]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
tree-vectorizer.h (_stmt_vec_info::cond_reduc_code): Remove.
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef class _stmt_vec_info *stmt_vec_info;
25
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29
30 /* Used for naming of new temporaries. */
31 enum vect_var_kind {
32 vect_simple_var,
33 vect_pointer_var,
34 vect_scalar_var,
35 vect_mask_var
36 };
37
38 /* Defines type of operation. */
39 enum operation_type {
40 unary_op = 1,
41 binary_op,
42 ternary_op
43 };
44
45 /* Define type of available alignment support. */
46 enum dr_alignment_support {
47 dr_unaligned_unsupported,
48 dr_unaligned_supported,
49 dr_explicit_realign,
50 dr_explicit_realign_optimized,
51 dr_aligned
52 };
53
54 /* Define type of def-use cross-iteration cycle. */
55 enum vect_def_type {
56 vect_uninitialized_def = 0,
57 vect_constant_def = 1,
58 vect_external_def,
59 vect_internal_def,
60 vect_induction_def,
61 vect_reduction_def,
62 vect_double_reduction_def,
63 vect_nested_cycle,
64 vect_unknown_def_type
65 };
66
67 /* Define type of reduction. */
68 enum vect_reduction_type {
69 TREE_CODE_REDUCTION,
70 COND_REDUCTION,
71 INTEGER_INDUC_COND_REDUCTION,
72 CONST_COND_REDUCTION,
73
74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75 to implement:
76
77 for (int i = 0; i < VF; ++i)
78 res = cond[i] ? val[i] : res; */
79 EXTRACT_LAST_REDUCTION,
80
81 /* Use a folding reduction within the loop to implement:
82
83 for (int i = 0; i < VF; ++i)
84 res = res OP val[i];
85
86 (with no reassocation). */
87 FOLD_LEFT_REDUCTION
88 };
89
90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
91 || ((D) == vect_double_reduction_def) \
92 || ((D) == vect_nested_cycle))
93
94 /* Structure to encapsulate information about a group of like
95 instructions to be presented to the target cost model. */
96 struct stmt_info_for_cost {
97 int count;
98 enum vect_cost_for_stmt kind;
99 enum vect_cost_model_location where;
100 stmt_vec_info stmt_info;
101 int misalign;
102 };
103
104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
105
106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
107 known alignment for that base. */
108 typedef hash_map<tree_operand_hash,
109 innermost_loop_behavior *> vec_base_alignments;
110
111 /************************************************************************
112 SLP
113 ************************************************************************/
114 typedef struct _slp_tree *slp_tree;
115
116 /* A computation tree of an SLP instance. Each node corresponds to a group of
117 stmts to be packed in a SIMD stmt. */
118 struct _slp_tree {
119 /* Nodes that contain def-stmts of this node statements operands. */
120 vec<slp_tree> children;
121 /* A group of scalar stmts to be vectorized together. */
122 vec<stmt_vec_info> stmts;
123 /* Load permutation relative to the stores, NULL if there is no
124 permutation. */
125 vec<unsigned> load_permutation;
126 /* Vectorized stmt/s. */
127 vec<stmt_vec_info> vec_stmts;
128 /* Number of vector stmts that are created to replace the group of scalar
129 stmts. It is calculated during the transformation phase as the number of
130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
131 divided by vector size. */
132 unsigned int vec_stmts_size;
133 /* Reference count in the SLP graph. */
134 unsigned int refcnt;
135 /* The maximum number of vector elements for the subtree rooted
136 at this node. */
137 poly_uint64 max_nunits;
138 /* Whether the scalar computations use two different operators. */
139 bool two_operators;
140 /* The DEF type of this node. */
141 enum vect_def_type def_type;
142 };
143
144
145 /* SLP instance is a sequence of stmts in a loop that can be packed into
146 SIMD stmts. */
147 typedef class _slp_instance {
148 public:
149 /* The root of SLP tree. */
150 slp_tree root;
151
152 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
153 unsigned int group_size;
154
155 /* The unrolling factor required to vectorized this SLP instance. */
156 poly_uint64 unrolling_factor;
157
158 /* The group of nodes that contain loads of this SLP instance. */
159 vec<slp_tree> loads;
160
161 /* The SLP node containing the reduction PHIs. */
162 slp_tree reduc_phis;
163 } *slp_instance;
164
165
166 /* Access Functions. */
167 #define SLP_INSTANCE_TREE(S) (S)->root
168 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
169 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
170 #define SLP_INSTANCE_LOADS(S) (S)->loads
171
172 #define SLP_TREE_CHILDREN(S) (S)->children
173 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
174 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
175 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
176 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
177 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
178 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
179
180
181
182 /* Describes two objects whose addresses must be unequal for the vectorized
183 loop to be valid. */
184 typedef std::pair<tree, tree> vec_object_pair;
185
186 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
187 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
188 class vec_lower_bound {
189 public:
190 vec_lower_bound () {}
191 vec_lower_bound (tree e, bool u, poly_uint64 m)
192 : expr (e), unsigned_p (u), min_value (m) {}
193
194 tree expr;
195 bool unsigned_p;
196 poly_uint64 min_value;
197 };
198
199 /* Vectorizer state shared between different analyses like vector sizes
200 of the same CFG region. */
