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
908
909 Note: The dot-prod idiom is a widening reduction pattern that is
910 vectorized without preserving all the intermediate results. It
911 produces only N/2 (widened) results (by summing up pairs of
912 intermediate results) rather than all N results. Therefore, we
913 cannot allow this pattern when we want to get all the results and in
914 the correct order (as is the case when this computation is in an
915 inner-loop nested in an outer-loop that us being vectorized). */
916
917 static gimple *
918 vect_recog_dot_prod_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
919 {
920 tree oprnd0, oprnd1;
921 gimple *last_stmt = stmt_vinfo->stmt;
922 vec_info *vinfo = stmt_vinfo->vinfo;
923 tree type, half_type;
924 gimple *pattern_stmt;
925 tree var;
926
927 /* Look for the following pattern
928 DX = (TYPE1) X;
929 DY = (TYPE1) Y;
930 DPROD = DX * DY;
931 DDPROD = (TYPE2) DPROD;
932 sum_1 = DDPROD + sum_0;
933 In which
934 - DX is double the size of X
935 - DY is double the size of Y
936 - DX, DY, DPROD all have the same type
937 - sum is the same size of DPROD or bigger
938 - sum has been recognized as a reduction variable.
939
940 This is equivalent to:
941 DPROD = X w* Y; #widen mult
942 sum_1 = DPROD w+ sum_0; #widen summation
943 or
944 DPROD = X w* Y; #widen mult
945 sum_1 = DPROD + sum_0; #summation
946 */
947
948 /* Starting from LAST_STMT, follow the defs of its uses in search
949 of the above pattern. */
950
951 if (!vect_reassociating_reduction_p (stmt_vinfo, PLUS_EXPR,
952 &oprnd0, &oprnd1))
953 return NULL;
954
955 type = gimple_expr_type (last_stmt);
956
957 vect_unpromoted_value unprom_mult;
958 oprnd0 = vect_look_through_possible_promotion (vinfo, oprnd0, &unprom_mult);
959
960 /* So far so good. Since last_stmt was detected as a (summation) reduction,
961 we know that oprnd1 is the reduction variable (defined by a loop-header
962 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
963 Left to check that oprnd0 is defined by a (widen_)mult_expr */
964 if (!oprnd0)
965 return NULL;
966
967 stmt_vec_info mult_vinfo = vect_get_internal_def (vinfo, oprnd0);
968 if (!mult_vinfo)
969 return NULL;
970
971 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
972 inside the loop (in case we are analyzing an outer-loop). */
973 vect_unpromoted_value unprom0[2];
974 if (!vect_widened_op_tree (mult_vinfo, MULT_EXPR, WIDEN_MULT_EXPR,
975 false, 2, unprom0, &half_type))
976 return NULL;
977
978 /* If there are two widening operations, make sure they agree on
979 the sign of the extension. */
980 if (TYPE_PRECISION (unprom_mult.type) != TYPE_PRECISION (type)
981 && TYPE_SIGN (unprom_mult.type) != TYPE_SIGN (half_type))
982 return NULL;
983
984 vect_pattern_detected ("vect_recog_dot_prod_pattern", last_stmt);
985
986 tree half_vectype;
987 if (!vect_supportable_direct_optab_p (type, DOT_PROD_EXPR, half_type,
988 type_out, &half_vectype))
989 return NULL;
990
991 /* Get the inputs in the appropriate types. */
992 tree mult_oprnd[2];
993 vect_convert_inputs (stmt_vinfo, 2, mult_oprnd, half_type,
994 unprom0, half_vectype);
995
996 var = vect_recog_temp_ssa_var (type, NULL);
997 pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
998 mult_oprnd[0], mult_oprnd[1], oprnd1);
999
1000 return pattern_stmt;
1001 }
1002
1003
1004 /* Function vect_recog_sad_pattern
1005
1006 Try to find the following Sum of Absolute Difference (SAD) pattern:
1007
1008 type x_t, y_t;
1009 signed TYPE1 diff, abs_diff;
1010 TYPE2 sum = init;
1011 loop:
1012 sum_0 = phi <init, sum_1>
1013 S1 x_t = ...
1014 S2 y_t = ...
1015 S3 x_T = (TYPE1) x_t;
1016 S4 y_T = (TYPE1) y_t;
1017 S5 diff = x_T - y_T;
1018 S6 abs_diff = ABS_EXPR <diff>;
1019 [S7 abs_diff = (TYPE2) abs_diff; #optional]
1020 S8 sum_1 = abs_diff + sum_0;
1021
1022 where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
1023 same size of 'TYPE1' or bigger. This is a special case of a reduction
1024 computation.
1025
1026 Input:
1027
1028 * STMT_VINFO: The stmt from which the pattern search begins. In the
1029 example, when this function is called with S8, the pattern
1030 {S3,S4,S5,S6,S7,S8} will be detected.
1031
1032 Output:
1033
1034 * TYPE_OUT: The type of the output of this pattern.
1035
1036 * Return value: A new stmt that will be used to replace the sequence of
1037 stmts that constitute the pattern. In this case it will be:
1038 SAD_EXPR <x_t, y_t, sum_0>
1039 */
1040
1041 static gimple *
1042 vect_recog_sad_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
1043 {
1044 gimple *last_stmt = stmt_vinfo->stmt;
1045 vec_info *vinfo = stmt_vinfo->vinfo;
1046 tree half_type;
1047
1048 /* Look for the following pattern
1049 DX = (TYPE1) X;
1050 DY = (TYPE1) Y;
1051 DDIFF = DX - DY;
1052 DAD = ABS_EXPR <DDIFF>;
1053 DDPROD = (TYPE2) DPROD;
1054 sum_1 = DAD + sum_0;
1055 In which
1056 - DX is at least double the size of X
1057 - DY is at least double the size of Y
1058 - DX, DY, DDIFF, DAD all have the same type
1059 - sum is the same size of DAD or bigger
1060 - sum has been recognized as a reduction variable.
1061
1062 This is equivalent to:
1063 DDIFF = X w- Y; #widen sub
1064 DAD = ABS_EXPR <DDIFF>;
1065 sum_1 = DAD w+ sum_0; #widen summation
1066 or
1067 DDIFF = X w- Y; #widen sub
1068 DAD = ABS_EXPR <DDIFF>;
1069 sum_1 = DAD + sum_0; #summation
1070 */
1071
1072 /* Starting from LAST_STMT, follow the defs of its uses in search
1073 of the above pattern. */
1074
1075 tree plus_oprnd0, plus_oprnd1;
1076 if (!vect_reassociating_reduction_p (stmt_vinfo, PLUS_EXPR,
1077 &plus_oprnd0, &plus_oprnd1))
1078 return NULL;
1079
1080 tree sum_type = gimple_expr_type (last_stmt);
1081
1082 /* Any non-truncating sequence of conversions is OK here, since
1083 with a successful match, the result of the ABS(U) is known to fit
1084 within the nonnegative range of the result type. (It cannot be the
1085 negative of the minimum signed value due to the range of the widening
1086 MINUS_EXPR.) */
1087 vect_unpromoted_value unprom_abs;
1088 plus_oprnd0 = vect_look_through_possible_promotion (vinfo, plus_oprnd0,
1089 &unprom_abs);
1090
1091 /* So far so good. Since last_stmt was detected as a (summation) reduction,
1092 we know that plus_oprnd1 is the reduction variable (defined by a loop-header
1093 phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
1094 Then check that plus_oprnd0 is defined by an abs_expr. */
1095
1096 if (!plus_oprnd0)
1097 return NULL;
1098
1099 stmt_vec_info abs_stmt_vinfo = vect_get_internal_def (vinfo, plus_oprnd0);
1100 if (!abs_stmt_vinfo)
1101 return NULL;
1102
1103 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
1104 inside the loop (in case we are analyzing an outer-loop). */
1105 gassign *abs_stmt = dyn_cast <gassign *> (abs_stmt_vinfo->stmt);
1106 if (!abs_stmt
1107 || (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR
1108 && gimple_assign_rhs_code (abs_stmt) != ABSU_EXPR))
1109 return NULL;
1110
1111 tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
1112 tree abs_type = TREE_TYPE (abs_oprnd);
1113 if (TYPE_UNSIGNED (abs_type))
1114 return NULL;
1115
1116 /* Peel off conversions from the ABS input. This can involve sign
1117 changes (e.g. from an unsigned subtraction to a signed ABS input)
1118 or signed promotion, but it can't include unsigned promotion.
1119 (Note that ABS of an unsigned promotion should have been folded
1120 away before now anyway.) */
1121 vect_unpromoted_value unprom_diff;
1122 abs_oprnd = vect_look_through_possible_promotion (vinfo, abs_oprnd,
1123 &unprom_diff);
1124 if (!abs_oprnd)
1125 return NULL;
1126 if (TYPE_PRECISION (unprom_diff.type) != TYPE_PRECISION (abs_type)
1127 && TYPE_UNSIGNED (unprom_diff.type))
1128 return NULL;
1129
1130 /* We then detect if the operand of abs_expr is defined by a minus_expr. */
1131 stmt_vec_info diff_stmt_vinfo = vect_get_internal_def (vinfo, abs_oprnd);
1132 if (!diff_stmt_vinfo)
1133 return NULL;
1134
1135 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
1136 inside the loop (in case we are analyzing an outer-loop). */
1137 vect_unpromoted_value unprom[2];
1138 if (!vect_widened_op_tree (diff_stmt_vinfo, MINUS_EXPR, MINUS_EXPR,
1139 false, 2, unprom, &half_type))
1140 return NULL;
1141
1142 vect_pattern_detected ("vect_recog_sad_pattern", last_stmt);
1143
1144 tree half_vectype;
1145 if (!vect_supportable_direct_optab_p (sum_type, SAD_EXPR, half_type,
1146 type_out, &half_vectype))
1147 return NULL;
1148
1149 /* Get the inputs to the SAD_EXPR in the appropriate types. */
1150 tree sad_oprnd[2];
1151 vect_convert_inputs (stmt_vinfo, 2, sad_oprnd, half_type,
1152 unprom, half_vectype);
1153
1154 tree var = vect_recog_temp_ssa_var (sum_type, NULL);
1155 gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd[0],
1156 sad_oprnd[1], plus_oprnd1);
1157
1158 return pattern_stmt;
1159 }
1160
1161 /* Recognize an operation that performs ORIG_CODE on widened inputs,
1162 so that it can be treated as though it had the form:
1163
1164 A_TYPE a;
1165 B_TYPE b;
1166 HALF_TYPE a_cast = (HALF_TYPE) a; // possible no-op
1167 HALF_TYPE b_cast = (HALF_TYPE) b; // possible no-op
1168 | RES_TYPE a_extend = (RES_TYPE) a_cast; // promotion from HALF_TYPE
1169 | RES_TYPE b_extend = (RES_TYPE) b_cast; // promotion from HALF_TYPE
1170 | RES_TYPE res = a_extend ORIG_CODE b_extend;
1171
1172 Try to replace the pattern with:
1173
1174 A_TYPE a;
1175 B_TYPE b;
1176 HALF_TYPE a_cast = (HALF_TYPE) a; // possible no-op
1177 HALF_TYPE b_cast = (HALF_TYPE) b; // possible no-op
1178 | EXT_TYPE ext = a_cast WIDE_CODE b_cast;
1179 | RES_TYPE res = (EXT_TYPE) ext; // possible no-op
1180
1181 where EXT_TYPE is wider than HALF_TYPE but has the same signedness.
1182
1183 SHIFT_P is true if ORIG_CODE and WIDE_CODE are shifts. NAME is the
1184 name of the pattern being matched, for dump purposes. */
1185
1186 static gimple *
1187 vect_recog_widen_op_pattern (stmt_vec_info last_stmt_info, tree *type_out,
1188 tree_code orig_code, tree_code wide_code,
1189 bool shift_p, const char *name)
1190 {
1191 gimple *last_stmt = last_stmt_info->stmt;
1192
1193 vect_unpromoted_value unprom[2];
1194 tree half_type;
1195 if (!vect_widened_op_tree (last_stmt_info, orig_code, orig_code,
1196 shift_p, 2, unprom, &half_type))
1197 return NULL;
1198
1199 /* Pattern detected. */
1200 vect_pattern_detected (name, last_stmt);
1201
1202 tree type = gimple_expr_type (last_stmt);
1203 tree itype = type;
1204 if (TYPE_PRECISION (type) != TYPE_PRECISION (half_type) * 2
1205 || TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type))
1206 itype = build_nonstandard_integer_type (TYPE_PRECISION (half_type) * 2,
1207 TYPE_UNSIGNED (half_type));
1208
1209 /* Check target support */
1210 tree vectype = get_vectype_for_scalar_type (half_type);
1211 tree vecitype = get_vectype_for_scalar_type (itype);
1212 enum tree_code dummy_code;
1213 int dummy_int;
1214 auto_vec<tree> dummy_vec;
1215 if (!vectype
1216 || !vecitype
1217 || !supportable_widening_operation (wide_code, last_stmt_info,
1218 vecitype, vectype,
1219 &dummy_code, &dummy_code,
1220 &dummy_int, &dummy_vec))
1221 return NULL;
1222
1223 *type_out = get_vectype_for_scalar_type (type);
1224 if (!*type_out)
1225 return NULL;
1226
1227 tree oprnd[2];
1228 vect_convert_inputs (last_stmt_info, 2, oprnd, half_type, unprom, vectype);
1229
1230 tree var = vect_recog_temp_ssa_var (itype, NULL);
1231 gimple *pattern_stmt = gimple_build_assign (var, wide_code,
1232 oprnd[0], oprnd[1]);
1233
1234 return vect_convert_output (last_stmt_info, type, pattern_stmt, vecitype);
1235 }
1236
1237 /* Try to detect multiplication on widened inputs, converting MULT_EXPR
1238 to WIDEN_MULT_EXPR. See vect_recog_widen_op_pattern for details. */
1239
1240 static gimple *
1241 vect_recog_widen_mult_pattern (stmt_vec_info last_stmt_info, tree *type_out)
1242 {
1243 return vect_recog_widen_op_pattern (last_stmt_info, type_out, MULT_EXPR,
1244 WIDEN_MULT_EXPR, false,
1245 "vect_recog_widen_mult_pattern");
1246 }
1247
1248 /* Function vect_recog_pow_pattern
1249
1250 Try to find the following pattern:
1251
1252 x = POW (y, N);
1253
1254 with POW being one of pow, powf, powi, powif and N being
1255 either 2 or 0.5.
1256
1257 Input:
1258
1259 * STMT_VINFO: The stmt from which the pattern search begins.
1260
1261 Output:
1262
1263 * TYPE_OUT: The type of the output of this pattern.
1264
1265 * Return value: A new stmt that will be used to replace the sequence of
1266 stmts that constitute the pattern. In this case it will be:
1267 x = x * x
1268 or
1269 x = sqrt (x)
1270 */
1271
1272 static gimple *
1273 vect_recog_pow_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
1274 {
1275 gimple *last_stmt = stmt_vinfo->stmt;
1276 tree base, exp;
1277 gimple *stmt;
1278 tree var;
1279
1280 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
1281 return NULL;
1282
1283 switch (gimple_call_combined_fn (last_stmt))
1284 {
1285 CASE_CFN_POW:
1286 CASE_CFN_POWI:
1287 break;
1288
1289 default:
1290 return NULL;
1291 }
1292
1293 base = gimple_call_arg (last_stmt, 0);
1294 exp = gimple_call_arg (last_stmt, 1);
1295 if (TREE_CODE (exp) != REAL_CST
1296 && TREE_CODE (exp) != INTEGER_CST)
1297 {
1298 if (flag_unsafe_math_optimizations
1299 && TREE_CODE (base) == REAL_CST
1300 && gimple_call_builtin_p (last_stmt, BUILT_IN_NORMAL))
1301 {
1302 combined_fn log_cfn;
1303 built_in_function exp_bfn;
1304 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (last_stmt)))
1305 {
1306 case BUILT_IN_POW:
1307 log_cfn = CFN_BUILT_IN_LOG;
1308 exp_bfn = BUILT_IN_EXP;
1309 break;
1310 case BUILT_IN_POWF:
1311 log_cfn = CFN_BUILT_IN_LOGF;
1312 exp_bfn = BUILT_IN_EXPF;
1313 break;
1314 case BUILT_IN_POWL:
1315 log_cfn = CFN_BUILT_IN_LOGL;
1316 exp_bfn = BUILT_IN_EXPL;
1317 break;
1318 default:
1319 return NULL;
1320 }
1321 tree logc = fold_const_call (log_cfn, TREE_TYPE (base), base);
1322 tree exp_decl = builtin_decl_implicit (exp_bfn);
1323 /* Optimize pow (C, x) as exp (log (C) * x). Normally match.pd
1324 does that, but if C is a power of 2, we want to use
1325 exp2 (log2 (C) * x) in the non-vectorized version, but for
1326 vectorization we don't have vectorized exp2. */
1327 if (logc
1328 && TREE_CODE (logc) == REAL_CST
1329 && exp_decl
1330 && lookup_attribute ("omp declare simd",
1331 DECL_ATTRIBUTES (exp_decl)))
1332 {
1333 cgraph_node *node = cgraph_node::get_create (exp_decl);
1334 if (node->simd_clones == NULL)
1335 {
1336 if (targetm.simd_clone.compute_vecsize_and_simdlen == NULL
1337 || node->definition)
1338 return NULL;
1339 expand_simd_clones (node);
1340 if (node->simd_clones == NULL)
1341 return NULL;
1342 }
1343 *type_out = get_vectype_for_scalar_type (TREE_TYPE (base));
1344 if (!*type_out)
1345 return NULL;
1346 tree def = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
1347 gimple *g = gimple_build_assign (def, MULT_EXPR, exp, logc);
1348 append_pattern_def_seq (stmt_vinfo, g);
1349 tree res = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
1350 g = gimple_build_call (exp_decl, 1, def);
1351 gimple_call_set_lhs (g, res);
1352 return g;
1353 }
1354 }
1355
1356 return NULL;
1357 }
1358
1359 /* We now have a pow or powi builtin function call with a constant
1360 exponent. */
1361
1362 /* Catch squaring. */
1363 if ((tree_fits_shwi_p (exp)
1364 && tree_to_shwi (exp) == 2)
1365 || (TREE_CODE (exp) == REAL_CST
1366 && real_equal (&TREE_REAL_CST (exp), &dconst2)))
1367 {
1368 if (!vect_supportable_direct_optab_p (TREE_TYPE (base), MULT_EXPR,
1369 TREE_TYPE (base), type_out))
1370 return NULL;
1371
1372 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
1373 stmt = gimple_build_assign (var, MULT_EXPR, base, base);
1374 return stmt;
1375 }
1376
1377 /* Catch square root. */
1378 if (TREE_CODE (exp) == REAL_CST
1379 && real_equal (&TREE_REAL_CST (exp), &dconsthalf))
1380 {
1381 *type_out = get_vectype_for_scalar_type (TREE_TYPE (base));
1382 if (*type_out
1383 && direct_internal_fn_supported_p (IFN_SQRT, *type_out,
1384 OPTIMIZE_FOR_SPEED))
1385 {
1386 gcall *stmt = gimple_build_call_internal (IFN_SQRT, 1, base);
1387 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
1388 gimple_call_set_lhs (stmt, var);
1389 gimple_call_set_nothrow (stmt, true);
1390 return stmt;
1391 }
1392 }
1393
1394 return NULL;
1395 }
1396
1397
1398 /* Function vect_recog_widen_sum_pattern
1399
1400 Try to find the following pattern:
1401
1402 type x_t;
1403 TYPE x_T, sum = init;
1404 loop:
1405 sum_0 = phi <init, sum_1>
1406 S1 x_t = *p;
1407 S2 x_T = (TYPE) x_t;
1408 S3 sum_1 = x_T + sum_0;
1409
1410 where type 'TYPE' is at least double the size of type 'type', i.e - we're
1411 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
1412 a special case of a reduction computation.
