]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
docs: Fix expected diagnostics URL [PR107599]
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef class _stmt_vec_info *stmt_vec_info;
25 typedef struct _slp_tree *slp_tree;
26
27 #include "tree-data-ref.h"
28 #include "tree-hash-traits.h"
29 #include "target.h"
30 #include "internal-fn.h"
31 #include "tree-ssa-operands.h"
32 #include "gimple-match.h"
33
34 /* Used for naming of new temporaries. */
35 enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
40 };
41
42 /* Defines type of operation. */
43 enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
47 };
48
49 /* Define type of available alignment support. */
50 enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
56 };
57
58 /* Define type of def-use cross-iteration cycle. */
59 enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_first_order_recurrence,
69 vect_unknown_def_type
70 };
71
72 /* Define operation type of linear/non-linear induction variable. */
73 enum vect_induction_op_type {
74 vect_step_op_add = 0,
75 vect_step_op_neg,
76 vect_step_op_mul,
77 vect_step_op_shl,
78 vect_step_op_shr
79 };
80
81 /* Define type of reduction. */
82 enum vect_reduction_type {
83 TREE_CODE_REDUCTION,
84 COND_REDUCTION,
85 INTEGER_INDUC_COND_REDUCTION,
86 CONST_COND_REDUCTION,
87
88 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
89 to implement:
90
91 for (int i = 0; i < VF; ++i)
92 res = cond[i] ? val[i] : res; */
93 EXTRACT_LAST_REDUCTION,
94
95 /* Use a folding reduction within the loop to implement:
96
97 for (int i = 0; i < VF; ++i)
98 res = res OP val[i];
99
100 (with no reassocation). */
101 FOLD_LEFT_REDUCTION
102 };
103
104 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
105 || ((D) == vect_double_reduction_def) \
106 || ((D) == vect_nested_cycle))
107
108 /* Structure to encapsulate information about a group of like
109 instructions to be presented to the target cost model. */
110 struct stmt_info_for_cost {
111 int count;
112 enum vect_cost_for_stmt kind;
113 enum vect_cost_model_location where;
114 stmt_vec_info stmt_info;
115 slp_tree node;
116 tree vectype;
117 int misalign;
118 };
119
120 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
121
122 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
123 derived from that gives the maximum known alignment for that base. */
124 typedef hash_map<tree_operand_hash,
125 std::pair<stmt_vec_info, innermost_loop_behavior *> >
126 vec_base_alignments;
127
128 /* Represents elements [START, START + LENGTH) of cyclical array OPS*
129 (i.e. OPS repeated to give at least START + LENGTH elements) */
130 struct vect_scalar_ops_slice
131 {
132 tree op (unsigned int i) const;
133 bool all_same_p () const;
134
135 vec<tree> *ops;
136 unsigned int start;
137 unsigned int length;
138 };
139
140 /* Return element I of the slice. */
141 inline tree
142 vect_scalar_ops_slice::op (unsigned int i) const
143 {
144 return (*ops)[(i + start) % ops->length ()];
145 }
146
147 /* Hash traits for vect_scalar_ops_slice. */
148 struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
149 {
150 typedef vect_scalar_ops_slice value_type;
151 typedef vect_scalar_ops_slice compare_type;
152
153 static const bool empty_zero_p = true;
154
155 static void mark_deleted (value_type &s) { s.length = ~0U; }
156 static void mark_empty (value_type &s) { s.length = 0; }
157 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
158 static bool is_empty (const value_type &s) { return s.length == 0; }
159 static hashval_t hash (const value_type &);
160 static bool equal (const value_type &, const compare_type &);
161 };
162
163 /************************************************************************
164 SLP
165 ************************************************************************/
166 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
167 typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
168 typedef vec<unsigned> load_permutation_t;
169 typedef auto_vec<unsigned, 16> auto_load_permutation_t;
170
171 /* A computation tree of an SLP instance. Each node corresponds to a group of
172 stmts to be packed in a SIMD stmt. */
173 struct _slp_tree {
174 _slp_tree ();
175 ~_slp_tree ();
176
177 /* Nodes that contain def-stmts of this node statements operands. */
178 vec<slp_tree> children;
179
180 /* A group of scalar stmts to be vectorized together. */
181 vec<stmt_vec_info> stmts;
182 /* A group of scalar operands to be vectorized together. */
183 vec<tree> ops;
184 /* The representative that should be used for analysis and
185 code generation. */
186 stmt_vec_info representative;
187
188 /* Load permutation relative to the stores, NULL if there is no
189 permutation. */
190 load_permutation_t load_permutation;
191 /* Lane permutation of the operands scalar lanes encoded as pairs
192 of { operand number, lane number }. The number of elements
193 denotes the number of output lanes. */
194 lane_permutation_t lane_permutation;
195
196 tree vectype;
197 /* Vectorized stmt/s. */
198 vec<gimple *> vec_stmts;
199 vec<tree> vec_defs;
200 /* Number of vector stmts that are created to replace the group of scalar
201 stmts. It is calculated during the transformation phase as the number of
202 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
203 divided by vector size. */
204 unsigned int vec_stmts_size;
205
206 /* Reference count in the SLP graph. */
207 unsigned int refcnt;
208 /* The maximum number of vector elements for the subtree rooted
209 at this node. */
210 poly_uint64 max_nunits;
211 /* The DEF type of this node. */
212 enum vect_def_type def_type;
213 /* The number of scalar lanes produced by this node. */
214 unsigned int lanes;
215 /* The operation of this node. */
216 enum tree_code code;
217
218 int vertex;
219
220 /* If not NULL this is a cached failed SLP discovery attempt with
221 the lanes that failed during SLP discovery as 'false'. This is
222 a copy of the matches array. */
223 bool *failed;
224
225 /* Allocate from slp_tree_pool. */
226 static void *operator new (size_t);
227
228 /* Return memory to slp_tree_pool. */
229 static void operator delete (void *, size_t);
230
231 /* Linked list of nodes to release when we free the slp_tree_pool. */
232 slp_tree next_node;
233 slp_tree prev_node;
234 };
235
236 /* The enum describes the type of operations that an SLP instance
237 can perform. */
238
239 enum slp_instance_kind {
240 slp_inst_kind_store,
241 slp_inst_kind_reduc_group,
242 slp_inst_kind_reduc_chain,
243 slp_inst_kind_bb_reduc,
244 slp_inst_kind_ctor
245 };
246
247 /* SLP instance is a sequence of stmts in a loop that can be packed into
248 SIMD stmts. */
249 typedef class _slp_instance {
250 public:
251 /* The root of SLP tree. */
252 slp_tree root;
253
254 /* For vector constructors, the constructor stmt that the SLP tree is built
255 from, NULL otherwise. */
256 vec<stmt_vec_info> root_stmts;
257
258 /* The unrolling factor required to vectorized this SLP instance. */
259 poly_uint64 unrolling_factor;
260
261 /* The group of nodes that contain loads of this SLP instance. */
262 vec<slp_tree> loads;
263
264 /* The SLP node containing the reduction PHIs. */
265 slp_tree reduc_phis;
266
267 /* Vector cost of this entry to the SLP graph. */
268 stmt_vector_for_cost cost_vec;
269
270 /* If this instance is the main entry of a subgraph the set of
271 entries into the same subgraph, including itself. */
272 vec<_slp_instance *> subgraph_entries;
273
274 /* The type of operation the SLP instance is performing. */
275 slp_instance_kind kind;
276
277 dump_user_location_t location () const;
278 } *slp_instance;
279
280
281 /* Access Functions. */
282 #define SLP_INSTANCE_TREE(S) (S)->root
283 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
284 #define SLP_INSTANCE_LOADS(S) (S)->loads
285 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
286 #define SLP_INSTANCE_KIND(S) (S)->kind
287
288 #define SLP_TREE_CHILDREN(S) (S)->children
289 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
290 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
291 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
292 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
293 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
294 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
295 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
296 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
297 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
298 #define SLP_TREE_VECTYPE(S) (S)->vectype
299 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
300 #define SLP_TREE_LANES(S) (S)->lanes
301 #define SLP_TREE_CODE(S) (S)->code
302
303 /* Key for map that records association between
304 scalar conditions and corresponding loop mask, and
305 is populated by vect_record_loop_mask. */
306
307 struct scalar_cond_masked_key
308 {
309 scalar_cond_masked_key (tree t, unsigned ncopies_)
310 : ncopies (ncopies_)
311 {
312 get_cond_ops_from_tree (t);
313 }
314
315 void get_cond_ops_from_tree (tree);
316
317 unsigned ncopies;
318 bool inverted_p;
319 tree_code code;
320 tree op0;
321 tree op1;
322 };
323
324 template<>
325 struct default_hash_traits<scalar_cond_masked_key>
326 {
327 typedef scalar_cond_masked_key compare_type;
328 typedef scalar_cond_masked_key value_type;
329
330 static inline hashval_t
331 hash (value_type v)
332 {
333 inchash::hash h;
334 h.add_int (v.code);
335 inchash::add_expr (v.op0, h, 0);
336 inchash::add_expr (v.op1, h, 0);
337 h.add_int (v.ncopies);
338 h.add_flag (v.inverted_p);
339 return h.end ();
340 }
341
342 static inline bool
343 equal (value_type existing, value_type candidate)
344 {
345 return (existing.ncopies == candidate.ncopies
346 && existing.code == candidate.code
347 && existing.inverted_p == candidate.inverted_p
348 && operand_equal_p (existing.op0, candidate.op0, 0)
349 && operand_equal_p (existing.op1, candidate.op1, 0));
350 }
351
352 static const bool empty_zero_p = true;
353
354 static inline void
355 mark_empty (value_type &v)
356 {
357 v.ncopies = 0;
358 v.inverted_p = false;
359 }
360
361 static inline bool
362 is_empty (value_type v)
363 {
364 return v.ncopies == 0;
365 }
366
367 static inline void mark_deleted (value_type &) {}
368
369 static inline bool is_deleted (const value_type &)
370 {
371 return false;
372 }
373
374 static inline void remove (value_type &) {}
375 };
376
377 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
378
379 /* Key and map that records association between vector conditions and
380 corresponding loop mask, and is populated by prepare_vec_mask. */
381
382 typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
383 typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
384
385 /* Describes two objects whose addresses must be unequal for the vectorized
