]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
[testsuite] Add missing dg-require-effective-target label_values
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef struct _stmt_vec_info *stmt_vec_info;
25
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29
30 /* Used for naming of new temporaries. */
31 enum vect_var_kind {
32 vect_simple_var,
33 vect_pointer_var,
34 vect_scalar_var,
35 vect_mask_var
36 };
37
38 /* Defines type of operation. */
39 enum operation_type {
40 unary_op = 1,
41 binary_op,
42 ternary_op
43 };
44
45 /* Define type of available alignment support. */
46 enum dr_alignment_support {
47 dr_unaligned_unsupported,
48 dr_unaligned_supported,
49 dr_explicit_realign,
50 dr_explicit_realign_optimized,
51 dr_aligned
52 };
53
54 /* Define type of def-use cross-iteration cycle. */
55 enum vect_def_type {
56 vect_uninitialized_def = 0,
57 vect_constant_def = 1,
58 vect_external_def,
59 vect_internal_def,
60 vect_induction_def,
61 vect_reduction_def,
62 vect_double_reduction_def,
63 vect_nested_cycle,
64 vect_unknown_def_type
65 };
66
67 /* Define type of reduction. */
68 enum vect_reduction_type {
69 TREE_CODE_REDUCTION,
70 COND_REDUCTION,
71 INTEGER_INDUC_COND_REDUCTION,
72 CONST_COND_REDUCTION,
73
74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75 to implement:
76
77 for (int i = 0; i < VF; ++i)
78 res = cond[i] ? val[i] : res; */
79 EXTRACT_LAST_REDUCTION,
80
81 /* Use a folding reduction within the loop to implement:
82
83 for (int i = 0; i < VF; ++i)
84 res = res OP val[i];
85
86 (with no reassocation). */
87 FOLD_LEFT_REDUCTION
88 };
89
90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
91 || ((D) == vect_double_reduction_def) \
92 || ((D) == vect_nested_cycle))
93
94 /* Structure to encapsulate information about a group of like
95 instructions to be presented to the target cost model. */
96 struct stmt_info_for_cost {
97 int count;
98 enum vect_cost_for_stmt kind;
99 enum vect_cost_model_location where;
100 stmt_vec_info stmt_info;
101 int misalign;
102 };
103
104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
105
106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
107 known alignment for that base. */
108 typedef hash_map<tree_operand_hash,
109 innermost_loop_behavior *> vec_base_alignments;
110
111 /************************************************************************
112 SLP
113 ************************************************************************/
114 typedef struct _slp_tree *slp_tree;
115
116 /* A computation tree of an SLP instance. Each node corresponds to a group of
117 stmts to be packed in a SIMD stmt. */
118 struct _slp_tree {
119 /* Nodes that contain def-stmts of this node statements operands. */
120 vec<slp_tree> children;
121 /* A group of scalar stmts to be vectorized together. */
122 vec<stmt_vec_info> stmts;
123 /* Load permutation relative to the stores, NULL if there is no
124 permutation. */
125 vec<unsigned> load_permutation;
126 /* Vectorized stmt/s. */
127 vec<stmt_vec_info> vec_stmts;
128 /* Number of vector stmts that are created to replace the group of scalar
129 stmts. It is calculated during the transformation phase as the number of
130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
131 divided by vector size. */
132 unsigned int vec_stmts_size;
133 /* Reference count in the SLP graph. */
134 unsigned int refcnt;
135 /* Whether the scalar computations use two different operators. */
136 bool two_operators;
137 /* The DEF type of this node. */
138 enum vect_def_type def_type;
139 };
140
141
142 /* SLP instance is a sequence of stmts in a loop that can be packed into
143 SIMD stmts. */
144 typedef struct _slp_instance {
145 /* The root of SLP tree. */
146 slp_tree root;
147
148 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
149 unsigned int group_size;
150
151 /* The unrolling factor required to vectorized this SLP instance. */
152 poly_uint64 unrolling_factor;
153
154 /* The group of nodes that contain loads of this SLP instance. */
155 vec<slp_tree> loads;
156
157 /* The SLP node containing the reduction PHIs. */
158 slp_tree reduc_phis;
159 } *slp_instance;
160
161
162 /* Access Functions. */
163 #define SLP_INSTANCE_TREE(S) (S)->root
164 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
165 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
166 #define SLP_INSTANCE_LOADS(S) (S)->loads
167
168 #define SLP_TREE_CHILDREN(S) (S)->children
169 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
170 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
171 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
172 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
173 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
174 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
175
176
177
178 /* Describes two objects whose addresses must be unequal for the vectorized
179 loop to be valid. */
180 typedef std::pair<tree, tree> vec_object_pair;
181
182 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
183 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
184 struct vec_lower_bound {
185 vec_lower_bound () {}
186 vec_lower_bound (tree e, bool u, poly_uint64 m)
187 : expr (e), unsigned_p (u), min_value (m) {}
188
189 tree expr;
190 bool unsigned_p;
191 poly_uint64 min_value;
192 };
193
194 /* Vectorizer state shared between different analyses like vector sizes
195 of the same CFG region. */
196 struct vec_info_shared {
197 vec_info_shared();
198 ~vec_info_shared();
199
200 void save_datarefs();
201 void check_datarefs();
202
203 /* All data references. Freed by free_data_refs, so not an auto_vec. */
204 vec<data_reference_p> datarefs;
205 vec<data_reference> datarefs_copy;
206
207 /* The loop nest in which the data dependences are computed. */
208 auto_vec<loop_p> loop_nest;
209
210 /* All data dependences. Freed by free_dependence_relations, so not
211 an auto_vec. */
212 vec<ddr_p> ddrs;
213 };
214
215 /* Vectorizer state common between loop and basic-block vectorization. */
216 struct vec_info {
217 enum vec_kind { bb, loop };
218
219 vec_info (vec_kind, void *, vec_info_shared *);
220 ~vec_info ();
221
222 stmt_vec_info add_stmt (gimple *);
223 stmt_vec_info lookup_stmt (gimple *);
224 stmt_vec_info lookup_def (tree);
225 stmt_vec_info lookup_single_use (tree);
226 struct dr_vec_info *lookup_dr (data_reference *);
227 void move_dr (stmt_vec_info, stmt_vec_info);
228 void remove_stmt (stmt_vec_info);
229 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
230
231 /* The type of vectorization. */
232 vec_kind kind;
233
234 /* Shared vectorizer state. */
235 vec_info_shared *shared;
236
237 /* The mapping of GIMPLE UID to stmt_vec_info. */
238 vec<stmt_vec_info> stmt_vec_infos;
239
240 /* All SLP instances. */
241 auto_vec<slp_instance> slp_instances;
242
243 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
244 known alignment for that base. */
245 vec_base_alignments base_alignments;
246
247 /* All interleaving chains of stores, represented by the first
248 stmt in the chain. */
249 auto_vec<stmt_vec_info> grouped_stores;
250
251 /* Cost data used by the target cost model. */
252 void *target_cost_data;
253
254 private:
255 stmt_vec_info new_stmt_vec_info (gimple *stmt);
256 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
257 void free_stmt_vec_infos ();
258 void free_stmt_vec_info (stmt_vec_info);
259 };
260
261 struct _loop_vec_info;
262 struct _bb_vec_info;
263
264 template<>
265 template<>
266 inline bool
267 is_a_helper <_loop_vec_info *>::test (vec_info *i)
268 {
269 return i->kind == vec_info::loop;
270 }
271
272 template<>
273 template<>
274 inline bool
275 is_a_helper <_bb_vec_info *>::test (vec_info *i)
276 {
277 return i->kind == vec_info::bb;
278 }
279
280
281 /* In general, we can divide the vector statements in a vectorized loop
282 into related groups ("rgroups") and say that for each rgroup there is
283 some nS such that the rgroup operates on nS values from one scalar
284 iteration followed by nS values from the next. That is, if VF is the
285 vectorization factor of the loop, the rgroup operates on a sequence:
286
287 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
288
289 where (i,j) represents a scalar value with index j in a scalar
290 iteration with index i.