1413
1414 Input:
1415
1416 * STMT_VINFO: The stmt from which the pattern search begins. In the example,
1417 when this function is called with S3, the pattern {S2,S3} will be detected.
1418
1419 Output:
1420
1421 * TYPE_OUT: The type of the output of this pattern.
1422
1423 * Return value: A new stmt that will be used to replace the sequence of
1424 stmts that constitute the pattern. In this case it will be:
1425 WIDEN_SUM <x_t, sum_0>
1426
1427 Note: The widening-sum idiom is a widening reduction pattern that is
1428 vectorized without preserving all the intermediate results. It
1429 produces only N/2 (widened) results (by summing up pairs of
1430 intermediate results) rather than all N results. Therefore, we
1431 cannot allow this pattern when we want to get all the results and in
1432 the correct order (as is the case when this computation is in an
1433 inner-loop nested in an outer-loop that us being vectorized). */
1434
1435 static gimple *
1436 vect_recog_widen_sum_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
1437 {
1438 gimple *last_stmt = stmt_vinfo->stmt;
1439 tree oprnd0, oprnd1;
1440 vec_info *vinfo = stmt_vinfo->vinfo;
1441 tree type;
1442 gimple *pattern_stmt;
1443 tree var;
1444
1445 /* Look for the following pattern
1446 DX = (TYPE) X;
1447 sum_1 = DX + sum_0;
1448 In which DX is at least double the size of X, and sum_1 has been
1449 recognized as a reduction variable.
1450 */
1451
1452 /* Starting from LAST_STMT, follow the defs of its uses in search
1453 of the above pattern. */
1454
1455 if (!vect_reassociating_reduction_p (stmt_vinfo, PLUS_EXPR,
1456 &oprnd0, &oprnd1))
1457 return NULL;
1458
1459 type = gimple_expr_type (last_stmt);
1460
1461 /* So far so good. Since last_stmt was detected as a (summation) reduction,
1462 we know that oprnd1 is the reduction variable (defined by a loop-header
1463 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
1464 Left to check that oprnd0 is defined by a cast from type 'type' to type
1465 'TYPE'. */
1466
1467 vect_unpromoted_value unprom0;
1468 if (!vect_look_through_possible_promotion (vinfo, oprnd0, &unprom0)
1469 || TYPE_PRECISION (unprom0.type) * 2 > TYPE_PRECISION (type))
1470 return NULL;
1471
1472 vect_pattern_detected ("vect_recog_widen_sum_pattern", last_stmt);
1473
1474 if (!vect_supportable_direct_optab_p (type, WIDEN_SUM_EXPR, unprom0.type,
1475 type_out))
1476 return NULL;
1477
1478 var = vect_recog_temp_ssa_var (type, NULL);
1479 pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, unprom0.op, oprnd1);
1480
1481 return pattern_stmt;
1482 }
1483
1484 /* Recognize cases in which an operation is performed in one type WTYPE
1485 but could be done more efficiently in a narrower type NTYPE. For example,
1486 if we have:
1487
1488 ATYPE a; // narrower than NTYPE
1489 BTYPE b; // narrower than NTYPE
1490 WTYPE aw = (WTYPE) a;
1491 WTYPE bw = (WTYPE) b;
1492 WTYPE res = aw + bw; // only uses of aw and bw
1493
1494 then it would be more efficient to do:
1495
1496 NTYPE an = (NTYPE) a;
1497 NTYPE bn = (NTYPE) b;
1498 NTYPE resn = an + bn;
1499 WTYPE res = (WTYPE) resn;
1500
1501 Other situations include things like:
1502
1503 ATYPE a; // NTYPE or narrower
1504 WTYPE aw = (WTYPE) a;
1505 WTYPE res = aw + b;
1506
1507 when only "(NTYPE) res" is significant. In that case it's more efficient
1508 to truncate "b" and do the operation on NTYPE instead:
1509
1510 NTYPE an = (NTYPE) a;
1511 NTYPE bn = (NTYPE) b; // truncation
1512 NTYPE resn = an + bn;
1513 WTYPE res = (WTYPE) resn;
1514
1515 All users of "res" should then use "resn" instead, making the final
1516 statement dead (not marked as relevant). The final statement is still
1517 needed to maintain the type correctness of the IR.
1518
1519 vect_determine_precisions has already determined the minimum
1520 precison of the operation and the minimum precision required
1521 by users of the result. */
1522
1523 static gimple *
1524 vect_recog_over_widening_pattern (stmt_vec_info last_stmt_info, tree *type_out)
1525 {
1526 gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
1527 if (!last_stmt)
1528 return NULL;
1529
1530 /* See whether we have found that this operation can be done on a
1531 narrower type without changing its semantics. */
1532 unsigned int new_precision = last_stmt_info->operation_precision;
1533 if (!new_precision)
1534 return NULL;
1535
1536 vec_info *vinfo = last_stmt_info->vinfo;
1537 tree lhs = gimple_assign_lhs (last_stmt);
1538 tree type = TREE_TYPE (lhs);
1539 tree_code code = gimple_assign_rhs_code (last_stmt);
1540
1541 /* Keep the first operand of a COND_EXPR as-is: only the other two
1542 operands are interesting. */
1543 unsigned int first_op = (code == COND_EXPR ? 2 : 1);
1544
1545 /* Check the operands. */
1546 unsigned int nops = gimple_num_ops (last_stmt) - first_op;
1547 auto_vec <vect_unpromoted_value, 3> unprom (nops);
1548 unprom.quick_grow (nops);
1549 unsigned int min_precision = 0;
1550 bool single_use_p = false;
1551 for (unsigned int i = 0; i < nops; ++i)
1552 {
1553 tree op = gimple_op (last_stmt, first_op + i);
1554 if (TREE_CODE (op) == INTEGER_CST)
1555 unprom[i].set_op (op, vect_constant_def);
1556 else if (TREE_CODE (op) == SSA_NAME)
1557 {
1558 bool op_single_use_p = true;
1559 if (!vect_look_through_possible_promotion (vinfo, op, &unprom[i],
1560 &op_single_use_p))
1561 return NULL;
1562 /* If:
1563
1564 (1) N bits of the result are needed;
1565 (2) all inputs are widened from M<N bits; and
1566 (3) one operand OP is a single-use SSA name
1567
1568 we can shift the M->N widening from OP to the output
1569 without changing the number or type of extensions involved.
1570 This then reduces the number of copies of STMT_INFO.
1571
1572 If instead of (3) more than one operand is a single-use SSA name,
1573 shifting the extension to the output is even more of a win.
1574
1575 If instead:
1576
1577 (1) N bits of the result are needed;
1578 (2) one operand OP2 is widened from M2<N bits;
1579 (3) another operand OP1 is widened from M1<M2 bits; and
1580 (4) both OP1 and OP2 are single-use
1581
1582 the choice is between:
1583
1584 (a) truncating OP2 to M1, doing the operation on M1,
1585 and then widening the result to N
1586
1587 (b) widening OP1 to M2, doing the operation on M2, and then
1588 widening the result to N
1589
1590 Both shift the M2->N widening of the inputs to the output.
1591 (a) additionally shifts the M1->M2 widening to the output;
1592 it requires fewer copies of STMT_INFO but requires an extra
1593 M2->M1 truncation.
1594
1595 Which is better will depend on the complexity and cost of
1596 STMT_INFO, which is hard to predict at this stage. However,
1597 a clear tie-breaker in favor of (b) is the fact that the
1598 truncation in (a) increases the length of the operation chain.
1599
1600 If instead of (4) only one of OP1 or OP2 is single-use,
1601 (b) is still a win over doing the operation in N bits:
1602 it still shifts the M2->N widening on the single-use operand
1603 to the output and reduces the number of STMT_INFO copies.
1604
1605 If neither operand is single-use then operating on fewer than
1606 N bits might lead to more extensions overall. Whether it does
1607 or not depends on global information about the vectorization
1608 region, and whether that's a good trade-off would again
1609 depend on the complexity and cost of the statements involved,
1610 as well as things like register pressure that are not normally
1611 modelled at this stage. We therefore ignore these cases
1612 and just optimize the clear single-use wins above.
1613
1614 Thus we take the maximum precision of the unpromoted operands
1615 and record whether any operand is single-use. */
1616 if (unprom[i].dt == vect_internal_def)
1617 {
1618 min_precision = MAX (min_precision,
1619 TYPE_PRECISION (unprom[i].type));
1620 single_use_p |= op_single_use_p;
1621 }
1622 }
1623 }
1624
1625 /* Although the operation could be done in operation_precision, we have
1626 to balance that against introducing extra truncations or extensions.
1627 Calculate the minimum precision that can be handled efficiently.
1628
1629 The loop above determined that the operation could be handled
1630 efficiently in MIN_PRECISION if SINGLE_USE_P; this would shift an
1631 extension from the inputs to the output without introducing more
1632 instructions, and would reduce the number of instructions required
1633 for STMT_INFO itself.
1634
1635 vect_determine_precisions has also determined that the result only
1636 needs min_output_precision bits. Truncating by a factor of N times
1637 requires a tree of N - 1 instructions, so if TYPE is N times wider
1638 than min_output_precision, doing the operation in TYPE and truncating
1639 the result requires N + (N - 1) = 2N - 1 instructions per output vector.
1640 In contrast:
1641
1642 - truncating the input to a unary operation and doing the operation
1643 in the new type requires at most N - 1 + 1 = N instructions per
1644 output vector
1645
1646 - doing the same for a binary operation requires at most
1647 (N - 1) * 2 + 1 = 2N - 1 instructions per output vector
1648
1649 Both unary and binary operations require fewer instructions than
1650 this if the operands were extended from a suitable truncated form.
1651 Thus there is usually nothing to lose by doing operations in
1652 min_output_precision bits, but there can be something to gain. */
1653 if (!single_use_p)
1654 min_precision = last_stmt_info->min_output_precision;
1655 else
1656 min_precision = MIN (min_precision, last_stmt_info->min_output_precision);
1657
1658 /* Apply the minimum efficient precision we just calculated. */
1659 if (new_precision < min_precision)
1660 new_precision = min_precision;
1661 if (new_precision >= TYPE_PRECISION (type))
1662 return NULL;
1663
1664 vect_pattern_detected ("vect_recog_over_widening_pattern", last_stmt);
1665
1666 *type_out = get_vectype_for_scalar_type (type);
1667 if (!*type_out)
1668 return NULL;
1669
1670 /* We've found a viable pattern. Get the new type of the operation. */
1671 bool unsigned_p = (last_stmt_info->operation_sign == UNSIGNED);
1672 tree new_type = build_nonstandard_integer_type (new_precision, unsigned_p);
1673
1674 /* If we're truncating an operation, we need to make sure that we
1675 don't introduce new undefined overflow. The codes tested here are
1676 a subset of those accepted by vect_truncatable_operation_p. */
1677 tree op_type = new_type;
1678 if (TYPE_OVERFLOW_UNDEFINED (new_type)
1679 && (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR))
1680 op_type = build_nonstandard_integer_type (new_precision, true);
1681
1682 /* We specifically don't check here whether the target supports the
1683 new operation, since it might be something that a later pattern
1684 wants to rewrite anyway. If targets have a minimum element size
1685 for some optabs, we should pattern-match smaller ops to larger ops
1686 where beneficial. */
1687 tree new_vectype = get_vectype_for_scalar_type (new_type);
1688 tree op_vectype = get_vectype_for_scalar_type (op_type);
1689 if (!new_vectype || !op_vectype)
1690 return NULL;
1691
1692 if (dump_enabled_p ())
1693 dump_printf_loc (MSG_NOTE, vect_location, "demoting %T to %T\n",
1694 type, new_type);
1695
1696 /* Calculate the rhs operands for an operation on OP_TYPE. */
1697 tree ops[3] = {};
1698 for (unsigned int i = 1; i < first_op; ++i)
1699 ops[i - 1] = gimple_op (last_stmt, i);
1700 vect_convert_inputs (last_stmt_info, nops, &ops[first_op - 1],
1701 op_type, &unprom[0], op_vectype);
1702
1703 /* Use the operation to produce a result of type OP_TYPE. */
1704 tree new_var = vect_recog_temp_ssa_var (op_type, NULL);
1705 gimple *pattern_stmt = gimple_build_assign (new_var, code,
1706 ops[0], ops[1], ops[2]);
1707 gimple_set_location (pattern_stmt, gimple_location (last_stmt));
1708
1709 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_NOTE, vect_location,
1711 "created pattern stmt: %G", pattern_stmt);
1712
1713 /* Convert back to the original signedness, if OP_TYPE is different
1714 from NEW_TYPE. */
1715 if (op_type != new_type)
1716 pattern_stmt = vect_convert_output (last_stmt_info, new_type,
1717 pattern_stmt, op_vectype);
1718
1719 /* Promote the result to the original type. */
1720 pattern_stmt = vect_convert_output (last_stmt_info, type,
1721 pattern_stmt, new_vectype);
1722
1723 return pattern_stmt;
1724 }
1725
1726 /* Recognize the patterns:
1727
1728 ATYPE a; // narrower than TYPE
1729 BTYPE b; // narrower than TYPE
1730 (1) TYPE avg = ((TYPE) a + (TYPE) b) >> 1;
1731 or (2) TYPE avg = ((TYPE) a + (TYPE) b + 1) >> 1;
1732
1733 where only the bottom half of avg is used. Try to transform them into:
1734
1735 (1) NTYPE avg' = .AVG_FLOOR ((NTYPE) a, (NTYPE) b);
1736 or (2) NTYPE avg' = .AVG_CEIL ((NTYPE) a, (NTYPE) b);
1737
1738 followed by:
1739
1740 TYPE avg = (TYPE) avg';
1741
1742 where NTYPE is no wider than half of TYPE. Since only the bottom half
1743 of avg is used, all or part of the cast of avg' should become redundant. */
1744
1745 static gimple *
1746 vect_recog_average_pattern (stmt_vec_info last_stmt_info, tree *type_out)
1747 {
1748 /* Check for a shift right by one bit. */
1749 gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
1750 vec_info *vinfo = last_stmt_info->vinfo;
1751 if (!last_stmt
1752 || gimple_assign_rhs_code (last_stmt) != RSHIFT_EXPR
1753 || !integer_onep (gimple_assign_rhs2 (last_stmt)))
1754 return NULL;
1755
1756 /* Check that the shift result is wider than the users of the
1757 result need (i.e. that narrowing would be a natural choice). */
1758 tree lhs = gimple_assign_lhs (last_stmt);
1759 tree type = TREE_TYPE (lhs);
1760 unsigned int target_precision
1761 = vect_element_precision (last_stmt_info->min_output_precision);
1762 if (!INTEGRAL_TYPE_P (type) || target_precision >= TYPE_PRECISION (type))
1763 return NULL;
1764
1765 /* Look through any change in sign on the shift input. */
1766 tree rshift_rhs = gimple_assign_rhs1 (last_stmt);
1767 vect_unpromoted_value unprom_plus;
1768 rshift_rhs = vect_look_through_possible_promotion (vinfo, rshift_rhs,
1769 &unprom_plus);
1770 if (!rshift_rhs
1771 || TYPE_PRECISION (TREE_TYPE (rshift_rhs)) != TYPE_PRECISION (type))
1772 return NULL;
1773
1774 /* Get the definition of the shift input. */
1775 stmt_vec_info plus_stmt_info = vect_get_internal_def (vinfo, rshift_rhs);
1776 if (!plus_stmt_info)
1777 return NULL;
1778
1779 /* Check whether the shift input can be seen as a tree of additions on
1780 2 or 3 widened inputs.
1781
1782 Note that the pattern should be a win even if the result of one or
1783 more additions is reused elsewhere: if the pattern matches, we'd be
1784 replacing 2N RSHIFT_EXPRs and N VEC_PACK_*s with N IFN_AVG_*s. */
1785 internal_fn ifn = IFN_AVG_FLOOR;
1786 vect_unpromoted_value unprom[3];
1787 tree new_type;
1788 unsigned int nops = vect_widened_op_tree (plus_stmt_info, PLUS_EXPR,
1789 PLUS_EXPR, false, 3,
1790 unprom, &new_type);
1791 if (nops == 0)
1792 return NULL;
1793 if (nops == 3)
1794 {
1795 /* Check that one operand is 1. */
1796 unsigned int i;
1797 for (i = 0; i < 3; ++i)
1798 if (integer_onep (unprom[i].op))
1799 break;
1800 if (i == 3)
1801 return NULL;
1802 /* Throw away the 1 operand and keep the other two. */
1803 if (i < 2)
1804 unprom[i] = unprom[2];
1805 ifn = IFN_AVG_CEIL;
1806 }
1807
1808 vect_pattern_detected ("vect_recog_average_pattern", last_stmt);
1809
1810 /* We know that:
1811
1812 (a) the operation can be viewed as:
1813
1814 TYPE widened0 = (TYPE) UNPROM[0];
1815 TYPE widened1 = (TYPE) UNPROM[1];
1816 TYPE tmp1 = widened0 + widened1 {+ 1};
1817 TYPE tmp2 = tmp1 >> 1; // LAST_STMT_INFO
1818
1819 (b) the first two statements are equivalent to:
1820
1821 TYPE widened0 = (TYPE) (NEW_TYPE) UNPROM[0];
1822 TYPE widened1 = (TYPE) (NEW_TYPE) UNPROM[1];
1823
1824 (c) vect_recog_over_widening_pattern has already tried to narrow TYPE
1825 where sensible;
1826
1827 (d) all the operations can be performed correctly at twice the width of
1828 NEW_TYPE, due to the nature of the average operation; and
1829
1830 (e) users of the result of the right shift need only TARGET_PRECISION
1831 bits, where TARGET_PRECISION is no more than half of TYPE's
1832 precision.
1833
1834 Under these circumstances, the only situation in which NEW_TYPE
1835 could be narrower than TARGET_PRECISION is if widened0, widened1
1836 and an addition result are all used more than once. Thus we can
1837 treat any widening of UNPROM[0] and UNPROM[1] to TARGET_PRECISION
1838 as "free", whereas widening the result of the average instruction
1839 from NEW_TYPE to TARGET_PRECISION would be a new operation. It's
1840 therefore better not to go narrower than TARGET_PRECISION. */
1841 if (TYPE_PRECISION (new_type) < target_precision)
1842 new_type = build_nonstandard_integer_type (target_precision,
1843 TYPE_UNSIGNED (new_type));
1844
1845 /* Check for target support. */
1846 tree new_vectype = get_vectype_for_scalar_type (new_type);
1847 if (!new_vectype
1848 || !direct_internal_fn_supported_p (ifn, new_vectype,
1849 OPTIMIZE_FOR_SPEED))
1850 return NULL;
1851
1852 /* The IR requires a valid vector type for the cast result, even though
1853 it's likely to be discarded. */
1854 *type_out = get_vectype_for_scalar_type (type);
1855 if (!*type_out)
1856 return NULL;
1857
1858 /* Generate the IFN_AVG* call. */
1859 tree new_var = vect_recog_temp_ssa_var (new_type, NULL);
1860 tree new_ops[2];
1861 vect_convert_inputs (last_stmt_info, 2, new_ops, new_type,
1862 unprom, new_vectype);
1863 gcall *average_stmt = gimple_build_call_internal (ifn, 2, new_ops[0],
1864 new_ops[1]);
1865 gimple_call_set_lhs (average_stmt, new_var);
1866 gimple_set_location (average_stmt, gimple_location (last_stmt));
1867
1868 if (dump_enabled_p ())
1869 dump_printf_loc (MSG_NOTE, vect_location,
1870 "created pattern stmt: %G", average_stmt);
1871
1872 return vect_convert_output (last_stmt_info, type, average_stmt, new_vectype);
1873 }
1874
1875 /* Recognize cases in which the input to a cast is wider than its
1876 output, and the input is fed by a widening operation. Fold this
1877 by removing the unnecessary intermediate widening. E.g.:
1878
1879 unsigned char a;
1880 unsigned int b = (unsigned int) a;
1881 unsigned short c = (unsigned short) b;
1882
1883 -->
1884
1885 unsigned short c = (unsigned short) a;
1886
1887 Although this is rare in input IR, it is an expected side-effect
1888 of the over-widening pattern above.