201 class vec_info_shared {
202 public:
203 vec_info_shared();
204 ~vec_info_shared();
205
206 void save_datarefs();
207 void check_datarefs();
208
209 /* All data references. Freed by free_data_refs, so not an auto_vec. */
210 vec<data_reference_p> datarefs;
211 vec<data_reference> datarefs_copy;
212
213 /* The loop nest in which the data dependences are computed. */
214 auto_vec<loop_p> loop_nest;
215
216 /* All data dependences. Freed by free_dependence_relations, so not
217 an auto_vec. */
218 vec<ddr_p> ddrs;
219 };
220
221 /* Vectorizer state common between loop and basic-block vectorization. */
222 class vec_info {
223 public:
224 enum vec_kind { bb, loop };
225
226 vec_info (vec_kind, void *, vec_info_shared *);
227 ~vec_info ();
228
229 stmt_vec_info add_stmt (gimple *);
230 stmt_vec_info lookup_stmt (gimple *);
231 stmt_vec_info lookup_def (tree);
232 stmt_vec_info lookup_single_use (tree);
233 class dr_vec_info *lookup_dr (data_reference *);
234 void move_dr (stmt_vec_info, stmt_vec_info);
235 void remove_stmt (stmt_vec_info);
236 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
237
238 /* The type of vectorization. */
239 vec_kind kind;
240
241 /* Shared vectorizer state. */
242 vec_info_shared *shared;
243
244 /* The mapping of GIMPLE UID to stmt_vec_info. */
245 vec<stmt_vec_info> stmt_vec_infos;
246
247 /* All SLP instances. */
248 auto_vec<slp_instance> slp_instances;
249
250 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
251 known alignment for that base. */
252 vec_base_alignments base_alignments;
253
254 /* All interleaving chains of stores, represented by the first
255 stmt in the chain. */
256 auto_vec<stmt_vec_info> grouped_stores;
257
258 /* Cost data used by the target cost model. */
259 void *target_cost_data;
260
261 private:
262 stmt_vec_info new_stmt_vec_info (gimple *stmt);
263 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
264 void free_stmt_vec_infos ();
265 void free_stmt_vec_info (stmt_vec_info);
266 };
267
268 class _loop_vec_info;
269 class _bb_vec_info;
270
271 template<>
272 template<>
273 inline bool
274 is_a_helper <_loop_vec_info *>::test (vec_info *i)
275 {
276 return i->kind == vec_info::loop;
277 }
278
279 template<>
280 template<>
281 inline bool
282 is_a_helper <_bb_vec_info *>::test (vec_info *i)
283 {
284 return i->kind == vec_info::bb;
285 }
286
287
288 /* In general, we can divide the vector statements in a vectorized loop
289 into related groups ("rgroups") and say that for each rgroup there is
290 some nS such that the rgroup operates on nS values from one scalar
291 iteration followed by nS values from the next. That is, if VF is the
292 vectorization factor of the loop, the rgroup operates on a sequence:
293
294 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
295
296 where (i,j) represents a scalar value with index j in a scalar
297 iteration with index i.
298
299 [ We use the term "rgroup" to emphasise that this grouping isn't
300 necessarily the same as the grouping of statements used elsewhere.
301 For example, if we implement a group of scalar loads using gather
302 loads, we'll use a separate gather load for each scalar load, and
303 thus each gather load will belong to its own rgroup. ]
304
305 In general this sequence will occupy nV vectors concatenated
306 together. If these vectors have nL lanes each, the total number
307 of scalar values N is given by:
308
309 N = nS * VF = nV * nL
310
311 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
312 are compile-time constants but VF and nL can be variable (if the target
313 supports variable-length vectors).
314
315 In classical vectorization, each iteration of the vector loop would
316 handle exactly VF iterations of the original scalar loop. However,
317 in a fully-masked loop, a particular iteration of the vector loop
318 might handle fewer than VF iterations of the scalar loop. The vector
319 lanes that correspond to iterations of the scalar loop are said to be
320 "active" and the other lanes are said to be "inactive".
321
322 In a fully-masked loop, many rgroups need to be masked to ensure that
323 they have no effect for the inactive lanes. Each such rgroup needs a
324 sequence of booleans in the same order as above, but with each (i,j)
325 replaced by a boolean that indicates whether iteration i is active.
326 This sequence occupies nV vector masks that again have nL lanes each.
327 Thus the mask sequence as a whole consists of VF independent booleans
328 that are each repeated nS times.
329
330 We make the simplifying assumption that if a sequence of nV masks is
331 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
332 VIEW_CONVERTing it. This holds for all current targets that support
333 fully-masked loops. For example, suppose the scalar loop is:
334
335 float *f;
336 double *d;
337 for (int i = 0; i < n; ++i)
338 {
339 f[i * 2 + 0] += 1.0f;
340 f[i * 2 + 1] += 2.0f;
341 d[i] += 3.0;
342 }
343
344 and suppose that vectors have 256 bits. The vectorized f accesses
345 will belong to one rgroup and the vectorized d access to another:
346
347 f rgroup: nS = 2, nV = 1, nL = 8
348 d rgroup: nS = 1, nV = 1, nL = 4
349 VF = 4
350
351 [ In this simple example the rgroups do correspond to the normal
352 SLP grouping scheme. ]
353
354 If only the first three lanes are active, the masks we need are:
355
356 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
357 d rgroup: 1 | 1 | 1 | 0
358
359 Here we can use a mask calculated for f's rgroup for d's, but not
360 vice versa.