291
292 [ We use the term "rgroup" to emphasise that this grouping isn't
293 necessarily the same as the grouping of statements used elsewhere.
294 For example, if we implement a group of scalar loads using gather
295 loads, we'll use a separate gather load for each scalar load, and
296 thus each gather load will belong to its own rgroup. ]
297
298 In general this sequence will occupy nV vectors concatenated
299 together. If these vectors have nL lanes each, the total number
300 of scalar values N is given by:
301
302 N = nS * VF = nV * nL
303
304 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
305 are compile-time constants but VF and nL can be variable (if the target
306 supports variable-length vectors).
307
308 In classical vectorization, each iteration of the vector loop would
309 handle exactly VF iterations of the original scalar loop. However,
310 in a fully-masked loop, a particular iteration of the vector loop
311 might handle fewer than VF iterations of the scalar loop. The vector
312 lanes that correspond to iterations of the scalar loop are said to be
313 "active" and the other lanes are said to be "inactive".
314
315 In a fully-masked loop, many rgroups need to be masked to ensure that
316 they have no effect for the inactive lanes. Each such rgroup needs a
317 sequence of booleans in the same order as above, but with each (i,j)
318 replaced by a boolean that indicates whether iteration i is active.
319 This sequence occupies nV vector masks that again have nL lanes each.
320 Thus the mask sequence as a whole consists of VF independent booleans
321 that are each repeated nS times.
322
323 We make the simplifying assumption that if a sequence of nV masks is
324 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
325 VIEW_CONVERTing it. This holds for all current targets that support
326 fully-masked loops. For example, suppose the scalar loop is:
327
328 float *f;
329 double *d;
330 for (int i = 0; i < n; ++i)
331 {
332 f[i * 2 + 0] += 1.0f;
333 f[i * 2 + 1] += 2.0f;
334 d[i] += 3.0;
335 }
336
337 and suppose that vectors have 256 bits. The vectorized f accesses
338 will belong to one rgroup and the vectorized d access to another:
339
340 f rgroup: nS = 2, nV = 1, nL = 8
341 d rgroup: nS = 1, nV = 1, nL = 4
342 VF = 4
343
344 [ In this simple example the rgroups do correspond to the normal
345 SLP grouping scheme. ]
346
347 If only the first three lanes are active, the masks we need are:
348
349 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
350 d rgroup: 1 | 1 | 1 | 0
351
352 Here we can use a mask calculated for f's rgroup for d's, but not
353 vice versa.
354
355 Thus for each value of nV, it is enough to provide nV masks, with the
356 mask being calculated based on the highest nL (or, equivalently, based
357 on the highest nS) required by any rgroup with that nV. We therefore
358 represent the entire collection of masks as a two-level table, with the
359 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
360 the second being indexed by the mask index 0 <= i < nV. */
361
362 /* The masks needed by rgroups with nV vectors, according to the
363 description above. */
364 struct rgroup_masks {
365 /* The largest nS for all rgroups that use these masks. */
366 unsigned int max_nscalars_per_iter;
367
368 /* The type of mask to use, based on the highest nS recorded above. */
369 tree mask_type;
370
371 /* A vector of nV masks, in iteration order. */
372 vec<tree> masks;
373 };
374
375 typedef auto_vec<rgroup_masks> vec_loop_masks;
376
377 /*-----------------------------------------------------------------*/
378 /* Info on vectorized loops. */
379 /*-----------------------------------------------------------------*/
380 typedef struct _loop_vec_info : public vec_info {
381 _loop_vec_info (struct loop *, vec_info_shared *);
382 ~_loop_vec_info ();
383
384 /* The loop to which this info struct refers to. */
385 struct loop *loop;
386
387 /* The loop basic blocks. */
388 basic_block *bbs;
389
390 /* Number of latch executions. */
391 tree num_itersm1;
392 /* Number of iterations. */
393 tree num_iters;
394 /* Number of iterations of the original loop. */
395 tree num_iters_unchanged;
396 /* Condition under which this loop is analyzed and versioned. */
397 tree num_iters_assumptions;
398
399 /* Threshold of number of iterations below which vectorization will not be
400 performed. It is calculated from MIN_PROFITABLE_ITERS and
401 PARAM_MIN_VECT_LOOP_BOUND. */
402 unsigned int th;
403
404 /* When applying loop versioning, the vector form should only be used
405 if the number of scalar iterations is >= this value, on top of all
406 the other requirements. Ignored when loop versioning is not being
407 used. */
408 poly_uint64 versioning_threshold;
409
410 /* Unrolling factor */
411 poly_uint64 vectorization_factor;
412
413 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
414 if there is no particular limit. */
415 unsigned HOST_WIDE_INT max_vectorization_factor;
416
417 /* The masks that a fully-masked loop should use to avoid operating
418 on inactive scalars. */
419 vec_loop_masks masks;
420
421 /* If we are using a loop mask to align memory addresses, this variable
422 contains the number of vector elements that we should skip in the
423 first iteration of the vector loop (i.e. the number of leading
424 elements that should be false in the first mask). */
425 tree mask_skip_niters;
426
427 /* Type of the variables to use in the WHILE_ULT call for fully-masked
428 loops. */
429 tree mask_compare_type;
430
431 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
432 the loop should not be vectorized, if constant non-zero, simd_if_cond
433 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
434 should be versioned on that condition, using scalar loop if the condition
435 is false and vectorized loop otherwise. */
436 tree simd_if_cond;
437
438 /* Type of the IV to use in the WHILE_ULT call for fully-masked
439 loops. */
440 tree iv_type;
441
442 /* Unknown DRs according to which loop was peeled. */
443 struct dr_vec_info *unaligned_dr;
444
445 /* peeling_for_alignment indicates whether peeling for alignment will take
446 place, and what the peeling factor should be:
447 peeling_for_alignment = X means:
448 If X=0: Peeling for alignment will not be applied.
449 If X>0: Peel first X iterations.
450 If X=-1: Generate a runtime test to calculate the number of iterations
451 to be peeled, using the dataref recorded in the field
452 unaligned_dr. */
453 int peeling_for_alignment;
454
455 /* The mask used to check the alignment of pointers or arrays. */
456 int ptr_mask;
457
458 /* Data Dependence Relations defining address ranges that are candidates
459 for a run-time aliasing check. */
460 auto_vec<ddr_p> may_alias_ddrs;
461
462 /* Data Dependence Relations defining address ranges together with segment
463 lengths from which the run-time aliasing check is built. */
464 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
465
466 /* Check that the addresses of each pair of objects is unequal. */
467 auto_vec<vec_object_pair> check_unequal_addrs;
468
469 /* List of values that are required to be nonzero. This is used to check
470 whether things like "x[i * n] += 1;" are safe and eventually gets added
471 to the checks for lower bounds below. */
472 auto_vec<tree> check_nonzero;
473
474 /* List of values that need to be checked for a minimum value. */
475 auto_vec<vec_lower_bound> lower_bounds;
476
477 /* Statements in the loop that have data references that are candidates for a
478 runtime (loop versioning) misalignment check. */
479 auto_vec<stmt_vec_info> may_misalign_stmts;
480
481 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
482 auto_vec<stmt_vec_info> reductions;
483
484 /* All reduction chains in the loop, represented by the first
485 stmt in the chain. */
486 auto_vec<stmt_vec_info> reduction_chains;
487
488 /* Cost vector for a single scalar iteration. */
489 auto_vec<stmt_info_for_cost> scalar_cost_vec;
490
491 /* Map of IV base/step expressions to inserted name in the preheader. */
492 hash_map<tree_operand_hash, tree> *ivexpr_map;
493
494 /* Map of OpenMP "omp simd array" scan variables to corresponding
495 rhs of the store of the initializer. */
496 hash_map<tree, tree> *scan_map;
497
498 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
499 applied to the loop, i.e., no unrolling is needed, this is 1. */
500 poly_uint64 slp_unrolling_factor;
501
502 /* Cost of a single scalar iteration. */
503 int single_scalar_iteration_cost;
504
505 /* Is the loop vectorizable? */
506 bool vectorizable;
507
508 /* Records whether we still have the option of using a fully-masked loop. */
509 bool can_fully_mask_p;
510
511 /* True if have decided to use a fully-masked loop. */
512 bool fully_masked_p;
513
514 /* When we have grouped data accesses with gaps, we may introduce invalid
515 memory accesses. We peel the last iteration of the loop to prevent
516 this. */
517 bool peeling_for_gaps;
518
519 /* When the number of iterations is not a multiple of the vector size
520 we need to peel off iterations at the end to form an epilogue loop. */
521 bool peeling_for_niter;
522
523 /* Reductions are canonicalized so that the last operand is the reduction
524 operand. If this places a constant into RHS1, this decanonicalizes
525 GIMPLE for other phases, so we must track when this has occurred and
526 fix it up. */
527 bool operands_swapped;
528
529 /* True if there are no loop carried data dependencies in the loop.
530 If loop->safelen <= 1, then this is always true, either the loop
531 didn't have any loop carried data dependencies, or the loop is being
532 vectorized guarded with some runtime alias checks, or couldn't
533 be vectorized at all, but then this field shouldn't be used.