1889
1890 This is beneficial also for integer-to-float conversions, if the
1891 widened integer has more bits than the float, and if the unwidened
1892 input doesn't. */
1893
1894 static gimple *
1895 vect_recog_cast_forwprop_pattern (stmt_vec_info last_stmt_info, tree *type_out)
1896 {
1897 /* Check for a cast, including an integer-to-float conversion. */
1898 gassign *last_stmt = dyn_cast <gassign *> (last_stmt_info->stmt);
1899 if (!last_stmt)
1900 return NULL;
1901 tree_code code = gimple_assign_rhs_code (last_stmt);
1902 if (!CONVERT_EXPR_CODE_P (code) && code != FLOAT_EXPR)
1903 return NULL;
1904
1905 /* Make sure that the rhs is a scalar with a natural bitsize. */
1906 tree lhs = gimple_assign_lhs (last_stmt);
1907 if (!lhs)
1908 return NULL;
1909 tree lhs_type = TREE_TYPE (lhs);
1910 scalar_mode lhs_mode;
1911 if (VECT_SCALAR_BOOLEAN_TYPE_P (lhs_type)
1912 || !is_a <scalar_mode> (TYPE_MODE (lhs_type), &lhs_mode))
1913 return NULL;
1914
1915 /* Check for a narrowing operation (from a vector point of view). */
1916 tree rhs = gimple_assign_rhs1 (last_stmt);
1917 tree rhs_type = TREE_TYPE (rhs);
1918 if (!INTEGRAL_TYPE_P (rhs_type)
1919 || VECT_SCALAR_BOOLEAN_TYPE_P (rhs_type)
1920 || TYPE_PRECISION (rhs_type) <= GET_MODE_BITSIZE (lhs_mode))
1921 return NULL;
1922
1923 /* Try to find an unpromoted input. */
1924 vec_info *vinfo = last_stmt_info->vinfo;
1925 vect_unpromoted_value unprom;
1926 if (!vect_look_through_possible_promotion (vinfo, rhs, &unprom)
1927 || TYPE_PRECISION (unprom.type) >= TYPE_PRECISION (rhs_type))
1928 return NULL;
1929
1930 /* If the bits above RHS_TYPE matter, make sure that they're the
1931 same when extending from UNPROM as they are when extending from RHS. */
1932 if (!INTEGRAL_TYPE_P (lhs_type)
1933 && TYPE_SIGN (rhs_type) != TYPE_SIGN (unprom.type))
1934 return NULL;
1935
1936 /* We can get the same result by casting UNPROM directly, to avoid
1937 the unnecessary widening and narrowing. */
1938 vect_pattern_detected ("vect_recog_cast_forwprop_pattern", last_stmt);
1939
1940 *type_out = get_vectype_for_scalar_type (lhs_type);
1941 if (!*type_out)
1942 return NULL;
1943
1944 tree new_var = vect_recog_temp_ssa_var (lhs_type, NULL);
1945 gimple *pattern_stmt = gimple_build_assign (new_var, code, unprom.op);
1946 gimple_set_location (pattern_stmt, gimple_location (last_stmt));
1947
1948 return pattern_stmt;
1949 }
1950
1951 /* Try to detect a shift left of a widened input, converting LSHIFT_EXPR
1952 to WIDEN_LSHIFT_EXPR. See vect_recog_widen_op_pattern for details. */
1953
1954 static gimple *
1955 vect_recog_widen_shift_pattern (stmt_vec_info last_stmt_info, tree *type_out)
1956 {
1957 return vect_recog_widen_op_pattern (last_stmt_info, type_out, LSHIFT_EXPR,
1958 WIDEN_LSHIFT_EXPR, true,
1959 "vect_recog_widen_shift_pattern");
1960 }
1961
1962 /* Detect a rotate pattern wouldn't be otherwise vectorized:
1963
1964 type a_t, b_t, c_t;
1965
1966 S0 a_t = b_t r<< c_t;
1967
1968 Input/Output:
1969
1970 * STMT_VINFO: The stmt from which the pattern search begins,
1971 i.e. the shift/rotate stmt. The original stmt (S0) is replaced
1972 with a sequence:
1973
1974 S1 d_t = -c_t;
1975 S2 e_t = d_t & (B - 1);
1976 S3 f_t = b_t << c_t;
1977 S4 g_t = b_t >> e_t;
1978 S0 a_t = f_t | g_t;
1979
1980 where B is element bitsize of type.
1981
1982 Output:
1983
1984 * TYPE_OUT: The type of the output of this pattern.
1985
1986 * Return value: A new stmt that will be used to replace the rotate
1987 S0 stmt. */
1988
1989 static gimple *
1990 vect_recog_rotate_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
1991 {
1992 gimple *last_stmt = stmt_vinfo->stmt;
1993 tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
1994 gimple *pattern_stmt, *def_stmt;
1995 enum tree_code rhs_code;
1996 vec_info *vinfo = stmt_vinfo->vinfo;
1997 enum vect_def_type dt;
1998 optab optab1, optab2;
1999 edge ext_def = NULL;
2000
2001 if (!is_gimple_assign (last_stmt))
2002 return NULL;
2003
2004 rhs_code = gimple_assign_rhs_code (last_stmt);
2005 switch (rhs_code)
2006 {
2007 case LROTATE_EXPR:
2008 case RROTATE_EXPR:
2009 break;
2010 default:
2011 return NULL;
2012 }
2013
2014 lhs = gimple_assign_lhs (last_stmt);
2015 oprnd0 = gimple_assign_rhs1 (last_stmt);
2016 type = TREE_TYPE (oprnd0);
2017 oprnd1 = gimple_assign_rhs2 (last_stmt);
2018 if (TREE_CODE (oprnd0) != SSA_NAME
2019 || TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
2020 || !INTEGRAL_TYPE_P (type)
2021 || !TYPE_UNSIGNED (type))
2022 return NULL;
2023
2024 stmt_vec_info def_stmt_info;
2025 if (!vect_is_simple_use (oprnd1, vinfo, &dt, &def_stmt_info, &def_stmt))
2026 return NULL;
2027
2028 if (dt != vect_internal_def
2029 && dt != vect_constant_def
2030 && dt != vect_external_def)
2031 return NULL;
2032
2033 vectype = get_vectype_for_scalar_type (type);
2034 if (vectype == NULL_TREE)
2035 return NULL;
2036
2037 /* If vector/vector or vector/scalar rotate is supported by the target,
2038 don't do anything here. */
2039 optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
2040 if (optab1
2041 && optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
2042 return NULL;
2043
2044 if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def)
2045 {
2046 optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
2047 if (optab2
2048 && optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
2049 return NULL;
2050 }
2051
2052 /* If vector/vector or vector/scalar shifts aren't supported by the target,
2053 don't do anything here either. */
2054 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
2055 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
2056 if (!optab1
2057 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
2058 || !optab2
2059 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
2060 {
2061 if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def)
2062 return NULL;
2063 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
2064 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
2065 if (!optab1
2066 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
2067 || !optab2
2068 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
2069 return NULL;
2070 }
2071
2072 *type_out = vectype;
2073
2074 if (dt == vect_external_def
2075 && TREE_CODE (oprnd1) == SSA_NAME)
2076 ext_def = vect_get_external_def_edge (vinfo, oprnd1);
2077
2078 def = NULL_TREE;
2079 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2080 if (TREE_CODE (oprnd1) == INTEGER_CST
2081 || TYPE_MODE (TREE_TYPE (oprnd1)) == mode)
2082 def = oprnd1;
2083 else if (def_stmt && gimple_assign_cast_p (def_stmt))
2084 {
2085 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2086 if (TYPE_MODE (TREE_TYPE (rhs1)) == mode
2087 && TYPE_PRECISION (TREE_TYPE (rhs1))
2088 == TYPE_PRECISION (type))
2089 def = rhs1;
2090 }
2091
2092 if (def == NULL_TREE)
2093 {
2094 def = vect_recog_temp_ssa_var (type, NULL);
2095 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
2096 if (ext_def)
2097 {
2098 basic_block new_bb
2099 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
2100 gcc_assert (!new_bb);
2101 }
2102 else
2103 append_pattern_def_seq (stmt_vinfo, def_stmt);
2104 }
2105 stype = TREE_TYPE (def);
2106 scalar_int_mode smode = SCALAR_INT_TYPE_MODE (stype);
2107
2108 if (TREE_CODE (def) == INTEGER_CST)
2109 {
2110 if (!tree_fits_uhwi_p (def)
2111 || tree_to_uhwi (def) >= GET_MODE_PRECISION (mode)
2112 || integer_zerop (def))
2113 return NULL;
2114 def2 = build_int_cst (stype,
2115 GET_MODE_PRECISION (mode) - tree_to_uhwi (def));
2116 }
2117 else
2118 {
2119 tree vecstype = get_vectype_for_scalar_type (stype);
2120
2121 if (vecstype == NULL_TREE)
2122 return NULL;
2123 def2 = vect_recog_temp_ssa_var (stype, NULL);
2124 def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
2125 if (ext_def)
2126 {
2127 basic_block new_bb
2128 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
2129 gcc_assert (!new_bb);
2130 }
2131 else
2132 append_pattern_def_seq (stmt_vinfo, def_stmt, vecstype);
2133
2134 def2 = vect_recog_temp_ssa_var (stype, NULL);
2135 tree mask = build_int_cst (stype, GET_MODE_PRECISION (smode) - 1);
2136 def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
2137 gimple_assign_lhs (def_stmt), mask);
2138 if (ext_def)
2139 {
2140 basic_block new_bb
2141 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
2142 gcc_assert (!new_bb);
2143 }
2144 else
2145 append_pattern_def_seq (stmt_vinfo, def_stmt, vecstype);
2146 }
2147
2148 var1 = vect_recog_temp_ssa_var (type, NULL);
2149 def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
2150 ? LSHIFT_EXPR : RSHIFT_EXPR,
2151 oprnd0, def);
2152 append_pattern_def_seq (stmt_vinfo, def_stmt);
2153
2154 var2 = vect_recog_temp_ssa_var (type, NULL);
2155 def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
2156 ? RSHIFT_EXPR : LSHIFT_EXPR,
2157 oprnd0, def2);
2158 append_pattern_def_seq (stmt_vinfo, def_stmt);
2159
2160 /* Pattern detected. */
2161 vect_pattern_detected ("vect_recog_rotate_pattern", last_stmt);
2162
2163 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2164 var = vect_recog_temp_ssa_var (type, NULL);
2165 pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);
2166
2167 return pattern_stmt;
2168 }
2169
2170 /* Detect a vector by vector shift pattern that wouldn't be otherwise
2171 vectorized:
2172
2173 type a_t;
2174 TYPE b_T, res_T;
2175
2176 S1 a_t = ;
2177 S2 b_T = ;
2178 S3 res_T = b_T op a_t;
2179
2180 where type 'TYPE' is a type with different size than 'type',
2181 and op is <<, >> or rotate.
2182
2183 Also detect cases:
2184
2185 type a_t;
2186 TYPE b_T, c_T, res_T;
2187
2188 S0 c_T = ;
2189 S1 a_t = (type) c_T;
2190 S2 b_T = ;
2191 S3 res_T = b_T op a_t;
2192
2193 Input/Output:
2194
2195 * STMT_VINFO: The stmt from which the pattern search begins,
2196 i.e. the shift/rotate stmt. The original stmt (S3) is replaced
2197 with a shift/rotate which has same type on both operands, in the
2198 second case just b_T op c_T, in the first case with added cast
2199 from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
2200
2201 Output:
2202
2203 * TYPE_OUT: The type of the output of this pattern.
2204
2205 * Return value: A new stmt that will be used to replace the shift/rotate
2206 S3 stmt. */
2207
2208 static gimple *
2209 vect_recog_vector_vector_shift_pattern (stmt_vec_info stmt_vinfo,
2210 tree *type_out)
2211 {
2212 gimple *last_stmt = stmt_vinfo->stmt;
2213 tree oprnd0, oprnd1, lhs, var;
2214 gimple *pattern_stmt;
2215 enum tree_code rhs_code;
2216 vec_info *vinfo = stmt_vinfo->vinfo;
2217
2218 if (!is_gimple_assign (last_stmt))
2219 return NULL;
2220
2221 rhs_code = gimple_assign_rhs_code (last_stmt);
2222 switch (rhs_code)
2223 {
2224 case LSHIFT_EXPR:
2225 case RSHIFT_EXPR:
2226 case LROTATE_EXPR:
2227 case RROTATE_EXPR:
2228 break;
2229 default:
2230 return NULL;
2231 }
2232
2233 lhs = gimple_assign_lhs (last_stmt);
2234 oprnd0 = gimple_assign_rhs1 (last_stmt);
2235 oprnd1 = gimple_assign_rhs2 (last_stmt);
2236 if (TREE_CODE (oprnd0) != SSA_NAME
2237 || TREE_CODE (oprnd1) != SSA_NAME
2238 || TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
2239 || !type_has_mode_precision_p (TREE_TYPE (oprnd1))
2240 || TYPE_PRECISION (TREE_TYPE (lhs))
2241 != TYPE_PRECISION (TREE_TYPE (oprnd0)))
2242 return NULL;
2243
2244 stmt_vec_info def_vinfo = vect_get_internal_def (vinfo, oprnd1);
2245 if (!def_vinfo)
2246 return NULL;
2247
2248 *type_out = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
2249 if (*type_out == NULL_TREE)
2250 return NULL;
2251
2252 tree def = NULL_TREE;
2253 gassign *def_stmt = dyn_cast <gassign *> (def_vinfo->stmt);
2254 if (def_stmt && gimple_assign_cast_p (def_stmt))
2255 {
2256 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2257 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
2258 && TYPE_PRECISION (TREE_TYPE (rhs1))
2259 == TYPE_PRECISION (TREE_TYPE (oprnd0)))
2260 {
2261 if (TYPE_PRECISION (TREE_TYPE (oprnd1))
2262 >= TYPE_PRECISION (TREE_TYPE (rhs1)))
2263 def = rhs1;
2264 else
2265 {
2266 tree mask
2267 = build_low_bits_mask (TREE_TYPE (rhs1),
2268 TYPE_PRECISION (TREE_TYPE (oprnd1)));
2269 def = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
2270 def_stmt = gimple_build_assign (def, BIT_AND_EXPR, rhs1, mask);
2271 tree vecstype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
2272 append_pattern_def_seq (stmt_vinfo, def_stmt, vecstype);
2273 }
2274 }
2275 }
2276
2277 if (def == NULL_TREE)
2278 {
2279 def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
2280 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
2281 append_pattern_def_seq (stmt_vinfo, def_stmt);
2282 }
2283
2284 /* Pattern detected. */
2285 vect_pattern_detected ("vect_recog_vector_vector_shift_pattern", last_stmt);
2286
2287 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2288 var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
2289 pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);
2290
2291 return pattern_stmt;
2292 }
2293
2294 /* Return true iff the target has a vector optab implementing the operation
2295 CODE on type VECTYPE. */
2296
2297 static bool
2298 target_has_vecop_for_code (tree_code code, tree vectype)
2299 {
2300 optab voptab = optab_for_tree_code (code, vectype, optab_vector);
2301 return voptab
2302 && optab_handler (voptab, TYPE_MODE (vectype)) != CODE_FOR_nothing;
2303 }
2304
2305 /* Verify that the target has optabs of VECTYPE to perform all the steps
2306 needed by the multiplication-by-immediate synthesis algorithm described by
2307 ALG and VAR. If SYNTH_SHIFT_P is true ensure that vector addition is
2308 present. Return true iff the target supports all the steps. */
2309
2310 static bool
2311 target_supports_mult_synth_alg (struct algorithm *alg, mult_variant var,
2312 tree vectype, bool synth_shift_p)
2313 {
2314 if (alg->op[0] != alg_zero && alg->op[0] != alg_m)
2315 return false;
2316
2317 bool supports_vminus = target_has_vecop_for_code (MINUS_EXPR, vectype);
2318 bool supports_vplus = target_has_vecop_for_code (PLUS_EXPR, vectype);
2319
2320 if (var == negate_variant
2321 && !target_has_vecop_for_code (NEGATE_EXPR, vectype))
2322 return false;
2323
2324 /* If we must synthesize shifts with additions make sure that vector
2325 addition is available. */
2326 if ((var == add_variant || synth_shift_p) && !supports_vplus)
2327 return false;
2328
2329 for (int i = 1; i < alg->ops; i++)
2330 {
2331 switch (alg->op[i])
2332 {
2333 case alg_shift:
2334 break;
2335 case alg_add_t_m2:
2336 case alg_add_t2_m:
2337 case alg_add_factor:
2338 if (!supports_vplus)
2339 return false;
2340 break;
2341 case alg_sub_t_m2:
2342 case alg_sub_t2_m:
2343 case alg_sub_factor:
2344 if (!supports_vminus)
2345 return false;
2346 break;
2347 case alg_unknown:
2348 case alg_m:
2349 case alg_zero:
2350 case alg_impossible:
2351 return false;
2352 default:
2353 gcc_unreachable ();
2354 }
2355 }
2356
2357 return true;
2358 }
2359
2360 /* Synthesize a left shift of OP by AMNT bits using a series of additions and
2361 putting the final result in DEST. Append all statements but the last into
2362 VINFO. Return the last statement. */
2363
2364 static gimple *
2365 synth_lshift_by_additions (tree dest, tree op, HOST_WIDE_INT amnt,
2366 stmt_vec_info vinfo)
2367 {
2368 HOST_WIDE_INT i;
2369 tree itype = TREE_TYPE (op);
2370 tree prev_res = op;
2371 gcc_assert (amnt >= 0);
2372 for (i = 0; i < amnt; i++)
2373 {
2374 tree tmp_var = (i < amnt - 1) ? vect_recog_temp_ssa_var (itype, NULL)
2375 : dest;
2376 gimple *stmt
2377 = gimple_build_assign (tmp_var, PLUS_EXPR, prev_res, prev_res);
2378 prev_res = tmp_var;
2379 if (i < amnt - 1)
2380 append_pattern_def_seq (vinfo, stmt);
2381 else
2382 return stmt;
2383 }
2384 gcc_unreachable ();
2385 return NULL;
2386 }
2387
2388 /* Helper for vect_synth_mult_by_constant. Apply a binary operation
2389 CODE to operands OP1 and OP2, creating a new temporary SSA var in
2390 the process if necessary. Append the resulting assignment statements
2391 to the sequence in STMT_VINFO. Return the SSA variable that holds the
2392 result of the binary operation. If SYNTH_SHIFT_P is true synthesize
2393 left shifts using additions. */
2394
2395 static tree
2396 apply_binop_and_append_stmt (tree_code code, tree op1, tree op2,
2397 stmt_vec_info stmt_vinfo, bool synth_shift_p)
2398 {
2399 if (integer_zerop (op2)
2400 && (code == LSHIFT_EXPR
2401 || code == PLUS_EXPR))
2402 {
2403 gcc_assert (TREE_CODE (op1) == SSA_NAME);
2404 return op1;
2405 }
2406
2407 gimple *stmt;
2408 tree itype = TREE_TYPE (op1);
2409 tree tmp_var = vect_recog_temp_ssa_var (itype, NULL);
2410
2411 if (code == LSHIFT_EXPR
2412 && synth_shift_p)
2413 {
2414 stmt = synth_lshift_by_additions (tmp_var, op1, TREE_INT_CST_LOW (op2),
2415 stmt_vinfo);
2416 append_pattern_def_seq (stmt_vinfo, stmt);
2417 return tmp_var;
2418 }
2419
2420 stmt = gimple_build_assign (tmp_var, code, op1, op2);
2421 append_pattern_def_seq (stmt_vinfo, stmt);
2422 return tmp_var;
2423 }
2424
2425 /* Synthesize a multiplication of OP by an INTEGER_CST VAL using shifts
2426 and simple arithmetic operations to be vectorized. Record the statements
2427 produced in STMT_VINFO and return the last statement in the sequence or
2428 NULL if it's not possible to synthesize such a multiplication.
2429 This function mirrors the behavior of expand_mult_const in expmed.c but
2430 works on tree-ssa form. */
2431
2432 static gimple *
2433 vect_synth_mult_by_constant (tree op, tree val,
2434 stmt_vec_info stmt_vinfo)
2435 {
2436 tree itype = TREE_TYPE (op);
2437 machine_mode mode = TYPE_MODE (itype);
2438 struct algorithm alg;
2439 mult_variant variant;
2440 if (!tree_fits_shwi_p (val))
2441 return NULL;
2442
2443 /* Multiplication synthesis by shifts, adds and subs can introduce
2444 signed overflow where the original operation didn't. Perform the
2445 operations on an unsigned type and cast back to avoid this.