386 loop to be valid. */
387 typedef std::pair<tree, tree> vec_object_pair;
388
389 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
390 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
391 class vec_lower_bound {
392 public:
393 vec_lower_bound () {}
394 vec_lower_bound (tree e, bool u, poly_uint64 m)
395 : expr (e), unsigned_p (u), min_value (m) {}
396
397 tree expr;
398 bool unsigned_p;
399 poly_uint64 min_value;
400 };
401
402 /* Vectorizer state shared between different analyses like vector sizes
403 of the same CFG region. */
404 class vec_info_shared {
405 public:
406 vec_info_shared();
407 ~vec_info_shared();
408
409 void save_datarefs();
410 void check_datarefs();
411
412 /* The number of scalar stmts. */
413 unsigned n_stmts;
414
415 /* All data references. Freed by free_data_refs, so not an auto_vec. */
416 vec<data_reference_p> datarefs;
417 vec<data_reference> datarefs_copy;
418
419 /* The loop nest in which the data dependences are computed. */
420 auto_vec<loop_p> loop_nest;
421
422 /* All data dependences. Freed by free_dependence_relations, so not
423 an auto_vec. */
424 vec<ddr_p> ddrs;
425 };
426
427 /* Vectorizer state common between loop and basic-block vectorization. */
428 class vec_info {
429 public:
430 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
431 enum vec_kind { bb, loop };
432
433 vec_info (vec_kind, vec_info_shared *);
434 ~vec_info ();
435
436 stmt_vec_info add_stmt (gimple *);
437 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
438 stmt_vec_info lookup_stmt (gimple *);
439 stmt_vec_info lookup_def (tree);
440 stmt_vec_info lookup_single_use (tree);
441 class dr_vec_info *lookup_dr (data_reference *);
442 void move_dr (stmt_vec_info, stmt_vec_info);
443 void remove_stmt (stmt_vec_info);
444 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
445 void insert_on_entry (stmt_vec_info, gimple *);
446 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
447
448 /* The type of vectorization. */
449 vec_kind kind;
450
451 /* Shared vectorizer state. */
452 vec_info_shared *shared;
453
454 /* The mapping of GIMPLE UID to stmt_vec_info. */
455 vec<stmt_vec_info> stmt_vec_infos;
456 /* Whether the above mapping is complete. */
457 bool stmt_vec_info_ro;
458
459 /* Whether we've done a transform we think OK to not update virtual
460 SSA form. */
461 bool any_known_not_updated_vssa;
462
463 /* The SLP graph. */
464 auto_vec<slp_instance> slp_instances;
465
466 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
467 known alignment for that base. */
468 vec_base_alignments base_alignments;
469
470 /* All interleaving chains of stores, represented by the first
471 stmt in the chain. */
472 auto_vec<stmt_vec_info> grouped_stores;
473
474 /* The set of vector modes used in the vectorized region. */
475 mode_set used_vector_modes;
476
477 /* The argument we should pass to related_vector_mode when looking up
478 the vector mode for a scalar mode, or VOIDmode if we haven't yet
479 made any decisions about which vector modes to use. */
480 machine_mode vector_mode;
481
482 private:
483 stmt_vec_info new_stmt_vec_info (gimple *stmt);
484 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
485 void free_stmt_vec_infos ();
486 void free_stmt_vec_info (stmt_vec_info);
487 };
488
489 class _loop_vec_info;
490 class _bb_vec_info;
491
492 template<>
493 template<>
494 inline bool
495 is_a_helper <_loop_vec_info *>::test (vec_info *i)
496 {
497 return i->kind == vec_info::loop;
498 }
499
500 template<>
501 template<>
502 inline bool
503 is_a_helper <_bb_vec_info *>::test (vec_info *i)
504 {
505 return i->kind == vec_info::bb;
506 }
507
508 /* In general, we can divide the vector statements in a vectorized loop
509 into related groups ("rgroups") and say that for each rgroup there is
510 some nS such that the rgroup operates on nS values from one scalar
511 iteration followed by nS values from the next. That is, if VF is the
512 vectorization factor of the loop, the rgroup operates on a sequence:
513
514 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
515
516 where (i,j) represents a scalar value with index j in a scalar
517 iteration with index i.
518
519 [ We use the term "rgroup" to emphasise that this grouping isn't
520 necessarily the same as the grouping of statements used elsewhere.
521 For example, if we implement a group of scalar loads using gather
522 loads, we'll use a separate gather load for each scalar load, and
523 thus each gather load will belong to its own rgroup. ]
524
525 In general this sequence will occupy nV vectors concatenated
526 together. If these vectors have nL lanes each, the total number
527 of scalar values N is given by:
528
529 N = nS * VF = nV * nL
530
531 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
532 are compile-time constants but VF and nL can be variable (if the target
533 supports variable-length vectors).
534
535 In classical vectorization, each iteration of the vector loop would
536 handle exactly VF iterations of the original scalar loop. However,
537 in vector loops that are able to operate on partial vectors, a
538 particular iteration of the vector loop might handle fewer than VF
539 iterations of the scalar loop. The vector lanes that correspond to
540 iterations of the scalar loop are said to be "active" and the other
541 lanes are said to be "inactive".
542
543 In such vector loops, many rgroups need to be controlled to ensure
544 that they have no effect for the inactive lanes. Conceptually, each
545 such rgroup needs a sequence of booleans in the same order as above,
546 but with each (i,j) replaced by a boolean that indicates whether
547 iteration i is active. This sequence occupies nV vector controls
548 that again have nL lanes each. Thus the control sequence as a whole
549 consists of VF independent booleans that are each repeated nS times.
550
551 Taking mask-based approach as a partially-populated vectors example.
552 We make the simplifying assumption that if a sequence of nV masks is
553 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
554 VIEW_CONVERTing it. This holds for all current targets that support
555 fully-masked loops. For example, suppose the scalar loop is:
556
557 float *f;
558 double *d;
559 for (int i = 0; i < n; ++i)
560 {
561 f[i * 2 + 0] += 1.0f;
562 f[i * 2 + 1] += 2.0f;
563 d[i] += 3.0;
564 }
565
566 and suppose that vectors have 256 bits. The vectorized f accesses
567 will belong to one rgroup and the vectorized d access to another:
568
569 f rgroup: nS = 2, nV = 1, nL = 8
570 d rgroup: nS = 1, nV = 1, nL = 4
571 VF = 4
572
573 [ In this simple example the rgroups do correspond to the normal
574 SLP grouping scheme. ]
575
576 If only the first three lanes are active, the masks we need are:
577
578 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
579 d rgroup: 1 | 1 | 1 | 0
580
581 Here we can use a mask calculated for f's rgroup for d's, but not
582 vice versa.
583
584 Thus for each value of nV, it is enough to provide nV masks, with the
585 mask being calculated based on the highest nL (or, equivalently, based
586 on the highest nS) required by any rgroup with that nV. We therefore
587 represent the entire collection of masks as a two-level table, with the
588 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
589 the second being indexed by the mask index 0 <= i < nV. */
590
591 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
592 according to the description above. */
593 struct rgroup_controls {
594 /* The largest nS for all rgroups that use these controls. */
595 unsigned int max_nscalars_per_iter;
596
597 /* For the largest nS recorded above, the loop controls divide each scalar
598 into FACTOR equal-sized pieces. This is useful if we need to split
599 element-based accesses into byte-based accesses. */
600 unsigned int factor;
601
602 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
603 For mask-based controls, it is the type of the masks in CONTROLS.
604 For length-based controls, it can be any vector type that has the
605 specified number of elements; the type of the elements doesn't matter. */
606 tree type;
607
608 /* A vector of nV controls, in iteration order. */
609 vec<tree> controls;
610
611 /* In case of len_load and len_store with a bias there is only one
612 rgroup. This holds the adjusted loop length for the this rgroup. */
613 tree bias_adjusted_ctrl;
614 };
615
616 typedef auto_vec<rgroup_controls> vec_loop_masks;
617
618 typedef auto_vec<rgroup_controls> vec_loop_lens;
619
620 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
621
622 /* Information about a reduction accumulator from the main loop that could
623 conceivably be reused as the input to a reduction in an epilogue loop. */
624 struct vect_reusable_accumulator {
625 /* The final value of the accumulator, which forms the input to the
626 reduction operation. */
627 tree reduc_input;
628
629 /* The stmt_vec_info that describes the reduction (i.e. the one for
630 which is_reduc_info is true). */
631 stmt_vec_info reduc_info;
632 };
633
634 /*-----------------------------------------------------------------*/
635 /* Info on vectorized loops. */
636 /*-----------------------------------------------------------------*/
637 typedef class _loop_vec_info : public vec_info {
638 public:
639 _loop_vec_info (class loop *, vec_info_shared *);
640 ~_loop_vec_info ();
641
642 /* The loop to which this info struct refers to. */
643 class loop *loop;
644
645 /* The loop basic blocks. */
646 basic_block *bbs;
647
648 /* Number of latch executions. */
649 tree num_itersm1;
650 /* Number of iterations. */
651 tree num_iters;
652 /* Number of iterations of the original loop. */
653 tree num_iters_unchanged;
654 /* Condition under which this loop is analyzed and versioned. */
655 tree num_iters_assumptions;
656
657 /* The cost of the vector code. */
658 class vector_costs *vector_costs;
659
660 /* The cost of the scalar code. */
661 class vector_costs *scalar_costs;
662
663 /* Threshold of number of iterations below which vectorization will not be
664 performed. It is calculated from MIN_PROFITABLE_ITERS and
665 param_min_vect_loop_bound. */
666 unsigned int th;
667
668 /* When applying loop versioning, the vector form should only be used
669 if the number of scalar iterations is >= this value, on top of all
670 the other requirements. Ignored when loop versioning is not being
671 used. */
672 poly_uint64 versioning_threshold;
673
674 /* Unrolling factor */
675 poly_uint64 vectorization_factor;
676
677 /* If this loop is an epilogue loop whose main loop can be skipped,
678 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
679 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
680 main loop and goes straight to this loop's preheader.