534 For loop->safelen >= 2, the user has asserted that there are no
535 backward dependencies, but there still could be loop carried forward
536 dependencies in such loops. This flag will be false if normal
537 vectorizer data dependency analysis would fail or require versioning
538 for alias, but because of loop->safelen >= 2 it has been vectorized
539 even without versioning for alias. E.g. in:
540 #pragma omp simd
541 for (int i = 0; i < m; i++)
542 a[i] = a[i + k] * c;
543 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
544 DTRT even for k > 0 && k < m, but without safelen we would not
545 vectorize this, so this field would be false. */
546 bool no_data_dependencies;
547
548 /* Mark loops having masked stores. */
549 bool has_mask_store;
550
551 /* If if-conversion versioned this loop before conversion, this is the
552 loop version without if-conversion. */
553 struct loop *scalar_loop;
554
555 /* For loops being epilogues of already vectorized loops
556 this points to the original vectorized loop. Otherwise NULL. */
557 _loop_vec_info *orig_loop_info;
558
559 } *loop_vec_info;
560
561 /* Access Functions. */
562 #define LOOP_VINFO_LOOP(L) (L)->loop
563 #define LOOP_VINFO_BBS(L) (L)->bbs
564 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
565 #define LOOP_VINFO_NITERS(L) (L)->num_iters
566 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
567 prologue peeling retain total unchanged scalar loop iterations for
568 cost model. */
569 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
570 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
571 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
572 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
573 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
574 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
575 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
576 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
577 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
578 #define LOOP_VINFO_MASKS(L) (L)->masks
579 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
580 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
581 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
582 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
583 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
584 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
585 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
586 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
587 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
588 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
589 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
590 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
591 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
592 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
593 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
594 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
595 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
596 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
597 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
598 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
599 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
600 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
601 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
602 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
603 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
604 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
605 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
606 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
607 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
608 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
609 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
610 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
611
612 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
613 ((L)->may_misalign_stmts.length () > 0)
614 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
615 ((L)->comp_alias_ddrs.length () > 0 \
616 || (L)->check_unequal_addrs.length () > 0 \
617 || (L)->lower_bounds.length () > 0)
618 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
619 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
620 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
621 (LOOP_VINFO_SIMD_IF_COND (L))
622 #define LOOP_REQUIRES_VERSIONING(L) \
623 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
624 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
625 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
626 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
627
628 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
629 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
630
631 #define LOOP_VINFO_EPILOGUE_P(L) \
632 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
633
634 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
635 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
636
637 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
638 value signifies success, and a NULL value signifies failure, supporting
639 propagating an opt_problem * describing the failure back up the call
640 stack. */
641 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
642
643 static inline loop_vec_info
644 loop_vec_info_for_loop (struct loop *loop)
645 {
646 return (loop_vec_info) loop->aux;
647 }
648
649 typedef struct _bb_vec_info : public vec_info
650 {
651 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
652 ~_bb_vec_info ();
653
654 basic_block bb;
655 gimple_stmt_iterator region_begin;
656 gimple_stmt_iterator region_end;
657 } *bb_vec_info;
658
659 #define BB_VINFO_BB(B) (B)->bb
660 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
661 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
662 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
663 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
664 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
665
666 static inline bb_vec_info
667 vec_info_for_bb (basic_block bb)
668 {
669 return (bb_vec_info) bb->aux;
670 }
671
672 /*-----------------------------------------------------------------*/
673 /* Info on vectorized defs. */
674 /*-----------------------------------------------------------------*/
675 enum stmt_vec_info_type {
676 undef_vec_info_type = 0,
677 load_vec_info_type,
678 store_vec_info_type,
679 shift_vec_info_type,
680 op_vec_info_type,
681 call_vec_info_type,
682 call_simd_clone_vec_info_type,
683 assignment_vec_info_type,
684 condition_vec_info_type,
685 comparison_vec_info_type,
686 reduc_vec_info_type,
687 induc_vec_info_type,
688 type_promotion_vec_info_type,
689 type_demotion_vec_info_type,
690 type_conversion_vec_info_type,
691 loop_exit_ctrl_vec_info_type
692 };
693
694 /* Indicates whether/how a variable is used in the scope of loop/basic
695 block. */
696 enum vect_relevant {
697 vect_unused_in_scope = 0,
698
699 /* The def is only used outside the loop. */
700 vect_used_only_live,
701 /* The def is in the inner loop, and the use is in the outer loop, and the
702 use is a reduction stmt. */
703 vect_used_in_outer_by_reduction,
704 /* The def is in the inner loop, and the use is in the outer loop (and is
705 not part of reduction). */
706 vect_used_in_outer,
707
708 /* defs that feed computations that end up (only) in a reduction. These
709 defs may be used by non-reduction stmts, but eventually, any
710 computations/values that are affected by these defs are used to compute
711 a reduction (i.e. don't get stored to memory, for example). We use this
712 to identify computations that we can change the order in which they are
713 computed. */
714 vect_used_by_reduction,
715
716 vect_used_in_scope
717 };
718
719 /* The type of vectorization that can be applied to the stmt: regular loop-based
720 vectorization; pure SLP - the stmt is a part of SLP instances and does not
721 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
722 a part of SLP instance and also must be loop-based vectorized, since it has
723 uses outside SLP sequences.
724
725 In the loop context the meanings of pure and hybrid SLP are slightly
726 different. By saying that pure SLP is applied to the loop, we mean that we
727 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
728 vectorized without doing any conceptual unrolling, cause we don't pack
729 together stmts from different iterations, only within a single iteration.
730 Loop hybrid SLP means that we exploit both intra-iteration and
731 inter-iteration parallelism (e.g., number of elements in the vector is 4
732 and the slp-group-size is 2, in which case we don't have enough parallelism
733 within an iteration, so we obtain the rest of the parallelism from subsequent
734 iterations by unrolling the loop by 2). */
735 enum slp_vect_type {
736 loop_vect = 0,
737 pure_slp,
738 hybrid
739 };
740
741 /* Says whether a statement is a load, a store of a vectorized statement
742 result, or a store of an invariant value. */
743 enum vec_load_store_type {
744 VLS_LOAD,
745 VLS_STORE,
746 VLS_STORE_INVARIANT
747 };
748
749 /* Describes how we're going to vectorize an individual load or store,
750 or a group of loads or stores. */
751 enum vect_memory_access_type {
752 /* An access to an invariant address. This is used only for loads. */
753 VMAT_INVARIANT,
754
755 /* A simple contiguous access. */
756 VMAT_CONTIGUOUS,
757
758 /* A contiguous access that goes down in memory rather than up,
759 with no additional permutation. This is used only for stores
760 of invariants. */
761 VMAT_CONTIGUOUS_DOWN,
762
763 /* A simple contiguous access in which the elements need to be permuted
764 after loading or before storing. Only used for loop vectorization;
765 SLP uses separate permutes. */
766 VMAT_CONTIGUOUS_PERMUTE,
767
768 /* A simple contiguous access in which the elements need to be reversed
769 after loading or before storing. */
770 VMAT_CONTIGUOUS_REVERSE,
771
772 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
773 VMAT_LOAD_STORE_LANES,
774
775 /* An access in which each scalar element is loaded or stored
776 individually. */
777 VMAT_ELEMENTWISE,
778
779 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
780 SLP accesses. Each unrolled iteration uses a contiguous load
781 or store for the whole group, but the groups from separate iterations
782 are combined in the same way as for VMAT_ELEMENTWISE. */
783 VMAT_STRIDED_SLP,
784
785 /* The access uses gather loads or scatter stores. */
786 VMAT_GATHER_SCATTER
787 };
788
789 struct dr_vec_info {
790 /* The data reference itself. */
791 data_reference *dr;
792 /* The statement that contains the data reference. */
793 stmt_vec_info stmt;
794 /* The misalignment in bytes of the reference, or -1 if not known. */
795 int misalignment;
796 /* The byte alignment that we'd ideally like the reference to have,
797 and the value that misalignment is measured against. */
798 poly_uint64 target_alignment;
799 /* If true the alignment of base_decl needs to be increased. */
800 bool base_misaligned;
801 tree base_decl;
802 };
803
804 typedef struct data_reference *dr_p;
805
806 struct _stmt_vec_info {
807
808 enum stmt_vec_info_type type;
809
810 /* Indicates whether this stmts is part of a computation whose result is
811 used outside the loop. */
812 bool live;
813
814 /* Stmt is part of some pattern (computation idiom) */
815 bool in_pattern_p;
816
817 /* True if the statement was created during pattern recognition as
818 part of the replacement for RELATED_STMT. This implies that the
819 statement isn't part of any basic block, although for convenience
820 its gimple_bb is the same as for RELATED_STMT. */
821 bool pattern_stmt_p;
822
823 /* Is this statement vectorizable or should it be skipped in (partial)
824 vectorization. */
825 bool vectorizable;
826
827 /* The stmt to which this info struct refers to. */
828 gimple *stmt;
829
830 /* The vec_info with respect to which STMT is vectorized. */
831 vec_info *vinfo;
832
833 /* The vector type to be used for the LHS of this statement. */
834 tree vectype;
835
836 /* The vectorized version of the stmt. */
837 stmt_vec_info vectorized_stmt;
838
839
840 /* The following is relevant only for stmts that contain a non-scalar
841 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
842 at most one such data-ref. */
843
844 dr_vec_info dr_aux;
845
846 /* Information about the data-ref relative to this loop
847 nest (the loop that is being considered for vectorization). */
848 innermost_loop_behavior dr_wrt_vec_loop;
849
850 /* For loop PHI nodes, the base and evolution part of it. This makes sure
851 this information is still available in vect_update_ivs_after_vectorizer
852 where we may not be able to re-analyze the PHI nodes evolution as
853 peeling for the prologue loop can make it unanalyzable. The evolution
854 part is still correct after peeling, but the base may have changed from
855 the version here. */
856 tree loop_phi_evolution_base_unchanged;
857 tree loop_phi_evolution_part;
858
859 /* Used for various bookkeeping purposes, generally holding a pointer to
860 some other stmt S that is in some way "related" to this stmt.
