]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef class _stmt_vec_info *stmt_vec_info;
25
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include <utility>
30
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
37 };
38
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
44 };
45
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
53 };
54
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
66 };
67
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
74
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
77
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
81
82 /* Use a folding reduction within the loop to implement:
83
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
86
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
89 };
90
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
94
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 int misalign;
103 };
104
105 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
106
107 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
108 known alignment for that base. */
109 typedef hash_map<tree_operand_hash,
110 innermost_loop_behavior *> vec_base_alignments;
111
112 /************************************************************************
113 SLP
114 ************************************************************************/
115 typedef struct _slp_tree *slp_tree;
116
117 /* A computation tree of an SLP instance. Each node corresponds to a group of
118 stmts to be packed in a SIMD stmt. */
119 struct _slp_tree {
120 /* Nodes that contain def-stmts of this node statements operands. */
121 vec<slp_tree> children;
122 /* A group of scalar stmts to be vectorized together. */
123 vec<stmt_vec_info> stmts;
124 /* A group of scalar operands to be vectorized together. */
125 vec<tree> ops;
126 /* Load permutation relative to the stores, NULL if there is no
127 permutation. */
128 vec<unsigned> load_permutation;
129 /* Vectorized stmt/s. */
130 vec<stmt_vec_info> vec_stmts;
131 /* Number of vector stmts that are created to replace the group of scalar
132 stmts. It is calculated during the transformation phase as the number of
133 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
134 divided by vector size. */
135 unsigned int vec_stmts_size;
136 /* Reference count in the SLP graph. */
137 unsigned int refcnt;
138 /* The maximum number of vector elements for the subtree rooted
139 at this node. */
140 poly_uint64 max_nunits;
141 /* Whether the scalar computations use two different operators. */
142 bool two_operators;
143 /* The DEF type of this node. */
144 enum vect_def_type def_type;
145 };
146
147
148 /* SLP instance is a sequence of stmts in a loop that can be packed into
149 SIMD stmts. */
150 typedef class _slp_instance {
151 public:
152 /* The root of SLP tree. */
153 slp_tree root;
154
155 /* For vector constructors, the constructor stmt that the SLP tree is built
156 from, NULL otherwise. */
157 stmt_vec_info root_stmt;
158
159 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
160 unsigned int group_size;
161
162 /* The unrolling factor required to vectorized this SLP instance. */
163 poly_uint64 unrolling_factor;
164
165 /* The group of nodes that contain loads of this SLP instance. */
166 vec<slp_tree> loads;
167
168 /* The SLP node containing the reduction PHIs. */
169 slp_tree reduc_phis;
170 } *slp_instance;
171
172
173 /* Access Functions. */
174 #define SLP_INSTANCE_TREE(S) (S)->root
175 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
176 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
177 #define SLP_INSTANCE_LOADS(S) (S)->loads
178 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
179
180 #define SLP_TREE_CHILDREN(S) (S)->children
181 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
182 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
183 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
184 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
185 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
186 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
187 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
188
189 /* Key for map that records association between
190 scalar conditions and corresponding loop mask, and
191 is populated by vect_record_loop_mask. */
192
193 struct scalar_cond_masked_key
194 {
195 scalar_cond_masked_key (tree t, unsigned ncopies_)
196 : ncopies (ncopies_)
197 {
198 get_cond_ops_from_tree (t);
199 }
200
201 void get_cond_ops_from_tree (tree);
202
203 unsigned ncopies;
204 tree_code code;
205 tree op0;
206 tree op1;
207 };
208
209 template<>
210 struct default_hash_traits<scalar_cond_masked_key>
211 {
212 typedef scalar_cond_masked_key compare_type;
213 typedef scalar_cond_masked_key value_type;
214
215 static inline hashval_t
216 hash (value_type v)
217 {
218 inchash::hash h;
219 h.add_int (v.code);
220 inchash::add_expr (v.op0, h, 0);
221 inchash::add_expr (v.op1, h, 0);
222 h.add_int (v.ncopies);
223 return h.end ();
224 }
225
226 static inline bool
227 equal (value_type existing, value_type candidate)
228 {
229 return (existing.ncopies == candidate.ncopies
230 && existing.code == candidate.code
231 && operand_equal_p (existing.op0, candidate.op0, 0)
232 && operand_equal_p (existing.op1, candidate.op1, 0));
233 }
234
235 static inline void
236 mark_empty (value_type &v)
237 {
238 v.ncopies = 0;
239 }
240
241 static inline bool
242 is_empty (value_type v)
243 {
244 return v.ncopies == 0;
245 }
246
247 static inline void mark_deleted (value_type &) {}
248
249 static inline bool is_deleted (const value_type &)
250 {
251 return false;
252 }
253
254 static inline void remove (value_type &) {}
255 };
256
257 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
258
259 /* Describes two objects whose addresses must be unequal for the vectorized
260 loop to be valid. */
261 typedef std::pair<tree, tree> vec_object_pair;
262
263 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
264 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
265 class vec_lower_bound {
266 public:
267 vec_lower_bound () {}
268 vec_lower_bound (tree e, bool u, poly_uint64 m)
269 : expr (e), unsigned_p (u), min_value (m) {}
270
271 tree expr;
272 bool unsigned_p;
273 poly_uint64 min_value;
274 };
275
276 /* Vectorizer state shared between different analyses like vector sizes
277 of the same CFG region. */
278 class vec_info_shared {
279 public:
280 vec_info_shared();
281 ~vec_info_shared();
282
283 void save_datarefs();
284 void check_datarefs();
285
286 /* All data references. Freed by free_data_refs, so not an auto_vec. */
287 vec<data_reference_p> datarefs;
288 vec<data_reference> datarefs_copy;
289
290 /* The loop nest in which the data dependences are computed. */
291 auto_vec<loop_p> loop_nest;
292
293 /* All data dependences. Freed by free_dependence_relations, so not
294 an auto_vec. */
295 vec<ddr_p> ddrs;
296 };
297
298 /* Vectorizer state common between loop and basic-block vectorization. */
299 class vec_info {
300 public:
301 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
302 enum vec_kind { bb, loop };
303
304 vec_info (vec_kind, void *, vec_info_shared *);
305 ~vec_info ();
306
307 stmt_vec_info add_stmt (gimple *);
308 stmt_vec_info lookup_stmt (gimple *);
309 stmt_vec_info lookup_def (tree);
310 stmt_vec_info lookup_single_use (tree);
311 class dr_vec_info *lookup_dr (data_reference *);
312 void move_dr (stmt_vec_info, stmt_vec_info);
313 void remove_stmt (stmt_vec_info);
314 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
315
316 /* The type of vectorization. */
317 vec_kind kind;
318
319 /* Shared vectorizer state. */
320 vec_info_shared *shared;
321
322 /* The mapping of GIMPLE UID to stmt_vec_info. */
323 vec<stmt_vec_info> stmt_vec_infos;
324
325 /* All SLP instances. */
326 auto_vec<slp_instance> slp_instances;
327
328 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
329 known alignment for that base. */
330 vec_base_alignments base_alignments;
331
332 /* All interleaving chains of stores, represented by the first
333 stmt in the chain. */
334 auto_vec<stmt_vec_info> grouped_stores;
335
336 /* Cost data used by the target cost model. */
337 void *target_cost_data;
338
339 /* The set of vector modes used in the vectorized region. */
340 mode_set used_vector_modes;
341
342 /* The argument we should pass to related_vector_mode when looking up
343 the vector mode for a scalar mode, or VOIDmode if we haven't yet
344 made any decisions about which vector modes to use. */
345 machine_mode vector_mode;
346
347 private:
348 stmt_vec_info new_stmt_vec_info (gimple *stmt);
349 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
350 void free_stmt_vec_infos ();
351 void free_stmt_vec_info (stmt_vec_info);
352 };
353
354 class _loop_vec_info;
355 class _bb_vec_info;
356
357 template<>
358 template<>
359 inline bool
360 is_a_helper <_loop_vec_info *>::test (vec_info *i)
361 {
362 return i->kind == vec_info::loop;
363 }
364
365 template<>
366 template<>
367 inline bool
368 is_a_helper <_bb_vec_info *>::test (vec_info *i)
369 {
370 return i->kind == vec_info::bb;
371 }
372
373
374 /* In general, we can divide the vector statements in a vectorized loop
375 into related groups ("rgroups") and say that for each rgroup there is
376 some nS such that the rgroup operates on nS values from one scalar
377 iteration followed by nS values from the next. That is, if VF is the
378 vectorization factor of the loop, the rgroup operates on a sequence:
379
380 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
381
382 where (i,j) represents a scalar value with index j in a scalar
383 iteration with index i.