2446 In the future we may want to relax this for synthesis algorithms
2447 that we can prove do not cause unexpected overflow. */
2448 bool cast_to_unsigned_p = !TYPE_OVERFLOW_WRAPS (itype);
2449
2450 tree multtype = cast_to_unsigned_p ? unsigned_type_for (itype) : itype;
2451
2452 /* Targets that don't support vector shifts but support vector additions
2453 can synthesize shifts that way. */
2454 bool synth_shift_p = !vect_supportable_shift (LSHIFT_EXPR, multtype);
2455
2456 HOST_WIDE_INT hwval = tree_to_shwi (val);
2457 /* Use MAX_COST here as we don't want to limit the sequence on rtx costs.
2458 The vectorizer's benefit analysis will decide whether it's beneficial
2459 to do this. */
2460 bool possible = choose_mult_variant (mode, hwval, &alg,
2461 &variant, MAX_COST);
2462 if (!possible)
2463 return NULL;
2464
2465 tree vectype = get_vectype_for_scalar_type (multtype);
2466
2467 if (!vectype
2468 || !target_supports_mult_synth_alg (&alg, variant,
2469 vectype, synth_shift_p))
2470 return NULL;
2471
2472 tree accumulator;
2473
2474 /* Clear out the sequence of statements so we can populate it below. */
2475 gimple *stmt = NULL;
2476
2477 if (cast_to_unsigned_p)
2478 {
2479 tree tmp_op = vect_recog_temp_ssa_var (multtype, NULL);
2480 stmt = gimple_build_assign (tmp_op, CONVERT_EXPR, op);
2481 append_pattern_def_seq (stmt_vinfo, stmt);
2482 op = tmp_op;
2483 }
2484
2485 if (alg.op[0] == alg_zero)
2486 accumulator = build_int_cst (multtype, 0);
2487 else
2488 accumulator = op;
2489
2490 bool needs_fixup = (variant == negate_variant)
2491 || (variant == add_variant);
2492
2493 for (int i = 1; i < alg.ops; i++)
2494 {
2495 tree shft_log = build_int_cst (multtype, alg.log[i]);
2496 tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
2497 tree tmp_var = NULL_TREE;
2498
2499 switch (alg.op[i])
2500 {
2501 case alg_shift:
2502 if (synth_shift_p)
2503 stmt
2504 = synth_lshift_by_additions (accum_tmp, accumulator, alg.log[i],
2505 stmt_vinfo);
2506 else
2507 stmt = gimple_build_assign (accum_tmp, LSHIFT_EXPR, accumulator,
2508 shft_log);
2509 break;
2510 case alg_add_t_m2:
2511 tmp_var
2512 = apply_binop_and_append_stmt (LSHIFT_EXPR, op, shft_log,
2513 stmt_vinfo, synth_shift_p);
2514 stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator,
2515 tmp_var);
2516 break;
2517 case alg_sub_t_m2:
2518 tmp_var = apply_binop_and_append_stmt (LSHIFT_EXPR, op,
2519 shft_log, stmt_vinfo,
2520 synth_shift_p);
2521 /* In some algorithms the first step involves zeroing the
2522 accumulator. If subtracting from such an accumulator
2523 just emit the negation directly. */
2524 if (integer_zerop (accumulator))
2525 stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, tmp_var);
2526 else
2527 stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, accumulator,
2528 tmp_var);
2529 break;
2530 case alg_add_t2_m:
2531 tmp_var
2532 = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
2533 stmt_vinfo, synth_shift_p);
2534 stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, tmp_var, op);
2535 break;
2536 case alg_sub_t2_m:
2537 tmp_var
2538 = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
2539 stmt_vinfo, synth_shift_p);
2540 stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var, op);
2541 break;
2542 case alg_add_factor:
2543 tmp_var
2544 = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
2545 stmt_vinfo, synth_shift_p);
2546 stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator,
2547 tmp_var);
2548 break;
2549 case alg_sub_factor:
2550 tmp_var
2551 = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log,
2552 stmt_vinfo, synth_shift_p);
2553 stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var,
2554 accumulator);
2555 break;
2556 default:
2557 gcc_unreachable ();
2558 }
2559 /* We don't want to append the last stmt in the sequence to stmt_vinfo
2560 but rather return it directly. */
2561
2562 if ((i < alg.ops - 1) || needs_fixup || cast_to_unsigned_p)
2563 append_pattern_def_seq (stmt_vinfo, stmt);
2564 accumulator = accum_tmp;
2565 }
2566 if (variant == negate_variant)
2567 {
2568 tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
2569 stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, accumulator);
2570 accumulator = accum_tmp;
2571 if (cast_to_unsigned_p)
2572 append_pattern_def_seq (stmt_vinfo, stmt);
2573 }
2574 else if (variant == add_variant)
2575 {
2576 tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL);
2577 stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator, op);
2578 accumulator = accum_tmp;
2579 if (cast_to_unsigned_p)
2580 append_pattern_def_seq (stmt_vinfo, stmt);
2581 }
2582 /* Move back to a signed if needed. */
2583 if (cast_to_unsigned_p)
2584 {
2585 tree accum_tmp = vect_recog_temp_ssa_var (itype, NULL);
2586 stmt = gimple_build_assign (accum_tmp, CONVERT_EXPR, accumulator);
2587 }
2588
2589 return stmt;
2590 }
2591
2592 /* Detect multiplication by constant and convert it into a sequence of
2593 shifts and additions, subtractions, negations. We reuse the
2594 choose_mult_variant algorithms from expmed.c
2595
2596 Input/Output:
2597
2598 STMT_VINFO: The stmt from which the pattern search begins,
2599 i.e. the mult stmt.
2600
2601 Output:
2602
2603 * TYPE_OUT: The type of the output of this pattern.
2604
2605 * Return value: A new stmt that will be used to replace
2606 the multiplication. */
2607
2608 static gimple *
2609 vect_recog_mult_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
2610 {
2611 gimple *last_stmt = stmt_vinfo->stmt;
2612 tree oprnd0, oprnd1, vectype, itype;
2613 gimple *pattern_stmt;
2614
2615 if (!is_gimple_assign (last_stmt))
2616 return NULL;
2617
2618 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
2619 return NULL;
2620
2621 oprnd0 = gimple_assign_rhs1 (last_stmt);
2622 oprnd1 = gimple_assign_rhs2 (last_stmt);
2623 itype = TREE_TYPE (oprnd0);
2624
2625 if (TREE_CODE (oprnd0) != SSA_NAME
2626 || TREE_CODE (oprnd1) != INTEGER_CST
2627 || !INTEGRAL_TYPE_P (itype)
2628 || !type_has_mode_precision_p (itype))
2629 return NULL;
2630
2631 vectype = get_vectype_for_scalar_type (itype);
2632 if (vectype == NULL_TREE)
2633 return NULL;
2634
2635 /* If the target can handle vectorized multiplication natively,
2636 don't attempt to optimize this. */
2637 optab mul_optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default);
2638 if (mul_optab != unknown_optab)
2639 {
2640 machine_mode vec_mode = TYPE_MODE (vectype);
2641 int icode = (int) optab_handler (mul_optab, vec_mode);
2642 if (icode != CODE_FOR_nothing)
2643 return NULL;
2644 }
2645
2646 pattern_stmt = vect_synth_mult_by_constant (oprnd0, oprnd1, stmt_vinfo);
2647 if (!pattern_stmt)
2648 return NULL;
2649
2650 /* Pattern detected. */
2651 vect_pattern_detected ("vect_recog_mult_pattern", last_stmt);
2652
2653 *type_out = vectype;
2654
2655 return pattern_stmt;
2656 }
2657
2658 /* Detect a signed division by a constant that wouldn't be
2659 otherwise vectorized:
2660
2661 type a_t, b_t;
2662
2663 S1 a_t = b_t / N;
2664
2665 where type 'type' is an integral type and N is a constant.
2666
2667 Similarly handle modulo by a constant:
2668
2669 S4 a_t = b_t % N;
2670
2671 Input/Output:
2672
2673 * STMT_VINFO: The stmt from which the pattern search begins,
2674 i.e. the division stmt. S1 is replaced by if N is a power
2675 of two constant and type is signed:
2676 S3 y_t = b_t < 0 ? N - 1 : 0;
2677 S2 x_t = b_t + y_t;
2678 S1' a_t = x_t >> log2 (N);
2679
2680 S4 is replaced if N is a power of two constant and
2681 type is signed by (where *_T temporaries have unsigned type):
2682 S9 y_T = b_t < 0 ? -1U : 0U;
2683 S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
2684 S7 z_t = (type) z_T;
2685 S6 w_t = b_t + z_t;
2686 S5 x_t = w_t & (N - 1);
2687 S4' a_t = x_t - z_t;
2688
2689 Output:
2690
2691 * TYPE_OUT: The type of the output of this pattern.
2692
2693 * Return value: A new stmt that will be used to replace the division
2694 S1 or modulo S4 stmt. */
2695
2696 static gimple *
2697 vect_recog_divmod_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
2698 {
2699 gimple *last_stmt = stmt_vinfo->stmt;
2700 tree oprnd0, oprnd1, vectype, itype, cond;
2701 gimple *pattern_stmt, *def_stmt;
2702 enum tree_code rhs_code;
2703 optab optab;
2704 tree q;
2705 int dummy_int, prec;
2706
2707 if (!is_gimple_assign (last_stmt))
2708 return NULL;
2709
2710 rhs_code = gimple_assign_rhs_code (last_stmt);
2711 switch (rhs_code)
2712 {
2713 case TRUNC_DIV_EXPR:
2714 case EXACT_DIV_EXPR:
2715 case TRUNC_MOD_EXPR:
2716 break;
2717 default:
2718 return NULL;
2719 }
2720
2721 oprnd0 = gimple_assign_rhs1 (last_stmt);
2722 oprnd1 = gimple_assign_rhs2 (last_stmt);
2723 itype = TREE_TYPE (oprnd0);
2724 if (TREE_CODE (oprnd0) != SSA_NAME
2725 || TREE_CODE (oprnd1) != INTEGER_CST
2726 || TREE_CODE (itype) != INTEGER_TYPE
2727 || !type_has_mode_precision_p (itype))
2728 return NULL;
2729
2730 scalar_int_mode itype_mode = SCALAR_INT_TYPE_MODE (itype);
2731 vectype = get_vectype_for_scalar_type (itype);
2732 if (vectype == NULL_TREE)
2733 return NULL;
2734
2735 if (optimize_bb_for_size_p (gimple_bb (last_stmt)))
2736 {
2737 /* If the target can handle vectorized division or modulo natively,
2738 don't attempt to optimize this, since native division is likely
2739 to give smaller code. */
2740 optab = optab_for_tree_code (rhs_code, vectype, optab_default);
2741 if (optab != unknown_optab)
2742 {
2743 machine_mode vec_mode = TYPE_MODE (vectype);
2744 int icode = (int) optab_handler (optab, vec_mode);
2745 if (icode != CODE_FOR_nothing)
2746 return NULL;
2747 }
2748 }
2749
2750 prec = TYPE_PRECISION (itype);
2751 if (integer_pow2p (oprnd1))
2752 {
2753 if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
2754 return NULL;
2755
2756 /* Pattern detected. */
2757 vect_pattern_detected ("vect_recog_divmod_pattern", last_stmt);
2758
2759 cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
2760 build_int_cst (itype, 0));
2761 if (rhs_code == TRUNC_DIV_EXPR
2762 || rhs_code == EXACT_DIV_EXPR)
2763 {
2764 tree var = vect_recog_temp_ssa_var (itype, NULL);
2765 tree shift;
2766 def_stmt
2767 = gimple_build_assign (var, COND_EXPR, cond,
2768 fold_build2 (MINUS_EXPR, itype, oprnd1,
2769 build_int_cst (itype, 1)),
2770 build_int_cst (itype, 0));
2771 append_pattern_def_seq (stmt_vinfo, def_stmt);
2772 var = vect_recog_temp_ssa_var (itype, NULL);
2773 def_stmt
2774 = gimple_build_assign (var, PLUS_EXPR, oprnd0,
2775 gimple_assign_lhs (def_stmt));
2776 append_pattern_def_seq (stmt_vinfo, def_stmt);
2777
2778 shift = build_int_cst (itype, tree_log2 (oprnd1));
2779 pattern_stmt
2780 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2781 RSHIFT_EXPR, var, shift);
2782 }
2783 else
2784 {
2785 tree signmask;
2786 if (compare_tree_int (oprnd1, 2) == 0)
2787 {
2788 signmask = vect_recog_temp_ssa_var (itype, NULL);
2789 def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
2790 build_int_cst (itype, 1),
2791 build_int_cst (itype, 0));
2792 append_pattern_def_seq (stmt_vinfo, def_stmt);
2793 }
2794 else
2795 {
2796 tree utype
2797 = build_nonstandard_integer_type (prec, 1);
2798 tree vecutype = get_vectype_for_scalar_type (utype);
2799 tree shift
2800 = build_int_cst (utype, GET_MODE_BITSIZE (itype_mode)
2801 - tree_log2 (oprnd1));
2802 tree var = vect_recog_temp_ssa_var (utype, NULL);
2803
2804 def_stmt = gimple_build_assign (var, COND_EXPR, cond,
2805 build_int_cst (utype, -1),
2806 build_int_cst (utype, 0));
2807 append_pattern_def_seq (stmt_vinfo, def_stmt, vecutype);
2808 var = vect_recog_temp_ssa_var (utype, NULL);
2809 def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
2810 gimple_assign_lhs (def_stmt),
2811 shift);
2812 append_pattern_def_seq (stmt_vinfo, def_stmt, vecutype);
2813 signmask = vect_recog_temp_ssa_var (itype, NULL);
2814 def_stmt
2815 = gimple_build_assign (signmask, NOP_EXPR, var);
2816 append_pattern_def_seq (stmt_vinfo, def_stmt);
2817 }
2818 def_stmt
2819 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2820 PLUS_EXPR, oprnd0, signmask);
2821 append_pattern_def_seq (stmt_vinfo, def_stmt);
2822 def_stmt
2823 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2824 BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
2825 fold_build2 (MINUS_EXPR, itype, oprnd1,
2826 build_int_cst (itype, 1)));
2827 append_pattern_def_seq (stmt_vinfo, def_stmt);
2828
2829 pattern_stmt
2830 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2831 MINUS_EXPR, gimple_assign_lhs (def_stmt),
2832 signmask);
2833 }
2834
2835 *type_out = vectype;
2836 return pattern_stmt;
2837 }
2838
2839 if (prec > HOST_BITS_PER_WIDE_INT
2840 || integer_zerop (oprnd1))
2841 return NULL;
2842
2843 if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
2844 return NULL;
2845
2846 if (TYPE_UNSIGNED (itype))
2847 {
2848 unsigned HOST_WIDE_INT mh, ml;
2849 int pre_shift, post_shift;
2850 unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
2851 & GET_MODE_MASK (itype_mode));
2852 tree t1, t2, t3, t4;
2853
2854 if (d >= (HOST_WIDE_INT_1U << (prec - 1)))
2855 /* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
2856 return NULL;
2857
2858 /* Find a suitable multiplier and right shift count
2859 instead of multiplying with D. */
2860 mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
2861
2862 /* If the suggested multiplier is more than SIZE bits, we can do better
2863 for even divisors, using an initial right shift. */
2864 if (mh != 0 && (d & 1) == 0)
2865 {
2866 pre_shift = ctz_or_zero (d);
2867 mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
2868 &ml, &post_shift, &dummy_int);
2869 gcc_assert (!mh);
2870 }
2871 else
2872 pre_shift = 0;
2873
2874 if (mh != 0)
2875 {
2876 if (post_shift - 1 >= prec)
2877 return NULL;
2878
2879 /* t1 = oprnd0 h* ml;
2880 t2 = oprnd0 - t1;
2881 t3 = t2 >> 1;
2882 t4 = t1 + t3;
2883 q = t4 >> (post_shift - 1); */
2884 t1 = vect_recog_temp_ssa_var (itype, NULL);
2885 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2886 build_int_cst (itype, ml));
2887 append_pattern_def_seq (stmt_vinfo, def_stmt);
2888
2889 t2 = vect_recog_temp_ssa_var (itype, NULL);
2890 def_stmt
2891 = gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
2892 append_pattern_def_seq (stmt_vinfo, def_stmt);
2893
2894 t3 = vect_recog_temp_ssa_var (itype, NULL);
2895 def_stmt
2896 = gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
2897 append_pattern_def_seq (stmt_vinfo, def_stmt);
2898
2899 t4 = vect_recog_temp_ssa_var (itype, NULL);
2900 def_stmt
2901 = gimple_build_assign (t4, PLUS_EXPR, t1, t3);
2902
2903 if (post_shift != 1)
2904 {
2905 append_pattern_def_seq (stmt_vinfo, def_stmt);
2906
2907 q = vect_recog_temp_ssa_var (itype, NULL);
2908 pattern_stmt
2909 = gimple_build_assign (q, RSHIFT_EXPR, t4,
2910 build_int_cst (itype, post_shift - 1));
2911 }
2912 else
2913 {
2914 q = t4;
2915 pattern_stmt = def_stmt;
2916 }
2917 }
2918 else
2919 {
2920 if (pre_shift >= prec || post_shift >= prec)
2921 return NULL;
2922