681
682 Both fields are null otherwise. */
683 edge main_loop_edge;
684 edge skip_main_loop_edge;
685
686 /* If this loop is an epilogue loop that might be skipped after executing
687 the main loop, this edge is the one that skips the epilogue. */
688 edge skip_this_loop_edge;
689
690 /* The vectorized form of a standard reduction replaces the original
691 scalar code's final result (a loop-closed SSA PHI) with the result
692 of a vector-to-scalar reduction operation. After vectorization,
693 this variable maps these vector-to-scalar results to information
694 about the reductions that generated them. */
695 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
696
697 /* The number of times that the target suggested we unroll the vector loop
698 in order to promote more ILP. This value will be used to re-analyze the
699 loop for vectorization and if successful the value will be folded into
700 vectorization_factor (and therefore exactly divides
701 vectorization_factor). */
702 unsigned int suggested_unroll_factor;
703
704 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
705 if there is no particular limit. */
706 unsigned HOST_WIDE_INT max_vectorization_factor;
707
708 /* The masks that a fully-masked loop should use to avoid operating
709 on inactive scalars. */
710 vec_loop_masks masks;
711
712 /* The lengths that a loop with length should use to avoid operating
713 on inactive scalars. */
714 vec_loop_lens lens;
715
716 /* Set of scalar conditions that have loop mask applied. */
717 scalar_cond_masked_set_type scalar_cond_masked_set;
718
719 /* Set of vector conditions that have loop mask applied. */
720 vec_cond_masked_set_type vec_cond_masked_set;
721
722 /* If we are using a loop mask to align memory addresses, this variable
723 contains the number of vector elements that we should skip in the
724 first iteration of the vector loop (i.e. the number of leading
725 elements that should be false in the first mask). */
726 tree mask_skip_niters;
727
728 /* The type that the loop control IV should be converted to before
729 testing which of the VF scalars are active and inactive.
730 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
731 tree rgroup_compare_type;
732
733 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
734 the loop should not be vectorized, if constant non-zero, simd_if_cond
735 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
736 should be versioned on that condition, using scalar loop if the condition
737 is false and vectorized loop otherwise. */
738 tree simd_if_cond;
739
740 /* The type that the vector loop control IV should have when
741 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
742 tree rgroup_iv_type;
743
744 /* Unknown DRs according to which loop was peeled. */
745 class dr_vec_info *unaligned_dr;
746
747 /* peeling_for_alignment indicates whether peeling for alignment will take
748 place, and what the peeling factor should be:
749 peeling_for_alignment = X means:
750 If X=0: Peeling for alignment will not be applied.
751 If X>0: Peel first X iterations.
752 If X=-1: Generate a runtime test to calculate the number of iterations
753 to be peeled, using the dataref recorded in the field
754 unaligned_dr. */
755 int peeling_for_alignment;
756
757 /* The mask used to check the alignment of pointers or arrays. */
758 int ptr_mask;
759
760 /* Data Dependence Relations defining address ranges that are candidates
761 for a run-time aliasing check. */
762 auto_vec<ddr_p> may_alias_ddrs;
763
764 /* Data Dependence Relations defining address ranges together with segment
765 lengths from which the run-time aliasing check is built. */
766 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
767
768 /* Check that the addresses of each pair of objects is unequal. */
769 auto_vec<vec_object_pair> check_unequal_addrs;
770
771 /* List of values that are required to be nonzero. This is used to check
772 whether things like "x[i * n] += 1;" are safe and eventually gets added
773 to the checks for lower bounds below. */
774 auto_vec<tree> check_nonzero;
775
776 /* List of values that need to be checked for a minimum value. */
777 auto_vec<vec_lower_bound> lower_bounds;
778
779 /* Statements in the loop that have data references that are candidates for a
780 runtime (loop versioning) misalignment check. */
781 auto_vec<stmt_vec_info> may_misalign_stmts;
782
783 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
784 auto_vec<stmt_vec_info> reductions;
785
786 /* All reduction chains in the loop, represented by the first
787 stmt in the chain. */
788 auto_vec<stmt_vec_info> reduction_chains;
789
790 /* Cost vector for a single scalar iteration. */
791 auto_vec<stmt_info_for_cost> scalar_cost_vec;
792
793 /* Map of IV base/step expressions to inserted name in the preheader. */
794 hash_map<tree_operand_hash, tree> *ivexpr_map;
795
796 /* Map of OpenMP "omp simd array" scan variables to corresponding
797 rhs of the store of the initializer. */
798 hash_map<tree, tree> *scan_map;
799
800 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
801 applied to the loop, i.e., no unrolling is needed, this is 1. */
802 poly_uint64 slp_unrolling_factor;
803
804 /* The factor used to over weight those statements in an inner loop
805 relative to the loop being vectorized. */
806 unsigned int inner_loop_cost_factor;
807
808 /* Is the loop vectorizable? */
809 bool vectorizable;
810
811 /* Records whether we still have the option of vectorizing this loop
812 using partially-populated vectors; in other words, whether it is
813 still possible for one iteration of the vector loop to handle
814 fewer than VF scalars. */
815 bool can_use_partial_vectors_p;
816
817 /* True if we've decided to use partially-populated vectors, so that
818 the vector loop can handle fewer than VF scalars. */
819 bool using_partial_vectors_p;
820
821 /* True if we've decided to use partially-populated vectors for the
822 epilogue of loop. */
823 bool epil_using_partial_vectors_p;
824
825 /* The bias for len_load and len_store. For now, only 0 and -1 are
826 supported. -1 must be used when a backend does not support
827 len_load/len_store with a length of zero. */
828 signed char partial_load_store_bias;
829
830 /* When we have grouped data accesses with gaps, we may introduce invalid
831 memory accesses. We peel the last iteration of the loop to prevent
832 this. */
833 bool peeling_for_gaps;
834
835 /* When the number of iterations is not a multiple of the vector size
836 we need to peel off iterations at the end to form an epilogue loop. */
837 bool peeling_for_niter;
838
839 /* True if there are no loop carried data dependencies in the loop.
840 If loop->safelen <= 1, then this is always true, either the loop
841 didn't have any loop carried data dependencies, or the loop is being
842 vectorized guarded with some runtime alias checks, or couldn't
843 be vectorized at all, but then this field shouldn't be used.
844 For loop->safelen >= 2, the user has asserted that there are no
845 backward dependencies, but there still could be loop carried forward
846 dependencies in such loops. This flag will be false if normal
847 vectorizer data dependency analysis would fail or require versioning
848 for alias, but because of loop->safelen >= 2 it has been vectorized
849 even without versioning for alias. E.g. in:
850 #pragma omp simd
851 for (int i = 0; i < m; i++)
852 a[i] = a[i + k] * c;
853 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
854 DTRT even for k > 0 && k < m, but without safelen we would not
855 vectorize this, so this field would be false. */
856 bool no_data_dependencies;
857
858 /* Mark loops having masked stores. */
859 bool has_mask_store;
860
861 /* Queued scaling factor for the scalar loop. */
862 profile_probability scalar_loop_scaling;
863
864 /* If if-conversion versioned this loop before conversion, this is the
865 loop version without if-conversion. */
866 class loop *scalar_loop;
867
868 /* For loops being epilogues of already vectorized loops
869 this points to the original vectorized loop. Otherwise NULL. */
870 _loop_vec_info *orig_loop_info;
871
872 /* Used to store loop_vec_infos of epilogues of this loop during
873 analysis. */
874 vec<_loop_vec_info *> epilogue_vinfos;
875
876 } *loop_vec_info;
877
878 /* Access Functions. */
879 #define LOOP_VINFO_LOOP(L) (L)->loop
880 #define LOOP_VINFO_BBS(L) (L)->bbs
881 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
882 #define LOOP_VINFO_NITERS(L) (L)->num_iters
883 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
884 prologue peeling retain total unchanged scalar loop iterations for
885 cost model. */
886 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
887 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
888 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
889 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
890 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
891 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
892 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
893 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
894 (L)->epil_using_partial_vectors_p
895 #define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
896 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
897 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
898 #define LOOP_VINFO_MASKS(L) (L)->masks
899 #define LOOP_VINFO_LENS(L) (L)->lens
900 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
901 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
902 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
903 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
904 #define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
905 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
906 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
907 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
908 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
909 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
910 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
911 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
912 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
913 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
914 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
915 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
916 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
917 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
918 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
919 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
920 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
921 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
922 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
923 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
924 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