384
385 [ We use the term "rgroup" to emphasise that this grouping isn't
386 necessarily the same as the grouping of statements used elsewhere.
387 For example, if we implement a group of scalar loads using gather
388 loads, we'll use a separate gather load for each scalar load, and
389 thus each gather load will belong to its own rgroup. ]
390
391 In general this sequence will occupy nV vectors concatenated
392 together. If these vectors have nL lanes each, the total number
393 of scalar values N is given by:
394
395 N = nS * VF = nV * nL
396
397 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
398 are compile-time constants but VF and nL can be variable (if the target
399 supports variable-length vectors).
400
401 In classical vectorization, each iteration of the vector loop would
402 handle exactly VF iterations of the original scalar loop. However,
403 in a fully-masked loop, a particular iteration of the vector loop
404 might handle fewer than VF iterations of the scalar loop. The vector
405 lanes that correspond to iterations of the scalar loop are said to be
406 "active" and the other lanes are said to be "inactive".
407
408 In a fully-masked loop, many rgroups need to be masked to ensure that
409 they have no effect for the inactive lanes. Each such rgroup needs a
410 sequence of booleans in the same order as above, but with each (i,j)
411 replaced by a boolean that indicates whether iteration i is active.
412 This sequence occupies nV vector masks that again have nL lanes each.
413 Thus the mask sequence as a whole consists of VF independent booleans
414 that are each repeated nS times.
415
416 We make the simplifying assumption that if a sequence of nV masks is
417 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
418 VIEW_CONVERTing it. This holds for all current targets that support
419 fully-masked loops. For example, suppose the scalar loop is:
420
421 float *f;
422 double *d;
423 for (int i = 0; i < n; ++i)
424 {
425 f[i * 2 + 0] += 1.0f;
426 f[i * 2 + 1] += 2.0f;
427 d[i] += 3.0;
428 }
429
430 and suppose that vectors have 256 bits. The vectorized f accesses
431 will belong to one rgroup and the vectorized d access to another:
432
433 f rgroup: nS = 2, nV = 1, nL = 8
434 d rgroup: nS = 1, nV = 1, nL = 4
435 VF = 4
436
437 [ In this simple example the rgroups do correspond to the normal
438 SLP grouping scheme. ]
439
440 If only the first three lanes are active, the masks we need are:
441
442 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
443 d rgroup: 1 | 1 | 1 | 0
444
445 Here we can use a mask calculated for f's rgroup for d's, but not
446 vice versa.
447
448 Thus for each value of nV, it is enough to provide nV masks, with the
449 mask being calculated based on the highest nL (or, equivalently, based
450 on the highest nS) required by any rgroup with that nV. We therefore
451 represent the entire collection of masks as a two-level table, with the
452 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
453 the second being indexed by the mask index 0 <= i < nV. */
454
455 /* The masks needed by rgroups with nV vectors, according to the
456 description above. */
457 struct rgroup_masks {
458 /* The largest nS for all rgroups that use these masks. */
459 unsigned int max_nscalars_per_iter;
460
461 /* The type of mask to use, based on the highest nS recorded above. */
462 tree mask_type;
463
464 /* A vector of nV masks, in iteration order. */
465 vec<tree> masks;
466 };
467
468 typedef auto_vec<rgroup_masks> vec_loop_masks;
469
470 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
471
472 /*-----------------------------------------------------------------*/
473 /* Info on vectorized loops. */
474 /*-----------------------------------------------------------------*/
475 typedef class _loop_vec_info : public vec_info {
476 public:
477 _loop_vec_info (class loop *, vec_info_shared *);
478 ~_loop_vec_info ();
479
480 /* The loop to which this info struct refers to. */
481 class loop *loop;
482
483 /* The loop basic blocks. */
484 basic_block *bbs;
485
486 /* Number of latch executions. */
487 tree num_itersm1;
488 /* Number of iterations. */
489 tree num_iters;
490 /* Number of iterations of the original loop. */
491 tree num_iters_unchanged;
492 /* Condition under which this loop is analyzed and versioned. */
493 tree num_iters_assumptions;
494
495 /* Threshold of number of iterations below which vectorization will not be
496 performed. It is calculated from MIN_PROFITABLE_ITERS and
497 param_min_vect_loop_bound. */
498 unsigned int th;
499
500 /* When applying loop versioning, the vector form should only be used
501 if the number of scalar iterations is >= this value, on top of all
502 the other requirements. Ignored when loop versioning is not being
503 used. */
504 poly_uint64 versioning_threshold;
505
506 /* Unrolling factor */
507 poly_uint64 vectorization_factor;
508
509 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
510 if there is no particular limit. */
511 unsigned HOST_WIDE_INT max_vectorization_factor;
512
513 /* The masks that a fully-masked loop should use to avoid operating
514 on inactive scalars. */
515 vec_loop_masks masks;
516
517 /* Set of scalar conditions that have loop mask applied. */
518 scalar_cond_masked_set_type scalar_cond_masked_set;
519
520 /* If we are using a loop mask to align memory addresses, this variable
521 contains the number of vector elements that we should skip in the
522 first iteration of the vector loop (i.e. the number of leading
523 elements that should be false in the first mask). */
524 tree mask_skip_niters;
525
526 /* Type of the variables to use in the WHILE_ULT call for fully-masked
527 loops. */
528 tree mask_compare_type;
529
530 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
531 the loop should not be vectorized, if constant non-zero, simd_if_cond
532 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
533 should be versioned on that condition, using scalar loop if the condition
534 is false and vectorized loop otherwise. */
535 tree simd_if_cond;
536
537 /* Type of the IV to use in the WHILE_ULT call for fully-masked
538 loops. */
539 tree iv_type;
540
541 /* Unknown DRs according to which loop was peeled. */
542 class dr_vec_info *unaligned_dr;
543
544 /* peeling_for_alignment indicates whether peeling for alignment will take
545 place, and what the peeling factor should be:
546 peeling_for_alignment = X means:
