]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vect-slp.c
Fix SLP permute propagation error
[thirdparty/gcc.git] / gcc / tree-vect-slp.c
1 /* SLP - Basic Block Vectorization
2 Copyright (C) 2007-2021 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "insn-config.h"
34 #include "recog.h" /* FIXME: for insn_data */
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "gimple-iterator.h"
38 #include "cfgloop.h"
39 #include "tree-vectorizer.h"
40 #include "langhooks.h"
41 #include "gimple-walk.h"
42 #include "dbgcnt.h"
43 #include "tree-vector-builder.h"
44 #include "vec-perm-indices.h"
45 #include "gimple-fold.h"
46 #include "internal-fn.h"
47 #include "dump-context.h"
48 #include "cfganal.h"
49 #include "tree-eh.h"
50 #include "tree-cfg.h"
51 #include "alloc-pool.h"
52
53 static bool vectorizable_slp_permutation (vec_info *, gimple_stmt_iterator *,
54 slp_tree, stmt_vector_for_cost *);
55 static void vect_print_slp_tree (dump_flags_t, dump_location_t, slp_tree);
56
57 static object_allocator<_slp_tree> *slp_tree_pool;
58 static slp_tree slp_first_node;
59
60 void
61 vect_slp_init (void)
62 {
63 slp_tree_pool = new object_allocator<_slp_tree> ("SLP nodes");
64 }
65
66 void
67 vect_slp_fini (void)
68 {
69 while (slp_first_node)
70 delete slp_first_node;
71 delete slp_tree_pool;
72 slp_tree_pool = NULL;
73 }
74
75 void *
76 _slp_tree::operator new (size_t n)
77 {
78 gcc_assert (n == sizeof (_slp_tree));
79 return slp_tree_pool->allocate_raw ();
80 }
81
82 void
83 _slp_tree::operator delete (void *node, size_t n)
84 {
85 gcc_assert (n == sizeof (_slp_tree));
86 slp_tree_pool->remove_raw (node);
87 }
88
89
90 /* Initialize a SLP node. */
91
92 _slp_tree::_slp_tree ()
93 {
94 this->prev_node = NULL;
95 if (slp_first_node)
96 slp_first_node->prev_node = this;
97 this->next_node = slp_first_node;
98 slp_first_node = this;
99 SLP_TREE_SCALAR_STMTS (this) = vNULL;
100 SLP_TREE_SCALAR_OPS (this) = vNULL;
101 SLP_TREE_VEC_STMTS (this) = vNULL;
102 SLP_TREE_VEC_DEFS (this) = vNULL;
103 SLP_TREE_NUMBER_OF_VEC_STMTS (this) = 0;
104 SLP_TREE_CHILDREN (this) = vNULL;
105 SLP_TREE_LOAD_PERMUTATION (this) = vNULL;
106 SLP_TREE_LANE_PERMUTATION (this) = vNULL;
107 SLP_TREE_DEF_TYPE (this) = vect_uninitialized_def;
108 SLP_TREE_CODE (this) = ERROR_MARK;
109 SLP_TREE_VECTYPE (this) = NULL_TREE;
110 SLP_TREE_REPRESENTATIVE (this) = NULL;
111 SLP_TREE_REF_COUNT (this) = 1;
112 this->failed = NULL;
113 this->max_nunits = 1;
114 this->lanes = 0;
115 }
116
117 /* Tear down a SLP node. */
118
119 _slp_tree::~_slp_tree ()
120 {
121 if (this->prev_node)
122 this->prev_node->next_node = this->next_node;
123 else
124 slp_first_node = this->next_node;
125 if (this->next_node)
126 this->next_node->prev_node = this->prev_node;
127 SLP_TREE_CHILDREN (this).release ();
128 SLP_TREE_SCALAR_STMTS (this).release ();
129 SLP_TREE_SCALAR_OPS (this).release ();
130 SLP_TREE_VEC_STMTS (this).release ();
131 SLP_TREE_VEC_DEFS (this).release ();
132 SLP_TREE_LOAD_PERMUTATION (this).release ();
133 SLP_TREE_LANE_PERMUTATION (this).release ();
134 if (this->failed)
135 free (failed);
136 }
137
138 /* Recursively free the memory allocated for the SLP tree rooted at NODE. */
139
140 void
141 vect_free_slp_tree (slp_tree node)
142 {
143 int i;
144 slp_tree child;
145
146 if (--SLP_TREE_REF_COUNT (node) != 0)
147 return;
148
149 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
150 if (child)
151 vect_free_slp_tree (child);
152
153 /* If the node defines any SLP only patterns then those patterns are no
154 longer valid and should be removed. */
155 stmt_vec_info rep_stmt_info = SLP_TREE_REPRESENTATIVE (node);
156 if (rep_stmt_info && STMT_VINFO_SLP_VECT_ONLY_PATTERN (rep_stmt_info))
157 {
158 stmt_vec_info stmt_info = vect_orig_stmt (rep_stmt_info);
159 STMT_VINFO_IN_PATTERN_P (stmt_info) = false;
160 STMT_SLP_TYPE (stmt_info) = STMT_SLP_TYPE (rep_stmt_info);
161 }
162
163 delete node;
164 }
165
166 /* Return a location suitable for dumpings related to the SLP instance. */
167
168 dump_user_location_t
169 _slp_instance::location () const
170 {
171 if (!root_stmts.is_empty ())
172 return root_stmts[0]->stmt;
173 else
174 return SLP_TREE_SCALAR_STMTS (root)[0]->stmt;
175 }
176
177
178 /* Free the memory allocated for the SLP instance. */
179
180 void
181 vect_free_slp_instance (slp_instance instance)
182 {
183 vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
184 SLP_INSTANCE_LOADS (instance).release ();
185 SLP_INSTANCE_ROOT_STMTS (instance).release ();
186 instance->subgraph_entries.release ();
187 instance->cost_vec.release ();
188 free (instance);
189 }
190
191
192 /* Create an SLP node for SCALAR_STMTS. */
193
194 slp_tree
195 vect_create_new_slp_node (unsigned nops, tree_code code)
196 {
197 slp_tree node = new _slp_tree;
198 SLP_TREE_SCALAR_STMTS (node) = vNULL;
199 SLP_TREE_CHILDREN (node).create (nops);
200 SLP_TREE_DEF_TYPE (node) = vect_internal_def;
201 SLP_TREE_CODE (node) = code;
202 return node;
203 }
204 /* Create an SLP node for SCALAR_STMTS. */
205
206 static slp_tree
207 vect_create_new_slp_node (slp_tree node,
208 vec<stmt_vec_info> scalar_stmts, unsigned nops)
209 {
210 SLP_TREE_SCALAR_STMTS (node) = scalar_stmts;
211 SLP_TREE_CHILDREN (node).create (nops);
212 SLP_TREE_DEF_TYPE (node) = vect_internal_def;
213 SLP_TREE_REPRESENTATIVE (node) = scalar_stmts[0];
214 SLP_TREE_LANES (node) = scalar_stmts.length ();
215 return node;
216 }
217
218 /* Create an SLP node for SCALAR_STMTS. */
219
220 static slp_tree
221 vect_create_new_slp_node (vec<stmt_vec_info> scalar_stmts, unsigned nops)
222 {
223 return vect_create_new_slp_node (new _slp_tree, scalar_stmts, nops);
224 }
225
226 /* Create an SLP node for OPS. */
227
228 static slp_tree
229 vect_create_new_slp_node (slp_tree node, vec<tree> ops)
230 {
231 SLP_TREE_SCALAR_OPS (node) = ops;
232 SLP_TREE_DEF_TYPE (node) = vect_external_def;
233 SLP_TREE_LANES (node) = ops.length ();
234 return node;
235 }
236
237 /* Create an SLP node for OPS. */
238
239 static slp_tree
240 vect_create_new_slp_node (vec<tree> ops)
241 {
242 return vect_create_new_slp_node (new _slp_tree, ops);
243 }
244
245
246 /* This structure is used in creation of an SLP tree. Each instance
247 corresponds to the same operand in a group of scalar stmts in an SLP
248 node. */
249 typedef struct _slp_oprnd_info
250 {
251 /* Def-stmts for the operands. */
252 vec<stmt_vec_info> def_stmts;
253 /* Operands. */
254 vec<tree> ops;
255 /* Information about the first statement, its vector def-type, type, the
256 operand itself in case it's constant, and an indication if it's a pattern
257 stmt. */
258 tree first_op_type;
259 enum vect_def_type first_dt;
260 bool any_pattern;
261 } *slp_oprnd_info;
262
263
264 /* Allocate operands info for NOPS operands, and GROUP_SIZE def-stmts for each
265 operand. */
266 static vec<slp_oprnd_info>
267 vect_create_oprnd_info (int nops, int group_size)
268 {
269 int i;
270 slp_oprnd_info oprnd_info;
271 vec<slp_oprnd_info> oprnds_info;
272
273 oprnds_info.create (nops);
274 for (i = 0; i < nops; i++)
275 {
276 oprnd_info = XNEW (struct _slp_oprnd_info);
277 oprnd_info->def_stmts.create (group_size);
278 oprnd_info->ops.create (group_size);
279 oprnd_info->first_dt = vect_uninitialized_def;
280 oprnd_info->first_op_type = NULL_TREE;
281 oprnd_info->any_pattern = false;
282 oprnds_info.quick_push (oprnd_info);
283 }
284
285 return oprnds_info;
286 }
287
288
289 /* Free operands info. */
290
291 static void
292 vect_free_oprnd_info (vec<slp_oprnd_info> &oprnds_info)
293 {
294 int i;
295 slp_oprnd_info oprnd_info;
296
297 FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
298 {
299 oprnd_info->def_stmts.release ();
300 oprnd_info->ops.release ();
301 XDELETE (oprnd_info);
302 }
303
304 oprnds_info.release ();
305 }
306
307
308 /* Return true if STMTS contains a pattern statement. */
309
310 static bool
311 vect_contains_pattern_stmt_p (vec<stmt_vec_info> stmts)
312 {
313 stmt_vec_info stmt_info;
314 unsigned int i;
315 FOR_EACH_VEC_ELT (stmts, i, stmt_info)
316 if (is_pattern_stmt_p (stmt_info))
317 return true;
318 return false;
319 }
320
321 /* Return true when all lanes in the external or constant NODE have
322 the same value. */
323
324 static bool
325 vect_slp_tree_uniform_p (slp_tree node)
326 {
327 gcc_assert (SLP_TREE_DEF_TYPE (node) == vect_constant_def
328 || SLP_TREE_DEF_TYPE (node) == vect_external_def);
329
330 /* Pre-exsting vectors. */
331 if (SLP_TREE_SCALAR_OPS (node).is_empty ())
332 return false;
333
334 unsigned i;
335 tree op, first = NULL_TREE;
336 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op)
337 if (!first)
338 first = op;
339 else if (!operand_equal_p (first, op, 0))
340 return false;
341
342 return true;
343 }
344
345 /* Find the place of the data-ref in STMT_INFO in the interleaving chain
346 that starts from FIRST_STMT_INFO. Return -1 if the data-ref is not a part
347 of the chain. */
348
349 int
350 vect_get_place_in_interleaving_chain (stmt_vec_info stmt_info,
351 stmt_vec_info first_stmt_info)
352 {
353 stmt_vec_info next_stmt_info = first_stmt_info;
354 int result = 0;
355
356 if (first_stmt_info != DR_GROUP_FIRST_ELEMENT (stmt_info))
357 return -1;
358
359 do
360 {
361 if (next_stmt_info == stmt_info)
362 return result;
363 next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info);
364 if (next_stmt_info)
365 result += DR_GROUP_GAP (next_stmt_info);
366 }
367 while (next_stmt_info);
368
369 return -1;
370 }
371
372 /* Check whether it is possible to load COUNT elements of type ELT_TYPE
373 using the method implemented by duplicate_and_interleave. Return true
374 if so, returning the number of intermediate vectors in *NVECTORS_OUT
375 (if nonnull) and the type of each intermediate vector in *VECTOR_TYPE_OUT
376 (if nonnull). */
377
378 bool
379 can_duplicate_and_interleave_p (vec_info *vinfo, unsigned int count,
380 tree elt_type, unsigned int *nvectors_out,
381 tree *vector_type_out,
382 tree *permutes)
383 {
384 tree base_vector_type = get_vectype_for_scalar_type (vinfo, elt_type, count);
385 if (!base_vector_type || !VECTOR_MODE_P (TYPE_MODE (base_vector_type)))
386 return false;
387
388 machine_mode base_vector_mode = TYPE_MODE (base_vector_type);
389 poly_int64 elt_bytes = count * GET_MODE_UNIT_SIZE (base_vector_mode);
390 unsigned int nvectors = 1;
391 for (;;)
392 {
393 scalar_int_mode int_mode;
394 poly_int64 elt_bits = elt_bytes * BITS_PER_UNIT;
395 if (int_mode_for_size (elt_bits, 1).exists (&int_mode))
396 {
397 /* Get the natural vector type for this SLP group size. */
398 tree int_type = build_nonstandard_integer_type
399 (GET_MODE_BITSIZE (int_mode), 1);
400 tree vector_type
401 = get_vectype_for_scalar_type (vinfo, int_type, count);
402 if (vector_type
403 && VECTOR_MODE_P (TYPE_MODE (vector_type))
404 && known_eq (GET_MODE_SIZE (TYPE_MODE (vector_type)),
405 GET_MODE_SIZE (base_vector_mode)))
406 {
407 /* Try fusing consecutive sequences of COUNT / NVECTORS elements
408 together into elements of type INT_TYPE and using the result
409 to build NVECTORS vectors. */
410 poly_uint64 nelts = GET_MODE_NUNITS (TYPE_MODE (vector_type));
411 vec_perm_builder sel1 (nelts, 2, 3);
412 vec_perm_builder sel2 (nelts, 2, 3);
413 poly_int64 half_nelts = exact_div (nelts, 2);
414 for (unsigned int i = 0; i < 3; ++i)
415 {
416 sel1.quick_push (i);
417 sel1.quick_push (i + nelts);
418 sel2.quick_push (half_nelts + i);
419 sel2.quick_push (half_nelts + i + nelts);
420 }
421 vec_perm_indices indices1 (sel1, 2, nelts);
422 vec_perm_indices indices2 (sel2, 2, nelts);
423 if (can_vec_perm_const_p (TYPE_MODE (vector_type), indices1)
424 && can_vec_perm_const_p (TYPE_MODE (vector_type), indices2))
425 {
426 if (nvectors_out)
427 *nvectors_out = nvectors;
428 if (vector_type_out)
429 *vector_type_out = vector_type;
430 if (permutes)
431 {
432 permutes[0] = vect_gen_perm_mask_checked (vector_type,
433 indices1);
434 permutes[1] = vect_gen_perm_mask_checked (vector_type,
435 indices2);
436 }
437 return true;
438 }
439 }
440 }
441 if (!multiple_p (elt_bytes, 2, &elt_bytes))
442 return false;
443 nvectors *= 2;
444 }
445 }
446
447 /* Return true if DTA and DTB match. */
448
449 static bool
450 vect_def_types_match (enum vect_def_type dta, enum vect_def_type dtb)
451 {
452 return (dta == dtb
453 || ((dta == vect_external_def || dta == vect_constant_def)
454 && (dtb == vect_external_def || dtb == vect_constant_def)));
455 }
456
457 /* Get the defs for the rhs of STMT (collect them in OPRNDS_INFO), check that
458 they are of a valid type and that they match the defs of the first stmt of
459 the SLP group (stored in OPRNDS_INFO). This function tries to match stmts
460 by swapping operands of STMTS[STMT_NUM] when possible. Non-zero *SWAP
461 indicates swap is required for cond_expr stmts. Specifically, *SWAP
462 is 1 if STMT is cond and operands of comparison need to be swapped;
463 *SWAP is 2 if STMT is cond and code of comparison needs to be inverted.
464 If there is any operand swap in this function, *SWAP is set to non-zero
465 value.
466 If there was a fatal error return -1; if the error could be corrected by
467 swapping operands of father node of this one, return 1; if everything is
468 ok return 0. */
469 static int
470 vect_get_and_check_slp_defs (vec_info *vinfo, unsigned char swap,
471 bool *skip_args,
472 vec<stmt_vec_info> stmts, unsigned stmt_num,
473 vec<slp_oprnd_info> *oprnds_info)
474 {
475 stmt_vec_info stmt_info = stmts[stmt_num];
476 tree oprnd;
477 unsigned int i, number_of_oprnds;
478 enum vect_def_type dt = vect_uninitialized_def;
479 slp_oprnd_info oprnd_info;
480 int first_op_idx = 1;
481 unsigned int commutative_op = -1U;
482 bool first_op_cond = false;
483 bool first = stmt_num == 0;
484
485 if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
486 {
487 number_of_oprnds = gimple_call_num_args (stmt);
488 first_op_idx = 3;
489 if (gimple_call_internal_p (stmt))
490 {
491 internal_fn ifn = gimple_call_internal_fn (stmt);
492 commutative_op = first_commutative_argument (ifn);
493
494 /* Masked load, only look at mask. */
495 if (ifn == IFN_MASK_LOAD)
496 {
497 number_of_oprnds = 1;
498 /* Mask operand index. */
499 first_op_idx = 5;
500 }
501 }
502 }
503 else if (gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt))
504 {
505 enum tree_code code = gimple_assign_rhs_code (stmt);
506 number_of_oprnds = gimple_num_ops (stmt) - 1;
507 /* Swap can only be done for cond_expr if asked to, otherwise we
508 could result in different comparison code to the first stmt. */
509 if (code == COND_EXPR
510 && COMPARISON_CLASS_P (gimple_assign_rhs1 (stmt)))
511 {
512 first_op_cond = true;
513 number_of_oprnds++;
514 }
515 else
516 commutative_op = commutative_tree_code (code) ? 0U : -1U;
517 }
518 else if (gphi *stmt = dyn_cast <gphi *> (stmt_info->stmt))
519 number_of_oprnds = gimple_phi_num_args (stmt);
520 else
521 return -1;
522
523 bool swapped = (swap != 0);
524 bool backedge = false;
525 gcc_assert (!swapped || first_op_cond);
526 enum vect_def_type *dts = XALLOCAVEC (enum vect_def_type, number_of_oprnds);
527 for (i = 0; i < number_of_oprnds; i++)
528 {
529 if (first_op_cond)
530 {
531 /* Map indicating how operands of cond_expr should be swapped. */
532 int maps[3][4] = {{0, 1, 2, 3}, {1, 0, 2, 3}, {0, 1, 3, 2}};
533 int *map = maps[swap];
534
535 if (i < 2)
536 oprnd = TREE_OPERAND (gimple_op (stmt_info->stmt,
537 first_op_idx), map[i]);
538 else
539 oprnd = gimple_op (stmt_info->stmt, map[i]);
540 }
541 else if (gphi *stmt = dyn_cast <gphi *> (stmt_info->stmt))
542 {
543 oprnd = gimple_phi_arg_def (stmt, i);
544 backedge = dominated_by_p (CDI_DOMINATORS,
545 gimple_phi_arg_edge (stmt, i)->src,
546 gimple_bb (stmt_info->stmt));
547 }
548 else
549 oprnd = gimple_op (stmt_info->stmt, first_op_idx + (swapped ? !i : i));
550 if (TREE_CODE (oprnd) == VIEW_CONVERT_EXPR)
551 oprnd = TREE_OPERAND (oprnd, 0);
552
553 oprnd_info = (*oprnds_info)[i];
554
555 stmt_vec_info def_stmt_info;
556 if (!vect_is_simple_use (oprnd, vinfo, &dts[i], &def_stmt_info))
557 {
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
560 "Build SLP failed: can't analyze def for %T\n",
561 oprnd);
562
563 return -1;
564 }
565
566 if (skip_args[i])
567 {
568 oprnd_info->def_stmts.quick_push (NULL);
569 oprnd_info->ops.quick_push (NULL_TREE);
570 oprnd_info->first_dt = vect_uninitialized_def;
571 continue;
572 }
573
574 oprnd_info->def_stmts.quick_push (def_stmt_info);
575 oprnd_info->ops.quick_push (oprnd);
576
577 if (def_stmt_info
578 && is_pattern_stmt_p (def_stmt_info))
579 {
580 if (STMT_VINFO_RELATED_STMT (vect_orig_stmt (def_stmt_info))
581 != def_stmt_info)
582 oprnd_info->any_pattern = true;
583 else
584 /* If we promote this to external use the original stmt def. */
585 oprnd_info->ops.last ()
586 = gimple_get_lhs (vect_orig_stmt (def_stmt_info)->stmt);
587 }
588
589 /* If there's a extern def on a backedge make sure we can
590 code-generate at the region start.
591 ??? This is another case that could be fixed by adjusting
592 how we split the function but at the moment we'd have conflicting
593 goals there. */
594 if (backedge
595 && dts[i] == vect_external_def
596 && is_a <bb_vec_info> (vinfo)
597 && TREE_CODE (oprnd) == SSA_NAME
598 && !SSA_NAME_IS_DEFAULT_DEF (oprnd)
599 && !dominated_by_p (CDI_DOMINATORS,
600 as_a <bb_vec_info> (vinfo)->bbs[0],
601 gimple_bb (SSA_NAME_DEF_STMT (oprnd))))
602 {
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
605 "Build SLP failed: extern def %T only defined "
606 "on backedge\n", oprnd);
607 return -1;
608 }
609
610 if (first)
611 {
612 tree type = TREE_TYPE (oprnd);
613 dt = dts[i];
614 if ((dt == vect_constant_def
615 || dt == vect_external_def)
616 && !GET_MODE_SIZE (vinfo->vector_mode).is_constant ()
617 && (TREE_CODE (type) == BOOLEAN_TYPE
618 || !can_duplicate_and_interleave_p (vinfo, stmts.length (),
619 type)))
620 {
621 if (dump_enabled_p ())
622 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
623 "Build SLP failed: invalid type of def "
624 "for variable-length SLP %T\n", oprnd);
625 return -1;
626 }
627
628 /* For the swapping logic below force vect_reduction_def
629 for the reduction op in a SLP reduction group. */
630 if (!STMT_VINFO_DATA_REF (stmt_info)
631 && REDUC_GROUP_FIRST_ELEMENT (stmt_info)
632 && (int)i == STMT_VINFO_REDUC_IDX (stmt_info)
633 && def_stmt_info)
634 dts[i] = dt = vect_reduction_def;
635
636 /* Check the types of the definition. */
637 switch (dt)
638 {
639 case vect_external_def:
640 case vect_constant_def:
641 case vect_internal_def:
642 case vect_reduction_def:
643 case vect_induction_def:
644 case vect_nested_cycle:
645 break;
646
647 default:
648 /* FORNOW: Not supported. */
649 if (dump_enabled_p ())
650 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
651 "Build SLP failed: illegal type of def %T\n",
652 oprnd);
653 return -1;
654 }
655
656 oprnd_info->first_dt = dt;
657 oprnd_info->first_op_type = type;
658 }
659 }
660 if (first)
661 return 0;
662
663 /* Now match the operand definition types to that of the first stmt. */
664 for (i = 0; i < number_of_oprnds;)
665 {
666 if (skip_args[i])
667 {
668 ++i;
669 continue;
670 }
671
672 oprnd_info = (*oprnds_info)[i];
673 dt = dts[i];
674 stmt_vec_info def_stmt_info = oprnd_info->def_stmts[stmt_num];
675 oprnd = oprnd_info->ops[stmt_num];
676 tree type = TREE_TYPE (oprnd);
677
678 if (!types_compatible_p (oprnd_info->first_op_type, type))
679 {
680 if (dump_enabled_p ())
681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
682 "Build SLP failed: different operand types\n");
683 return 1;
684 }
685
686 /* Not first stmt of the group, check that the def-stmt/s match
687 the def-stmt/s of the first stmt. Allow different definition
688 types for reduction chains: the first stmt must be a
689 vect_reduction_def (a phi node), and the rest
690 end in the reduction chain. */
691 if ((!vect_def_types_match (oprnd_info->first_dt, dt)
692 && !(oprnd_info->first_dt == vect_reduction_def
693 && !STMT_VINFO_DATA_REF (stmt_info)
694 && REDUC_GROUP_FIRST_ELEMENT (stmt_info)
695 && def_stmt_info
696 && !STMT_VINFO_DATA_REF (def_stmt_info)
697 && (REDUC_GROUP_FIRST_ELEMENT (def_stmt_info)
698 == REDUC_GROUP_FIRST_ELEMENT (stmt_info))))
699 || (!STMT_VINFO_DATA_REF (stmt_info)
700 && REDUC_GROUP_FIRST_ELEMENT (stmt_info)
701 && ((!def_stmt_info
702 || STMT_VINFO_DATA_REF (def_stmt_info)
703 || (REDUC_GROUP_FIRST_ELEMENT (def_stmt_info)
704 != REDUC_GROUP_FIRST_ELEMENT (stmt_info)))
705 != (oprnd_info->first_dt != vect_reduction_def))))
706 {
707 /* Try swapping operands if we got a mismatch. For BB
708 vectorization only in case it will clearly improve things. */
709 if (i == commutative_op && !swapped
710 && (!is_a <bb_vec_info> (vinfo)
711 || (!vect_def_types_match ((*oprnds_info)[i+1]->first_dt,
712 dts[i+1])
713 && (vect_def_types_match (oprnd_info->first_dt, dts[i+1])
714 || vect_def_types_match
715 ((*oprnds_info)[i+1]->first_dt, dts[i])))))
716 {
717 if (dump_enabled_p ())
718 dump_printf_loc (MSG_NOTE, vect_location,
719 "trying swapped operands\n");
720 std::swap (dts[i], dts[i+1]);
721 std::swap ((*oprnds_info)[i]->def_stmts[stmt_num],
722 (*oprnds_info)[i+1]->def_stmts[stmt_num]);
723 std::swap ((*oprnds_info)[i]->ops[stmt_num],
724 (*oprnds_info)[i+1]->ops[stmt_num]);
725 swapped = true;
726 continue;
727 }
728
729 if (is_a <bb_vec_info> (vinfo)
730 && !oprnd_info->any_pattern)
731 {
732 /* Now for commutative ops we should see whether we can
733 make the other operand matching. */
734 if (dump_enabled_p ())
735 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
736 "treating operand as external\n");
737 oprnd_info->first_dt = dt = vect_external_def;
738 }
739 else
740 {
741 if (dump_enabled_p ())
742 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
743 "Build SLP failed: different types\n");
744 return 1;
745 }
746 }
747
748 /* Make sure to demote the overall operand to external. */
749 if (dt == vect_external_def)
750 oprnd_info->first_dt = vect_external_def;
751 /* For a SLP reduction chain we want to duplicate the reduction to
752 each of the chain members. That gets us a sane SLP graph (still
753 the stmts are not 100% correct wrt the initial values). */
754 else if ((dt == vect_internal_def
755 || dt == vect_reduction_def)
756 && oprnd_info->first_dt == vect_reduction_def
757 && !STMT_VINFO_DATA_REF (stmt_info)
758 && REDUC_GROUP_FIRST_ELEMENT (stmt_info)
759 && !STMT_VINFO_DATA_REF (def_stmt_info)
760 && (REDUC_GROUP_FIRST_ELEMENT (def_stmt_info)
761 == REDUC_GROUP_FIRST_ELEMENT (stmt_info)))
762 {
763 oprnd_info->def_stmts[stmt_num] = oprnd_info->def_stmts[0];
764 oprnd_info->ops[stmt_num] = oprnd_info->ops[0];
765 }
766
767 ++i;
768 }
769
770 /* Swap operands. */
771 if (swapped)
772 {
773 if (dump_enabled_p ())
774 dump_printf_loc (MSG_NOTE, vect_location,
775 "swapped operands to match def types in %G",
776 stmt_info->stmt);
777 }
778
779 return 0;
780 }
781
782 /* Try to assign vector type VECTYPE to STMT_INFO for BB vectorization.
783 Return true if we can, meaning that this choice doesn't conflict with
784 existing SLP nodes that use STMT_INFO. */
785
786 bool
787 vect_update_shared_vectype (stmt_vec_info stmt_info, tree vectype)
788 {
789 tree old_vectype = STMT_VINFO_VECTYPE (stmt_info);
790 if (old_vectype)
791 return useless_type_conversion_p (vectype, old_vectype);
792
793 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
794 {
795 /* We maintain the invariant that if any statement in the group is
796 used, all other members of the group have the same vector type. */
797 stmt_vec_info first_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
798 stmt_vec_info member_info = first_info;
799 for (; member_info; member_info = DR_GROUP_NEXT_ELEMENT (member_info))
800 if (is_pattern_stmt_p (member_info)
801 && !useless_type_conversion_p (vectype,
802 STMT_VINFO_VECTYPE (member_info)))
803 break;
804
805 if (!member_info)
806 {
807 for (member_info = first_info; member_info;
808 member_info = DR_GROUP_NEXT_ELEMENT (member_info))
809 STMT_VINFO_VECTYPE (member_info) = vectype;
810 return true;
811 }
812 }
813 else if (!is_pattern_stmt_p (stmt_info))
814 {
815 STMT_VINFO_VECTYPE (stmt_info) = vectype;
816 return true;
817 }
818
819 if (dump_enabled_p ())
820 {
821 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
822 "Build SLP failed: incompatible vector"
823 " types for: %G", stmt_info->stmt);
824 dump_printf_loc (MSG_NOTE, vect_location,
825 " old vector type: %T\n", old_vectype);
826 dump_printf_loc (MSG_NOTE, vect_location,
827 " new vector type: %T\n", vectype);
828 }
829 return false;
830 }
831
832 /* Return true if call statements CALL1 and CALL2 are similar enough
833 to be combined into the same SLP group. */
834
835 static bool
836 compatible_calls_p (gcall *call1, gcall *call2)
837 {
838 unsigned int nargs = gimple_call_num_args (call1);
839 if (nargs != gimple_call_num_args (call2))
840 return false;
841
842 if (gimple_call_combined_fn (call1) != gimple_call_combined_fn (call2))
843 return false;
844
845 if (gimple_call_internal_p (call1))
846 {
847 if (!types_compatible_p (TREE_TYPE (gimple_call_lhs (call1)),
848 TREE_TYPE (gimple_call_lhs (call2))))
849 return false;
850 for (unsigned int i = 0; i < nargs; ++i)
851 if (!types_compatible_p (TREE_TYPE (gimple_call_arg (call1, i)),
852 TREE_TYPE (gimple_call_arg (call2, i))))
853 return false;
854 }
855 else
856 {
857 if (!operand_equal_p (gimple_call_fn (call1),
858 gimple_call_fn (call2), 0))
859 return false;
860
861 if (gimple_call_fntype (call1) != gimple_call_fntype (call2))
862 return false;
863 }
864 return true;
865 }
866
867 /* A subroutine of vect_build_slp_tree for checking VECTYPE, which is the
868 caller's attempt to find the vector type in STMT_INFO with the narrowest
869 element type. Return true if VECTYPE is nonnull and if it is valid
870 for STMT_INFO. When returning true, update MAX_NUNITS to reflect the
871 number of units in VECTYPE. GROUP_SIZE and MAX_NUNITS are as for
872 vect_build_slp_tree. */
873
874 static bool
875 vect_record_max_nunits (vec_info *vinfo, stmt_vec_info stmt_info,
876 unsigned int group_size,
877 tree vectype, poly_uint64 *max_nunits)
878 {
879 if (!vectype)
880 {
881 if (dump_enabled_p ())
882 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
883 "Build SLP failed: unsupported data-type in %G\n",
884 stmt_info->stmt);
885 /* Fatal mismatch. */
886 return false;
887 }
888
889 /* If populating the vector type requires unrolling then fail
890 before adjusting *max_nunits for basic-block vectorization. */
891 if (is_a <bb_vec_info> (vinfo)
892 && !multiple_p (group_size, TYPE_VECTOR_SUBPARTS (vectype)))
893 {
894 if (dump_enabled_p ())
895 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
896 "Build SLP failed: unrolling required "
897 "in basic block SLP\n");
898 /* Fatal mismatch. */
899 return false;
900 }
901
902 /* In case of multiple types we need to detect the smallest type. */
903 vect_update_max_nunits (max_nunits, vectype);
904 return true;
905 }
906
907 /* Verify if the scalar stmts STMTS are isomorphic, require data
908 permutation or are of unsupported types of operation. Return
909 true if they are, otherwise return false and indicate in *MATCHES
910 which stmts are not isomorphic to the first one. If MATCHES[0]
911 is false then this indicates the comparison could not be
912 carried out or the stmts will never be vectorized by SLP.