861 Current use of this field is:
862 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
863 true): S is the "pattern stmt" that represents (and replaces) the
864 sequence of stmts that constitutes the pattern. Similarly, the
865 related_stmt of the "pattern stmt" points back to this stmt (which is
866 the last stmt in the original sequence of stmts that constitutes the
867 pattern). */
868 stmt_vec_info related_stmt;
869
870 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
871 The sequence is attached to the original statement rather than the
872 pattern statement. */
873 gimple_seq pattern_def_seq;
874
875 /* List of datarefs that are known to have the same alignment as the dataref
876 of this stmt. */
877 vec<dr_p> same_align_refs;
878
879 /* Selected SIMD clone's function info. First vector element
880 is SIMD clone's function decl, followed by a pair of trees (base + step)
881 for linear arguments (pair of NULLs for other arguments). */
882 vec<tree> simd_clone_info;
883
884 /* Classify the def of this stmt. */
885 enum vect_def_type def_type;
886
887 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
888 enum slp_vect_type slp_type;
889
890 /* Interleaving and reduction chains info. */
891 /* First element in the group. */
892 stmt_vec_info first_element;
893 /* Pointer to the next element in the group. */
894 stmt_vec_info next_element;
895 /* The size of the group. */
896 unsigned int size;
897 /* For stores, number of stores from this group seen. We vectorize the last
898 one. */
899 unsigned int store_count;
900 /* For loads only, the gap from the previous load. For consecutive loads, GAP
901 is 1. */
902 unsigned int gap;
903
904 /* The minimum negative dependence distance this stmt participates in
905 or zero if none. */
906 unsigned int min_neg_dist;
907
908 /* Not all stmts in the loop need to be vectorized. e.g, the increment
909 of the loop induction variable and computation of array indexes. relevant
910 indicates whether the stmt needs to be vectorized. */
911 enum vect_relevant relevant;
912
913 /* For loads if this is a gather, for stores if this is a scatter. */
914 bool gather_scatter_p;
915
916 /* True if this is an access with loop-invariant stride. */
917 bool strided_p;
918
919 /* For both loads and stores. */
920 unsigned simd_lane_access_p : 2;
921
922 /* Classifies how the load or store is going to be implemented
923 for loop vectorization. */
924 vect_memory_access_type memory_access_type;
925
926 /* For reduction loops, this is the type of reduction. */
927 enum vect_reduction_type v_reduc_type;
928
929 /* For CONST_COND_REDUCTION, record the reduc code. */
930 enum tree_code const_cond_reduc_code;
931
932 /* On a reduction PHI the reduction type as detected by
933 vect_force_simple_reduction. */
934 enum vect_reduction_type reduc_type;
935
936 /* On a reduction PHI the def returned by vect_force_simple_reduction.
