]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
arm: Factorize several occurrences of the same code into reg_needs_saving_p
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef class _stmt_vec_info *stmt_vec_info;
25
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include <utility>
30
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
37 };
38
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
44 };
45
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
53 };
54
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
66 };
67
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
74
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
77
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
81
82 /* Use a folding reduction within the loop to implement:
83
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
86
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
89 };
90
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
94
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 tree vectype;
103 int misalign;
104 };
105
106 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
107
108 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
109 known alignment for that base. */
110 typedef hash_map<tree_operand_hash,
111 innermost_loop_behavior *> vec_base_alignments;
112
113 /************************************************************************
114 SLP
115 ************************************************************************/
116 typedef struct _slp_tree *slp_tree;
117
118 /* A computation tree of an SLP instance. Each node corresponds to a group of
119 stmts to be packed in a SIMD stmt. */
120 struct _slp_tree {
121 /* Nodes that contain def-stmts of this node statements operands. */
122 vec<slp_tree> children;
123
124 /* A group of scalar stmts to be vectorized together. */
125 vec<stmt_vec_info> stmts;
126 /* A group of scalar operands to be vectorized together. */
127 vec<tree> ops;
128
129 /* Load permutation relative to the stores, NULL if there is no
130 permutation. */
131 vec<unsigned> load_permutation;
132
133 /* Vectorized stmt/s. */
134 vec<stmt_vec_info> vec_stmts;
135 /* Number of vector stmts that are created to replace the group of scalar
136 stmts. It is calculated during the transformation phase as the number of
137 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
138 divided by vector size. */
139 unsigned int vec_stmts_size;
140
141 /* Reference count in the SLP graph. */
142 unsigned int refcnt;
143 /* The maximum number of vector elements for the subtree rooted
144 at this node. */
145 poly_uint64 max_nunits;
146 /* Whether the scalar computations use two different operators. */
147 bool two_operators;
148 /* The DEF type of this node. */
149 enum vect_def_type def_type;
150 };
151
152
153 /* SLP instance is a sequence of stmts in a loop that can be packed into
154 SIMD stmts. */
155 typedef class _slp_instance {
156 public:
157 /* The root of SLP tree. */
158 slp_tree root;
159
160 /* For vector constructors, the constructor stmt that the SLP tree is built
161 from, NULL otherwise. */
162 stmt_vec_info root_stmt;
163
164 /* The unrolling factor required to vectorized this SLP instance. */
165 poly_uint64 unrolling_factor;
166
167 /* The group of nodes that contain loads of this SLP instance. */
168 vec<slp_tree> loads;
169
170 /* The SLP node containing the reduction PHIs. */
171 slp_tree reduc_phis;
172 } *slp_instance;
173
174
175 /* Access Functions. */
176 #define SLP_INSTANCE_TREE(S) (S)->root
177 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
178 #define SLP_INSTANCE_LOADS(S) (S)->loads
179 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
180
181 #define SLP_TREE_CHILDREN(S) (S)->children
182 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
183 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
184 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
185 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
186 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
187 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
188 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
189
190 /* Key for map that records association between
191 scalar conditions and corresponding loop mask, and
192 is populated by vect_record_loop_mask. */
193
194 struct scalar_cond_masked_key
195 {
196 scalar_cond_masked_key (tree t, unsigned ncopies_)
197 : ncopies (ncopies_)
198 {
199 get_cond_ops_from_tree (t);
200 }
201
202 void get_cond_ops_from_tree (tree);
203
204 unsigned ncopies;
205 tree_code code;
206 tree op0;
207 tree op1;
208 };
209
210 template<>
211 struct default_hash_traits<scalar_cond_masked_key>
212 {
213 typedef scalar_cond_masked_key compare_type;
214 typedef scalar_cond_masked_key value_type;
215
216 static inline hashval_t
217 hash (value_type v)
218 {
219 inchash::hash h;
220 h.add_int (v.code);
221 inchash::add_expr (v.op0, h, 0);
222 inchash::add_expr (v.op1, h, 0);
223 h.add_int (v.ncopies);
224 return h.end ();
225 }
226
227 static inline bool
228 equal (value_type existing, value_type candidate)
229 {
230 return (existing.ncopies == candidate.ncopies
231 && existing.code == candidate.code
232 && operand_equal_p (existing.op0, candidate.op0, 0)
233 && operand_equal_p (existing.op1, candidate.op1, 0));
234 }
235
236 static const bool empty_zero_p = true;
237
238 static inline void
239 mark_empty (value_type &v)
240 {
241 v.ncopies = 0;
242 }
243
244 static inline bool
245 is_empty (value_type v)
246 {
247 return v.ncopies == 0;
248 }
249
250 static inline void mark_deleted (value_type &) {}
251
252 static inline bool is_deleted (const value_type &)
253 {
254 return false;
255 }
256
257 static inline void remove (value_type &) {}
258 };
259
260 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
261
262 /* Describes two objects whose addresses must be unequal for the vectorized
263 loop to be valid. */
264 typedef std::pair<tree, tree> vec_object_pair;
265
266 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
267 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
268 class vec_lower_bound {
269 public:
270 vec_lower_bound () {}
271 vec_lower_bound (tree e, bool u, poly_uint64 m)
272 : expr (e), unsigned_p (u), min_value (m) {}
273
274 tree expr;
275 bool unsigned_p;
276 poly_uint64 min_value;
277 };
278
279 /* Vectorizer state shared between different analyses like vector sizes
280 of the same CFG region. */
281 class vec_info_shared {
282 public:
283 vec_info_shared();
284 ~vec_info_shared();
285
286 void save_datarefs();
287 void check_datarefs();
288
289 /* All data references. Freed by free_data_refs, so not an auto_vec. */
290 vec<data_reference_p> datarefs;
291 vec<data_reference> datarefs_copy;
292
293 /* The loop nest in which the data dependences are computed. */
294 auto_vec<loop_p> loop_nest;
295
296 /* All data dependences. Freed by free_dependence_relations, so not
297 an auto_vec. */
298 vec<ddr_p> ddrs;
299 };
300
301 /* Vectorizer state common between loop and basic-block vectorization. */
302 class vec_info {
303 public:
304 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
305 enum vec_kind { bb, loop };
306
307 vec_info (vec_kind, void *, vec_info_shared *);
308 ~vec_info ();
309
310 stmt_vec_info add_stmt (gimple *);
311 stmt_vec_info lookup_stmt (gimple *);
312 stmt_vec_info lookup_def (tree);
313 stmt_vec_info lookup_single_use (tree);
314 class dr_vec_info *lookup_dr (data_reference *);
315 void move_dr (stmt_vec_info, stmt_vec_info);
316 void remove_stmt (stmt_vec_info);
317 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
318
319 /* The type of vectorization. */
320 vec_kind kind;
321
322 /* Shared vectorizer state. */
323 vec_info_shared *shared;
324
325 /* The mapping of GIMPLE UID to stmt_vec_info. */
326 vec<stmt_vec_info> stmt_vec_infos;
327
328 /* The SLP graph. */
329 auto_vec<slp_instance> slp_instances;
330 auto_vec<slp_tree> slp_loads;
331
332 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
333 known alignment for that base. */
334 vec_base_alignments base_alignments;
335
336 /* All interleaving chains of stores, represented by the first
337 stmt in the chain. */
338 auto_vec<stmt_vec_info> grouped_stores;
339
340 /* Cost data used by the target cost model. */
341 void *target_cost_data;
342
343 /* The set of vector modes used in the vectorized region. */
344 mode_set used_vector_modes;
345
346 /* The argument we should pass to related_vector_mode when looking up
347 the vector mode for a scalar mode, or VOIDmode if we haven't yet
348 made any decisions about which vector modes to use. */
349 machine_mode vector_mode;
350
351 private:
352 stmt_vec_info new_stmt_vec_info (gimple *stmt);
353 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
354 void free_stmt_vec_infos ();
355 void free_stmt_vec_info (stmt_vec_info);
356 };
357
358 class _loop_vec_info;
359 class _bb_vec_info;
360
361 template<>
362 template<>
363 inline bool
364 is_a_helper <_loop_vec_info *>::test (vec_info *i)
365 {
366 return i->kind == vec_info::loop;
367 }
368
369 template<>
370 template<>
371 inline bool
372 is_a_helper <_bb_vec_info *>::test (vec_info *i)
373 {
374 return i->kind == vec_info::bb;
375 }
376
377
378 /* In general, we can divide the vector statements in a vectorized loop
379 into related groups ("rgroups") and say that for each rgroup there is
380 some nS such that the rgroup operates on nS values from one scalar
381 iteration followed by nS values from the next. That is, if VF is the
382 vectorization factor of the loop, the rgroup operates on a sequence:
383
384 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
385
386 where (i,j) represents a scalar value with index j in a scalar
387 iteration with index i.