913
914 Note COND_EXPR is possibly isomorphic to another one after swapping its
915 operands. Set SWAP[i] to 1 if stmt I is COND_EXPR and isomorphic to
916 the first stmt by swapping the two operands of comparison; set SWAP[i]
917 to 2 if stmt I is isormorphic to the first stmt by inverting the code
918 of comparison. Take A1 >= B1 ? X1 : Y1 as an exmple, it can be swapped
919 to (B1 <= A1 ? X1 : Y1); or be inverted to (A1 < B1) ? Y1 : X1. */
920
921 static bool
922 vect_build_slp_tree_1 (vec_info *vinfo, unsigned char *swap,
923 vec<stmt_vec_info> stmts, unsigned int group_size,
924 poly_uint64 *max_nunits, bool *matches,
925 bool *two_operators, tree *node_vectype)
926 {
927 unsigned int i;
928 stmt_vec_info first_stmt_info = stmts[0];
929 enum tree_code first_stmt_code = ERROR_MARK;
930 enum tree_code alt_stmt_code = ERROR_MARK;
931 enum tree_code rhs_code = ERROR_MARK;
932 enum tree_code first_cond_code = ERROR_MARK;
933 tree lhs;
934 bool need_same_oprnds = false;
935 tree vectype = NULL_TREE, first_op1 = NULL_TREE;
936 optab optab;
937 int icode;
938 machine_mode optab_op2_mode;
939 machine_mode vec_mode;
940 stmt_vec_info first_load = NULL, prev_first_load = NULL;
941 bool first_stmt_load_p = false, load_p = false;
942 bool first_stmt_phi_p = false, phi_p = false;
943 bool maybe_soft_fail = false;
944 tree soft_fail_nunits_vectype = NULL_TREE;
945
946 /* For every stmt in NODE find its def stmt/s. */
947 stmt_vec_info stmt_info;
948 FOR_EACH_VEC_ELT (stmts, i, stmt_info)
949 {
950 gimple *stmt = stmt_info->stmt;
951 swap[i] = 0;
952 matches[i] = false;
953
954 if (dump_enabled_p ())
955 dump_printf_loc (MSG_NOTE, vect_location, "Build SLP for %G", stmt);
956
957 /* Fail to vectorize statements marked as unvectorizable, throw
958 or are volatile. */
959 if (!STMT_VINFO_VECTORIZABLE (stmt_info)
960 || stmt_can_throw_internal (cfun, stmt)
961 || gimple_has_volatile_ops (stmt))
962 {
963 if (dump_enabled_p ())
964 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
965 "Build SLP failed: unvectorizable statement %G",
966 stmt);
967 /* ??? For BB vectorization we want to commutate operands in a way
968 to shuffle all unvectorizable defs into one operand and have
969 the other still vectorized. The following doesn't reliably
970 work for this though but it's the easiest we can do here. */
971 if (is_a <bb_vec_info> (vinfo) && i != 0)
972 continue;
973 /* Fatal mismatch. */
974 matches[0] = false;
975 return false;
976 }
977
978 lhs = gimple_get_lhs (stmt);
979 if (lhs == NULL_TREE)
980 {
981 if (dump_enabled_p ())
982 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
983 "Build SLP failed: not GIMPLE_ASSIGN nor "
984 "GIMPLE_CALL %G", stmt);
985 if (is_a <bb_vec_info> (vinfo) && i != 0)
986 continue;
987 /* Fatal mismatch. */
988 matches[0] = false;
989 return false;
990 }
991
992 tree nunits_vectype;
993 if (!vect_get_vector_types_for_stmt (vinfo, stmt_info, &vectype,
994 &nunits_vectype, group_size))
995 {
996 if (is_a <bb_vec_info> (vinfo) && i != 0)
997 continue;
998 /* Fatal mismatch. */
999 matches[0] = false;
1000 return false;
1001 }
1002 /* Record nunits required but continue analysis, producing matches[]
1003 as if nunits was not an issue. This allows splitting of groups
1004 to happen. */
1005 if (nunits_vectype
1006 && !vect_record_max_nunits (vinfo, stmt_info, group_size,
1007 nunits_vectype, max_nunits))
1008 {
1009 gcc_assert (is_a <bb_vec_info> (vinfo));
1010 maybe_soft_fail = true;
1011 soft_fail_nunits_vectype = nunits_vectype;
1012 }
1013
1014 gcc_assert (vectype);
1015
1016 gcall *call_stmt = dyn_cast <gcall *> (stmt);
1017 if (call_stmt)
1018 {
1019 rhs_code = CALL_EXPR;
1020
1021 if (gimple_call_internal_p (stmt, IFN_MASK_LOAD))
1022 load_p = true;
1023 else if ((gimple_call_internal_p (call_stmt)
1024 && (!vectorizable_internal_fn_p
1025 (gimple_call_internal_fn (call_stmt))))
1026 || gimple_call_tail_p (call_stmt)
1027 || gimple_call_noreturn_p (call_stmt)
1028 || !gimple_call_nothrow_p (call_stmt)
1029 || gimple_call_chain (call_stmt))
1030 {
1031 if (dump_enabled_p ())
1032 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1033 "Build SLP failed: unsupported call type %G",
1034 call_stmt);
1035 if (is_a <bb_vec_info> (vinfo) && i != 0)
1036 continue;
1037 /* Fatal mismatch. */
1038 matches[0] = false;
1039 return false;
1040 }
1041 }
1042 else if (gimple_code (stmt) == GIMPLE_PHI)
1043 {
1044 rhs_code = ERROR_MARK;
1045 phi_p = true;
1046 }
1047 else
1048 {
1049 rhs_code = gimple_assign_rhs_code (stmt);
1050 load_p = gimple_vuse (stmt);
1051 }
1052
1053 /* Check the operation. */
1054 if (i == 0)
1055 {
1056 *node_vectype = vectype;
1057 first_stmt_code = rhs_code;
1058 first_stmt_load_p = load_p;
1059 first_stmt_phi_p = phi_p;
1060
1061 /* Shift arguments should be equal in all the packed stmts for a
1062 vector shift with scalar shift operand. */
1063 if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR
1064 || rhs_code == LROTATE_EXPR
1065 || rhs_code == RROTATE_EXPR)
1066 {
1067 vec_mode = TYPE_MODE (vectype);
1068
1069 /* First see if we have a vector/vector shift. */
1070 optab = optab_for_tree_code (rhs_code, vectype,
1071 optab_vector);
1072
1073 if (!optab
1074 || optab_handler (optab, vec_mode) == CODE_FOR_nothing)
1075 {
1076 /* No vector/vector shift, try for a vector/scalar shift. */
1077 optab = optab_for_tree_code (rhs_code, vectype,
1078 optab_scalar);
1079
1080 if (!optab)
1081 {
1082 if (dump_enabled_p ())
1083 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1084 "Build SLP failed: no optab.\n");
1085 if (is_a <bb_vec_info> (vinfo) && i != 0)
1086 continue;
1087 /* Fatal mismatch. */
1088 matches[0] = false;
1089 return false;
1090 }
1091 icode = (int) optab_handler (optab, vec_mode);
1092 if (icode == CODE_FOR_nothing)
1093 {
1094 if (dump_enabled_p ())
1095 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1096 "Build SLP failed: "
1097 "op not supported by target.\n");
1098 if (is_a <bb_vec_info> (vinfo) && i != 0)
1099 continue;
1100 /* Fatal mismatch. */
1101 matches[0] = false;
1102 return false;
1103 }
1104 optab_op2_mode = insn_data[icode].operand[2].mode;
1105 if (!VECTOR_MODE_P (optab_op2_mode))
1106 {
1107 need_same_oprnds = true;
1108 first_op1 = gimple_assign_rhs2 (stmt);
1109 }
1110 }
1111 }
1112 else if (rhs_code == WIDEN_LSHIFT_EXPR)
1113 {
1114 need_same_oprnds = true;
1115 first_op1 = gimple_assign_rhs2 (stmt);
1116 }
1117 else if (!load_p
1118 && rhs_code == BIT_FIELD_REF)
1119 {
1120 tree vec = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
1121 if (!is_a <bb_vec_info> (vinfo)
1122 || TREE_CODE (vec) != SSA_NAME
1123 || !operand_equal_p (TYPE_SIZE (vectype),
1124 TYPE_SIZE (TREE_TYPE (vec))))
1125 {
1126 if (dump_enabled_p ())
1127 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1128 "Build SLP failed: "
1129 "BIT_FIELD_REF not supported\n");
1130 /* Fatal mismatch. */
1131 matches[0] = false;
1132 return false;
1133 }
1134 }
1135 else if (call_stmt
1136 && gimple_call_internal_p (call_stmt, IFN_DIV_POW2))
1137 {
1138 need_same_oprnds = true;
1139 first_op1 = gimple_call_arg (call_stmt, 1);
1140 }
1141 }
1142 else
1143 {
1144 if (first_stmt_code != rhs_code
1145 && alt_stmt_code == ERROR_MARK)
1146 alt_stmt_code = rhs_code;
1147 if ((first_stmt_code != rhs_code
1148 && (first_stmt_code != IMAGPART_EXPR
1149 || rhs_code != REALPART_EXPR)
1150 && (first_stmt_code != REALPART_EXPR
1151 || rhs_code != IMAGPART_EXPR)
1152 /* Handle mismatches in plus/minus by computing both
1153 and merging the results. */
1154 && !((first_stmt_code == PLUS_EXPR
1155 || first_stmt_code == MINUS_EXPR)
1156 && (alt_stmt_code == PLUS_EXPR
1157 || alt_stmt_code == MINUS_EXPR)
1158 && rhs_code == alt_stmt_code)
1159 && !(STMT_VINFO_GROUPED_ACCESS (stmt_info)
1160 && (first_stmt_code == ARRAY_REF
1161 || first_stmt_code == BIT_FIELD_REF
1162 || first_stmt_code == INDIRECT_REF
1163 || first_stmt_code == COMPONENT_REF
1164 || first_stmt_code == MEM_REF)))
1165 || first_stmt_load_p != load_p
1166 || first_stmt_phi_p != phi_p)
1167 {
1168 if (dump_enabled_p ())
1169 {
1170 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1171 "Build SLP failed: different operation "
1172 "in stmt %G", stmt);
1173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1174 "original stmt %G", first_stmt_info->stmt);
1175 }
1176 /* Mismatch. */
1177 continue;
1178 }
1179
1180 if (!load_p
1181 && first_stmt_code == BIT_FIELD_REF
1182 && (TREE_OPERAND (gimple_assign_rhs1 (first_stmt_info->stmt), 0)
1183 != TREE_OPERAND (gimple_assign_rhs1 (stmt_info->stmt), 0)))
1184 {
1185 if (dump_enabled_p ())
1186 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1187 "Build SLP failed: different BIT_FIELD_REF "
1188 "arguments in %G", stmt);
1189 /* Mismatch. */
1190 continue;
1191 }
1192
1193 if (!load_p && rhs_code == CALL_EXPR)
1194 {
1195 if (!compatible_calls_p (as_a <gcall *> (stmts[0]->stmt),
1196 as_a <gcall *> (stmt)))
1197 {
1198 if (dump_enabled_p ())
1199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1200 "Build SLP failed: different calls in %G",
1201 stmt);
1202 /* Mismatch. */
1203 continue;
1204 }
1205 }
1206
1207 if ((phi_p || gimple_could_trap_p (stmt_info->stmt))
1208 && (gimple_bb (first_stmt_info->stmt)
1209 != gimple_bb (stmt_info->stmt)))
1210 {
1211 if (dump_enabled_p ())
1212 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1213 "Build SLP failed: different BB for PHI "
1214 "or possibly trapping operation in %G", stmt);
1215 /* Mismatch. */
1216 continue;
1217 }
1218
1219 if (need_same_oprnds)
1220 {
1221 tree other_op1 = (call_stmt
1222 ? gimple_call_arg (call_stmt, 1)
1223 : gimple_assign_rhs2 (stmt));
1224 if (!operand_equal_p (first_op1, other_op1, 0))
1225 {
1226 if (dump_enabled_p ())
1227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1228 "Build SLP failed: different shift "
1229 "arguments in %G", stmt);
1230 /* Mismatch. */
1231 continue;
1232 }
1233 }
1234
1235 if (!types_compatible_p (vectype, *node_vectype))
1236 {
1237 if (dump_enabled_p ())
1238 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1239 "Build SLP failed: different vector type "
1240 "in %G", stmt);
1241 /* Mismatch. */
1242 continue;
1243 }
1244 }
1245
1246 /* Grouped store or load. */
1247 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1248 {
1249 if (REFERENCE_CLASS_P (lhs))
1250 {
1251 /* Store. */
1252 ;
1253 }
1254 else
1255 {
1256 /* Load. */
1257 first_load = DR_GROUP_FIRST_ELEMENT (stmt_info);
1258 if (prev_first_load)
1259 {
1260 /* Check that there are no loads from different interleaving
1261 chains in the same node. */
1262 if (prev_first_load != first_load)
1263 {
1264 if (dump_enabled_p ())
1265 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
1266 vect_location,
1267 "Build SLP failed: different "
1268 "interleaving chains in one node %G",
1269 stmt);
1270 /* Mismatch. */
1271 continue;
1272 }
1273 }
1274 else
1275 prev_first_load = first_load;
1276 }
1277 } /* Grouped access. */
1278 else
1279 {
1280 if (load_p)
1281 {
1282 /* Not grouped load. */
1283 if (dump_enabled_p ())
1284 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1285 "Build SLP failed: not grouped load %G", stmt);
1286
1287 /* FORNOW: Not grouped loads are not supported. */
1288 if (is_a <bb_vec_info> (vinfo) && i != 0)
1289 continue;
1290 /* Fatal mismatch. */
1291 matches[0] = false;
1292 return false;
1293 }
1294
1295 /* Not memory operation. */
1296 if (!phi_p
1297 && TREE_CODE_CLASS (rhs_code) != tcc_binary
1298 && TREE_CODE_CLASS (rhs_code) != tcc_unary
1299 && TREE_CODE_CLASS (rhs_code) != tcc_expression
1300 && TREE_CODE_CLASS (rhs_code) != tcc_comparison
1301 && rhs_code != VIEW_CONVERT_EXPR
1302 && rhs_code != CALL_EXPR
1303 && rhs_code != BIT_FIELD_REF)
1304 {
1305 if (dump_enabled_p ())
1306 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1307 "Build SLP failed: operation unsupported %G",
1308 stmt);
1309 if (is_a <bb_vec_info> (vinfo) && i != 0)
1310 continue;
1311 /* Fatal mismatch. */
1312 matches[0] = false;
1313 return false;
1314 }
1315
1316 if (rhs_code == COND_EXPR)
1317 {
1318 tree cond_expr = gimple_assign_rhs1 (stmt);
1319 enum tree_code cond_code = TREE_CODE (cond_expr);
1320 enum tree_code swap_code = ERROR_MARK;
1321 enum tree_code invert_code = ERROR_MARK;
1322
1323 if (i == 0)
1324 first_cond_code = TREE_CODE (cond_expr);
1325 else if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1326 {
1327 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
1328 swap_code = swap_tree_comparison (cond_code);
1329 invert_code = invert_tree_comparison (cond_code, honor_nans);
1330 }
1331
1332 if (first_cond_code == cond_code)
1333 ;
1334 /* Isomorphic can be achieved by swapping. */
1335 else if (first_cond_code == swap_code)
1336 swap[i] = 1;
1337 /* Isomorphic can be achieved by inverting. */
1338 else if (first_cond_code == invert_code)
1339 swap[i] = 2;
1340 else
1341 {
1342 if (dump_enabled_p ())
1343 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1344 "Build SLP failed: different"
1345 " operation %G", stmt);
1346 /* Mismatch. */
1347 continue;
1348 }
1349 }
1350 }
1351
1352 matches[i] = true;
1353 }
1354
1355 for (i = 0; i < group_size; ++i)
1356 if (!matches[i])
1357 return false;
1358
1359 /* If we allowed a two-operation SLP node verify the target can cope
1360 with the permute we are going to use. */
1361 if (alt_stmt_code != ERROR_MARK
1362 && TREE_CODE_CLASS (alt_stmt_code) != tcc_reference)
1363 {
1364 *two_operators = true;
1365 }
1366
1367 if (maybe_soft_fail)
1368 {
1369 unsigned HOST_WIDE_INT const_nunits;
1370 if (!TYPE_VECTOR_SUBPARTS
1371 (soft_fail_nunits_vectype).is_constant (&const_nunits)
1372 || const_nunits > group_size)
1373 matches[0] = false;
1374 else
1375 {
1376 /* With constant vector elements simulate a mismatch at the
1377 point we need to split. */
1378 unsigned tail = group_size & (const_nunits - 1);
1379 memset (&matches[group_size - tail], 0, sizeof (bool) * tail);
1380 }
1381 return false;
1382 }
1383
1384 return true;
1385 }
1386
1387 /* Traits for the hash_set to record failed SLP builds for a stmt set.
1388 Note we never remove apart from at destruction time so we do not
1389 need a special value for deleted that differs from empty. */
1390 struct bst_traits
1391 {
1392 typedef vec <stmt_vec_info> value_type;
1393 typedef vec <stmt_vec_info> compare_type;
1394 static inline hashval_t hash (value_type);
1395 static inline bool equal (value_type existing, value_type candidate);
1396 static inline bool is_empty (value_type x) { return !x.exists (); }
1397 static inline bool is_deleted (value_type x) { return !x.exists (); }
1398 static const bool empty_zero_p = true;
1399 static inline void mark_empty (value_type &x) { x.release (); }
1400 static inline void mark_deleted (value_type &x) { x.release (); }
1401 static inline void remove (value_type &x) { x.release (); }
1402 };
1403 inline hashval_t
1404 bst_traits::hash (value_type x)
1405 {
1406 inchash::hash h;
1407 for (unsigned i = 0; i < x.length (); ++i)
1408 h.add_int (gimple_uid (x[i]->stmt));
1409 return h.end ();
1410 }
1411 inline bool
1412 bst_traits::equal (value_type existing, value_type candidate)
1413 {
1414 if (existing.length () != candidate.length ())
1415 return false;
1416 for (unsigned i = 0; i < existing.length (); ++i)
1417 if (existing[i] != candidate[i])
1418 return false;
1419 return true;
1420 }
1421
1422 /* ??? This was std::pair<std::pair<tree_code, vect_def_type>, tree>
1423 but then vec::insert does memmove and that's not compatible with
1424 std::pair. */
1425 struct chain_op_t
1426 {
1427 chain_op_t (tree_code code_, vect_def_type dt_, tree op_)
1428 : code (code_), dt (dt_), op (op_) {}
1429 tree_code code;
1430 vect_def_type dt;
1431 tree op;
1432 };
1433
1434 /* Comparator for sorting associatable chains. */
1435
1436 static int
1437 dt_sort_cmp (const void *op1_, const void *op2_, void *)
1438 {
1439 auto *op1 = (const chain_op_t *) op1_;
1440 auto *op2 = (const chain_op_t *) op2_;
1441 if (op1->dt != op2->dt)
1442 return (int)op1->dt - (int)op2->dt;
1443 return (int)op1->code - (int)op2->code;
1444 }
1445
1446 /* Linearize the associatable expression chain at START with the
1447 associatable operation CODE (where PLUS_EXPR also allows MINUS_EXPR),
1448 filling CHAIN with the result and using WORKLIST as intermediate storage.
1449 CODE_STMT and ALT_CODE_STMT are filled with the first stmt using CODE
1450 or MINUS_EXPR. *CHAIN_STMTS if not NULL is filled with all computation
1451 stmts, starting with START. */
1452
1453 static void
1454 vect_slp_linearize_chain (vec_info *vinfo,
1455 vec<std::pair<tree_code, gimple *> > &worklist,
1456 vec<chain_op_t> &chain,
1457 enum tree_code code, gimple *start,
1458 gimple *&code_stmt, gimple *&alt_code_stmt,
1459 vec<gimple *> *chain_stmts)
1460 {
1461 /* For each lane linearize the addition/subtraction (or other
1462 uniform associatable operation) expression tree. */
1463 worklist.safe_push (std::make_pair (code, start));
1464 while (!worklist.is_empty ())
1465 {
1466 auto entry = worklist.pop ();
1467 gassign *stmt = as_a <gassign *> (entry.second);
1468 enum tree_code in_code = entry.first;
1469 enum tree_code this_code = gimple_assign_rhs_code (stmt);
1470 /* Pick some stmts suitable for SLP_TREE_REPRESENTATIVE. */
1471 if (!code_stmt
1472 && gimple_assign_rhs_code (stmt) == code)
1473 code_stmt = stmt;
1474 else if (!alt_code_stmt
1475 && gimple_assign_rhs_code (stmt) == MINUS_EXPR)
1476 alt_code_stmt = stmt;
1477 if (chain_stmts)
1478 chain_stmts->safe_push (stmt);
1479 for (unsigned opnum = 1; opnum <= 2; ++opnum)
1480 {
1481 tree op = gimple_op (stmt, opnum);
1482 vect_def_type dt;
1483 stmt_vec_info def_stmt_info;
1484 bool res = vect_is_simple_use (op, vinfo, &dt, &def_stmt_info);
1485 gcc_assert (res);
1486 if (dt == vect_internal_def
1487 && is_pattern_stmt_p (def_stmt_info))
1488 op = gimple_get_lhs (def_stmt_info->stmt);
1489 gimple *use_stmt;
1490 use_operand_p use_p;
1491 if (dt == vect_internal_def
1492 && single_imm_use (op, &use_p, &use_stmt)
1493 && is_gimple_assign (def_stmt_info->stmt)
1494 && (gimple_assign_rhs_code (def_stmt_info->stmt) == code
1495 || (code == PLUS_EXPR
1496 && (gimple_assign_rhs_code (def_stmt_info->stmt)
1497 == MINUS_EXPR))))
1498 {
1499 tree_code op_def_code = this_code;
1500 if (op_def_code == MINUS_EXPR && opnum == 1)
1501 op_def_code = PLUS_EXPR;
1502 if (in_code == MINUS_EXPR)
1503 op_def_code = op_def_code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
1504 worklist.safe_push (std::make_pair (op_def_code,
1505 def_stmt_info->stmt));
1506 }
1507 else
1508 {
1509 tree_code op_def_code = this_code;
1510 if (op_def_code == MINUS_EXPR && opnum == 1)
1511 op_def_code = PLUS_EXPR;
1512 if (in_code == MINUS_EXPR)
1513 op_def_code = op_def_code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
1514 chain.safe_push (chain_op_t (op_def_code, dt, op));
1515 }
1516 }
1517 }
1518 }
1519
1520 typedef hash_map <vec <stmt_vec_info>, slp_tree,
1521 simple_hashmap_traits <bst_traits, slp_tree> >
1522 scalar_stmts_to_slp_tree_map_t;
1523
1524 static slp_tree
1525 vect_build_slp_tree_2 (vec_info *vinfo, slp_tree node,
1526 vec<stmt_vec_info> stmts, unsigned int group_size,
1527 poly_uint64 *max_nunits,
1528 bool *matches, unsigned *limit, unsigned *tree_size,
1529 scalar_stmts_to_slp_tree_map_t *bst_map);
1530
1531 static slp_tree
1532 vect_build_slp_tree (vec_info *vinfo,
1533 vec<stmt_vec_info> stmts, unsigned int group_size,
1534 poly_uint64 *max_nunits,
1535 bool *matches, unsigned *limit, unsigned *tree_size,
1536 scalar_stmts_to_slp_tree_map_t *bst_map)
1537 {
1538 if (slp_tree *leader = bst_map->get (stmts))
1539 {
1540 if (dump_enabled_p ())
1541 dump_printf_loc (MSG_NOTE, vect_location, "re-using %sSLP tree %p\n",
1542 !(*leader)->failed ? "" : "failed ", *leader);
1543 if (!(*leader)->failed)
1544 {
1545 SLP_TREE_REF_COUNT (*leader)++;
1546 vect_update_max_nunits (max_nunits, (*leader)->max_nunits);
1547 stmts.release ();
1548 return *leader;
1549 }
1550 memcpy (matches, (*leader)->failed, sizeof (bool) * group_size);
1551 return NULL;
1552 }
1553
1554 /* Seed the bst_map with a stub node to be filled by vect_build_slp_tree_2
1555 so we can pick up backedge destinations during discovery. */
1556 slp_tree res = new _slp_tree;
1557 SLP_TREE_DEF_TYPE (res) = vect_internal_def;
1558 SLP_TREE_SCALAR_STMTS (res) = stmts;
1559 bst_map->put (stmts.copy (), res);
1560
1561 if (*limit == 0)
1562 {
1563 if (dump_enabled_p ())
1564 dump_printf_loc (MSG_NOTE, vect_location,
1565 "SLP discovery limit exceeded\n");
1566 /* Mark the node invalid so we can detect those when still in use
1567 as backedge destinations. */
1568 SLP_TREE_SCALAR_STMTS (res) = vNULL;
1569 SLP_TREE_DEF_TYPE (res) = vect_uninitialized_def;
1570 res->failed = XNEWVEC (bool, group_size);
1571 memset (res->failed, 0, sizeof (bool) * group_size);
1572 memset (matches, 0, sizeof (bool) * group_size);
1573 return NULL;
1574 }
1575 --*limit;
1576
1577 if (dump_enabled_p ())
1578 dump_printf_loc (MSG_NOTE, vect_location,
1579 "starting SLP discovery for node %p\n", res);
1580
1581 poly_uint64 this_max_nunits = 1;
1582 slp_tree res_ = vect_build_slp_tree_2 (vinfo, res, stmts, group_size,
1583 &this_max_nunits,
1584 matches, limit, tree_size, bst_map);
1585 if (!res_)
1586 {
1587 if (dump_enabled_p ())
1588 dump_printf_loc (MSG_NOTE, vect_location,
1589 "SLP discovery for node %p failed\n", res);
1590 /* Mark the node invalid so we can detect those when still in use
1591 as backedge destinations. */
1592 SLP_TREE_SCALAR_STMTS (res) = vNULL;
1593 SLP_TREE_DEF_TYPE (res) = vect_uninitialized_def;
1594 res->failed = XNEWVEC (bool, group_size);
1595 if (flag_checking)
1596 {
1597 unsigned i;
1598 for (i = 0; i < group_size; ++i)
1599 if (!matches[i])
1600 break;
1601 gcc_assert (i < group_size);
1602 }
1603 memcpy (res->failed, matches, sizeof (bool) * group_size);
1604 }
1605 else
1606 {
1607 if (dump_enabled_p ())
1608 dump_printf_loc (MSG_NOTE, vect_location,
1609 "SLP discovery for node %p succeeded\n", res);
1610 gcc_assert (res_ == res);
1611 res->max_nunits = this_max_nunits;
1612 vect_update_max_nunits (max_nunits, this_max_nunits);
1613 /* Keep a reference for the bst_map use. */
1614 SLP_TREE_REF_COUNT (res)++;
1615 }
1616 return res_;
1617 }
1618
1619 /* Helper for building an associated SLP node chain. */
1620
1621 static void
1622 vect_slp_build_two_operator_nodes (slp_tree perm, tree vectype,
1623 slp_tree op0, slp_tree op1,
1624 stmt_vec_info oper1, stmt_vec_info oper2,
1625 vec<std::pair<unsigned, unsigned> > lperm)
1626 {
1627 unsigned group_size = SLP_TREE_LANES (op1);
1628
1629 slp_tree child1 = new _slp_tree;
1630 SLP_TREE_DEF_TYPE (child1) = vect_internal_def;
1631 SLP_TREE_VECTYPE (child1) = vectype;
1632 SLP_TREE_LANES (child1) = group_size;
1633 SLP_TREE_CHILDREN (child1).create (2);
1634 SLP_TREE_CHILDREN (child1).quick_push (op0);
1635 SLP_TREE_CHILDREN (child1).quick_push (op1);
1636 SLP_TREE_REPRESENTATIVE (child1) = oper1;
1637
1638 slp_tree child2 = new _slp_tree;
1639 SLP_TREE_DEF_TYPE (child2) = vect_internal_def;
1640 SLP_TREE_VECTYPE (child2) = vectype;
1641 SLP_TREE_LANES (child2) = group_size;
1642 SLP_TREE_CHILDREN (child2).create (2);
1643 SLP_TREE_CHILDREN (child2).quick_push (op0);
1644 SLP_TREE_REF_COUNT (op0)++;
1645 SLP_TREE_CHILDREN (child2).quick_push (op1);
1646 SLP_TREE_REF_COUNT (op1)++;
1647 SLP_TREE_REPRESENTATIVE (child2) = oper2;
1648
1649 SLP_TREE_DEF_TYPE (perm) = vect_internal_def;
1650 SLP_TREE_CODE (perm) = VEC_PERM_EXPR;
1651 SLP_TREE_VECTYPE (perm) = vectype;
1652 SLP_TREE_LANES (perm) = group_size;
1653 /* ??? We should set this NULL but that's not expected. */
1654 SLP_TREE_REPRESENTATIVE (perm) = oper1;
1655 SLP_TREE_LANE_PERMUTATION (perm) = lperm;
1656 SLP_TREE_CHILDREN (perm).quick_push (child1);
1657 SLP_TREE_CHILDREN (perm).quick_push (child2);
1658 }
1659
1660 /* Recursively build an SLP tree starting from NODE.
1661 Fail (and return a value not equal to zero) if def-stmts are not
1662 isomorphic, require data permutation or are of unsupported types of
1663 operation. Otherwise, return 0.
1664 The value returned is the depth in the SLP tree where a mismatch
1665 was found. */
1666
1667 static slp_tree
1668 vect_build_slp_tree_2 (vec_info *vinfo, slp_tree node,
1669 vec<stmt_vec_info> stmts, unsigned int group_size,
1670 poly_uint64 *max_nunits,
1671 bool *matches, unsigned *limit, unsigned *tree_size,
1672 scalar_stmts_to_slp_tree_map_t *bst_map)
1673 {
1674 unsigned nops, i, this_tree_size = 0;
1675 poly_uint64 this_max_nunits = *max_nunits;
1676
1677 matches[0] = false;
1678
1679 stmt_vec_info stmt_info = stmts[0];
1680 if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
1681 nops = gimple_call_num_args (stmt);
1682 else if (gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt))
1683 {
1684 nops = gimple_num_ops (stmt) - 1;
1685 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
1686 nops++;
1687 }
1688 else if (gphi *phi = dyn_cast <gphi *> (stmt_info->stmt))
1689 nops = gimple_phi_num_args (phi);
1690 else
1691 return NULL;
1692
1693 /* If the SLP node is a PHI (induction or reduction), terminate
1694 the recursion. */
1695 bool *skip_args = XALLOCAVEC (bool, nops);
1696 memset (skip_args, 0, sizeof (bool) * nops);
1697 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
1698 if (gphi *stmt = dyn_cast <gphi *> (stmt_info->stmt))
1699 {
1700 tree scalar_type = TREE_TYPE (PHI_RESULT (stmt));
1701 tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type,
1702 group_size);
1703 if (!vect_record_max_nunits (vinfo, stmt_info, group_size, vectype,
1704 max_nunits))
1705 return NULL;
1706
1707 vect_def_type def_type = STMT_VINFO_DEF_TYPE (stmt_info);
1708 if (def_type == vect_induction_def)
1709 {
1710 /* Induction PHIs are not cycles but walk the initial
1711 value. Only for inner loops through, for outer loops
1712 we need to pick up the value from the actual PHIs
1713 to more easily support peeling and epilogue vectorization. */
1714 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1715 if (!nested_in_vect_loop_p (loop, stmt_info))
1716 skip_args[loop_preheader_edge (loop)->dest_idx] = true;
1717 else
1718 loop = loop->inner;
1719 skip_args[loop_latch_edge (loop)->dest_idx] = true;
1720 }
1721 else if (def_type == vect_reduction_def
1722 || def_type == vect_double_reduction_def
1723 || def_type == vect_nested_cycle)
1724 {
1725 /* Else def types have to match. */
1726 stmt_vec_info other_info;
1727 bool all_same = true;
1728 FOR_EACH_VEC_ELT (stmts, i, other_info)
1729 {
1730 if (STMT_VINFO_DEF_TYPE (other_info) != def_type)
1731 return NULL;
1732 if (other_info != stmt_info)
1733 all_same = false;
1734 }
1735 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1736 /* Reduction initial values are not explicitely represented. */
1737 if (!nested_in_vect_loop_p (loop, stmt_info))
1738 skip_args[loop_preheader_edge (loop)->dest_idx] = true;
1739 /* Reduction chain backedge defs are filled manually.
1740 ??? Need a better way to identify a SLP reduction chain PHI.
1741 Or a better overall way to SLP match those. */
1742 if (all_same && def_type == vect_reduction_def)
1743 skip_args[loop_latch_edge (loop)->dest_idx] = true;
1744 }
1745 else if (def_type != vect_internal_def)
1746 return NULL;
1747 }
1748
1749
1750 bool two_operators = false;
1751 unsigned char *swap = XALLOCAVEC (unsigned char, group_size);
1752 tree vectype = NULL_TREE;
1753 if (!vect_build_slp_tree_1 (vinfo, swap, stmts, group_size,
1754 &this_max_nunits, matches, &two_operators,
1755 &vectype))
1756 return NULL;
1757
1758 /* If the SLP node is a load, terminate the recursion unless masked. */
1759 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1760 && DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1761 {
1762 if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
1763 {
1764 /* Masked load. */
1765 gcc_assert (gimple_call_internal_p (stmt, IFN_MASK_LOAD));
1766 nops = 1;
1767 }
1768 else
1769 {
1770 *max_nunits = this_max_nunits;
1771 (*tree_size)++;
1772 node = vect_create_new_slp_node (node, stmts, 0);
1773 SLP_TREE_VECTYPE (node) = vectype;
1774 /* And compute the load permutation. Whether it is actually
1775 a permutation depends on the unrolling factor which is
1776 decided later. */
1777 vec<unsigned> load_permutation;
1778 int j;
1779 stmt_vec_info load_info;
1780 load_permutation.create (group_size);
1781 stmt_vec_info first_stmt_info
1782 = DR_GROUP_FIRST_ELEMENT (SLP_TREE_SCALAR_STMTS (node)[0]);
1783 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load_info)
1784 {
1785 int load_place = vect_get_place_in_interleaving_chain
1786 (load_info, first_stmt_info);
1787 gcc_assert (load_place != -1);
1788 load_permutation.safe_push (load_place);
1789 }
1790 SLP_TREE_LOAD_PERMUTATION (node) = load_permutation;
1791 return node;
1792 }
1793 }
1794 else if (gimple_assign_single_p (stmt_info->stmt)
1795 && !gimple_vuse (stmt_info->stmt)
1796 && gimple_assign_rhs_code (stmt_info->stmt) == BIT_FIELD_REF)
1797 {
1798 /* vect_build_slp_tree_2 determined all BIT_FIELD_REFs reference
1799 the same SSA name vector of a compatible type to vectype. */
1800 vec<std::pair<unsigned, unsigned> > lperm = vNULL;
1801 tree vec = TREE_OPERAND (gimple_assign_rhs1 (stmt_info->stmt), 0);
1802 stmt_vec_info estmt_info;
1803 FOR_EACH_VEC_ELT (stmts, i, estmt_info)
1804 {
1805 gassign *estmt = as_a <gassign *> (estmt_info->stmt);
1806 tree bfref = gimple_assign_rhs1 (estmt);
1807 HOST_WIDE_INT lane;
1808 if (!known_eq (bit_field_size (bfref),
1809 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (vectype))))
1810 || !constant_multiple_p (bit_field_offset (bfref),
1811 bit_field_size (bfref), &lane))
1812 {
1813 lperm.release ();
1814 return NULL;
1815 }
1816 lperm.safe_push (std::make_pair (0, (unsigned)lane));
1817 }
1818 slp_tree vnode = vect_create_new_slp_node (vNULL);
1819 /* ??? We record vectype here but we hide eventually necessary
1820 punning and instead rely on code generation to materialize
1821 VIEW_CONVERT_EXPRs as necessary. We instead should make
1822 this explicit somehow. */
1823 SLP_TREE_VECTYPE (vnode) = vectype;
1824 SLP_TREE_VEC_DEFS (vnode).safe_push (vec);
1825 /* We are always building a permutation node even if it is an identity
1826 permute to shield the rest of the vectorizer from the odd node
1827 representing an actual vector without any scalar ops.
1828 ??? We could hide it completely with making the permute node
1829 external? */
1830 node = vect_create_new_slp_node (node, stmts, 1);
1831 SLP_TREE_CODE (node) = VEC_PERM_EXPR;
1832 SLP_TREE_LANE_PERMUTATION (node) = lperm;
1833 SLP_TREE_VECTYPE (node) = vectype;
1834 SLP_TREE_CHILDREN (node).quick_push (vnode);
1835 return node;
1836 }
1837 /* When discovery reaches an associatable operation see whether we can
1838 improve that to match up lanes in a way superior to the operand
1839 swapping code which at most looks at two defs.
1840 ??? For BB vectorization we cannot do the brute-force search
1841 for matching as we can succeed by means of builds from scalars
1842 and have no good way to "cost" one build against another. */
1843 else if (is_a <loop_vec_info> (vinfo)
1844 /* ??? We don't handle !vect_internal_def defs below. */
1845 && STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def
1846 && is_gimple_assign (stmt_info->stmt)
1847 && (associative_tree_code (gimple_assign_rhs_code (stmt_info->stmt))
1848 || gimple_assign_rhs_code (stmt_info->stmt) == MINUS_EXPR)
1849 && ((FLOAT_TYPE_P (vectype) && flag_associative_math)
1850 || (INTEGRAL_TYPE_P (TREE_TYPE (vectype))
1851 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (vectype)))))
1852 {
1853 /* See if we have a chain of (mixed) adds or subtracts or other
1854 associatable ops. */
1855 enum tree_code code = gimple_assign_rhs_code (stmt_info->stmt);
1856 if (code == MINUS_EXPR)
1857 code = PLUS_EXPR;
1858 stmt_vec_info other_op_stmt_info = NULL;
1859 stmt_vec_info op_stmt_info = NULL;
1860 unsigned chain_len = 0;
1861 auto_vec<chain_op_t> chain;
1862 auto_vec<std::pair<tree_code, gimple *> > worklist;
1863 auto_vec<vec<chain_op_t> > chains (group_size);
1864 auto_vec<slp_tree, 4> children;
1865 bool hard_fail = true;
1866 for (unsigned lane = 0; lane < group_size; ++lane)
1867 {
1868 /* For each lane linearize the addition/subtraction (or other
1869 uniform associatable operation) expression tree. */
1870 gimple *op_stmt = NULL, *other_op_stmt = NULL;
1871 vect_slp_linearize_chain (vinfo, worklist, chain, code,
1872 stmts[lane]->stmt, op_stmt, other_op_stmt,
1873 NULL);
1874 if (!op_stmt_info && op_stmt)
1875 op_stmt_info = vinfo->lookup_stmt (op_stmt);
1876 if (!other_op_stmt_info && other_op_stmt)
1877 other_op_stmt_info = vinfo->lookup_stmt (other_op_stmt);
1878 if (chain.length () == 2)
1879 {
1880 /* In a chain of just two elements resort to the regular
1881 operand swapping scheme. If we run into a length
1882 mismatch still hard-FAIL. */
1883 if (chain_len == 0)
1884 hard_fail = false;
1885 else
1886 {
1887 matches[lane] = false;
1888 /* ??? We might want to process the other lanes, but
1889 make sure to not give false matching hints to the
1890 caller for lanes we did not process. */
1891 if (lane != group_size - 1)
1892 matches[0] = false;
1893 }
1894 break;
1895 }
1896 else if (chain_len == 0)
1897 chain_len = chain.length ();
1898 else if (chain.length () != chain_len)
1899 {
1900 /* ??? Here we could slip in magic to compensate with
1901 neutral operands. */
1902 matches[lane] = false;
1903 if (lane != group_size - 1)
1904 matches[0] = false;
1905 break;
1906 }
1907 chains.quick_push (chain.copy ());
1908 chain.truncate (0);
1909 }
1910 if (chains.length () == group_size)
1911 {
1912 /* We cannot yet use SLP_TREE_CODE to communicate the operation. */
1913 if (!op_stmt_info)
1914 {
1915 hard_fail = false;
1916 goto out;
1917 }
1918 /* Now we have a set of chains with the same length. */
1919 /* 1. pre-sort according to def_type and operation. */
1920 for (unsigned lane = 0; lane < group_size; ++lane)
1921 chains[lane].stablesort (dt_sort_cmp, vinfo);
1922 if (dump_enabled_p ())
1923 {
1924 dump_printf_loc (MSG_NOTE, vect_location,
1925 "pre-sorted chains of %s\n",
1926 get_tree_code_name (code));
1927 for (unsigned lane = 0; lane < group_size; ++lane)
1928 {
1929 for (unsigned opnum = 0; opnum < chain_len; ++opnum)
1930 dump_printf (MSG_NOTE, "%s %T ",
1931 get_tree_code_name (chains[lane][opnum].code),
1932 chains[lane][opnum].op);
1933 dump_printf (MSG_NOTE, "\n");
1934 }
1935 }
1936 /* 2. try to build children nodes, associating as necessary. */
1937 for (unsigned n = 0; n < chain_len; ++n)
1938 {
1939 vect_def_type dt = chains[0][n].dt;
1940 unsigned lane;
1941 for (lane = 0; lane < group_size; ++lane)
1942 if (chains[lane][n].dt != dt)
1943 {
1944 if (dt == vect_constant_def
1945 && chains[lane][n].dt == vect_external_def)
1946 dt = vect_external_def;
1947 else if (dt == vect_external_def
1948 && chains[lane][n].dt == vect_constant_def)
1949 ;
1950 else
1951 break;
1952 }
1953 if (lane != group_size)
1954 {
1955 if (dump_enabled_p ())
1956 dump_printf_loc (MSG_NOTE, vect_location,
1957 "giving up on chain due to mismatched "
1958 "def types\n");
1959 matches[lane] = false;
1960 if (lane != group_size - 1)
1961 matches[0] = false;
1962 goto out;
1963 }
1964 if (dt == vect_constant_def
1965 || dt == vect_external_def)
1966 {
1967 /* We can always build those. Might want to sort last
1968 or defer building. */
1969 vec<tree> ops;
1970 ops.create (group_size);
1971 for (lane = 0; lane < group_size; ++lane)
1972 ops.quick_push (chains[lane][n].op);
1973 slp_tree child = vect_create_new_slp_node (ops);
1974 SLP_TREE_DEF_TYPE (child) = dt;
1975 children.safe_push (child);
1976 }
1977 else if (dt != vect_internal_def)
1978 {
1979 /* Not sure, we might need sth special.