925 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
926 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
927 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
928 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
929 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
930 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
931 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
932
933 #define LOOP_VINFO_FULLY_MASKED_P(L) \
934 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
935 && !LOOP_VINFO_MASKS (L).is_empty ())
936
937 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
938 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
939 && !LOOP_VINFO_LENS (L).is_empty ())
940
941 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
942 ((L)->may_misalign_stmts.length () > 0)
943 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
944 ((L)->comp_alias_ddrs.length () > 0 \
945 || (L)->check_unequal_addrs.length () > 0 \
946 || (L)->lower_bounds.length () > 0)
947 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
948 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
949 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
950 (LOOP_VINFO_SIMD_IF_COND (L))
951 #define LOOP_REQUIRES_VERSIONING(L) \
952 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
953 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
954 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
955 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
956
957 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
958 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
959
960 #define LOOP_VINFO_EPILOGUE_P(L) \
961 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
962
963 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
964 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
965
966 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
967 value signifies success, and a NULL value signifies failure, supporting
968 propagating an opt_problem * describing the failure back up the call
969 stack. */
970 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
971
972 static inline loop_vec_info
973 loop_vec_info_for_loop (class loop *loop)
974 {
975 return (loop_vec_info) loop->aux;
976 }
977
978 struct slp_root
979 {
980 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
981 vec<stmt_vec_info> roots_)
982 : kind(kind_), stmts(stmts_), roots(roots_) {}
983 slp_instance_kind kind;
984 vec<stmt_vec_info> stmts;
985 vec<stmt_vec_info> roots;
986 };
987
988 typedef class _bb_vec_info : public vec_info
989 {
990 public:
991 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
992 ~_bb_vec_info ();
993
994 /* The region we are operating on. bbs[0] is the entry, excluding
995 its PHI nodes. In the future we might want to track an explicit
996 entry edge to cover bbs[0] PHI nodes and have a region entry
997 insert location. */
998 vec<basic_block> bbs;
999
1000 vec<slp_root> roots;
1001 } *bb_vec_info;
1002
1003 #define BB_VINFO_BB(B) (B)->bb
1004 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1005 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1006 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1007 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
1008
1009 /*-----------------------------------------------------------------*/
1010 /* Info on vectorized defs. */
1011 /*-----------------------------------------------------------------*/
1012 enum stmt_vec_info_type {
1013 undef_vec_info_type = 0,
1014 load_vec_info_type,
1015 store_vec_info_type,
1016 shift_vec_info_type,
1017 op_vec_info_type,
1018 call_vec_info_type,
1019 call_simd_clone_vec_info_type,
1020 assignment_vec_info_type,
1021 condition_vec_info_type,
1022 comparison_vec_info_type,
1023 reduc_vec_info_type,
1024 induc_vec_info_type,
1025 type_promotion_vec_info_type,
1026 type_demotion_vec_info_type,
1027 type_conversion_vec_info_type,
1028 cycle_phi_info_type,
1029 lc_phi_info_type,
1030 phi_info_type,
1031 recurr_info_type,
1032 loop_exit_ctrl_vec_info_type
1033 };
1034
1035 /* Indicates whether/how a variable is used in the scope of loop/basic
1036 block. */
1037 enum vect_relevant {
1038 vect_unused_in_scope = 0,
1039
1040 /* The def is only used outside the loop. */
1041 vect_used_only_live,
1042 /* The def is in the inner loop, and the use is in the outer loop, and the
1043 use is a reduction stmt. */
1044 vect_used_in_outer_by_reduction,
1045 /* The def is in the inner loop, and the use is in the outer loop (and is
1046 not part of reduction). */
1047 vect_used_in_outer,
1048
1049 /* defs that feed computations that end up (only) in a reduction. These
1050 defs may be used by non-reduction stmts, but eventually, any
1051 computations/values that are affected by these defs are used to compute
1052 a reduction (i.e. don't get stored to memory, for example). We use this
1053 to identify computations that we can change the order in which they are
1054 computed. */
1055 vect_used_by_reduction,
1056
1057 vect_used_in_scope
1058 };
1059
1060 /* The type of vectorization that can be applied to the stmt: regular loop-based
1061 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1062 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1063 a part of SLP instance and also must be loop-based vectorized, since it has
1064 uses outside SLP sequences.
1065
1066 In the loop context the meanings of pure and hybrid SLP are slightly
1067 different. By saying that pure SLP is applied to the loop, we mean that we
1068 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1069 vectorized without doing any conceptual unrolling, cause we don't pack
1070 together stmts from different iterations, only within a single iteration.
1071 Loop hybrid SLP means that we exploit both intra-iteration and
1072 inter-iteration parallelism (e.g., number of elements in the vector is 4
1073 and the slp-group-size is 2, in which case we don't have enough parallelism
1074 within an iteration, so we obtain the rest of the parallelism from subsequent
1075 iterations by unrolling the loop by 2). */
1076 enum slp_vect_type {
1077 loop_vect = 0,
1078 pure_slp,
1079 hybrid
1080 };
1081
1082 /* Says whether a statement is a load, a store of a vectorized statement
1083 result, or a store of an invariant value. */
1084 enum vec_load_store_type {
1085 VLS_LOAD,
1086 VLS_STORE,
1087 VLS_STORE_INVARIANT
1088 };
1089
1090 /* Describes how we're going to vectorize an individual load or store,
1091 or a group of loads or stores. */
1092 enum vect_memory_access_type {
1093 /* An access to an invariant address. This is used only for loads. */
1094 VMAT_INVARIANT,
1095
1096 /* A simple contiguous access. */
1097 VMAT_CONTIGUOUS,
1098
1099 /* A contiguous access that goes down in memory rather than up,
1100 with no additional permutation. This is used only for stores
1101 of invariants. */
1102 VMAT_CONTIGUOUS_DOWN,
1103
1104 /* A simple contiguous access in which the elements need to be permuted
1105 after loading or before storing. Only used for loop vectorization;
1106 SLP uses separate permutes. */
1107 VMAT_CONTIGUOUS_PERMUTE,
1108
1109 /* A simple contiguous access in which the elements need to be reversed
1110 after loading or before storing. */
1111 VMAT_CONTIGUOUS_REVERSE,
1112
1113 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1114 VMAT_LOAD_STORE_LANES,
1115
1116 /* An access in which each scalar element is loaded or stored
1117 individually. */
1118 VMAT_ELEMENTWISE,
1119
1120 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1121 SLP accesses. Each unrolled iteration uses a contiguous load
1122 or store for the whole group, but the groups from separate iterations
1123 are combined in the same way as for VMAT_ELEMENTWISE. */
1124 VMAT_STRIDED_SLP,
1125
1126 /* The access uses gather loads or scatter stores. */
1127 VMAT_GATHER_SCATTER
1128 };
1129
1130 class dr_vec_info {
1131 public:
1132 /* The data reference itself. */
1133 data_reference *dr;
1134 /* The statement that contains the data reference. */
1135 stmt_vec_info stmt;
1136 /* The analysis group this DR belongs to when doing BB vectorization.
1137 DRs of the same group belong to the same conditional execution context. */
1138 unsigned group;
1139 /* The misalignment in bytes of the reference, or -1 if not known. */
1140 int misalignment;
1141 /* The byte alignment that we'd ideally like the reference to have,
1142 and the value that misalignment is measured against. */
1143 poly_uint64 target_alignment;
1144 /* If true the alignment of base_decl needs to be increased. */
1145 bool base_misaligned;
1146 tree base_decl;
1147
1148 /* Stores current vectorized loop's offset. To be added to the DR's
1149 offset to calculate current offset of data reference. */
1150 tree offset;
1151 };
1152
1153 typedef struct data_reference *dr_p;
1154
1155 class _stmt_vec_info {
1156 public:
1157
1158 enum stmt_vec_info_type type;
1159
1160 /* Indicates whether this stmts is part of a computation whose result is
1161 used outside the loop. */
1162 bool live;
1163
1164 /* Stmt is part of some pattern (computation idiom) */
1165 bool in_pattern_p;
1166
1167 /* True if the statement was created during pattern recognition as
1168 part of the replacement for RELATED_STMT. This implies that the
1169 statement isn't part of any basic block, although for convenience
1170 its gimple_bb is the same as for RELATED_STMT. */
1171 bool pattern_stmt_p;
1172
1173 /* Is this statement vectorizable or should it be skipped in (partial)
1174 vectorization. */
1175 bool vectorizable;
1176
1177 /* The stmt to which this info struct refers to. */
1178 gimple *stmt;
1179
1180 /* The vector type to be used for the LHS of this statement. */
1181 tree vectype;
1182
1183 /* The vectorized stmts. */
1184 vec<gimple *> vec_stmts;
1185
1186 /* The following is relevant only for stmts that contain a non-scalar
1187 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1188 at most one such data-ref. */
1189
1190 dr_vec_info dr_aux;
1191
1192 /* Information about the data-ref relative to this loop
1193 nest (the loop that is being considered for vectorization). */
1194 innermost_loop_behavior dr_wrt_vec_loop;
1195
1196 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1197 this information is still available in vect_update_ivs_after_vectorizer
1198 where we may not be able to re-analyze the PHI nodes evolution as
1199 peeling for the prologue loop can make it unanalyzable. The evolution
1200 part is still correct after peeling, but the base may have changed from
1201 the version here. */
1202 tree loop_phi_evolution_base_unchanged;
1203 tree loop_phi_evolution_part;
1204 enum vect_induction_op_type loop_phi_evolution_type;
1205
1206 /* Used for various bookkeeping purposes, generally holding a pointer to
1207 some other stmt S that is in some way "related" to this stmt.