361
362 Thus for each value of nV, it is enough to provide nV masks, with the
363 mask being calculated based on the highest nL (or, equivalently, based
364 on the highest nS) required by any rgroup with that nV. We therefore
365 represent the entire collection of masks as a two-level table, with the
366 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
367 the second being indexed by the mask index 0 <= i < nV. */
368
369 /* The masks needed by rgroups with nV vectors, according to the
370 description above. */
371 struct rgroup_masks {
372 /* The largest nS for all rgroups that use these masks. */
373 unsigned int max_nscalars_per_iter;
374
375 /* The type of mask to use, based on the highest nS recorded above. */
376 tree mask_type;
377
378 /* A vector of nV masks, in iteration order. */
379 vec<tree> masks;
380 };
381
382 typedef auto_vec<rgroup_masks> vec_loop_masks;
383
384 /*-----------------------------------------------------------------*/
385 /* Info on vectorized loops. */
386 /*-----------------------------------------------------------------*/
387 typedef class _loop_vec_info : public vec_info {
388 public:
389 _loop_vec_info (class loop *, vec_info_shared *);
390 ~_loop_vec_info ();
391
392 /* The loop to which this info struct refers to. */
393 class loop *loop;
394
395 /* The loop basic blocks. */
396 basic_block *bbs;
397
398 /* Number of latch executions. */
399 tree num_itersm1;
400 /* Number of iterations. */
401 tree num_iters;
402 /* Number of iterations of the original loop. */
403 tree num_iters_unchanged;
404 /* Condition under which this loop is analyzed and versioned. */
405 tree num_iters_assumptions;
406
407 /* Threshold of number of iterations below which vectorization will not be
408 performed. It is calculated from MIN_PROFITABLE_ITERS and
409 PARAM_MIN_VECT_LOOP_BOUND. */
410 unsigned int th;
411
412 /* When applying loop versioning, the vector form should only be used
413 if the number of scalar iterations is >= this value, on top of all
414 the other requirements. Ignored when loop versioning is not being
415 used. */
416 poly_uint64 versioning_threshold;
417
418 /* Unrolling factor */
419 poly_uint64 vectorization_factor;
420
421 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
422 if there is no particular limit. */
423 unsigned HOST_WIDE_INT max_vectorization_factor;
424
425 /* The masks that a fully-masked loop should use to avoid operating
426 on inactive scalars. */
427 vec_loop_masks masks;
428
429 /* If we are using a loop mask to align memory addresses, this variable
430 contains the number of vector elements that we should skip in the
431 first iteration of the vector loop (i.e. the number of leading
432 elements that should be false in the first mask). */
433 tree mask_skip_niters;
434
435 /* Type of the variables to use in the WHILE_ULT call for fully-masked
436 loops. */
437 tree mask_compare_type;
438
439 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
440 the loop should not be vectorized, if constant non-zero, simd_if_cond
441 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
442 should be versioned on that condition, using scalar loop if the condition
443 is false and vectorized loop otherwise. */
444 tree simd_if_cond;
445
446 /* Type of the IV to use in the WHILE_ULT call for fully-masked
447 loops. */
448 tree iv_type;
449
450 /* Unknown DRs according to which loop was peeled. */
451 class dr_vec_info *unaligned_dr;
452
453 /* peeling_for_alignment indicates whether peeling for alignment will take
454 place, and what the peeling factor should be:
455 peeling_for_alignment = X means:
456 If X=0: Peeling for alignment will not be applied.
457 If X>0: Peel first X iterations.
458 If X=-1: Generate a runtime test to calculate the number of iterations
459 to be peeled, using the dataref recorded in the field
460 unaligned_dr. */
461 int peeling_for_alignment;
462
463 /* The mask used to check the alignment of pointers or arrays. */
464 int ptr_mask;
465
466 /* Data Dependence Relations defining address ranges that are candidates
467 for a run-time aliasing check. */
468 auto_vec<ddr_p> may_alias_ddrs;
469
470 /* Data Dependence Relations defining address ranges together with segment
471 lengths from which the run-time aliasing check is built. */
472 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
473
474 /* Check that the addresses of each pair of objects is unequal. */
475 auto_vec<vec_object_pair> check_unequal_addrs;
476
477 /* List of values that are required to be nonzero. This is used to check
478 whether things like "x[i * n] += 1;" are safe and eventually gets added
479 to the checks for lower bounds below. */
480 auto_vec<tree> check_nonzero;
481
482 /* List of values that need to be checked for a minimum value. */
483 auto_vec<vec_lower_bound> lower_bounds;
484
485 /* Statements in the loop that have data references that are candidates for a
486 runtime (loop versioning) misalignment check. */
487 auto_vec<stmt_vec_info> may_misalign_stmts;
488
489 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
490 auto_vec<stmt_vec_info> reductions;
491
492 /* All reduction chains in the loop, represented by the first
493 stmt in the chain. */
494 auto_vec<stmt_vec_info> reduction_chains;
495
496 /* Cost vector for a single scalar iteration. */
497 auto_vec<stmt_info_for_cost> scalar_cost_vec;
498
499 /* Map of IV base/step expressions to inserted name in the preheader. */
500 hash_map<tree_operand_hash, tree> *ivexpr_map;
501
502 /* Map of OpenMP "omp simd array" scan variables to corresponding
503 rhs of the store of the initializer. */
504 hash_map<tree, tree> *scan_map;
505
506 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
507 applied to the loop, i.e., no unrolling is needed, this is 1. */
508 poly_uint64 slp_unrolling_factor;
509
510 /* Cost of a single scalar iteration. */
511 int single_scalar_iteration_cost;
512
513 /* Is the loop vectorizable? */
514 bool vectorizable;
515
516 /* Records whether we still have the option of using a fully-masked loop. */
517 bool can_fully_mask_p;
518
519 /* True if have decided to use a fully-masked loop. */
520 bool fully_masked_p;
521
522 /* When we have grouped data accesses with gaps, we may introduce invalid
523 memory accesses. We peel the last iteration of the loop to prevent
524 this. */
525 bool peeling_for_gaps;
526
527 /* When the number of iterations is not a multiple of the vector size
528 we need to peel off iterations at the end to form an epilogue loop. */
529 bool peeling_for_niter;
530
531 /* True if there are no loop carried data dependencies in the loop.