388
389 [ We use the term "rgroup" to emphasise that this grouping isn't
390 necessarily the same as the grouping of statements used elsewhere.
391 For example, if we implement a group of scalar loads using gather
392 loads, we'll use a separate gather load for each scalar load, and
393 thus each gather load will belong to its own rgroup. ]
394
395 In general this sequence will occupy nV vectors concatenated
396 together. If these vectors have nL lanes each, the total number
397 of scalar values N is given by:
398
399 N = nS * VF = nV * nL
400
401 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
402 are compile-time constants but VF and nL can be variable (if the target
403 supports variable-length vectors).
404
405 In classical vectorization, each iteration of the vector loop would
406 handle exactly VF iterations of the original scalar loop. However,
407 in a fully-masked loop, a particular iteration of the vector loop
408 might handle fewer than VF iterations of the scalar loop. The vector
409 lanes that correspond to iterations of the scalar loop are said to be
410 "active" and the other lanes are said to be "inactive".
411
412 In a fully-masked loop, many rgroups need to be masked to ensure that
413 they have no effect for the inactive lanes. Each such rgroup needs a
414 sequence of booleans in the same order as above, but with each (i,j)
415 replaced by a boolean that indicates whether iteration i is active.
416 This sequence occupies nV vector masks that again have nL lanes each.
417 Thus the mask sequence as a whole consists of VF independent booleans
418 that are each repeated nS times.
419
420 We make the simplifying assumption that if a sequence of nV masks is
421 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
422 VIEW_CONVERTing it. This holds for all current targets that support
423 fully-masked loops. For example, suppose the scalar loop is:
424
425 float *f;
426 double *d;
427 for (int i = 0; i < n; ++i)
428 {
429 f[i * 2 + 0] += 1.0f;
430 f[i * 2 + 1] += 2.0f;
431 d[i] += 3.0;
432 }
433
434 and suppose that vectors have 256 bits. The vectorized f accesses
435 will belong to one rgroup and the vectorized d access to another:
436
437 f rgroup: nS = 2, nV = 1, nL = 8
438 d rgroup: nS = 1, nV = 1, nL = 4
439 VF = 4
440
441 [ In this simple example the rgroups do correspond to the normal
442 SLP grouping scheme. ]
443
444 If only the first three lanes are active, the masks we need are:
445
446 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
447 d rgroup: 1 | 1 | 1 | 0
448
449 Here we can use a mask calculated for f's rgroup for d's, but not
450 vice versa.
451
452 Thus for each value of nV, it is enough to provide nV masks, with the
453 mask being calculated based on the highest nL (or, equivalently, based
454 on the highest nS) required by any rgroup with that nV. We therefore
455 represent the entire collection of masks as a two-level table, with the
456 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
457 the second being indexed by the mask index 0 <= i < nV. */
458
459 /* The masks needed by rgroups with nV vectors, according to the
460 description above. */
461 struct rgroup_masks {
462 /* The largest nS for all rgroups that use these masks. */
463 unsigned int max_nscalars_per_iter;
464
465 /* The type of mask to use, based on the highest nS recorded above. */
466 tree mask_type;
467
468 /* A vector of nV masks, in iteration order. */
469 vec<tree> masks;
470 };
471
472 typedef auto_vec<rgroup_masks> vec_loop_masks;
473
474 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
475
476 /*-----------------------------------------------------------------*/
477 /* Info on vectorized loops. */
478 /*-----------------------------------------------------------------*/
479 typedef class _loop_vec_info : public vec_info {
480 public:
481 _loop_vec_info (class loop *, vec_info_shared *);
482 ~_loop_vec_info ();
483
484 /* The loop to which this info struct refers to. */
485 class loop *loop;
486
487 /* The loop basic blocks. */
488 basic_block *bbs;
489
490 /* Number of latch executions. */
491 tree num_itersm1;
492 /* Number of iterations. */
493 tree num_iters;
494 /* Number of iterations of the original loop. */
495 tree num_iters_unchanged;
496 /* Condition under which this loop is analyzed and versioned. */
497 tree num_iters_assumptions;
498
499 /* Threshold of number of iterations below which vectorization will not be
500 performed. It is calculated from MIN_PROFITABLE_ITERS and
501 param_min_vect_loop_bound. */
502 unsigned int th;
503
504 /* When applying loop versioning, the vector form should only be used
505 if the number of scalar iterations is >= this value, on top of all
506 the other requirements. Ignored when loop versioning is not being
507 used. */
508 poly_uint64 versioning_threshold;
509
510 /* Unrolling factor */
511 poly_uint64 vectorization_factor;
512
513 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
514 if there is no particular limit. */
515 unsigned HOST_WIDE_INT max_vectorization_factor;
516
517 /* The masks that a fully-masked loop should use to avoid operating
518 on inactive scalars. */
519 vec_loop_masks masks;
520
521 /* Set of scalar conditions that have loop mask applied. */
522 scalar_cond_masked_set_type scalar_cond_masked_set;
523
524 /* If we are using a loop mask to align memory addresses, this variable
525 contains the number of vector elements that we should skip in the
526 first iteration of the vector loop (i.e. the number of leading
527 elements that should be false in the first mask). */
528 tree mask_skip_niters;
529
530 /* Type of the variables to use in the WHILE_ULT call for fully-masked
531 loops. */
532 tree mask_compare_type;
533
534 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
535 the loop should not be vectorized, if constant non-zero, simd_if_cond
536 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
537 should be versioned on that condition, using scalar loop if the condition
538 is false and vectorized loop otherwise. */
539 tree simd_if_cond;
540
541 /* Type of the IV to use in the WHILE_ULT call for fully-masked
542 loops. */
543 tree iv_type;
544
545 /* Unknown DRs according to which loop was peeled. */
546 class dr_vec_info *unaligned_dr;
547
548 /* peeling_for_alignment indicates whether peeling for alignment will take
549 place, and what the peeling factor should be:
550 peeling_for_alignment = X means:
551 If X=0: Peeling for alignment will not be applied.
552 If X>0: Peel first X iterations.
553 If X=-1: Generate a runtime test to calculate the number of iterations
554 to be peeled, using the dataref recorded in the field
555 unaligned_dr. */
556 int peeling_for_alignment;
557
558 /* The mask used to check the alignment of pointers or arrays. */
559 int ptr_mask;
560
561 /* Data Dependence Relations defining address ranges that are candidates
562 for a run-time aliasing check. */
563 auto_vec<ddr_p> may_alias_ddrs;
564
565 /* Data Dependence Relations defining address ranges together with segment
566 lengths from which the run-time aliasing check is built. */
567 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
568
569 /* Check that the addresses of each pair of objects is unequal. */
570 auto_vec<vec_object_pair> check_unequal_addrs;
571
572 /* List of values that are required to be nonzero. This is used to check
573 whether things like "x[i * n] += 1;" are safe and eventually gets added
574 to the checks for lower bounds below. */
575 auto_vec<tree> check_nonzero;
576
577 /* List of values that need to be checked for a minimum value. */
578 auto_vec<vec_lower_bound> lower_bounds;
579
580 /* Statements in the loop that have data references that are candidates for a
581 runtime (loop versioning) misalignment check. */
582 auto_vec<stmt_vec_info> may_misalign_stmts;
583
584 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
585 auto_vec<stmt_vec_info> reductions;
586
587 /* All reduction chains in the loop, represented by the first
588 stmt in the chain. */
589 auto_vec<stmt_vec_info> reduction_chains;
590
591 /* Cost vector for a single scalar iteration. */
592 auto_vec<stmt_info_for_cost> scalar_cost_vec;
593
594 /* Map of IV base/step expressions to inserted name in the preheader. */
595 hash_map<tree_operand_hash, tree> *ivexpr_map;
596
597 /* Map of OpenMP "omp simd array" scan variables to corresponding
598 rhs of the store of the initializer. */
599 hash_map<tree, tree> *scan_map;
600
601 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
602 applied to the loop, i.e., no unrolling is needed, this is 1. */
603 poly_uint64 slp_unrolling_factor;
604
605 /* Cost of a single scalar iteration. */
606 int single_scalar_iteration_cost;
607
608 /* The cost of the vector prologue and epilogue, including peeled
609 iterations and set-up code. */
610 int vec_outside_cost;
611
612 /* The cost of the vector loop body. */
613 int vec_inside_cost;
614
615 /* Is the loop vectorizable? */
616 bool vectorizable;
617
618 /* Records whether we still have the option of using a fully-masked loop. */
619 bool can_fully_mask_p;
620
621 /* True if have decided to use a fully-masked loop. */
622 bool fully_masked_p;
623
624 /* When we have grouped data accesses with gaps, we may introduce invalid
625 memory accesses. We peel the last iteration of the loop to prevent
626 this. */
627 bool peeling_for_gaps;
628
629 /* When the number of iterations is not a multiple of the vector size
630 we need to peel off iterations at the end to form an epilogue loop. */
631 bool peeling_for_niter;
632
633 /* True if there are no loop carried data dependencies in the loop.
634 If loop->safelen <= 1, then this is always true, either the loop
635 didn't have any loop carried data dependencies, or the loop is being
636 vectorized guarded with some runtime alias checks, or couldn't
637 be vectorized at all, but then this field shouldn't be used.
638 For loop->safelen >= 2, the user has asserted that there are no
639 backward dependencies, but there still could be loop carried forward
640 dependencies in such loops. This flag will be false if normal
641 vectorizer data dependency analysis would fail or require versioning
642 for alias, but because of loop->safelen >= 2 it has been vectorized
643 even without versioning for alias. E.g. in:
644 #pragma omp simd
645 for (int i = 0; i < m; i++)
646 a[i] = a[i + k] * c;
647 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
648 DTRT even for k > 0 && k < m, but without safelen we would not
649 vectorize this, so this field would be false. */
650 bool no_data_dependencies;
651
652 /* Mark loops having masked stores. */
653 bool has_mask_store;
654
655 /* Queued scaling factor for the scalar loop. */
656 profile_probability scalar_loop_scaling;
657
658 /* If if-conversion versioned this loop before conversion, this is the
659 loop version without if-conversion. */
660 class loop *scalar_loop;
661
662 /* For loops being epilogues of already vectorized loops
663 this points to the original vectorized loop. Otherwise NULL. */
664 _loop_vec_info *orig_loop_info;
665
666 /* Used to store loop_vec_infos of epilogues of this loop during
667 analysis. */
668 vec<_loop_vec_info *> epilogue_vinfos;
669
670 } *loop_vec_info;
671
672 /* Access Functions. */
673 #define LOOP_VINFO_LOOP(L) (L)->loop
674 #define LOOP_VINFO_BBS(L) (L)->bbs
675 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
676 #define LOOP_VINFO_NITERS(L) (L)->num_iters
677 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
678 prologue peeling retain total unchanged scalar loop iterations for
679 cost model. */
680 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
681 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
682 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
683 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
684 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
685 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
686 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
687 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
688 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
689 #define LOOP_VINFO_MASKS(L) (L)->masks
690 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
691 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
692 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
693 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
694 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
695 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
696 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
697 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
698 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
699 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
700 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
701 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
702 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
703 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
704 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
705 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
706 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
707 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
708 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
709 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
710 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
711 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
712 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
713 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
714 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
715 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
716 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
717 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
718 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
719 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
720 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
721 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
722
723 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
724 ((L)->may_misalign_stmts.length () > 0)
725 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
726 ((L)->comp_alias_ddrs.length () > 0 \
727 || (L)->check_unequal_addrs.length () > 0 \
728 || (L)->lower_bounds.length () > 0)
729 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
730 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
731 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
732 (LOOP_VINFO_SIMD_IF_COND (L))
733 #define LOOP_REQUIRES_VERSIONING(L) \
734 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
735 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
736 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
737 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
738
739 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
740 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
741
742 #define LOOP_VINFO_EPILOGUE_P(L) \