1980 gcc.dg/vect/pr96854.c,
1981 gfortran.dg/vect/fast-math-pr37021.f90
1982 and gfortran.dg/vect/pr61171.f trigger. */
1983 /* Soft-fail for now. */
1984 hard_fail = false;
1985 goto out;
1986 }
1987 else
1988 {
1989 vec<stmt_vec_info> op_stmts;
1990 op_stmts.create (group_size);
1991 slp_tree child = NULL;
1992 /* Brute-force our way. We have to consider a lane
1993 failing after fixing an earlier fail up in the
1994 SLP discovery recursion. So track the current
1995 permute per lane. */
1996 unsigned *perms = XALLOCAVEC (unsigned, group_size);
1997 memset (perms, 0, sizeof (unsigned) * group_size);
1998 do
1999 {
2000 op_stmts.truncate (0);
2001 for (lane = 0; lane < group_size; ++lane)
2002 op_stmts.quick_push
2003 (vinfo->lookup_def (chains[lane][n].op));
2004 child = vect_build_slp_tree (vinfo, op_stmts,
2005 group_size, &this_max_nunits,
2006 matches, limit,
2007 &this_tree_size, bst_map);
2008 /* ??? We're likely getting too many fatal mismatches
2009 here so maybe we want to ignore them (but then we
2010 have no idea which lanes fatally mismatched). */
2011 if (child || !matches[0])
2012 break;
2013 /* Swap another lane we have not yet matched up into
2014 lanes that did not match. If we run out of
2015 permute possibilities for a lane terminate the
2016 search. */
2017 bool term = false;
2018 for (lane = 1; lane < group_size; ++lane)
2019 if (!matches[lane])
2020 {
2021 if (n + perms[lane] + 1 == chain_len)
2022 {
2023 term = true;
2024 break;
2025 }
2026 std::swap (chains[lane][n],
2027 chains[lane][n + perms[lane] + 1]);
2028 perms[lane]++;
2029 }
2030 if (term)
2031 break;
2032 }
2033 while (1);
2034 if (!child)
2035 {
2036 if (dump_enabled_p ())
2037 dump_printf_loc (MSG_NOTE, vect_location,
2038 "failed to match up op %d\n", n);
2039 op_stmts.release ();
2040 if (lane != group_size - 1)
2041 matches[0] = false;
2042 else
2043 matches[lane] = false;
2044 goto out;
2045 }
2046 if (dump_enabled_p ())
2047 {
2048 dump_printf_loc (MSG_NOTE, vect_location,
2049 "matched up op %d to\n", n);
2050 vect_print_slp_tree (MSG_NOTE, vect_location, child);
2051 }
2052 children.safe_push (child);
2053 }
2054 }
2055 /* 3. build SLP nodes to combine the chain. */
2056 for (unsigned lane = 0; lane < group_size; ++lane)
2057 if (chains[lane][0].code != code)
2058 {
2059 /* See if there's any alternate all-PLUS entry. */
2060 unsigned n;
2061 for (n = 1; n < chain_len; ++n)
2062 {
2063 for (lane = 0; lane < group_size; ++lane)
2064 if (chains[lane][n].code != code)
2065 break;
2066 if (lane == group_size)
2067 break;
2068 }
2069 if (n != chain_len)
2070 {
2071 /* Swap that in at first position. */
2072 std::swap (children[0], children[n]);
2073 for (lane = 0; lane < group_size; ++lane)
2074 std::swap (chains[lane][0], chains[lane][n]);
2075 }
2076 else
2077 {
2078 /* ??? When this triggers and we end up with two
2079 vect_constant/external_def up-front things break (ICE)
2080 spectacularly finding an insertion place for the
2081 all-constant op. We should have a fully
2082 vect_internal_def operand though(?) so we can swap
2083 that into first place and then prepend the all-zero
2084 constant. */
2085 if (dump_enabled_p ())
2086 dump_printf_loc (MSG_NOTE, vect_location,
2087 "inserting constant zero to compensate "
2088 "for (partially) negated first "
2089 "operand\n");
2090 chain_len++;
2091 for (lane = 0; lane < group_size; ++lane)
2092 chains[lane].safe_insert
2093 (0, chain_op_t (code, vect_constant_def, NULL_TREE));
2094 vec<tree> zero_ops;
2095 zero_ops.create (group_size);
2096 zero_ops.quick_push (build_zero_cst (TREE_TYPE (vectype)));
2097 for (lane = 1; lane < group_size; ++lane)
2098 zero_ops.quick_push (zero_ops[0]);
2099 slp_tree zero = vect_create_new_slp_node (zero_ops);
2100 SLP_TREE_DEF_TYPE (zero) = vect_constant_def;
2101 children.safe_insert (0, zero);
2102 }
2103 break;
2104 }
2105 for (unsigned i = 1; i < children.length (); ++i)
2106 {
2107 slp_tree op0 = children[i - 1];
2108 slp_tree op1 = children[i];
2109 bool this_two_op = false;
2110 for (unsigned lane = 0; lane < group_size; ++lane)
2111 if (chains[lane][i].code != chains[0][i].code)
2112 {
2113 this_two_op = true;
2114 break;
2115 }
2116 slp_tree child;
2117 if (i == children.length () - 1)
2118 child = vect_create_new_slp_node (node, stmts, 2);
2119 else
2120 child = vect_create_new_slp_node (2, ERROR_MARK);
2121 if (this_two_op)
2122 {
2123 vec<std::pair<unsigned, unsigned> > lperm;
2124 lperm.create (group_size);
2125 for (unsigned lane = 0; lane < group_size; ++lane)
2126 lperm.quick_push (std::make_pair
2127 (chains[lane][i].code != chains[0][i].code, lane));
2128 vect_slp_build_two_operator_nodes (child, vectype, op0, op1,
2129 (chains[0][i].code == code
2130 ? op_stmt_info
2131 : other_op_stmt_info),
2132 (chains[0][i].code == code
2133 ? other_op_stmt_info
2134 : op_stmt_info),
2135 lperm);
2136 }
2137 else
2138 {
2139 SLP_TREE_DEF_TYPE (child) = vect_internal_def;
2140 SLP_TREE_VECTYPE (child) = vectype;
2141 SLP_TREE_LANES (child) = group_size;
2142 SLP_TREE_CHILDREN (child).quick_push (op0);
2143 SLP_TREE_CHILDREN (child).quick_push (op1);
2144 SLP_TREE_REPRESENTATIVE (child)
2145 = (chains[0][i].code == code
2146 ? op_stmt_info : other_op_stmt_info);
2147 }
2148 children[i] = child;
2149 }
2150 *tree_size += this_tree_size + 1;
2151 *max_nunits = this_max_nunits;
2152 while (!chains.is_empty ())
2153 chains.pop ().release ();
2154 return node;
2155 }
2156 out:
2157 while (!children.is_empty ())
2158 vect_free_slp_tree (children.pop ());
2159 while (!chains.is_empty ())
2160 chains.pop ().release ();
2161 /* Hard-fail, otherwise we might run into quadratic processing of the
2162 chains starting one stmt into the chain again. */
2163 if (hard_fail)
2164 return NULL;
2165 /* Fall thru to normal processing. */
2166 }
2167
2168 /* Get at the operands, verifying they are compatible. */
2169 vec<slp_oprnd_info> oprnds_info = vect_create_oprnd_info (nops, group_size);
2170 slp_oprnd_info oprnd_info;
2171 FOR_EACH_VEC_ELT (stmts, i, stmt_info)
2172 {
2173 int res = vect_get_and_check_slp_defs (vinfo, swap[i], skip_args,
2174 stmts, i, &oprnds_info);
2175 if (res != 0)
2176 matches[(res == -1) ? 0 : i] = false;
2177 if (!matches[0])
2178 break;
2179 }
2180 for (i = 0; i < group_size; ++i)
2181 if (!matches[i])
2182 {
2183 vect_free_oprnd_info (oprnds_info);
2184 return NULL;
2185 }
2186 swap = NULL;
2187
2188 auto_vec<slp_tree, 4> children;
2189
2190 stmt_info = stmts[0];
2191
2192 /* Create SLP_TREE nodes for the definition node/s. */
2193 FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
2194 {
2195 slp_tree child;
2196 unsigned int j;
2197
2198 /* We're skipping certain operands from processing, for example
2199 outer loop reduction initial defs. */
2200 if (skip_args[i])
2201 {
2202 children.safe_push (NULL);
2203 continue;
2204 }
2205
2206 if (oprnd_info->first_dt == vect_uninitialized_def)
2207 {
2208 /* COND_EXPR have one too many eventually if the condition
2209 is a SSA name. */
2210 gcc_assert (i == 3 && nops == 4);
2211 continue;
2212 }
2213
2214 if (is_a <bb_vec_info> (vinfo)
2215 && oprnd_info->first_dt == vect_internal_def
2216 && !oprnd_info->any_pattern)
2217 {
2218 /* For BB vectorization, if all defs are the same do not
2219 bother to continue the build along the single-lane
2220 graph but use a splat of the scalar value. */
2221 stmt_vec_info first_def = oprnd_info->def_stmts[0];
2222 for (j = 1; j < group_size; ++j)
2223 if (oprnd_info->def_stmts[j] != first_def)
2224 break;
2225 if (j == group_size
2226 /* But avoid doing this for loads where we may be
2227 able to CSE things, unless the stmt is not
2228 vectorizable. */
2229 && (!STMT_VINFO_VECTORIZABLE (first_def)
2230 || !gimple_vuse (first_def->stmt)))
2231 {
2232 if (dump_enabled_p ())
2233 dump_printf_loc (MSG_NOTE, vect_location,
2234 "Using a splat of the uniform operand\n");
2235 oprnd_info->first_dt = vect_external_def;
2236 }
2237 }
2238
2239 if (oprnd_info->first_dt == vect_external_def
2240 || oprnd_info->first_dt == vect_constant_def)
2241 {
2242 slp_tree invnode = vect_create_new_slp_node (oprnd_info->ops);
2243 SLP_TREE_DEF_TYPE (invnode) = oprnd_info->first_dt;
2244 oprnd_info->ops = vNULL;
2245 children.safe_push (invnode);
2246 continue;
2247 }
2248
2249 if ((child = vect_build_slp_tree (vinfo, oprnd_info->def_stmts,
2250 group_size, &this_max_nunits,
2251 matches, limit,
2252 &this_tree_size, bst_map)) != NULL)
2253 {
2254 oprnd_info->def_stmts = vNULL;
2255 children.safe_push (child);
2256 continue;
2257 }
2258
2259 /* If the SLP build for operand zero failed and operand zero
2260 and one can be commutated try that for the scalar stmts
2261 that failed the match. */
2262 if (i == 0
2263 /* A first scalar stmt mismatch signals a fatal mismatch. */
2264 && matches[0]
2265 /* ??? For COND_EXPRs we can swap the comparison operands
2266 as well as the arms under some constraints. */
2267 && nops == 2
2268 && oprnds_info[1]->first_dt == vect_internal_def
2269 && is_gimple_assign (stmt_info->stmt)
2270 /* Swapping operands for reductions breaks assumptions later on. */
2271 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
2272 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
2273 {
2274 /* See whether we can swap the matching or the non-matching
2275 stmt operands. */
2276 bool swap_not_matching = true;
2277 do
2278 {
2279 for (j = 0; j < group_size; ++j)
2280 {
2281 if (matches[j] != !swap_not_matching)
2282 continue;
2283 stmt_vec_info stmt_info = stmts[j];
2284 /* Verify if we can swap operands of this stmt. */
2285 gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt);
2286 if (!stmt
2287 || !commutative_tree_code (gimple_assign_rhs_code (stmt)))
2288 {
2289 if (!swap_not_matching)
2290 goto fail;
2291 swap_not_matching = false;
2292 break;
2293 }
2294 }
2295 }
2296 while (j != group_size);
2297
2298 /* Swap mismatched definition stmts. */
2299 if (dump_enabled_p ())
2300 dump_printf_loc (MSG_NOTE, vect_location,
2301 "Re-trying with swapped operands of stmts ");
2302 for (j = 0; j < group_size; ++j)
2303 if (matches[j] == !swap_not_matching)
2304 {
2305 std::swap (oprnds_info[0]->def_stmts[j],
2306 oprnds_info[1]->def_stmts[j]);
2307 std::swap (oprnds_info[0]->ops[j],
2308 oprnds_info[1]->ops[j]);
2309 if (dump_enabled_p ())
2310 dump_printf (MSG_NOTE, "%d ", j);
2311 }
2312 if (dump_enabled_p ())
2313 dump_printf (MSG_NOTE, "\n");
2314 /* And try again with scratch 'matches' ... */
2315 bool *tem = XALLOCAVEC (bool, group_size);
2316 if ((child = vect_build_slp_tree (vinfo, oprnd_info->def_stmts,
2317 group_size, &this_max_nunits,
2318 tem, limit,
2319 &this_tree_size, bst_map)) != NULL)
2320 {
2321 oprnd_info->def_stmts = vNULL;
2322 children.safe_push (child);
2323 continue;
2324 }
2325 }
2326 fail:
2327
2328 /* If the SLP build failed and we analyze a basic-block
2329 simply treat nodes we fail to build as externally defined
2330 (and thus build vectors from the scalar defs).
2331 The cost model will reject outright expensive cases.
2332 ??? This doesn't treat cases where permutation ultimatively
2333 fails (or we don't try permutation below). Ideally we'd
2334 even compute a permutation that will end up with the maximum
2335 SLP tree size... */
2336 if (is_a <bb_vec_info> (vinfo)
2337 /* ??? Rejecting patterns this way doesn't work. We'd have to
2338 do extra work to cancel the pattern so the uses see the
2339 scalar version. */
2340 && !is_pattern_stmt_p (stmt_info)
2341 && !oprnd_info->any_pattern)
2342 {
2343 /* But if there's a leading vector sized set of matching stmts
2344 fail here so we can split the group. This matches the condition
2345 vect_analyze_slp_instance uses. */
2346 /* ??? We might want to split here and combine the results to support
2347 multiple vector sizes better. */
2348 for (j = 0; j < group_size; ++j)
2349 if (!matches[j])
2350 break;
2351 if (!known_ge (j, TYPE_VECTOR_SUBPARTS (vectype)))
2352 {
2353 if (dump_enabled_p ())
2354 dump_printf_loc (MSG_NOTE, vect_location,
2355 "Building vector operands from scalars\n");
2356 this_tree_size++;
2357 child = vect_create_new_slp_node (oprnd_info->ops);
2358 children.safe_push (child);
2359 oprnd_info->ops = vNULL;
2360 continue;
2361 }
2362 }
2363
2364 gcc_assert (child == NULL);
2365 FOR_EACH_VEC_ELT (children, j, child)
2366 if (child)
2367 vect_free_slp_tree (child);
2368 vect_free_oprnd_info (oprnds_info);
2369 return NULL;
2370 }
2371
2372 vect_free_oprnd_info (oprnds_info);
2373
2374 /* If we have all children of a child built up from uniform scalars
2375 or does more than one possibly expensive vector construction then
2376 just throw that away, causing it built up from scalars.
2377 The exception is the SLP node for the vector store. */
2378 if (is_a <bb_vec_info> (vinfo)
2379 && !STMT_VINFO_GROUPED_ACCESS (stmt_info)
2380 /* ??? Rejecting patterns this way doesn't work. We'd have to
2381 do extra work to cancel the pattern so the uses see the
2382 scalar version. */
2383 && !is_pattern_stmt_p (stmt_info))
2384 {
2385 slp_tree child;
2386 unsigned j;
2387 bool all_uniform_p = true;
2388 unsigned n_vector_builds = 0;
2389 FOR_EACH_VEC_ELT (children, j, child)
2390 {
2391 if (!child)
2392 ;
2393 else if (SLP_TREE_DEF_TYPE (child) == vect_internal_def)
2394 all_uniform_p = false;
2395 else if (!vect_slp_tree_uniform_p (child))
2396 {
2397 all_uniform_p = false;
2398 if (SLP_TREE_DEF_TYPE (child) == vect_external_def)
2399 n_vector_builds++;
2400 }
2401 }
2402 if (all_uniform_p
2403 || n_vector_builds > 1
2404 || (n_vector_builds == children.length ()
2405 && is_a <gphi *> (stmt_info->stmt)))
2406 {
2407 /* Roll back. */
2408 matches[0] = false;
2409 FOR_EACH_VEC_ELT (children, j, child)
2410 if (child)
2411 vect_free_slp_tree (child);
2412
2413 if (dump_enabled_p ())
2414 dump_printf_loc (MSG_NOTE, vect_location,
2415 "Building parent vector operands from "
2416 "scalars instead\n");
2417 return NULL;
2418 }
2419 }
2420
2421 *tree_size += this_tree_size + 1;
2422 *max_nunits = this_max_nunits;
2423
2424 if (two_operators)
2425 {
2426 /* ??? We'd likely want to either cache in bst_map sth like
2427 { a+b, NULL, a+b, NULL } and { NULL, a-b, NULL, a-b } or
2428 the true { a+b, a+b, a+b, a+b } ... but there we don't have
2429 explicit stmts to put in so the keying on 'stmts' doesn't
2430 work (but we have the same issue with nodes that use 'ops'). */
2431 slp_tree one = new _slp_tree;
2432 slp_tree two = new _slp_tree;
2433 SLP_TREE_DEF_TYPE (one) = vect_internal_def;
2434 SLP_TREE_DEF_TYPE (two) = vect_internal_def;
2435 SLP_TREE_VECTYPE (one) = vectype;
2436 SLP_TREE_VECTYPE (two) = vectype;
2437 SLP_TREE_CHILDREN (one).safe_splice (children);
2438 SLP_TREE_CHILDREN (two).safe_splice (children);
2439 slp_tree child;
2440 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (two), i, child)
2441 SLP_TREE_REF_COUNT (child)++;
2442
2443 /* Here we record the original defs since this
2444 node represents the final lane configuration. */
2445 node = vect_create_new_slp_node (node, stmts, 2);
2446 SLP_TREE_VECTYPE (node) = vectype;
2447 SLP_TREE_CODE (node) = VEC_PERM_EXPR;
2448 SLP_TREE_CHILDREN (node).quick_push (one);
2449 SLP_TREE_CHILDREN (node).quick_push (two);
2450 gassign *stmt = as_a <gassign *> (stmts[0]->stmt);
2451 enum tree_code code0 = gimple_assign_rhs_code (stmt);
2452 enum tree_code ocode = ERROR_MARK;
2453 stmt_vec_info ostmt_info;
2454 unsigned j = 0;
2455 FOR_EACH_VEC_ELT (stmts, i, ostmt_info)
2456 {
2457 gassign *ostmt = as_a <gassign *> (ostmt_info->stmt);
2458 if (gimple_assign_rhs_code (ostmt) != code0)
2459 {
2460 SLP_TREE_LANE_PERMUTATION (node).safe_push (std::make_pair (1, i));
2461 ocode = gimple_assign_rhs_code (ostmt);
2462 j = i;
2463 }
2464 else
2465 SLP_TREE_LANE_PERMUTATION (node).safe_push (std::make_pair (0, i));
2466 }
2467 SLP_TREE_CODE (one) = code0;
2468 SLP_TREE_CODE (two) = ocode;
2469 SLP_TREE_LANES (one) = stmts.length ();
2470 SLP_TREE_LANES (two) = stmts.length ();
2471 SLP_TREE_REPRESENTATIVE (one) = stmts[0];
2472 SLP_TREE_REPRESENTATIVE (two) = stmts[j];
2473 return node;
2474 }
2475
2476 node = vect_create_new_slp_node (node, stmts, nops);
2477 SLP_TREE_VECTYPE (node) = vectype;
2478 SLP_TREE_CHILDREN (node).splice (children);
2479 return node;
2480 }
2481
2482 /* Dump a single SLP tree NODE. */
2483
2484 static void
2485 vect_print_slp_tree (dump_flags_t dump_kind, dump_location_t loc,
2486 slp_tree node)
2487 {
2488 unsigned i, j;
2489 slp_tree child;
2490 stmt_vec_info stmt_info;
2491 tree op;
2492
2493 dump_metadata_t metadata (dump_kind, loc.get_impl_location ());
2494 dump_user_location_t user_loc = loc.get_user_location ();
2495 dump_printf_loc (metadata, user_loc, "node%s %p (max_nunits=%u, refcnt=%u)\n",
2496 SLP_TREE_DEF_TYPE (node) == vect_external_def
2497 ? " (external)"
2498 : (SLP_TREE_DEF_TYPE (node) == vect_constant_def
2499 ? " (constant)"
2500 : ""), node,
2501 estimated_poly_value (node->max_nunits),
2502 SLP_TREE_REF_COUNT (node));
2503 if (SLP_TREE_DEF_TYPE (node) == vect_internal_def)
2504 {
2505 if (SLP_TREE_CODE (node) == VEC_PERM_EXPR)
2506 dump_printf_loc (metadata, user_loc, "op: VEC_PERM_EXPR\n");
2507 else
2508 dump_printf_loc (metadata, user_loc, "op template: %G",
2509 SLP_TREE_REPRESENTATIVE (node)->stmt);
2510 }
2511 if (SLP_TREE_SCALAR_STMTS (node).exists ())
2512 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
2513 dump_printf_loc (metadata, user_loc, "\tstmt %u %G", i, stmt_info->stmt);
2514 else
2515 {
2516 dump_printf_loc (metadata, user_loc, "\t{ ");
2517 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (node), i, op)
2518 dump_printf (metadata, "%T%s ", op,
2519 i < SLP_TREE_SCALAR_OPS (node).length () - 1 ? "," : "");
2520 dump_printf (metadata, "}\n");
2521 }
2522 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
2523 {
2524 dump_printf_loc (metadata, user_loc, "\tload permutation {");
2525 FOR_EACH_VEC_ELT (SLP_TREE_LOAD_PERMUTATION (node), i, j)
2526 dump_printf (dump_kind, " %u", j);
2527 dump_printf (dump_kind, " }\n");
2528 }
2529 if (SLP_TREE_LANE_PERMUTATION (node).exists ())
2530 {
2531 dump_printf_loc (metadata, user_loc, "\tlane permutation {");
2532 for (i = 0; i < SLP_TREE_LANE_PERMUTATION (node).length (); ++i)
2533 dump_printf (dump_kind, " %u[%u]",
2534 SLP_TREE_LANE_PERMUTATION (node)[i].first,
2535 SLP_TREE_LANE_PERMUTATION (node)[i].second);
2536 dump_printf (dump_kind, " }\n");
2537 }
2538 if (SLP_TREE_CHILDREN (node).is_empty ())
2539 return;
2540 dump_printf_loc (metadata, user_loc, "\tchildren");
2541 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2542 dump_printf (dump_kind, " %p", (void *)child);
2543 dump_printf (dump_kind, "\n");
2544 }
2545
2546 DEBUG_FUNCTION void
2547 debug (slp_tree node)
2548 {
2549 debug_dump_context ctx;
2550 vect_print_slp_tree (MSG_NOTE,
2551 dump_location_t::from_location_t (UNKNOWN_LOCATION),
2552 node);
2553 }
2554
2555 /* Dump a slp tree NODE using flags specified in DUMP_KIND. */
2556
2557 static void
2558 vect_print_slp_graph (dump_flags_t dump_kind, dump_location_t loc,
2559 slp_tree node, hash_set<slp_tree> &visited)
2560 {
2561 unsigned i;
2562 slp_tree child;
2563
2564 if (visited.add (node))
2565 return;
2566
2567 vect_print_slp_tree (dump_kind, loc, node);
2568
2569 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2570 if (child)
2571 vect_print_slp_graph (dump_kind, loc, child, visited);
2572 }
2573
2574 static void
2575 vect_print_slp_graph (dump_flags_t dump_kind, dump_location_t loc,
2576 slp_tree entry)
2577 {
2578 hash_set<slp_tree> visited;
2579 vect_print_slp_graph (dump_kind, loc, entry, visited);
2580 }
2581
2582 /* Mark the tree rooted at NODE with PURE_SLP. */
2583
2584 static void
2585 vect_mark_slp_stmts (slp_tree node, hash_set<slp_tree> &visited)
2586 {
2587 int i;
2588 stmt_vec_info stmt_info;
2589 slp_tree child;
2590
2591 if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
2592 return;
2593
2594 if (visited.add (node))
2595 return;
2596
2597 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
2598 STMT_SLP_TYPE (stmt_info) = pure_slp;
2599
2600 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2601 if (child)
2602 vect_mark_slp_stmts (child, visited);
2603 }
2604
2605 static void
2606 vect_mark_slp_stmts (slp_tree node)
2607 {
2608 hash_set<slp_tree> visited;
2609 vect_mark_slp_stmts (node, visited);
2610 }
2611
2612 /* Mark the statements of the tree rooted at NODE as relevant (vect_used). */
2613
2614 static void
2615 vect_mark_slp_stmts_relevant (slp_tree node, hash_set<slp_tree> &visited)
2616 {
2617 int i;
2618 stmt_vec_info stmt_info;
2619 slp_tree child;
2620
2621 if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
2622 return;
2623
2624 if (visited.add (node))
2625 return;
2626
2627 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
2628 {
2629 gcc_assert (!STMT_VINFO_RELEVANT (stmt_info)
2630 || STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope);
2631 STMT_VINFO_RELEVANT (stmt_info) = vect_used_in_scope;
2632 }
2633
2634 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2635 if (child)
2636 vect_mark_slp_stmts_relevant (child, visited);
2637 }
2638
2639 static void
2640 vect_mark_slp_stmts_relevant (slp_tree node)
2641 {
2642 hash_set<slp_tree> visited;
2643 vect_mark_slp_stmts_relevant (node, visited);
2644 }
2645
2646
2647 /* Gather loads in the SLP graph NODE and populate the INST loads array. */
2648
2649 static void
2650 vect_gather_slp_loads (vec<slp_tree> &loads, slp_tree node,
2651 hash_set<slp_tree> &visited)
2652 {
2653 if (!node || visited.add (node))
2654 return;
2655
2656 if (SLP_TREE_CHILDREN (node).length () == 0)
2657 {
2658 if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
2659 return;
2660 stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
2661 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
2662 && DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
2663 loads.safe_push (node);
2664 }
2665 else
2666 {
2667 unsigned i;
2668 slp_tree child;
2669 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2670 vect_gather_slp_loads (loads, child, visited);
2671 }
2672 }
2673
2674
2675 /* Find the last store in SLP INSTANCE. */
2676
2677 stmt_vec_info
2678 vect_find_last_scalar_stmt_in_slp (slp_tree node)
2679 {
2680 stmt_vec_info last = NULL;
2681 stmt_vec_info stmt_vinfo;
2682
2683 for (int i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &stmt_vinfo); i++)
2684 {
2685 stmt_vinfo = vect_orig_stmt (stmt_vinfo);
2686 last = last ? get_later_stmt (stmt_vinfo, last) : stmt_vinfo;
2687 }
2688
2689 return last;
2690 }
2691
2692 /* Find the first stmt in NODE. */
2693
2694 stmt_vec_info
2695 vect_find_first_scalar_stmt_in_slp (slp_tree node)
2696 {
2697 stmt_vec_info first = NULL;
2698 stmt_vec_info stmt_vinfo;
2699
2700 for (int i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &stmt_vinfo); i++)
2701 {
2702 stmt_vinfo = vect_orig_stmt (stmt_vinfo);
2703 if (!first
2704 || get_later_stmt (stmt_vinfo, first) == first)
2705 first = stmt_vinfo;
2706 }
2707
2708 return first;
2709 }
2710
2711 /* Splits a group of stores, currently beginning at FIRST_VINFO, into
2712 two groups: one (still beginning at FIRST_VINFO) of size GROUP1_SIZE
2713 (also containing the first GROUP1_SIZE stmts, since stores are
2714 consecutive), the second containing the remainder.
2715 Return the first stmt in the second group. */
2716
2717 static stmt_vec_info
2718 vect_split_slp_store_group (stmt_vec_info first_vinfo, unsigned group1_size)
2719 {
2720 gcc_assert (DR_GROUP_FIRST_ELEMENT (first_vinfo) == first_vinfo);
2721 gcc_assert (group1_size > 0);
2722 int group2_size = DR_GROUP_SIZE (first_vinfo) - group1_size;
2723 gcc_assert (group2_size > 0);
2724 DR_GROUP_SIZE (first_vinfo) = group1_size;
2725
2726 stmt_vec_info stmt_info = first_vinfo;
2727 for (unsigned i = group1_size; i > 1; i--)
2728 {
2729 stmt_info = DR_GROUP_NEXT_ELEMENT (stmt_info);
2730 gcc_assert (DR_GROUP_GAP (stmt_info) == 1);
2731 }
2732 /* STMT is now the last element of the first group. */
2733 stmt_vec_info group2 = DR_GROUP_NEXT_ELEMENT (stmt_info);
2734 DR_GROUP_NEXT_ELEMENT (stmt_info) = 0;
2735
2736 DR_GROUP_SIZE (group2) = group2_size;
2737 for (stmt_info = group2; stmt_info;
2738 stmt_info = DR_GROUP_NEXT_ELEMENT (stmt_info))
2739 {
2740 DR_GROUP_FIRST_ELEMENT (stmt_info) = group2;
2741 gcc_assert (DR_GROUP_GAP (stmt_info) == 1);
2742 }
2743
2744 /* For the second group, the DR_GROUP_GAP is that before the original group,
2745 plus skipping over the first vector. */
2746 DR_GROUP_GAP (group2) = DR_GROUP_GAP (first_vinfo) + group1_size;
2747
2748 /* DR_GROUP_GAP of the first group now has to skip over the second group too. */
2749 DR_GROUP_GAP (first_vinfo) += group2_size;
2750
2751 if (dump_enabled_p ())
2752 dump_printf_loc (MSG_NOTE, vect_location, "Split group into %d and %d\n",
2753 group1_size, group2_size);
2754
2755 return group2;
2756 }
2757
2758 /* Calculate the unrolling factor for an SLP instance with GROUP_SIZE
2759 statements and a vector of NUNITS elements. */
2760
2761 static poly_uint64
2762 calculate_unrolling_factor (poly_uint64 nunits, unsigned int group_size)
2763 {
2764 return exact_div (common_multiple (nunits, group_size), group_size);
2765 }
2766
2767 /* Helper that checks to see if a node is a load node. */
2768
2769 static inline bool
2770 vect_is_slp_load_node (slp_tree root)
2771 {
2772 return SLP_TREE_DEF_TYPE (root) == vect_internal_def
2773 && STMT_VINFO_GROUPED_ACCESS (SLP_TREE_REPRESENTATIVE (root))
2774 && DR_IS_READ (STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (root)));
2775 }
2776
2777
2778 /* Helper function of optimize_load_redistribution that performs the operation
2779 recursively. */
2780
2781 static slp_tree
2782 optimize_load_redistribution_1 (scalar_stmts_to_slp_tree_map_t *bst_map,
2783 vec_info *vinfo, unsigned int group_size,
2784 hash_map<slp_tree, slp_tree> *load_map,
2785 slp_tree root)
2786 {
2787 if (slp_tree *leader = load_map->get (root))
2788 return *leader;
2789
2790 slp_tree node;
2791 unsigned i;
2792
2793 /* For now, we don't know anything about externals so do not do anything. */
2794 if (!root || SLP_TREE_DEF_TYPE (root) != vect_internal_def)
2795 return NULL;
2796 else if (SLP_TREE_CODE (root) == VEC_PERM_EXPR)
2797 {
2798 /* First convert this node into a load node and add it to the leaves
2799 list and flatten the permute from a lane to a load one. If it's
2800 unneeded it will be elided later. */
2801 vec<stmt_vec_info> stmts;
2802 stmts.create (SLP_TREE_LANES (root));
2803 lane_permutation_t lane_perm = SLP_TREE_LANE_PERMUTATION (root);
2804 for (unsigned j = 0; j < lane_perm.length (); j++)
2805 {
2806 std::pair<unsigned, unsigned> perm = lane_perm[j];
2807 node = SLP_TREE_CHILDREN (root)[perm.first];
2808
2809 if (!vect_is_slp_load_node (node)
2810 || SLP_TREE_CHILDREN (node).exists ())
2811 {
2812 stmts.release ();
2813 goto next;
2814 }
2815
2816 stmts.quick_push (SLP_TREE_SCALAR_STMTS (node)[perm.second]);
2817 }
2818
2819 if (dump_enabled_p ())
2820 dump_printf_loc (MSG_NOTE, vect_location,
2821 "converting stmts on permute node %p\n", root);
2822
2823 bool *matches = XALLOCAVEC (bool, group_size);
2824 poly_uint64 max_nunits = 1;
2825 unsigned tree_size = 0, limit = 1;
2826 node = vect_build_slp_tree (vinfo, stmts, group_size, &max_nunits,
2827 matches, &limit, &tree_size, bst_map);
2828 if (!node)
2829 stmts.release ();
2830
2831 load_map->put (root, node);
2832 return node;
2833 }
2834
2835 next:
2836 load_map->put (root, NULL);
2837
2838 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (root), i , node)
2839 {
2840 slp_tree value
2841 = optimize_load_redistribution_1 (bst_map, vinfo, group_size, load_map,
2842 node);
2843 if (value)
2844 {
2845 SLP_TREE_REF_COUNT (value)++;
2846 SLP_TREE_CHILDREN (root)[i] = value;
2847 /* ??? We know the original leafs of the replaced nodes will
2848 be referenced by bst_map, only the permutes created by
2849 pattern matching are not. */
2850 if (SLP_TREE_REF_COUNT (node) == 1)
2851 load_map->remove (node);
2852 vect_free_slp_tree (node);
2853 }
2854 }
2855
2856 return NULL;
2857 }
2858
2859 /* Temporary workaround for loads not being CSEd during SLP build. This
2860 function will traverse the SLP tree rooted in ROOT for INSTANCE and find
2861 VEC_PERM nodes that blend vectors from multiple nodes that all read from the
2862 same DR such that the final operation is equal to a permuted load. Such
2863 NODES are then directly converted into LOADS themselves. The nodes are
2864 CSEd using BST_MAP. */
2865
2866 static void
2867 optimize_load_redistribution (scalar_stmts_to_slp_tree_map_t *bst_map,
2868 vec_info *vinfo, unsigned int group_size,
2869 hash_map<slp_tree, slp_tree> *load_map,
2870 slp_tree root)
2871 {
2872 slp_tree node;
2873 unsigned i;
2874
2875 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (root), i , node)
2876 {
2877 slp_tree value
2878 = optimize_load_redistribution_1 (bst_map, vinfo, group_size, load_map,
2879 node);
2880 if (value)
2881 {
2882 SLP_TREE_REF_COUNT (value)++;
2883 SLP_TREE_CHILDREN (root)[i] = value;
2884 /* ??? We know the original leafs of the replaced nodes will
2885 be referenced by bst_map, only the permutes created by
2886 pattern matching are not. */
2887 if (SLP_TREE_REF_COUNT (node) == 1)
2888 load_map->remove (node);
2889 vect_free_slp_tree (node);
2890 }
2891 }
2892 }
2893
2894 /* Helper function of vect_match_slp_patterns.