547 If X=0: Peeling for alignment will not be applied.
548 If X>0: Peel first X iterations.
549 If X=-1: Generate a runtime test to calculate the number of iterations
550 to be peeled, using the dataref recorded in the field
551 unaligned_dr. */
552 int peeling_for_alignment;
553
554 /* The mask used to check the alignment of pointers or arrays. */
555 int ptr_mask;
556
557 /* Data Dependence Relations defining address ranges that are candidates
558 for a run-time aliasing check. */
559 auto_vec<ddr_p> may_alias_ddrs;
560
561 /* Data Dependence Relations defining address ranges together with segment
562 lengths from which the run-time aliasing check is built. */
563 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
564
565 /* Check that the addresses of each pair of objects is unequal. */
566 auto_vec<vec_object_pair> check_unequal_addrs;
567
568 /* List of values that are required to be nonzero. This is used to check
569 whether things like "x[i * n] += 1;" are safe and eventually gets added
570 to the checks for lower bounds below. */
571 auto_vec<tree> check_nonzero;
572
573 /* List of values that need to be checked for a minimum value. */
574 auto_vec<vec_lower_bound> lower_bounds;
575
576 /* Statements in the loop that have data references that are candidates for a
577 runtime (loop versioning) misalignment check. */
578 auto_vec<stmt_vec_info> may_misalign_stmts;
579
580 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
581 auto_vec<stmt_vec_info> reductions;
582
583 /* All reduction chains in the loop, represented by the first
584 stmt in the chain. */
585 auto_vec<stmt_vec_info> reduction_chains;
586
587 /* Cost vector for a single scalar iteration. */
588 auto_vec<stmt_info_for_cost> scalar_cost_vec;
589
590 /* Map of IV base/step expressions to inserted name in the preheader. */
591 hash_map<tree_operand_hash, tree> *ivexpr_map;
592
593 /* Map of OpenMP "omp simd array" scan variables to corresponding
594 rhs of the store of the initializer. */
595 hash_map<tree, tree> *scan_map;
596
597 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
598 applied to the loop, i.e., no unrolling is needed, this is 1. */
599 poly_uint64 slp_unrolling_factor;
600
601 /* Cost of a single scalar iteration. */
602 int single_scalar_iteration_cost;
603
604 /* The cost of the vector prologue and epilogue, including peeled
605 iterations and set-up code. */
606 int vec_outside_cost;
607
608 /* The cost of the vector loop body. */
609 int vec_inside_cost;
610
611 /* Is the loop vectorizable? */
612 bool vectorizable;
613
614 /* Records whether we still have the option of using a fully-masked loop. */
615 bool can_fully_mask_p;
616
617 /* True if have decided to use a fully-masked loop. */
618 bool fully_masked_p;
619
620 /* When we have grouped data accesses with gaps, we may introduce invalid
621 memory accesses. We peel the last iteration of the loop to prevent
622 this. */
623 bool peeling_for_gaps;
624
625 /* When the number of iterations is not a multiple of the vector size
626 we need to peel off iterations at the end to form an epilogue loop. */
627 bool peeling_for_niter;
628
629 /* True if there are no loop carried data dependencies in the loop.
630 If loop->safelen <= 1, then this is always true, either the loop
631 didn't have any loop carried data dependencies, or the loop is being
632 vectorized guarded with some runtime alias checks, or couldn't
633 be vectorized at all, but then this field shouldn't be used.
634 For loop->safelen >= 2, the user has asserted that there are no
635 backward dependencies, but there still could be loop carried forward
636 dependencies in such loops. This flag will be false if normal
637 vectorizer data dependency analysis would fail or require versioning
638 for alias, but because of loop->safelen >= 2 it has been vectorized
639 even without versioning for alias. E.g. in:
640 #pragma omp simd
641 for (int i = 0; i < m; i++)
642 a[i] = a[i + k] * c;
643 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
644 DTRT even for k > 0 && k < m, but without safelen we would not
645 vectorize this, so this field would be false. */
646 bool no_data_dependencies;
647
648 /* Mark loops having masked stores. */
649 bool has_mask_store;
650
651 /* Queued scaling factor for the scalar loop. */
652 profile_probability scalar_loop_scaling;
653
654 /* If if-conversion versioned this loop before conversion, this is the
655 loop version without if-conversion. */
656 class loop *scalar_loop;
657
658 /* For loops being epilogues of already vectorized loops
659 this points to the original vectorized loop. Otherwise NULL. */
660 _loop_vec_info *orig_loop_info;
661
662 /* Used to store loop_vec_infos of epilogues of this loop during
663 analysis. */
664 vec<_loop_vec_info *> epilogue_vinfos;
665
666 } *loop_vec_info;
667
668 /* Access Functions. */
669 #define LOOP_VINFO_LOOP(L) (L)->loop
670 #define LOOP_VINFO_BBS(L) (L)->bbs
671 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
672 #define LOOP_VINFO_NITERS(L) (L)->num_iters
673 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
674 prologue peeling retain total unchanged scalar loop iterations for
675 cost model. */
676 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
677 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
678 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
679 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
680 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
681 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
682 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
683 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
684 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
685 #define LOOP_VINFO_MASKS(L) (L)->masks
686 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
687 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
688 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
689 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
690 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
691 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
692 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
693 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
694 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
695 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
696 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
697 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
698 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
699 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
700 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
701 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
702 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
703 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
704 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
705 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
706 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
707 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
708 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
709 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
710 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
711 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
712 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
713 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
714 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
715 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
716 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
717 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
718
719 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
720 ((L)->may_misalign_stmts.length () > 0)
721 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
722 ((L)->comp_alias_ddrs.length () > 0 \
723 || (L)->check_unequal_addrs.length () > 0 \
724 || (L)->lower_bounds.length () > 0)
725 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
726 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
727 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
728 (LOOP_VINFO_SIMD_IF_COND (L))
729 #define LOOP_REQUIRES_VERSIONING(L) \
730 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
731 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
732 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
733 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
734
735 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
736 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