1208 Current use of this field is:
1209 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1210 true): S is the "pattern stmt" that represents (and replaces) the
1211 sequence of stmts that constitutes the pattern. Similarly, the
1212 related_stmt of the "pattern stmt" points back to this stmt (which is
1213 the last stmt in the original sequence of stmts that constitutes the
1214 pattern). */
1215 stmt_vec_info related_stmt;
1216
1217 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1218 The sequence is attached to the original statement rather than the
1219 pattern statement. */
1220 gimple_seq pattern_def_seq;
1221
1222 /* Selected SIMD clone's function info. First vector element
1223 is SIMD clone's function decl, followed by a pair of trees (base + step)
1224 for linear arguments (pair of NULLs for other arguments). */
1225 vec<tree> simd_clone_info;
1226
1227 /* Classify the def of this stmt. */
1228 enum vect_def_type def_type;
1229
1230 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1231 enum slp_vect_type slp_type;
1232
1233 /* Interleaving and reduction chains info. */
1234 /* First element in the group. */
1235 stmt_vec_info first_element;
1236 /* Pointer to the next element in the group. */
1237 stmt_vec_info next_element;
1238 /* The size of the group. */
1239 unsigned int size;
1240 /* For stores, number of stores from this group seen. We vectorize the last
1241 one. */
1242 unsigned int store_count;
1243 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1244 is 1. */
1245 unsigned int gap;
1246
1247 /* The minimum negative dependence distance this stmt participates in
1248 or zero if none. */
1249 unsigned int min_neg_dist;
1250
1251 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1252 of the loop induction variable and computation of array indexes. relevant
1253 indicates whether the stmt needs to be vectorized. */
1254 enum vect_relevant relevant;
1255
1256 /* For loads if this is a gather, for stores if this is a scatter. */
1257 bool gather_scatter_p;
1258
1259 /* True if this is an access with loop-invariant stride. */
1260 bool strided_p;
1261
1262 /* For both loads and stores. */
1263 unsigned simd_lane_access_p : 3;
1264
1265 /* Classifies how the load or store is going to be implemented
1266 for loop vectorization. */
1267 vect_memory_access_type memory_access_type;
1268
1269 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1270 tree induc_cond_initial_val;
1271
1272 /* If not NULL the value to be added to compute final reduction value. */
1273 tree reduc_epilogue_adjustment;
1274
1275 /* On a reduction PHI the reduction type as detected by
1276 vect_is_simple_reduction and vectorizable_reduction. */
1277 enum vect_reduction_type reduc_type;
1278
1279 /* The original reduction code, to be used in the epilogue. */
1280 code_helper reduc_code;
1281 /* An internal function we should use in the epilogue. */
1282 internal_fn reduc_fn;
1283
1284 /* On a stmt participating in the reduction the index of the operand
1285 on the reduction SSA cycle. */
1286 int reduc_idx;
1287
1288 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1289 On the def returned by vect_force_simple_reduction the
1290 corresponding PHI. */
1291 stmt_vec_info reduc_def;
1292
1293 /* The vector input type relevant for reduction vectorization. */
1294 tree reduc_vectype_in;
1295
1296 /* The vector type for performing the actual reduction. */
1297 tree reduc_vectype;
1298
1299 /* If IS_REDUC_INFO is true and if the vector code is performing
1300 N scalar reductions in parallel, this variable gives the initial
1301 scalar values of those N reductions. */
1302 vec<tree> reduc_initial_values;
1303
1304 /* If IS_REDUC_INFO is true and if the vector code is performing
1305 N scalar reductions in parallel, this variable gives the vectorized code's
1306 final (scalar) result for each of those N reductions. In other words,
1307 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1308 SSA PHI for reduction number I. */
1309 vec<tree> reduc_scalar_results;
1310
1311 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1312 being performed by an epilogue loop and we have decided to reuse
1313 this accumulator from the main loop. */
1314 vect_reusable_accumulator *reused_accumulator;
1315
1316 /* Whether we force a single cycle PHI during reduction vectorization. */
1317 bool force_single_cycle;
1318
1319 /* Whether on this stmt reduction meta is recorded. */
1320 bool is_reduc_info;
1321
1322 /* If nonzero, the lhs of the statement could be truncated to this
1323 many bits without affecting any users of the result. */
1324 unsigned int min_output_precision;
1325
1326 /* If nonzero, all non-boolean input operands have the same precision,
1327 and they could each be truncated to this many bits without changing
1328 the result. */
1329 unsigned int min_input_precision;
1330
1331 /* If OPERATION_BITS is nonzero, the statement could be performed on
1332 an integer with the sign and number of bits given by OPERATION_SIGN
1333 and OPERATION_BITS without changing the result. */
1334 unsigned int operation_precision;
1335 signop operation_sign;
1336
1337 /* If the statement produces a boolean result, this value describes
1338 how we should choose the associated vector type. The possible
1339 values are:
1340
1341 - an integer precision N if we should use the vector mask type
1342 associated with N-bit integers. This is only used if all relevant
1343 input booleans also want the vector mask type for N-bit integers,
1344 or if we can convert them into that form by pattern-matching.
1345
1346 - ~0U if we considered choosing a vector mask type but decided
1347 to treat the boolean as a normal integer type instead.
1348
1349 - 0 otherwise. This means either that the operation isn't one that
1350 could have a vector mask type (and so should have a normal vector
1351 type instead) or that we simply haven't made a choice either way. */
1352 unsigned int mask_precision;
1353
1354 /* True if this is only suitable for SLP vectorization. */
1355 bool slp_vect_only_p;
1356
1357 /* True if this is a pattern that can only be handled by SLP
1358 vectorization. */
1359 bool slp_vect_pattern_only_p;
1360 };
1361
1362 /* Information about a gather/scatter call. */
1363 struct gather_scatter_info {
1364 /* The internal function to use for the gather/scatter operation,
1365 or IFN_LAST if a built-in function should be used instead. */
1366 internal_fn ifn;
1367
1368 /* The FUNCTION_DECL for the built-in gather/scatter function,
1369 or null if an internal function should be used instead. */
1370 tree decl;
1371
1372 /* The loop-invariant base value. */
1373 tree base;
1374
1375 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1376 tree offset;
1377
1378 /* Each offset element should be multiplied by this amount before
1379 being added to the base. */
1380 int scale;
1381
1382 /* The definition type for the vectorized offset. */
1383 enum vect_def_type offset_dt;
1384
1385 /* The type of the vectorized offset. */
1386 tree offset_vectype;
1387
1388 /* The type of the scalar elements after loading or before storing. */
1389 tree element_type;
1390
1391 /* The type of the scalar elements being loaded or stored. */
1392 tree memory_type;
1393 };
1394
1395 /* Access Functions. */
1396 #define STMT_VINFO_TYPE(S) (S)->type
1397 #define STMT_VINFO_STMT(S) (S)->stmt
1398 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1399 #define STMT_VINFO_LIVE_P(S) (S)->live
1400 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1401 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1402 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1403 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1404 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1405 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1406 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1407 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1408 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1409 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1410 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1411 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1412
1413 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1414 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1415 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1416 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1417 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1418 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1419 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1420 (S)->dr_wrt_vec_loop.base_misalignment
1421 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1422 (S)->dr_wrt_vec_loop.offset_alignment
1423 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1424 (S)->dr_wrt_vec_loop.step_alignment
1425
1426 #define STMT_VINFO_DR_INFO(S) \
1427 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1428
1429 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1430 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1431 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1432 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1433 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1434 #define STMT_VINFO_GROUPED_ACCESS(S) \
1435 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1436 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1437 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1438 #define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1439 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1440 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1441 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1442 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1443 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1444 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1445 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1446 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1447 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1448
1449 #define DR_GROUP_FIRST_ELEMENT(S) \
1450 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1451 #define DR_GROUP_NEXT_ELEMENT(S) \
1452 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1453 #define DR_GROUP_SIZE(S) \
1454 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1455 #define DR_GROUP_STORE_COUNT(S) \
1456 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1457 #define DR_GROUP_GAP(S) \
1458 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1459
1460 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1461 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1462 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1463 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1464 #define REDUC_GROUP_SIZE(S) \
1465 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1466
1467 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1468
1469 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1470 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1471 #define STMT_SLP_TYPE(S) (S)->slp_type
1472
1473 /* Contains the scalar or vector costs for a vec_info. */
1474 class vector_costs
1475 {
1476 public:
1477 vector_costs (vec_info *, bool);
1478 virtual ~vector_costs () {}
1479
1480 /* Update the costs in response to adding COUNT copies of a statement.
1481
1482 - WHERE specifies whether the cost occurs in the loop prologue,
1483 the loop body, or the loop epilogue.
1484 - KIND is the kind of statement, which is always meaningful.
1485 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1486 vectorized.
1487 - VECTYPE, if nonnull, is the vector type that the vectorized
1488 statement will operate on. Note that this should be used in
1489 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1490 is not correct for SLP.
1491 - for unaligned_load and unaligned_store statements, MISALIGN is
1492 the byte misalignment of the load or store relative to the target's
1493 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1494 if the misalignment is not known.
1495
1496 Return the calculated cost as well as recording it. The return
1497 value is used for dumping purposes. */
1498 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1499 stmt_vec_info stmt_info,
1500 slp_tree node,
1501 tree vectype, int misalign,
1502 vect_cost_model_location where);
1503
1504 /* Finish calculating the cost of the code. The results can be
1505 read back using the functions below.