2895
2896 Attempts to match patterns against the slp tree rooted in REF_NODE using
2897 VINFO. Patterns are matched in post-order traversal.
2898
2899 If matching is successful the value in REF_NODE is updated and returned, if
2900 not then it is returned unchanged. */
2901
2902 static bool
2903 vect_match_slp_patterns_2 (slp_tree *ref_node, vec_info *vinfo,
2904 slp_tree_to_load_perm_map_t *perm_cache,
2905 hash_set<slp_tree> *visited)
2906 {
2907 unsigned i;
2908 slp_tree node = *ref_node;
2909 bool found_p = false;
2910 if (!node || visited->add (node))
2911 return false;
2912
2913 slp_tree child;
2914 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2915 found_p |= vect_match_slp_patterns_2 (&SLP_TREE_CHILDREN (node)[i],
2916 vinfo, perm_cache, visited);
2917
2918 for (unsigned x = 0; x < num__slp_patterns; x++)
2919 {
2920 vect_pattern *pattern = slp_patterns[x] (perm_cache, ref_node);
2921 if (pattern)
2922 {
2923 pattern->build (vinfo);
2924 delete pattern;
2925 found_p = true;
2926 }
2927 }
2928
2929 return found_p;
2930 }
2931
2932 /* Applies pattern matching to the given SLP tree rooted in REF_NODE using
2933 vec_info VINFO.
2934
2935 The modified tree is returned. Patterns are tried in order and multiple
2936 patterns may match. */
2937
2938 static bool
2939 vect_match_slp_patterns (slp_instance instance, vec_info *vinfo,
2940 hash_set<slp_tree> *visited,
2941 slp_tree_to_load_perm_map_t *perm_cache)
2942 {
2943 DUMP_VECT_SCOPE ("vect_match_slp_patterns");
2944 slp_tree *ref_node = &SLP_INSTANCE_TREE (instance);
2945
2946 if (dump_enabled_p ())
2947 dump_printf_loc (MSG_NOTE, vect_location,
2948 "Analyzing SLP tree %p for patterns\n",
2949 SLP_INSTANCE_TREE (instance));
2950
2951 return vect_match_slp_patterns_2 (ref_node, vinfo, perm_cache, visited);
2952 }
2953
2954 /* STMT_INFO is a store group of size GROUP_SIZE that we are considering
2955 splitting into two, with the first split group having size NEW_GROUP_SIZE.
2956 Return true if we could use IFN_STORE_LANES instead and if that appears
2957 to be the better approach. */
2958
2959 static bool
2960 vect_slp_prefer_store_lanes_p (vec_info *vinfo, stmt_vec_info stmt_info,
2961 unsigned int group_size,
2962 unsigned int new_group_size)
2963 {
2964 tree scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
2965 tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type);
2966 if (!vectype)
2967 return false;
2968 /* Allow the split if one of the two new groups would operate on full
2969 vectors *within* rather than across one scalar loop iteration.
2970 This is purely a heuristic, but it should work well for group
2971 sizes of 3 and 4, where the possible splits are:
2972
2973 3->2+1: OK if the vector has exactly two elements
2974 4->2+2: Likewise
2975 4->3+1: Less clear-cut. */
2976 if (multiple_p (group_size - new_group_size, TYPE_VECTOR_SUBPARTS (vectype))
2977 || multiple_p (new_group_size, TYPE_VECTOR_SUBPARTS (vectype)))
2978 return false;
2979 return vect_store_lanes_supported (vectype, group_size, false);
2980 }
2981
2982 /* Analyze an SLP instance starting from a group of grouped stores. Call
2983 vect_build_slp_tree to build a tree of packed stmts if possible.
2984 Return FALSE if it's impossible to SLP any stmt in the loop. */
2985
2986 static bool
2987 vect_analyze_slp_instance (vec_info *vinfo,
2988 scalar_stmts_to_slp_tree_map_t *bst_map,
2989 stmt_vec_info stmt_info, slp_instance_kind kind,
2990 unsigned max_tree_size, unsigned *limit);
2991
2992 /* Analyze an SLP instance starting from SCALAR_STMTS which are a group
2993 of KIND. Return true if successful. */
2994
2995 static bool
2996 vect_build_slp_instance (vec_info *vinfo,
2997 slp_instance_kind kind,
2998 vec<stmt_vec_info> &scalar_stmts,
2999 vec<stmt_vec_info> &root_stmt_infos,
3000 unsigned max_tree_size, unsigned *limit,
3001 scalar_stmts_to_slp_tree_map_t *bst_map,
3002 /* ??? We need stmt_info for group splitting. */
3003 stmt_vec_info stmt_info_)
3004 {
3005 if (dump_enabled_p ())
3006 {
3007 dump_printf_loc (MSG_NOTE, vect_location,
3008 "Starting SLP discovery for\n");
3009 for (unsigned i = 0; i < scalar_stmts.length (); ++i)
3010 dump_printf_loc (MSG_NOTE, vect_location,
3011 " %G", scalar_stmts[i]->stmt);
3012 }
3013
3014 /* Build the tree for the SLP instance. */
3015 unsigned int group_size = scalar_stmts.length ();
3016 bool *matches = XALLOCAVEC (bool, group_size);
3017 poly_uint64 max_nunits = 1;
3018 unsigned tree_size = 0;
3019 unsigned i;
3020 slp_tree node = vect_build_slp_tree (vinfo, scalar_stmts, group_size,
3021 &max_nunits, matches, limit,
3022 &tree_size, bst_map);
3023 if (node != NULL)
3024 {
3025 /* Calculate the unrolling factor based on the smallest type. */
3026 poly_uint64 unrolling_factor
3027 = calculate_unrolling_factor (max_nunits, group_size);
3028
3029 if (maybe_ne (unrolling_factor, 1U)
3030 && is_a <bb_vec_info> (vinfo))
3031 {
3032 unsigned HOST_WIDE_INT const_max_nunits;
3033 if (!max_nunits.is_constant (&const_max_nunits)
3034 || const_max_nunits > group_size)
3035 {
3036 if (dump_enabled_p ())
3037 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3038 "Build SLP failed: store group "
3039 "size not a multiple of the vector size "
3040 "in basic block SLP\n");
3041 vect_free_slp_tree (node);
3042 return false;
3043 }
3044 /* Fatal mismatch. */
3045 if (dump_enabled_p ())
3046 dump_printf_loc (MSG_NOTE, vect_location,
3047 "SLP discovery succeeded but node needs "
3048 "splitting\n");
3049 memset (matches, true, group_size);
3050 matches[group_size / const_max_nunits * const_max_nunits] = false;
3051 vect_free_slp_tree (node);
3052 }
3053 else
3054 {
3055 /* Create a new SLP instance. */
3056 slp_instance new_instance = XNEW (class _slp_instance);
3057 SLP_INSTANCE_TREE (new_instance) = node;
3058 SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor;
3059 SLP_INSTANCE_LOADS (new_instance) = vNULL;
3060 SLP_INSTANCE_ROOT_STMTS (new_instance) = root_stmt_infos;
3061 SLP_INSTANCE_KIND (new_instance) = kind;
3062 new_instance->reduc_phis = NULL;
3063 new_instance->cost_vec = vNULL;
3064 new_instance->subgraph_entries = vNULL;
3065
3066 if (dump_enabled_p ())
3067 dump_printf_loc (MSG_NOTE, vect_location,
3068 "SLP size %u vs. limit %u.\n",
3069 tree_size, max_tree_size);
3070
3071 /* Fixup SLP reduction chains. */
3072 if (kind == slp_inst_kind_reduc_chain)
3073 {
3074 /* If this is a reduction chain with a conversion in front
3075 amend the SLP tree with a node for that. */
3076 gimple *scalar_def
3077 = vect_orig_stmt (scalar_stmts[group_size - 1])->stmt;
3078 if (STMT_VINFO_DEF_TYPE (scalar_stmts[0]) != vect_reduction_def)
3079 {
3080 /* Get at the conversion stmt - we know it's the single use
3081 of the last stmt of the reduction chain. */
3082 use_operand_p use_p;
3083 bool r = single_imm_use (gimple_assign_lhs (scalar_def),
3084 &use_p, &scalar_def);
3085 gcc_assert (r);
3086 stmt_vec_info next_info = vinfo->lookup_stmt (scalar_def);
3087 next_info = vect_stmt_to_vectorize (next_info);
3088 scalar_stmts = vNULL;
3089 scalar_stmts.create (group_size);
3090 for (unsigned i = 0; i < group_size; ++i)
3091 scalar_stmts.quick_push (next_info);
3092 slp_tree conv = vect_create_new_slp_node (scalar_stmts, 1);
3093 SLP_TREE_VECTYPE (conv) = STMT_VINFO_VECTYPE (next_info);
3094 SLP_TREE_CHILDREN (conv).quick_push (node);
3095 SLP_INSTANCE_TREE (new_instance) = conv;
3096 /* We also have to fake this conversion stmt as SLP reduction
3097 group so we don't have to mess with too much code
3098 elsewhere. */
3099 REDUC_GROUP_FIRST_ELEMENT (next_info) = next_info;
3100 REDUC_GROUP_NEXT_ELEMENT (next_info) = NULL;
3101 }
3102 /* Fill the backedge child of the PHI SLP node. The
3103 general matching code cannot find it because the
3104 scalar code does not reflect how we vectorize the
3105 reduction. */
3106 use_operand_p use_p;
3107 imm_use_iterator imm_iter;
3108 class loop *loop = LOOP_VINFO_LOOP (as_a <loop_vec_info> (vinfo));
3109 FOR_EACH_IMM_USE_FAST (use_p, imm_iter,
3110 gimple_get_lhs (scalar_def))
3111 /* There are exactly two non-debug uses, the reduction
3112 PHI and the loop-closed PHI node. */
3113 if (!is_gimple_debug (USE_STMT (use_p))
3114 && gimple_bb (USE_STMT (use_p)) == loop->header)
3115 {
3116 auto_vec<stmt_vec_info, 64> phis (group_size);
3117 stmt_vec_info phi_info
3118 = vinfo->lookup_stmt (USE_STMT (use_p));
3119 for (unsigned i = 0; i < group_size; ++i)
3120 phis.quick_push (phi_info);
3121 slp_tree *phi_node = bst_map->get (phis);
3122 unsigned dest_idx = loop_latch_edge (loop)->dest_idx;
3123 SLP_TREE_CHILDREN (*phi_node)[dest_idx]
3124 = SLP_INSTANCE_TREE (new_instance);
3125 SLP_INSTANCE_TREE (new_instance)->refcnt++;
3126 }
3127 }
3128
3129 vinfo->slp_instances.safe_push (new_instance);
3130
3131 /* ??? We've replaced the old SLP_INSTANCE_GROUP_SIZE with
3132 the number of scalar stmts in the root in a few places.
3133 Verify that assumption holds. */
3134 gcc_assert (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (new_instance))
3135 .length () == group_size);
3136
3137 if (dump_enabled_p ())
3138 {
3139 dump_printf_loc (MSG_NOTE, vect_location,
3140 "Final SLP tree for instance %p:\n", new_instance);
3141 vect_print_slp_graph (MSG_NOTE, vect_location,
3142 SLP_INSTANCE_TREE (new_instance));
3143 }
3144
3145 return true;
3146 }
3147 }
3148 else
3149 {
3150 /* Failed to SLP. */
3151 /* Free the allocated memory. */
3152 scalar_stmts.release ();
3153 }
3154
3155 stmt_vec_info stmt_info = stmt_info_;
3156 /* Try to break the group up into pieces. */
3157 if (kind == slp_inst_kind_store)
3158 {
3159 /* ??? We could delay all the actual splitting of store-groups
3160 until after SLP discovery of the original group completed.
3161 Then we can recurse to vect_build_slp_instance directly. */
3162 for (i = 0; i < group_size; i++)
3163 if (!matches[i])
3164 break;
3165
3166 /* For basic block SLP, try to break the group up into multiples of
3167 a vector size. */
3168 if (is_a <bb_vec_info> (vinfo)
3169 && (i > 1 && i < group_size))
3170 {
3171 tree scalar_type
3172 = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
3173 tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type,
3174 1 << floor_log2 (i));
3175 unsigned HOST_WIDE_INT const_nunits;
3176 if (vectype
3177 && TYPE_VECTOR_SUBPARTS (vectype).is_constant (&const_nunits))
3178 {
3179 /* Split into two groups at the first vector boundary. */
3180 gcc_assert ((const_nunits & (const_nunits - 1)) == 0);
3181 unsigned group1_size = i & ~(const_nunits - 1);
3182
3183 if (dump_enabled_p ())
3184 dump_printf_loc (MSG_NOTE, vect_location,
3185 "Splitting SLP group at stmt %u\n", i);
3186 stmt_vec_info rest = vect_split_slp_store_group (stmt_info,
3187 group1_size);
3188 bool res = vect_analyze_slp_instance (vinfo, bst_map, stmt_info,
3189 kind, max_tree_size,
3190 limit);
3191 /* Split the rest at the failure point and possibly
3192 re-analyze the remaining matching part if it has
3193 at least two lanes. */
3194 if (group1_size < i
3195 && (i + 1 < group_size
3196 || i - group1_size > 1))
3197 {
3198 stmt_vec_info rest2 = rest;
3199 rest = vect_split_slp_store_group (rest, i - group1_size);
3200 if (i - group1_size > 1)
3201 res |= vect_analyze_slp_instance (vinfo, bst_map, rest2,
3202 kind, max_tree_size,
3203 limit);
3204 }
3205 /* Re-analyze the non-matching tail if it has at least
3206 two lanes. */
3207 if (i + 1 < group_size)
3208 res |= vect_analyze_slp_instance (vinfo, bst_map,
3209 rest, kind, max_tree_size,
3210 limit);
3211 return res;
3212 }
3213 }
3214
3215 /* For loop vectorization split into arbitrary pieces of size > 1. */
3216 if (is_a <loop_vec_info> (vinfo)
3217 && (i > 1 && i < group_size)
3218 && !vect_slp_prefer_store_lanes_p (vinfo, stmt_info, group_size, i))
3219 {
3220 unsigned group1_size = i;
3221
3222 if (dump_enabled_p ())
3223 dump_printf_loc (MSG_NOTE, vect_location,
3224 "Splitting SLP group at stmt %u\n", i);
3225
3226 stmt_vec_info rest = vect_split_slp_store_group (stmt_info,
3227 group1_size);
3228 /* Loop vectorization cannot handle gaps in stores, make sure
3229 the split group appears as strided. */
3230 STMT_VINFO_STRIDED_P (rest) = 1;
3231 DR_GROUP_GAP (rest) = 0;
3232 STMT_VINFO_STRIDED_P (stmt_info) = 1;
3233 DR_GROUP_GAP (stmt_info) = 0;
3234
3235 bool res = vect_analyze_slp_instance (vinfo, bst_map, stmt_info,
3236 kind, max_tree_size, limit);
3237 if (i + 1 < group_size)
3238 res |= vect_analyze_slp_instance (vinfo, bst_map,
3239 rest, kind, max_tree_size, limit);
3240
3241 return res;
3242 }
3243
3244 /* Even though the first vector did not all match, we might be able to SLP
3245 (some) of the remainder. FORNOW ignore this possibility. */
3246 }
3247
3248 /* Failed to SLP. */
3249 if (dump_enabled_p ())
3250 dump_printf_loc (MSG_NOTE, vect_location, "SLP discovery failed\n");
3251 return false;
3252 }
3253
3254
3255 /* Analyze an SLP instance starting from a group of grouped stores. Call
3256 vect_build_slp_tree to build a tree of packed stmts if possible.
3257 Return FALSE if it's impossible to SLP any stmt in the loop. */
3258
3259 static bool
3260 vect_analyze_slp_instance (vec_info *vinfo,
3261 scalar_stmts_to_slp_tree_map_t *bst_map,
3262 stmt_vec_info stmt_info,
3263 slp_instance_kind kind,
3264 unsigned max_tree_size, unsigned *limit)
3265 {
3266 unsigned int i;
3267 vec<stmt_vec_info> scalar_stmts;
3268
3269 if (is_a <bb_vec_info> (vinfo))
3270 vect_location = stmt_info->stmt;
3271
3272 stmt_vec_info next_info = stmt_info;
3273 if (kind == slp_inst_kind_store)
3274 {
3275 /* Collect the stores and store them in scalar_stmts. */
3276 scalar_stmts.create (DR_GROUP_SIZE (stmt_info));
3277 while (next_info)
3278 {
3279 scalar_stmts.quick_push (vect_stmt_to_vectorize (next_info));
3280 next_info = DR_GROUP_NEXT_ELEMENT (next_info);
3281 }
3282 }
3283 else if (kind == slp_inst_kind_reduc_chain)
3284 {
3285 /* Collect the reduction stmts and store them in scalar_stmts. */
3286 scalar_stmts.create (REDUC_GROUP_SIZE (stmt_info));
3287 while (next_info)
3288 {
3289 scalar_stmts.quick_push (vect_stmt_to_vectorize (next_info));
3290 next_info = REDUC_GROUP_NEXT_ELEMENT (next_info);
3291 }
3292 /* Mark the first element of the reduction chain as reduction to properly
3293 transform the node. In the reduction analysis phase only the last
3294 element of the chain is marked as reduction. */
3295 STMT_VINFO_DEF_TYPE (stmt_info)
3296 = STMT_VINFO_DEF_TYPE (scalar_stmts.last ());
3297 STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info))
3298 = STMT_VINFO_REDUC_DEF (vect_orig_stmt (scalar_stmts.last ()));
3299 }
3300 else if (kind == slp_inst_kind_ctor)
3301 {
3302 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
3303 tree val;
3304 scalar_stmts.create (CONSTRUCTOR_NELTS (rhs));
3305 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
3306 {
3307 stmt_vec_info def_info = vinfo->lookup_def (val);
3308 def_info = vect_stmt_to_vectorize (def_info);
3309 scalar_stmts.quick_push (def_info);
3310 }
3311 if (dump_enabled_p ())
3312 dump_printf_loc (MSG_NOTE, vect_location,
3313 "Analyzing vectorizable constructor: %G\n",
3314 stmt_info->stmt);
3315 }
3316 else if (kind == slp_inst_kind_reduc_group)
3317 {
3318 /* Collect reduction statements. */
3319 vec<stmt_vec_info> reductions = as_a <loop_vec_info> (vinfo)->reductions;
3320 scalar_stmts.create (reductions.length ());
3321 for (i = 0; reductions.iterate (i, &next_info); i++)
3322 if (STMT_VINFO_RELEVANT_P (next_info)
3323 || STMT_VINFO_LIVE_P (next_info))
3324 scalar_stmts.quick_push (next_info);
3325 /* If less than two were relevant/live there's nothing to SLP. */
3326 if (scalar_stmts.length () < 2)
3327 return false;
3328 }
3329 else
3330 gcc_unreachable ();
3331
3332 vec<stmt_vec_info> roots = vNULL;
3333 if (kind == slp_inst_kind_ctor)
3334 {
3335 roots.create (1);
3336 roots.quick_push (stmt_info);
3337 }
3338 /* Build the tree for the SLP instance. */
3339 bool res = vect_build_slp_instance (vinfo, kind, scalar_stmts,
3340 roots,
3341 max_tree_size, limit, bst_map,
3342 kind == slp_inst_kind_store
3343 ? stmt_info : NULL);
3344 if (!res)
3345 roots.release ();
3346
3347 /* ??? If this is slp_inst_kind_store and the above succeeded here's
3348 where we should do store group splitting. */
3349
3350 return res;
3351 }
3352
3353 /* Check if there are stmts in the loop can be vectorized using SLP. Build SLP
3354 trees of packed scalar stmts if SLP is possible. */
3355
3356 opt_result
3357 vect_analyze_slp (vec_info *vinfo, unsigned max_tree_size)
3358 {
3359 unsigned int i;
3360 stmt_vec_info first_element;
3361 slp_instance instance;
3362
3363 DUMP_VECT_SCOPE ("vect_analyze_slp");
3364
3365 unsigned limit = max_tree_size;
3366
3367 scalar_stmts_to_slp_tree_map_t *bst_map
3368 = new scalar_stmts_to_slp_tree_map_t ();
3369
3370 /* Find SLP sequences starting from groups of grouped stores. */
3371 FOR_EACH_VEC_ELT (vinfo->grouped_stores, i, first_element)
3372 vect_analyze_slp_instance (vinfo, bst_map, first_element,
3373 STMT_VINFO_GROUPED_ACCESS (first_element)
3374 ? slp_inst_kind_store : slp_inst_kind_ctor,
3375 max_tree_size, &limit);
3376
3377 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo))
3378 {
3379 for (unsigned i = 0; i < bb_vinfo->roots.length (); ++i)
3380 {
3381 vect_location = bb_vinfo->roots[i].roots[0]->stmt;
3382 if (vect_build_slp_instance (bb_vinfo, bb_vinfo->roots[i].kind,
3383 bb_vinfo->roots[i].stmts,
3384 bb_vinfo->roots[i].roots,
3385 max_tree_size, &limit, bst_map, NULL))
3386 {
3387 bb_vinfo->roots[i].stmts = vNULL;
3388 bb_vinfo->roots[i].roots = vNULL;
3389 }
3390 }
3391 }
3392
3393 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
3394 {
3395 /* Find SLP sequences starting from reduction chains. */
3396 FOR_EACH_VEC_ELT (loop_vinfo->reduction_chains, i, first_element)
3397 if (! STMT_VINFO_RELEVANT_P (first_element)
3398 && ! STMT_VINFO_LIVE_P (first_element))
3399 ;
3400 else if (! vect_analyze_slp_instance (vinfo, bst_map, first_element,
3401 slp_inst_kind_reduc_chain,
3402 max_tree_size, &limit))
3403 {
3404 /* Dissolve reduction chain group. */
3405 stmt_vec_info vinfo = first_element;
3406 stmt_vec_info last = NULL;
3407 while (vinfo)
3408 {
3409 stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (vinfo);
3410 REDUC_GROUP_FIRST_ELEMENT (vinfo) = NULL;
3411 REDUC_GROUP_NEXT_ELEMENT (vinfo) = NULL;
3412 last = vinfo;
3413 vinfo = next;
3414 }
3415 STMT_VINFO_DEF_TYPE (first_element) = vect_internal_def;
3416 /* It can be still vectorized as part of an SLP reduction. */
3417 loop_vinfo->reductions.safe_push (last);
3418 }
3419
3420 /* Find SLP sequences starting from groups of reductions. */
3421 if (loop_vinfo->reductions.length () > 1)
3422 vect_analyze_slp_instance (vinfo, bst_map, loop_vinfo->reductions[0],
3423 slp_inst_kind_reduc_group, max_tree_size,
3424 &limit);
3425 }
3426
3427 hash_set<slp_tree> visited_patterns;
3428 slp_tree_to_load_perm_map_t perm_cache;
3429
3430 /* See if any patterns can be found in the SLP tree. */
3431 bool pattern_found = false;
3432 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (vinfo), i, instance)
3433 pattern_found |= vect_match_slp_patterns (instance, vinfo,
3434 &visited_patterns, &perm_cache);
3435
3436 /* If any were found optimize permutations of loads. */
3437 if (pattern_found)
3438 {
3439 hash_map<slp_tree, slp_tree> load_map;
3440 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (vinfo), i, instance)
3441 {
3442 slp_tree root = SLP_INSTANCE_TREE (instance);
3443 optimize_load_redistribution (bst_map, vinfo, SLP_TREE_LANES (root),
3444 &load_map, root);
3445 }
3446 }
3447
3448
3449
3450 /* The map keeps a reference on SLP nodes built, release that. */
3451 for (scalar_stmts_to_slp_tree_map_t::iterator it = bst_map->begin ();
3452 it != bst_map->end (); ++it)
3453 if ((*it).second)
3454 vect_free_slp_tree ((*it).second);
3455 delete bst_map;
3456
3457 if (pattern_found && dump_enabled_p ())
3458 {
3459 dump_printf_loc (MSG_NOTE, vect_location,
3460 "Pattern matched SLP tree\n");
3461 hash_set<slp_tree> visited;
3462 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (vinfo), i, instance)
3463 vect_print_slp_graph (MSG_NOTE, vect_location,
3464 SLP_INSTANCE_TREE (instance), visited);
3465 }
3466
3467 return opt_result::success ();
3468 }
3469
3470 struct slpg_vertex
3471 {
3472 slpg_vertex (slp_tree node_)
3473 : node (node_), visited (0), perm_out (0), materialize (0) {}
3474
3475 int get_perm_in () const { return materialize ? materialize : perm_out; }
3476
3477 slp_tree node;
3478 unsigned visited : 1;
3479 /* The permutation on the outgoing lanes (towards SLP parents). */
3480 int perm_out;
3481 /* The permutation that is applied by this node. perm_out is
3482 relative to this. */
3483 int materialize;
3484 };
3485
3486 /* Fill the vertices and leafs vector with all nodes in the SLP graph. */
3487
3488 static void
3489 vect_slp_build_vertices (hash_set<slp_tree> &visited, slp_tree node,
3490 vec<slpg_vertex> &vertices, vec<int> &leafs)
3491 {
3492 unsigned i;
3493 slp_tree child;
3494
3495 if (visited.add (node))
3496 return;
3497
3498 node->vertex = vertices.length ();
3499 vertices.safe_push (slpg_vertex (node));
3500
3501 bool leaf = true;
3502 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
3503 if (child)
3504 {
3505 leaf = false;
3506 vect_slp_build_vertices (visited, child, vertices, leafs);
3507 }
3508 if (leaf)
3509 leafs.safe_push (node->vertex);
3510 }
3511
3512 /* Fill the vertices and leafs vector with all nodes in the SLP graph. */
3513
3514 static void
3515 vect_slp_build_vertices (vec_info *info, vec<slpg_vertex> &vertices,
3516 vec<int> &leafs)
3517 {
3518 hash_set<slp_tree> visited;
3519 unsigned i;
3520 slp_instance instance;
3521 FOR_EACH_VEC_ELT (info->slp_instances, i, instance)
3522 {
3523 unsigned n_v = vertices.length ();
3524 unsigned n_l = leafs.length ();
3525 vect_slp_build_vertices (visited, SLP_INSTANCE_TREE (instance), vertices,
3526 leafs);
3527 /* If we added vertices but no entries to the reverse graph we've
3528 added a cycle that is not backwards-reachable. Push the entry
3529 to mimic as leaf then. */
3530 if (vertices.length () > n_v
3531 && leafs.length () == n_l)
3532 leafs.safe_push (SLP_INSTANCE_TREE (instance)->vertex);
3533 }
3534 }
3535
3536 /* Apply (reverse) bijectite PERM to VEC. */
3537
3538 template <class T>
3539 static void
3540 vect_slp_permute (vec<unsigned> perm,
3541 vec<T> &vec, bool reverse)
3542 {
3543 auto_vec<T, 64> saved;
3544 saved.create (vec.length ());
3545 for (unsigned i = 0; i < vec.length (); ++i)
3546 saved.quick_push (vec[i]);
3547
3548 if (reverse)
3549 {
3550 for (unsigned i = 0; i < vec.length (); ++i)
3551 vec[perm[i]] = saved[i];
3552 for (unsigned i = 0; i < vec.length (); ++i)
3553 gcc_assert (vec[perm[i]] == saved[i]);
3554 }
3555 else
3556 {
3557 for (unsigned i = 0; i < vec.length (); ++i)
3558 vec[i] = saved[perm[i]];
3559 for (unsigned i = 0; i < vec.length (); ++i)
3560 gcc_assert (vec[i] == saved[perm[i]]);
3561 }
3562 }
3563
3564 /* Return whether permutations PERM_A and PERM_B as recorded in the
3565 PERMS vector are equal. */
3566
3567 static bool
3568 vect_slp_perms_eq (const vec<vec<unsigned> > &perms,
3569 int perm_a, int perm_b)
3570 {
3571 return (perm_a == perm_b
3572 || (perms[perm_a].length () == perms[perm_b].length ()
3573 && memcmp (&perms[perm_a][0], &perms[perm_b][0],
3574 sizeof (unsigned) * perms[perm_a].length ()) == 0));
3575 }
3576
3577 /* Optimize the SLP graph of VINFO. */
3578
3579 void
3580 vect_optimize_slp (vec_info *vinfo)
3581 {
3582 if (vinfo->slp_instances.is_empty ())
3583 return;
3584
3585 slp_tree node;
3586 unsigned i;
3587 auto_vec<slpg_vertex> vertices;
3588 auto_vec<int> leafs;
3589 vect_slp_build_vertices (vinfo, vertices, leafs);
3590
3591 struct graph *slpg = new_graph (vertices.length ());
3592 for (slpg_vertex &v : vertices)
3593 for (slp_tree child : SLP_TREE_CHILDREN (v.node))
3594 if (child)
3595 add_edge (slpg, v.node->vertex, child->vertex);
3596
3597 /* Compute (reverse) postorder on the inverted graph. */
3598 auto_vec<int> ipo;
3599 graphds_dfs (slpg, &leafs[0], leafs.length (), &ipo, false, NULL, NULL);
3600
3601 auto_vec<vec<unsigned> > perms;
3602 perms.safe_push (vNULL); /* zero is no permute */
3603
3604 /* Produce initial permutations. */
3605 for (i = 0; i < leafs.length (); ++i)
3606 {
3607 int idx = leafs[i];
3608 slp_tree node = vertices[idx].node;
3609
3610 /* Handle externals and constants optimistically throughout the
3611 iteration. */
3612 if (SLP_TREE_DEF_TYPE (node) == vect_external_def
3613 || SLP_TREE_DEF_TYPE (node) == vect_constant_def)
3614 continue;
3615
3616 /* Leafs do not change across iterations. Note leafs also double
3617 as entries to the reverse graph. */
3618 if (!slpg->vertices[idx].succ)
3619 vertices[idx].visited = 1;
3620 /* Loads are the only thing generating permutes. */
3621 if (!SLP_TREE_LOAD_PERMUTATION (node).exists ())
3622 continue;
3623
3624 /* If splitting out a SLP_TREE_LANE_PERMUTATION can make the
3625 node unpermuted, record this permute. */
3626 stmt_vec_info dr_stmt = SLP_TREE_REPRESENTATIVE (node);
3627 if (!STMT_VINFO_GROUPED_ACCESS (dr_stmt))
3628 continue;
3629 dr_stmt = DR_GROUP_FIRST_ELEMENT (dr_stmt);
3630 unsigned imin = DR_GROUP_SIZE (dr_stmt) + 1, imax = 0;
3631 bool any_permute = false;
3632 for (unsigned j = 0; j < SLP_TREE_LANES (node); ++j)
3633 {
3634 unsigned idx = SLP_TREE_LOAD_PERMUTATION (node)[j];
3635 imin = MIN (imin, idx);
3636 imax = MAX (imax, idx);
3637 if (idx - SLP_TREE_LOAD_PERMUTATION (node)[0] != j)
3638 any_permute = true;
3639 }
3640 /* If there's no permute no need to split one out. */
3641 if (!any_permute)
3642 continue;
3643 /* If the span doesn't match we'd disrupt VF computation, avoid
3644 that for now. */
3645 if (imax - imin + 1 != SLP_TREE_LANES (node))
3646 continue;
3647
3648 /* For now only handle true permutes, like
3649 vect_attempt_slp_rearrange_stmts did. This allows us to be lazy
3650 when permuting constants and invariants keeping the permute
3651 bijective. */
3652 auto_sbitmap load_index (SLP_TREE_LANES (node));
3653 bitmap_clear (load_index);
3654 for (unsigned j = 0; j < SLP_TREE_LANES (node); ++j)
3655 bitmap_set_bit (load_index, SLP_TREE_LOAD_PERMUTATION (node)[j] - imin);
3656 unsigned j;
3657 for (j = 0; j < SLP_TREE_LANES (node); ++j)
3658 if (!bitmap_bit_p (load_index, j))
3659 break;
3660 if (j != SLP_TREE_LANES (node))
3661 continue;
3662
3663 vec<unsigned> perm = vNULL;
3664 perm.safe_grow (SLP_TREE_LANES (node), true);
3665 for (unsigned j = 0; j < SLP_TREE_LANES (node); ++j)
3666 perm[j] = SLP_TREE_LOAD_PERMUTATION (node)[j] - imin;
3667 perms.safe_push (perm);
3668 vertices[idx].perm_out = perms.length () - 1;
3669 }
3670
3671 /* Propagate permutes along the graph and compute materialization points. */
3672 bool changed;
3673 unsigned iteration = 0;
3674 do
3675 {
3676 changed = false;
3677 ++iteration;
3678
3679 for (i = vertices.length (); i > 0 ; --i)
3680 {
3681 int idx = ipo[i-1];
3682 slp_tree node = vertices[idx].node;
3683
3684 /* Handle externals and constants optimistically throughout the
3685 iteration. */
3686 if (SLP_TREE_DEF_TYPE (node) == vect_external_def
3687 || SLP_TREE_DEF_TYPE (node) == vect_constant_def)
3688 continue;
3689
3690 vertices[idx].visited = 1;
3691
3692 /* We do not handle stores with a permutation. */
3693 stmt_vec_info rep = SLP_TREE_REPRESENTATIVE (node);
3694 if (STMT_VINFO_DATA_REF (rep)
3695 && DR_IS_WRITE (STMT_VINFO_DATA_REF (rep)))
3696 continue;
3697 /* We cannot move a permute across an operation that is
3698 not independent on lanes. Note this is an explicit
3699 negative list since that's much shorter than the respective
3700 positive one but it's critical to keep maintaining it. */
3701 if (is_gimple_call (STMT_VINFO_STMT (rep)))
3702 switch (gimple_call_combined_fn (STMT_VINFO_STMT (rep)))
3703 {
3704 case CFN_COMPLEX_ADD_ROT90:
3705 case CFN_COMPLEX_ADD_ROT270:
3706 case CFN_COMPLEX_MUL:
3707 case CFN_COMPLEX_MUL_CONJ:
3708 continue;
3709 default:;
3710 }
3711
3712 int perm = -1;
3713 for (graph_edge *succ = slpg->vertices[idx].succ;
3714 succ; succ = succ->succ_next)
3715 {
3716 int succ_idx = succ->dest;
3717 /* Handle unvisited nodes optimistically. */
3718 /* ??? But for constants once we want to handle non-bijective
3719 permutes we have to verify the permute, when unifying lanes,
3720 will not unify different constants. For example see
3721 gcc.dg/vect/bb-slp-14.c for a case that would break. */
3722 if (!vertices[succ_idx].visited)
3723 continue;
3724 int succ_perm = vertices[succ_idx].perm_out;
3725 if (perm == -1)
3726 perm = succ_perm;
3727 else if (succ_perm == 0)
3728 {
3729 perm = 0;
3730 break;
3731 }
3732 else if (!vect_slp_perms_eq (perms, perm, succ_perm))
3733 {
3734 perm = 0;
3735 break;
3736 }
3737 }
3738
3739 if (perm == -1)
3740 /* Pick up pre-computed leaf values. */
3741 perm = vertices[idx].perm_out;
3742 else if (!vect_slp_perms_eq (perms, perm,
3743 vertices[idx].get_perm_in ()))
3744 {
3745 if (iteration > 1)
3746 /* Make sure we eventually converge. */
3747 gcc_checking_assert (perm == 0);
3748 if (perm == 0)
3749 {
3750 vertices[idx].perm_out = 0;
3751 vertices[idx].materialize = 0;
3752 }
3753 if (!vertices[idx].materialize)
3754 vertices[idx].perm_out = perm;
3755 changed = true;
3756 }
3757
3758 if (perm == 0)
3759 continue;
3760
3761 /* Elide pruning at materialization points in the first
3762 iteration so every node was visited once at least. */
3763 if (iteration == 1)
3764 continue;
3765
3766 /* Decide on permute materialization. Look whether there's
3767 a use (pred) edge that is permuted differently than us.