737
738 #define LOOP_VINFO_EPILOGUE_P(L) \
739 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
740
741 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
742 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
743
744 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
745 value signifies success, and a NULL value signifies failure, supporting
746 propagating an opt_problem * describing the failure back up the call
747 stack. */
748 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
749
750 static inline loop_vec_info
751 loop_vec_info_for_loop (class loop *loop)
752 {
753 return (loop_vec_info) loop->aux;
754 }
755
756 typedef class _bb_vec_info : public vec_info
757 {
758 public:
759 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
760 ~_bb_vec_info ();
761
762 basic_block bb;
763 gimple_stmt_iterator region_begin;
764 gimple_stmt_iterator region_end;
765 } *bb_vec_info;
766
767 #define BB_VINFO_BB(B) (B)->bb
768 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
769 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
770 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
771 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
772 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
773
774 static inline bb_vec_info
775 vec_info_for_bb (basic_block bb)
776 {
777 return (bb_vec_info) bb->aux;
778 }
779
780 /*-----------------------------------------------------------------*/
781 /* Info on vectorized defs. */
782 /*-----------------------------------------------------------------*/
783 enum stmt_vec_info_type {
784 undef_vec_info_type = 0,
785 load_vec_info_type,
786 store_vec_info_type,
787 shift_vec_info_type,
788 op_vec_info_type,
789 call_vec_info_type,
790 call_simd_clone_vec_info_type,
791 assignment_vec_info_type,
792 condition_vec_info_type,
793 comparison_vec_info_type,
794 reduc_vec_info_type,
795 induc_vec_info_type,
796 type_promotion_vec_info_type,
797 type_demotion_vec_info_type,
798 type_conversion_vec_info_type,
799 cycle_phi_info_type,
800 lc_phi_info_type,
801 loop_exit_ctrl_vec_info_type
802 };
803
804 /* Indicates whether/how a variable is used in the scope of loop/basic
805 block. */
806 enum vect_relevant {
807 vect_unused_in_scope = 0,
808
809 /* The def is only used outside the loop. */
810 vect_used_only_live,
811 /* The def is in the inner loop, and the use is in the outer loop, and the
812 use is a reduction stmt. */
813 vect_used_in_outer_by_reduction,
814 /* The def is in the inner loop, and the use is in the outer loop (and is
815 not part of reduction). */
816 vect_used_in_outer,
817
818 /* defs that feed computations that end up (only) in a reduction. These
819 defs may be used by non-reduction stmts, but eventually, any
820 computations/values that are affected by these defs are used to compute
821 a reduction (i.e. don't get stored to memory, for example). We use this
822 to identify computations that we can change the order in which they are
823 computed. */
824 vect_used_by_reduction,
825
826 vect_used_in_scope
827 };
828
829 /* The type of vectorization that can be applied to the stmt: regular loop-based
830 vectorization; pure SLP - the stmt is a part of SLP instances and does not
831 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
832 a part of SLP instance and also must be loop-based vectorized, since it has
833 uses outside SLP sequences.
834
835 In the loop context the meanings of pure and hybrid SLP are slightly
836 different. By saying that pure SLP is applied to the loop, we mean that we
837 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
838 vectorized without doing any conceptual unrolling, cause we don't pack
839 together stmts from different iterations, only within a single iteration.
840 Loop hybrid SLP means that we exploit both intra-iteration and
841 inter-iteration parallelism (e.g., number of elements in the vector is 4
842 and the slp-group-size is 2, in which case we don't have enough parallelism
843 within an iteration, so we obtain the rest of the parallelism from subsequent
844 iterations by unrolling the loop by 2). */
845 enum slp_vect_type {
846 loop_vect = 0,
847 pure_slp,
848 hybrid
849 };
850
851 /* Says whether a statement is a load, a store of a vectorized statement
852 result, or a store of an invariant value. */
853 enum vec_load_store_type {
854 VLS_LOAD,
855 VLS_STORE,
856 VLS_STORE_INVARIANT
857 };
858
859 /* Describes how we're going to vectorize an individual load or store,
860 or a group of loads or stores. */
861 enum vect_memory_access_type {
862 /* An access to an invariant address. This is used only for loads. */
863 VMAT_INVARIANT,
864
865 /* A simple contiguous access. */
866 VMAT_CONTIGUOUS,
867
868 /* A contiguous access that goes down in memory rather than up,
869 with no additional permutation. This is used only for stores
870 of invariants. */
871 VMAT_CONTIGUOUS_DOWN,
872
873 /* A simple contiguous access in which the elements need to be permuted
874 after loading or before storing. Only used for loop vectorization;
875 SLP uses separate permutes. */
876 VMAT_CONTIGUOUS_PERMUTE,
877
878 /* A simple contiguous access in which the elements need to be reversed
879 after loading or before storing. */
880 VMAT_CONTIGUOUS_REVERSE,
881
882 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
883 VMAT_LOAD_STORE_LANES,
884
885 /* An access in which each scalar element is loaded or stored
886 individually. */
887 VMAT_ELEMENTWISE,
888
889 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
890 SLP accesses. Each unrolled iteration uses a contiguous load
891 or store for the whole group, but the groups from separate iterations
892 are combined in the same way as for VMAT_ELEMENTWISE. */
893 VMAT_STRIDED_SLP,
894
895 /* The access uses gather loads or scatter stores. */
896 VMAT_GATHER_SCATTER
897 };
898
899 class dr_vec_info {
900 public:
901 /* The data reference itself. */
902 data_reference *dr;
903 /* The statement that contains the data reference. */
904 stmt_vec_info stmt;
905 /* The misalignment in bytes of the reference, or -1 if not known. */
906 int misalignment;
907 /* The byte alignment that we'd ideally like the reference to have,
908 and the value that misalignment is measured against. */
909 poly_uint64 target_alignment;
910 /* If true the alignment of base_decl needs to be increased. */
911 bool base_misaligned;
912 tree base_decl;
913 };
914
915 typedef struct data_reference *dr_p;
916
917 class _stmt_vec_info {
918 public:
919
920 enum stmt_vec_info_type type;
921
922 /* Indicates whether this stmts is part of a computation whose result is
923 used outside the loop. */
924 bool live;
925
926 /* Stmt is part of some pattern (computation idiom) */
927 bool in_pattern_p;
928
929 /* True if the statement was created during pattern recognition as
930 part of the replacement for RELATED_STMT. This implies that the
931 statement isn't part of any basic block, although for convenience
932 its gimple_bb is the same as for RELATED_STMT. */
933 bool pattern_stmt_p;
934
935 /* Is this statement vectorizable or should it be skipped in (partial)
936 vectorization. */
937 bool vectorizable;
938
939 /* The stmt to which this info struct refers to. */
940 gimple *stmt;
941
942 /* The vec_info with respect to which STMT is vectorized. */
943 vec_info *vinfo;
944
945 /* The vector type to be used for the LHS of this statement. */
946 tree vectype;
947
948 /* The vectorized version of the stmt. */
949 stmt_vec_info vectorized_stmt;
950
951
952 /* The following is relevant only for stmts that contain a non-scalar
953 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
954 at most one such data-ref. */
955
956 dr_vec_info dr_aux;
957
958 /* Information about the data-ref relative to this loop
959 nest (the loop that is being considered for vectorization). */
960 innermost_loop_behavior dr_wrt_vec_loop;
961
962 /* For loop PHI nodes, the base and evolution part of it. This makes sure
963 this information is still available in vect_update_ivs_after_vectorizer
964 where we may not be able to re-analyze the PHI nodes evolution as
965 peeling for the prologue loop can make it unanalyzable. The evolution
966 part is still correct after peeling, but the base may have changed from
967 the version here. */
968 tree loop_phi_evolution_base_unchanged;
969 tree loop_phi_evolution_part;
970
971 /* Used for various bookkeeping purposes, generally holding a pointer to
972 some other stmt S that is in some way "related" to this stmt.