743 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
744
745 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
746 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
747
748 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
749 value signifies success, and a NULL value signifies failure, supporting
750 propagating an opt_problem * describing the failure back up the call
751 stack. */
752 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
753
754 static inline loop_vec_info
755 loop_vec_info_for_loop (class loop *loop)
756 {
757 return (loop_vec_info) loop->aux;
758 }
759
760 typedef class _bb_vec_info : public vec_info
761 {
762 public:
763 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
764 ~_bb_vec_info ();
765
766 basic_block bb;
767 gimple_stmt_iterator region_begin;
768 gimple_stmt_iterator region_end;
769 } *bb_vec_info;
770
771 #define BB_VINFO_BB(B) (B)->bb
772 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
773 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
774 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
775 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
776 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
777
778 static inline bb_vec_info
779 vec_info_for_bb (basic_block bb)
780 {
781 return (bb_vec_info) bb->aux;
782 }
783
784 /*-----------------------------------------------------------------*/
785 /* Info on vectorized defs. */
786 /*-----------------------------------------------------------------*/
787 enum stmt_vec_info_type {
788 undef_vec_info_type = 0,
789 load_vec_info_type,
790 store_vec_info_type,
791 shift_vec_info_type,
792 op_vec_info_type,
793 call_vec_info_type,
794 call_simd_clone_vec_info_type,
795 assignment_vec_info_type,
796 condition_vec_info_type,
797 comparison_vec_info_type,
798 reduc_vec_info_type,
799 induc_vec_info_type,
800 type_promotion_vec_info_type,
801 type_demotion_vec_info_type,
802 type_conversion_vec_info_type,
803 cycle_phi_info_type,
804 lc_phi_info_type,
805 loop_exit_ctrl_vec_info_type
806 };
807
808 /* Indicates whether/how a variable is used in the scope of loop/basic
809 block. */
810 enum vect_relevant {
811 vect_unused_in_scope = 0,
812
813 /* The def is only used outside the loop. */
814 vect_used_only_live,
815 /* The def is in the inner loop, and the use is in the outer loop, and the
816 use is a reduction stmt. */
817 vect_used_in_outer_by_reduction,
818 /* The def is in the inner loop, and the use is in the outer loop (and is
819 not part of reduction). */
820 vect_used_in_outer,
821
822 /* defs that feed computations that end up (only) in a reduction. These
823 defs may be used by non-reduction stmts, but eventually, any
824 computations/values that are affected by these defs are used to compute
825 a reduction (i.e. don't get stored to memory, for example). We use this
826 to identify computations that we can change the order in which they are
827 computed. */
828 vect_used_by_reduction,
829
830 vect_used_in_scope
831 };
832
833 /* The type of vectorization that can be applied to the stmt: regular loop-based
834 vectorization; pure SLP - the stmt is a part of SLP instances and does not
835 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
836 a part of SLP instance and also must be loop-based vectorized, since it has
837 uses outside SLP sequences.
838
839 In the loop context the meanings of pure and hybrid SLP are slightly
840 different. By saying that pure SLP is applied to the loop, we mean that we
841 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
842 vectorized without doing any conceptual unrolling, cause we don't pack
843 together stmts from different iterations, only within a single iteration.
844 Loop hybrid SLP means that we exploit both intra-iteration and
845 inter-iteration parallelism (e.g., number of elements in the vector is 4
846 and the slp-group-size is 2, in which case we don't have enough parallelism
847 within an iteration, so we obtain the rest of the parallelism from subsequent
848 iterations by unrolling the loop by 2). */
849 enum slp_vect_type {
850 loop_vect = 0,
851 pure_slp,
852 hybrid
853 };
854
855 /* Says whether a statement is a load, a store of a vectorized statement
856 result, or a store of an invariant value. */
857 enum vec_load_store_type {
858 VLS_LOAD,
859 VLS_STORE,
860 VLS_STORE_INVARIANT
861 };
862
863 /* Describes how we're going to vectorize an individual load or store,
864 or a group of loads or stores. */
865 enum vect_memory_access_type {
866 /* An access to an invariant address. This is used only for loads. */
867 VMAT_INVARIANT,
868
869 /* A simple contiguous access. */
870 VMAT_CONTIGUOUS,
871
872 /* A contiguous access that goes down in memory rather than up,
873 with no additional permutation. This is used only for stores
874 of invariants. */
875 VMAT_CONTIGUOUS_DOWN,
876
877 /* A simple contiguous access in which the elements need to be permuted
878 after loading or before storing. Only used for loop vectorization;
879 SLP uses separate permutes. */
880 VMAT_CONTIGUOUS_PERMUTE,
881
882 /* A simple contiguous access in which the elements need to be reversed
883 after loading or before storing. */
884 VMAT_CONTIGUOUS_REVERSE,
885
886 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
887 VMAT_LOAD_STORE_LANES,
888
889 /* An access in which each scalar element is loaded or stored
890 individually. */
891 VMAT_ELEMENTWISE,
892
893 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
894 SLP accesses. Each unrolled iteration uses a contiguous load
895 or store for the whole group, but the groups from separate iterations
896 are combined in the same way as for VMAT_ELEMENTWISE. */
897 VMAT_STRIDED_SLP,
898
899 /* The access uses gather loads or scatter stores. */
900 VMAT_GATHER_SCATTER
901 };
902
903 class dr_vec_info {
904 public:
905 /* The data reference itself. */
906 data_reference *dr;
907 /* The statement that contains the data reference. */
908 stmt_vec_info stmt;
909 /* The misalignment in bytes of the reference, or -1 if not known. */
910 int misalignment;
911 /* The byte alignment that we'd ideally like the reference to have,
912 and the value that misalignment is measured against. */
913 poly_uint64 target_alignment;
914 /* If true the alignment of base_decl needs to be increased. */
915 bool base_misaligned;
916 tree base_decl;
917
918 /* Stores current vectorized loop's offset. To be added to the DR's
919 offset to calculate current offset of data reference. */
920 tree offset;
921 };
922
923 typedef struct data_reference *dr_p;
924
925 class _stmt_vec_info {
926 public:
927
928 enum stmt_vec_info_type type;
929
930 /* Indicates whether this stmts is part of a computation whose result is
931 used outside the loop. */
932 bool live;
933
934 /* Stmt is part of some pattern (computation idiom) */
935 bool in_pattern_p;
936
937 /* True if the statement was created during pattern recognition as
938 part of the replacement for RELATED_STMT. This implies that the
939 statement isn't part of any basic block, although for convenience
940 its gimple_bb is the same as for RELATED_STMT. */
941 bool pattern_stmt_p;
942
943 /* Is this statement vectorizable or should it be skipped in (partial)
944 vectorization. */
945 bool vectorizable;
946
947 /* The stmt to which this info struct refers to. */
948 gimple *stmt;
949
950 /* The vector type to be used for the LHS of this statement. */
951 tree vectype;
952
953 /* The vectorized version of the stmt. */
954 stmt_vec_info vectorized_stmt;
955
956
957 /* The following is relevant only for stmts that contain a non-scalar
958 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
959 at most one such data-ref. */
960
961 dr_vec_info dr_aux;
962
963 /* Information about the data-ref relative to this loop
964 nest (the loop that is being considered for vectorization). */
965 innermost_loop_behavior dr_wrt_vec_loop;
966
967 /* For loop PHI nodes, the base and evolution part of it. This makes sure
968 this information is still available in vect_update_ivs_after_vectorizer
969 where we may not be able to re-analyze the PHI nodes evolution as
970 peeling for the prologue loop can make it unanalyzable. The evolution
971 part is still correct after peeling, but the base may have changed from
972 the version here. */
973 tree loop_phi_evolution_base_unchanged;
974 tree loop_phi_evolution_part;
975
976 /* Used for various bookkeeping purposes, generally holding a pointer to
977 some other stmt S that is in some way "related" to this stmt.