3768 In that case mark ourselves so the permutation is applied.
3769 For VEC_PERM_EXPRs the permutation doesn't carry along
3770 from children to parents so force materialization at the
3771 point of the VEC_PERM_EXPR. In principle VEC_PERM_EXPRs
3772 are a source of an arbitrary permutation again, similar
3773 to constants/externals - that's something we do not yet
3774 optimally handle. */
3775 bool all_preds_permuted = (SLP_TREE_CODE (node) != VEC_PERM_EXPR
3776 && slpg->vertices[idx].pred != NULL);
3777 if (all_preds_permuted)
3778 for (graph_edge *pred = slpg->vertices[idx].pred;
3779 pred; pred = pred->pred_next)
3780 {
3781 gcc_checking_assert (vertices[pred->src].visited);
3782 int pred_perm = vertices[pred->src].get_perm_in ();
3783 if (!vect_slp_perms_eq (perms, perm, pred_perm))
3784 {
3785 all_preds_permuted = false;
3786 break;
3787 }
3788 }
3789 if (!all_preds_permuted)
3790 {
3791 if (!vertices[idx].materialize)
3792 changed = true;
3793 vertices[idx].materialize = perm;
3794 vertices[idx].perm_out = 0;
3795 }
3796 }
3797 }
3798 while (changed || iteration == 1);
3799
3800 /* Materialize. */
3801 for (i = 0; i < vertices.length (); ++i)
3802 {
3803 int perm = vertices[i].get_perm_in ();
3804 if (perm <= 0)
3805 continue;
3806
3807 slp_tree node = vertices[i].node;
3808
3809 /* First permute invariant/external original successors. */
3810 unsigned j;
3811 slp_tree child;
3812 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
3813 {
3814 if (!child || SLP_TREE_DEF_TYPE (child) == vect_internal_def)
3815 continue;
3816
3817 /* If the vector is uniform there's nothing to do. */
3818 if (vect_slp_tree_uniform_p (child))
3819 continue;
3820
3821 /* We can end up sharing some externals via two_operator
3822 handling. Be prepared to unshare those. */
3823 if (child->refcnt != 1)
3824 {
3825 gcc_assert (slpg->vertices[child->vertex].pred->pred_next);
3826 SLP_TREE_CHILDREN (node)[j] = child
3827 = vect_create_new_slp_node
3828 (SLP_TREE_SCALAR_OPS (child).copy ());
3829 }
3830 vect_slp_permute (perms[perm],
3831 SLP_TREE_SCALAR_OPS (child), true);
3832 }
3833
3834 if (vertices[i].materialize)
3835 {
3836 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
3837 /* For loads simply drop the permutation, the load permutation
3838 already performs the desired permutation. */
3839 ;
3840 else if (SLP_TREE_LANE_PERMUTATION (node).exists ())
3841 {
3842 /* If the node is already a permute node we can apply
3843 the permutation to the lane selection, effectively
3844 materializing it on the incoming vectors. */
3845 if (dump_enabled_p ())
3846 dump_printf_loc (MSG_NOTE, vect_location,
3847 "simplifying permute node %p\n",
3848 node);
3849
3850 for (unsigned k = 0;
3851 k < SLP_TREE_LANE_PERMUTATION (node).length (); ++k)
3852 SLP_TREE_LANE_PERMUTATION (node)[k].second
3853 = perms[perm][SLP_TREE_LANE_PERMUTATION (node)[k].second];
3854 }
3855 else
3856 {
3857 if (dump_enabled_p ())
3858 dump_printf_loc (MSG_NOTE, vect_location,
3859 "inserting permute node in place of %p\n",
3860 node);
3861
3862 /* Make a copy of NODE and in-place change it to a
3863 VEC_PERM node to permute the lanes of the copy. */
3864 slp_tree copy = new _slp_tree;
3865 SLP_TREE_CHILDREN (copy) = SLP_TREE_CHILDREN (node);
3866 SLP_TREE_CHILDREN (node) = vNULL;
3867 SLP_TREE_SCALAR_STMTS (copy)
3868 = SLP_TREE_SCALAR_STMTS (node).copy ();
3869 vect_slp_permute (perms[perm],
3870 SLP_TREE_SCALAR_STMTS (copy), true);
3871 gcc_assert (!SLP_TREE_SCALAR_OPS (node).exists ());
3872 SLP_TREE_REPRESENTATIVE (copy) = SLP_TREE_REPRESENTATIVE (node);
3873 gcc_assert (!SLP_TREE_LOAD_PERMUTATION (node).exists ());
3874 SLP_TREE_LANE_PERMUTATION (copy)
3875 = SLP_TREE_LANE_PERMUTATION (node);
3876 SLP_TREE_LANE_PERMUTATION (node) = vNULL;
3877 SLP_TREE_VECTYPE (copy) = SLP_TREE_VECTYPE (node);
3878 copy->refcnt = 1;
3879 copy->max_nunits = node->max_nunits;
3880 SLP_TREE_DEF_TYPE (copy) = SLP_TREE_DEF_TYPE (node);
3881 SLP_TREE_LANES (copy) = SLP_TREE_LANES (node);
3882 SLP_TREE_CODE (copy) = SLP_TREE_CODE (node);
3883
3884 /* Now turn NODE into a VEC_PERM. */
3885 SLP_TREE_CHILDREN (node).safe_push (copy);
3886 SLP_TREE_LANE_PERMUTATION (node).create (SLP_TREE_LANES (node));
3887 for (unsigned j = 0; j < SLP_TREE_LANES (node); ++j)
3888 SLP_TREE_LANE_PERMUTATION (node)
3889 .quick_push (std::make_pair (0, perms[perm][j]));
3890 SLP_TREE_CODE (node) = VEC_PERM_EXPR;
3891 }
3892 }
3893 else
3894 {
3895 /* Apply the reverse permutation to our stmts. */
3896 vect_slp_permute (perms[perm],
3897 SLP_TREE_SCALAR_STMTS (node), true);
3898 /* And to the load permutation, which we can simply
3899 make regular by design. */
3900 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
3901 {
3902 /* ??? When we handle non-bijective permutes the idea
3903 is that we can force the load-permutation to be
3904 { min, min + 1, min + 2, ... max }. But then the
3905 scalar defs might no longer match the lane content
3906 which means wrong-code with live lane vectorization.
3907 So we possibly have to have NULL entries for those. */
3908 vect_slp_permute (perms[perm],
3909 SLP_TREE_LOAD_PERMUTATION (node), true);
3910 }
3911 }
3912 }
3913
3914 /* Free the perms vector used for propagation. */
3915 while (!perms.is_empty ())
3916 perms.pop ().release ();
3917 free_graph (slpg);
3918
3919
3920 /* Now elide load permutations that are not necessary. */
3921 for (i = 0; i < leafs.length (); ++i)
3922 {
3923 node = vertices[leafs[i]].node;
3924 if (!SLP_TREE_LOAD_PERMUTATION (node).exists ())
3925 continue;
3926
3927 /* In basic block vectorization we allow any subchain of an interleaving
3928 chain.
3929 FORNOW: not in loop SLP because of realignment complications. */
3930 if (is_a <bb_vec_info> (vinfo))
3931 {
3932 bool subchain_p = true;
3933 stmt_vec_info next_load_info = NULL;
3934 stmt_vec_info load_info;
3935 unsigned j;
3936 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load_info)
3937 {
3938 if (j != 0
3939 && (next_load_info != load_info
3940 || DR_GROUP_GAP (load_info) != 1))
3941 {
3942 subchain_p = false;
3943 break;
3944 }
3945 next_load_info = DR_GROUP_NEXT_ELEMENT (load_info);
3946 }
3947 if (subchain_p)
3948 {
3949 SLP_TREE_LOAD_PERMUTATION (node).release ();
3950 continue;
3951 }
3952 }
3953 else
3954 {
3955 stmt_vec_info load_info;
3956 bool this_load_permuted = false;
3957 unsigned j;
3958 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load_info)
3959 if (SLP_TREE_LOAD_PERMUTATION (node)[j] != j)
3960 {
3961 this_load_permuted = true;
3962 break;
3963 }
3964 stmt_vec_info first_stmt_info
3965 = DR_GROUP_FIRST_ELEMENT (SLP_TREE_SCALAR_STMTS (node)[0]);
3966 if (!this_load_permuted
3967 /* The load requires permutation when unrolling exposes
3968 a gap either because the group is larger than the SLP
3969 group-size or because there is a gap between the groups. */
3970 && (known_eq (LOOP_VINFO_VECT_FACTOR
3971 (as_a <loop_vec_info> (vinfo)), 1U)
3972 || ((SLP_TREE_LANES (node) == DR_GROUP_SIZE (first_stmt_info))
3973 && DR_GROUP_GAP (first_stmt_info) == 0)))
3974 {
3975 SLP_TREE_LOAD_PERMUTATION (node).release ();
3976 continue;
3977 }
3978 }
3979 }
3980
3981 /* And any permutations of BB reductions. */
3982 if (is_a <bb_vec_info> (vinfo))
3983 {
3984 for (slp_instance instance : vinfo->slp_instances)
3985 {
3986 if (SLP_INSTANCE_KIND (instance) != slp_inst_kind_bb_reduc)
3987 continue;
3988 slp_tree old = SLP_INSTANCE_TREE (instance);
3989 if (SLP_TREE_CODE (old) == VEC_PERM_EXPR
3990 && SLP_TREE_CHILDREN (old).length () == 1)
3991 {
3992 slp_tree child = SLP_TREE_CHILDREN (old)[0];
3993 if (SLP_TREE_DEF_TYPE (child) == vect_external_def)
3994 {
3995 /* Preserve the special VEC_PERM we use to shield existing
3996 vector defs from the rest. But make it a no-op. */
3997 unsigned i = 0;
3998 for (std::pair<unsigned, unsigned> &p
3999 : SLP_TREE_LANE_PERMUTATION (old))
4000 p.second = i++;
4001 }
4002 else
4003 {
4004 SLP_INSTANCE_TREE (instance) = child;
4005 SLP_TREE_REF_COUNT (child)++;
4006 vect_free_slp_tree (old);
4007 }
4008 }
4009 else if (SLP_TREE_LOAD_PERMUTATION (old).exists ()
4010 && SLP_TREE_REF_COUNT (old) == 1)
4011 {
4012 /* ??? For loads the situation is more complex since
4013 we can't modify the permute in place in case the
4014 node is used multiple times. In fact for loads this
4015 should be somehow handled in the propagation engine. */
4016 auto fn = [] (const void *a, const void *b)
4017 { return *(const int *)a - *(const int *)b; };
4018 SLP_TREE_LOAD_PERMUTATION (old).qsort (fn);
4019 }
4020 }
4021 }
4022 }
4023
4024 /* Gather loads reachable from the individual SLP graph entries. */
4025
4026 void
4027 vect_gather_slp_loads (vec_info *vinfo)
4028 {
4029 unsigned i;
4030 slp_instance instance;
4031 FOR_EACH_VEC_ELT (vinfo->slp_instances, i, instance)
4032 {
4033 hash_set<slp_tree> visited;
4034 vect_gather_slp_loads (SLP_INSTANCE_LOADS (instance),
4035 SLP_INSTANCE_TREE (instance), visited);
4036 }
4037 }
4038
4039
4040 /* For each possible SLP instance decide whether to SLP it and calculate overall
4041 unrolling factor needed to SLP the loop. Return TRUE if decided to SLP at
4042 least one instance. */
4043
4044 bool
4045 vect_make_slp_decision (loop_vec_info loop_vinfo)
4046 {
4047 unsigned int i;
4048 poly_uint64 unrolling_factor = 1;
4049 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
4050 slp_instance instance;
4051 int decided_to_slp = 0;
4052
4053 DUMP_VECT_SCOPE ("vect_make_slp_decision");
4054
4055 FOR_EACH_VEC_ELT (slp_instances, i, instance)
4056 {
4057 /* FORNOW: SLP if you can. */
4058 /* All unroll factors have the form:
4059
4060 GET_MODE_SIZE (vinfo->vector_mode) * X
4061
4062 for some rational X, so they must have a common multiple. */
4063 unrolling_factor
4064 = force_common_multiple (unrolling_factor,
4065 SLP_INSTANCE_UNROLLING_FACTOR (instance));
4066
4067 /* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we
4068 call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and
4069 loop-based vectorization. Such stmts will be marked as HYBRID. */
4070 vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance));
4071 decided_to_slp++;
4072 }
4073
4074 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor;
4075
4076 if (decided_to_slp && dump_enabled_p ())
4077 {
4078 dump_printf_loc (MSG_NOTE, vect_location,
4079 "Decided to SLP %d instances. Unrolling factor ",
4080 decided_to_slp);
4081 dump_dec (MSG_NOTE, unrolling_factor);
4082 dump_printf (MSG_NOTE, "\n");
4083 }
4084
4085 return (decided_to_slp > 0);
4086 }
4087
4088 /* Private data for vect_detect_hybrid_slp. */
4089 struct vdhs_data
4090 {
4091 loop_vec_info loop_vinfo;
4092 vec<stmt_vec_info> *worklist;
4093 };
4094
4095 /* Walker for walk_gimple_op. */
4096
4097 static tree
4098 vect_detect_hybrid_slp (tree *tp, int *, void *data)
4099 {
4100 walk_stmt_info *wi = (walk_stmt_info *)data;
4101 vdhs_data *dat = (vdhs_data *)wi->info;
4102
4103 if (wi->is_lhs)
4104 return NULL_TREE;
4105
4106 stmt_vec_info def_stmt_info = dat->loop_vinfo->lookup_def (*tp);
4107 if (!def_stmt_info)
4108 return NULL_TREE;
4109 def_stmt_info = vect_stmt_to_vectorize (def_stmt_info);
4110 if (PURE_SLP_STMT (def_stmt_info))
4111 {
4112 if (dump_enabled_p ())
4113 dump_printf_loc (MSG_NOTE, vect_location, "marking hybrid: %G",
4114 def_stmt_info->stmt);
4115 STMT_SLP_TYPE (def_stmt_info) = hybrid;
4116 dat->worklist->safe_push (def_stmt_info);
4117 }
4118
4119 return NULL_TREE;
4120 }
4121
4122 /* Look if STMT_INFO is consumed by SLP indirectly and mark it pure_slp
4123 if so, otherwise pushing it to WORKLIST. */
4124
4125 static void
4126 maybe_push_to_hybrid_worklist (vec_info *vinfo,
4127 vec<stmt_vec_info> &worklist,
4128 stmt_vec_info stmt_info)
4129 {
4130 if (dump_enabled_p ())
4131 dump_printf_loc (MSG_NOTE, vect_location,
4132 "Processing hybrid candidate : %G", stmt_info->stmt);
4133 stmt_vec_info orig_info = vect_orig_stmt (stmt_info);
4134 imm_use_iterator iter2;
4135 ssa_op_iter iter1;
4136 use_operand_p use_p;
4137 def_operand_p def_p;
4138 bool any_def = false;
4139 FOR_EACH_PHI_OR_STMT_DEF (def_p, orig_info->stmt, iter1, SSA_OP_DEF)
4140 {
4141 any_def = true;
4142 FOR_EACH_IMM_USE_FAST (use_p, iter2, DEF_FROM_PTR (def_p))
4143 {
4144 if (is_gimple_debug (USE_STMT (use_p)))
4145 continue;
4146 stmt_vec_info use_info = vinfo->lookup_stmt (USE_STMT (use_p));
4147 /* An out-of loop use means this is a loop_vect sink. */
4148 if (!use_info)
4149 {
4150 if (dump_enabled_p ())
4151 dump_printf_loc (MSG_NOTE, vect_location,
4152 "Found loop_vect sink: %G", stmt_info->stmt);
4153 worklist.safe_push (stmt_info);
4154 return;
4155 }
4156 else if (!STMT_SLP_TYPE (vect_stmt_to_vectorize (use_info)))
4157 {
4158 if (dump_enabled_p ())
4159 dump_printf_loc (MSG_NOTE, vect_location,
4160 "Found loop_vect use: %G", use_info->stmt);
4161 worklist.safe_push (stmt_info);
4162 return;
4163 }
4164 }
4165 }
4166 /* No def means this is a loo_vect sink. */
4167 if (!any_def)
4168 {
4169 if (dump_enabled_p ())
4170 dump_printf_loc (MSG_NOTE, vect_location,
4171 "Found loop_vect sink: %G", stmt_info->stmt);
4172 worklist.safe_push (stmt_info);
4173 return;
4174 }
4175 if (dump_enabled_p ())
4176 dump_printf_loc (MSG_NOTE, vect_location,
4177 "Marked SLP consumed stmt pure: %G", stmt_info->stmt);
4178 STMT_SLP_TYPE (stmt_info) = pure_slp;
4179 }
4180
4181 /* Find stmts that must be both vectorized and SLPed. */
4182
4183 void
4184 vect_detect_hybrid_slp (loop_vec_info loop_vinfo)
4185 {
4186 DUMP_VECT_SCOPE ("vect_detect_hybrid_slp");
4187
4188 /* All stmts participating in SLP are marked pure_slp, all other
4189 stmts are loop_vect.
4190 First collect all loop_vect stmts into a worklist.
4191 SLP patterns cause not all original scalar stmts to appear in
4192 SLP_TREE_SCALAR_STMTS and thus not all of them are marked pure_slp.
4193 Rectify this here and do a backward walk over the IL only considering
4194 stmts as loop_vect when they are used by a loop_vect stmt and otherwise
4195 mark them as pure_slp. */
4196 auto_vec<stmt_vec_info> worklist;
4197 for (int i = LOOP_VINFO_LOOP (loop_vinfo)->num_nodes - 1; i >= 0; --i)
4198 {
4199 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
4200 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
4201 gsi_next (&gsi))
4202 {
4203 gphi *phi = gsi.phi ();
4204 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (phi);
4205 if (!STMT_SLP_TYPE (stmt_info) && STMT_VINFO_RELEVANT (stmt_info))
4206 maybe_push_to_hybrid_worklist (loop_vinfo,
4207 worklist, stmt_info);
4208 }
4209 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
4210 gsi_prev (&gsi))
4211 {
4212 gimple *stmt = gsi_stmt (gsi);
4213 if (is_gimple_debug (stmt))
4214 continue;
4215 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
4216 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
4217 {
4218 for (gimple_stmt_iterator gsi2
4219 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
4220 !gsi_end_p (gsi2); gsi_next (&gsi2))
4221 {
4222 stmt_vec_info patt_info
4223 = loop_vinfo->lookup_stmt (gsi_stmt (gsi2));
4224 if (!STMT_SLP_TYPE (patt_info)
4225 && STMT_VINFO_RELEVANT (patt_info))
4226 maybe_push_to_hybrid_worklist (loop_vinfo,
4227 worklist, patt_info);
4228 }
4229 stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
4230 }
4231 if (!STMT_SLP_TYPE (stmt_info) && STMT_VINFO_RELEVANT (stmt_info))
4232 maybe_push_to_hybrid_worklist (loop_vinfo,
4233 worklist, stmt_info);
4234 }
4235 }
4236
4237 /* Now we have a worklist of non-SLP stmts, follow use->def chains and
4238 mark any SLP vectorized stmt as hybrid.
4239 ??? We're visiting def stmts N times (once for each non-SLP and
4240 once for each hybrid-SLP use). */
4241 walk_stmt_info wi;
4242 vdhs_data dat;
4243 dat.worklist = &worklist;
4244 dat.loop_vinfo = loop_vinfo;
4245 memset (&wi, 0, sizeof (wi));
4246 wi.info = (void *)&dat;
4247 while (!worklist.is_empty ())
4248 {
4249 stmt_vec_info stmt_info = worklist.pop ();
4250 /* Since SSA operands are not set up for pattern stmts we need
4251 to use walk_gimple_op. */
4252 wi.is_lhs = 0;
4253 walk_gimple_op (stmt_info->stmt, vect_detect_hybrid_slp, &wi);
4254 }
4255 }
4256
4257
4258 /* Initialize a bb_vec_info struct for the statements in BBS basic blocks. */
4259
4260 _bb_vec_info::_bb_vec_info (vec<basic_block> _bbs, vec_info_shared *shared)
4261 : vec_info (vec_info::bb, init_cost (NULL, false), shared),
4262 bbs (_bbs),
4263 roots (vNULL)
4264 {
4265 for (unsigned i = 0; i < bbs.length (); ++i)
4266 {
4267 if (i != 0)
4268 for (gphi_iterator si = gsi_start_phis (bbs[i]); !gsi_end_p (si);
4269 gsi_next (&si))
4270 {
4271 gphi *phi = si.phi ();
4272 gimple_set_uid (phi, 0);
4273 add_stmt (phi);
4274 }
4275 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
4276 !gsi_end_p (gsi); gsi_next (&gsi))
4277 {
4278 gimple *stmt = gsi_stmt (gsi);
4279 gimple_set_uid (stmt, 0);
4280 if (is_gimple_debug (stmt))
4281 continue;
4282 add_stmt (stmt);
4283 }
4284 }
4285 }
4286
4287
4288 /* Free BB_VINFO struct, as well as all the stmt_vec_info structs of all the
4289 stmts in the basic block. */
4290
4291 _bb_vec_info::~_bb_vec_info ()
4292 {
4293 /* Reset region marker. */
4294 for (unsigned i = 0; i < bbs.length (); ++i)
4295 {
4296 if (i != 0)
4297 for (gphi_iterator si = gsi_start_phis (bbs[i]); !gsi_end_p (si);
4298 gsi_next (&si))
4299 {
4300 gphi *phi = si.phi ();
4301 gimple_set_uid (phi, -1);
4302 }
4303 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
4304 !gsi_end_p (gsi); gsi_next (&gsi))
4305 {
4306 gimple *stmt = gsi_stmt (gsi);
4307 gimple_set_uid (stmt, -1);
4308 }
4309 }
4310
4311 for (unsigned i = 0; i < roots.length (); ++i)
4312 {
4313 roots[i].stmts.release ();
4314 roots[i].roots.release ();
4315 }
4316 roots.release ();
4317 }
4318
4319 /* Subroutine of vect_slp_analyze_node_operations. Handle the root of NODE,
4320 given then that child nodes have already been processed, and that
4321 their def types currently match their SLP node's def type. */
4322
4323 static bool
4324 vect_slp_analyze_node_operations_1 (vec_info *vinfo, slp_tree node,
4325 slp_instance node_instance,
4326 stmt_vector_for_cost *cost_vec)
4327 {
4328 stmt_vec_info stmt_info = SLP_TREE_REPRESENTATIVE (node);
4329
4330 /* Calculate the number of vector statements to be created for the
4331 scalar stmts in this node. For SLP reductions it is equal to the
4332 number of vector statements in the children (which has already been
4333 calculated by the recursive call). Otherwise it is the number of
4334 scalar elements in one scalar iteration (DR_GROUP_SIZE) multiplied by
4335 VF divided by the number of elements in a vector. */
4336 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
4337 && REDUC_GROUP_FIRST_ELEMENT (stmt_info))
4338 {
4339 for (unsigned i = 0; i < SLP_TREE_CHILDREN (node).length (); ++i)
4340 if (SLP_TREE_DEF_TYPE (SLP_TREE_CHILDREN (node)[i]) == vect_internal_def)
4341 {
4342 SLP_TREE_NUMBER_OF_VEC_STMTS (node)
4343 = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_CHILDREN (node)[i]);
4344 break;
4345 }
4346 }
4347 else
4348 {
4349 poly_uint64 vf;
4350 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4351 vf = loop_vinfo->vectorization_factor;
4352 else
4353 vf = 1;
4354 unsigned int group_size = SLP_TREE_LANES (node);
4355 tree vectype = SLP_TREE_VECTYPE (node);
4356 SLP_TREE_NUMBER_OF_VEC_STMTS (node)
4357 = vect_get_num_vectors (vf * group_size, vectype);
4358 }
4359
4360 /* Handle purely internal nodes. */
4361 if (SLP_TREE_CODE (node) == VEC_PERM_EXPR)
4362 return vectorizable_slp_permutation (vinfo, NULL, node, cost_vec);
4363
4364 gcc_assert (STMT_SLP_TYPE (stmt_info) != loop_vect);
4365 if (is_a <bb_vec_info> (vinfo)
4366 && !vect_update_shared_vectype (stmt_info, SLP_TREE_VECTYPE (node)))
4367 {
4368 if (dump_enabled_p ())
4369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4370 "desired vector type conflicts with earlier one "
4371 "for %G", stmt_info->stmt);
4372 return false;
4373 }
4374
4375 bool dummy;
4376 return vect_analyze_stmt (vinfo, stmt_info, &dummy,
4377 node, node_instance, cost_vec);
4378 }
4379
4380 /* Try to build NODE from scalars, returning true on success.
4381 NODE_INSTANCE is the SLP instance that contains NODE. */
4382
4383 static bool
4384 vect_slp_convert_to_external (vec_info *vinfo, slp_tree node,
4385 slp_instance node_instance)
4386 {
4387 stmt_vec_info stmt_info;
4388 unsigned int i;
4389
4390 if (!is_a <bb_vec_info> (vinfo)
4391 || node == SLP_INSTANCE_TREE (node_instance)
4392 || !SLP_TREE_SCALAR_STMTS (node).exists ()
4393 || vect_contains_pattern_stmt_p (SLP_TREE_SCALAR_STMTS (node)))
4394 return false;
4395
4396 if (dump_enabled_p ())
4397 dump_printf_loc (MSG_NOTE, vect_location,
4398 "Building vector operands of %p from scalars instead\n", node);
4399
4400 /* Don't remove and free the child nodes here, since they could be
4401 referenced by other structures. The analysis and scheduling phases
4402 (need to) ignore child nodes of anything that isn't vect_internal_def. */
4403 unsigned int group_size = SLP_TREE_LANES (node);
4404 SLP_TREE_DEF_TYPE (node) = vect_external_def;
4405 SLP_TREE_SCALAR_OPS (node).safe_grow (group_size, true);
4406 SLP_TREE_LOAD_PERMUTATION (node).release ();
4407 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
4408 {
4409 tree lhs = gimple_get_lhs (vect_orig_stmt (stmt_info)->stmt);
4410 SLP_TREE_SCALAR_OPS (node)[i] = lhs;
4411 }
4412 return true;
4413 }
4414
4415 /* Compute the prologue cost for invariant or constant operands represented
4416 by NODE. */
4417
4418 static void
4419 vect_prologue_cost_for_slp (slp_tree node,
4420 stmt_vector_for_cost *cost_vec)
4421 {
4422 /* There's a special case of an existing vector, that costs nothing. */
4423 if (SLP_TREE_SCALAR_OPS (node).length () == 0
4424 && !SLP_TREE_VEC_DEFS (node).is_empty ())
4425 return;
4426 /* Without looking at the actual initializer a vector of
4427 constants can be implemented as load from the constant pool.
4428 When all elements are the same we can use a splat. */
4429 tree vectype = SLP_TREE_VECTYPE (node);
4430 unsigned group_size = SLP_TREE_SCALAR_OPS (node).length ();
4431 unsigned num_vects_to_check;
4432 unsigned HOST_WIDE_INT const_nunits;
4433 unsigned nelt_limit;
4434 if (TYPE_VECTOR_SUBPARTS (vectype).is_constant (&const_nunits)
4435 && ! multiple_p (const_nunits, group_size))
4436 {
4437 num_vects_to_check = SLP_TREE_NUMBER_OF_VEC_STMTS (node);
4438 nelt_limit = const_nunits;
4439 }
4440 else
4441 {
4442 /* If either the vector has variable length or the vectors
4443 are composed of repeated whole groups we only need to
4444 cost construction once. All vectors will be the same. */
4445 num_vects_to_check = 1;
4446 nelt_limit = group_size;
4447 }
4448 tree elt = NULL_TREE;
4449 unsigned nelt = 0;
4450 for (unsigned j = 0; j < num_vects_to_check * nelt_limit; ++j)
4451 {
4452 unsigned si = j % group_size;
4453 if (nelt == 0)
4454 elt = SLP_TREE_SCALAR_OPS (node)[si];
4455 /* ??? We're just tracking whether all operands of a single
4456 vector initializer are the same, ideally we'd check if
4457 we emitted the same one already. */
4458 else if (elt != SLP_TREE_SCALAR_OPS (node)[si])
4459 elt = NULL_TREE;
4460 nelt++;
4461 if (nelt == nelt_limit)
4462 {
4463 record_stmt_cost (cost_vec, 1,
4464 SLP_TREE_DEF_TYPE (node) == vect_external_def
4465 ? (elt ? scalar_to_vec : vec_construct)
4466 : vector_load,
4467 NULL, vectype, 0, vect_prologue);
4468 nelt = 0;
4469 }
4470 }
4471 }
4472
4473 /* Analyze statements contained in SLP tree NODE after recursively analyzing
4474 the subtree. NODE_INSTANCE contains NODE and VINFO contains INSTANCE.
4475
4476 Return true if the operations are supported. */
4477
4478 static bool
4479 vect_slp_analyze_node_operations (vec_info *vinfo, slp_tree node,
4480 slp_instance node_instance,
4481 hash_set<slp_tree> &visited_set,
4482 vec<slp_tree> &visited_vec,
4483 stmt_vector_for_cost *cost_vec)
4484 {
4485 int i, j;
4486 slp_tree child;
4487
4488 /* Assume we can code-generate all invariants. */
4489 if (!node
4490 || SLP_TREE_DEF_TYPE (node) == vect_constant_def
4491 || SLP_TREE_DEF_TYPE (node) == vect_external_def)
4492 return true;
4493
4494 if (SLP_TREE_DEF_TYPE (node) == vect_uninitialized_def)
4495 {
4496 if (dump_enabled_p ())
4497 dump_printf_loc (MSG_NOTE, vect_location,
4498 "Failed cyclic SLP reference in %p\n", node);
4499 return false;
4500 }
4501 gcc_assert (SLP_TREE_DEF_TYPE (node) == vect_internal_def);
4502
4503 /* If we already analyzed the exact same set of scalar stmts we're done.
4504 We share the generated vector stmts for those. */
4505 if (visited_set.add (node))
4506 return true;
4507 visited_vec.safe_push (node);
4508
4509 bool res = true;
4510 unsigned visited_rec_start = visited_vec.length ();
4511 unsigned cost_vec_rec_start = cost_vec->length ();
4512 bool seen_non_constant_child = false;
4513 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
4514 {
4515 res = vect_slp_analyze_node_operations (vinfo, child, node_instance,
4516 visited_set, visited_vec,
4517 cost_vec);
4518 if (!res)
4519 break;
4520 if (child && SLP_TREE_DEF_TYPE (child) != vect_constant_def)
4521 seen_non_constant_child = true;
4522 }
4523 /* We're having difficulties scheduling nodes with just constant
4524 operands and no scalar stmts since we then cannot compute a stmt
4525 insertion place. */
4526 if (!seen_non_constant_child && SLP_TREE_SCALAR_STMTS (node).is_empty ())
4527 {
4528 if (dump_enabled_p ())
4529 dump_printf_loc (MSG_NOTE, vect_location,
4530 "Cannot vectorize all-constant op node %p\n", node);
4531 res = false;
4532 }
4533
4534 if (res)
4535 res = vect_slp_analyze_node_operations_1 (vinfo, node, node_instance,
4536 cost_vec);
4537 /* If analysis failed we have to pop all recursive visited nodes
4538 plus ourselves. */
4539 if (!res)
4540 {
4541 while (visited_vec.length () >= visited_rec_start)
4542 visited_set.remove (visited_vec.pop ());
4543 cost_vec->truncate (cost_vec_rec_start);
4544 }
4545
4546 /* When the node can be vectorized cost invariant nodes it references.
4547 This is not done in DFS order to allow the refering node
4548 vectorizable_* calls to nail down the invariant nodes vector type
4549 and possibly unshare it if it needs a different vector type than
4550 other referrers. */
4551 if (res)
4552 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
4553 if (child
4554 && (SLP_TREE_DEF_TYPE (child) == vect_constant_def
4555 || SLP_TREE_DEF_TYPE (child) == vect_external_def)
4556 /* Perform usual caching, note code-generation still
4557 code-gens these nodes multiple times but we expect
4558 to CSE them later. */
4559 && !visited_set.add (child))
4560 {
4561 visited_vec.safe_push (child);
4562 /* ??? After auditing more code paths make a "default"
4563 and push the vector type from NODE to all children
4564 if it is not already set. */
4565 /* Compute the number of vectors to be generated. */
4566 tree vector_type = SLP_TREE_VECTYPE (child);
4567 if (!vector_type)
4568 {
4569 /* For shifts with a scalar argument we don't need
4570 to cost or code-generate anything.
4571 ??? Represent this more explicitely. */
4572 gcc_assert ((STMT_VINFO_TYPE (SLP_TREE_REPRESENTATIVE (node))
4573 == shift_vec_info_type)
4574 && j == 1);
4575 continue;
4576 }
4577 unsigned group_size = SLP_TREE_LANES (child);
4578 poly_uint64 vf = 1;
4579 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4580 vf = loop_vinfo->vectorization_factor;
4581 SLP_TREE_NUMBER_OF_VEC_STMTS (child)
4582 = vect_get_num_vectors (vf * group_size, vector_type);
4583 /* And cost them. */
4584 vect_prologue_cost_for_slp (child, cost_vec);
4585 }
4586
4587 /* If this node or any of its children can't be vectorized, try pruning
4588 the tree here rather than felling the whole thing. */
4589 if (!res && vect_slp_convert_to_external (vinfo, node, node_instance))
4590 {
4591 /* We'll need to revisit this for invariant costing and number
4592 of vectorized stmt setting. */
4593 res = true;
4594 }
4595
4596 return res;
4597 }
4598
4599 /* Mark lanes of NODE that are live outside of the basic-block vectorized
4600 region and that can be vectorized using vectorizable_live_operation
4601 with STMT_VINFO_LIVE_P. Not handled live operations will cause the
4602 scalar code computing it to be retained. */
4603
4604 static void
4605 vect_bb_slp_mark_live_stmts (bb_vec_info bb_vinfo, slp_tree node,
4606 slp_instance instance,
4607 stmt_vector_for_cost *cost_vec,
4608 hash_set<stmt_vec_info> &svisited,
4609 hash_set<slp_tree> &visited)
4610 {
4611 if (visited.add (node))
4612 return;
4613
4614 unsigned i;
4615 stmt_vec_info stmt_info;
4616 stmt_vec_info last_stmt = vect_find_last_scalar_stmt_in_slp (node);
4617 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
4618 {
4619 if (svisited.contains (stmt_info))
4620 continue;
4621 stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
4622 if (STMT_VINFO_IN_PATTERN_P (orig_stmt_info)
4623 && STMT_VINFO_RELATED_STMT (orig_stmt_info) != stmt_info)
4624 /* Only the pattern root stmt computes the original scalar value. */
4625 continue;
4626 bool mark_visited = true;
4627 gimple *orig_stmt = orig_stmt_info->stmt;
4628 ssa_op_iter op_iter;
4629 def_operand_p def_p;
4630 FOR_EACH_PHI_OR_STMT_DEF (def_p, orig_stmt, op_iter, SSA_OP_DEF)
4631 {
4632 imm_use_iterator use_iter;
4633 gimple *use_stmt;
4634 stmt_vec_info use_stmt_info;
4635 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p))
4636 if (!is_gimple_debug (use_stmt))
4637 {
4638 use_stmt_info = bb_vinfo->lookup_stmt (use_stmt);
4639 if (!use_stmt_info
4640 || !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info)))
4641 {
4642 STMT_VINFO_LIVE_P (stmt_info) = true;
4643 if (vectorizable_live_operation (bb_vinfo, stmt_info,
4644 NULL, node, instance, i,
4645 false, cost_vec))
4646 /* ??? So we know we can vectorize the live stmt
4647 from one SLP node. If we cannot do so from all
4648 or none consistently we'd have to record which
4649 SLP node (and lane) we want to use for the live
4650 operation. So make sure we can code-generate
4651 from all nodes. */
4652 mark_visited = false;
4653 else
4654 STMT_VINFO_LIVE_P (stmt_info) = false;
4655 break;
4656 }
4657 }
4658 /* We have to verify whether we can insert the lane extract
4659 before all uses. The following is a conservative approximation.
4660 We cannot put this into vectorizable_live_operation because
4661 iterating over all use stmts from inside a FOR_EACH_IMM_USE_STMT
4662 doesn't work.
4663 Note that while the fact that we emit code for loads at the
4664 first load should make this a non-problem leafs we construct
4665 from scalars are vectorized after the last scalar def.