973 Current use of this field is:
974 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
975 true): S is the "pattern stmt" that represents (and replaces) the
976 sequence of stmts that constitutes the pattern. Similarly, the
977 related_stmt of the "pattern stmt" points back to this stmt (which is
978 the last stmt in the original sequence of stmts that constitutes the
979 pattern). */
980 stmt_vec_info related_stmt;
981
982 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
983 The sequence is attached to the original statement rather than the
984 pattern statement. */
985 gimple_seq pattern_def_seq;
986
987 /* List of datarefs that are known to have the same alignment as the dataref
988 of this stmt. */
989 vec<dr_p> same_align_refs;
990
991 /* Selected SIMD clone's function info. First vector element
992 is SIMD clone's function decl, followed by a pair of trees (base + step)
993 for linear arguments (pair of NULLs for other arguments). */
994 vec<tree> simd_clone_info;
995
996 /* Classify the def of this stmt. */
997 enum vect_def_type def_type;
998
999 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1000 enum slp_vect_type slp_type;
1001
1002 /* Interleaving and reduction chains info. */
1003 /* First element in the group. */
1004 stmt_vec_info first_element;
1005 /* Pointer to the next element in the group. */
1006 stmt_vec_info next_element;
1007 /* The size of the group. */
1008 unsigned int size;
1009 /* For stores, number of stores from this group seen. We vectorize the last
1010 one. */
1011 unsigned int store_count;
1012 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1013 is 1. */
1014 unsigned int gap;
1015
1016 /* The minimum negative dependence distance this stmt participates in
1017 or zero if none. */
1018 unsigned int min_neg_dist;
1019
1020 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1021 of the loop induction variable and computation of array indexes. relevant
1022 indicates whether the stmt needs to be vectorized. */
1023 enum vect_relevant relevant;
1024
1025 /* For loads if this is a gather, for stores if this is a scatter. */
1026 bool gather_scatter_p;
1027
1028 /* True if this is an access with loop-invariant stride. */
1029 bool strided_p;
1030
1031 /* For both loads and stores. */
1032 unsigned simd_lane_access_p : 3;
1033
1034 /* Classifies how the load or store is going to be implemented
1035 for loop vectorization. */
1036 vect_memory_access_type memory_access_type;
1037
1038 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1039 tree induc_cond_initial_val;
1040
1041 /* If not NULL the value to be added to compute final reduction value. */
1042 tree reduc_epilogue_adjustment;
1043
1044 /* On a reduction PHI the reduction type as detected by
1045 vect_is_simple_reduction and vectorizable_reduction. */
1046 enum vect_reduction_type reduc_type;
1047
1048 /* The original reduction code, to be used in the epilogue. */
1049 enum tree_code reduc_code;
1050 /* An internal function we should use in the epilogue. */
1051 internal_fn reduc_fn;
1052
1053 /* On a stmt participating in the reduction the index of the operand
1054 on the reduction SSA cycle. */
1055 int reduc_idx;
1056
1057 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1058 On the def returned by vect_force_simple_reduction the
1059 corresponding PHI. */
1060 stmt_vec_info reduc_def;
1061
1062 /* The vector input type relevant for reduction vectorization. */
1063 tree reduc_vectype_in;
1064
1065 /* The vector type for performing the actual reduction. */
1066 tree reduc_vectype;
1067
1068 /* Whether we force a single cycle PHI during reduction vectorization. */
1069 bool force_single_cycle;
1070
1071 /* Whether on this stmt reduction meta is recorded. */
1072 bool is_reduc_info;
1073
1074 /* The number of scalar stmt references from active SLP instances. */
1075 unsigned int num_slp_uses;
1076
1077 /* If nonzero, the lhs of the statement could be truncated to this
1078 many bits without affecting any users of the result. */
1079 unsigned int min_output_precision;
1080
1081 /* If nonzero, all non-boolean input operands have the same precision,
1082 and they could each be truncated to this many bits without changing
1083 the result. */
1084 unsigned int min_input_precision;
1085
1086 /* If OPERATION_BITS is nonzero, the statement could be performed on
1087 an integer with the sign and number of bits given by OPERATION_SIGN
1088 and OPERATION_BITS without changing the result. */
1089 unsigned int operation_precision;
1090 signop operation_sign;
1091
1092 /* If the statement produces a boolean result, this value describes
1093 how we should choose the associated vector type. The possible
1094 values are:
1095
1096 - an integer precision N if we should use the vector mask type
1097 associated with N-bit integers. This is only used if all relevant
1098 input booleans also want the vector mask type for N-bit integers,
1099 or if we can convert them into that form by pattern-matching.
1100
1101 - ~0U if we considered choosing a vector mask type but decided
1102 to treat the boolean as a normal integer type instead.