937 On the def returned by vect_force_simple_reduction the
938 corresponding PHI. */
939 stmt_vec_info reduc_def;
940
941 /* The number of scalar stmt references from active SLP instances. */
942 unsigned int num_slp_uses;
943
944 /* If nonzero, the lhs of the statement could be truncated to this
945 many bits without affecting any users of the result. */
946 unsigned int min_output_precision;
947
948 /* If nonzero, all non-boolean input operands have the same precision,
949 and they could each be truncated to this many bits without changing
950 the result. */
951 unsigned int min_input_precision;
952
953 /* If OPERATION_BITS is nonzero, the statement could be performed on
954 an integer with the sign and number of bits given by OPERATION_SIGN
955 and OPERATION_BITS without changing the result. */
956 unsigned int operation_precision;
957 signop operation_sign;
958
959 /* True if this is only suitable for SLP vectorization. */
960 bool slp_vect_only_p;
961 };
962
963 /* Information about a gather/scatter call. */
964 struct gather_scatter_info {
965 /* The internal function to use for the gather/scatter operation,
966 or IFN_LAST if a built-in function should be used instead. */
967 internal_fn ifn;
968
969 /* The FUNCTION_DECL for the built-in gather/scatter function,
970 or null if an internal function should be used instead. */
971 tree decl;
972
973 /* The loop-invariant base value. */
974 tree base;
975
976 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
977 tree offset;
978
979 /* Each offset element should be multiplied by this amount before
980 being added to the base. */
981 int scale;
982
983 /* The definition type for the vectorized offset. */
984 enum vect_def_type offset_dt;
985
986 /* The type of the vectorized offset. */
987 tree offset_vectype;
988
989 /* The type of the scalar elements after loading or before storing. */
990 tree element_type;
991
992 /* The type of the scalar elements being loaded or stored. */
993 tree memory_type;
994 };
995
996 /* Access Functions. */
997 #define STMT_VINFO_TYPE(S) (S)->type
998 #define STMT_VINFO_STMT(S) (S)->stmt
999 inline loop_vec_info
1000 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1001 {
1002 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1003 return loop_vinfo;
1004 return NULL;
1005 }
1006 inline bb_vec_info
1007 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1008 {
1009 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1010 return bb_vinfo;
1011 return NULL;
1012 }
1013 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1014 #define STMT_VINFO_LIVE_P(S) (S)->live
1015 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1016 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1017 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1018 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1019 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1020 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1021 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1022 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1023 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1024 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1025
1026 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1027 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1028 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1029 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1030 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1031 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1032 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1033 (S)->dr_wrt_vec_loop.base_misalignment
1034 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1035 (S)->dr_wrt_vec_loop.offset_alignment
1036 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1037 (S)->dr_wrt_vec_loop.step_alignment
1038
1039 #define STMT_VINFO_DR_INFO(S) \
1040 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1041
1042 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1043 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1044 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1045 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1046 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1047 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1048 #define STMT_VINFO_GROUPED_ACCESS(S) \
1049 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1050 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1051 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1052 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1053 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1054 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1055 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1056 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1057
1058 #define DR_GROUP_FIRST_ELEMENT(S) \
1059 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1060 #define DR_GROUP_NEXT_ELEMENT(S) \
1061 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1062 #define DR_GROUP_SIZE(S) \
1063 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1064 #define DR_GROUP_STORE_COUNT(S) \
1065 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1066 #define DR_GROUP_GAP(S) \
1067 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1068
1069 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1070 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1071 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1072 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1073 #define REDUC_GROUP_SIZE(S) \
1074 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1075
1076 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1077
1078 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1079 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1080 #define STMT_SLP_TYPE(S) (S)->slp_type
1081
1082 #define VECT_MAX_COST 1000
1083
1084 /* The maximum number of intermediate steps required in multi-step type
1085 conversion. */
1086 #define MAX_INTERM_CVT_STEPS 3
1087
1088 #define MAX_VECTORIZATION_FACTOR INT_MAX
1089
1090 /* Nonzero if TYPE represents a (scalar) boolean type or type
1091 in the middle-end compatible with it (unsigned precision 1 integral
1092 types). Used to determine which types should be vectorized as
1093 VECTOR_BOOLEAN_TYPE_P. */
1094
1095 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1096 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1097 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1098 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1099 && TYPE_PRECISION (TYPE) == 1 \
1100 && TYPE_UNSIGNED (TYPE)))
1101
1102 static inline bool
1103 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1104 {
1105 return (loop->inner
1106 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1107 }
1108
1109 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1110 pattern. */
1111
1112 static inline bool
1113 is_pattern_stmt_p (stmt_vec_info stmt_info)
1114 {
1115 return stmt_info->pattern_stmt_p;
1116 }
1117
1118 /* If STMT_INFO is a pattern statement, return the statement that it
1119 replaces, otherwise return STMT_INFO itself. */
1120
1121 inline stmt_vec_info
1122 vect_orig_stmt (stmt_vec_info stmt_info)
1123 {
1124 if (is_pattern_stmt_p (stmt_info))
1125 return STMT_VINFO_RELATED_STMT (stmt_info);
1126 return stmt_info;
1127 }
1128
1129 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1130
1131 static inline stmt_vec_info
1132 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1133 {
1134 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1135 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1136 return stmt1_info;
1137 else
1138 return stmt2_info;
1139 }
1140
1141 /* If STMT_INFO has been replaced by a pattern statement, return the
1142 replacement statement, otherwise return STMT_INFO itself. */
1143
1144 inline stmt_vec_info
1145 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1146 {
1147 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1148 return STMT_VINFO_RELATED_STMT (stmt_info);
1149 return stmt_info;
1150 }
1151
1152 /* Return true if BB is a loop header. */
1153
1154 static inline bool
1155 is_loop_header_bb_p (basic_block bb)
1156 {
1157 if (bb == (bb->loop_father)->header)
1158 return true;
1159 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1160 return false;
1161 }
1162
1163 /* Return pow2 (X). */
1164
1165 static inline int
1166 vect_pow2 (int x)
1167 {
1168 int i, res = 1;
1169
1170 for (i = 0; i < x; i++)
1171 res *= 2;
1172
1173 return res;
1174 }
1175
1176 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1177
1178 static inline int
1179 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1180 tree vectype, int misalign)
1181 {
1182 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1183 vectype, misalign);
1184 }
1185
1186 /* Get cost by calling cost target builtin. */
1187
1188 static inline
1189 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1190 {
1191 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1192 }