1506
1507 If the costs describe vector code, SCALAR_COSTS gives the costs
1508 of the corresponding scalar code, otherwise it is null. */
1509 virtual void finish_cost (const vector_costs *scalar_costs);
1510
1511 /* The costs in THIS and OTHER both describe ways of vectorizing
1512 a main loop. Return true if the costs described by THIS are
1513 cheaper than the costs described by OTHER. Return false if any
1514 of the following are true:
1515
1516 - THIS and OTHER are of equal cost
1517 - OTHER is better than THIS
1518 - we can't be sure about the relative costs of THIS and OTHER. */
1519 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1520
1521 /* Likewise, but the costs in THIS and OTHER both describe ways of
1522 vectorizing an epilogue loop of MAIN_LOOP. */
1523 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1524 loop_vec_info main_loop) const;
1525
1526 unsigned int prologue_cost () const;
1527 unsigned int body_cost () const;
1528 unsigned int epilogue_cost () const;
1529 unsigned int outside_cost () const;
1530 unsigned int total_cost () const;
1531 unsigned int suggested_unroll_factor () const;
1532
1533 protected:
1534 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1535 unsigned int);
1536 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1537 unsigned int);
1538 int compare_inside_loop_cost (const vector_costs *) const;
1539 int compare_outside_loop_cost (const vector_costs *) const;
1540
1541 /* The region of code that we're considering vectorizing. */
1542 vec_info *m_vinfo;
1543
1544 /* True if we're costing the scalar code, false if we're costing
1545 the vector code. */
1546 bool m_costing_for_scalar;
1547
1548 /* The costs of the three regions, indexed by vect_cost_model_location. */
1549 unsigned int m_costs[3];
1550
1551 /* The suggested unrolling factor determined at finish_cost. */
1552 unsigned int m_suggested_unroll_factor;
1553
1554 /* True if finish_cost has been called. */
1555 bool m_finished;
1556 };
1557
1558 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1559 are for scalar code, false if they are for vector code. */
1560
1561 inline
1562 vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1563 : m_vinfo (vinfo),
1564 m_costing_for_scalar (costing_for_scalar),
1565 m_costs (),
1566 m_suggested_unroll_factor(1),
1567 m_finished (false)
1568 {
1569 }
1570
1571 /* Return the cost of the prologue code (in abstract units). */
1572
1573 inline unsigned int
1574 vector_costs::prologue_cost () const
1575 {
1576 gcc_checking_assert (m_finished);
1577 return m_costs[vect_prologue];
1578 }
1579
1580 /* Return the cost of the body code (in abstract units). */
1581
1582 inline unsigned int
1583 vector_costs::body_cost () const
1584 {
1585 gcc_checking_assert (m_finished);
1586 return m_costs[vect_body];
1587 }
1588
1589 /* Return the cost of the epilogue code (in abstract units). */
1590
1591 inline unsigned int
1592 vector_costs::epilogue_cost () const
1593 {
1594 gcc_checking_assert (m_finished);
1595 return m_costs[vect_epilogue];
1596 }
1597
1598 /* Return the cost of the prologue and epilogue code (in abstract units). */
1599
1600 inline unsigned int
1601 vector_costs::outside_cost () const
1602 {
1603 return prologue_cost () + epilogue_cost ();
1604 }
1605
1606 /* Return the cost of the prologue, body and epilogue code
1607 (in abstract units). */
1608
1609 inline unsigned int
1610 vector_costs::total_cost () const
1611 {
1612 return body_cost () + outside_cost ();
1613 }
1614
1615 /* Return the suggested unroll factor. */
1616
1617 inline unsigned int
1618 vector_costs::suggested_unroll_factor () const
1619 {
1620 gcc_checking_assert (m_finished);
1621 return m_suggested_unroll_factor;
1622 }
1623
1624 #define VECT_MAX_COST 1000
1625
1626 /* The maximum number of intermediate steps required in multi-step type
1627 conversion. */
1628 #define MAX_INTERM_CVT_STEPS 3
1629
1630 #define MAX_VECTORIZATION_FACTOR INT_MAX
1631
1632 /* Nonzero if TYPE represents a (scalar) boolean type or type
1633 in the middle-end compatible with it (unsigned precision 1 integral
1634 types). Used to determine which types should be vectorized as
1635 VECTOR_BOOLEAN_TYPE_P. */
1636
1637 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1638 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1639 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1640 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1641 && TYPE_PRECISION (TYPE) == 1 \
1642 && TYPE_UNSIGNED (TYPE)))
1643
1644 static inline bool
1645 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1646 {
1647 return (loop->inner
1648 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1649 }
1650
1651 /* PHI is either a scalar reduction phi or a scalar induction phi.
1652 Return the initial value of the variable on entry to the containing
1653 loop. */
1654
1655 static inline tree
1656 vect_phi_initial_value (gphi *phi)
1657 {
1658 basic_block bb = gimple_bb (phi);
1659 edge pe = loop_preheader_edge (bb->loop_father);
1660 gcc_assert (pe->dest == bb);
1661 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1662 }
1663
1664 /* Return true if STMT_INFO should produce a vector mask type rather than
1665 a normal nonmask type. */
1666
1667 static inline bool
1668 vect_use_mask_type_p (stmt_vec_info stmt_info)
1669 {
1670 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1671 }
1672
1673 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1674 pattern. */
1675
1676 static inline bool
1677 is_pattern_stmt_p (stmt_vec_info stmt_info)
1678 {
1679 return stmt_info->pattern_stmt_p;
1680 }
1681
1682 /* If STMT_INFO is a pattern statement, return the statement that it
1683 replaces, otherwise return STMT_INFO itself. */
1684
1685 inline stmt_vec_info
1686 vect_orig_stmt (stmt_vec_info stmt_info)
1687 {
1688 if (is_pattern_stmt_p (stmt_info))
1689 return STMT_VINFO_RELATED_STMT (stmt_info);
1690 return stmt_info;
1691 }
1692
1693 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1694
1695 static inline stmt_vec_info
1696 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1697 {
1698 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1699 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1700 return stmt1_info;
1701 else
1702 return stmt2_info;
1703 }
1704
1705 /* If STMT_INFO has been replaced by a pattern statement, return the
1706 replacement statement, otherwise return STMT_INFO itself. */
1707
1708 inline stmt_vec_info
1709 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1710 {
1711 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1712 return STMT_VINFO_RELATED_STMT (stmt_info);
1713 return stmt_info;
1714 }
1715
1716 /* Return true if BB is a loop header. */
1717
1718 static inline bool
1719 is_loop_header_bb_p (basic_block bb)
1720 {
1721 if (bb == (bb->loop_father)->header)
1722 return true;
1723 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1724 return false;
1725 }
1726
1727 /* Return pow2 (X). */
1728
1729 static inline int
1730 vect_pow2 (int x)
1731 {
1732 int i, res = 1;
1733
1734 for (i = 0; i < x; i++)
1735 res *= 2;
1736
1737 return res;
1738 }
1739
1740 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1741
1742 static inline int
1743 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1744 tree vectype, int misalign)
1745 {
1746 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1747 vectype, misalign);
1748 }
1749
1750 /* Get cost by calling cost target builtin. */
1751
1752 static inline
1753 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1754 {
1755 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1756 }
1757
1758 /* Alias targetm.vectorize.init_cost. */
1759
1760 static inline vector_costs *
1761 init_cost (vec_info *vinfo, bool costing_for_scalar)
1762 {
1763 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1764 }
1765
1766 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1767 stmt_vec_info, slp_tree, tree, int, unsigned,
1768 enum vect_cost_model_location);
1769
1770 /* Alias targetm.vectorize.add_stmt_cost. */
1771
1772 static inline unsigned
1773 add_stmt_cost (vector_costs *costs, int count,
1774 enum vect_cost_for_stmt kind,
1775 stmt_vec_info stmt_info, slp_tree node,
1776 tree vectype, int misalign,
1777 enum vect_cost_model_location where)
1778 {
1779 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1780 misalign, where);
1781 if (dump_file && (dump_flags & TDF_DETAILS))
1782 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1783 cost, where);
1784 return cost;
1785 }
1786
1787 static inline unsigned
1788 add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1789 enum vect_cost_model_location where)
1790 {
1791 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1792 || kind == scalar_stmt);
1793 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, 0, where);
1794 }
1795
1796 /* Alias targetm.vectorize.add_stmt_cost. */
1797
1798 static inline unsigned
1799 add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1800 {
1801 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info, i->node,
1802 i->vectype, i->misalign, i->where);
1803 }
1804
1805 /* Alias targetm.vectorize.finish_cost. */
1806
1807 static inline void
1808 finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1809 unsigned *prologue_cost, unsigned *body_cost,
1810 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1811 {
1812 costs->finish_cost (scalar_costs);
1813 *prologue_cost = costs->prologue_cost ();
1814 *body_cost = costs->body_cost ();
1815 *epilogue_cost = costs->epilogue_cost ();
1816 if (suggested_unroll_factor)
1817 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1818 }
1819
1820 inline void
1821 add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1822 {
1823 stmt_info_for_cost *cost;
1824 unsigned i;
1825 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1826 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1827 cost->node, cost->vectype, cost->misalign, cost->where);
1828 }
1829
1830 /*-----------------------------------------------------------------*/
1831 /* Info on data references alignment. */
1832 /*-----------------------------------------------------------------*/
1833 #define DR_MISALIGNMENT_UNKNOWN (-1)
1834 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1835
1836 inline void
1837 set_dr_misalignment (dr_vec_info *dr_info, int val)
1838 {
1839 dr_info->misalignment = val;
1840 }
1841
1842 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1843 poly_int64 offset = 0);
1844
1845 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1846
1847 /* Only defined once DR_MISALIGNMENT is defined. */
1848 static inline const poly_uint64
1849 dr_target_alignment (dr_vec_info *dr_info)
1850 {
1851 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1852 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1853 return dr_info->target_alignment;
1854 }
1855 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1856
1857 static inline void
1858 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1859 {
1860 dr_info->target_alignment = val;
1861 }
1862 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1863
1864 /* Return true if data access DR_INFO is aligned to the targets
1865 preferred alignment for VECTYPE (which may be less than a full vector). */
1866
1867 static inline bool
1868 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1869 {
1870 return (dr_misalignment (dr_info, vectype) == 0);
1871 }
1872
1873 /* Return TRUE if the (mis-)alignment of the data access is known with
1874 respect to the targets preferred alignment for VECTYPE, and FALSE
1875 otherwise. */
1876
1877 static inline bool
1878 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1879 {
1880 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1881 }
1882
1883 /* Return the minimum alignment in bytes that the vectorized version
1884 of DR_INFO is guaranteed to have. */
1885
1886 static inline unsigned int
1887 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1888 {
1889 int misalignment = dr_misalignment (dr_info, vectype);
1890 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1891 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1892 else if (misalignment == 0)
1893 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1894 return misalignment & -misalignment;
1895 }
1896
1897 /* Return the behavior of DR_INFO with respect to the vectorization context
1898 (which for outer loop vectorization might not be the behavior recorded
1899 in DR_INFO itself). */
1900
1901 static inline innermost_loop_behavior *
1902 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1903 {
1904 stmt_vec_info stmt_info = dr_info->stmt;
1905 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1906 if (loop_vinfo == NULL
1907 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1908 return &DR_INNERMOST (dr_info->dr);
1909 else
1910 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1911 }
1912
1913 /* Return the offset calculated by adding the offset of this DR_INFO to the
1914 corresponding data_reference's offset. If CHECK_OUTER then use
1915 vect_dr_behavior to select the appropriate data_reference to use. */
1916
1917 inline tree
1918 get_dr_vinfo_offset (vec_info *vinfo,
1919 dr_vec_info *dr_info, bool check_outer = false)
1920 {
1921 innermost_loop_behavior *base;
1922 if (check_outer)
1923 base = vect_dr_behavior (vinfo, dr_info);
1924 else
1925 base = &dr_info->dr->innermost;
1926
1927 tree offset = base->offset;
1928
1929 if (!dr_info->offset)
1930 return offset;
1931
1932 offset = fold_convert (sizetype, offset);
1933 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1934 dr_info->offset);
1935 }
1936
1937
1938 /* Return the vect cost model for LOOP. */
1939 static inline enum vect_cost_model
1940 loop_cost_model (loop_p loop)
1941 {
1942 if (loop != NULL
1943 && loop->force_vectorize
1944 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1945 return flag_simd_cost_model;
1946 return flag_vect_cost_model;
1947 }
1948
1949 /* Return true if the vect cost model is unlimited. */
1950 static inline bool
1951 unlimited_cost_model (loop_p loop)
1952 {
1953 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
1954 }
1955
1956 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1957 if the first iteration should use a partial mask in order to achieve
1958 alignment. */
1959
1960 static inline bool
1961 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1962 {
1963 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1964 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1965 }
1966
1967 /* Return the number of vectors of type VECTYPE that are needed to get
1968 NUNITS elements. NUNITS should be based on the vectorization factor,
1969 so it is always a known multiple of the number of elements in VECTYPE. */
1970
1971 static inline unsigned int
1972 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1973 {
1974 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1975 }
1976
1977 /* Return the number of copies needed for loop vectorization when
1978 a statement operates on vectors of type VECTYPE. This is the
1979 vectorization factor divided by the number of elements in
1980 VECTYPE and is always known at compile time. */
1981
1982 static inline unsigned int
1983 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1984 {
1985 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1986 }
1987
1988 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1989 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1990
1991 static inline void
1992 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1993 {
1994 /* All unit counts have the form vec_info::vector_size * X for some
1995 rational X, so two unit sizes must have a common multiple.