1103
1104 - 0 otherwise. This means either that the operation isn't one that
1105 could have a vector mask type (and so should have a normal vector
1106 type instead) or that we simply haven't made a choice either way. */
1107 unsigned int mask_precision;
1108
1109 /* True if this is only suitable for SLP vectorization. */
1110 bool slp_vect_only_p;
1111 };
1112
1113 /* Information about a gather/scatter call. */
1114 struct gather_scatter_info {
1115 /* The internal function to use for the gather/scatter operation,
1116 or IFN_LAST if a built-in function should be used instead. */
1117 internal_fn ifn;
1118
1119 /* The FUNCTION_DECL for the built-in gather/scatter function,
1120 or null if an internal function should be used instead. */
1121 tree decl;
1122
1123 /* The loop-invariant base value. */
1124 tree base;
1125
1126 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1127 tree offset;
1128
1129 /* Each offset element should be multiplied by this amount before
1130 being added to the base. */
1131 int scale;
1132
1133 /* The definition type for the vectorized offset. */
1134 enum vect_def_type offset_dt;
1135
1136 /* The type of the vectorized offset. */
1137 tree offset_vectype;
1138
1139 /* The type of the scalar elements after loading or before storing. */
1140 tree element_type;
1141
1142 /* The type of the scalar elements being loaded or stored. */
1143 tree memory_type;
1144 };
1145
1146 /* Access Functions. */
1147 #define STMT_VINFO_TYPE(S) (S)->type
1148 #define STMT_VINFO_STMT(S) (S)->stmt
1149 inline loop_vec_info
1150 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1151 {
1152 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1153 return loop_vinfo;
1154 return NULL;
1155 }
1156 inline bb_vec_info
1157 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1158 {
1159 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1160 return bb_vinfo;
1161 return NULL;
1162 }
1163 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1164 #define STMT_VINFO_LIVE_P(S) (S)->live
1165 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1166 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1167 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1168 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1169 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1170 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1171 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1172 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1173 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1174 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1175 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1176 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1177
1178 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1179 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1180 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1181 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1182 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1183 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1184 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1185 (S)->dr_wrt_vec_loop.base_misalignment
1186 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1187 (S)->dr_wrt_vec_loop.offset_alignment
1188 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1189 (S)->dr_wrt_vec_loop.step_alignment
1190
1191 #define STMT_VINFO_DR_INFO(S) \
1192 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1193
1194 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1195 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1196 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1197 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1198 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1199 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1200 #define STMT_VINFO_GROUPED_ACCESS(S) \
1201 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1202 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1203 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1204 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1205 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1206 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1207 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1208 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1209 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1210 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1211 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1212 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1213
1214 #define DR_GROUP_FIRST_ELEMENT(S) \
1215 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1216 #define DR_GROUP_NEXT_ELEMENT(S) \
1217 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1218 #define DR_GROUP_SIZE(S) \
1219 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1220 #define DR_GROUP_STORE_COUNT(S) \
1221 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1222 #define DR_GROUP_GAP(S) \
1223 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1224
1225 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1226 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1227 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1228 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1229 #define REDUC_GROUP_SIZE(S) \
1230 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1231
1232 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1233
1234 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1235 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1236 #define STMT_SLP_TYPE(S) (S)->slp_type
1237
1238 #define VECT_MAX_COST 1000
1239
1240 /* The maximum number of intermediate steps required in multi-step type
1241 conversion. */
1242 #define MAX_INTERM_CVT_STEPS 3
1243
1244 #define MAX_VECTORIZATION_FACTOR INT_MAX
1245
1246 /* Nonzero if TYPE represents a (scalar) boolean type or type
1247 in the middle-end compatible with it (unsigned precision 1 integral
1248 types). Used to determine which types should be vectorized as
1249 VECTOR_BOOLEAN_TYPE_P. */
1250
1251 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1252 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1253 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1254 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1255 && TYPE_PRECISION (TYPE) == 1 \
1256 && TYPE_UNSIGNED (TYPE)))
1257
1258 static inline bool
1259 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1260 {
1261 return (loop->inner
1262 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1263 }
1264
1265 /* Return true if STMT_INFO should produce a vector mask type rather than
1266 a normal nonmask type. */
1267
1268 static inline bool
1269 vect_use_mask_type_p (stmt_vec_info stmt_info)
1270 {
1271 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1272 }
1273
1274 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1275 pattern. */
1276
1277 static inline bool
1278 is_pattern_stmt_p (stmt_vec_info stmt_info)
1279 {
1280 return stmt_info->pattern_stmt_p;
1281 }
1282
1283 /* If STMT_INFO is a pattern statement, return the statement that it
1284 replaces, otherwise return STMT_INFO itself. */
1285
1286 inline stmt_vec_info
1287 vect_orig_stmt (stmt_vec_info stmt_info)
1288 {
1289 if (is_pattern_stmt_p (stmt_info))
1290 return STMT_VINFO_RELATED_STMT (stmt_info);
1291 return stmt_info;
1292 }
1293
1294 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1295
1296 static inline stmt_vec_info
1297 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1298 {
1299 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1300 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1301 return stmt1_info;
1302 else
1303 return stmt2_info;
1304 }
1305
1306 /* If STMT_INFO has been replaced by a pattern statement, return the
1307 replacement statement, otherwise return STMT_INFO itself. */
1308
1309 inline stmt_vec_info
1310 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1311 {
1312 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1313 return STMT_VINFO_RELATED_STMT (stmt_info);
1314 return stmt_info;
1315 }
1316
1317 /* Return true if BB is a loop header. */
1318
1319 static inline bool
1320 is_loop_header_bb_p (basic_block bb)
1321 {
1322 if (bb == (bb->loop_father)->header)
1323 return true;
1324 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1325 return false;
1326 }
1327
1328 /* Return pow2 (X). */
1329
1330 static inline int
1331 vect_pow2 (int x)
1332 {
1333 int i, res = 1;
1334
1335 for (i = 0; i < x; i++)
1336 res *= 2;
1337
1338 return res;
1339 }
1340
1341 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1342
1343 static inline int
1344 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1345 tree vectype, int misalign)
1346 {
1347 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1348 vectype, misalign);
1349 }
1350
1351 /* Get cost by calling cost target builtin. */
1352
1353 static inline
1354 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1355 {
1356 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1357 }
1358
1359 /* Alias targetm.vectorize.init_cost. */
1360
1361 static inline void *
1362 init_cost (class loop *loop_info)
1363 {
1364 return targetm.vectorize.init_cost (loop_info);
1365 }
1366