2923 /* t1 = oprnd0 >> pre_shift;
2924 t2 = t1 h* ml;
2925 q = t2 >> post_shift; */
2926 if (pre_shift)
2927 {
2928 t1 = vect_recog_temp_ssa_var (itype, NULL);
2929 def_stmt
2930 = gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
2931 build_int_cst (NULL, pre_shift));
2932 append_pattern_def_seq (stmt_vinfo, def_stmt);
2933 }
2934 else
2935 t1 = oprnd0;
2936
2937 t2 = vect_recog_temp_ssa_var (itype, NULL);
2938 def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
2939 build_int_cst (itype, ml));
2940
2941 if (post_shift)
2942 {
2943 append_pattern_def_seq (stmt_vinfo, def_stmt);
2944
2945 q = vect_recog_temp_ssa_var (itype, NULL);
2946 def_stmt
2947 = gimple_build_assign (q, RSHIFT_EXPR, t2,
2948 build_int_cst (itype, post_shift));
2949 }
2950 else
2951 q = t2;
2952
2953 pattern_stmt = def_stmt;
2954 }
2955 }
2956 else
2957 {
2958 unsigned HOST_WIDE_INT ml;
2959 int post_shift;
2960 HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
2961 unsigned HOST_WIDE_INT abs_d;
2962 bool add = false;
2963 tree t1, t2, t3, t4;
2964
2965 /* Give up for -1. */
2966 if (d == -1)
2967 return NULL;
2968
2969 /* Since d might be INT_MIN, we have to cast to
2970 unsigned HOST_WIDE_INT before negating to avoid
2971 undefined signed overflow. */
2972 abs_d = (d >= 0
2973 ? (unsigned HOST_WIDE_INT) d
2974 : - (unsigned HOST_WIDE_INT) d);
2975
2976 /* n rem d = n rem -d */
2977 if (rhs_code == TRUNC_MOD_EXPR && d < 0)
2978 {
2979 d = abs_d;
2980 oprnd1 = build_int_cst (itype, abs_d);
2981 }
2982 else if (HOST_BITS_PER_WIDE_INT >= prec
2983 && abs_d == HOST_WIDE_INT_1U << (prec - 1))
2984 /* This case is not handled correctly below. */
2985 return NULL;
2986
2987 choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
2988 if (ml >= HOST_WIDE_INT_1U << (prec - 1))
2989 {
2990 add = true;
2991 ml |= HOST_WIDE_INT_M1U << (prec - 1);
2992 }
2993 if (post_shift >= prec)
2994 return NULL;
2995
2996 /* t1 = oprnd0 h* ml; */
2997 t1 = vect_recog_temp_ssa_var (itype, NULL);
2998 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2999 build_int_cst (itype, ml));
3000
3001 if (add)
3002 {
3003 /* t2 = t1 + oprnd0; */
3004 append_pattern_def_seq (stmt_vinfo, def_stmt);
3005 t2 = vect_recog_temp_ssa_var (itype, NULL);
3006 def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
3007 }
3008 else
3009 t2 = t1;
3010
3011 if (post_shift)
3012 {
3013 /* t3 = t2 >> post_shift; */
3014 append_pattern_def_seq (stmt_vinfo, def_stmt);
3015 t3 = vect_recog_temp_ssa_var (itype, NULL);
3016 def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
3017 build_int_cst (itype, post_shift));
3018 }
3019 else
3020 t3 = t2;
3021
3022 wide_int oprnd0_min, oprnd0_max;
3023 int msb = 1;
3024 if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE)
3025 {
3026 if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype)))
3027 msb = 0;
3028 else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype)))
3029 msb = -1;
3030 }
3031
3032 if (msb == 0 && d >= 0)
3033 {
3034 /* q = t3; */
3035 q = t3;
3036 pattern_stmt = def_stmt;
3037 }
3038 else
3039 {
3040 /* t4 = oprnd0 >> (prec - 1);
3041 or if we know from VRP that oprnd0 >= 0
3042 t4 = 0;
3043 or if we know from VRP that oprnd0 < 0
3044 t4 = -1; */
3045 append_pattern_def_seq (stmt_vinfo, def_stmt);
3046 t4 = vect_recog_temp_ssa_var (itype, NULL);
3047 if (msb != 1)
3048 def_stmt = gimple_build_assign (t4, INTEGER_CST,
3049 build_int_cst (itype, msb));
3050 else
3051 def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
3052 build_int_cst (itype, prec - 1));
3053 append_pattern_def_seq (stmt_vinfo, def_stmt);
3054
3055 /* q = t3 - t4; or q = t4 - t3; */
3056 q = vect_recog_temp_ssa_var (itype, NULL);
3057 pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
3058 d < 0 ? t3 : t4);
3059 }
3060 }
3061
3062 if (rhs_code == TRUNC_MOD_EXPR)
3063 {
3064 tree r, t1;
3065
3066 /* We divided. Now finish by:
3067 t1 = q * oprnd1;
3068 r = oprnd0 - t1; */
3069 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
3070
3071 t1 = vect_recog_temp_ssa_var (itype, NULL);
3072 def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
3073 append_pattern_def_seq (stmt_vinfo, def_stmt);
3074
3075 r = vect_recog_temp_ssa_var (itype, NULL);
3076 pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
3077 }
3078
3079 /* Pattern detected. */
3080 vect_pattern_detected ("vect_recog_divmod_pattern", last_stmt);
3081
3082 *type_out = vectype;
3083 return pattern_stmt;
3084 }
3085
3086 /* Function vect_recog_mixed_size_cond_pattern
3087
3088 Try to find the following pattern:
3089
3090 type x_t, y_t;
3091 TYPE a_T, b_T, c_T;
3092 loop:
3093 S1 a_T = x_t CMP y_t ? b_T : c_T;
3094
3095 where type 'TYPE' is an integral type which has different size
3096 from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
3097 than 'type', the constants need to fit into an integer type
3098 with the same width as 'type') or results of conversion from 'type'.
3099
3100 Input:
3101
3102 * STMT_VINFO: The stmt from which the pattern search begins.
3103
3104 Output:
3105
3106 * TYPE_OUT: The type of the output of this pattern.
3107
3108 * Return value: A new stmt that will be used to replace the pattern.
3109 Additionally a def_stmt is added.
3110
3111 a_it = x_t CMP y_t ? b_it : c_it;
3112 a_T = (TYPE) a_it; */
3113
3114 static gimple *
3115 vect_recog_mixed_size_cond_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
3116 {
3117 gimple *last_stmt = stmt_vinfo->stmt;
3118 tree cond_expr, then_clause, else_clause;
3119 tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
3120 gimple *pattern_stmt, *def_stmt;
3121 tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
3122 gimple *def_stmt0 = NULL, *def_stmt1 = NULL;
3123 bool promotion;
3124 tree comp_scalar_type;
3125
3126 if (!is_gimple_assign (last_stmt)
3127 || gimple_assign_rhs_code (last_stmt) != COND_EXPR
3128 || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
3129 return NULL;
3130
3131 cond_expr = gimple_assign_rhs1 (last_stmt);
3132 then_clause = gimple_assign_rhs2 (last_stmt);
3133 else_clause = gimple_assign_rhs3 (last_stmt);
3134
3135 if (!COMPARISON_CLASS_P (cond_expr))
3136 return NULL;
3137
3138 comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
3139 comp_vectype = get_vectype_for_scalar_type (comp_scalar_type);
3140 if (comp_vectype == NULL_TREE)
3141 return NULL;
3142
3143 type = gimple_expr_type (last_stmt);
3144 if (types_compatible_p (type, comp_scalar_type)
3145 || ((TREE_CODE (then_clause) != INTEGER_CST
3146 || TREE_CODE (else_clause) != INTEGER_CST)
3147 && !INTEGRAL_TYPE_P (comp_scalar_type))
3148 || !INTEGRAL_TYPE_P (type))
3149 return NULL;
3150
3151 if ((TREE_CODE (then_clause) != INTEGER_CST
3152 && !type_conversion_p (then_clause, stmt_vinfo, false, &orig_type0,
3153 &def_stmt0, &promotion))
3154 || (TREE_CODE (else_clause) != INTEGER_CST
3155 && !type_conversion_p (else_clause, stmt_vinfo, false, &orig_type1,
3156 &def_stmt1, &promotion)))
3157 return NULL;
3158
3159 if (orig_type0 && orig_type1
3160 && !types_compatible_p (orig_type0, orig_type1))
3161 return NULL;
3162
3163 if (orig_type0)
3164 {
3165 if (!types_compatible_p (orig_type0, comp_scalar_type))
3166 return NULL;
3167 then_clause = gimple_assign_rhs1 (def_stmt0);
3168 itype = orig_type0;
3169 }
3170
3171 if (orig_type1)
3172 {
3173 if (!types_compatible_p (orig_type1, comp_scalar_type))
3174 return NULL;
3175 else_clause = gimple_assign_rhs1 (def_stmt1);
3176 itype = orig_type1;
3177 }
3178
3179
3180 HOST_WIDE_INT cmp_mode_size
3181 = GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype));
3182
3183 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
3184 if (GET_MODE_BITSIZE (type_mode) == cmp_mode_size)
3185 return NULL;
3186
3187 vectype = get_vectype_for_scalar_type (type);
3188 if (vectype == NULL_TREE)
3189 return NULL;
3190
3191 if (expand_vec_cond_expr_p (vectype, comp_vectype, TREE_CODE (cond_expr)))
3192 return NULL;
3193
3194 if (itype == NULL_TREE)
3195 itype = build_nonstandard_integer_type (cmp_mode_size,
3196 TYPE_UNSIGNED (type));
3197
3198 if (itype == NULL_TREE
3199 || GET_MODE_BITSIZE (SCALAR_TYPE_MODE (itype)) != cmp_mode_size)
3200 return NULL;
3201
3202 vecitype = get_vectype_for_scalar_type (itype);
3203 if (vecitype == NULL_TREE)
3204 return NULL;
3205
3206 if (!expand_vec_cond_expr_p (vecitype, comp_vectype, TREE_CODE (cond_expr)))
3207 return NULL;
3208
3209 if (GET_MODE_BITSIZE (type_mode) > cmp_mode_size)
3210 {
3211 if ((TREE_CODE (then_clause) == INTEGER_CST
3212 && !int_fits_type_p (then_clause, itype))
3213 || (TREE_CODE (else_clause) == INTEGER_CST
3214 && !int_fits_type_p (else_clause, itype)))
3215 return NULL;
3216 }
3217
3218 def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3219 COND_EXPR, unshare_expr (cond_expr),
3220 fold_convert (itype, then_clause),
3221 fold_convert (itype, else_clause));
3222 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
3223 NOP_EXPR, gimple_assign_lhs (def_stmt));
3224
3225 append_pattern_def_seq (stmt_vinfo, def_stmt, vecitype);
3226 *type_out = vectype;
3227
3228 vect_pattern_detected ("vect_recog_mixed_size_cond_pattern", last_stmt);
3229
3230 return pattern_stmt;
3231 }
3232
3233
3234 /* Helper function of vect_recog_bool_pattern. Called recursively, return
3235 true if bool VAR can and should be optimized that way. Assume it shouldn't
3236 in case it's a result of a comparison which can be directly vectorized into
3237 a vector comparison. Fills in STMTS with all stmts visited during the
3238 walk. */
3239
3240 static bool
3241 check_bool_pattern (tree var, vec_info *vinfo, hash_set<gimple *> &stmts)
3242 {
3243 tree rhs1;
3244 enum tree_code rhs_code;
3245
3246 stmt_vec_info def_stmt_info = vect_get_internal_def (vinfo, var);
3247 if (!def_stmt_info)
3248 return false;
3249
3250 gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt);
3251 if (!def_stmt)
3252 return false;
3253
3254 if (stmts.contains (def_stmt))
3255 return true;
3256
3257 rhs1 = gimple_assign_rhs1 (def_stmt);
3258 rhs_code = gimple_assign_rhs_code (def_stmt);
3259 switch (rhs_code)
3260 {
3261 case SSA_NAME:
3262 if (! check_bool_pattern (rhs1, vinfo, stmts))
3263 return false;
3264 break;
3265
3266 CASE_CONVERT:
3267 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1)))
3268 return false;
3269 if (! check_bool_pattern (rhs1, vinfo, stmts))
3270 return false;
3271 break;
3272
3273 case BIT_NOT_EXPR:
3274 if (! check_bool_pattern (rhs1, vinfo, stmts))
3275 return false;
3276 break;
3277
3278 case BIT_AND_EXPR:
3279 case BIT_IOR_EXPR:
3280 case BIT_XOR_EXPR:
3281 if (! check_bool_pattern (rhs1, vinfo, stmts)
3282 || ! check_bool_pattern (gimple_assign_rhs2 (def_stmt), vinfo, stmts))
3283 return false;
3284 break;
3285
3286 default:
3287 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3288 {
3289 tree vecitype, comp_vectype;
3290
3291 /* If the comparison can throw, then is_gimple_condexpr will be
3292 false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
3293 if (stmt_could_throw_p (cfun, def_stmt))
3294 return false;
3295
3296 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
3297 if (comp_vectype == NULL_TREE)
3298 return false;
3299
3300 tree mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
3301 if (mask_type
3302 && expand_vec_cmp_expr_p (comp_vectype, mask_type, rhs_code))
3303 return false;
3304
3305 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
3306 {
3307 scalar_mode mode = SCALAR_TYPE_MODE (TREE_TYPE (rhs1));
3308 tree itype
3309 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3310 vecitype = get_vectype_for_scalar_type (itype);
3311 if (vecitype == NULL_TREE)
3312 return false;
3313 }
3314 else
3315 vecitype = comp_vectype;
3316 if (! expand_vec_cond_expr_p (vecitype, comp_vectype, rhs_code))
3317 return false;
3318 }
3319 else
3320 return false;
3321 break;
3322 }
3323
3324 bool res = stmts.add (def_stmt);
3325 /* We can't end up recursing when just visiting SSA defs but not PHIs. */
3326 gcc_assert (!res);
3327
3328 return true;
3329 }
3330
3331
3332 /* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
3333 stmt (SSA_NAME_DEF_STMT of VAR) adding a cast to STMT_INFOs
3334 pattern sequence. */
3335
3336 static tree
3337 adjust_bool_pattern_cast (tree type, tree var, stmt_vec_info stmt_info)
3338 {
3339 gimple *cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
3340 NOP_EXPR, var);
3341 append_pattern_def_seq (stmt_info, cast_stmt,
3342 get_vectype_for_scalar_type (type));
3343 return gimple_assign_lhs (cast_stmt);
3344 }
3345
3346 /* Helper function of vect_recog_bool_pattern. Do the actual transformations.
3347 VAR is an SSA_NAME that should be transformed from bool to a wider integer
3348 type, OUT_TYPE is the desired final integer type of the whole pattern.
3349 STMT_INFO is the info of the pattern root and is where pattern stmts should
3350 be associated with. DEFS is a map of pattern defs. */
3351
3352 static void
3353 adjust_bool_pattern (tree var, tree out_type,
3354 stmt_vec_info stmt_info, hash_map <tree, tree> &defs)
3355 {
3356 gimple *stmt = SSA_NAME_DEF_STMT (var);
3357 enum tree_code rhs_code, def_rhs_code;
3358 tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
3359 location_t loc;
3360 gimple *pattern_stmt, *def_stmt;
3361 tree trueval = NULL_TREE;
3362
3363 rhs1 = gimple_assign_rhs1 (stmt);
3364 rhs2 = gimple_assign_rhs2 (stmt);
3365 rhs_code = gimple_assign_rhs_code (stmt);
3366 loc = gimple_location (stmt);
3367 switch (rhs_code)
3368 {
3369 case SSA_NAME:
3370 CASE_CONVERT:
3371 irhs1 = *defs.get (rhs1);
3372 itype = TREE_TYPE (irhs1);
3373 pattern_stmt
3374 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3375 SSA_NAME, irhs1);
3376 break;
3377
3378 case BIT_NOT_EXPR:
3379 irhs1 = *defs.get (rhs1);
3380 itype = TREE_TYPE (irhs1);
3381 pattern_stmt
3382 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3383 BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
3384 break;
3385
3386 case BIT_AND_EXPR:
3387 /* Try to optimize x = y & (a < b ? 1 : 0); into
3388 x = (a < b ? y : 0);
3389
3390 E.g. for:
3391 bool a_b, b_b, c_b;
3392 TYPE d_T;
3393
3394 S1 a_b = x1 CMP1 y1;
3395 S2 b_b = x2 CMP2 y2;
3396 S3 c_b = a_b & b_b;
3397 S4 d_T = (TYPE) c_b;
3398
3399 we would normally emit:
3400
3401 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3402 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3403 S3' c_T = a_T & b_T;
3404 S4' d_T = c_T;
3405
3406 but we can save one stmt by using the
3407 result of one of the COND_EXPRs in the other COND_EXPR and leave
3408 BIT_AND_EXPR stmt out:
3409
3410 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3411 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3412 S4' f_T = c_T;
3413
3414 At least when VEC_COND_EXPR is implemented using masks
3415 cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
3416 computes the comparison masks and ands it, in one case with
3417 all ones vector, in the other case with a vector register.