532 If loop->safelen <= 1, then this is always true, either the loop
533 didn't have any loop carried data dependencies, or the loop is being
534 vectorized guarded with some runtime alias checks, or couldn't
535 be vectorized at all, but then this field shouldn't be used.
536 For loop->safelen >= 2, the user has asserted that there are no
537 backward dependencies, but there still could be loop carried forward
538 dependencies in such loops. This flag will be false if normal
539 vectorizer data dependency analysis would fail or require versioning
540 for alias, but because of loop->safelen >= 2 it has been vectorized
541 even without versioning for alias. E.g. in:
542 #pragma omp simd
543 for (int i = 0; i < m; i++)
544 a[i] = a[i + k] * c;
545 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
546 DTRT even for k > 0 && k < m, but without safelen we would not
547 vectorize this, so this field would be false. */
548 bool no_data_dependencies;
549
550 /* Mark loops having masked stores. */
551 bool has_mask_store;
552
553 /* Queued scaling factor for the scalar loop. */
554 profile_probability scalar_loop_scaling;
555
556 /* If if-conversion versioned this loop before conversion, this is the
557 loop version without if-conversion. */
558 class loop *scalar_loop;
559
560 /* For loops being epilogues of already vectorized loops
561 this points to the original vectorized loop. Otherwise NULL. */
562 _loop_vec_info *orig_loop_info;
563
564 } *loop_vec_info;
565
566 /* Access Functions. */
567 #define LOOP_VINFO_LOOP(L) (L)->loop
568 #define LOOP_VINFO_BBS(L) (L)->bbs
569 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
570 #define LOOP_VINFO_NITERS(L) (L)->num_iters
571 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
572 prologue peeling retain total unchanged scalar loop iterations for
573 cost model. */
574 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
575 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
576 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
577 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
578 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
579 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
580 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
581 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
582 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
583 #define LOOP_VINFO_MASKS(L) (L)->masks
584 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
585 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
586 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
587 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
588 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
589 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
590 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
591 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
592 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
593 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
594 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
595 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
596 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
597 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
598 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
599 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
600 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
601 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
602 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
603 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
604 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
605 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
606 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
607 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
608 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
609 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
610 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
611 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
612 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
613 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
614 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
615 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
616
617 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
618 ((L)->may_misalign_stmts.length () > 0)
619 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
620 ((L)->comp_alias_ddrs.length () > 0 \
621 || (L)->check_unequal_addrs.length () > 0 \
622 || (L)->lower_bounds.length () > 0)
623 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
624 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
625 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
626 (LOOP_VINFO_SIMD_IF_COND (L))
627 #define LOOP_REQUIRES_VERSIONING(L) \
628 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
629 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
630 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
631 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
632
633 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
634 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
635
636 #define LOOP_VINFO_EPILOGUE_P(L) \
637 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
638
639 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
640 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
641
642 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
643 value signifies success, and a NULL value signifies failure, supporting
644 propagating an opt_problem * describing the failure back up the call
645 stack. */
646 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
647
648 static inline loop_vec_info
649 loop_vec_info_for_loop (class loop *loop)
650 {
651 return (loop_vec_info) loop->aux;
652 }
653
654 typedef class _bb_vec_info : public vec_info
655 {
656 public:
657 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
658 ~_bb_vec_info ();
659
660 basic_block bb;
661 gimple_stmt_iterator region_begin;
662 gimple_stmt_iterator region_end;
663 } *bb_vec_info;
664
665 #define BB_VINFO_BB(B) (B)->bb
666 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
667 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
668 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
669 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
670 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
671
672 static inline bb_vec_info
673 vec_info_for_bb (basic_block bb)
674 {
675 return (bb_vec_info) bb->aux;
676 }
677
678 /*-----------------------------------------------------------------*/
679 /* Info on vectorized defs. */
680 /*-----------------------------------------------------------------*/
681 enum stmt_vec_info_type {
682 undef_vec_info_type = 0,
683 load_vec_info_type,
684 store_vec_info_type,
685 shift_vec_info_type,
686 op_vec_info_type,
687 call_vec_info_type,
688 call_simd_clone_vec_info_type,
689 assignment_vec_info_type,
690 condition_vec_info_type,
691 comparison_vec_info_type,
692 reduc_vec_info_type,
693 induc_vec_info_type,
694 type_promotion_vec_info_type,
695 type_demotion_vec_info_type,
696 type_conversion_vec_info_type,
697 cycle_phi_info_type,
698 lc_phi_info_type,
699 loop_exit_ctrl_vec_info_type
700 };
701
702 /* Indicates whether/how a variable is used in the scope of loop/basic
703 block. */
704 enum vect_relevant {
705 vect_unused_in_scope = 0,
706
707 /* The def is only used outside the loop. */
708 vect_used_only_live,
709 /* The def is in the inner loop, and the use is in the outer loop, and the
710 use is a reduction stmt. */
711 vect_used_in_outer_by_reduction,
712 /* The def is in the inner loop, and the use is in the outer loop (and is
713 not part of reduction). */
714 vect_used_in_outer,
715
716 /* defs that feed computations that end up (only) in a reduction. These
717 defs may be used by non-reduction stmts, but eventually, any
718 computations/values that are affected by these defs are used to compute
719 a reduction (i.e. don't get stored to memory, for example). We use this
720 to identify computations that we can change the order in which they are
721 computed. */
722 vect_used_by_reduction,
723
724 vect_used_in_scope
725 };
726
727 /* The type of vectorization that can be applied to the stmt: regular loop-based
728 vectorization; pure SLP - the stmt is a part of SLP instances and does not
729 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
730 a part of SLP instance and also must be loop-based vectorized, since it has
731 uses outside SLP sequences.