1367 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1368 stmt_vec_info, int, unsigned,
1369 enum vect_cost_model_location);
1370
1371 /* Alias targetm.vectorize.add_stmt_cost. */
1372
1373 static inline unsigned
1374 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1375 stmt_vec_info stmt_info, int misalign,
1376 enum vect_cost_model_location where)
1377 {
1378 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1379 stmt_info, misalign, where);
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1382 cost, where);
1383 return cost;
1384 }
1385
1386 /* Alias targetm.vectorize.finish_cost. */
1387
1388 static inline void
1389 finish_cost (void *data, unsigned *prologue_cost,
1390 unsigned *body_cost, unsigned *epilogue_cost)
1391 {
1392 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1393 }
1394
1395 /* Alias targetm.vectorize.destroy_cost_data. */
1396
1397 static inline void
1398 destroy_cost_data (void *data)
1399 {
1400 targetm.vectorize.destroy_cost_data (data);
1401 }
1402
1403 inline void
1404 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1405 {
1406 stmt_info_for_cost *cost;
1407 unsigned i;
1408 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1409 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1410 cost->misalign, cost->where);
1411 }
1412
1413 /*-----------------------------------------------------------------*/
1414 /* Info on data references alignment. */
1415 /*-----------------------------------------------------------------*/
1416 #define DR_MISALIGNMENT_UNKNOWN (-1)
1417 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1418
1419 inline void
1420 set_dr_misalignment (dr_vec_info *dr_info, int val)
1421 {
1422 dr_info->misalignment = val;
1423 }
1424
1425 inline int
1426 dr_misalignment (dr_vec_info *dr_info)
1427 {
1428 int misalign = dr_info->misalignment;
1429 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1430 return misalign;
1431 }
1432
1433 /* Reflects actual alignment of first access in the vectorized loop,
1434 taking into account peeling/versioning if applied. */
1435 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1436 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1437
1438 /* Only defined once DR_MISALIGNMENT is defined. */
1439 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1440
1441 /* Return true if data access DR_INFO is aligned to its target alignment
1442 (which may be less than a full vector). */
1443
1444 static inline bool
1445 aligned_access_p (dr_vec_info *dr_info)
1446 {
1447 return (DR_MISALIGNMENT (dr_info) == 0);
1448 }
1449
1450 /* Return TRUE if the alignment of the data access is known, and FALSE
1451 otherwise. */
1452
1453 static inline bool
1454 known_alignment_for_access_p (dr_vec_info *dr_info)
1455 {
1456 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1457 }
1458
1459 /* Return the minimum alignment in bytes that the vectorized version
1460 of DR_INFO is guaranteed to have. */
1461
1462 static inline unsigned int
1463 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1464 {
1465 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1466 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1467 if (DR_MISALIGNMENT (dr_info) == 0)
1468 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1469 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1470 }
1471
1472 /* Return the behavior of DR_INFO with respect to the vectorization context
1473 (which for outer loop vectorization might not be the behavior recorded
1474 in DR_INFO itself). */
1475
1476 static inline innermost_loop_behavior *
1477 vect_dr_behavior (dr_vec_info *dr_info)
1478 {
1479 stmt_vec_info stmt_info = dr_info->stmt;
1480 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1481 if (loop_vinfo == NULL
1482 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1483 return &DR_INNERMOST (dr_info->dr);
1484 else
1485 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1486 }
1487
1488 /* Return true if the vect cost model is unlimited. */
1489 static inline bool
1490 unlimited_cost_model (loop_p loop)
1491 {
1492 if (loop != NULL && loop->force_vectorize
1493 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1494 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1495 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1496 }
1497
1498 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1499 if the first iteration should use a partial mask in order to achieve
1500 alignment. */
1501
1502 static inline bool
1503 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1504 {
1505 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1506 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1507 }
1508
1509 /* Return the number of vectors of type VECTYPE that are needed to get
1510 NUNITS elements. NUNITS should be based on the vectorization factor,
1511 so it is always a known multiple of the number of elements in VECTYPE. */
1512
1513 static inline unsigned int
1514 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1515 {
1516 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1517 }
1518
1519 /* Return the number of copies needed for loop vectorization when
1520 a statement operates on vectors of type VECTYPE. This is the
1521 vectorization factor divided by the number of elements in
1522 VECTYPE and is always known at compile time. */
1523
1524 static inline unsigned int
1525 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1526 {
1527 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1528 }
1529
1530 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1531 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1532
1533 static inline void
1534 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1535 {
1536 /* All unit counts have the form vec_info::vector_size * X for some
1537 rational X, so two unit sizes must have a common multiple.
1538 Everything is a multiple of the initial value of 1. */
1539 *max_nunits = force_common_multiple (*max_nunits, nunits);
1540 }
1541
1542 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1543 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1544 if we haven't yet recorded any vector types. */
1545
1546 static inline void
1547 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1548 {
1549 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1550 }
1551
1552 /* Return the vectorization factor that should be used for costing
1553 purposes while vectorizing the loop described by LOOP_VINFO.
1554 Pick a reasonable estimate if the vectorization factor isn't
1555 known at compile time. */
1556
1557 static inline unsigned int
1558 vect_vf_for_cost (loop_vec_info loop_vinfo)
1559 {
1560 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1561 }
1562
1563 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1564 Pick a reasonable estimate if the exact number isn't known at
1565 compile time. */
1566
1567 static inline unsigned int
1568 vect_nunits_for_cost (tree vec_type)
1569 {
1570 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1571 }
1572
1573 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1574
1575 static inline unsigned HOST_WIDE_INT
1576 vect_max_vf (loop_vec_info loop_vinfo)
1577 {
1578 unsigned HOST_WIDE_INT vf;
1579 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1580 return vf;
1581 return MAX_VECTORIZATION_FACTOR;
1582 }
1583
1584 /* Return the size of the value accessed by unvectorized data reference
1585 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1586 for the associated gimple statement, since that guarantees that DR_INFO
1587 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1588 here includes things like V1SI, which can be vectorized in the same way
1589 as a plain SI.) */
1590
1591 inline unsigned int
1592 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1593 {
1594 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1595 }
1596
1597 /* Return true if LOOP_VINFO requires a runtime check for whether the
1598 vector loop is profitable. */
1599
1600 inline bool
1601 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1602 {
1603 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1604 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1605 && th >= vect_vf_for_cost (loop_vinfo));
1606 }
1607
1608 /* Source location + hotness information. */
1609 extern dump_user_location_t vect_location;
1610
1611 /* A macro for calling:
1612 dump_begin_scope (MSG, vect_location);
1613 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1614 and then calling
1615 dump_end_scope ();
1616 once the object goes out of scope, thus capturing the nesting of
1617 the scopes.
1618
1619 These scopes affect dump messages within them: dump messages at the
1620 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1621 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1622
1623 #define DUMP_VECT_SCOPE(MSG) \
1624 AUTO_DUMP_SCOPE (MSG, vect_location)
1625
1626 /* A sentinel class for ensuring that the "vect_location" global gets
1627 reset at the end of a scope.
1628
1629 The "vect_location" global is used during dumping and contains a
1630 location_t, which could contain references to a tree block via the
1631 ad-hoc data. This data is used for tracking inlining information,
1632 but it's not a GC root; it's simply assumed that such locations never
1633 get accessed if the blocks are optimized away.