1193
1194 /* Alias targetm.vectorize.init_cost. */
1195
1196 static inline void *
1197 init_cost (struct loop *loop_info)
1198 {
1199 return targetm.vectorize.init_cost (loop_info);
1200 }
1201
1202 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1203 stmt_vec_info, int, unsigned,
1204 enum vect_cost_model_location);
1205
1206 /* Alias targetm.vectorize.add_stmt_cost. */
1207
1208 static inline unsigned
1209 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1210 stmt_vec_info stmt_info, int misalign,
1211 enum vect_cost_model_location where)
1212 {
1213 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1214 stmt_info, misalign, where);
1215 if (dump_file && (dump_flags & TDF_DETAILS))
1216 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1217 cost, where);
1218 return cost;
1219 }
1220
1221 /* Alias targetm.vectorize.finish_cost. */
1222
1223 static inline void
1224 finish_cost (void *data, unsigned *prologue_cost,
1225 unsigned *body_cost, unsigned *epilogue_cost)
1226 {
1227 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1228 }
1229
1230 /* Alias targetm.vectorize.destroy_cost_data. */
1231
1232 static inline void
1233 destroy_cost_data (void *data)
1234 {
1235 targetm.vectorize.destroy_cost_data (data);
1236 }
1237
1238 inline void
1239 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1240 {
1241 stmt_info_for_cost *cost;
1242 unsigned i;
1243 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1244 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1245 cost->misalign, cost->where);
1246 }
1247
1248 /*-----------------------------------------------------------------*/
1249 /* Info on data references alignment. */
1250 /*-----------------------------------------------------------------*/
1251 #define DR_MISALIGNMENT_UNKNOWN (-1)
1252 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1253
1254 inline void
1255 set_dr_misalignment (dr_vec_info *dr_info, int val)
1256 {
1257 dr_info->misalignment = val;
1258 }
1259
1260 inline int
1261 dr_misalignment (dr_vec_info *dr_info)
1262 {
1263 int misalign = dr_info->misalignment;
1264 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1265 return misalign;
1266 }
1267
1268 /* Reflects actual alignment of first access in the vectorized loop,
1269 taking into account peeling/versioning if applied. */
1270 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1271 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1272
1273 /* Only defined once DR_MISALIGNMENT is defined. */
1274 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1275
1276 /* Return true if data access DR_INFO is aligned to its target alignment
1277 (which may be less than a full vector). */
1278
1279 static inline bool
1280 aligned_access_p (dr_vec_info *dr_info)
1281 {
1282 return (DR_MISALIGNMENT (dr_info) == 0);
1283 }
1284
1285 /* Return TRUE if the alignment of the data access is known, and FALSE
1286 otherwise. */
1287
1288 static inline bool
1289 known_alignment_for_access_p (dr_vec_info *dr_info)
1290 {
1291 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1292 }
1293
1294 /* Return the minimum alignment in bytes that the vectorized version
1295 of DR_INFO is guaranteed to have. */
1296
1297 static inline unsigned int
1298 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1299 {
1300 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1301 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1302 if (DR_MISALIGNMENT (dr_info) == 0)
1303 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1304 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1305 }
1306
1307 /* Return the behavior of DR_INFO with respect to the vectorization context
1308 (which for outer loop vectorization might not be the behavior recorded
1309 in DR_INFO itself). */
1310
1311 static inline innermost_loop_behavior *
1312 vect_dr_behavior (dr_vec_info *dr_info)
1313 {
1314 stmt_vec_info stmt_info = dr_info->stmt;
1315 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1316 if (loop_vinfo == NULL
1317 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1318 return &DR_INNERMOST (dr_info->dr);
1319 else
1320 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1321 }
1322
1323 /* Return true if the vect cost model is unlimited. */
1324 static inline bool
1325 unlimited_cost_model (loop_p loop)
1326 {
1327 if (loop != NULL && loop->force_vectorize
1328 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1329 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1330 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1331 }
1332
1333 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1334 if the first iteration should use a partial mask in order to achieve
1335 alignment. */
1336
1337 static inline bool
1338 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1339 {
1340 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1341 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1342 }
1343
1344 /* Return the number of vectors of type VECTYPE that are needed to get
1345 NUNITS elements. NUNITS should be based on the vectorization factor,
1346 so it is always a known multiple of the number of elements in VECTYPE. */
1347
1348 static inline unsigned int
1349 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1350 {
1351 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1352 }
1353
1354 /* Return the number of copies needed for loop vectorization when
1355 a statement operates on vectors of type VECTYPE. This is the
1356 vectorization factor divided by the number of elements in
1357 VECTYPE and is always known at compile time. */
1358
1359 static inline unsigned int
1360 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1361 {
1362 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1363 }
1364
1365 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1366 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1367 if we haven't yet recorded any vector types. */
1368
1369 static inline void
1370 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1371 {
1372 /* All unit counts have the form current_vector_size * X for some
1373 rational X, so two unit sizes must have a common multiple.
1374 Everything is a multiple of the initial value of 1. */
1375 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1376 *max_nunits = force_common_multiple (*max_nunits, nunits);
1377 }
1378
1379 /* Return the vectorization factor that should be used for costing
1380 purposes while vectorizing the loop described by LOOP_VINFO.
1381 Pick a reasonable estimate if the vectorization factor isn't
1382 known at compile time. */
1383
1384 static inline unsigned int
1385 vect_vf_for_cost (loop_vec_info loop_vinfo)
1386 {
1387 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1388 }
1389
1390 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1391 Pick a reasonable estimate if the exact number isn't known at
1392 compile time. */
1393
1394 static inline unsigned int
1395 vect_nunits_for_cost (tree vec_type)
1396 {
1397 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1398 }
1399
1400 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1401
1402 static inline unsigned HOST_WIDE_INT
1403 vect_max_vf (loop_vec_info loop_vinfo)
1404 {
1405 unsigned HOST_WIDE_INT vf;
1406 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1407 return vf;
1408 return MAX_VECTORIZATION_FACTOR;
1409 }
1410
1411 /* Return the size of the value accessed by unvectorized data reference
1412 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1413 for the associated gimple statement, since that guarantees that DR_INFO
1414 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1415 here includes things like V1SI, which can be vectorized in the same way
1416 as a plain SI.) */
1417
1418 inline unsigned int
1419 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1420 {
1421 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1422 }
1423
1424 /* Source location + hotness information. */
1425 extern dump_user_location_t vect_location;
1426
1427 /* A macro for calling:
1428 dump_begin_scope (MSG, vect_location);
1429 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1430 and then calling
1431 dump_end_scope ();
1432 once the object goes out of scope, thus capturing the nesting of
1433 the scopes.
1434
1435 These scopes affect dump messages within them: dump messages at the
1436 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1437 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1438
1439 #define DUMP_VECT_SCOPE(MSG) \
1440 AUTO_DUMP_SCOPE (MSG, vect_location)
1441
1442 /* A sentinel class for ensuring that the "vect_location" global gets
1443 reset at the end of a scope.
1444
1445 The "vect_location" global is used during dumping and contains a
1446 location_t, which could contain references to a tree block via the
1447 ad-hoc data. This data is used for tracking inlining information,
1448 but it's not a GC root; it's simply assumed that such locations never
1449 get accessed if the blocks are optimized away.