3418 Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
3419 often more expensive. */
3420 def_stmt = SSA_NAME_DEF_STMT (rhs2);
3421 def_rhs_code = gimple_assign_rhs_code (def_stmt);
3422 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
3423 {
3424 irhs1 = *defs.get (rhs1);
3425 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
3426 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3427 == GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (def_rhs1))))
3428 {
3429 rhs_code = def_rhs_code;
3430 rhs1 = def_rhs1;
3431 rhs2 = gimple_assign_rhs2 (def_stmt);
3432 trueval = irhs1;
3433 goto do_compare;
3434 }
3435 else
3436 irhs2 = *defs.get (rhs2);
3437 goto and_ior_xor;
3438 }
3439 def_stmt = SSA_NAME_DEF_STMT (rhs1);
3440 def_rhs_code = gimple_assign_rhs_code (def_stmt);
3441 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
3442 {
3443 irhs2 = *defs.get (rhs2);
3444 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
3445 if (TYPE_PRECISION (TREE_TYPE (irhs2))
3446 == GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (def_rhs1))))
3447 {
3448 rhs_code = def_rhs_code;
3449 rhs1 = def_rhs1;
3450 rhs2 = gimple_assign_rhs2 (def_stmt);
3451 trueval = irhs2;
3452 goto do_compare;
3453 }
3454 else
3455 irhs1 = *defs.get (rhs1);
3456 goto and_ior_xor;
3457 }
3458 /* FALLTHRU */
3459 case BIT_IOR_EXPR:
3460 case BIT_XOR_EXPR:
3461 irhs1 = *defs.get (rhs1);
3462 irhs2 = *defs.get (rhs2);
3463 and_ior_xor:
3464 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3465 != TYPE_PRECISION (TREE_TYPE (irhs2)))
3466 {
3467 int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
3468 int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
3469 int out_prec = TYPE_PRECISION (out_type);
3470 if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
3471 irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), irhs2,
3472 stmt_info);
3473 else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
3474 irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), irhs1,
3475 stmt_info);
3476 else
3477 {
3478 irhs1 = adjust_bool_pattern_cast (out_type, irhs1, stmt_info);
3479 irhs2 = adjust_bool_pattern_cast (out_type, irhs2, stmt_info);
3480 }
3481 }
3482 itype = TREE_TYPE (irhs1);
3483 pattern_stmt
3484 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3485 rhs_code, irhs1, irhs2);
3486 break;
3487
3488 default:
3489 do_compare:
3490 gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
3491 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
3492 || !TYPE_UNSIGNED (TREE_TYPE (rhs1))
3493 || maybe_ne (TYPE_PRECISION (TREE_TYPE (rhs1)),
3494 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
3495 {
3496 scalar_mode mode = SCALAR_TYPE_MODE (TREE_TYPE (rhs1));
3497 itype
3498 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3499 }
3500 else
3501 itype = TREE_TYPE (rhs1);
3502 cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
3503 if (trueval == NULL_TREE)
3504 trueval = build_int_cst (itype, 1);
3505 else
3506 gcc_checking_assert (useless_type_conversion_p (itype,
3507 TREE_TYPE (trueval)));
3508 pattern_stmt
3509 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3510 COND_EXPR, cond_expr, trueval,
3511 build_int_cst (itype, 0));
3512 break;
3513 }
3514
3515 gimple_set_location (pattern_stmt, loc);
3516 append_pattern_def_seq (stmt_info, pattern_stmt,
3517 get_vectype_for_scalar_type (itype));
3518 defs.put (var, gimple_assign_lhs (pattern_stmt));
3519 }
3520
3521 /* Comparison function to qsort a vector of gimple stmts after UID. */
3522
3523 static int
3524 sort_after_uid (const void *p1, const void *p2)
3525 {
3526 const gimple *stmt1 = *(const gimple * const *)p1;
3527 const gimple *stmt2 = *(const gimple * const *)p2;
3528 return gimple_uid (stmt1) - gimple_uid (stmt2);
3529 }
3530
3531 /* Create pattern stmts for all stmts participating in the bool pattern
3532 specified by BOOL_STMT_SET and its root STMT_INFO with the desired type
3533 OUT_TYPE. Return the def of the pattern root. */
3534
3535 static tree
3536 adjust_bool_stmts (hash_set <gimple *> &bool_stmt_set,
3537 tree out_type, stmt_vec_info stmt_info)
3538 {
3539 /* Gather original stmts in the bool pattern in their order of appearance
3540 in the IL. */
3541 auto_vec<gimple *> bool_stmts (bool_stmt_set.elements ());
3542 for (hash_set <gimple *>::iterator i = bool_stmt_set.begin ();
3543 i != bool_stmt_set.end (); ++i)
3544 bool_stmts.quick_push (*i);
3545 bool_stmts.qsort (sort_after_uid);
3546
3547 /* Now process them in that order, producing pattern stmts. */
3548 hash_map <tree, tree> defs;
3549 for (unsigned i = 0; i < bool_stmts.length (); ++i)
3550 adjust_bool_pattern (gimple_assign_lhs (bool_stmts[i]),
3551 out_type, stmt_info, defs);
3552
3553 /* Pop the last pattern seq stmt and install it as pattern root for STMT. */
3554 gimple *pattern_stmt
3555 = gimple_seq_last_stmt (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
3556 return gimple_assign_lhs (pattern_stmt);
3557 }
3558
3559 /* Helper for search_type_for_mask. */
3560
3561 static tree
3562 search_type_for_mask_1 (tree var, vec_info *vinfo,
3563 hash_map<gimple *, tree> &cache)
3564 {
3565 tree rhs1;
3566 enum tree_code rhs_code;
3567 tree res = NULL_TREE, res2;
3568
3569 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (var)))
3570 return NULL_TREE;
3571
3572 stmt_vec_info def_stmt_info = vect_get_internal_def (vinfo, var);
3573 if (!def_stmt_info)
3574 return NULL_TREE;
3575
3576 gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt);
3577 if (!def_stmt)
3578 return NULL_TREE;
3579
3580 tree *c = cache.get (def_stmt);
3581 if (c)
3582 return *c;
3583
3584 rhs_code = gimple_assign_rhs_code (def_stmt);
3585 rhs1 = gimple_assign_rhs1 (def_stmt);
3586
3587 switch (rhs_code)
3588 {
3589 case SSA_NAME:
3590 case BIT_NOT_EXPR:
3591 CASE_CONVERT:
3592 res = search_type_for_mask_1 (rhs1, vinfo, cache);
3593 break;
3594
3595 case BIT_AND_EXPR:
3596 case BIT_IOR_EXPR:
3597 case BIT_XOR_EXPR:
3598 res = search_type_for_mask_1 (rhs1, vinfo, cache);
3599 res2 = search_type_for_mask_1 (gimple_assign_rhs2 (def_stmt), vinfo,
3600 cache);
3601 if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
3602 res = res2;
3603 break;
3604
3605 default:
3606 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3607 {
3608 tree comp_vectype, mask_type;
3609
3610 if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1)))
3611 {
3612 res = search_type_for_mask_1 (rhs1, vinfo, cache);
3613 res2 = search_type_for_mask_1 (gimple_assign_rhs2 (def_stmt),
3614 vinfo, cache);
3615 if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
3616 res = res2;
3617 break;
3618 }
3619
3620 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
3621 if (comp_vectype == NULL_TREE)
3622 {
3623 res = NULL_TREE;
3624 break;
3625 }
3626
3627 mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
3628 if (!mask_type
3629 || !expand_vec_cmp_expr_p (comp_vectype, mask_type, rhs_code))
3630 {
3631 res = NULL_TREE;
3632 break;
3633 }
3634
3635 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
3636 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
3637 {
3638 scalar_mode mode = SCALAR_TYPE_MODE (TREE_TYPE (rhs1));
3639 res = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3640 }
3641 else
3642 res = TREE_TYPE (rhs1);
3643 }
3644 }
3645
3646 cache.put (def_stmt, res);
3647 return res;
3648 }
3649
3650 /* Return the proper type for converting bool VAR into
3651 an integer value or NULL_TREE if no such type exists.
3652 The type is chosen so that converted value has the
3653 same number of elements as VAR's vector type. */
3654
3655 static tree
3656 search_type_for_mask (tree var, vec_info *vinfo)
3657 {
3658 hash_map<gimple *, tree> cache;
3659 return search_type_for_mask_1 (var, vinfo, cache);
3660 }
3661
3662 /* Function vect_recog_bool_pattern
3663
3664 Try to find pattern like following:
3665
3666 bool a_b, b_b, c_b, d_b, e_b;
3667 TYPE f_T;
3668 loop:
3669 S1 a_b = x1 CMP1 y1;
3670 S2 b_b = x2 CMP2 y2;
3671 S3 c_b = a_b & b_b;
3672 S4 d_b = x3 CMP3 y3;
3673 S5 e_b = c_b | d_b;
3674 S6 f_T = (TYPE) e_b;
3675
3676 where type 'TYPE' is an integral type. Or a similar pattern
3677 ending in
3678
3679 S6 f_Y = e_b ? r_Y : s_Y;
3680
3681 as results from if-conversion of a complex condition.
3682
3683 Input:
3684
3685 * STMT_VINFO: The stmt at the end from which the pattern
3686 search begins, i.e. cast of a bool to
3687 an integer type.
3688
3689 Output:
3690
3691 * TYPE_OUT: The type of the output of this pattern.
3692
3693 * Return value: A new stmt that will be used to replace the pattern.
3694
3695 Assuming size of TYPE is the same as size of all comparisons
3696 (otherwise some casts would be added where needed), the above
3697 sequence we create related pattern stmts:
3698 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3699 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3700 S4' d_T = x3 CMP3 y3 ? 1 : 0;
3701 S5' e_T = c_T | d_T;
3702 S6' f_T = e_T;
3703
3704 Instead of the above S3' we could emit:
3705 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3706 S3' c_T = a_T | b_T;
3707 but the above is more efficient. */
3708
3709 static gimple *
3710 vect_recog_bool_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
3711 {
3712 gimple *last_stmt = stmt_vinfo->stmt;
3713 enum tree_code rhs_code;
3714 tree var, lhs, rhs, vectype;
3715 vec_info *vinfo = stmt_vinfo->vinfo;
3716 gimple *pattern_stmt;
3717
3718 if (!is_gimple_assign (last_stmt))
3719 return NULL;
3720
3721 var = gimple_assign_rhs1 (last_stmt);
3722 lhs = gimple_assign_lhs (last_stmt);
3723
3724 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (var)))
3725 return NULL;
3726
3727 hash_set<gimple *> bool_stmts;
3728
3729 rhs_code = gimple_assign_rhs_code (last_stmt);
3730 if (CONVERT_EXPR_CODE_P (rhs_code))
3731 {
3732 if (! INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3733 || TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
3734 return NULL;
3735 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3736 if (vectype == NULL_TREE)
3737 return NULL;
3738
3739 if (check_bool_pattern (var, vinfo, bool_stmts))
3740 {
3741 rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (lhs), stmt_vinfo);
3742 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3743 if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3744 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3745 else
3746 pattern_stmt
3747 = gimple_build_assign (lhs, NOP_EXPR, rhs);
3748 }
3749 else
3750 {
3751 tree type = search_type_for_mask (var, vinfo);
3752 tree cst0, cst1, tmp;
3753
3754 if (!type)
3755 return NULL;
3756
3757 /* We may directly use cond with narrowed type to avoid
3758 multiple cond exprs with following result packing and
3759 perform single cond with packed mask instead. In case
3760 of widening we better make cond first and then extract
3761 results. */
3762 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (lhs)))
3763 type = TREE_TYPE (lhs);
3764
3765 cst0 = build_int_cst (type, 0);
3766 cst1 = build_int_cst (type, 1);
3767 tmp = vect_recog_temp_ssa_var (type, NULL);
3768 pattern_stmt = gimple_build_assign (tmp, COND_EXPR, var, cst1, cst0);
3769
3770 if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
3771 {
3772 tree new_vectype = get_vectype_for_scalar_type (type);
3773 append_pattern_def_seq (stmt_vinfo, pattern_stmt, new_vectype);
3774
3775 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3776 pattern_stmt = gimple_build_assign (lhs, CONVERT_EXPR, tmp);
3777 }
3778 }
3779
3780 *type_out = vectype;
3781 vect_pattern_detected ("vect_recog_bool_pattern", last_stmt);
3782
3783 return pattern_stmt;
3784 }
3785 else if (rhs_code == COND_EXPR
3786 && TREE_CODE (var) == SSA_NAME)
3787 {
3788 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3789 if (vectype == NULL_TREE)
3790 return NULL;
3791
3792 /* Build a scalar type for the boolean result that when
3793 vectorized matches the vector type of the result in
3794 size and number of elements. */
3795 unsigned prec
3796 = vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (vectype)),
3797 TYPE_VECTOR_SUBPARTS (vectype));
3798
3799 tree type
3800 = build_nonstandard_integer_type (prec,
3801 TYPE_UNSIGNED (TREE_TYPE (var)));
3802 if (get_vectype_for_scalar_type (type) == NULL_TREE)
3803 return NULL;
3804
3805 if (!check_bool_pattern (var, vinfo, bool_stmts))
3806 return NULL;
3807
3808 rhs = adjust_bool_stmts (bool_stmts, type, stmt_vinfo);
3809
3810 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3811 pattern_stmt
3812 = gimple_build_assign (lhs, COND_EXPR,
3813 build2 (NE_EXPR, boolean_type_node,
3814 rhs, build_int_cst (type, 0)),
3815 gimple_assign_rhs2 (last_stmt),
3816 gimple_assign_rhs3 (last_stmt));
3817 *type_out = vectype;
3818 vect_pattern_detected ("vect_recog_bool_pattern", last_stmt);
3819
3820 return pattern_stmt;
3821 }
3822 else if (rhs_code == SSA_NAME
3823 && STMT_VINFO_DATA_REF (stmt_vinfo))
3824 {
3825 stmt_vec_info pattern_stmt_info;
3826 vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3827 gcc_assert (vectype != NULL_TREE);
3828 if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
3829 return NULL;
3830
3831 if (check_bool_pattern (var, vinfo, bool_stmts))
3832 rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (vectype), stmt_vinfo);
3833 else
3834 {
3835 tree type = search_type_for_mask (var, vinfo);
3836 tree cst0, cst1, new_vectype;
3837
3838 if (!type)
3839 return NULL;
3840
3841 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (vectype)))
3842 type = TREE_TYPE (vectype);
3843
3844 cst0 = build_int_cst (type, 0);
3845 cst1 = build_int_cst (type, 1);
3846 new_vectype = get_vectype_for_scalar_type (type);
3847
3848 rhs = vect_recog_temp_ssa_var (type, NULL);
3849 pattern_stmt = gimple_build_assign (rhs, COND_EXPR, var, cst1, cst0);
3850 append_pattern_def_seq (stmt_vinfo, pattern_stmt, new_vectype);
3851 }
3852
3853 lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
3854 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3855 {
3856 tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3857 gimple *cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
3858 append_pattern_def_seq (stmt_vinfo, cast_stmt);
3859 rhs = rhs2;
3860 }
3861 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3862 pattern_stmt_info = vinfo->add_stmt (pattern_stmt);
3863 vinfo->move_dr (pattern_stmt_info, stmt_vinfo);
3864 *type_out = vectype;
3865 vect_pattern_detected ("vect_recog_bool_pattern", last_stmt);
3866
3867 return pattern_stmt;
3868 }
3869 else
3870 return NULL;
3871 }
3872
3873
3874 /* A helper for vect_recog_mask_conversion_pattern. Build
3875 conversion of MASK to a type suitable for masking VECTYPE.
3876 Built statement gets required vectype and is appended to
3877 a pattern sequence of STMT_VINFO.
3878
3879 Return converted mask. */
3880
3881 static tree
3882 build_mask_conversion (tree mask, tree vectype, stmt_vec_info stmt_vinfo)
3883 {
3884 gimple *stmt;
3885 tree masktype, tmp;
3886
3887 masktype = build_same_sized_truth_vector_type (vectype);
3888 tmp = vect_recog_temp_ssa_var (TREE_TYPE (masktype), NULL);
3889 stmt = gimple_build_assign (tmp, CONVERT_EXPR, mask);
3890 append_pattern_def_seq (stmt_vinfo, stmt, masktype);
3891
3892 return tmp;
3893 }
3894
3895
3896 /* Function vect_recog_mask_conversion_pattern
3897
3898 Try to find statements which require boolean type
3899 converison. Additional conversion statements are
3900 added to handle such cases. For example:
3901
3902 bool m_1, m_2, m_3;
3903 int i_4, i_5;
3904 double d_6, d_7;
3905 char c_1, c_2, c_3;
3906
3907 S1 m_1 = i_4 > i_5;
3908 S2 m_2 = d_6 < d_7;
3909 S3 m_3 = m_1 & m_2;
3910 S4 c_1 = m_3 ? c_2 : c_3;
3911
3912 Will be transformed into:
3913
3914 S1 m_1 = i_4 > i_5;
3915 S2 m_2 = d_6 < d_7;
3916 S3'' m_2' = (_Bool[bitsize=32])m_2
3917 S3' m_3' = m_1 & m_2';
3918 S4'' m_3'' = (_Bool[bitsize=8])m_3'
3919 S4' c_1' = m_3'' ? c_2 : c_3; */
3920
3921 static gimple *
3922 vect_recog_mask_conversion_pattern (stmt_vec_info stmt_vinfo, tree *type_out)
3923 {
3924 gimple *last_stmt = stmt_vinfo->stmt;
3925 enum tree_code rhs_code;
3926 tree lhs = NULL_TREE, rhs1, rhs2, tmp, rhs1_type, rhs2_type;
3927 tree vectype1, vectype2;
3928 stmt_vec_info pattern_stmt_info;
3929 vec_info *vinfo = stmt_vinfo->vinfo;
3930
3931 /* Check for MASK_LOAD ans MASK_STORE calls requiring mask conversion. */
3932 if (is_gimple_call (last_stmt)
3933 && gimple_call_internal_p (last_stmt))
3934 {
3935 gcall *pattern_stmt;
3936
3937 internal_fn ifn = gimple_call_internal_fn (last_stmt);
3938 int mask_argno = internal_fn_mask_index (ifn);
3939 if (mask_argno < 0)
3940 return NULL;
3941
3942 bool store_p = internal_store_fn_p (ifn);
3943 if (store_p)
3944 {
3945 int rhs_index = internal_fn_stored_value_index (ifn);
3946 tree rhs = gimple_call_arg (last_stmt, rhs_index);
3947 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (rhs));
3948 }
3949 else
3950 {
3951 lhs = gimple_call_lhs (last_stmt);
3952 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3953 }
3954
3955 tree mask_arg = gimple_call_arg (last_stmt, mask_argno);
3956 tree mask_arg_type = search_type_for_mask (mask_arg, vinfo);
3957 if (!mask_arg_type)
3958 return NULL;
3959 vectype2 = get_mask_type_for_scalar_type (mask_arg_type);
3960
3961 if (!vectype1 || !vectype2
3962 || known_eq (TYPE_VECTOR_SUBPARTS (vectype1),
3963 TYPE_VECTOR_SUBPARTS (vectype2)))
3964 return NULL;
3965
3966 tmp = build_mask_conversion (mask_arg, vectype1, stmt_vinfo);
3967
3968 auto_vec<tree, 8> args;
3969 unsigned int nargs = gimple_call_num_args (last_stmt);
3970 args.safe_grow (nargs);
3971 for (unsigned int i = 0; i < nargs; ++i)
3972 args[i] = ((int) i == mask_argno
3973 ? tmp
3974 : gimple_call_arg (last_stmt, i));
3975 pattern_stmt = gimple_build_call_internal_vec (ifn, args);
3976
3977 if (!store_p)
3978 {
3979 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3980 gimple_call_set_lhs (pattern_stmt, lhs);
3981 }
3982 gimple_call_set_nothrow (pattern_stmt, true);
3983
3984 pattern_stmt_info = vinfo->add_stmt (pattern_stmt);
3985 if (STMT_VINFO_DATA_REF (stmt_vinfo))
3986 vinfo->move_dr (pattern_stmt_info, stmt_vinfo);
3987
3988 *type_out = vectype1;
3989 vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt);
3990
3991 return pattern_stmt;
3992 }
3993
3994 if (!is_gimple_assign (last_stmt))
3995 return NULL;
3996
3997 gimple *pattern_stmt;
3998 lhs = gimple_assign_lhs (last_stmt);
3999 rhs1 = gimple_assign_rhs1 (last_stmt);
4000 rhs_code = gimple_assign_rhs_code (last_stmt);
4001
4002 /* Check for cond expression requiring mask conversion. */
4003 if (rhs_code == COND_EXPR)
4004 {
4005 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
4006
4007 if (TREE_CODE (rhs1) == SSA_NAME)
4008 {
4009 rhs1_type = search_type_for_mask (rhs1, vinfo);
4010 if (!rhs1_type)
4011 return NULL;
4012 }
4013 else if (COMPARISON_CLASS_P (rhs1))
4014 {
4015 /* Check whether we're comparing scalar booleans and (if so)
4016 whether a better mask type exists than the mask associated
4017 with boolean-sized elements. This avoids unnecessary packs
4018 and unpacks if the booleans are set from comparisons of
4019 wider types. E.g. in:
4020
4021 int x1, x2, x3, x4, y1, y1;
4022 ...