1996 Everything is a multiple of the initial value of 1. */
1997 *max_nunits = force_common_multiple (*max_nunits, nunits);
1998 }
1999
2000 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2001 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2002 if we haven't yet recorded any vector types. */
2003
2004 static inline void
2005 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2006 {
2007 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
2008 }
2009
2010 /* Return the vectorization factor that should be used for costing
2011 purposes while vectorizing the loop described by LOOP_VINFO.
2012 Pick a reasonable estimate if the vectorization factor isn't
2013 known at compile time. */
2014
2015 static inline unsigned int
2016 vect_vf_for_cost (loop_vec_info loop_vinfo)
2017 {
2018 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2019 }
2020
2021 /* Estimate the number of elements in VEC_TYPE for costing purposes.
2022 Pick a reasonable estimate if the exact number isn't known at
2023 compile time. */
2024
2025 static inline unsigned int
2026 vect_nunits_for_cost (tree vec_type)
2027 {
2028 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
2029 }
2030
2031 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
2032
2033 static inline unsigned HOST_WIDE_INT
2034 vect_max_vf (loop_vec_info loop_vinfo)
2035 {
2036 unsigned HOST_WIDE_INT vf;
2037 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
2038 return vf;
2039 return MAX_VECTORIZATION_FACTOR;
2040 }
2041
2042 /* Return the size of the value accessed by unvectorized data reference
2043 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2044 for the associated gimple statement, since that guarantees that DR_INFO
2045 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2046 here includes things like V1SI, which can be vectorized in the same way
2047 as a plain SI.) */
2048
2049 inline unsigned int
2050 vect_get_scalar_dr_size (dr_vec_info *dr_info)
2051 {
2052 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2053 }
2054
2055 /* Return true if LOOP_VINFO requires a runtime check for whether the
2056 vector loop is profitable. */
2057
2058 inline bool
2059 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2060 {
2061 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2062 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2063 && th >= vect_vf_for_cost (loop_vinfo));
2064 }
2065
2066 /* Source location + hotness information. */
2067 extern dump_user_location_t vect_location;
2068
2069 /* A macro for calling:
2070 dump_begin_scope (MSG, vect_location);
2071 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2072 and then calling
2073 dump_end_scope ();
2074 once the object goes out of scope, thus capturing the nesting of
2075 the scopes.
2076
2077 These scopes affect dump messages within them: dump messages at the
2078 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2079 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2080
2081 #define DUMP_VECT_SCOPE(MSG) \
2082 AUTO_DUMP_SCOPE (MSG, vect_location)
2083
2084 /* A sentinel class for ensuring that the "vect_location" global gets
2085 reset at the end of a scope.
2086
2087 The "vect_location" global is used during dumping and contains a
2088 location_t, which could contain references to a tree block via the
2089 ad-hoc data. This data is used for tracking inlining information,
2090 but it's not a GC root; it's simply assumed that such locations never
2091 get accessed if the blocks are optimized away.
2092
2093 Hence we need to ensure that such locations are purged at the end
2094 of any operations using them (e.g. via this class). */
2095
2096 class auto_purge_vect_location
2097 {
2098 public:
2099 ~auto_purge_vect_location ();
2100 };
2101
2102 /*-----------------------------------------------------------------*/
2103 /* Function prototypes. */
2104 /*-----------------------------------------------------------------*/
2105
2106 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
2107 in tree-vect-loop-manip.cc. */
2108 extern void vect_set_loop_condition (class loop *, loop_vec_info,
2109 tree, tree, tree, bool);
2110 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
2111 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
2112 class loop *, edge);
2113 class loop *vect_loop_versioning (loop_vec_info, gimple *);
2114 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2115 tree *, tree *, tree *, int, bool, bool,
2116 tree *);
2117 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2118 extern void vect_prepare_for_masked_peels (loop_vec_info);
2119 extern dump_user_location_t find_loop_location (class loop *);
2120 extern bool vect_can_advance_ivs_p (loop_vec_info);
2121 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2122
2123 /* In tree-vect-stmts.cc. */
2124 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2125 poly_uint64 = 0);
2126 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2127 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2128 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2129 extern tree get_same_sized_vectype (tree, tree);
2130 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2131 extern bool vect_get_loop_mask_type (loop_vec_info);
2132 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2133 stmt_vec_info * = NULL, gimple ** = NULL);
2134 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2135 tree *, stmt_vec_info * = NULL,
2136 gimple ** = NULL);
2137 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2138 unsigned, tree *, slp_tree *,
2139 enum vect_def_type *,
2140 tree *, stmt_vec_info * = NULL);
2141 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2142 extern bool supportable_widening_operation (vec_info *,
2143 enum tree_code, stmt_vec_info,
2144 tree, tree, enum tree_code *,
2145 enum tree_code *, int *,
2146 vec<tree> *);
2147 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
2148 enum tree_code *, int *,
2149 vec<tree> *);
2150
2151 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2152 enum vect_cost_for_stmt, stmt_vec_info,
2153 tree, int, enum vect_cost_model_location);
2154 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2155 enum vect_cost_for_stmt, slp_tree,
2156 tree, int, enum vect_cost_model_location);
2157 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2158 enum vect_cost_for_stmt,
2159 enum vect_cost_model_location);
2160
2161 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2162
2163 static inline unsigned
2164 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2165 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2166 int misalign, enum vect_cost_model_location where)
2167 {
2168 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2169 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2170 }
2171
2172 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2173 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2174 gimple_stmt_iterator *);
2175 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2176 extern tree vect_get_store_rhs (stmt_vec_info);
2177 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2178 tree op, vec<tree> *, tree = NULL);
2179 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2180 tree, vec<tree> *,
2181 tree = NULL, vec<tree> * = NULL,
2182 tree = NULL, vec<tree> * = NULL,
2183 tree = NULL, vec<tree> * = NULL);
2184 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2185 tree, vec<tree> *, tree,
2186 tree = NULL, vec<tree> * = NULL, tree = NULL,
2187 tree = NULL, vec<tree> * = NULL, tree = NULL,
2188 tree = NULL, vec<tree> * = NULL, tree = NULL);
2189 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2190 gimple_stmt_iterator *);
2191 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2192 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2193 gimple_stmt_iterator *,
2194 slp_tree, slp_instance);
2195 extern void vect_remove_stores (vec_info *, stmt_vec_info);
2196 extern bool vect_nop_conversion_p (stmt_vec_info);
2197 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2198 slp_tree,
2199 slp_instance, stmt_vector_for_cost *);
2200 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2201 dr_alignment_support, int, bool,
2202 unsigned int *, unsigned int *,
2203 stmt_vector_for_cost *,
2204 stmt_vector_for_cost *, bool);
2205 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2206 dr_alignment_support, int,
2207 unsigned int *, stmt_vector_for_cost *);
2208 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2209 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2210 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2211 extern void optimize_mask_stores (class loop*);
2212 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2213 const char * = nullptr);
2214 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2215 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2216 stmt_vec_info, tree *,
2217 tree *, unsigned int = 0);
2218 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2219
2220 /* In tree-vect-data-refs.cc. */
2221 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2222 extern enum dr_alignment_support vect_supportable_dr_alignment
2223 (vec_info *, dr_vec_info *, tree, int);
2224 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2225 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2226 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2227 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2228 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2229 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2230 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2231 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2232 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2233 tree, int, internal_fn *, tree *);
2234 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2235 gather_scatter_info *);
2236 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2237 vec<data_reference_p> *,
2238 vec<int> *, int);
2239 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2240 extern void vect_record_base_alignments (vec_info *);
2241 extern tree vect_create_data_ref_ptr (vec_info *,
2242 stmt_vec_info, tree, class loop *, tree,
2243 tree *, gimple_stmt_iterator *,
2244 gimple **, bool,
2245 tree = NULL_TREE);
2246 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2247 stmt_vec_info, tree);
2248 extern void vect_copy_ref_info (tree, tree);
2249 extern tree vect_create_destination_var (tree, tree);
2250 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2251 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2252 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2253 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2254 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2255 unsigned int, stmt_vec_info,
2256 gimple_stmt_iterator *, vec<tree> *);
2257 extern tree vect_setup_realignment (vec_info *,
2258 stmt_vec_info, gimple_stmt_iterator *,
2259 tree *, enum dr_alignment_support, tree,
2260 class loop **);
2261 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2262 int, gimple_stmt_iterator *);
2263 extern void vect_record_grouped_load_vectors (vec_info *,
2264 stmt_vec_info, vec<tree>);
2265 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2266 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2267 const char * = NULL);
2268 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2269 stmt_vec_info, gimple_seq *,
2270 tree);
2271
2272 /* In tree-vect-loop.cc. */
2273 extern tree neutral_op_for_reduction (tree, code_helper, tree);
2274 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2275 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2276 /* Used in tree-vect-loop-manip.cc */
2277 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2278 bool);