978 Current use of this field is:
979 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
980 true): S is the "pattern stmt" that represents (and replaces) the
981 sequence of stmts that constitutes the pattern. Similarly, the
982 related_stmt of the "pattern stmt" points back to this stmt (which is
983 the last stmt in the original sequence of stmts that constitutes the
984 pattern). */
985 stmt_vec_info related_stmt;
986
987 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
988 The sequence is attached to the original statement rather than the
989 pattern statement. */
990 gimple_seq pattern_def_seq;
991
992 /* List of datarefs that are known to have the same alignment as the dataref
993 of this stmt. */
994 vec<dr_p> same_align_refs;
995
996 /* Selected SIMD clone's function info. First vector element
997 is SIMD clone's function decl, followed by a pair of trees (base + step)
998 for linear arguments (pair of NULLs for other arguments). */
999 vec<tree> simd_clone_info;
1000
1001 /* Classify the def of this stmt. */
1002 enum vect_def_type def_type;
1003
1004 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1005 enum slp_vect_type slp_type;
1006
1007 /* Interleaving and reduction chains info. */
1008 /* First element in the group. */
1009 stmt_vec_info first_element;
1010 /* Pointer to the next element in the group. */
1011 stmt_vec_info next_element;
1012 /* The size of the group. */
1013 unsigned int size;
1014 /* For stores, number of stores from this group seen. We vectorize the last
1015 one. */
1016 unsigned int store_count;
1017 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1018 is 1. */
1019 unsigned int gap;
1020
1021 /* The minimum negative dependence distance this stmt participates in
1022 or zero if none. */
1023 unsigned int min_neg_dist;
1024
1025 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1026 of the loop induction variable and computation of array indexes. relevant
1027 indicates whether the stmt needs to be vectorized. */
1028 enum vect_relevant relevant;
1029
1030 /* For loads if this is a gather, for stores if this is a scatter. */
1031 bool gather_scatter_p;
1032
1033 /* True if this is an access with loop-invariant stride. */
1034 bool strided_p;
1035
1036 /* For both loads and stores. */
1037 unsigned simd_lane_access_p : 3;
1038
1039 /* Classifies how the load or store is going to be implemented
1040 for loop vectorization. */
1041 vect_memory_access_type memory_access_type;
1042
1043 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1044 tree induc_cond_initial_val;
1045
1046 /* If not NULL the value to be added to compute final reduction value. */
1047 tree reduc_epilogue_adjustment;
1048
1049 /* On a reduction PHI the reduction type as detected by
1050 vect_is_simple_reduction and vectorizable_reduction. */
1051 enum vect_reduction_type reduc_type;
1052
1053 /* The original reduction code, to be used in the epilogue. */
1054 enum tree_code reduc_code;
1055 /* An internal function we should use in the epilogue. */
1056 internal_fn reduc_fn;
1057
1058 /* On a stmt participating in the reduction the index of the operand
1059 on the reduction SSA cycle. */
1060 int reduc_idx;
1061
1062 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1063 On the def returned by vect_force_simple_reduction the
1064 corresponding PHI. */
1065 stmt_vec_info reduc_def;
1066
1067 /* The vector input type relevant for reduction vectorization. */
1068 tree reduc_vectype_in;
1069
1070 /* The vector type for performing the actual reduction. */
1071 tree reduc_vectype;
1072
1073 /* Whether we force a single cycle PHI during reduction vectorization. */
1074 bool force_single_cycle;
1075
1076 /* Whether on this stmt reduction meta is recorded. */
1077 bool is_reduc_info;
1078
1079 /* The number of scalar stmt references from active SLP instances. */
1080 unsigned int num_slp_uses;
1081
1082 /* If nonzero, the lhs of the statement could be truncated to this
1083 many bits without affecting any users of the result. */
1084 unsigned int min_output_precision;
1085
1086 /* If nonzero, all non-boolean input operands have the same precision,
1087 and they could each be truncated to this many bits without changing
1088 the result. */
1089 unsigned int min_input_precision;
1090
1091 /* If OPERATION_BITS is nonzero, the statement could be performed on
1092 an integer with the sign and number of bits given by OPERATION_SIGN
1093 and OPERATION_BITS without changing the result. */
1094 unsigned int operation_precision;
1095 signop operation_sign;
1096
1097 /* If the statement produces a boolean result, this value describes
1098 how we should choose the associated vector type. The possible
1099 values are:
1100
1101 - an integer precision N if we should use the vector mask type
1102 associated with N-bit integers. This is only used if all relevant
1103 input booleans also want the vector mask type for N-bit integers,
1104 or if we can convert them into that form by pattern-matching.
1105
1106 - ~0U if we considered choosing a vector mask type but decided
1107 to treat the boolean as a normal integer type instead.