4023 bool b1 = (x1 == x2);
4024 bool b2 = (x3 == x4);
4025 ... = b1 == b2 ? y1 : y2;
4026
4027 it is better for b1 and b2 to use the mask type associated
4028 with int elements rather bool (byte) elements. */
4029 rhs1_type = search_type_for_mask (TREE_OPERAND (rhs1, 0), vinfo);
4030 if (!rhs1_type)
4031 rhs1_type = TREE_TYPE (TREE_OPERAND (rhs1, 0));
4032 }
4033 else
4034 return NULL;
4035
4036 vectype2 = get_mask_type_for_scalar_type (rhs1_type);
4037
4038 if (!vectype1 || !vectype2)
4039 return NULL;
4040
4041 /* Continue if a conversion is needed. Also continue if we have
4042 a comparison whose vector type would normally be different from
4043 VECTYPE2 when considered in isolation. In that case we'll
4044 replace the comparison with an SSA name (so that we can record
4045 its vector type) and behave as though the comparison was an SSA
4046 name from the outset. */
4047 if (known_eq (TYPE_VECTOR_SUBPARTS (vectype1),
4048 TYPE_VECTOR_SUBPARTS (vectype2))
4049 && (TREE_CODE (rhs1) == SSA_NAME
4050 || rhs1_type == TREE_TYPE (TREE_OPERAND (rhs1, 0))))
4051 return NULL;
4052
4053 /* If rhs1 is invariant and we can promote it leave the COND_EXPR
4054 in place, we can handle it in vectorizable_condition. This avoids
4055 unnecessary promotion stmts and increased vectorization factor. */
4056 if (COMPARISON_CLASS_P (rhs1)
4057 && INTEGRAL_TYPE_P (rhs1_type)
4058 && known_le (TYPE_VECTOR_SUBPARTS (vectype1),
4059 TYPE_VECTOR_SUBPARTS (vectype2)))
4060 {
4061 enum vect_def_type dt;
4062 if (vect_is_simple_use (TREE_OPERAND (rhs1, 0), vinfo, &dt)
4063 && dt == vect_external_def
4064 && vect_is_simple_use (TREE_OPERAND (rhs1, 1), vinfo, &dt)
4065 && (dt == vect_external_def
4066 || dt == vect_constant_def))
4067 {
4068 tree wide_scalar_type = build_nonstandard_integer_type
4069 (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (vectype1))),
4070 TYPE_UNSIGNED (rhs1_type));
4071 tree vectype3 = get_vectype_for_scalar_type (wide_scalar_type);
4072 if (expand_vec_cond_expr_p (vectype1, vectype3, TREE_CODE (rhs1)))
4073 return NULL;
4074 }
4075 }
4076
4077 /* If rhs1 is a comparison we need to move it into a
4078 separate statement. */
4079 if (TREE_CODE (rhs1) != SSA_NAME)
4080 {
4081 tmp = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
4082 pattern_stmt = gimple_build_assign (tmp, rhs1);
4083 rhs1 = tmp;
4084 append_pattern_def_seq (stmt_vinfo, pattern_stmt, vectype2);
4085 }
4086
4087 if (maybe_ne (TYPE_VECTOR_SUBPARTS (vectype1),
4088 TYPE_VECTOR_SUBPARTS (vectype2)))
4089 tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo);
4090 else
4091 tmp = rhs1;
4092
4093 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
4094 pattern_stmt = gimple_build_assign (lhs, COND_EXPR, tmp,
4095 gimple_assign_rhs2 (last_stmt),
4096 gimple_assign_rhs3 (last_stmt));
4097
4098 *type_out = vectype1;
4099 vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt);
4100
4101 return pattern_stmt;
4102 }
4103
4104 /* Now check for binary boolean operations requiring conversion for
4105 one of operands. */
4106 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (lhs)))
4107 return NULL;
4108
4109 if (rhs_code != BIT_IOR_EXPR
4110 && rhs_code != BIT_XOR_EXPR
4111 && rhs_code != BIT_AND_EXPR
4112 && TREE_CODE_CLASS (rhs_code) != tcc_comparison)
4113 return NULL;
4114
4115 rhs2 = gimple_assign_rhs2 (last_stmt);
4116
4117 rhs1_type = search_type_for_mask (rhs1, vinfo);
4118 rhs2_type = search_type_for_mask (rhs2, vinfo);
4119
4120 if (!rhs1_type || !rhs2_type
4121 || TYPE_PRECISION (rhs1_type) == TYPE_PRECISION (rhs2_type))
4122 return NULL;
4123
4124 if (TYPE_PRECISION (rhs1_type) < TYPE_PRECISION (rhs2_type))
4125 {
4126 vectype1 = get_mask_type_for_scalar_type (rhs1_type);
4127 if (!vectype1)
4128 return NULL;
4129 rhs2 = build_mask_conversion (rhs2, vectype1, stmt_vinfo);
4130 }
4131 else
4132 {
4133 vectype1 = get_mask_type_for_scalar_type (rhs2_type);
4134 if (!vectype1)
4135 return NULL;
4136 rhs1 = build_mask_conversion (rhs1, vectype1, stmt_vinfo);
4137 }
4138
4139 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
4140 pattern_stmt = gimple_build_assign (lhs, rhs_code, rhs1, rhs2);
4141
4142 *type_out = vectype1;
4143 vect_pattern_detected ("vect_recog_mask_conversion_pattern", last_stmt);
4144
4145 return pattern_stmt;
4146 }
4147
4148 /* STMT_INFO is a load or store. If the load or store is conditional, return
4149 the boolean condition under which it occurs, otherwise return null. */
4150
4151 static tree
4152 vect_get_load_store_mask (stmt_vec_info stmt_info)
4153 {
4154 if (gassign *def_assign = dyn_cast <gassign *> (stmt_info->stmt))
4155 {
4156 gcc_assert (gimple_assign_single_p (def_assign));
4157 return NULL_TREE;
4158 }
4159
4160 if (gcall *def_call = dyn_cast <gcall *> (stmt_info->stmt))
4161 {
4162 internal_fn ifn = gimple_call_internal_fn (def_call);
4163 int mask_index = internal_fn_mask_index (ifn);
4164 return gimple_call_arg (def_call, mask_index);
4165 }
4166
4167 gcc_unreachable ();
4168 }
4169
4170 /* Return the scalar offset type that an internal gather/scatter function
4171 should use. GS_INFO describes the gather/scatter operation. */
4172
4173 static tree
4174 vect_get_gather_scatter_offset_type (gather_scatter_info *gs_info)
4175 {
4176 tree offset_type = TREE_TYPE (gs_info->offset);
4177 unsigned int element_bits = tree_to_uhwi (TYPE_SIZE (gs_info->element_type));
4178
4179 /* Enforced by vect_check_gather_scatter. */
4180 unsigned int offset_bits = TYPE_PRECISION (offset_type);
4181 gcc_assert (element_bits >= offset_bits);
4182
4183 /* If the offset is narrower than the elements, extend it according
4184 to its sign. */
4185 if (element_bits > offset_bits)
4186 return build_nonstandard_integer_type (element_bits,
4187 TYPE_UNSIGNED (offset_type));
4188
4189 return offset_type;
4190 }
4191
4192 /* Return MASK if MASK is suitable for masking an operation on vectors
4193 of type VECTYPE, otherwise convert it into such a form and return
4194 the result. Associate any conversion statements with STMT_INFO's
4195 pattern. */
4196
4197 static tree
4198 vect_convert_mask_for_vectype (tree mask, tree vectype,
4199 stmt_vec_info stmt_info, vec_info *vinfo)
4200 {
4201 tree mask_type = search_type_for_mask (mask, vinfo);
4202 if (mask_type)
4203 {
4204 tree mask_vectype = get_mask_type_for_scalar_type (mask_type);
4205 if (mask_vectype
4206 && maybe_ne (TYPE_VECTOR_SUBPARTS (vectype),
4207 TYPE_VECTOR_SUBPARTS (mask_vectype)))
4208 mask = build_mask_conversion (mask, vectype, stmt_info);
4209 }
4210 return mask;
4211 }
4212
4213 /* Return the equivalent of:
4214
4215 fold_convert (TYPE, VALUE)
4216
4217 with the expectation that the operation will be vectorized.
4218 If new statements are needed, add them as pattern statements
4219 to STMT_INFO. */
4220
4221 static tree
4222 vect_add_conversion_to_pattern (tree type, tree value, stmt_vec_info stmt_info)
4223 {
4224 if (useless_type_conversion_p (type, TREE_TYPE (value)))
4225 return value;
4226
4227 tree new_value = vect_recog_temp_ssa_var (type, NULL);
4228 gassign *conversion = gimple_build_assign (new_value, CONVERT_EXPR, value);
4229 append_pattern_def_seq (stmt_info, conversion,
4230 get_vectype_for_scalar_type (type));
4231 return new_value;
4232 }
4233
4234 /* Try to convert STMT_INFO into a call to a gather load or scatter store
4235 internal function. Return the final statement on success and set
4236 *TYPE_OUT to the vector type being loaded or stored.
4237
4238 This function only handles gathers and scatters that were recognized
4239 as such from the outset (indicated by STMT_VINFO_GATHER_SCATTER_P). */
4240
4241 static gimple *
4242 vect_recog_gather_scatter_pattern (stmt_vec_info stmt_info, tree *type_out)
4243 {
4244 /* Currently we only support this for loop vectorization. */
4245 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_info->vinfo);
4246 if (!loop_vinfo)
4247 return NULL;
4248
4249 /* Make sure that we're looking at a gather load or scatter store. */
4250 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4251 if (!dr || !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
4252 return NULL;
4253
4254 /* Get the boolean that controls whether the load or store happens.
4255 This is null if the operation is unconditional. */
4256 tree mask = vect_get_load_store_mask (stmt_info);
4257
4258 /* Make sure that the target supports an appropriate internal
4259 function for the gather/scatter operation. */
4260 gather_scatter_info gs_info;
4261 if (!vect_check_gather_scatter (stmt_info, loop_vinfo, &gs_info)
4262 || gs_info.decl)
4263 return NULL;
4264
4265 /* Convert the mask to the right form. */
4266 tree gs_vectype = get_vectype_for_scalar_type (gs_info.element_type);
4267 if (mask)
4268 mask = vect_convert_mask_for_vectype (mask, gs_vectype, stmt_info,
4269 loop_vinfo);
4270
4271 /* Get the invariant base and non-invariant offset, converting the
4272 latter to the same width as the vector elements. */
4273 tree base = gs_info.base;
4274 tree offset_type = vect_get_gather_scatter_offset_type (&gs_info);
4275 tree offset = vect_add_conversion_to_pattern (offset_type, gs_info.offset,
4276 stmt_info);
4277
4278 /* Build the new pattern statement. */
4279 tree scale = size_int (gs_info.scale);
4280 gcall *pattern_stmt;
4281 if (DR_IS_READ (dr))
4282 {
4283 if (mask != NULL)
4284 pattern_stmt = gimple_build_call_internal (gs_info.ifn, 4, base,
4285 offset, scale, mask);
4286 else
4287 pattern_stmt = gimple_build_call_internal (gs_info.ifn, 3, base,
4288 offset, scale);
4289 tree load_lhs = vect_recog_temp_ssa_var (gs_info.element_type, NULL);
4290 gimple_call_set_lhs (pattern_stmt, load_lhs);
4291 }
4292 else
4293 {
4294 tree rhs = vect_get_store_rhs (stmt_info);
4295 if (mask != NULL)
4296 pattern_stmt = gimple_build_call_internal (IFN_MASK_SCATTER_STORE, 5,
4297 base, offset, scale, rhs,
4298 mask);
4299 else
4300 pattern_stmt = gimple_build_call_internal (IFN_SCATTER_STORE, 4,
4301 base, offset, scale, rhs);
4302 }
4303 gimple_call_set_nothrow (pattern_stmt, true);
4304
4305 /* Copy across relevant vectorization info and associate DR with the
4306 new pattern statement instead of the original statement. */
4307 stmt_vec_info pattern_stmt_info = loop_vinfo->add_stmt (pattern_stmt);
4308 loop_vinfo->move_dr (pattern_stmt_info, stmt_info);
4309
4310 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4311 *type_out = vectype;
4312 vect_pattern_detected ("gather/scatter pattern", stmt_info->stmt);
4313
4314 return pattern_stmt;
4315 }
4316
4317 /* Return true if TYPE is a non-boolean integer type. These are the types
4318 that we want to consider for narrowing. */
4319
4320 static bool
4321 vect_narrowable_type_p (tree type)
4322 {
4323 return INTEGRAL_TYPE_P (type) && !VECT_SCALAR_BOOLEAN_TYPE_P (type);
4324 }
4325
4326 /* Return true if the operation given by CODE can be truncated to N bits
4327 when only N bits of the output are needed. This is only true if bit N+1
4328 of the inputs has no effect on the low N bits of the result. */
4329
4330 static bool
4331 vect_truncatable_operation_p (tree_code code)
4332 {
4333 switch (code)
4334 {
4335 case PLUS_EXPR:
4336 case MINUS_EXPR:
4337 case MULT_EXPR:
4338 case BIT_AND_EXPR:
4339 case BIT_IOR_EXPR:
4340 case BIT_XOR_EXPR:
4341 case COND_EXPR:
4342 return true;
4343
4344 default:
4345 return false;
4346 }
4347 }
4348
4349 /* Record that STMT_INFO could be changed from operating on TYPE to
4350 operating on a type with the precision and sign given by PRECISION
4351 and SIGN respectively. PRECISION is an arbitrary bit precision;
4352 it might not be a whole number of bytes. */
4353
4354 static void
4355 vect_set_operation_type (stmt_vec_info stmt_info, tree type,
4356 unsigned int precision, signop sign)
4357 {
4358 /* Round the precision up to a whole number of bytes. */
4359 precision = vect_element_precision (precision);
4360 if (precision < TYPE_PRECISION (type)
4361 && (!stmt_info->operation_precision
4362 || stmt_info->operation_precision > precision))
4363 {
4364 stmt_info->operation_precision = precision;
4365 stmt_info->operation_sign = sign;
4366 }
4367 }
4368
4369 /* Record that STMT_INFO only requires MIN_INPUT_PRECISION from its
4370 non-boolean inputs, all of which have type TYPE. MIN_INPUT_PRECISION
4371 is an arbitrary bit precision; it might not be a whole number of bytes. */
4372
4373 static void
4374 vect_set_min_input_precision (stmt_vec_info stmt_info, tree type,
4375 unsigned int min_input_precision)
4376 {
4377 /* This operation in isolation only requires the inputs to have
4378 MIN_INPUT_PRECISION of precision, However, that doesn't mean
4379 that MIN_INPUT_PRECISION is a natural precision for the chain
4380 as a whole. E.g. consider something like:
4381
4382 unsigned short *x, *y;
4383 *y = ((*x & 0xf0) >> 4) | (*y << 4);
4384
4385 The right shift can be done on unsigned chars, and only requires the
4386 result of "*x & 0xf0" to be done on unsigned chars. But taking that
4387 approach would mean turning a natural chain of single-vector unsigned
4388 short operations into one that truncates "*x" and then extends
4389 "(*x & 0xf0) >> 4", with two vectors for each unsigned short
4390 operation and one vector for each unsigned char operation.
4391 This would be a significant pessimization.
4392
4393 Instead only propagate the maximum of this precision and the precision
4394 required by the users of the result. This means that we don't pessimize
4395 the case above but continue to optimize things like:
4396
4397 unsigned char *y;
4398 unsigned short *x;
4399 *y = ((*x & 0xf0) >> 4) | (*y << 4);
4400
4401 Here we would truncate two vectors of *x to a single vector of
4402 unsigned chars and use single-vector unsigned char operations for
4403 everything else, rather than doing two unsigned short copies of
4404 "(*x & 0xf0) >> 4" and then truncating the result. */
4405 min_input_precision = MAX (min_input_precision,
4406 stmt_info->min_output_precision);
4407
4408 if (min_input_precision < TYPE_PRECISION (type)
4409 && (!stmt_info->min_input_precision
4410 || stmt_info->min_input_precision > min_input_precision))
4411 stmt_info->min_input_precision = min_input_precision;
4412 }
4413
4414 /* Subroutine of vect_determine_min_output_precision. Return true if
4415 we can calculate a reduced number of output bits for STMT_INFO,
4416 whose result is LHS. */
4417
4418 static bool
4419 vect_determine_min_output_precision_1 (stmt_vec_info stmt_info, tree lhs)
4420 {
4421 /* Take the maximum precision required by users of the result. */
4422 vec_info *vinfo = stmt_info->vinfo;
4423 unsigned int precision = 0;
4424 imm_use_iterator iter;
4425 use_operand_p use;
4426 FOR_EACH_IMM_USE_FAST (use, iter, lhs)
4427 {
4428 gimple *use_stmt = USE_STMT (use);
4429 if (is_gimple_debug (use_stmt))
4430 continue;
4431 stmt_vec_info use_stmt_info = vinfo->lookup_stmt (use_stmt);
4432 if (!use_stmt_info || !use_stmt_info->min_input_precision)
4433 return false;
4434 /* The input precision recorded for COND_EXPRs applies only to the
4435 "then" and "else" values. */
4436 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
4437 if (assign
4438 && gimple_assign_rhs_code (assign) == COND_EXPR
4439 && use->use != gimple_assign_rhs2_ptr (assign)
4440 && use->use != gimple_assign_rhs3_ptr (assign))
4441 return false;
4442 precision = MAX (precision, use_stmt_info->min_input_precision);
4443 }
4444
4445 if (dump_enabled_p ())
4446 dump_printf_loc (MSG_NOTE, vect_location,
4447 "only the low %d bits of %T are significant\n",
4448 precision, lhs);
4449 stmt_info->min_output_precision = precision;
4450 return true;
4451 }
4452
4453 /* Calculate min_output_precision for STMT_INFO. */
4454
4455 static void
4456 vect_determine_min_output_precision (stmt_vec_info stmt_info)
4457 {
4458 /* We're only interested in statements with a narrowable result. */
4459 tree lhs = gimple_get_lhs (stmt_info->stmt);
4460 if (!lhs
4461 || TREE_CODE (lhs) != SSA_NAME
4462 || !vect_narrowable_type_p (TREE_TYPE (lhs)))
4463 return;
4464
4465 if (!vect_determine_min_output_precision_1 (stmt_info, lhs))
4466 stmt_info->min_output_precision = TYPE_PRECISION (TREE_TYPE (lhs));
4467 }
4468
4469 /* Use range information to decide whether STMT (described by STMT_INFO)
4470 could be done in a narrower type. This is effectively a forward
4471 propagation, since it uses context-independent information that applies
4472 to all users of an SSA name. */
4473
4474 static void
4475 vect_determine_precisions_from_range (stmt_vec_info stmt_info, gassign *stmt)
4476 {
4477 tree lhs = gimple_assign_lhs (stmt);
4478 if (!lhs || TREE_CODE (lhs) != SSA_NAME)
4479 return;
4480
4481 tree type = TREE_TYPE (lhs);
4482 if (!vect_narrowable_type_p (type))
4483 return;
4484
4485 /* First see whether we have any useful range information for the result. */
4486 unsigned int precision = TYPE_PRECISION (type);
4487 signop sign = TYPE_SIGN (type);
4488 wide_int min_value, max_value;
4489 if (!vect_get_range_info (lhs, &min_value, &max_value))
4490 return;
4491
4492 tree_code code = gimple_assign_rhs_code (stmt);
4493 unsigned int nops = gimple_num_ops (stmt);
4494
4495 if (!vect_truncatable_operation_p (code))
4496 /* Check that all relevant input operands are compatible, and update
4497 [MIN_VALUE, MAX_VALUE] to include their ranges. */
4498 for (unsigned int i = 1; i < nops; ++i)
4499 {
4500 tree op = gimple_op (stmt, i);
4501 if (TREE_CODE (op) == INTEGER_CST)
4502 {
4503 /* Don't require the integer to have RHS_TYPE (which it might
4504 not for things like shift amounts, etc.), but do require it
4505 to fit the type. */
4506 if (!int_fits_type_p (op, type))
4507 return;
4508
4509 min_value = wi::min (min_value, wi::to_wide (op, precision), sign);
4510 max_value = wi::max (max_value, wi::to_wide (op, precision), sign);
4511 }
4512 else if (TREE_CODE (op) == SSA_NAME)
4513 {
4514 /* Ignore codes that don't take uniform arguments. */
4515 if (!types_compatible_p (TREE_TYPE (op), type))
4516 return;
4517
4518 wide_int op_min_value, op_max_value;
4519 if (!vect_get_range_info (op, &op_min_value, &op_max_value))
4520 return;
4521
4522 min_value = wi::min (min_value, op_min_value, sign);
4523 max_value = wi::max (max_value, op_max_value, sign);
4524 }
4525 else
4526 return;
4527 }
4528
4529 /* Try to switch signed types for unsigned types if we can.