4666 ??? If we'd actually compute the insert location during
4667 analysis we could use sth less conservative than the last
4668 scalar stmt in the node for the dominance check. */
4669 /* ??? What remains is "live" uses in vector CTORs in the same
4670 SLP graph which is where those uses can end up code-generated
4671 right after their definition instead of close to their original
4672 use. But that would restrict us to code-generate lane-extracts
4673 from the latest stmt in a node. So we compensate for this
4674 during code-generation, simply not replacing uses for those
4675 hopefully rare cases. */
4676 if (STMT_VINFO_LIVE_P (stmt_info))
4677 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p))
4678 if (!is_gimple_debug (use_stmt)
4679 && (!(use_stmt_info = bb_vinfo->lookup_stmt (use_stmt))
4680 || !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info)))
4681 && !vect_stmt_dominates_stmt_p (last_stmt->stmt, use_stmt))
4682 {
4683 if (dump_enabled_p ())
4684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4685 "Cannot determine insertion place for "
4686 "lane extract\n");
4687 STMT_VINFO_LIVE_P (stmt_info) = false;
4688 mark_visited = true;
4689 }
4690 }
4691 if (mark_visited)
4692 svisited.add (stmt_info);
4693 }
4694
4695 slp_tree child;
4696 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
4697 if (child && SLP_TREE_DEF_TYPE (child) == vect_internal_def)
4698 vect_bb_slp_mark_live_stmts (bb_vinfo, child, instance,
4699 cost_vec, svisited, visited);
4700 }
4701
4702 /* Determine whether we can vectorize the reduction epilogue for INSTANCE. */
4703
4704 static bool
4705 vectorizable_bb_reduc_epilogue (slp_instance instance,
4706 stmt_vector_for_cost *cost_vec)
4707 {
4708 enum tree_code reduc_code
4709 = gimple_assign_rhs_code (instance->root_stmts[0]->stmt);
4710 if (reduc_code == MINUS_EXPR)
4711 reduc_code = PLUS_EXPR;
4712 internal_fn reduc_fn;
4713 tree vectype = SLP_TREE_VECTYPE (SLP_INSTANCE_TREE (instance));
4714 if (!reduction_fn_for_scalar_code (reduc_code, &reduc_fn)
4715 || reduc_fn == IFN_LAST
4716 || !direct_internal_fn_supported_p (reduc_fn, vectype, OPTIMIZE_FOR_BOTH))
4717 return false;
4718
4719 /* There's no way to cost a horizontal vector reduction via REDUC_FN so
4720 cost log2 vector operations plus shuffles. */
4721 unsigned steps = floor_log2 (vect_nunits_for_cost (vectype));
4722 record_stmt_cost (cost_vec, steps, vector_stmt, instance->root_stmts[0],
4723 vectype, 0, vect_body);
4724 record_stmt_cost (cost_vec, steps, vec_perm, instance->root_stmts[0],
4725 vectype, 0, vect_body);
4726 return true;
4727 }
4728
4729 /* Prune from ROOTS all stmts that are computed as part of lanes of NODE
4730 and recurse to children. */
4731
4732 static void
4733 vect_slp_prune_covered_roots (slp_tree node, hash_set<stmt_vec_info> &roots,
4734 hash_set<slp_tree> &visited)
4735 {
4736 if (SLP_TREE_DEF_TYPE (node) != vect_internal_def
4737 || visited.add (node))
4738 return;
4739
4740 stmt_vec_info stmt;
4741 unsigned i;
4742 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
4743 roots.remove (vect_orig_stmt (stmt));
4744
4745 slp_tree child;
4746 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
4747 if (child)
4748 vect_slp_prune_covered_roots (child, roots, visited);
4749 }
4750
4751 /* Analyze statements in SLP instances of VINFO. Return true if the
4752 operations are supported. */
4753
4754 bool
4755 vect_slp_analyze_operations (vec_info *vinfo)
4756 {
4757 slp_instance instance;
4758 int i;
4759
4760 DUMP_VECT_SCOPE ("vect_slp_analyze_operations");
4761
4762 hash_set<slp_tree> visited;
4763 for (i = 0; vinfo->slp_instances.iterate (i, &instance); )
4764 {
4765 auto_vec<slp_tree> visited_vec;
4766 stmt_vector_for_cost cost_vec;
4767 cost_vec.create (2);
4768 if (is_a <bb_vec_info> (vinfo))
4769 vect_location = instance->location ();
4770 if (!vect_slp_analyze_node_operations (vinfo,
4771 SLP_INSTANCE_TREE (instance),
4772 instance, visited, visited_vec,
4773 &cost_vec)
4774 /* CTOR instances require vectorized defs for the SLP tree root. */
4775 || (SLP_INSTANCE_KIND (instance) == slp_inst_kind_ctor
4776 && (SLP_TREE_DEF_TYPE (SLP_INSTANCE_TREE (instance))
4777 != vect_internal_def))
4778 /* Check we can vectorize the reduction. */
4779 || (SLP_INSTANCE_KIND (instance) == slp_inst_kind_bb_reduc
4780 && !vectorizable_bb_reduc_epilogue (instance, &cost_vec)))
4781 {
4782 slp_tree node = SLP_INSTANCE_TREE (instance);
4783 stmt_vec_info stmt_info;
4784 if (!SLP_INSTANCE_ROOT_STMTS (instance).is_empty ())
4785 stmt_info = SLP_INSTANCE_ROOT_STMTS (instance)[0];
4786 else
4787 stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
4788 if (dump_enabled_p ())
4789 dump_printf_loc (MSG_NOTE, vect_location,
4790 "removing SLP instance operations starting from: %G",
4791 stmt_info->stmt);
4792 vect_free_slp_instance (instance);
4793 vinfo->slp_instances.ordered_remove (i);
4794 cost_vec.release ();
4795 while (!visited_vec.is_empty ())
4796 visited.remove (visited_vec.pop ());
4797 }
4798 else
4799 {
4800 i++;
4801
4802 /* For BB vectorization remember the SLP graph entry
4803 cost for later. */
4804 if (is_a <bb_vec_info> (vinfo))
4805 instance->cost_vec = cost_vec;
4806 else
4807 {
4808 add_stmt_costs (vinfo, vinfo->target_cost_data, &cost_vec);
4809 cost_vec.release ();
4810 }
4811 }
4812 }
4813
4814 /* Now look for SLP instances with a root that are covered by other
4815 instances and remove them. */
4816 hash_set<stmt_vec_info> roots;
4817 for (i = 0; vinfo->slp_instances.iterate (i, &instance); ++i)
4818 if (!SLP_INSTANCE_ROOT_STMTS (instance).is_empty ())
4819 roots.add (SLP_INSTANCE_ROOT_STMTS (instance)[0]);
4820 if (!roots.is_empty ())
4821 {
4822 visited.empty ();
4823 for (i = 0; vinfo->slp_instances.iterate (i, &instance); ++i)
4824 vect_slp_prune_covered_roots (SLP_INSTANCE_TREE (instance), roots,
4825 visited);
4826 for (i = 0; vinfo->slp_instances.iterate (i, &instance); )
4827 if (!SLP_INSTANCE_ROOT_STMTS (instance).is_empty ()
4828 && !roots.contains (SLP_INSTANCE_ROOT_STMTS (instance)[0]))
4829 {
4830 stmt_vec_info root = SLP_INSTANCE_ROOT_STMTS (instance)[0];
4831 if (dump_enabled_p ())
4832 dump_printf_loc (MSG_NOTE, vect_location,
4833 "removing SLP instance operations starting "
4834 "from: %G", root->stmt);
4835 vect_free_slp_instance (instance);
4836 vinfo->slp_instances.ordered_remove (i);
4837 }
4838 else
4839 ++i;
4840 }
4841
4842 /* Compute vectorizable live stmts. */
4843 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo))
4844 {
4845 hash_set<stmt_vec_info> svisited;
4846 hash_set<slp_tree> visited;
4847 for (i = 0; vinfo->slp_instances.iterate (i, &instance); ++i)
4848 {
4849 vect_location = instance->location ();
4850 vect_bb_slp_mark_live_stmts (bb_vinfo, SLP_INSTANCE_TREE (instance),
4851 instance, &instance->cost_vec, svisited,
4852 visited);
4853 }
4854 }
4855
4856 return !vinfo->slp_instances.is_empty ();
4857 }
4858
4859 /* Get the SLP instance leader from INSTANCE_LEADER thereby transitively
4860 closing the eventual chain. */
4861
4862 static slp_instance
4863 get_ultimate_leader (slp_instance instance,
4864 hash_map<slp_instance, slp_instance> &instance_leader)
4865 {
4866 auto_vec<slp_instance *, 8> chain;
4867 slp_instance *tem;
4868 while (*(tem = instance_leader.get (instance)) != instance)
4869 {
4870 chain.safe_push (tem);
4871 instance = *tem;
4872 }
4873 while (!chain.is_empty ())
4874 *chain.pop () = instance;
4875 return instance;
4876 }
4877
4878 /* Worker of vect_bb_partition_graph, recurse on NODE. */
4879
4880 static void
4881 vect_bb_partition_graph_r (bb_vec_info bb_vinfo,
4882 slp_instance instance, slp_tree node,
4883 hash_map<stmt_vec_info, slp_instance> &stmt_to_instance,
4884 hash_map<slp_instance, slp_instance> &instance_leader,
4885 hash_set<slp_tree> &visited)
4886 {
4887 stmt_vec_info stmt_info;
4888 unsigned i;
4889
4890 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
4891 {
4892 bool existed_p;
4893 slp_instance &stmt_instance
4894 = stmt_to_instance.get_or_insert (stmt_info, &existed_p);
4895 if (!existed_p)
4896 ;
4897 else if (stmt_instance != instance)
4898 {
4899 /* If we're running into a previously marked stmt make us the
4900 leader of the current ultimate leader. This keeps the
4901 leader chain acyclic and works even when the current instance
4902 connects two previously independent graph parts. */
4903 slp_instance stmt_leader
4904 = get_ultimate_leader (stmt_instance, instance_leader);
4905 if (stmt_leader != instance)
4906 instance_leader.put (stmt_leader, instance);
4907 }
4908 stmt_instance = instance;
4909 }
4910
4911 if (!SLP_TREE_SCALAR_STMTS (node).is_empty () && visited.add (node))
4912 return;
4913
4914 slp_tree child;
4915 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
4916 if (child && SLP_TREE_DEF_TYPE (child) == vect_internal_def)
4917 vect_bb_partition_graph_r (bb_vinfo, instance, child, stmt_to_instance,
4918 instance_leader, visited);
4919 }
4920
4921 /* Partition the SLP graph into pieces that can be costed independently. */
4922
4923 static void
4924 vect_bb_partition_graph (bb_vec_info bb_vinfo)
4925 {
4926 DUMP_VECT_SCOPE ("vect_bb_partition_graph");
4927
4928 /* First walk the SLP graph assigning each involved scalar stmt a
4929 corresponding SLP graph entry and upon visiting a previously
4930 marked stmt, make the stmts leader the current SLP graph entry. */
4931 hash_map<stmt_vec_info, slp_instance> stmt_to_instance;
4932 hash_map<slp_instance, slp_instance> instance_leader;
4933 hash_set<slp_tree> visited;
4934 slp_instance instance;
4935 for (unsigned i = 0; bb_vinfo->slp_instances.iterate (i, &instance); ++i)
4936 {
4937 instance_leader.put (instance, instance);
4938 vect_bb_partition_graph_r (bb_vinfo,
4939 instance, SLP_INSTANCE_TREE (instance),
4940 stmt_to_instance, instance_leader,
4941 visited);
4942 }
4943
4944 /* Then collect entries to each independent subgraph. */
4945 for (unsigned i = 0; bb_vinfo->slp_instances.iterate (i, &instance); ++i)
4946 {
4947 slp_instance leader = get_ultimate_leader (instance, instance_leader);
4948 leader->subgraph_entries.safe_push (instance);
4949 if (dump_enabled_p ()
4950 && leader != instance)
4951 dump_printf_loc (MSG_NOTE, vect_location,
4952 "instance %p is leader of %p\n",
4953 leader, instance);
4954 }
4955 }
4956
4957 /* Compute the scalar cost of the SLP node NODE and its children
4958 and return it. Do not account defs that are marked in LIFE and
4959 update LIFE according to uses of NODE. */
4960
4961 static void
4962 vect_bb_slp_scalar_cost (vec_info *vinfo,
4963 slp_tree node, vec<bool, va_heap> *life,
4964 stmt_vector_for_cost *cost_vec,
4965 hash_set<slp_tree> &visited)
4966 {
4967 unsigned i;
4968 stmt_vec_info stmt_info;
4969 slp_tree child;
4970
4971 if (visited.add (node))
4972 return;
4973
4974 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
4975 {
4976 ssa_op_iter op_iter;
4977 def_operand_p def_p;
4978
4979 if ((*life)[i])
4980 continue;
4981
4982 stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
4983 gimple *orig_stmt = orig_stmt_info->stmt;
4984
4985 /* If there is a non-vectorized use of the defs then the scalar
4986 stmt is kept live in which case we do not account it or any
4987 required defs in the SLP children in the scalar cost. This
4988 way we make the vectorization more costly when compared to
4989 the scalar cost. */
4990 if (!STMT_VINFO_LIVE_P (stmt_info))
4991 {
4992 FOR_EACH_PHI_OR_STMT_DEF (def_p, orig_stmt, op_iter, SSA_OP_DEF)
4993 {
4994 imm_use_iterator use_iter;
4995 gimple *use_stmt;
4996 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p))
4997 if (!is_gimple_debug (use_stmt))
4998 {
4999 stmt_vec_info use_stmt_info = vinfo->lookup_stmt (use_stmt);
5000 if (!use_stmt_info
5001 || !PURE_SLP_STMT
5002 (vect_stmt_to_vectorize (use_stmt_info)))
5003 {
5004 (*life)[i] = true;
5005 break;
5006 }
5007 }
5008 }
5009 if ((*life)[i])
5010 continue;
5011 }
5012
5013 /* Count scalar stmts only once. */
5014 if (gimple_visited_p (orig_stmt))
5015 continue;
5016 gimple_set_visited (orig_stmt, true);
5017
5018 vect_cost_for_stmt kind;
5019 if (STMT_VINFO_DATA_REF (orig_stmt_info))
5020 {
5021 if (DR_IS_READ (STMT_VINFO_DATA_REF (orig_stmt_info)))
5022 kind = scalar_load;
5023 else
5024 kind = scalar_store;
5025 }
5026 else if (vect_nop_conversion_p (orig_stmt_info))
5027 continue;
5028 /* For single-argument PHIs assume coalescing which means zero cost
5029 for the scalar and the vector PHIs. This avoids artificially
5030 favoring the vector path (but may pessimize it in some cases). */
5031 else if (is_a <gphi *> (orig_stmt_info->stmt)
5032 && gimple_phi_num_args
5033 (as_a <gphi *> (orig_stmt_info->stmt)) == 1)
5034 continue;
5035 else
5036 kind = scalar_stmt;
5037 record_stmt_cost (cost_vec, 1, kind, orig_stmt_info,
5038 SLP_TREE_VECTYPE (node), 0, vect_body);
5039 }
5040
5041 auto_vec<bool, 20> subtree_life;
5042 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
5043 {
5044 if (child && SLP_TREE_DEF_TYPE (child) == vect_internal_def)
5045 {
5046 /* Do not directly pass LIFE to the recursive call, copy it to
5047 confine changes in the callee to the current child/subtree. */
5048 if (SLP_TREE_CODE (node) == VEC_PERM_EXPR)
5049 {
5050 subtree_life.safe_grow_cleared (SLP_TREE_LANES (child), true);
5051 for (unsigned j = 0;
5052 j < SLP_TREE_LANE_PERMUTATION (node).length (); ++j)
5053 {
5054 auto perm = SLP_TREE_LANE_PERMUTATION (node)[j];
5055 if (perm.first == i)
5056 subtree_life[perm.second] = (*life)[j];
5057 }
5058 }
5059 else
5060 {
5061 gcc_assert (SLP_TREE_LANES (node) == SLP_TREE_LANES (child));
5062 subtree_life.safe_splice (*life);
5063 }
5064 vect_bb_slp_scalar_cost (vinfo, child, &subtree_life, cost_vec,
5065 visited);
5066 subtree_life.truncate (0);
5067 }
5068 }
5069 }
5070
5071 /* Comparator for the loop-index sorted cost vectors. */
5072
5073 static int
5074 li_cost_vec_cmp (const void *a_, const void *b_)
5075 {
5076 auto *a = (const std::pair<unsigned, stmt_info_for_cost *> *)a_;
5077 auto *b = (const std::pair<unsigned, stmt_info_for_cost *> *)b_;
5078 if (a->first < b->first)
5079 return -1;
5080 else if (a->first == b->first)
5081 return 0;
5082 return 1;
5083 }
5084
5085 /* Check if vectorization of the basic block is profitable for the
5086 subgraph denoted by SLP_INSTANCES. */
5087
5088 static bool
5089 vect_bb_vectorization_profitable_p (bb_vec_info bb_vinfo,
5090 vec<slp_instance> slp_instances)
5091 {
5092 slp_instance instance;
5093 int i;
5094 unsigned int vec_inside_cost = 0, vec_outside_cost = 0, scalar_cost = 0;
5095 unsigned int vec_prologue_cost = 0, vec_epilogue_cost = 0;
5096
5097 if (dump_enabled_p ())
5098 {
5099 dump_printf_loc (MSG_NOTE, vect_location, "Costing subgraph: \n");
5100 hash_set<slp_tree> visited;
5101 FOR_EACH_VEC_ELT (slp_instances, i, instance)
5102 vect_print_slp_graph (MSG_NOTE, vect_location,
5103 SLP_INSTANCE_TREE (instance), visited);
5104 }
5105
5106 /* Calculate scalar cost and sum the cost for the vector stmts
5107 previously collected. */
5108 stmt_vector_for_cost scalar_costs = vNULL;
5109 stmt_vector_for_cost vector_costs = vNULL;
5110 hash_set<slp_tree> visited;
5111 FOR_EACH_VEC_ELT (slp_instances, i, instance)
5112 {
5113 auto_vec<bool, 20> life;
5114 life.safe_grow_cleared (SLP_TREE_LANES (SLP_INSTANCE_TREE (instance)),
5115 true);
5116 if (!SLP_INSTANCE_ROOT_STMTS (instance).is_empty ())
5117 record_stmt_cost (&scalar_costs,
5118 SLP_INSTANCE_ROOT_STMTS (instance).length (),
5119 scalar_stmt,
5120 SLP_INSTANCE_ROOT_STMTS (instance)[0], 0, vect_body);
5121 vect_bb_slp_scalar_cost (bb_vinfo,
5122 SLP_INSTANCE_TREE (instance),
5123 &life, &scalar_costs, visited);
5124 vector_costs.safe_splice (instance->cost_vec);
5125 instance->cost_vec.release ();
5126 }
5127 /* Unset visited flag. */
5128 stmt_info_for_cost *cost;
5129 FOR_EACH_VEC_ELT (scalar_costs, i, cost)
5130 gimple_set_visited (cost->stmt_info->stmt, false);
5131
5132 if (dump_enabled_p ())
5133 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
5134
5135 /* When costing non-loop vectorization we need to consider each covered
5136 loop independently and make sure vectorization is profitable. For
5137 now we assume a loop may be not entered or executed an arbitrary
5138 number of iterations (??? static information can provide more
5139 precise info here) which means we can simply cost each containing
5140 loops stmts separately. */
5141
5142 /* First produce cost vectors sorted by loop index. */
5143 auto_vec<std::pair<unsigned, stmt_info_for_cost *> >
5144 li_scalar_costs (scalar_costs.length ());
5145 auto_vec<std::pair<unsigned, stmt_info_for_cost *> >
5146 li_vector_costs (vector_costs.length ());
5147 FOR_EACH_VEC_ELT (scalar_costs, i, cost)
5148 {
5149 unsigned l = gimple_bb (cost->stmt_info->stmt)->loop_father->num;
5150 li_scalar_costs.quick_push (std::make_pair (l, cost));
5151 }
5152 /* Use a random used loop as fallback in case the first vector_costs
5153 entry does not have a stmt_info associated with it. */
5154 unsigned l = li_scalar_costs[0].first;
5155 FOR_EACH_VEC_ELT (vector_costs, i, cost)
5156 {
5157 /* We inherit from the previous COST, invariants, externals and
5158 extracts immediately follow the cost for the related stmt. */
5159 if (cost->stmt_info)
5160 l = gimple_bb (cost->stmt_info->stmt)->loop_father->num;
5161 li_vector_costs.quick_push (std::make_pair (l, cost));
5162 }
5163 li_scalar_costs.qsort (li_cost_vec_cmp);
5164 li_vector_costs.qsort (li_cost_vec_cmp);
5165
5166 /* Now cost the portions individually. */
5167 unsigned vi = 0;
5168 unsigned si = 0;
5169 while (si < li_scalar_costs.length ()
5170 && vi < li_vector_costs.length ())
5171 {
5172 unsigned sl = li_scalar_costs[si].first;
5173 unsigned vl = li_vector_costs[vi].first;
5174 if (sl != vl)
5175 {
5176 if (dump_enabled_p ())
5177 dump_printf_loc (MSG_NOTE, vect_location,
5178 "Scalar %d and vector %d loop part do not "
5179 "match up, skipping scalar part\n", sl, vl);
5180 /* Skip the scalar part, assuming zero cost on the vector side. */
5181 do
5182 {
5183 si++;
5184 }
5185 while (si < li_scalar_costs.length ()
5186 && li_scalar_costs[si].first == sl);
5187 continue;
5188 }
5189
5190 void *scalar_target_cost_data = init_cost (NULL, true);
5191 do
5192 {
5193 add_stmt_cost (bb_vinfo, scalar_target_cost_data,
5194 li_scalar_costs[si].second);
5195 si++;
5196 }
5197 while (si < li_scalar_costs.length ()
5198 && li_scalar_costs[si].first == sl);
5199 unsigned dummy;
5200 finish_cost (scalar_target_cost_data, &dummy, &scalar_cost, &dummy);
5201 destroy_cost_data (scalar_target_cost_data);
5202
5203 /* Complete the target-specific vector cost calculation. */
5204 void *vect_target_cost_data = init_cost (NULL, false);
5205 do
5206 {
5207 add_stmt_cost (bb_vinfo, vect_target_cost_data,
5208 li_vector_costs[vi].second);
5209 vi++;
5210 }
5211 while (vi < li_vector_costs.length ()
5212 && li_vector_costs[vi].first == vl);
5213 finish_cost (vect_target_cost_data, &vec_prologue_cost,
5214 &vec_inside_cost, &vec_epilogue_cost);
5215 destroy_cost_data (vect_target_cost_data);
5216
5217 vec_outside_cost = vec_prologue_cost + vec_epilogue_cost;
5218
5219 if (dump_enabled_p ())
5220 {
5221 dump_printf_loc (MSG_NOTE, vect_location,
5222 "Cost model analysis for part in loop %d:\n", sl);
5223 dump_printf (MSG_NOTE, " Vector cost: %d\n",
5224 vec_inside_cost + vec_outside_cost);
5225 dump_printf (MSG_NOTE, " Scalar cost: %d\n", scalar_cost);
5226 }
5227
5228 /* Vectorization is profitable if its cost is more than the cost of scalar
5229 version. Note that we err on the vector side for equal cost because
5230 the cost estimate is otherwise quite pessimistic (constant uses are
5231 free on the scalar side but cost a load on the vector side for
5232 example). */
5233 if (vec_outside_cost + vec_inside_cost > scalar_cost)
5234 {
5235 scalar_costs.release ();
5236 vector_costs.release ();
5237 return false;
5238 }
5239 }
5240 if (vi < li_vector_costs.length ())
5241 {
5242 if (dump_enabled_p ())
5243 dump_printf_loc (MSG_NOTE, vect_location,
5244 "Excess vector cost for part in loop %d:\n",
5245 li_vector_costs[vi].first);
5246 scalar_costs.release ();
5247 vector_costs.release ();
5248 return false;
5249 }
5250
5251 scalar_costs.release ();
5252 vector_costs.release ();
5253 return true;
5254 }
5255
5256 /* qsort comparator for lane defs. */
5257
5258 static int
5259 vld_cmp (const void *a_, const void *b_)
5260 {
5261 auto *a = (const std::pair<unsigned, tree> *)a_;
5262 auto *b = (const std::pair<unsigned, tree> *)b_;
5263 return a->first - b->first;
5264 }
5265
5266 /* Return true if USE_STMT is a vector lane insert into VEC and set
5267 *THIS_LANE to the lane number that is set. */
5268
5269 static bool
5270 vect_slp_is_lane_insert (gimple *use_stmt, tree vec, unsigned *this_lane)
5271 {
5272 gassign *use_ass = dyn_cast <gassign *> (use_stmt);
5273 if (!use_ass
5274 || gimple_assign_rhs_code (use_ass) != BIT_INSERT_EXPR
5275 || (vec
5276 ? gimple_assign_rhs1 (use_ass) != vec
5277 : ((vec = gimple_assign_rhs1 (use_ass)), false))
5278 || !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (vec)),
5279 TREE_TYPE (gimple_assign_rhs2 (use_ass)))
5280 || !constant_multiple_p
5281 (tree_to_poly_uint64 (gimple_assign_rhs3 (use_ass)),
5282 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (TREE_TYPE (vec)))),
5283 this_lane))
5284 return false;
5285 return true;
5286 }
5287
5288 /* Find any vectorizable constructors and add them to the grouped_store
5289 array. */
5290
5291 static void
5292 vect_slp_check_for_constructors (bb_vec_info bb_vinfo)
5293 {
5294 for (unsigned i = 0; i < bb_vinfo->bbs.length (); ++i)
5295 for (gimple_stmt_iterator gsi = gsi_start_bb (bb_vinfo->bbs[i]);
5296 !gsi_end_p (gsi); gsi_next (&gsi))
5297 {
5298 gassign *assign = dyn_cast<gassign *> (gsi_stmt (gsi));
5299 if (!assign)
5300 continue;
5301
5302 tree rhs = gimple_assign_rhs1 (assign);
5303 enum tree_code code = gimple_assign_rhs_code (assign);
5304 use_operand_p use_p;
5305 gimple *use_stmt;
5306 if (code == CONSTRUCTOR)
5307 {
5308 if (!VECTOR_TYPE_P (TREE_TYPE (rhs))
5309 || maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)),
5310 CONSTRUCTOR_NELTS (rhs))
5311 || VECTOR_TYPE_P (TREE_TYPE (CONSTRUCTOR_ELT (rhs, 0)->value))
5312 || uniform_vector_p (rhs))
5313 continue;
5314
5315 unsigned j;
5316 tree val;
5317 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), j, val)
5318 if (TREE_CODE (val) != SSA_NAME
5319 || !bb_vinfo->lookup_def (val))
5320 break;
5321 if (j != CONSTRUCTOR_NELTS (rhs))
5322 continue;
5323
5324 stmt_vec_info stmt_info = bb_vinfo->lookup_stmt (assign);
5325 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info);
5326 }
5327 else if (code == BIT_INSERT_EXPR
5328 && VECTOR_TYPE_P (TREE_TYPE (rhs))
5329 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)).is_constant ()
5330 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)).to_constant () > 1
5331 && integer_zerop (gimple_assign_rhs3 (assign))
5332 && useless_type_conversion_p
5333 (TREE_TYPE (TREE_TYPE (rhs)),
5334 TREE_TYPE (gimple_assign_rhs2 (assign)))
5335 && bb_vinfo->lookup_def (gimple_assign_rhs2 (assign)))
5336 {
5337 /* We start to match on insert to lane zero but since the
5338 inserts need not be ordered we'd have to search both
5339 the def and the use chains. */
5340 tree vectype = TREE_TYPE (rhs);
5341 unsigned nlanes = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5342 auto_vec<std::pair<unsigned, tree> > lane_defs (nlanes);
5343 auto_sbitmap lanes (nlanes);
5344 bitmap_clear (lanes);
5345 bitmap_set_bit (lanes, 0);
5346 tree def = gimple_assign_lhs (assign);
5347 lane_defs.quick_push
5348 (std::make_pair (0, gimple_assign_rhs2 (assign)));
5349 unsigned lanes_found = 1;
5350 /* Start with the use chains, the last stmt will be the root. */
5351 stmt_vec_info last = bb_vinfo->lookup_stmt (assign);
5352 vec<stmt_vec_info> roots = vNULL;
5353 roots.safe_push (last);
5354 do
5355 {
5356 use_operand_p use_p;
5357 gimple *use_stmt;
5358 if (!single_imm_use (def, &use_p, &use_stmt))
5359 break;
5360 unsigned this_lane;
5361 if (!bb_vinfo->lookup_stmt (use_stmt)
5362 || !vect_slp_is_lane_insert (use_stmt, def, &this_lane)
5363 || !bb_vinfo->lookup_def (gimple_assign_rhs2 (use_stmt)))
5364 break;
5365 if (bitmap_bit_p (lanes, this_lane))
5366 break;
5367 lanes_found++;
5368 bitmap_set_bit (lanes, this_lane);
5369 gassign *use_ass = as_a <gassign *> (use_stmt);
5370 lane_defs.quick_push (std::make_pair
5371 (this_lane, gimple_assign_rhs2 (use_ass)));
5372 last = bb_vinfo->lookup_stmt (use_ass);
5373 roots.safe_push (last);
5374 def = gimple_assign_lhs (use_ass);
5375 }
5376 while (lanes_found < nlanes);
5377 if (roots.length () > 1)
5378 std::swap(roots[0], roots[roots.length () - 1]);
5379 if (lanes_found < nlanes)
5380 {
5381 /* Now search the def chain. */
5382 def = gimple_assign_rhs1 (assign);
5383 do
5384 {
5385 if (TREE_CODE (def) != SSA_NAME
5386 || !has_single_use (def))
5387 break;
5388 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
5389 unsigned this_lane;
5390 if (!bb_vinfo->lookup_stmt (def_stmt)
5391 || !vect_slp_is_lane_insert (def_stmt,
5392 NULL_TREE, &this_lane)
5393 || !bb_vinfo->lookup_def (gimple_assign_rhs2 (def_stmt)))
5394 break;
5395 if (bitmap_bit_p (lanes, this_lane))
5396 break;
5397 lanes_found++;
5398 bitmap_set_bit (lanes, this_lane);
5399 lane_defs.quick_push (std::make_pair
5400 (this_lane,
5401 gimple_assign_rhs2 (def_stmt)));
5402 roots.safe_push (bb_vinfo->lookup_stmt (def_stmt));
5403 def = gimple_assign_rhs1 (def_stmt);
5404 }
5405 while (lanes_found < nlanes);
5406 }
5407 if (lanes_found == nlanes)
5408 {
5409 /* Sort lane_defs after the lane index and register the root. */
5410 lane_defs.qsort (vld_cmp);
5411 vec<stmt_vec_info> stmts;
5412 stmts.create (nlanes);
5413 for (unsigned i = 0; i < nlanes; ++i)
5414 stmts.quick_push (bb_vinfo->lookup_def (lane_defs[i].second));
5415 bb_vinfo->roots.safe_push (slp_root (slp_inst_kind_ctor,
5416 stmts, roots));
5417 }
5418 else
5419 roots.release ();
5420 }
5421 else if (!VECTOR_TYPE_P (TREE_TYPE (rhs))
5422 && (associative_tree_code (code) || code == MINUS_EXPR)
5423 /* ??? The flag_associative_math and TYPE_OVERFLOW_WRAPS
5424 checks pessimize a two-element reduction. PR54400.
5425 ??? In-order reduction could be handled if we only
5426 traverse one operand chain in vect_slp_linearize_chain. */
5427 && ((FLOAT_TYPE_P (TREE_TYPE (rhs)) && flag_associative_math)
5428 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5429 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (rhs))))
5430 /* Ops with constants at the tail can be stripped here. */
5431 && TREE_CODE (rhs) == SSA_NAME
5432 && TREE_CODE (gimple_assign_rhs2 (assign)) == SSA_NAME
5433 /* Should be the chain end. */
5434 && (!single_imm_use (gimple_assign_lhs (assign),
5435 &use_p, &use_stmt)
5436 || !is_gimple_assign (use_stmt)
5437 || (gimple_assign_rhs_code (use_stmt) != code
5438 && ((code != PLUS_EXPR && code != MINUS_EXPR)
5439 || (gimple_assign_rhs_code (use_stmt)
5440 != (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR))))))
5441 {
5442 /* We start the match at the end of a possible association
5443 chain. */
5444 auto_vec<chain_op_t> chain;
5445 auto_vec<std::pair<tree_code, gimple *> > worklist;
5446 auto_vec<gimple *> chain_stmts;
5447 gimple *code_stmt = NULL, *alt_code_stmt = NULL;
5448 if (code == MINUS_EXPR)
5449 code = PLUS_EXPR;
5450 internal_fn reduc_fn;
5451 if (!reduction_fn_for_scalar_code (code, &reduc_fn)
5452 || reduc_fn == IFN_LAST)
5453 continue;
5454 vect_slp_linearize_chain (bb_vinfo, worklist, chain, code, assign,
5455 /* ??? */
5456 code_stmt, alt_code_stmt, &chain_stmts);
5457 if (chain.length () > 1)
5458 {
5459 /* Sort the chain according to def_type and operation. */
5460 chain.sort (dt_sort_cmp, bb_vinfo);
5461 /* ??? Now we'd want to strip externals and constants
5462 but record those to be handled in the epilogue. */
5463 /* ??? For now do not allow mixing ops or externs/constants. */
5464 bool invalid = false;
5465 for (unsigned i = 0; i < chain.length (); ++i)
5466 if (chain[i].dt != vect_internal_def
5467 || chain[i].code != code)
5468 invalid = true;
5469 if (!invalid)
5470 {
5471 vec<stmt_vec_info> stmts;
5472 stmts.create (chain.length ());
5473 for (unsigned i = 0; i < chain.length (); ++i)
5474 stmts.quick_push (bb_vinfo->lookup_def (chain[i].op));
5475 vec<stmt_vec_info> roots;
5476 roots.create (chain_stmts.length ());
5477 for (unsigned i = 0; i < chain_stmts.length (); ++i)
5478 roots.quick_push (bb_vinfo->lookup_stmt (chain_stmts[i]));
5479 bb_vinfo->roots.safe_push (slp_root (slp_inst_kind_bb_reduc,
5480 stmts, roots));
5481 }
5482 }
5483 }
5484 }
5485 }
5486
5487 /* Walk the grouped store chains and replace entries with their
5488 pattern variant if any. */
5489
5490 static void
5491 vect_fixup_store_groups_with_patterns (vec_info *vinfo)
5492 {
5493 stmt_vec_info first_element;
5494 unsigned i;
5495
5496 FOR_EACH_VEC_ELT (vinfo->grouped_stores, i, first_element)
5497 {
5498 /* We also have CTORs in this array. */
5499 if (!STMT_VINFO_GROUPED_ACCESS (first_element))
5500 continue;
5501 if (STMT_VINFO_IN_PATTERN_P (first_element))
5502 {
5503 stmt_vec_info orig = first_element;
5504 first_element = STMT_VINFO_RELATED_STMT (first_element);
5505 DR_GROUP_FIRST_ELEMENT (first_element) = first_element;
5506 DR_GROUP_SIZE (first_element) = DR_GROUP_SIZE (orig);
5507 DR_GROUP_GAP (first_element) = DR_GROUP_GAP (orig);
5508 DR_GROUP_NEXT_ELEMENT (first_element) = DR_GROUP_NEXT_ELEMENT (orig);
5509 vinfo->grouped_stores[i] = first_element;
5510 }
5511 stmt_vec_info prev = first_element;
5512 while (DR_GROUP_NEXT_ELEMENT (prev))
5513 {
5514 stmt_vec_info elt = DR_GROUP_NEXT_ELEMENT (prev);
5515 if (STMT_VINFO_IN_PATTERN_P (elt))
5516 {
5517 stmt_vec_info orig = elt;
5518 elt = STMT_VINFO_RELATED_STMT (elt);
5519 DR_GROUP_NEXT_ELEMENT (prev) = elt;
5520 DR_GROUP_GAP (elt) = DR_GROUP_GAP (orig);
5521 DR_GROUP_NEXT_ELEMENT (elt) = DR_GROUP_NEXT_ELEMENT (orig);
5522 }
5523 DR_GROUP_FIRST_ELEMENT (elt) = first_element;
5524 prev = elt;
5525 }
5526 }
5527 }
5528
5529 /* Check if the region described by BB_VINFO can be vectorized, returning
5530 true if so. When returning false, set FATAL to true if the same failure
5531 would prevent vectorization at other vector sizes, false if it is still
5532 worth trying other sizes. N_STMTS is the number of statements in the
5533 region. */
5534
5535 static bool
5536 vect_slp_analyze_bb_1 (bb_vec_info bb_vinfo, int n_stmts, bool &fatal,
5537 vec<int> *dataref_groups)
5538 {
5539 DUMP_VECT_SCOPE ("vect_slp_analyze_bb");
5540
5541 slp_instance instance;
5542 int i;
5543 poly_uint64 min_vf = 2;
5544
5545 /* The first group of checks is independent of the vector size. */
5546 fatal = true;
5547
5548 /* Analyze the data references. */
5549
5550 if (!vect_analyze_data_refs (bb_vinfo, &min_vf, NULL))
5551 {
5552 if (dump_enabled_p ())
5553 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5554 "not vectorized: unhandled data-ref in basic "
5555 "block.\n");
5556 return false;
5557 }
5558
5559 if (!vect_analyze_data_ref_accesses (bb_vinfo, dataref_groups))
5560 {
5561 if (dump_enabled_p ())
5562 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5563 "not vectorized: unhandled data access in "
5564 "basic block.\n");
5565 return false;
5566 }
5567
5568 vect_slp_check_for_constructors (bb_vinfo);
5569
5570 /* If there are no grouped stores and no constructors in the region
5571 there is no need to continue with pattern recog as vect_analyze_slp
5572 will fail anyway. */
5573 if (bb_vinfo->grouped_stores.is_empty ()
5574 && bb_vinfo->roots.is_empty ())
5575 {
5576 if (dump_enabled_p ())
5577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5578 "not vectorized: no grouped stores in "
5579 "basic block.\n");
5580 return false;
5581 }
5582
5583 /* While the rest of the analysis below depends on it in some way. */
5584 fatal = false;
5585
5586 vect_pattern_recog (bb_vinfo);
5587
5588 /* Update store groups from pattern processing. */
5589 vect_fixup_store_groups_with_patterns (bb_vinfo);
5590
5591 /* Check the SLP opportunities in the basic block, analyze and build SLP
5592 trees. */
5593 if (!vect_analyze_slp (bb_vinfo, n_stmts))
5594 {
5595 if (dump_enabled_p ())
5596 {
5597 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5598 "Failed to SLP the basic block.\n");
5599 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5600 "not vectorized: failed to find SLP opportunities "
5601 "in basic block.\n");
5602 }
5603 return false;
5604 }
5605
5606 /* Optimize permutations. */
5607 vect_optimize_slp (bb_vinfo);
5608
5609 /* Gather the loads reachable from the SLP graph entries. */
5610 vect_gather_slp_loads (bb_vinfo);
5611
5612 vect_record_base_alignments (bb_vinfo);
5613
5614 /* Analyze and verify the alignment of data references and the
5615 dependence in the SLP instances. */
5616 for (i = 0; BB_VINFO_SLP_INSTANCES (bb_vinfo).iterate (i, &instance); )
5617 {
5618 vect_location = instance->location ();
5619 if (! vect_slp_analyze_instance_alignment (bb_vinfo, instance)
5620 || ! vect_slp_analyze_instance_dependence (bb_vinfo, instance))
5621 {
5622 slp_tree node = SLP_INSTANCE_TREE (instance);
5623 stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
5624 if (dump_enabled_p ())
5625 dump_printf_loc (MSG_NOTE, vect_location,
5626 "removing SLP instance operations starting from: %G",
5627 stmt_info->stmt);
5628 vect_free_slp_instance (instance);
5629 BB_VINFO_SLP_INSTANCES (bb_vinfo).ordered_remove (i);
5630 continue;
5631 }
5632
5633 /* Mark all the statements that we want to vectorize as pure SLP and
5634 relevant. */
5635 vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance));
5636 vect_mark_slp_stmts_relevant (SLP_INSTANCE_TREE (instance));
5637 unsigned j;
5638 stmt_vec_info root;
5639 /* Likewise consider instance root stmts as vectorized. */
5640 FOR_EACH_VEC_ELT (SLP_INSTANCE_ROOT_STMTS (instance), j, root)
5641 STMT_SLP_TYPE (root) = pure_slp;
5642
5643 i++;
5644 }
5645 if (! BB_VINFO_SLP_INSTANCES (bb_vinfo).length ())
5646 return false;
5647
5648 if (!vect_slp_analyze_operations (bb_vinfo))
5649 {
5650 if (dump_enabled_p ())
5651 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5652 "not vectorized: bad operation in basic block.\n");
5653 return false;
5654 }
5655
5656 vect_bb_partition_graph (bb_vinfo);
5657
5658 return true;
5659 }
5660
5661 /* Subroutine of vect_slp_bb. Try to vectorize the statements for all
5662 basic blocks in BBS, returning true on success.