1108
1109 - 0 otherwise. This means either that the operation isn't one that
1110 could have a vector mask type (and so should have a normal vector
1111 type instead) or that we simply haven't made a choice either way. */
1112 unsigned int mask_precision;
1113
1114 /* True if this is only suitable for SLP vectorization. */
1115 bool slp_vect_only_p;
1116 };
1117
1118 /* Information about a gather/scatter call. */
1119 struct gather_scatter_info {
1120 /* The internal function to use for the gather/scatter operation,
1121 or IFN_LAST if a built-in function should be used instead. */
1122 internal_fn ifn;
1123
1124 /* The FUNCTION_DECL for the built-in gather/scatter function,
1125 or null if an internal function should be used instead. */
1126 tree decl;
1127
1128 /* The loop-invariant base value. */
1129 tree base;
1130
1131 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1132 tree offset;
1133
1134 /* Each offset element should be multiplied by this amount before
1135 being added to the base. */
1136 int scale;
1137
1138 /* The definition type for the vectorized offset. */
1139 enum vect_def_type offset_dt;
1140
1141 /* The type of the vectorized offset. */
1142 tree offset_vectype;
1143
1144 /* The type of the scalar elements after loading or before storing. */
1145 tree element_type;
1146
1147 /* The type of the scalar elements being loaded or stored. */
1148 tree memory_type;
1149 };
1150
1151 /* Access Functions. */
1152 #define STMT_VINFO_TYPE(S) (S)->type
1153 #define STMT_VINFO_STMT(S) (S)->stmt
1154 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1155 #define STMT_VINFO_LIVE_P(S) (S)->live
1156 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1157 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1158 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1159 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1160 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1161 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1162 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1163 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1164 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1165 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1166 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1167 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1168
1169 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1170 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1171 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1172 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1173 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1174 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1175 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1176 (S)->dr_wrt_vec_loop.base_misalignment
1177 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1178 (S)->dr_wrt_vec_loop.offset_alignment
1179 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1180 (S)->dr_wrt_vec_loop.step_alignment
1181
1182 #define STMT_VINFO_DR_INFO(S) \
1183 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1184
1185 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1186 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1187 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1188 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1189 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1190 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1191 #define STMT_VINFO_GROUPED_ACCESS(S) \
1192 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1193 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1194 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1195 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1196 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1197 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1198 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1199 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1200 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1201 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1202 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1203 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1204
1205 #define DR_GROUP_FIRST_ELEMENT(S) \
1206 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1207 #define DR_GROUP_NEXT_ELEMENT(S) \
1208 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1209 #define DR_GROUP_SIZE(S) \
1210 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1211 #define DR_GROUP_STORE_COUNT(S) \
1212 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1213 #define DR_GROUP_GAP(S) \
1214 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1215
1216 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1217 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1218 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1219 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1220 #define REDUC_GROUP_SIZE(S) \
1221 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1222
1223 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1224
1225 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1226 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1227 #define STMT_SLP_TYPE(S) (S)->slp_type
1228
1229 #define VECT_MAX_COST 1000
1230
1231 /* The maximum number of intermediate steps required in multi-step type
1232 conversion. */
1233 #define MAX_INTERM_CVT_STEPS 3
1234
1235 #define MAX_VECTORIZATION_FACTOR INT_MAX
1236
1237 /* Nonzero if TYPE represents a (scalar) boolean type or type
1238 in the middle-end compatible with it (unsigned precision 1 integral
1239 types). Used to determine which types should be vectorized as
1240 VECTOR_BOOLEAN_TYPE_P. */
1241
1242 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1243 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1244 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1245 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1246 && TYPE_PRECISION (TYPE) == 1 \
1247 && TYPE_UNSIGNED (TYPE)))
1248
1249 static inline bool
1250 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1251 {
1252 return (loop->inner
1253 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1254 }
1255
1256 /* Return true if STMT_INFO should produce a vector mask type rather than
1257 a normal nonmask type. */
1258
1259 static inline bool
1260 vect_use_mask_type_p (stmt_vec_info stmt_info)
1261 {
1262 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1263 }
1264
1265 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1266 pattern. */
1267
1268 static inline bool
1269 is_pattern_stmt_p (stmt_vec_info stmt_info)
1270 {
1271 return stmt_info->pattern_stmt_p;
1272 }
1273
1274 /* If STMT_INFO is a pattern statement, return the statement that it
1275 replaces, otherwise return STMT_INFO itself. */
1276
1277 inline stmt_vec_info
1278 vect_orig_stmt (stmt_vec_info stmt_info)
1279 {
1280 if (is_pattern_stmt_p (stmt_info))
1281 return STMT_VINFO_RELATED_STMT (stmt_info);
1282 return stmt_info;
1283 }
1284
1285 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1286
1287 static inline stmt_vec_info
1288 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1289 {
1290 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1291 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1292 return stmt1_info;
1293 else
1294 return stmt2_info;
1295 }
1296
1297 /* If STMT_INFO has been replaced by a pattern statement, return the
1298 replacement statement, otherwise return STMT_INFO itself. */
1299
1300 inline stmt_vec_info
1301 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1302 {
1303 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1304 return STMT_VINFO_RELATED_STMT (stmt_info);
1305 return stmt_info;
1306 }
1307
1308 /* Return true if BB is a loop header. */
1309
1310 static inline bool
1311 is_loop_header_bb_p (basic_block bb)
1312 {
1313 if (bb == (bb->loop_father)->header)
1314 return true;
1315 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1316 return false;
1317 }
1318
1319 /* Return pow2 (X). */
1320
1321 static inline int
1322 vect_pow2 (int x)
1323 {
1324 int i, res = 1;
1325
1326 for (i = 0; i < x; i++)
1327 res *= 2;
1328
1329 return res;
1330 }
1331
1332 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1333
1334 static inline int
1335 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1336 tree vectype, int misalign)
1337 {
1338 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1339 vectype, misalign);
1340 }
1341
1342 /* Get cost by calling cost target builtin. */
1343
1344 static inline
1345 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1346 {
1347 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1348 }
1349
1350 /* Alias targetm.vectorize.init_cost. */
1351
1352 static inline void *
1353 init_cost (class loop *loop_info)
1354 {
1355 return targetm.vectorize.init_cost (loop_info);
1356 }
1357
1358 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1359 stmt_vec_info, tree, int, unsigned,
1360 enum vect_cost_model_location);
1361
1362 /* Alias targetm.vectorize.add_stmt_cost. */
1363
1364 static inline unsigned
1365 add_stmt_cost (vec_info *vinfo, void *data, int count,
1366 enum vect_cost_for_stmt kind,
1367 stmt_vec_info stmt_info, tree vectype, int misalign,
1368 enum vect_cost_model_location where)
1369 {
1370 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1371 stmt_info, vectype,
1372 misalign, where);
1373 if (dump_file && (dump_flags & TDF_DETAILS))
1374 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1375 cost, where);
1376 return cost;
1377 }