732
733 In the loop context the meanings of pure and hybrid SLP are slightly
734 different. By saying that pure SLP is applied to the loop, we mean that we
735 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
736 vectorized without doing any conceptual unrolling, cause we don't pack
737 together stmts from different iterations, only within a single iteration.
738 Loop hybrid SLP means that we exploit both intra-iteration and
739 inter-iteration parallelism (e.g., number of elements in the vector is 4
740 and the slp-group-size is 2, in which case we don't have enough parallelism
741 within an iteration, so we obtain the rest of the parallelism from subsequent
742 iterations by unrolling the loop by 2). */
743 enum slp_vect_type {
744 loop_vect = 0,
745 pure_slp,
746 hybrid
747 };
748
749 /* Says whether a statement is a load, a store of a vectorized statement
750 result, or a store of an invariant value. */
751 enum vec_load_store_type {
752 VLS_LOAD,
753 VLS_STORE,
754 VLS_STORE_INVARIANT
755 };
756
757 /* Describes how we're going to vectorize an individual load or store,
758 or a group of loads or stores. */
759 enum vect_memory_access_type {
760 /* An access to an invariant address. This is used only for loads. */
761 VMAT_INVARIANT,
762
763 /* A simple contiguous access. */
764 VMAT_CONTIGUOUS,
765
766 /* A contiguous access that goes down in memory rather than up,
767 with no additional permutation. This is used only for stores
768 of invariants. */
769 VMAT_CONTIGUOUS_DOWN,
770
771 /* A simple contiguous access in which the elements need to be permuted
772 after loading or before storing. Only used for loop vectorization;
773 SLP uses separate permutes. */
774 VMAT_CONTIGUOUS_PERMUTE,
775
776 /* A simple contiguous access in which the elements need to be reversed
777 after loading or before storing. */
778 VMAT_CONTIGUOUS_REVERSE,
779
780 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
781 VMAT_LOAD_STORE_LANES,
782
783 /* An access in which each scalar element is loaded or stored
784 individually. */
785 VMAT_ELEMENTWISE,
786
787 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
788 SLP accesses. Each unrolled iteration uses a contiguous load
789 or store for the whole group, but the groups from separate iterations
790 are combined in the same way as for VMAT_ELEMENTWISE. */
791 VMAT_STRIDED_SLP,
792
793 /* The access uses gather loads or scatter stores. */
794 VMAT_GATHER_SCATTER
795 };
796
797 class dr_vec_info {
798 public:
799 /* The data reference itself. */
800 data_reference *dr;
801 /* The statement that contains the data reference. */
802 stmt_vec_info stmt;
803 /* The misalignment in bytes of the reference, or -1 if not known. */
804 int misalignment;
805 /* The byte alignment that we'd ideally like the reference to have,
806 and the value that misalignment is measured against. */
807 poly_uint64 target_alignment;
808 /* If true the alignment of base_decl needs to be increased. */
809 bool base_misaligned;
810 tree base_decl;
811 };
812
813 typedef struct data_reference *dr_p;
814
815 class _stmt_vec_info {
816 public:
817
818 enum stmt_vec_info_type type;
819
820 /* Indicates whether this stmts is part of a computation whose result is
821 used outside the loop. */
822 bool live;
823
824 /* Stmt is part of some pattern (computation idiom) */
825 bool in_pattern_p;
826
827 /* True if the statement was created during pattern recognition as
828 part of the replacement for RELATED_STMT. This implies that the
829 statement isn't part of any basic block, although for convenience
830 its gimple_bb is the same as for RELATED_STMT. */
831 bool pattern_stmt_p;
832
833 /* Is this statement vectorizable or should it be skipped in (partial)
834 vectorization. */
835 bool vectorizable;
836
837 /* The stmt to which this info struct refers to. */
838 gimple *stmt;
839
840 /* The vec_info with respect to which STMT is vectorized. */
841 vec_info *vinfo;
842
843 /* The vector type to be used for the LHS of this statement. */
844 tree vectype;
845
846 /* The vectorized version of the stmt. */
847 stmt_vec_info vectorized_stmt;
848
849
850 /* The following is relevant only for stmts that contain a non-scalar
851 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
852 at most one such data-ref. */
853
854 dr_vec_info dr_aux;
855
856 /* Information about the data-ref relative to this loop
857 nest (the loop that is being considered for vectorization). */
858 innermost_loop_behavior dr_wrt_vec_loop;
859
860 /* For loop PHI nodes, the base and evolution part of it. This makes sure
861 this information is still available in vect_update_ivs_after_vectorizer
862 where we may not be able to re-analyze the PHI nodes evolution as
863 peeling for the prologue loop can make it unanalyzable. The evolution
864 part is still correct after peeling, but the base may have changed from
865 the version here. */
866 tree loop_phi_evolution_base_unchanged;
867 tree loop_phi_evolution_part;
868
869 /* Used for various bookkeeping purposes, generally holding a pointer to
870 some other stmt S that is in some way "related" to this stmt.