1450
1451 Hence we need to ensure that such locations are purged at the end
1452 of any operations using them (e.g. via this class). */
1453
1454 class auto_purge_vect_location
1455 {
1456 public:
1457 ~auto_purge_vect_location ();
1458 };
1459
1460 /*-----------------------------------------------------------------*/
1461 /* Function prototypes. */
1462 /*-----------------------------------------------------------------*/
1463
1464 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1465 in tree-vect-loop-manip.c. */
1466 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1467 tree, tree, tree, bool);
1468 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1469 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1470 struct loop *, edge);
1471 struct loop *vect_loop_versioning (loop_vec_info, unsigned int, bool,
1472 poly_uint64);
1473 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1474 tree *, tree *, tree *, int, bool, bool);
1475 extern void vect_prepare_for_masked_peels (loop_vec_info);
1476 extern dump_user_location_t find_loop_location (struct loop *);
1477 extern bool vect_can_advance_ivs_p (loop_vec_info);
1478
1479 /* In tree-vect-stmts.c. */
1480 extern poly_uint64 current_vector_size;
1481 extern tree get_vectype_for_scalar_type (tree);
1482 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1483 extern tree get_mask_type_for_scalar_type (tree);
1484 extern tree get_same_sized_vectype (tree, tree);
1485 extern bool vect_get_loop_mask_type (loop_vec_info);
1486 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1487 stmt_vec_info * = NULL, gimple ** = NULL);
1488 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1489 tree *, stmt_vec_info * = NULL,
1490 gimple ** = NULL);
1491 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1492 tree, tree, enum tree_code *,
1493 enum tree_code *, int *,
1494 vec<tree> *);
1495 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1496 enum tree_code *,
1497 int *, vec<tree> *);
1498 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1499 enum vect_cost_for_stmt, stmt_vec_info,
1500 int, enum vect_cost_model_location);
1501 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1502 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1503 gimple_stmt_iterator *);
1504 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info);
1505 extern tree vect_get_store_rhs (stmt_vec_info);
1506 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1507 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1508 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1509 vec<tree> *, slp_tree);
1510 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1511 vec<tree> *, vec<tree> *);
1512 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1513 gimple_stmt_iterator *);
1514 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1515 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1516 slp_tree, slp_instance);
1517 extern void vect_remove_stores (stmt_vec_info);
1518 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1519 slp_instance, stmt_vector_for_cost *);
1520 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1521 stmt_vec_info *, bool, slp_tree,
1522 stmt_vector_for_cost *);
1523 extern bool vectorizable_shift (stmt_vec_info, gimple_stmt_iterator *,
1524 stmt_vec_info *, slp_tree,
1525 stmt_vector_for_cost *);
1526 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1527 unsigned int *, unsigned int *,
1528 stmt_vector_for_cost *,
1529 stmt_vector_for_cost *, bool);
1530 extern void vect_get_store_cost (stmt_vec_info, int,
1531 unsigned int *, stmt_vector_for_cost *);
1532 extern bool vect_supportable_shift (enum tree_code, tree);
1533 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1534 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1535 extern void optimize_mask_stores (struct loop*);
1536 extern gcall *vect_gen_while (tree, tree, tree);
1537 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1538 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1539 tree *);
1540 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
1541
1542 /* In tree-vect-data-refs.c. */
1543 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1544 extern enum dr_alignment_support vect_supportable_dr_alignment
1545 (dr_vec_info *, bool);
1546 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1547 HOST_WIDE_INT *);
1548 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1549 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1550 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1551 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1552 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1553 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1554 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1555 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1556 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1557 signop, int, internal_fn *, tree *);
1558 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1559 gather_scatter_info *);
1560 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1561 vec<data_reference_p> *);
1562 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *);
1563 extern void vect_record_base_alignments (vec_info *);
1564 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1565 tree *, gimple_stmt_iterator *,
1566 gimple **, bool,
1567 tree = NULL_TREE, tree = NULL_TREE);
1568 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1569 stmt_vec_info, tree);
1570 extern void vect_copy_ref_info (tree, tree);
1571 extern tree vect_create_destination_var (tree, tree);
1572 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1573 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1574 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1575 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1576 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1577 gimple_stmt_iterator *, vec<tree> *);
1578 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1579 tree *, enum dr_alignment_support, tree,
1580 struct loop **);
1581 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1582 gimple_stmt_iterator *);
1583 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1584 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1585 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1586 const char * = NULL);
1587 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1588 tree, tree = NULL_TREE);
1589
1590 /* In tree-vect-loop.c. */
1591 /* FORNOW: Used in tree-parloops.c. */
1592 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1593 bool *, bool);
1594 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1595 /* Used in gimple-loop-interchange.c. */
1596 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1597 enum tree_code);
1598 /* Drive for loop analysis stage. */
1599 extern opt_loop_vec_info vect_analyze_loop (struct loop *,
1600 loop_vec_info,
1601 vec_info_shared *);
1602 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1603 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1604 tree *, bool);
1605 extern tree vect_halve_mask_nunits (tree);
1606 extern tree vect_double_mask_nunits (tree);
1607 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1608 unsigned int, tree);
1609 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1610 unsigned int, tree, unsigned int);
1611
1612 /* Drive for loop transformation stage. */
1613 extern struct loop *vect_transform_loop (loop_vec_info);
1614 extern opt_loop_vec_info vect_analyze_loop_form (struct loop *,
1615 vec_info_shared *);
1616 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1617 slp_tree, int, stmt_vec_info *,
1618 stmt_vector_for_cost *);
1619 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1620 stmt_vec_info *, slp_tree, slp_instance,
1621 stmt_vector_for_cost *);
1622 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1623 stmt_vec_info *, slp_tree,
1624 stmt_vector_for_cost *);
1625 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1626 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1627 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1628 stmt_vector_for_cost *,
1629 stmt_vector_for_cost *,
1630 stmt_vector_for_cost *);
1631 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1632
1633 /* In tree-vect-slp.c. */
1634 extern void vect_free_slp_instance (slp_instance, bool);
1635 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1636 gimple_stmt_iterator *, poly_uint64,
1637 slp_instance, bool, unsigned *);
1638 extern bool vect_slp_analyze_operations (vec_info *);
1639 extern void vect_schedule_slp (vec_info *);
1640 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1641 extern bool vect_make_slp_decision (loop_vec_info);
1642 extern void vect_detect_hybrid_slp (loop_vec_info);
1643 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1644 extern bool vect_slp_bb (basic_block);
1645 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1646 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1647 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1648 unsigned int * = NULL,
1649 tree * = NULL, tree * = NULL);
1650 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1651 unsigned int, vec<tree> &);
1652 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1653
1654 /* In tree-vect-patterns.c. */
1655 /* Pattern recognition functions.
1656 Additional pattern recognition functions can (and will) be added
1657 in the future. */
1658 void vect_pattern_recog (vec_info *);
1659
1660 /* In tree-vectorizer.c. */
1661 unsigned vectorize_loops (void);
1662 void vect_free_loop_info_assumptions (struct loop *);
1663 gimple *vect_loop_vectorized_call (struct loop *, gcond **cond = NULL);
1664
1665
1666 #endif /* GCC_TREE_VECTORIZER_H */