4530 This is better for two reasons. First, unsigned ops tend
4531 to be cheaper than signed ops. Second, it means that we can
4532 handle things like:
4533
4534 signed char c;
4535 int res = (int) c & 0xff00; // range [0x0000, 0xff00]
4536
4537 as:
4538
4539 signed char c;
4540 unsigned short res_1 = (unsigned short) c & 0xff00;
4541 int res = (int) res_1;
4542
4543 where the intermediate result res_1 has unsigned rather than
4544 signed type. */
4545 if (sign == SIGNED && !wi::neg_p (min_value))
4546 sign = UNSIGNED;
4547
4548 /* See what precision is required for MIN_VALUE and MAX_VALUE. */
4549 unsigned int precision1 = wi::min_precision (min_value, sign);
4550 unsigned int precision2 = wi::min_precision (max_value, sign);
4551 unsigned int value_precision = MAX (precision1, precision2);
4552 if (value_precision >= precision)
4553 return;
4554
4555 if (dump_enabled_p ())
4556 dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d"
4557 " without loss of precision: %G",
4558 sign == SIGNED ? "signed" : "unsigned",
4559 value_precision, stmt);
4560
4561 vect_set_operation_type (stmt_info, type, value_precision, sign);
4562 vect_set_min_input_precision (stmt_info, type, value_precision);
4563 }
4564
4565 /* Use information about the users of STMT's result to decide whether
4566 STMT (described by STMT_INFO) could be done in a narrower type.
4567 This is effectively a backward propagation. */
4568
4569 static void
4570 vect_determine_precisions_from_users (stmt_vec_info stmt_info, gassign *stmt)
4571 {
4572 tree_code code = gimple_assign_rhs_code (stmt);
4573 unsigned int opno = (code == COND_EXPR ? 2 : 1);
4574 tree type = TREE_TYPE (gimple_op (stmt, opno));
4575 if (!vect_narrowable_type_p (type))
4576 return;
4577
4578 unsigned int precision = TYPE_PRECISION (type);
4579 unsigned int operation_precision, min_input_precision;
4580 switch (code)
4581 {
4582 CASE_CONVERT:
4583 /* Only the bits that contribute to the output matter. Don't change
4584 the precision of the operation itself. */
4585 operation_precision = precision;
4586 min_input_precision = stmt_info->min_output_precision;
4587 break;
4588
4589 case LSHIFT_EXPR:
4590 case RSHIFT_EXPR:
4591 {
4592 tree shift = gimple_assign_rhs2 (stmt);
4593 if (TREE_CODE (shift) != INTEGER_CST
4594 || !wi::ltu_p (wi::to_widest (shift), precision))
4595 return;
4596 unsigned int const_shift = TREE_INT_CST_LOW (shift);
4597 if (code == LSHIFT_EXPR)
4598 {
4599 /* We need CONST_SHIFT fewer bits of the input. */
4600 operation_precision = stmt_info->min_output_precision;
4601 min_input_precision = (MAX (operation_precision, const_shift)
4602 - const_shift);
4603 }
4604 else
4605 {
4606 /* We need CONST_SHIFT extra bits to do the operation. */
4607 operation_precision = (stmt_info->min_output_precision
4608 + const_shift);
4609 min_input_precision = operation_precision;
4610 }
4611 break;
4612 }
4613
4614 default:
4615 if (vect_truncatable_operation_p (code))
4616 {
4617 /* Input bit N has no effect on output bits N-1 and lower. */
4618 operation_precision = stmt_info->min_output_precision;
4619 min_input_precision = operation_precision;
4620 break;
4621 }
4622 return;
4623 }
4624
4625 if (operation_precision < precision)
4626 {
4627 if (dump_enabled_p ())
4628 dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d"
4629 " without affecting users: %G",
4630 TYPE_UNSIGNED (type) ? "unsigned" : "signed",
4631 operation_precision, stmt);
4632 vect_set_operation_type (stmt_info, type, operation_precision,
4633 TYPE_SIGN (type));
4634 }
4635 vect_set_min_input_precision (stmt_info, type, min_input_precision);
4636 }
4637
4638 /* Handle vect_determine_precisions for STMT_INFO, given that we
4639 have already done so for the users of its result. */
4640
4641 void
4642 vect_determine_stmt_precisions (stmt_vec_info stmt_info)
4643 {
4644 vect_determine_min_output_precision (stmt_info);
4645 if (gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt))
4646 {
4647 vect_determine_precisions_from_range (stmt_info, stmt);
4648 vect_determine_precisions_from_users (stmt_info, stmt);
4649 }
4650 }
4651
4652 /* Walk backwards through the vectorizable region to determine the
4653 values of these fields:
4654
4655 - min_output_precision
4656 - min_input_precision
4657 - operation_precision
4658 - operation_sign. */
4659
4660 void
4661 vect_determine_precisions (vec_info *vinfo)
4662 {
4663 DUMP_VECT_SCOPE ("vect_determine_precisions");
4664
4665 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4666 {
4667 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4668 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
4669 unsigned int nbbs = loop->num_nodes;
4670
4671 for (unsigned int i = 0; i < nbbs; i++)
4672 {
4673 basic_block bb = bbs[nbbs - i - 1];
4674 for (gimple_stmt_iterator si = gsi_last_bb (bb);
4675 !gsi_end_p (si); gsi_prev (&si))
4676 vect_determine_stmt_precisions
4677 (vinfo->lookup_stmt (gsi_stmt (si)));
4678 }
4679 }
4680 else
4681 {
4682 bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
4683 gimple_stmt_iterator si = bb_vinfo->region_end;
4684 gimple *stmt;
4685 do
4686 {
4687 if (!gsi_stmt (si))
4688 si = gsi_last_bb (bb_vinfo->bb);
4689 else
4690 gsi_prev (&si);
4691 stmt = gsi_stmt (si);
4692 stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
4693 if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info))
4694 vect_determine_stmt_precisions (stmt_info);
4695 }
4696 while (stmt != gsi_stmt (bb_vinfo->region_begin));
4697 }
4698 }
4699
4700 typedef gimple *(*vect_recog_func_ptr) (stmt_vec_info, tree *);
4701
4702 struct vect_recog_func
4703 {
4704 vect_recog_func_ptr fn;
4705 const char *name;
4706 };
4707
4708 /* Note that ordering matters - the first pattern matching on a stmt is
4709 taken which means usually the more complex one needs to preceed the
4710 less comples onex (widen_sum only after dot_prod or sad for example). */
4711 static vect_recog_func vect_vect_recog_func_ptrs[] = {
4712 { vect_recog_over_widening_pattern, "over_widening" },
4713 /* Must come after over_widening, which narrows the shift as much as
4714 possible beforehand. */
4715 { vect_recog_average_pattern, "average" },
4716 { vect_recog_cast_forwprop_pattern, "cast_forwprop" },
4717 { vect_recog_widen_mult_pattern, "widen_mult" },
4718 { vect_recog_dot_prod_pattern, "dot_prod" },
4719 { vect_recog_sad_pattern, "sad" },
4720 { vect_recog_widen_sum_pattern, "widen_sum" },
4721 { vect_recog_pow_pattern, "pow" },
4722 { vect_recog_widen_shift_pattern, "widen_shift" },
4723 { vect_recog_rotate_pattern, "rotate" },
4724 { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" },
4725 { vect_recog_divmod_pattern, "divmod" },
4726 { vect_recog_mult_pattern, "mult" },
4727 { vect_recog_mixed_size_cond_pattern, "mixed_size_cond" },
4728 { vect_recog_bool_pattern, "bool" },
4729 /* This must come before mask conversion, and includes the parts
4730 of mask conversion that are needed for gather and scatter
4731 internal functions. */
4732 { vect_recog_gather_scatter_pattern, "gather_scatter" },
4733 { vect_recog_mask_conversion_pattern, "mask_conversion" }
4734 };
4735
4736 const unsigned int NUM_PATTERNS = ARRAY_SIZE (vect_vect_recog_func_ptrs);
4737
4738 /* Mark statements that are involved in a pattern. */
4739
4740 static inline void
4741 vect_mark_pattern_stmts (stmt_vec_info orig_stmt_info, gimple *pattern_stmt,
4742 tree pattern_vectype)
4743 {
4744 gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
4745
4746 gimple *orig_pattern_stmt = NULL;
4747 if (is_pattern_stmt_p (orig_stmt_info))
4748 {
4749 /* We're replacing a statement in an existing pattern definition
4750 sequence. */
4751 orig_pattern_stmt = orig_stmt_info->stmt;
4752 if (dump_enabled_p ())
4753 dump_printf_loc (MSG_NOTE, vect_location,
4754 "replacing earlier pattern %G", orig_pattern_stmt);
4755
4756 /* To keep the book-keeping simple, just swap the lhs of the
4757 old and new statements, so that the old one has a valid but
4758 unused lhs. */
4759 tree old_lhs = gimple_get_lhs (orig_pattern_stmt);
4760 gimple_set_lhs (orig_pattern_stmt, gimple_get_lhs (pattern_stmt));
4761 gimple_set_lhs (pattern_stmt, old_lhs);
4762
4763 if (dump_enabled_p ())
4764 dump_printf_loc (MSG_NOTE, vect_location, "with %G", pattern_stmt);
4765
4766 /* Switch to the statement that ORIG replaces. */
4767 orig_stmt_info = STMT_VINFO_RELATED_STMT (orig_stmt_info);
4768
4769 /* We shouldn't be replacing the main pattern statement. */
4770 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info)->stmt
4771 != orig_pattern_stmt);
4772 }
4773
4774 if (def_seq)
4775 for (gimple_stmt_iterator si = gsi_start (def_seq);
4776 !gsi_end_p (si); gsi_next (&si))
4777 {
4778 stmt_vec_info pattern_stmt_info
4779 = vect_init_pattern_stmt (gsi_stmt (si),
4780 orig_stmt_info, pattern_vectype);
4781 /* Stmts in the def sequence are not vectorizable cycle or
4782 induction defs, instead they should all be vect_internal_def
4783 feeding the main pattern stmt which retains this def type. */
4784 STMT_VINFO_DEF_TYPE (pattern_stmt_info) = vect_internal_def;
4785 }
4786
4787 if (orig_pattern_stmt)
4788 {
4789 vect_init_pattern_stmt (pattern_stmt, orig_stmt_info, pattern_vectype);
4790
4791 /* Insert all the new pattern statements before the original one. */
4792 gimple_seq *orig_def_seq = &STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
4793 gimple_stmt_iterator gsi = gsi_for_stmt (orig_pattern_stmt,
4794 orig_def_seq);
4795 gsi_insert_seq_before_without_update (&gsi, def_seq, GSI_SAME_STMT);
4796 gsi_insert_before_without_update (&gsi, pattern_stmt, GSI_SAME_STMT);
4797
4798 /* Remove the pattern statement that this new pattern replaces. */
4799 gsi_remove (&gsi, false);
4800 }
4801 else
4802 vect_set_pattern_stmt (pattern_stmt, orig_stmt_info, pattern_vectype);
4803 }
4804
4805 /* Function vect_pattern_recog_1
4806
4807 Input:
4808 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
4809 computation pattern.
4810 STMT_INFO: A stmt from which the pattern search should start.
4811
4812 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates
4813 a sequence of statements that has the same functionality and can be
4814 used to replace STMT_INFO. It returns the last statement in the sequence
4815 and adds any earlier statements to STMT_INFO's STMT_VINFO_PATTERN_DEF_SEQ.
4816 PATTERN_RECOG_FUNC also sets *TYPE_OUT to the vector type of the final
4817 statement, having first checked that the target supports the new operation
4818 in that type.
4819
4820 This function also does some bookkeeping, as explained in the documentation
4821 for vect_recog_pattern. */
4822
4823 static void
4824 vect_pattern_recog_1 (vect_recog_func *recog_func, stmt_vec_info stmt_info)
4825 {
4826 vec_info *vinfo = stmt_info->vinfo;
4827 gimple *pattern_stmt;
4828 loop_vec_info loop_vinfo;
4829 tree pattern_vectype;
4830
4831 /* If this statement has already been replaced with pattern statements,
4832 leave the original statement alone, since the first match wins.
4833 Instead try to match against the definition statements that feed
4834 the main pattern statement. */
4835 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
4836 {
4837 gimple_stmt_iterator gsi;
4838 for (gsi = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
4839 !gsi_end_p (gsi); gsi_next (&gsi))
4840 vect_pattern_recog_1 (recog_func, vinfo->lookup_stmt (gsi_stmt (gsi)));
4841 return;
4842 }
4843
4844 gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
4845 pattern_stmt = recog_func->fn (stmt_info, &pattern_vectype);
4846 if (!pattern_stmt)
4847 {
4848 /* Clear any half-formed pattern definition sequence. */
4849 STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
4850 return;
4851 }
4852
4853 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4854 gcc_assert (pattern_vectype);
4855
4856 /* Found a vectorizable pattern. */
4857 if (dump_enabled_p ())
4858 dump_printf_loc (MSG_NOTE, vect_location,
4859 "%s pattern recognized: %G",
4860 recog_func->name, pattern_stmt);
4861
4862 /* Mark the stmts that are involved in the pattern. */
4863 vect_mark_pattern_stmts (stmt_info, pattern_stmt, pattern_vectype);
4864
4865 /* Patterns cannot be vectorized using SLP, because they change the order of
4866 computation. */
4867 if (loop_vinfo)
4868 {
4869 unsigned ix, ix2;
4870 stmt_vec_info *elem_ptr;
4871 VEC_ORDERED_REMOVE_IF (LOOP_VINFO_REDUCTIONS (loop_vinfo), ix, ix2,
4872 elem_ptr, *elem_ptr == stmt_info);
4873 }
4874 }
4875
4876
4877 /* Function vect_pattern_recog
4878
4879 Input:
4880 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
4881 computation idioms.
4882
4883 Output - for each computation idiom that is detected we create a new stmt
4884 that provides the same functionality and that can be vectorized. We
4885 also record some information in the struct_stmt_info of the relevant
4886 stmts, as explained below:
4887
4888 At the entry to this function we have the following stmts, with the
4889 following initial value in the STMT_VINFO fields:
4890
4891 stmt in_pattern_p related_stmt vec_stmt
4892 S1: a_i = .... - - -
4893 S2: a_2 = ..use(a_i).. - - -
4894 S3: a_1 = ..use(a_2).. - - -
4895 S4: a_0 = ..use(a_1).. - - -
4896 S5: ... = ..use(a_0).. - - -
4897
4898 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
4899 represented by a single stmt. We then:
4900 - create a new stmt S6 equivalent to the pattern (the stmt is not
4901 inserted into the code)
4902 - fill in the STMT_VINFO fields as follows:
4903
4904 in_pattern_p related_stmt vec_stmt
4905 S1: a_i = .... - - -
4906 S2: a_2 = ..use(a_i).. - - -
4907 S3: a_1 = ..use(a_2).. - - -
4908 S4: a_0 = ..use(a_1).. true S6 -
4909 '---> S6: a_new = .... - S4 -
4910 S5: ... = ..use(a_0).. - - -
4911
4912 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
4913 to each other through the RELATED_STMT field).
4914
4915 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
4916 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
4917 remain irrelevant unless used by stmts other than S4.
4918
4919 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
4920 (because they are marked as irrelevant). It will vectorize S6, and record
4921 a pointer to the new vector stmt VS6 from S6 (as usual).
4922 S4 will be skipped, and S5 will be vectorized as usual:
4923
4924 in_pattern_p related_stmt vec_stmt
4925 S1: a_i = .... - - -
4926 S2: a_2 = ..use(a_i).. - - -
4927 S3: a_1 = ..use(a_2).. - - -
4928 > VS6: va_new = .... - - -
4929 S4: a_0 = ..use(a_1).. true S6 VS6
4930 '---> S6: a_new = .... - S4 VS6
4931 > VS5: ... = ..vuse(va_new).. - - -
4932 S5: ... = ..use(a_0).. - - -
4933
4934 DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
4935 elsewhere), and we'll end up with:
4936
4937 VS6: va_new = ....
4938 VS5: ... = ..vuse(va_new)..
4939
4940 In case of more than one pattern statements, e.g., widen-mult with
4941 intermediate type:
4942
4943 S1 a_t = ;
4944 S2 a_T = (TYPE) a_t;
4945 '--> S3: a_it = (interm_type) a_t;
4946 S4 prod_T = a_T * CONST;
4947 '--> S5: prod_T' = a_it w* CONST;
4948
4949 there may be other users of a_T outside the pattern. In that case S2 will
4950 be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
4951 and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
4952 be recorded in S3. */
4953
4954 void
4955 vect_pattern_recog (vec_info *vinfo)
4956 {
4957 class loop *loop;
4958 basic_block *bbs;
4959 unsigned int nbbs;
4960 gimple_stmt_iterator si;
4961 unsigned int i, j;
4962
4963 vect_determine_precisions (vinfo);
4964
4965 DUMP_VECT_SCOPE ("vect_pattern_recog");
4966
4967 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4968 {
4969 loop = LOOP_VINFO_LOOP (loop_vinfo);
4970 bbs = LOOP_VINFO_BBS (loop_vinfo);
4971 nbbs = loop->num_nodes;
4972
4973 /* Scan through the loop stmts, applying the pattern recognition
4974 functions starting at each stmt visited: */
4975 for (i = 0; i < nbbs; i++)
4976 {
4977 basic_block bb = bbs[i];
4978 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4979 {
4980 stmt_vec_info stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
4981 /* Scan over all generic vect_recog_xxx_pattern functions. */
4982 for (j = 0; j < NUM_PATTERNS; j++)
4983 vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j],
4984 stmt_info);
4985 }
4986 }
4987 }
4988 else
4989 {
4990 bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
4991 for (si = bb_vinfo->region_begin;
4992 gsi_stmt (si) != gsi_stmt (bb_vinfo->region_end); gsi_next (&si))
4993 {
4994 gimple *stmt = gsi_stmt (si);
4995 stmt_vec_info stmt_info = bb_vinfo->lookup_stmt (stmt);
4996 if (stmt_info && !STMT_VINFO_VECTORIZABLE (stmt_info))
4997 continue;
4998
4999 /* Scan over all generic vect_recog_xxx_pattern functions. */
5000 for (j = 0; j < NUM_PATTERNS; j++)
5001 vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], stmt_info);
5002 }
5003 }
5004 }