871 Current use of this field is:
872 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
873 true): S is the "pattern stmt" that represents (and replaces) the
874 sequence of stmts that constitutes the pattern. Similarly, the
875 related_stmt of the "pattern stmt" points back to this stmt (which is
876 the last stmt in the original sequence of stmts that constitutes the
877 pattern). */
878 stmt_vec_info related_stmt;
879
880 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
881 The sequence is attached to the original statement rather than the
882 pattern statement. */
883 gimple_seq pattern_def_seq;
884
885 /* List of datarefs that are known to have the same alignment as the dataref
886 of this stmt. */
887 vec<dr_p> same_align_refs;
888
889 /* Selected SIMD clone's function info. First vector element
890 is SIMD clone's function decl, followed by a pair of trees (base + step)
891 for linear arguments (pair of NULLs for other arguments). */
892 vec<tree> simd_clone_info;
893
894 /* Classify the def of this stmt. */
895 enum vect_def_type def_type;
896
897 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
898 enum slp_vect_type slp_type;
899
900 /* Interleaving and reduction chains info. */
901 /* First element in the group. */
902 stmt_vec_info first_element;
903 /* Pointer to the next element in the group. */
904 stmt_vec_info next_element;
905 /* The size of the group. */
906 unsigned int size;
907 /* For stores, number of stores from this group seen. We vectorize the last
908 one. */
909 unsigned int store_count;
910 /* For loads only, the gap from the previous load. For consecutive loads, GAP
911 is 1. */
912 unsigned int gap;
913
914 /* The minimum negative dependence distance this stmt participates in
915 or zero if none. */
916 unsigned int min_neg_dist;
917
918 /* Not all stmts in the loop need to be vectorized. e.g, the increment
919 of the loop induction variable and computation of array indexes. relevant
920 indicates whether the stmt needs to be vectorized. */
921 enum vect_relevant relevant;
922
923 /* For loads if this is a gather, for stores if this is a scatter. */
924 bool gather_scatter_p;
925
926 /* True if this is an access with loop-invariant stride. */
927 bool strided_p;
928
929 /* For both loads and stores. */
930 unsigned simd_lane_access_p : 3;
931
932 /* Classifies how the load or store is going to be implemented
933 for loop vectorization. */
934 vect_memory_access_type memory_access_type;
935
936 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
937 tree induc_cond_initial_val;
938
939 /* If not NULL the value to be added to compute final reduction value. */
940 tree reduc_epilogue_adjustment;
941
942 /* On a reduction PHI the reduction type as detected by
943 vect_is_simple_reduction and vectorizable_reduction. */
944 enum vect_reduction_type reduc_type;
945
946 /* The original reduction code, to be used in the epilogue. */
947 enum tree_code reduc_code;
948 /* An internal function we should use in the epilogue. */
949 internal_fn reduc_fn;
950
951 /* On a stmt participating in the reduction the index of the operand
952 on the reduction SSA cycle. */
953 int reduc_idx;
954
955 /* On a reduction PHI the def returned by vect_force_simple_reduction.
956 On the def returned by vect_force_simple_reduction the
957 corresponding PHI. */
958 stmt_vec_info reduc_def;
959
960 /* The vector input type relevant for reduction vectorization. */
961 tree reduc_vectype_in;
962
963 /* Whether we force a single cycle PHI during reduction vectorization. */
964 bool force_single_cycle;
965
966 /* Whether on this stmt reduction meta is recorded. */
967 bool is_reduc_info;
968
969 /* The number of scalar stmt references from active SLP instances. */
970 unsigned int num_slp_uses;
971
972 /* If nonzero, the lhs of the statement could be truncated to this
973 many bits without affecting any users of the result. */
974 unsigned int min_output_precision;
975
976 /* If nonzero, all non-boolean input operands have the same precision,
977 and they could each be truncated to this many bits without changing
978 the result. */
979 unsigned int min_input_precision;
980
981 /* If OPERATION_BITS is nonzero, the statement could be performed on
982 an integer with the sign and number of bits given by OPERATION_SIGN
983 and OPERATION_BITS without changing the result. */
984 unsigned int operation_precision;
985 signop operation_sign;
986
987 /* True if this is only suitable for SLP vectorization. */
988 bool slp_vect_only_p;
989 };
990
991 /* Information about a gather/scatter call. */
992 struct gather_scatter_info {
993 /* The internal function to use for the gather/scatter operation,
994 or IFN_LAST if a built-in function should be used instead. */
995 internal_fn ifn;
996
997 /* The FUNCTION_DECL for the built-in gather/scatter function,
998 or null if an internal function should be used instead. */
999 tree decl;
1000
1001 /* The loop-invariant base value. */
1002 tree base;
1003
1004 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1005 tree offset;
1006
1007 /* Each offset element should be multiplied by this amount before
1008 being added to the base. */
1009 int scale;
1010
1011 /* The definition type for the vectorized offset. */
1012 enum vect_def_type offset_dt;
1013
1014 /* The type of the vectorized offset. */
1015 tree offset_vectype;
1016
1017 /* The type of the scalar elements after loading or before storing. */
1018 tree element_type;
1019
1020 /* The type of the scalar elements being loaded or stored. */
1021 tree memory_type;
1022 };
1023
1024 /* Access Functions. */
1025 #define STMT_VINFO_TYPE(S) (S)->type
1026 #define STMT_VINFO_STMT(S) (S)->stmt
1027 inline loop_vec_info
1028 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1029 {
1030 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1031 return loop_vinfo;
1032 return NULL;
1033 }
1034 inline bb_vec_info
1035 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1036 {
1037 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1038 return bb_vinfo;
1039 return NULL;
1040 }
1041 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1042 #define STMT_VINFO_LIVE_P(S) (S)->live
1043 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1044 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1045 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1046 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1047 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1048 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1049 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1050 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1051 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1052 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1053 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1054 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1055