5663 The region has N_STMTS statements and has the datarefs given by DATAREFS. */
5664
5665 static bool
5666 vect_slp_region (vec<basic_block> bbs, vec<data_reference_p> datarefs,
5667 vec<int> *dataref_groups, unsigned int n_stmts)
5668 {
5669 bb_vec_info bb_vinfo;
5670 auto_vector_modes vector_modes;
5671
5672 /* Autodetect first vector size we try. */
5673 machine_mode next_vector_mode = VOIDmode;
5674 targetm.vectorize.autovectorize_vector_modes (&vector_modes, false);
5675 unsigned int mode_i = 0;
5676
5677 vec_info_shared shared;
5678
5679 machine_mode autodetected_vector_mode = VOIDmode;
5680 while (1)
5681 {
5682 bool vectorized = false;
5683 bool fatal = false;
5684 bb_vinfo = new _bb_vec_info (bbs, &shared);
5685
5686 bool first_time_p = shared.datarefs.is_empty ();
5687 BB_VINFO_DATAREFS (bb_vinfo) = datarefs;
5688 if (first_time_p)
5689 bb_vinfo->shared->save_datarefs ();
5690 else
5691 bb_vinfo->shared->check_datarefs ();
5692 bb_vinfo->vector_mode = next_vector_mode;
5693
5694 if (vect_slp_analyze_bb_1 (bb_vinfo, n_stmts, fatal, dataref_groups))
5695 {
5696 if (dump_enabled_p ())
5697 {
5698 dump_printf_loc (MSG_NOTE, vect_location,
5699 "***** Analysis succeeded with vector mode"
5700 " %s\n", GET_MODE_NAME (bb_vinfo->vector_mode));
5701 dump_printf_loc (MSG_NOTE, vect_location, "SLPing BB part\n");
5702 }
5703
5704 bb_vinfo->shared->check_datarefs ();
5705
5706 unsigned i;
5707 slp_instance instance;
5708 FOR_EACH_VEC_ELT (BB_VINFO_SLP_INSTANCES (bb_vinfo), i, instance)
5709 {
5710 if (instance->subgraph_entries.is_empty ())
5711 continue;
5712
5713 vect_location = instance->location ();
5714 if (!unlimited_cost_model (NULL)
5715 && !vect_bb_vectorization_profitable_p
5716 (bb_vinfo, instance->subgraph_entries))
5717 {
5718 if (dump_enabled_p ())
5719 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5720 "not vectorized: vectorization is not "
5721 "profitable.\n");
5722 continue;
5723 }
5724
5725 if (!dbg_cnt (vect_slp))
5726 continue;
5727
5728 if (!vectorized && dump_enabled_p ())
5729 dump_printf_loc (MSG_NOTE, vect_location,
5730 "Basic block will be vectorized "
5731 "using SLP\n");
5732 vectorized = true;
5733
5734 vect_schedule_slp (bb_vinfo, instance->subgraph_entries);
5735
5736 unsigned HOST_WIDE_INT bytes;
5737 if (dump_enabled_p ())
5738 {
5739 if (GET_MODE_SIZE
5740 (bb_vinfo->vector_mode).is_constant (&bytes))
5741 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
5742 "basic block part vectorized using %wu "
5743 "byte vectors\n", bytes);
5744 else
5745 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
5746 "basic block part vectorized using "
5747 "variable length vectors\n");
5748 }
5749 }
5750 }
5751 else
5752 {
5753 if (dump_enabled_p ())
5754 dump_printf_loc (MSG_NOTE, vect_location,
5755 "***** Analysis failed with vector mode %s\n",
5756 GET_MODE_NAME (bb_vinfo->vector_mode));
5757 }
5758
5759 if (mode_i == 0)
5760 autodetected_vector_mode = bb_vinfo->vector_mode;
5761
5762 if (!fatal)
5763 while (mode_i < vector_modes.length ()
5764 && vect_chooses_same_modes_p (bb_vinfo, vector_modes[mode_i]))
5765 {
5766 if (dump_enabled_p ())
5767 dump_printf_loc (MSG_NOTE, vect_location,
5768 "***** The result for vector mode %s would"
5769 " be the same\n",
5770 GET_MODE_NAME (vector_modes[mode_i]));
5771 mode_i += 1;
5772 }
5773
5774 delete bb_vinfo;
5775
5776 if (mode_i < vector_modes.length ()
5777 && VECTOR_MODE_P (autodetected_vector_mode)
5778 && (related_vector_mode (vector_modes[mode_i],
5779 GET_MODE_INNER (autodetected_vector_mode))
5780 == autodetected_vector_mode)
5781 && (related_vector_mode (autodetected_vector_mode,
5782 GET_MODE_INNER (vector_modes[mode_i]))
5783 == vector_modes[mode_i]))
5784 {
5785 if (dump_enabled_p ())
5786 dump_printf_loc (MSG_NOTE, vect_location,
5787 "***** Skipping vector mode %s, which would"
5788 " repeat the analysis for %s\n",
5789 GET_MODE_NAME (vector_modes[mode_i]),
5790 GET_MODE_NAME (autodetected_vector_mode));
5791 mode_i += 1;
5792 }
5793
5794 if (vectorized
5795 || mode_i == vector_modes.length ()
5796 || autodetected_vector_mode == VOIDmode
5797 /* If vect_slp_analyze_bb_1 signaled that analysis for all
5798 vector sizes will fail do not bother iterating. */
5799 || fatal)
5800 return vectorized;
5801
5802 /* Try the next biggest vector size. */
5803 next_vector_mode = vector_modes[mode_i++];
5804 if (dump_enabled_p ())
5805 dump_printf_loc (MSG_NOTE, vect_location,
5806 "***** Re-trying analysis with vector mode %s\n",
5807 GET_MODE_NAME (next_vector_mode));
5808 }
5809 }
5810
5811
5812 /* Main entry for the BB vectorizer. Analyze and transform BBS, returns
5813 true if anything in the basic-block was vectorized. */
5814
5815 static bool
5816 vect_slp_bbs (vec<basic_block> bbs)
5817 {
5818 vec<data_reference_p> datarefs = vNULL;
5819 auto_vec<int> dataref_groups;
5820 int insns = 0;
5821 int current_group = 0;
5822
5823 for (unsigned i = 0; i < bbs.length (); i++)
5824 {
5825 basic_block bb = bbs[i];
5826 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
5827 gsi_next (&gsi))
5828 {
5829 gimple *stmt = gsi_stmt (gsi);
5830 if (is_gimple_debug (stmt))
5831 continue;
5832
5833 insns++;
5834
5835 if (gimple_location (stmt) != UNKNOWN_LOCATION)
5836 vect_location = stmt;
5837
5838 if (!vect_find_stmt_data_reference (NULL, stmt, &datarefs,
5839 &dataref_groups, current_group))
5840 ++current_group;
5841 }
5842 }
5843
5844 return vect_slp_region (bbs, datarefs, &dataref_groups, insns);
5845 }
5846
5847 /* Main entry for the BB vectorizer. Analyze and transform BB, returns
5848 true if anything in the basic-block was vectorized. */
5849
5850 bool
5851 vect_slp_bb (basic_block bb)
5852 {
5853 auto_vec<basic_block> bbs;
5854 bbs.safe_push (bb);
5855 return vect_slp_bbs (bbs);
5856 }
5857
5858 /* Main entry for the BB vectorizer. Analyze and transform BB, returns
5859 true if anything in the basic-block was vectorized. */
5860
5861 bool
5862 vect_slp_function (function *fun)
5863 {
5864 bool r = false;
5865 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun));
5866 unsigned n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
5867
5868 /* For the moment split the function into pieces to avoid making
5869 the iteration on the vector mode moot. Split at points we know
5870 to not handle well which is CFG merges (SLP discovery doesn't
5871 handle non-loop-header PHIs) and loop exits. Since pattern
5872 recog requires reverse iteration to visit uses before defs
5873 simply chop RPO into pieces. */
5874 auto_vec<basic_block> bbs;
5875 for (unsigned i = 0; i < n; i++)
5876 {
5877 basic_block bb = BASIC_BLOCK_FOR_FN (fun, rpo[i]);
5878 bool split = false;
5879
5880 /* Split when a BB is not dominated by the first block. */
5881 if (!bbs.is_empty ()
5882 && !dominated_by_p (CDI_DOMINATORS, bb, bbs[0]))
5883 {
5884 if (dump_enabled_p ())
5885 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5886 "splitting region at dominance boundary bb%d\n",
5887 bb->index);
5888 split = true;
5889 }
5890 /* Split when the loop determined by the first block
5891 is exited. This is because we eventually insert
5892 invariants at region begin. */
5893 else if (!bbs.is_empty ()
5894 && bbs[0]->loop_father != bb->loop_father
5895 && !flow_loop_nested_p (bbs[0]->loop_father, bb->loop_father))
5896 {
5897 if (dump_enabled_p ())
5898 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5899 "splitting region at loop %d exit at bb%d\n",
5900 bbs[0]->loop_father->num, bb->index);
5901 split = true;
5902 }
5903
5904 if (split && !bbs.is_empty ())
5905 {
5906 r |= vect_slp_bbs (bbs);
5907 bbs.truncate (0);
5908 bbs.quick_push (bb);
5909 }
5910 else
5911 bbs.safe_push (bb);
5912
5913 /* When we have a stmt ending this block and defining a
5914 value we have to insert on edges when inserting after it for
5915 a vector containing its definition. Avoid this for now. */
5916 if (gimple *last = last_stmt (bb))
5917 if (gimple_get_lhs (last)
5918 && is_ctrl_altering_stmt (last))
5919 {
5920 if (dump_enabled_p ())
5921 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5922 "splitting region at control altering "
5923 "definition %G", last);
5924 r |= vect_slp_bbs (bbs);
5925 bbs.truncate (0);
5926 }
5927 }
5928
5929 if (!bbs.is_empty ())
5930 r |= vect_slp_bbs (bbs);
5931
5932 free (rpo);
5933
5934 return r;
5935 }
5936
5937 /* Build a variable-length vector in which the elements in ELTS are repeated
5938 to a fill NRESULTS vectors of type VECTOR_TYPE. Store the vectors in
5939 RESULTS and add any new instructions to SEQ.
5940
5941 The approach we use is:
5942
5943 (1) Find a vector mode VM with integer elements of mode IM.
5944
5945 (2) Replace ELTS[0:NELTS] with ELTS'[0:NELTS'], where each element of
5946 ELTS' has mode IM. This involves creating NELTS' VIEW_CONVERT_EXPRs
5947 from small vectors to IM.
5948
5949 (3) Duplicate each ELTS'[I] into a vector of mode VM.
5950
5951 (4) Use a tree of interleaving VEC_PERM_EXPRs to create VMs with the
5952 correct byte contents.
5953
5954 (5) Use VIEW_CONVERT_EXPR to cast the final VMs to the required type.
5955
5956 We try to find the largest IM for which this sequence works, in order
5957 to cut down on the number of interleaves. */
5958
5959 void
5960 duplicate_and_interleave (vec_info *vinfo, gimple_seq *seq, tree vector_type,
5961 vec<tree> elts, unsigned int nresults,
5962 vec<tree> &results)
5963 {
5964 unsigned int nelts = elts.length ();
5965 tree element_type = TREE_TYPE (vector_type);
5966
5967 /* (1) Find a vector mode VM with integer elements of mode IM. */
5968 unsigned int nvectors = 1;
5969 tree new_vector_type;
5970 tree permutes[2];
5971 if (!can_duplicate_and_interleave_p (vinfo, nelts, element_type,
5972 &nvectors, &new_vector_type,
5973 permutes))
5974 gcc_unreachable ();
5975
5976 /* Get a vector type that holds ELTS[0:NELTS/NELTS']. */
5977 unsigned int partial_nelts = nelts / nvectors;
5978 tree partial_vector_type = build_vector_type (element_type, partial_nelts);
5979
5980 tree_vector_builder partial_elts;
5981 auto_vec<tree, 32> pieces (nvectors * 2);
5982 pieces.quick_grow_cleared (nvectors * 2);
5983 for (unsigned int i = 0; i < nvectors; ++i)
5984 {
5985 /* (2) Replace ELTS[0:NELTS] with ELTS'[0:NELTS'], where each element of
5986 ELTS' has mode IM. */
5987 partial_elts.new_vector (partial_vector_type, partial_nelts, 1);
5988 for (unsigned int j = 0; j < partial_nelts; ++j)
5989 partial_elts.quick_push (elts[i * partial_nelts + j]);
5990 tree t = gimple_build_vector (seq, &partial_elts);
5991 t = gimple_build (seq, VIEW_CONVERT_EXPR,
5992 TREE_TYPE (new_vector_type), t);
5993
5994 /* (3) Duplicate each ELTS'[I] into a vector of mode VM. */
5995 pieces[i] = gimple_build_vector_from_val (seq, new_vector_type, t);
5996 }
5997
5998 /* (4) Use a tree of VEC_PERM_EXPRs to create a single VM with the
5999 correct byte contents.
6000
6001 Conceptually, we need to repeat the following operation log2(nvectors)
6002 times, where hi_start = nvectors / 2:
6003
6004 out[i * 2] = VEC_PERM_EXPR (in[i], in[i + hi_start], lo_permute);
6005 out[i * 2 + 1] = VEC_PERM_EXPR (in[i], in[i + hi_start], hi_permute);
6006
6007 However, if each input repeats every N elements and the VF is
6008 a multiple of N * 2, the HI result is the same as the LO result.
6009 This will be true for the first N1 iterations of the outer loop,
6010 followed by N2 iterations for which both the LO and HI results
6011 are needed. I.e.:
6012
6013 N1 + N2 = log2(nvectors)
6014
6015 Each "N1 iteration" doubles the number of redundant vectors and the
6016 effect of the process as a whole is to have a sequence of nvectors/2**N1
6017 vectors that repeats 2**N1 times. Rather than generate these redundant
6018 vectors, we halve the number of vectors for each N1 iteration. */
6019 unsigned int in_start = 0;
6020 unsigned int out_start = nvectors;
6021 unsigned int new_nvectors = nvectors;
6022 for (unsigned int in_repeat = 1; in_repeat < nvectors; in_repeat *= 2)
6023 {
6024 unsigned int hi_start = new_nvectors / 2;
6025 unsigned int out_i = 0;
6026 for (unsigned int in_i = 0; in_i < new_nvectors; ++in_i)
6027 {
6028 if ((in_i & 1) != 0
6029 && multiple_p (TYPE_VECTOR_SUBPARTS (new_vector_type),
6030 2 * in_repeat))
6031 continue;
6032
6033 tree output = make_ssa_name (new_vector_type);
6034 tree input1 = pieces[in_start + (in_i / 2)];
6035 tree input2 = pieces[in_start + (in_i / 2) + hi_start];
6036 gassign *stmt = gimple_build_assign (output, VEC_PERM_EXPR,
6037 input1, input2,
6038 permutes[in_i & 1]);
6039 gimple_seq_add_stmt (seq, stmt);
6040 pieces[out_start + out_i] = output;
6041 out_i += 1;
6042 }
6043 std::swap (in_start, out_start);
6044 new_nvectors = out_i;
6045 }
6046
6047 /* (5) Use VIEW_CONVERT_EXPR to cast the final VM to the required type. */
6048 results.reserve (nresults);
6049 for (unsigned int i = 0; i < nresults; ++i)
6050 if (i < new_nvectors)
6051 results.quick_push (gimple_build (seq, VIEW_CONVERT_EXPR, vector_type,
6052 pieces[in_start + i]));
6053 else
6054 results.quick_push (results[i - new_nvectors]);
6055 }
6056
6057
6058 /* For constant and loop invariant defs in OP_NODE this function creates
6059 vector defs that will be used in the vectorized stmts and stores them
6060 to SLP_TREE_VEC_DEFS of OP_NODE. */
6061
6062 static void
6063 vect_create_constant_vectors (vec_info *vinfo, slp_tree op_node)
6064 {
6065 unsigned HOST_WIDE_INT nunits;
6066 tree vec_cst;
6067 unsigned j, number_of_places_left_in_vector;
6068 tree vector_type;
6069 tree vop;
6070 int group_size = op_node->ops.length ();
6071 unsigned int vec_num, i;
6072 unsigned number_of_copies = 1;
6073 bool constant_p;
6074 gimple_seq ctor_seq = NULL;
6075 auto_vec<tree, 16> permute_results;
6076
6077 /* We always want SLP_TREE_VECTYPE (op_node) here correctly set. */
6078 vector_type = SLP_TREE_VECTYPE (op_node);
6079
6080 unsigned int number_of_vectors = SLP_TREE_NUMBER_OF_VEC_STMTS (op_node);
6081 SLP_TREE_VEC_DEFS (op_node).create (number_of_vectors);
6082 auto_vec<tree> voprnds (number_of_vectors);
6083
6084 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
6085 created vectors. It is greater than 1 if unrolling is performed.
6086
6087 For example, we have two scalar operands, s1 and s2 (e.g., group of
6088 strided accesses of size two), while NUNITS is four (i.e., four scalars
6089 of this type can be packed in a vector). The output vector will contain
6090 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
6091 will be 2).
6092
6093 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
6094 containing the operands.
6095
6096 For example, NUNITS is four as before, and the group size is 8
6097 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
6098 {s5, s6, s7, s8}. */
6099
6100 /* When using duplicate_and_interleave, we just need one element for
6101 each scalar statement. */
6102 if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
6103 nunits = group_size;
6104
6105 number_of_copies = nunits * number_of_vectors / group_size;
6106
6107 number_of_places_left_in_vector = nunits;
6108 constant_p = true;
6109 tree_vector_builder elts (vector_type, nunits, 1);
6110 elts.quick_grow (nunits);
6111 stmt_vec_info insert_after = NULL;
6112 for (j = 0; j < number_of_copies; j++)
6113 {
6114 tree op;
6115 for (i = group_size - 1; op_node->ops.iterate (i, &op); i--)
6116 {
6117 /* Create 'vect_ = {op0,op1,...,opn}'. */
6118 number_of_places_left_in_vector--;
6119 tree orig_op = op;
6120 if (!types_compatible_p (TREE_TYPE (vector_type), TREE_TYPE (op)))
6121 {
6122 if (CONSTANT_CLASS_P (op))
6123 {
6124 if (VECTOR_BOOLEAN_TYPE_P (vector_type))
6125 {
6126 /* Can't use VIEW_CONVERT_EXPR for booleans because
6127 of possibly different sizes of scalar value and
6128 vector element. */
6129 if (integer_zerop (op))
6130 op = build_int_cst (TREE_TYPE (vector_type), 0);
6131 else if (integer_onep (op))
6132 op = build_all_ones_cst (TREE_TYPE (vector_type));
6133 else
6134 gcc_unreachable ();
6135 }
6136 else
6137 op = fold_unary (VIEW_CONVERT_EXPR,
6138 TREE_TYPE (vector_type), op);
6139 gcc_assert (op && CONSTANT_CLASS_P (op));
6140 }
6141 else
6142 {
6143 tree new_temp = make_ssa_name (TREE_TYPE (vector_type));
6144 gimple *init_stmt;
6145 if (VECTOR_BOOLEAN_TYPE_P (vector_type))
6146 {
6147 tree true_val
6148 = build_all_ones_cst (TREE_TYPE (vector_type));
6149 tree false_val
6150 = build_zero_cst (TREE_TYPE (vector_type));
6151 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (op)));
6152 init_stmt = gimple_build_assign (new_temp, COND_EXPR,
6153 op, true_val,
6154 false_val);
6155 }
6156 else
6157 {
6158 op = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vector_type),
6159 op);
6160 init_stmt
6161 = gimple_build_assign (new_temp, VIEW_CONVERT_EXPR,
6162 op);
6163 }
6164 gimple_seq_add_stmt (&ctor_seq, init_stmt);
6165 op = new_temp;
6166 }
6167 }
6168 elts[number_of_places_left_in_vector] = op;
6169 if (!CONSTANT_CLASS_P (op))
6170 constant_p = false;
6171 /* For BB vectorization we have to compute an insert location
6172 when a def is inside the analyzed region since we cannot
6173 simply insert at the BB start in this case. */
6174 stmt_vec_info opdef;
6175 if (TREE_CODE (orig_op) == SSA_NAME
6176 && !SSA_NAME_IS_DEFAULT_DEF (orig_op)
6177 && is_a <bb_vec_info> (vinfo)
6178 && (opdef = vinfo->lookup_def (orig_op)))
6179 {
6180 if (!insert_after)
6181 insert_after = opdef;
6182 else
6183 insert_after = get_later_stmt (insert_after, opdef);
6184 }
6185
6186 if (number_of_places_left_in_vector == 0)
6187 {
6188 if (constant_p
6189 ? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
6190 : known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
6191 vec_cst = gimple_build_vector (&ctor_seq, &elts);
6192 else
6193 {
6194 if (permute_results.is_empty ())
6195 duplicate_and_interleave (vinfo, &ctor_seq, vector_type,
6196 elts, number_of_vectors,
6197 permute_results);
6198 vec_cst = permute_results[number_of_vectors - j - 1];
6199 }
6200 if (!gimple_seq_empty_p (ctor_seq))
6201 {
6202 if (insert_after)
6203 {
6204 gimple_stmt_iterator gsi;
6205 if (gimple_code (insert_after->stmt) == GIMPLE_PHI)
6206 {
6207 gsi = gsi_after_labels (gimple_bb (insert_after->stmt));
6208 gsi_insert_seq_before (&gsi, ctor_seq,
6209 GSI_CONTINUE_LINKING);
6210 }
6211 else if (!stmt_ends_bb_p (insert_after->stmt))
6212 {
6213 gsi = gsi_for_stmt (insert_after->stmt);
6214 gsi_insert_seq_after (&gsi, ctor_seq,
6215 GSI_CONTINUE_LINKING);
6216 }
6217 else
6218 {
6219 /* When we want to insert after a def where the
6220 defining stmt throws then insert on the fallthru
6221 edge. */
6222 edge e = find_fallthru_edge
6223 (gimple_bb (insert_after->stmt)->succs);
6224 basic_block new_bb
6225 = gsi_insert_seq_on_edge_immediate (e, ctor_seq);
6226 gcc_assert (!new_bb);
6227 }
6228 }
6229 else
6230 vinfo->insert_seq_on_entry (NULL, ctor_seq);
6231 ctor_seq = NULL;
6232 }
6233 voprnds.quick_push (vec_cst);
6234 insert_after = NULL;
6235 number_of_places_left_in_vector = nunits;
6236 constant_p = true;
6237 elts.new_vector (vector_type, nunits, 1);
6238 elts.quick_grow (nunits);
6239 }
6240 }
6241 }
6242
6243 /* Since the vectors are created in the reverse order, we should invert
6244 them. */
6245 vec_num = voprnds.length ();
6246 for (j = vec_num; j != 0; j--)
6247 {
6248 vop = voprnds[j - 1];
6249 SLP_TREE_VEC_DEFS (op_node).quick_push (vop);
6250 }
6251
6252 /* In case that VF is greater than the unrolling factor needed for the SLP
6253 group of stmts, NUMBER_OF_VECTORS to be created is greater than
6254 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
6255 to replicate the vectors. */
6256 while (number_of_vectors > SLP_TREE_VEC_DEFS (op_node).length ())
6257 for (i = 0; SLP_TREE_VEC_DEFS (op_node).iterate (i, &vop) && i < vec_num;
6258 i++)
6259 SLP_TREE_VEC_DEFS (op_node).quick_push (vop);
6260 }
6261
6262 /* Get the Ith vectorized definition from SLP_NODE. */
6263
6264 tree
6265 vect_get_slp_vect_def (slp_tree slp_node, unsigned i)
6266 {
6267 if (SLP_TREE_VEC_STMTS (slp_node).exists ())
6268 return gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[i]);
6269 else
6270 return SLP_TREE_VEC_DEFS (slp_node)[i];
6271 }
6272
6273 /* Get the vectorized definitions of SLP_NODE in *VEC_DEFS. */
6274
6275 void
6276 vect_get_slp_defs (slp_tree slp_node, vec<tree> *vec_defs)
6277 {
6278 vec_defs->create (SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node));
6279 if (SLP_TREE_DEF_TYPE (slp_node) == vect_internal_def)
6280 {
6281 unsigned j;
6282 gimple *vec_def_stmt;
6283 FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (slp_node), j, vec_def_stmt)
6284 vec_defs->quick_push (gimple_get_lhs (vec_def_stmt));
6285 }
6286 else
6287 vec_defs->splice (SLP_TREE_VEC_DEFS (slp_node));
6288 }
6289
6290 /* Get N vectorized definitions for SLP_NODE. */
6291
6292 void
6293 vect_get_slp_defs (vec_info *,
6294 slp_tree slp_node, vec<vec<tree> > *vec_oprnds, unsigned n)
6295 {
6296 if (n == -1U)
6297 n = SLP_TREE_CHILDREN (slp_node).length ();
6298
6299 for (unsigned i = 0; i < n; ++i)
6300 {
6301 slp_tree child = SLP_TREE_CHILDREN (slp_node)[i];
6302 vec<tree> vec_defs = vNULL;
6303 vect_get_slp_defs (child, &vec_defs);
6304 vec_oprnds->quick_push (vec_defs);
6305 }
6306 }
6307
6308 /* Generate vector permute statements from a list of loads in DR_CHAIN.
6309 If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
6310 permute statements for the SLP node NODE. Store the number of vector
6311 permute instructions in *N_PERMS and the number of vector load
6312 instructions in *N_LOADS. If DCE_CHAIN is true, remove all definitions
6313 that were not needed. */
6314
6315 bool
6316 vect_transform_slp_perm_load (vec_info *vinfo,
6317 slp_tree node, vec<tree> dr_chain,
6318 gimple_stmt_iterator *gsi, poly_uint64 vf,
6319 bool analyze_only, unsigned *n_perms,
6320 unsigned int *n_loads, bool dce_chain)
6321 {
6322 stmt_vec_info stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
6323 int vec_index = 0;
6324 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6325 unsigned int group_size = SLP_TREE_SCALAR_STMTS (node).length ();
6326 unsigned int mask_element;
6327 machine_mode mode;
6328
6329 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
6330 return false;
6331
6332 stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
6333
6334 mode = TYPE_MODE (vectype);
6335 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
6336
6337 /* Initialize the vect stmts of NODE to properly insert the generated
6338 stmts later. */
6339 if (! analyze_only)
6340 for (unsigned i = SLP_TREE_VEC_STMTS (node).length ();
6341 i < SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
6342 SLP_TREE_VEC_STMTS (node).quick_push (NULL);
6343
6344 /* Generate permutation masks for every NODE. Number of masks for each NODE
6345 is equal to GROUP_SIZE.
6346 E.g., we have a group of three nodes with three loads from the same
6347 location in each node, and the vector size is 4. I.e., we have a
6348 a0b0c0a1b1c1... sequence and we need to create the following vectors:
6349 for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
6350 for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
6351 ...
6352
6353 The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9}.
6354 The last mask is illegal since we assume two operands for permute
6355 operation, and the mask element values can't be outside that range.
6356 Hence, the last mask must be converted into {2,5,5,5}.
6357 For the first two permutations we need the first and the second input
6358 vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
6359 we need the second and the third vectors: {b1,c1,a2,b2} and
6360 {c2,a3,b3,c3}. */
6361
6362 int vect_stmts_counter = 0;
6363 unsigned int index = 0;
6364 int first_vec_index = -1;
6365 int second_vec_index = -1;
6366 bool noop_p = true;
6367 *n_perms = 0;
6368
6369 vec_perm_builder mask;
6370 unsigned int nelts_to_build;
6371 unsigned int nvectors_per_build;
6372 unsigned int in_nlanes;
6373 bool repeating_p = (group_size == DR_GROUP_SIZE (stmt_info)
6374 && multiple_p (nunits, group_size));
6375 if (repeating_p)
6376 {
6377 /* A single vector contains a whole number of copies of the node, so:
6378 (a) all permutes can use the same mask; and
6379 (b) the permutes only need a single vector input. */
6380 mask.new_vector (nunits, group_size, 3);
6381 nelts_to_build = mask.encoded_nelts ();
6382 nvectors_per_build = SLP_TREE_VEC_STMTS (node).length ();
6383 in_nlanes = DR_GROUP_SIZE (stmt_info) * 3;
6384 }
6385 else
6386 {
6387 /* We need to construct a separate mask for each vector statement. */
6388 unsigned HOST_WIDE_INT const_nunits, const_vf;
6389 if (!nunits.is_constant (&const_nunits)
6390 || !vf.is_constant (&const_vf))
6391 return false;
6392 mask.new_vector (const_nunits, const_nunits, 1);
6393 nelts_to_build = const_vf * group_size;
6394 nvectors_per_build = 1;
6395 in_nlanes = const_vf * DR_GROUP_SIZE (stmt_info);
6396 }
6397 auto_sbitmap used_in_lanes (in_nlanes);
6398 bitmap_clear (used_in_lanes);
6399 auto_bitmap used_defs;
6400
6401 unsigned int count = mask.encoded_nelts ();
6402 mask.quick_grow (count);
6403 vec_perm_indices indices;
6404
6405 for (unsigned int j = 0; j < nelts_to_build; j++)
6406 {
6407 unsigned int iter_num = j / group_size;
6408 unsigned int stmt_num = j % group_size;
6409 unsigned int i = (iter_num * DR_GROUP_SIZE (stmt_info)
6410 + SLP_TREE_LOAD_PERMUTATION (node)[stmt_num]);
6411 bitmap_set_bit (used_in_lanes, i);
6412 if (repeating_p)
6413 {
6414 first_vec_index = 0;
6415 mask_element = i;
6416 }
6417 else
6418 {
6419 /* Enforced before the loop when !repeating_p. */
6420 unsigned int const_nunits = nunits.to_constant ();
6421 vec_index = i / const_nunits;
6422 mask_element = i % const_nunits;
6423 if (vec_index == first_vec_index
6424 || first_vec_index == -1)
6425 {
6426 first_vec_index = vec_index;
6427 }
6428 else if (vec_index == second_vec_index
6429 || second_vec_index == -1)
6430 {
6431 second_vec_index = vec_index;
6432 mask_element += const_nunits;
6433 }
6434 else
6435 {
6436 if (dump_enabled_p ())
6437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6438 "permutation requires at "
6439 "least three vectors %G",
6440 stmt_info->stmt);
6441 gcc_assert (analyze_only);
6442 return false;
6443 }
6444
6445 gcc_assert (mask_element < 2 * const_nunits);
6446 }
6447
6448 if (mask_element != index)
6449 noop_p = false;
6450 mask[index++] = mask_element;
6451
6452 if (index == count && !noop_p)
6453 {
6454 indices.new_vector (mask, second_vec_index == -1 ? 1 : 2, nunits);
6455 if (!can_vec_perm_const_p (mode, indices))
6456 {
6457 if (dump_enabled_p ())
6458 {
6459 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
6460 vect_location,
6461 "unsupported vect permute { ");
6462 for (i = 0; i < count; ++i)
6463 {
6464 dump_dec (MSG_MISSED_OPTIMIZATION, mask[i]);
6465 dump_printf (MSG_MISSED_OPTIMIZATION, " ");
6466 }
6467 dump_printf (MSG_MISSED_OPTIMIZATION, "}\n");
6468 }
6469 gcc_assert (analyze_only);
6470 return false;
6471 }
6472
6473 ++*n_perms;
6474 }
6475
6476 if (index == count)
6477 {
6478 if (!analyze_only)
6479 {
6480 tree mask_vec = NULL_TREE;
6481
6482 if (! noop_p)
6483 mask_vec = vect_gen_perm_mask_checked (vectype, indices);
6484
6485 if (second_vec_index == -1)
6486 second_vec_index = first_vec_index;
6487
6488 for (unsigned int ri = 0; ri < nvectors_per_build; ++ri)
6489 {
6490 /* Generate the permute statement if necessary. */
6491 tree first_vec = dr_chain[first_vec_index + ri];
6492 tree second_vec = dr_chain[second_vec_index + ri];
6493 gimple *perm_stmt;
6494 if (! noop_p)
6495 {
6496 gassign *stmt = as_a <gassign *> (stmt_info->stmt);
6497 tree perm_dest
6498 = vect_create_destination_var (gimple_assign_lhs (stmt),
6499 vectype);
6500 perm_dest = make_ssa_name (perm_dest);
6501 perm_stmt
6502 = gimple_build_assign (perm_dest, VEC_PERM_EXPR,
6503 first_vec, second_vec,
6504 mask_vec);
6505 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt,
6506 gsi);
6507 if (dce_chain)
6508 {
6509 bitmap_set_bit (used_defs, first_vec_index + ri);
6510 bitmap_set_bit (used_defs, second_vec_index + ri);
6511 }
6512 }
6513 else
6514 {
6515 /* If mask was NULL_TREE generate the requested
6516 identity transform. */
6517 perm_stmt = SSA_NAME_DEF_STMT (first_vec);
6518 if (dce_chain)
6519 bitmap_set_bit (used_defs, first_vec_index + ri);
6520 }
6521
6522 /* Store the vector statement in NODE. */
6523 SLP_TREE_VEC_STMTS (node)[vect_stmts_counter++] = perm_stmt;
6524 }
6525 }
6526
6527 index = 0;
6528 first_vec_index = -1;
6529 second_vec_index = -1;
6530 noop_p = true;
6531 }
6532 }
6533
6534 if (n_loads)
6535 {
6536 if (repeating_p)
6537 *n_loads = SLP_TREE_NUMBER_OF_VEC_STMTS (node);
6538 else
6539 {
6540 /* Enforced above when !repeating_p. */
6541 unsigned int const_nunits = nunits.to_constant ();
6542 *n_loads = 0;
6543 bool load_seen = false;
6544 for (unsigned i = 0; i < in_nlanes; ++i)
6545 {
6546 if (i % const_nunits == 0)
6547 {
6548 if (load_seen)
6549 *n_loads += 1;
6550 load_seen = false;
6551 }
6552 if (bitmap_bit_p (used_in_lanes, i))
6553 load_seen = true;
6554 }
6555 if (load_seen)
6556 *n_loads += 1;
6557 }
6558 }
6559
6560 if (dce_chain)
6561 for (unsigned i = 0; i < dr_chain.length (); ++i)
6562 if (!bitmap_bit_p (used_defs, i))
6563 {
6564 gimple *stmt = SSA_NAME_DEF_STMT (dr_chain[i]);
6565 gimple_stmt_iterator rgsi = gsi_for_stmt (stmt);
6566 gsi_remove (&rgsi, true);
6567 release_defs (stmt);
6568 }
6569
6570 return true;
6571 }
6572
6573 /* Produce the next vector result for SLP permutation NODE by adding a vector
6574 statement at GSI. If MASK_VEC is nonnull, add:
6575
6576 <new SSA name> = VEC_PERM_EXPR <FIRST_DEF, SECOND_DEF, MASK_VEC>
6577
6578 otherwise add:
6579
6580 <new SSA name> = FIRST_DEF. */
6581
6582 static void
6583 vect_add_slp_permutation (vec_info *vinfo, gimple_stmt_iterator *gsi,
6584 slp_tree node, tree first_def, tree second_def,
6585 tree mask_vec)
6586 {
6587 tree vectype = SLP_TREE_VECTYPE (node);
6588
6589 /* ??? We SLP match existing vector element extracts but
6590 allow punning which we need to re-instantiate at uses
6591 but have no good way of explicitly representing. */
6592 if (!types_compatible_p (TREE_TYPE (first_def), vectype))
6593 {
6594 gassign *conv_stmt
6595 = gimple_build_assign (make_ssa_name (vectype),
6596 build1 (VIEW_CONVERT_EXPR, vectype, first_def));
6597 vect_finish_stmt_generation (vinfo, NULL, conv_stmt, gsi);
6598 first_def = gimple_assign_lhs (conv_stmt);
6599 }
6600 gassign *perm_stmt;
6601 tree perm_dest = make_ssa_name (vectype);
6602 if (mask_vec)
6603 {
6604 if (!types_compatible_p (TREE_TYPE (second_def), vectype))
6605 {
6606 gassign *conv_stmt
6607 = gimple_build_assign (make_ssa_name (vectype),
6608 build1 (VIEW_CONVERT_EXPR,
6609 vectype, second_def));
6610 vect_finish_stmt_generation (vinfo, NULL, conv_stmt, gsi);
6611 second_def = gimple_assign_lhs (conv_stmt);
6612 }
6613 perm_stmt = gimple_build_assign (perm_dest, VEC_PERM_EXPR,
6614 first_def, second_def,
6615 mask_vec);
6616 }
6617 else
6618 /* We need a copy here in case the def was external. */
6619 perm_stmt = gimple_build_assign (perm_dest, first_def);
6620 vect_finish_stmt_generation (vinfo, NULL, perm_stmt, gsi);
6621 /* Store the vector statement in NODE. */
6622 SLP_TREE_VEC_STMTS (node).quick_push (perm_stmt);
6623 }
6624
6625 /* Vectorize the SLP permutations in NODE as specified
6626 in SLP_TREE_LANE_PERMUTATION which is a vector of pairs of SLP
6627 child number and lane number.