1634
1635 Hence we need to ensure that such locations are purged at the end
1636 of any operations using them (e.g. via this class). */
1637
1638 class auto_purge_vect_location
1639 {
1640 public:
1641 ~auto_purge_vect_location ();
1642 };
1643
1644 /*-----------------------------------------------------------------*/
1645 /* Function prototypes. */
1646 /*-----------------------------------------------------------------*/
1647
1648 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1649 in tree-vect-loop-manip.c. */
1650 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1651 tree, tree, tree, bool);
1652 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1653 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1654 class loop *, edge);
1655 class loop *vect_loop_versioning (loop_vec_info);
1656 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1657 tree *, tree *, tree *, int, bool, bool,
1658 tree *, drs_init_vec &);
1659 extern void vect_prepare_for_masked_peels (loop_vec_info);
1660 extern dump_user_location_t find_loop_location (class loop *);
1661 extern bool vect_can_advance_ivs_p (loop_vec_info);
1662 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1663
1664 /* In tree-vect-stmts.c. */
1665 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1666 poly_uint64 = 0);
1667 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1668 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1669 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1670 extern tree get_same_sized_vectype (tree, tree);
1671 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1672 extern bool vect_get_loop_mask_type (loop_vec_info);
1673 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1674 stmt_vec_info * = NULL, gimple ** = NULL);
1675 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1676 tree *, stmt_vec_info * = NULL,
1677 gimple ** = NULL);
1678 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1679 tree, tree, enum tree_code *,
1680 enum tree_code *, int *,
1681 vec<tree> *);
1682 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1683 enum tree_code *, int *,
1684 vec<tree> *);
1685 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1686 enum vect_cost_for_stmt, stmt_vec_info,
1687 int, enum vect_cost_model_location);
1688 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1689 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1690 gimple_stmt_iterator *);
1691 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1692 extern tree vect_get_store_rhs (stmt_vec_info);
1693 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1694 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1695 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1696 vec<tree> *, slp_tree);
1697 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1698 vec<tree> *, vec<tree> *);
1699 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1700 gimple_stmt_iterator *);
1701 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1702 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1703 slp_tree, slp_instance);
1704 extern void vect_remove_stores (stmt_vec_info);
1705 extern bool vect_nop_conversion_p (stmt_vec_info);
1706 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1707 slp_instance, stmt_vector_for_cost *);
1708 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1709 unsigned int *, unsigned int *,
1710 stmt_vector_for_cost *,
1711 stmt_vector_for_cost *, bool);
1712 extern void vect_get_store_cost (stmt_vec_info, int,
1713 unsigned int *, stmt_vector_for_cost *);
1714 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1715 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1716 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1717 extern void optimize_mask_stores (class loop*);
1718 extern gcall *vect_gen_while (tree, tree, tree);
1719 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1720 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1721 tree *, unsigned int = 0);
1722 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1723
1724 /* In tree-vect-data-refs.c. */
1725 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1726 extern enum dr_alignment_support vect_supportable_dr_alignment
1727 (dr_vec_info *, bool);
1728 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1729 HOST_WIDE_INT *);
1730 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1731 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1732 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1733 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1734 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1735 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1736 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1737 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1738 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1739 tree, int, internal_fn *, tree *);
1740 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1741 gather_scatter_info *);
1742 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1743 vec<data_reference_p> *);
1744 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1745 extern void vect_record_base_alignments (vec_info *);
1746 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
1747 tree *, gimple_stmt_iterator *,
1748 gimple **, bool,
1749 tree = NULL_TREE, tree = NULL_TREE);
1750 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1751 stmt_vec_info, tree);
1752 extern void vect_copy_ref_info (tree, tree);
1753 extern tree vect_create_destination_var (tree, tree);
1754 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1755 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1756 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1757 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1758 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1759 gimple_stmt_iterator *, vec<tree> *);
1760 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1761 tree *, enum dr_alignment_support, tree,
1762 class loop **);
1763 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1764 gimple_stmt_iterator *);
1765 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1766 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1767 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1768 const char * = NULL);
1769 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1770 tree, tree = NULL_TREE);
1771
1772 /* In tree-vect-loop.c. */
1773 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1774 /* Used in tree-vect-loop-manip.c */
1775 extern void determine_peel_for_niter (loop_vec_info);
1776 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1777 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1778 enum tree_code);
1779 extern bool needs_fold_left_reduction_p (tree, tree_code);
1780 /* Drive for loop analysis stage. */
1781 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1782 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1783 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1784 tree *, bool);
1785 extern tree vect_halve_mask_nunits (tree, machine_mode);
1786 extern tree vect_double_mask_nunits (tree, machine_mode);
1787 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1788 unsigned int, tree, tree);
1789 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1790 unsigned int, tree, unsigned int);
1791 extern stmt_vec_info info_for_reduction (stmt_vec_info);
1792
1793 /* Drive for loop transformation stage. */
1794 extern class loop *vect_transform_loop (loop_vec_info);
1795 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1796 vec_info_shared *);
1797 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1798 slp_tree, slp_instance, int,
1799 bool, stmt_vector_for_cost *);
1800 extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
1801 stmt_vector_for_cost *);
1802 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1803 stmt_vec_info *, slp_tree,
1804 stmt_vector_for_cost *);
1805 extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
1806 stmt_vec_info *, slp_tree);
1807 extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
1808 slp_tree, slp_instance);
1809 extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
1810 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1811 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1812 stmt_vector_for_cost *,
1813 stmt_vector_for_cost *,
1814 stmt_vector_for_cost *);
1815 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1816
1817 /* In tree-vect-slp.c. */
1818 extern void vect_free_slp_instance (slp_instance, bool);
1819 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1820 gimple_stmt_iterator *, poly_uint64,
1821 slp_instance, bool, unsigned *);
1822 extern bool vect_slp_analyze_operations (vec_info *);
1823 extern void vect_schedule_slp (vec_info *);
1824 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1825 extern bool vect_make_slp_decision (loop_vec_info);
1826 extern void vect_detect_hybrid_slp (loop_vec_info);
1827 extern void vect_get_slp_defs (slp_tree, vec<vec<tree> > *, unsigned n = -1U);
1828 extern bool vect_slp_bb (basic_block);
1829 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1830 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1831 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
1832 unsigned int * = NULL,
1833 tree * = NULL, tree * = NULL);
1834 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1835 vec<tree>, unsigned int, vec<tree> &);
1836 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1837
1838 /* In tree-vect-patterns.c. */
1839 /* Pattern recognition functions.
1840 Additional pattern recognition functions can (and will) be added
1841 in the future. */
1842 void vect_pattern_recog (vec_info *);
1843
1844 /* In tree-vectorizer.c. */
1845 unsigned vectorize_loops (void);
1846 void vect_free_loop_info_assumptions (class loop *);
1847 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1848
1849
1850 #endif /* GCC_TREE_VECTORIZER_H */