1378
1379 /* Alias targetm.vectorize.finish_cost. */
1380
1381 static inline void
1382 finish_cost (void *data, unsigned *prologue_cost,
1383 unsigned *body_cost, unsigned *epilogue_cost)
1384 {
1385 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1386 }
1387
1388 /* Alias targetm.vectorize.destroy_cost_data. */
1389
1390 static inline void
1391 destroy_cost_data (void *data)
1392 {
1393 targetm.vectorize.destroy_cost_data (data);
1394 }
1395
1396 inline void
1397 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1398 {
1399 stmt_info_for_cost *cost;
1400 unsigned i;
1401 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1402 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1403 cost->vectype, cost->misalign, cost->where);
1404 }
1405
1406 /*-----------------------------------------------------------------*/
1407 /* Info on data references alignment. */
1408 /*-----------------------------------------------------------------*/
1409 #define DR_MISALIGNMENT_UNKNOWN (-1)
1410 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1411
1412 inline void
1413 set_dr_misalignment (dr_vec_info *dr_info, int val)
1414 {
1415 dr_info->misalignment = val;
1416 }
1417
1418 inline int
1419 dr_misalignment (dr_vec_info *dr_info)
1420 {
1421 int misalign = dr_info->misalignment;
1422 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1423 return misalign;
1424 }
1425
1426 /* Reflects actual alignment of first access in the vectorized loop,
1427 taking into account peeling/versioning if applied. */
1428 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1429 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1430
1431 /* Only defined once DR_MISALIGNMENT is defined. */
1432 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1433
1434 /* Return true if data access DR_INFO is aligned to its target alignment
1435 (which may be less than a full vector). */
1436
1437 static inline bool
1438 aligned_access_p (dr_vec_info *dr_info)
1439 {
1440 return (DR_MISALIGNMENT (dr_info) == 0);
1441 }
1442
1443 /* Return TRUE if the alignment of the data access is known, and FALSE
1444 otherwise. */
1445
1446 static inline bool
1447 known_alignment_for_access_p (dr_vec_info *dr_info)
1448 {
1449 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1450 }
1451
1452 /* Return the minimum alignment in bytes that the vectorized version
1453 of DR_INFO is guaranteed to have. */
1454
1455 static inline unsigned int
1456 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1457 {
1458 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1459 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1460 if (DR_MISALIGNMENT (dr_info) == 0)
1461 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1462 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1463 }
1464
1465 /* Return the behavior of DR_INFO with respect to the vectorization context
1466 (which for outer loop vectorization might not be the behavior recorded
1467 in DR_INFO itself). */
1468
1469 static inline innermost_loop_behavior *
1470 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1471 {
1472 stmt_vec_info stmt_info = dr_info->stmt;
1473 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1474 if (loop_vinfo == NULL
1475 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1476 return &DR_INNERMOST (dr_info->dr);
1477 else
1478 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1479 }
1480
1481 /* Return the offset calculated by adding the offset of this DR_INFO to the
1482 corresponding data_reference's offset. If CHECK_OUTER then use
1483 vect_dr_behavior to select the appropriate data_reference to use. */
1484
1485 inline tree
1486 get_dr_vinfo_offset (vec_info *vinfo,
1487 dr_vec_info *dr_info, bool check_outer = false)
1488 {
1489 innermost_loop_behavior *base;
1490 if (check_outer)
1491 base = vect_dr_behavior (vinfo, dr_info);
1492 else
1493 base = &dr_info->dr->innermost;
1494
1495 tree offset = base->offset;
1496
1497 if (!dr_info->offset)
1498 return offset;
1499
1500 offset = fold_convert (sizetype, offset);
1501 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1502 dr_info->offset);
1503 }
1504
1505
1506 /* Return true if the vect cost model is unlimited. */
1507 static inline bool
1508 unlimited_cost_model (loop_p loop)
1509 {
1510 if (loop != NULL && loop->force_vectorize
1511 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1512 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1513 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1514 }
1515
1516 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1517 if the first iteration should use a partial mask in order to achieve
1518 alignment. */
1519
1520 static inline bool
1521 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1522 {
1523 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1524 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1525 }
1526
1527 /* Return the number of vectors of type VECTYPE that are needed to get
1528 NUNITS elements. NUNITS should be based on the vectorization factor,
1529 so it is always a known multiple of the number of elements in VECTYPE. */
1530
1531 static inline unsigned int
1532 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1533 {
1534 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1535 }
1536
1537 /* Return the number of copies needed for loop vectorization when
1538 a statement operates on vectors of type VECTYPE. This is the
1539 vectorization factor divided by the number of elements in
1540 VECTYPE and is always known at compile time. */
1541
1542 static inline unsigned int
1543 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1544 {
1545 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1546 }
1547
1548 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1549 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1550
1551 static inline void
1552 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1553 {
1554 /* All unit counts have the form vec_info::vector_size * X for some
1555 rational X, so two unit sizes must have a common multiple.
1556 Everything is a multiple of the initial value of 1. */
1557 *max_nunits = force_common_multiple (*max_nunits, nunits);
1558 }
1559
1560 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1561 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1562 if we haven't yet recorded any vector types. */
1563
1564 static inline void
1565 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1566 {
1567 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1568 }
1569
1570 /* Return the vectorization factor that should be used for costing
1571 purposes while vectorizing the loop described by LOOP_VINFO.
1572 Pick a reasonable estimate if the vectorization factor isn't
1573 known at compile time. */
1574
1575 static inline unsigned int
1576 vect_vf_for_cost (loop_vec_info loop_vinfo)
1577 {
1578 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1579 }
1580
1581 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1582 Pick a reasonable estimate if the exact number isn't known at
1583 compile time. */
1584
1585 static inline unsigned int
1586 vect_nunits_for_cost (tree vec_type)
1587 {
1588 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1589 }
1590
1591 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1592
1593 static inline unsigned HOST_WIDE_INT
1594 vect_max_vf (loop_vec_info loop_vinfo)
1595 {
1596 unsigned HOST_WIDE_INT vf;
1597 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1598 return vf;
1599 return MAX_VECTORIZATION_FACTOR;
1600 }
1601
1602 /* Return the size of the value accessed by unvectorized data reference
1603 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1604 for the associated gimple statement, since that guarantees that DR_INFO
1605 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1606 here includes things like V1SI, which can be vectorized in the same way
1607 as a plain SI.) */
1608
1609 inline unsigned int
1610 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1611 {
1612 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1613 }
1614
1615 /* Return true if LOOP_VINFO requires a runtime check for whether the
1616 vector loop is profitable. */
1617
1618 inline bool
1619 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1620 {
1621 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1622 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1623 && th >= vect_vf_for_cost (loop_vinfo));
1624 }
1625
1626 /* Source location + hotness information. */
1627 extern dump_user_location_t vect_location;
1628
1629 /* A macro for calling:
1630 dump_begin_scope (MSG, vect_location);
1631 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1632 and then calling
1633 dump_end_scope ();
1634 once the object goes out of scope, thus capturing the nesting of
1635 the scopes.
1636
1637 These scopes affect dump messages within them: dump messages at the
1638 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1639 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1640
1641 #define DUMP_VECT_SCOPE(MSG) \
1642 AUTO_DUMP_SCOPE (MSG, vect_location)
1643
1644 /* A sentinel class for ensuring that the "vect_location" global gets
1645 reset at the end of a scope.
1646
1647 The "vect_location" global is used during dumping and contains a
1648 location_t, which could contain references to a tree block via the
1649 ad-hoc data. This data is used for tracking inlining information,
1650 but it's not a GC root; it's simply assumed that such locations never
1651 get accessed if the blocks are optimized away.