2279 /* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2280 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2281 enum tree_code);
2282 extern bool needs_fold_left_reduction_p (tree, code_helper);
2283 /* Drive for loop analysis stage. */
2284 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2285 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2286 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2287 tree *, bool);
2288 extern tree vect_halve_mask_nunits (tree, machine_mode);
2289 extern tree vect_double_mask_nunits (tree, machine_mode);
2290 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2291 unsigned int, tree, tree);
2292 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
2293 unsigned int, tree, unsigned int);
2294 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2295 tree, unsigned int);
2296 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2297 unsigned int);
2298 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2299 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2300 extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2301
2302 /* Drive for loop transformation stage. */
2303 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2304 struct vect_loop_form_info
2305 {
2306 tree number_of_iterations;
2307 tree number_of_iterationsm1;
2308 tree assumptions;
2309 gcond *loop_cond;
2310 gcond *inner_loop_cond;
2311 };
2312 extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2313 extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2314 const vect_loop_form_info *,
2315 loop_vec_info = nullptr);
2316 extern bool vectorizable_live_operation (vec_info *,
2317 stmt_vec_info, gimple_stmt_iterator *,
2318 slp_tree, slp_instance, int,
2319 bool, stmt_vector_for_cost *);
2320 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2321 slp_tree, slp_instance,
2322 stmt_vector_for_cost *);
2323 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2324 gimple **, slp_tree,
2325 stmt_vector_for_cost *);
2326 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2327 gimple_stmt_iterator *,
2328 gimple **, slp_tree);
2329 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2330 gimple **,
2331 slp_tree, slp_instance);
2332 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2333 gimple **, slp_tree);
2334 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2335 stmt_vector_for_cost *);
2336 extern bool vectorizable_recurr (loop_vec_info, stmt_vec_info,
2337 gimple **, slp_tree, stmt_vector_for_cost *);
2338 extern bool vect_emulated_vector_p (tree);
2339 extern bool vect_can_vectorize_without_simd_p (tree_code);
2340 extern bool vect_can_vectorize_without_simd_p (code_helper);
2341 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2342 stmt_vector_for_cost *,
2343 stmt_vector_for_cost *,
2344 stmt_vector_for_cost *);
2345 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2346
2347 /* Nonlinear induction. */
2348 extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2349 tree, enum vect_induction_op_type);
2350 extern bool
2351 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
2352 enum vect_induction_op_type induction_type);
2353
2354 /* In tree-vect-slp.cc. */
2355 extern void vect_slp_init (void);
2356 extern void vect_slp_fini (void);
2357 extern void vect_free_slp_instance (slp_instance);
2358 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2359 gimple_stmt_iterator *, poly_uint64,
2360 bool, unsigned *,
2361 unsigned * = nullptr, bool = false);
2362 extern bool vect_slp_analyze_operations (vec_info *);
2363 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2364 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2365 extern bool vect_make_slp_decision (loop_vec_info);
2366 extern void vect_detect_hybrid_slp (loop_vec_info);
2367 extern void vect_optimize_slp (vec_info *);
2368 extern void vect_gather_slp_loads (vec_info *);
2369 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2370 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2371 unsigned n = -1U);
2372 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2373 extern bool vect_slp_function (function *);
2374 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2375 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2376 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2377 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2378 unsigned int * = NULL,
2379 tree * = NULL, tree * = NULL);
2380 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2381 const vec<tree> &, unsigned int, vec<tree> &);
2382 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2383 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2384 extern void vect_free_slp_tree (slp_tree);
2385 extern bool compatible_calls_p (gcall *, gcall *);
2386
2387 /* In tree-vect-patterns.cc. */
2388 extern void
2389 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2390
2391 /* Pattern recognition functions.
2392 Additional pattern recognition functions can (and will) be added
2393 in the future. */
2394 void vect_pattern_recog (vec_info *);
2395
2396 /* In tree-vectorizer.cc. */
2397 unsigned vectorize_loops (void);
2398 void vect_free_loop_info_assumptions (class loop *);
2399 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2400 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2401
2402 /* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2403
2404 /* Forward declaration of possible two operands operation that can be matched
2405 by the complex numbers pattern matchers. */
2406 enum _complex_operation : unsigned;
2407
2408 /* All possible load permute values that could result from the partial data-flow
2409 analysis. */
2410 typedef enum _complex_perm_kinds {
2411 PERM_UNKNOWN,
2412 PERM_EVENODD,
2413 PERM_ODDEVEN,
2414 PERM_ODDODD,
2415 PERM_EVENEVEN,
2416 /* Can be combined with any other PERM values. */
2417 PERM_TOP
2418 } complex_perm_kinds_t;
2419
2420 /* Cache from nodes to the load permutation they represent. */
2421 typedef hash_map <slp_tree, complex_perm_kinds_t>
2422 slp_tree_to_load_perm_map_t;
2423
2424 /* Cache from nodes pair to being compatible or not. */
2425 typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2426 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2427 typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2428
2429
2430 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2431 from this type. */
2432
2433 class vect_pattern
2434 {
2435 protected:
2436 /* The number of arguments that the IFN requires. */
2437 unsigned m_num_args;
2438
2439 /* The internal function that will be used when a pattern is created. */
2440 internal_fn m_ifn;
2441
2442 /* The current node being inspected. */
2443 slp_tree *m_node;
2444
2445 /* The list of operands to be the children for the node produced when the
2446 internal function is created. */
2447 vec<slp_tree> m_ops;
2448
2449 /* Default constructor where NODE is the root of the tree to inspect. */
2450 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2451 {
2452 this->m_ifn = ifn;
2453 this->m_node = node;
2454 this->m_ops.create (0);
2455 if (m_ops)
2456 this->m_ops.safe_splice (*m_ops);
2457 }
2458
2459 public:
2460
2461 /* Create a new instance of the pattern matcher class of the given type. */
2462 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2463 slp_compat_nodes_map_t *, slp_tree *);
2464
2465 /* Build the pattern from the data collected so far. */
2466 virtual void build (vec_info *) = 0;
2467
2468 /* Default destructor. */
2469 virtual ~vect_pattern ()
2470 {
2471 this->m_ops.release ();
2472 }
2473 };
2474
2475 /* Function pointer to create a new pattern matcher from a generic type. */
2476 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2477 slp_compat_nodes_map_t *,
2478 slp_tree *);
2479
2480 /* List of supported pattern matchers. */
2481 extern vect_pattern_decl_t slp_patterns[];
2482
2483 /* Number of supported pattern matchers. */
2484 extern size_t num__slp_patterns;
2485
2486 /* ----------------------------------------------------------------------
2487 Target support routines
2488 -----------------------------------------------------------------------
2489 The following routines are provided to simplify costing decisions in
2490 target code. Please add more as needed. */
2491
2492 /* Return true if an operaton of kind KIND for STMT_INFO represents
2493 the extraction of an element from a vector in preparation for
2494 storing the element to memory. */
2495 inline bool
2496 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2497 {
2498 return (kind == vec_to_scalar
2499 && STMT_VINFO_DATA_REF (stmt_info)
2500 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2501 }
2502
2503 /* Return true if STMT_INFO represents part of a reduction. */
2504 inline bool
2505 vect_is_reduction (stmt_vec_info stmt_info)
2506 {
2507 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2508 }
2509
2510 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2511 of the reduction it describes, otherwise return -1. */
2512 inline int
2513 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2514 {
2515 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2516 if (STMT_VINFO_REDUC_DEF (stmt_info))
2517 {
2518 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2519 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2520 }
2521 return -1;
2522 }
2523
2524 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2525 scalar type of the values being compared. Return null otherwise. */
2526 inline tree
2527 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2528 {
2529 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2530 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2531 {
2532 tree cond = gimple_assign_rhs1 (assign);
2533 if (COMPARISON_CLASS_P (cond))
2534 return TREE_TYPE (TREE_OPERAND (cond, 0));
2535 }
2536 return NULL_TREE;
2537 }
2538
2539 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2540 scalar type of the values being compared. Return null otherwise. */
2541 inline tree
2542 vect_comparison_type (stmt_vec_info stmt_info)
2543 {
2544 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2545 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2546 return TREE_TYPE (gimple_assign_rhs1 (assign));
2547 return vect_embedded_comparison_type (stmt_info);
2548 }
2549
2550 /* Return true if STMT_INFO extends the result of a load. */
2551 inline bool
2552 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2553 {
2554 /* Although this is quite large for an inline function, this part
2555 at least should be inline. */
2556 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2557 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2558 return false;
2559
2560 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2561 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2562 tree rhs_type = TREE_TYPE (rhs);
2563 if (!INTEGRAL_TYPE_P (lhs_type)
2564 || !INTEGRAL_TYPE_P (rhs_type)
2565 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2566 return false;
2567
2568 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2569 return (def_stmt_info
2570 && STMT_VINFO_DATA_REF (def_stmt_info)
2571 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2572 }
2573
2574 /* Return true if STMT_INFO is an integer truncation. */
2575 inline bool
2576 vect_is_integer_truncation (stmt_vec_info stmt_info)
2577 {
2578 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2579 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2580 return false;
2581
2582 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2583 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2584 return (INTEGRAL_TYPE_P (lhs_type)
2585 && INTEGRAL_TYPE_P (rhs_type)
2586 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2587 }
2588
2589 #endif /* GCC_TREE_VECTORIZER_H */