6628 Interleaving of two two-lane two-child SLP subtrees (not supported):
6629 [ { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } ]
6630 A blend of two four-lane two-child SLP subtrees:
6631 [ { 0, 0 }, { 1, 1 }, { 0, 2 }, { 1, 3 } ]
6632 Highpart of a four-lane one-child SLP subtree (not supported):
6633 [ { 0, 2 }, { 0, 3 } ]
6634 Where currently only a subset is supported by code generating below. */
6635
6636 static bool
6637 vectorizable_slp_permutation (vec_info *vinfo, gimple_stmt_iterator *gsi,
6638 slp_tree node, stmt_vector_for_cost *cost_vec)
6639 {
6640 tree vectype = SLP_TREE_VECTYPE (node);
6641
6642 /* ??? We currently only support all same vector input and output types
6643 while the SLP IL should really do a concat + select and thus accept
6644 arbitrary mismatches. */
6645 slp_tree child;
6646 unsigned i;
6647 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
6648 bool repeating_p = multiple_p (nunits, SLP_TREE_LANES (node));
6649 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
6650 {
6651 if (!vect_maybe_update_slp_op_vectype (child, vectype)
6652 || !types_compatible_p (SLP_TREE_VECTYPE (child), vectype))
6653 {
6654 if (dump_enabled_p ())
6655 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6656 "Unsupported lane permutation\n");
6657 return false;
6658 }
6659 if (SLP_TREE_LANES (child) != SLP_TREE_LANES (node))
6660 repeating_p = false;
6661 }
6662
6663 vec<std::pair<unsigned, unsigned> > &perm = SLP_TREE_LANE_PERMUTATION (node);
6664 gcc_assert (perm.length () == SLP_TREE_LANES (node));
6665 if (dump_enabled_p ())
6666 {
6667 dump_printf_loc (MSG_NOTE, vect_location,
6668 "vectorizing permutation");
6669 for (unsigned i = 0; i < perm.length (); ++i)
6670 dump_printf (MSG_NOTE, " op%u[%u]", perm[i].first, perm[i].second);
6671 if (repeating_p)
6672 dump_printf (MSG_NOTE, " (repeat %d)\n", SLP_TREE_LANES (node));
6673 dump_printf (MSG_NOTE, "\n");
6674 }
6675
6676 /* REPEATING_P is true if every output vector is guaranteed to use the
6677 same permute vector. We can handle that case for both variable-length
6678 and constant-length vectors, but we only handle other cases for
6679 constant-length vectors.
6680
6681 Set:
6682
6683 - NPATTERNS and NELTS_PER_PATTERN to the encoding of the permute
6684 mask vector that we want to build.
6685
6686 - NCOPIES to the number of copies of PERM that we need in order
6687 to build the necessary permute mask vectors.
6688
6689 - NOUTPUTS_PER_MASK to the number of output vectors we want to create
6690 for each permute mask vector. This is only relevant when GSI is
6691 nonnull. */
6692 uint64_t npatterns;
6693 unsigned nelts_per_pattern;
6694 uint64_t ncopies;
6695 unsigned noutputs_per_mask;
6696 if (repeating_p)
6697 {
6698 /* We need a single permute mask vector that has the form:
6699
6700 { X1, ..., Xn, X1 + n, ..., Xn + n, X1 + 2n, ..., Xn + 2n, ... }
6701
6702 In other words, the original n-element permute in PERM is
6703 "unrolled" to fill a full vector. The stepped vector encoding
6704 that we use for permutes requires 3n elements. */
6705 npatterns = SLP_TREE_LANES (node);
6706 nelts_per_pattern = ncopies = 3;
6707 noutputs_per_mask = SLP_TREE_NUMBER_OF_VEC_STMTS (node);
6708 }
6709 else
6710 {
6711 /* Calculate every element of every permute mask vector explicitly,
6712 instead of relying on the pattern described above. */
6713 if (!nunits.is_constant (&npatterns))
6714 return false;
6715 nelts_per_pattern = ncopies = 1;
6716 if (loop_vec_info linfo = dyn_cast <loop_vec_info> (vinfo))
6717 if (!LOOP_VINFO_VECT_FACTOR (linfo).is_constant (&ncopies))
6718 return false;
6719 noutputs_per_mask = 1;
6720 }
6721 unsigned olanes = ncopies * SLP_TREE_LANES (node);
6722 gcc_assert (repeating_p || multiple_p (olanes, nunits));
6723
6724 /* Compute the { { SLP operand, vector index}, lane } permutation sequence
6725 from the { SLP operand, scalar lane } permutation as recorded in the
6726 SLP node as intermediate step. This part should already work
6727 with SLP children with arbitrary number of lanes. */
6728 auto_vec<std::pair<std::pair<unsigned, unsigned>, unsigned> > vperm;
6729 auto_vec<unsigned> active_lane;
6730 vperm.create (olanes);
6731 active_lane.safe_grow_cleared (SLP_TREE_CHILDREN (node).length (), true);
6732 for (unsigned i = 0; i < ncopies; ++i)
6733 {
6734 for (unsigned pi = 0; pi < perm.length (); ++pi)
6735 {
6736 std::pair<unsigned, unsigned> p = perm[pi];
6737 tree vtype = SLP_TREE_VECTYPE (SLP_TREE_CHILDREN (node)[p.first]);
6738 if (repeating_p)
6739 vperm.quick_push ({{p.first, 0}, p.second + active_lane[p.first]});
6740 else
6741 {
6742 /* We checked above that the vectors are constant-length. */
6743 unsigned vnunits = TYPE_VECTOR_SUBPARTS (vtype).to_constant ();
6744 unsigned vi = (active_lane[p.first] + p.second) / vnunits;
6745 unsigned vl = (active_lane[p.first] + p.second) % vnunits;
6746 vperm.quick_push ({{p.first, vi}, vl});
6747 }
6748 }
6749 /* Advance to the next group. */
6750 for (unsigned j = 0; j < SLP_TREE_CHILDREN (node).length (); ++j)
6751 active_lane[j] += SLP_TREE_LANES (SLP_TREE_CHILDREN (node)[j]);
6752 }
6753
6754 if (dump_enabled_p ())
6755 {
6756 dump_printf_loc (MSG_NOTE, vect_location, "as");
6757 for (unsigned i = 0; i < vperm.length (); ++i)
6758 {
6759 if (i != 0
6760 && (repeating_p
6761 ? multiple_p (i, npatterns)
6762 : multiple_p (i, TYPE_VECTOR_SUBPARTS (vectype))))
6763 dump_printf (MSG_NOTE, ",");
6764 dump_printf (MSG_NOTE, " vops%u[%u][%u]",
6765 vperm[i].first.first, vperm[i].first.second,
6766 vperm[i].second);
6767 }
6768 dump_printf (MSG_NOTE, "\n");
6769 }
6770
6771 /* We can only handle two-vector permutes, everything else should
6772 be lowered on the SLP level. The following is closely inspired
6773 by vect_transform_slp_perm_load and is supposed to eventually
6774 replace it.
6775 ??? As intermediate step do code-gen in the SLP tree representation
6776 somehow? */
6777 std::pair<unsigned, unsigned> first_vec = std::make_pair (-1U, -1U);
6778 std::pair<unsigned, unsigned> second_vec = std::make_pair (-1U, -1U);
6779 unsigned int index = 0;
6780 poly_uint64 mask_element;
6781 vec_perm_builder mask;
6782 mask.new_vector (nunits, npatterns, nelts_per_pattern);
6783 unsigned int count = mask.encoded_nelts ();
6784 mask.quick_grow (count);
6785 vec_perm_indices indices;
6786 unsigned nperms = 0;
6787 for (unsigned i = 0; i < vperm.length (); ++i)
6788 {
6789 mask_element = vperm[i].second;
6790 if (first_vec.first == -1U
6791 || first_vec == vperm[i].first)
6792 first_vec = vperm[i].first;
6793 else if (second_vec.first == -1U
6794 || second_vec == vperm[i].first)
6795 {
6796 second_vec = vperm[i].first;
6797 mask_element += nunits;
6798 }
6799 else
6800 {
6801 if (dump_enabled_p ())
6802 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6803 "permutation requires at "
6804 "least three vectors\n");
6805 gcc_assert (!gsi);
6806 return false;
6807 }
6808
6809 mask[index++] = mask_element;
6810
6811 if (index == count)
6812 {
6813 indices.new_vector (mask, second_vec.first == -1U ? 1 : 2, nunits);
6814 bool identity_p = indices.series_p (0, 1, 0, 1);
6815 if (!identity_p
6816 && !can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6817 {
6818 if (dump_enabled_p ())
6819 {
6820 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
6821 vect_location,
6822 "unsupported vect permute { ");
6823 for (i = 0; i < count; ++i)
6824 {
6825 dump_dec (MSG_MISSED_OPTIMIZATION, mask[i]);
6826 dump_printf (MSG_MISSED_OPTIMIZATION, " ");
6827 }
6828 dump_printf (MSG_MISSED_OPTIMIZATION, "}\n");
6829 }
6830 gcc_assert (!gsi);
6831 return false;
6832 }
6833
6834 if (!identity_p)
6835 nperms++;
6836 if (gsi)
6837 {
6838 if (second_vec.first == -1U)
6839 second_vec = first_vec;
6840
6841 slp_tree
6842 first_node = SLP_TREE_CHILDREN (node)[first_vec.first],
6843 second_node = SLP_TREE_CHILDREN (node)[second_vec.first];
6844
6845 tree mask_vec = NULL_TREE;
6846 if (!identity_p)
6847 mask_vec = vect_gen_perm_mask_checked (vectype, indices);
6848
6849 for (unsigned int vi = 0; vi < noutputs_per_mask; ++vi)
6850 {
6851 tree first_def
6852 = vect_get_slp_vect_def (first_node,
6853 first_vec.second + vi);
6854 tree second_def
6855 = vect_get_slp_vect_def (second_node,
6856 second_vec.second + vi);
6857 vect_add_slp_permutation (vinfo, gsi, node, first_def,
6858 second_def, mask_vec);
6859 }
6860 }
6861
6862 index = 0;
6863 first_vec = std::make_pair (-1U, -1U);
6864 second_vec = std::make_pair (-1U, -1U);
6865 }
6866 }
6867
6868 if (!gsi)
6869 record_stmt_cost (cost_vec, nperms, vec_perm, NULL, vectype, 0, vect_body);
6870
6871 return true;
6872 }
6873
6874 /* Vectorize SLP NODE. */
6875
6876 static void
6877 vect_schedule_slp_node (vec_info *vinfo,
6878 slp_tree node, slp_instance instance)
6879 {
6880 gimple_stmt_iterator si;
6881 int i;
6882 slp_tree child;
6883
6884 /* For existing vectors there's nothing to do. */
6885 if (SLP_TREE_VEC_DEFS (node).exists ())
6886 return;
6887
6888 gcc_assert (SLP_TREE_VEC_STMTS (node).is_empty ());
6889
6890 /* Vectorize externals and constants. */
6891 if (SLP_TREE_DEF_TYPE (node) == vect_constant_def
6892 || SLP_TREE_DEF_TYPE (node) == vect_external_def)
6893 {
6894 /* ??? vectorizable_shift can end up using a scalar operand which is
6895 currently denoted as !SLP_TREE_VECTYPE. No need to vectorize the
6896 node in this case. */
6897 if (!SLP_TREE_VECTYPE (node))
6898 return;
6899
6900 vect_create_constant_vectors (vinfo, node);
6901 return;
6902 }
6903
6904 stmt_vec_info stmt_info = SLP_TREE_REPRESENTATIVE (node);
6905
6906 gcc_assert (SLP_TREE_NUMBER_OF_VEC_STMTS (node) != 0);
6907 SLP_TREE_VEC_STMTS (node).create (SLP_TREE_NUMBER_OF_VEC_STMTS (node));
6908
6909 if (dump_enabled_p ())
6910 dump_printf_loc (MSG_NOTE, vect_location,
6911 "------>vectorizing SLP node starting from: %G",
6912 stmt_info->stmt);
6913
6914 if (STMT_VINFO_DATA_REF (stmt_info)
6915 && SLP_TREE_CODE (node) != VEC_PERM_EXPR)
6916 {
6917 /* Vectorized loads go before the first scalar load to make it
6918 ready early, vectorized stores go before the last scalar
6919 stmt which is where all uses are ready. */
6920 stmt_vec_info last_stmt_info = NULL;
6921 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
6922 last_stmt_info = vect_find_first_scalar_stmt_in_slp (node);
6923 else /* DR_IS_WRITE */
6924 last_stmt_info = vect_find_last_scalar_stmt_in_slp (node);
6925 si = gsi_for_stmt (last_stmt_info->stmt);
6926 }
6927 else if ((STMT_VINFO_TYPE (stmt_info) == cycle_phi_info_type
6928 || STMT_VINFO_TYPE (stmt_info) == induc_vec_info_type
6929 || STMT_VINFO_TYPE (stmt_info) == phi_info_type)
6930 && SLP_TREE_CODE (node) != VEC_PERM_EXPR)
6931 {
6932 /* For PHI node vectorization we do not use the insertion iterator. */
6933 si = gsi_none ();
6934 }
6935 else
6936 {
6937 /* Emit other stmts after the children vectorized defs which is
6938 earliest possible. */
6939 gimple *last_stmt = NULL;
6940 bool seen_vector_def = false;
6941 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
6942 if (SLP_TREE_DEF_TYPE (child) == vect_internal_def)
6943 {
6944 /* For fold-left reductions we are retaining the scalar
6945 reduction PHI but we still have SLP_TREE_NUM_VEC_STMTS
6946 set so the representation isn't perfect. Resort to the
6947 last scalar def here. */
6948 if (SLP_TREE_VEC_STMTS (child).is_empty ())
6949 {
6950 gcc_assert (STMT_VINFO_TYPE (SLP_TREE_REPRESENTATIVE (child))
6951 == cycle_phi_info_type);
6952 gphi *phi = as_a <gphi *>
6953 (vect_find_last_scalar_stmt_in_slp (child)->stmt);
6954 if (!last_stmt
6955 || vect_stmt_dominates_stmt_p (last_stmt, phi))
6956 last_stmt = phi;
6957 }
6958 /* We are emitting all vectorized stmts in the same place and
6959 the last one is the last.
6960 ??? Unless we have a load permutation applied and that
6961 figures to re-use an earlier generated load. */
6962 unsigned j;
6963 gimple *vstmt;
6964 FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (child), j, vstmt)
6965 if (!last_stmt
6966 || vect_stmt_dominates_stmt_p (last_stmt, vstmt))
6967 last_stmt = vstmt;
6968 }
6969 else if (!SLP_TREE_VECTYPE (child))
6970 {
6971 /* For externals we use unvectorized at all scalar defs. */
6972 unsigned j;
6973 tree def;
6974 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_OPS (child), j, def)
6975 if (TREE_CODE (def) == SSA_NAME
6976 && !SSA_NAME_IS_DEFAULT_DEF (def))
6977 {
6978 gimple *stmt = SSA_NAME_DEF_STMT (def);
6979 if (!last_stmt
6980 || vect_stmt_dominates_stmt_p (last_stmt, stmt))
6981 last_stmt = stmt;
6982 }
6983 }
6984 else
6985 {
6986 /* For externals we have to look at all defs since their
6987 insertion place is decided per vector. But beware
6988 of pre-existing vectors where we need to make sure
6989 we do not insert before the region boundary. */
6990 if (SLP_TREE_SCALAR_OPS (child).is_empty ()
6991 && !vinfo->lookup_def (SLP_TREE_VEC_DEFS (child)[0]))
6992 seen_vector_def = true;
6993 else
6994 {
6995 unsigned j;
6996 tree vdef;
6997 FOR_EACH_VEC_ELT (SLP_TREE_VEC_DEFS (child), j, vdef)
6998 if (TREE_CODE (vdef) == SSA_NAME
6999 && !SSA_NAME_IS_DEFAULT_DEF (vdef))
7000 {
7001 gimple *vstmt = SSA_NAME_DEF_STMT (vdef);
7002 if (!last_stmt
7003 || vect_stmt_dominates_stmt_p (last_stmt, vstmt))
7004 last_stmt = vstmt;
7005 }
7006 }
7007 }
7008 /* This can happen when all children are pre-existing vectors or
7009 constants. */
7010 if (!last_stmt)
7011 last_stmt = vect_find_first_scalar_stmt_in_slp (node)->stmt;
7012 if (!last_stmt)
7013 {
7014 gcc_assert (seen_vector_def);
7015 si = gsi_after_labels (as_a <bb_vec_info> (vinfo)->bbs[0]);
7016 }
7017 else if (is_a <gphi *> (last_stmt))
7018 si = gsi_after_labels (gimple_bb (last_stmt));
7019 else
7020 {
7021 si = gsi_for_stmt (last_stmt);
7022 gsi_next (&si);
7023 }
7024 }
7025
7026 bool done_p = false;
7027
7028 /* Handle purely internal nodes. */
7029 if (SLP_TREE_CODE (node) == VEC_PERM_EXPR)
7030 {
7031 /* ??? the transform kind is stored to STMT_VINFO_TYPE which might
7032 be shared with different SLP nodes (but usually it's the same
7033 operation apart from the case the stmt is only there for denoting
7034 the actual scalar lane defs ...). So do not call vect_transform_stmt
7035 but open-code it here (partly). */
7036 bool done = vectorizable_slp_permutation (vinfo, &si, node, NULL);
7037 gcc_assert (done);
7038 done_p = true;
7039 }
7040 if (!done_p)
7041 vect_transform_stmt (vinfo, stmt_info, &si, node, instance);
7042 }
7043
7044 /* Replace scalar calls from SLP node NODE with setting of their lhs to zero.
7045 For loop vectorization this is done in vectorizable_call, but for SLP
7046 it needs to be deferred until end of vect_schedule_slp, because multiple
7047 SLP instances may refer to the same scalar stmt. */
7048
7049 static void
7050 vect_remove_slp_scalar_calls (vec_info *vinfo,
7051 slp_tree node, hash_set<slp_tree> &visited)
7052 {
7053 gimple *new_stmt;
7054 gimple_stmt_iterator gsi;
7055 int i;
7056 slp_tree child;
7057 tree lhs;
7058 stmt_vec_info stmt_info;
7059
7060 if (!node || SLP_TREE_DEF_TYPE (node) != vect_internal_def)
7061 return;
7062
7063 if (visited.add (node))
7064 return;
7065
7066 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
7067 vect_remove_slp_scalar_calls (vinfo, child, visited);
7068
7069 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt_info)
7070 {
7071 gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt);
7072 if (!stmt || gimple_bb (stmt) == NULL)
7073 continue;
7074 if (is_pattern_stmt_p (stmt_info)
7075 || !PURE_SLP_STMT (stmt_info))
7076 continue;
7077 lhs = gimple_call_lhs (stmt);
7078 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
7079 gsi = gsi_for_stmt (stmt);
7080 vinfo->replace_stmt (&gsi, stmt_info, new_stmt);
7081 SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
7082 }
7083 }
7084
7085 static void
7086 vect_remove_slp_scalar_calls (vec_info *vinfo, slp_tree node)
7087 {
7088 hash_set<slp_tree> visited;
7089 vect_remove_slp_scalar_calls (vinfo, node, visited);
7090 }
7091
7092 /* Vectorize the instance root. */
7093
7094 void
7095 vectorize_slp_instance_root_stmt (slp_tree node, slp_instance instance)
7096 {
7097 gassign *rstmt = NULL;
7098
7099 if (instance->kind == slp_inst_kind_ctor)
7100 {
7101 if (SLP_TREE_NUMBER_OF_VEC_STMTS (node) == 1)
7102 {
7103 gimple *child_stmt;
7104 int j;
7105
7106 FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (node), j, child_stmt)
7107 {
7108 tree vect_lhs = gimple_get_lhs (child_stmt);
7109 tree root_lhs = gimple_get_lhs (instance->root_stmts[0]->stmt);
7110 if (!useless_type_conversion_p (TREE_TYPE (root_lhs),
7111 TREE_TYPE (vect_lhs)))
7112 vect_lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (root_lhs),
7113 vect_lhs);
7114 rstmt = gimple_build_assign (root_lhs, vect_lhs);
7115 break;
7116 }
7117 }
7118 else if (SLP_TREE_NUMBER_OF_VEC_STMTS (node) > 1)
7119 {
7120 int nelts = SLP_TREE_NUMBER_OF_VEC_STMTS (node);
7121 gimple *child_stmt;
7122 int j;
7123 vec<constructor_elt, va_gc> *v;
7124 vec_alloc (v, nelts);
7125
7126 FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (node), j, child_stmt)
7127 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE,
7128 gimple_get_lhs (child_stmt));
7129 tree lhs = gimple_get_lhs (instance->root_stmts[0]->stmt);
7130 tree rtype
7131 = TREE_TYPE (gimple_assign_rhs1 (instance->root_stmts[0]->stmt));
7132 tree r_constructor = build_constructor (rtype, v);
7133 rstmt = gimple_build_assign (lhs, r_constructor);
7134 }
7135 }
7136 else if (instance->kind == slp_inst_kind_bb_reduc)
7137 {
7138 /* Largely inspired by reduction chain epilogue handling in
7139 vect_create_epilog_for_reduction. */
7140 vec<tree> vec_defs = vNULL;
7141 vect_get_slp_defs (node, &vec_defs);
7142 enum tree_code reduc_code
7143 = gimple_assign_rhs_code (instance->root_stmts[0]->stmt);
7144 /* ??? We actually have to reflect signs somewhere. */
7145 if (reduc_code == MINUS_EXPR)
7146 reduc_code = PLUS_EXPR;
7147 gimple_seq epilogue = NULL;
7148 /* We may end up with more than one vector result, reduce them
7149 to one vector. */
7150 tree vec_def = vec_defs[0];
7151 for (unsigned i = 1; i < vec_defs.length (); ++i)
7152 vec_def = gimple_build (&epilogue, reduc_code, TREE_TYPE (vec_def),
7153 vec_def, vec_defs[i]);
7154 vec_defs.release ();
7155 /* ??? Support other schemes than direct internal fn. */
7156 internal_fn reduc_fn;
7157 if (!reduction_fn_for_scalar_code (reduc_code, &reduc_fn)
7158 || reduc_fn == IFN_LAST)
7159 gcc_unreachable ();
7160 tree scalar_def = gimple_build (&epilogue, as_combined_fn (reduc_fn),
7161 TREE_TYPE (TREE_TYPE (vec_def)), vec_def);
7162
7163 gimple_stmt_iterator rgsi = gsi_for_stmt (instance->root_stmts[0]->stmt);
7164 gsi_insert_seq_before (&rgsi, epilogue, GSI_SAME_STMT);
7165 gimple_assign_set_rhs_from_tree (&rgsi, scalar_def);
7166 update_stmt (gsi_stmt (rgsi));
7167 return;
7168 }
7169 else
7170 gcc_unreachable ();
7171
7172 gcc_assert (rstmt);
7173
7174 gimple_stmt_iterator rgsi = gsi_for_stmt (instance->root_stmts[0]->stmt);
7175 gsi_replace (&rgsi, rstmt, true);
7176 }
7177
7178 struct slp_scc_info
7179 {
7180 bool on_stack;
7181 int dfs;
7182 int lowlink;
7183 };
7184
7185 /* Schedule the SLP INSTANCE doing a DFS walk and collecting SCCs. */
7186
7187 static void
7188 vect_schedule_scc (vec_info *vinfo, slp_tree node, slp_instance instance,
7189 hash_map<slp_tree, slp_scc_info> &scc_info,
7190 int &maxdfs, vec<slp_tree> &stack)
7191 {
7192 bool existed_p;
7193 slp_scc_info *info = &scc_info.get_or_insert (node, &existed_p);
7194 gcc_assert (!existed_p);
7195 info->dfs = maxdfs;
7196 info->lowlink = maxdfs;
7197 maxdfs++;
7198
7199 /* Leaf. */
7200 if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
7201 {
7202 info->on_stack = false;
7203 vect_schedule_slp_node (vinfo, node, instance);
7204 return;
7205 }
7206
7207 info->on_stack = true;
7208 stack.safe_push (node);
7209
7210 unsigned i;
7211 slp_tree child;
7212 /* DFS recurse. */
7213 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
7214 {
7215 if (!child)
7216 continue;
7217 slp_scc_info *child_info = scc_info.get (child);
7218 if (!child_info)
7219 {
7220 vect_schedule_scc (vinfo, child, instance, scc_info, maxdfs, stack);
7221 /* Recursion might have re-allocated the node. */
7222 info = scc_info.get (node);
7223 child_info = scc_info.get (child);
7224 info->lowlink = MIN (info->lowlink, child_info->lowlink);
7225 }
7226 else if (child_info->on_stack)
7227 info->lowlink = MIN (info->lowlink, child_info->dfs);
7228 }
7229 if (info->lowlink != info->dfs)
7230 return;
7231
7232 auto_vec<slp_tree, 4> phis_to_fixup;
7233
7234 /* Singleton. */
7235 if (stack.last () == node)
7236 {
7237 stack.pop ();
7238 info->on_stack = false;
7239 vect_schedule_slp_node (vinfo, node, instance);
7240 if (SLP_TREE_CODE (node) != VEC_PERM_EXPR
7241 && is_a <gphi *> (SLP_TREE_REPRESENTATIVE (node)->stmt))
7242 phis_to_fixup.quick_push (node);
7243 }
7244 else
7245 {
7246 /* SCC. */
7247 int last_idx = stack.length () - 1;
7248 while (stack[last_idx] != node)
7249 last_idx--;
7250 /* We can break the cycle at PHIs who have at least one child
7251 code generated. Then we could re-start the DFS walk until
7252 all nodes in the SCC are covered (we might have new entries
7253 for only back-reachable nodes). But it's simpler to just
7254 iterate and schedule those that are ready. */
7255 unsigned todo = stack.length () - last_idx;
7256 do
7257 {
7258 for (int idx = stack.length () - 1; idx >= last_idx; --idx)
7259 {
7260 slp_tree entry = stack[idx];
7261 if (!entry)
7262 continue;
7263 bool phi = (SLP_TREE_CODE (entry) != VEC_PERM_EXPR
7264 && is_a <gphi *> (SLP_TREE_REPRESENTATIVE (entry)->stmt));
7265 bool ready = !phi;
7266 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (entry), i, child)
7267 if (!child)
7268 {
7269 gcc_assert (phi);
7270 ready = true;
7271 break;
7272 }
7273 else if (scc_info.get (child)->on_stack)
7274 {
7275 if (!phi)
7276 {
7277 ready = false;
7278 break;
7279 }
7280 }
7281 else
7282 {
7283 if (phi)
7284 {
7285 ready = true;
7286 break;
7287 }
7288 }
7289 if (ready)
7290 {
7291 vect_schedule_slp_node (vinfo, entry, instance);
7292 scc_info.get (entry)->on_stack = false;
7293 stack[idx] = NULL;
7294 todo--;
7295 if (phi)
7296 phis_to_fixup.safe_push (entry);
7297 }
7298 }
7299 }
7300 while (todo != 0);
7301
7302 /* Pop the SCC. */
7303 stack.truncate (last_idx);
7304 }
7305
7306 /* Now fixup the backedge def of the vectorized PHIs in this SCC. */
7307 slp_tree phi_node;
7308 FOR_EACH_VEC_ELT (phis_to_fixup, i, phi_node)
7309 {
7310 gphi *phi = as_a <gphi *> (SLP_TREE_REPRESENTATIVE (phi_node)->stmt);
7311 edge_iterator ei;
7312 edge e;
7313 FOR_EACH_EDGE (e, ei, gimple_bb (phi)->preds)
7314 {
7315 unsigned dest_idx = e->dest_idx;
7316 child = SLP_TREE_CHILDREN (phi_node)[dest_idx];
7317 if (!child || SLP_TREE_DEF_TYPE (child) != vect_internal_def)
7318 continue;
7319 /* Simply fill all args. */
7320 for (unsigned i = 0; i < SLP_TREE_VEC_STMTS (phi_node).length (); ++i)
7321 add_phi_arg (as_a <gphi *> (SLP_TREE_VEC_STMTS (phi_node)[i]),
7322 vect_get_slp_vect_def (child, i),
7323 e, gimple_phi_arg_location (phi, dest_idx));
7324 }
7325 }
7326 }
7327
7328 /* Generate vector code for SLP_INSTANCES in the loop/basic block. */
7329
7330 void
7331 vect_schedule_slp (vec_info *vinfo, vec<slp_instance> slp_instances)
7332 {
7333 slp_instance instance;
7334 unsigned int i;
7335
7336 hash_map<slp_tree, slp_scc_info> scc_info;
7337 int maxdfs = 0;
7338 FOR_EACH_VEC_ELT (slp_instances, i, instance)
7339 {
7340 slp_tree node = SLP_INSTANCE_TREE (instance);
7341 if (dump_enabled_p ())
7342 {
7343 dump_printf_loc (MSG_NOTE, vect_location,
7344 "Vectorizing SLP tree:\n");
7345 /* ??? Dump all? */
7346 if (!SLP_INSTANCE_ROOT_STMTS (instance).is_empty ())
7347 dump_printf_loc (MSG_NOTE, vect_location, "Root stmt: %G",
7348 SLP_INSTANCE_ROOT_STMTS (instance)[0]->stmt);
7349 vect_print_slp_graph (MSG_NOTE, vect_location,
7350 SLP_INSTANCE_TREE (instance));
7351 }
7352 /* Schedule the tree of INSTANCE, scheduling SCCs in a way to
7353 have a PHI be the node breaking the cycle. */
7354 auto_vec<slp_tree> stack;
7355 if (!scc_info.get (node))
7356 vect_schedule_scc (vinfo, node, instance, scc_info, maxdfs, stack);
7357
7358 if (!SLP_INSTANCE_ROOT_STMTS (instance).is_empty ())
7359 vectorize_slp_instance_root_stmt (node, instance);
7360
7361 if (dump_enabled_p ())
7362 dump_printf_loc (MSG_NOTE, vect_location,
7363 "vectorizing stmts using SLP.\n");
7364 }
7365
7366 FOR_EACH_VEC_ELT (slp_instances, i, instance)
7367 {
7368 slp_tree root = SLP_INSTANCE_TREE (instance);
7369 stmt_vec_info store_info;
7370 unsigned int j;
7371
7372 /* Remove scalar call stmts. Do not do this for basic-block
7373 vectorization as not all uses may be vectorized.
7374 ??? Why should this be necessary? DCE should be able to
7375 remove the stmts itself.
7376 ??? For BB vectorization we can as well remove scalar
7377 stmts starting from the SLP tree root if they have no
7378 uses. */
7379 if (is_a <loop_vec_info> (vinfo))
7380 vect_remove_slp_scalar_calls (vinfo, root);
7381
7382 /* Remove vectorized stores original scalar stmts. */
7383 for (j = 0; SLP_TREE_SCALAR_STMTS (root).iterate (j, &store_info); j++)
7384 {
7385 if (!STMT_VINFO_DATA_REF (store_info)
7386 || !DR_IS_WRITE (STMT_VINFO_DATA_REF (store_info)))
7387 break;
7388
7389 store_info = vect_orig_stmt (store_info);
7390 /* Free the attached stmt_vec_info and remove the stmt. */
7391 vinfo->remove_stmt (store_info);
7392
7393 /* Invalidate SLP_TREE_REPRESENTATIVE in case we released it
7394 to not crash in vect_free_slp_tree later. */
7395 if (SLP_TREE_REPRESENTATIVE (root) == store_info)
7396 SLP_TREE_REPRESENTATIVE (root) = NULL;
7397 }
7398 }
7399 }