1056 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1057 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1058 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1059 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1060 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1061 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1062 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1063 (S)->dr_wrt_vec_loop.base_misalignment
1064 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1065 (S)->dr_wrt_vec_loop.offset_alignment
1066 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1067 (S)->dr_wrt_vec_loop.step_alignment
1068
1069 #define STMT_VINFO_DR_INFO(S) \
1070 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1071
1072 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1073 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1074 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1075 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1076 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1077 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1078 #define STMT_VINFO_GROUPED_ACCESS(S) \
1079 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1080 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1081 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1082 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1083 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1084 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1085 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1086 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1087 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1088 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1089 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1090
1091 #define DR_GROUP_FIRST_ELEMENT(S) \
1092 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1093 #define DR_GROUP_NEXT_ELEMENT(S) \
1094 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1095 #define DR_GROUP_SIZE(S) \
1096 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1097 #define DR_GROUP_STORE_COUNT(S) \
1098 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1099 #define DR_GROUP_GAP(S) \
1100 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1101
1102 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1103 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1104 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1105 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1106 #define REDUC_GROUP_SIZE(S) \
1107 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1108
1109 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1110
1111 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1112 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1113 #define STMT_SLP_TYPE(S) (S)->slp_type
1114
1115 #define VECT_MAX_COST 1000
1116
1117 /* The maximum number of intermediate steps required in multi-step type
1118 conversion. */
1119 #define MAX_INTERM_CVT_STEPS 3
1120
1121 #define MAX_VECTORIZATION_FACTOR INT_MAX
1122
1123 /* Nonzero if TYPE represents a (scalar) boolean type or type
1124 in the middle-end compatible with it (unsigned precision 1 integral
1125 types). Used to determine which types should be vectorized as
1126 VECTOR_BOOLEAN_TYPE_P. */
1127
1128 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1129 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1130 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1131 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1132 && TYPE_PRECISION (TYPE) == 1 \
1133 && TYPE_UNSIGNED (TYPE)))
1134
1135 static inline bool
1136 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1137 {
1138 return (loop->inner
1139 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1140 }
1141
1142 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1143 pattern. */
1144
1145 static inline bool
1146 is_pattern_stmt_p (stmt_vec_info stmt_info)
1147 {
1148 return stmt_info->pattern_stmt_p;
1149 }
1150
1151 /* If STMT_INFO is a pattern statement, return the statement that it
1152 replaces, otherwise return STMT_INFO itself. */
1153
1154 inline stmt_vec_info
1155 vect_orig_stmt (stmt_vec_info stmt_info)
1156 {
1157 if (is_pattern_stmt_p (stmt_info))
1158 return STMT_VINFO_RELATED_STMT (stmt_info);
1159 return stmt_info;
1160 }
1161
1162 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1163
1164 static inline stmt_vec_info
1165 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1166 {
1167 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1168 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1169 return stmt1_info;
1170 else
1171 return stmt2_info;
1172 }
1173
1174 /* If STMT_INFO has been replaced by a pattern statement, return the
1175 replacement statement, otherwise return STMT_INFO itself. */
1176
1177 inline stmt_vec_info
1178 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1179 {
1180 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1181 return STMT_VINFO_RELATED_STMT (stmt_info);
1182 return stmt_info;
1183 }
1184
1185 /* Return true if BB is a loop header. */
1186
1187 static inline bool
1188 is_loop_header_bb_p (basic_block bb)
1189 {
1190 if (bb == (bb->loop_father)->header)
1191 return true;
1192 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1193 return false;
1194 }
1195
1196 /* Return pow2 (X). */
1197
1198 static inline int
1199 vect_pow2 (int x)
1200 {
1201 int i, res = 1;
1202
1203 for (i = 0; i < x; i++)
1204 res *= 2;
1205
1206 return res;
1207 }
1208
1209 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1210
1211 static inline int
1212 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1213 tree vectype, int misalign)
1214 {
1215 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1216 vectype, misalign);
1217 }
1218
1219 /* Get cost by calling cost target builtin. */
1220
1221 static inline
1222 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1223 {
1224 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1225 }
1226
1227 /* Alias targetm.vectorize.init_cost. */
1228
1229 static inline void *
1230 init_cost (class loop *loop_info)
1231 {
1232 return targetm.vectorize.init_cost (loop_info);
1233 }
1234
1235 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1236 stmt_vec_info, int, unsigned,
1237 enum vect_cost_model_location);
1238
1239 /* Alias targetm.vectorize.add_stmt_cost. */
1240
1241 static inline unsigned
1242 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1243 stmt_vec_info stmt_info, int misalign,
1244 enum vect_cost_model_location where)
1245 {
1246 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1247 stmt_info, misalign, where);