1652
1653 Hence we need to ensure that such locations are purged at the end
1654 of any operations using them (e.g. via this class). */
1655
1656 class auto_purge_vect_location
1657 {
1658 public:
1659 ~auto_purge_vect_location ();
1660 };
1661
1662 /*-----------------------------------------------------------------*/
1663 /* Function prototypes. */
1664 /*-----------------------------------------------------------------*/
1665
1666 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1667 in tree-vect-loop-manip.c. */
1668 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1669 tree, tree, tree, bool);
1670 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1671 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1672 class loop *, edge);
1673 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1674 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1675 tree *, tree *, tree *, int, bool, bool,
1676 tree *);
1677 extern void vect_prepare_for_masked_peels (loop_vec_info);
1678 extern dump_user_location_t find_loop_location (class loop *);
1679 extern bool vect_can_advance_ivs_p (loop_vec_info);
1680 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1681
1682 /* In tree-vect-stmts.c. */
1683 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1684 poly_uint64 = 0);
1685 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1686 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1687 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1688 extern tree get_same_sized_vectype (tree, tree);
1689 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1690 extern bool vect_get_loop_mask_type (loop_vec_info);
1691 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1692 stmt_vec_info * = NULL, gimple ** = NULL);
1693 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1694 tree *, stmt_vec_info * = NULL,
1695 gimple ** = NULL);
1696 extern bool supportable_widening_operation (vec_info *,
1697 enum tree_code, stmt_vec_info,
1698 tree, tree, enum tree_code *,
1699 enum tree_code *, int *,
1700 vec<tree> *);
1701 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1702 enum tree_code *, int *,
1703 vec<tree> *);
1704
1705 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1706 enum vect_cost_for_stmt, stmt_vec_info,
1707 tree, int, enum vect_cost_model_location);
1708
1709 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1710
1711 static inline unsigned
1712 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1713 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1714 int misalign, enum vect_cost_model_location where)
1715 {
1716 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1717 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1718 }
1719
1720 extern stmt_vec_info vect_finish_replace_stmt (vec_info *,
1721 stmt_vec_info, gimple *);
1722 extern stmt_vec_info vect_finish_stmt_generation (vec_info *,
1723 stmt_vec_info, gimple *,
1724 gimple_stmt_iterator *);
1725 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1726 extern tree vect_get_store_rhs (stmt_vec_info);
1727 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1728 extern tree vect_get_vec_def_for_operand (vec_info *, tree,
1729 stmt_vec_info, tree = NULL);
1730 extern void vect_get_vec_defs (vec_info *, tree, tree, stmt_vec_info,
1731 vec<tree> *, vec<tree> *, slp_tree);
1732 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1733 vec<tree> *, vec<tree> *);
1734 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1735 gimple_stmt_iterator *);
1736 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1737 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1738 gimple_stmt_iterator *,
1739 slp_tree, slp_instance);
1740 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1741 extern bool vect_nop_conversion_p (stmt_vec_info);
1742 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1743 slp_tree,
1744 slp_instance, stmt_vector_for_cost *);
1745 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int, bool,
1746 unsigned int *, unsigned int *,
1747 stmt_vector_for_cost *,
1748 stmt_vector_for_cost *, bool);
1749 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1750 unsigned int *, stmt_vector_for_cost *);
1751 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1752 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1753 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1754 extern void optimize_mask_stores (class loop*);
1755 extern gcall *vect_gen_while (tree, tree, tree);
1756 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1757 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1758 stmt_vec_info, tree *,
1759 tree *, unsigned int = 0);
1760 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1761
1762 /* In tree-vect-data-refs.c. */
1763 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1764 extern enum dr_alignment_support vect_supportable_dr_alignment
1765 (vec_info *, dr_vec_info *, bool);
1766 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1767 HOST_WIDE_INT *);
1768 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1769 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1770 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1771 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1772 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1773 extern bool vect_slp_analyze_and_verify_instance_alignment (vec_info *,
1774 slp_instance);
1775 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1776 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1777 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1778 tree, int, internal_fn *, tree *);
1779 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1780 gather_scatter_info *);
1781 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1782 vec<data_reference_p> *);
1783 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1784 extern void vect_record_base_alignments (vec_info *);
1785 extern tree vect_create_data_ref_ptr (vec_info *,
1786 stmt_vec_info, tree, class loop *, tree,
1787 tree *, gimple_stmt_iterator *,
1788 gimple **, bool,
1789 tree = NULL_TREE, tree = NULL_TREE);
1790 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
1791 stmt_vec_info, tree);
1792 extern void vect_copy_ref_info (tree, tree);
1793 extern tree vect_create_destination_var (tree, tree);
1794 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1795 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1796 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1797 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1798 extern void vect_permute_store_chain (vec_info *,
1799 vec<tree> ,unsigned int, stmt_vec_info,
1800 gimple_stmt_iterator *, vec<tree> *);
1801 extern tree vect_setup_realignment (vec_info *,
1802 stmt_vec_info, gimple_stmt_iterator *,
1803 tree *, enum dr_alignment_support, tree,
1804 class loop **);
1805 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
1806 int, gimple_stmt_iterator *);
1807 extern void vect_record_grouped_load_vectors (vec_info *,
1808 stmt_vec_info, vec<tree>);
1809 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1810 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1811 const char * = NULL);
1812 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
1813 stmt_vec_info, gimple_seq *,
1814 tree, tree = NULL_TREE);
1815
1816 /* In tree-vect-loop.c. */
1817 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1818 /* Used in tree-vect-loop-manip.c */
1819 extern void determine_peel_for_niter (loop_vec_info);
1820 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1821 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1822 enum tree_code);
1823 extern bool needs_fold_left_reduction_p (tree, tree_code);
1824 /* Drive for loop analysis stage. */
1825 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1826 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1827 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1828 tree *, bool);
1829 extern tree vect_halve_mask_nunits (tree, machine_mode);
1830 extern tree vect_double_mask_nunits (tree, machine_mode);
1831 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1832 unsigned int, tree, tree);
1833 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1834 unsigned int, tree, unsigned int);
1835 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
1836
1837 /* Drive for loop transformation stage. */
1838 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1839 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1840 vec_info_shared *);
1841 extern bool vectorizable_live_operation (loop_vec_info,
1842 stmt_vec_info, gimple_stmt_iterator *,
1843 slp_tree, slp_instance, int,
1844 bool, stmt_vector_for_cost *);
1845 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
1846 slp_tree, slp_instance,
1847 stmt_vector_for_cost *);
1848 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
1849 gimple_stmt_iterator *,
1850 stmt_vec_info *, slp_tree,
1851 stmt_vector_for_cost *);
1852 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
1853 gimple_stmt_iterator *,
1854 stmt_vec_info *, slp_tree);
1855 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
1856 stmt_vec_info *,
1857 slp_tree, slp_instance);
1858 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
1859 stmt_vec_info *, slp_tree);
1860 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1861 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1862 stmt_vector_for_cost *,
1863 stmt_vector_for_cost *,
1864 stmt_vector_for_cost *);
1865 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1866
1867 /* In tree-vect-slp.c. */
1868 extern void vect_free_slp_instance (slp_instance, bool);
1869 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, vec<tree>,
1870 gimple_stmt_iterator *, poly_uint64,
1871 bool, unsigned *);
1872 extern bool vect_slp_analyze_operations (vec_info *);
1873 extern void vect_schedule_slp (vec_info *);
1874 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1875 extern bool vect_make_slp_decision (loop_vec_info);
1876 extern void vect_detect_hybrid_slp (loop_vec_info);
1877 extern void vect_optimize_slp (vec_info *);
1878 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
1879 unsigned n = -1U);
1880 extern bool vect_slp_bb (basic_block);
1881 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1882 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1883 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
1884 unsigned int * = NULL,
1885 tree * = NULL, tree * = NULL);
1886 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1887 vec<tree>, unsigned int, vec<tree> &);
1888 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1889
1890 /* In tree-vect-patterns.c. */
1891 /* Pattern recognition functions.
1892 Additional pattern recognition functions can (and will) be added
1893 in the future. */
1894 void vect_pattern_recog (vec_info *);
1895
1896 /* In tree-vectorizer.c. */
1897 unsigned vectorize_loops (void);
1898 void vect_free_loop_info_assumptions (class loop *);
1899 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1900
1901
1902 #endif /* GCC_TREE_VECTORIZER_H */