1248 if (dump_file && (dump_flags & TDF_DETAILS))
1249 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1250 cost, where);
1251 return cost;
1252 }
1253
1254 /* Alias targetm.vectorize.finish_cost. */
1255
1256 static inline void
1257 finish_cost (void *data, unsigned *prologue_cost,
1258 unsigned *body_cost, unsigned *epilogue_cost)
1259 {
1260 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1261 }
1262
1263 /* Alias targetm.vectorize.destroy_cost_data. */
1264
1265 static inline void
1266 destroy_cost_data (void *data)
1267 {
1268 targetm.vectorize.destroy_cost_data (data);
1269 }
1270
1271 inline void
1272 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1273 {
1274 stmt_info_for_cost *cost;
1275 unsigned i;
1276 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1277 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1278 cost->misalign, cost->where);
1279 }
1280
1281 /*-----------------------------------------------------------------*/
1282 /* Info on data references alignment. */
1283 /*-----------------------------------------------------------------*/
1284 #define DR_MISALIGNMENT_UNKNOWN (-1)
1285 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1286
1287 inline void
1288 set_dr_misalignment (dr_vec_info *dr_info, int val)
1289 {
1290 dr_info->misalignment = val;
1291 }
1292
1293 inline int
1294 dr_misalignment (dr_vec_info *dr_info)
1295 {
1296 int misalign = dr_info->misalignment;
1297 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1298 return misalign;
1299 }
1300
1301 /* Reflects actual alignment of first access in the vectorized loop,
1302 taking into account peeling/versioning if applied. */
1303 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1304 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1305
1306 /* Only defined once DR_MISALIGNMENT is defined. */
1307 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1308
1309 /* Return true if data access DR_INFO is aligned to its target alignment
1310 (which may be less than a full vector). */
1311
1312 static inline bool
1313 aligned_access_p (dr_vec_info *dr_info)
1314 {
1315 return (DR_MISALIGNMENT (dr_info) == 0);
1316 }
1317
1318 /* Return TRUE if the alignment of the data access is known, and FALSE
1319 otherwise. */
1320
1321 static inline bool
1322 known_alignment_for_access_p (dr_vec_info *dr_info)
1323 {
1324 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1325 }
1326
1327 /* Return the minimum alignment in bytes that the vectorized version
1328 of DR_INFO is guaranteed to have. */
1329
1330 static inline unsigned int
1331 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1332 {
1333 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1334 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1335 if (DR_MISALIGNMENT (dr_info) == 0)
1336 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1337 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1338 }
1339
1340 /* Return the behavior of DR_INFO with respect to the vectorization context
1341 (which for outer loop vectorization might not be the behavior recorded
1342 in DR_INFO itself). */
1343
1344 static inline innermost_loop_behavior *
1345 vect_dr_behavior (dr_vec_info *dr_info)
1346 {
1347 stmt_vec_info stmt_info = dr_info->stmt;
1348 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1349 if (loop_vinfo == NULL
1350 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1351 return &DR_INNERMOST (dr_info->dr);
1352 else
1353 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1354 }
1355
1356 /* Return true if the vect cost model is unlimited. */
1357 static inline bool
1358 unlimited_cost_model (loop_p loop)
1359 {
1360 if (loop != NULL && loop->force_vectorize
1361 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1362 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1363 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1364 }
1365
1366 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1367 if the first iteration should use a partial mask in order to achieve
1368 alignment. */
1369
1370 static inline bool
1371 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1372 {
1373 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1374 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1375 }
1376
1377 /* Return the number of vectors of type VECTYPE that are needed to get
1378 NUNITS elements. NUNITS should be based on the vectorization factor,
1379 so it is always a known multiple of the number of elements in VECTYPE. */
1380
1381 static inline unsigned int
1382 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1383 {
1384 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1385 }
1386
1387 /* Return the number of copies needed for loop vectorization when
1388 a statement operates on vectors of type VECTYPE. This is the
1389 vectorization factor divided by the number of elements in
1390 VECTYPE and is always known at compile time. */
1391
1392 static inline unsigned int
1393 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1394 {
1395 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1396 }
1397
1398 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1399 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1400
1401 static inline void
1402 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1403 {
1404 /* All unit counts have the form current_vector_size * X for some
1405 rational X, so two unit sizes must have a common multiple.
1406 Everything is a multiple of the initial value of 1. */
1407 *max_nunits = force_common_multiple (*max_nunits, nunits);
1408 }
1409
1410 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1411 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1412 if we haven't yet recorded any vector types. */
1413
1414 static inline void
1415 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1416 {
1417 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1418 }
1419
1420 /* Return the vectorization factor that should be used for costing
1421 purposes while vectorizing the loop described by LOOP_VINFO.
1422 Pick a reasonable estimate if the vectorization factor isn't
1423 known at compile time. */
1424
1425 static inline unsigned int
1426 vect_vf_for_cost (loop_vec_info loop_vinfo)
1427 {
1428 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1429 }
1430
1431 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1432 Pick a reasonable estimate if the exact number isn't known at
1433 compile time. */
1434
1435 static inline unsigned int
1436 vect_nunits_for_cost (tree vec_type)
1437 {
1438 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1439 }
1440
1441 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1442
1443 static inline unsigned HOST_WIDE_INT
1444 vect_max_vf (loop_vec_info loop_vinfo)
1445 {
1446 unsigned HOST_WIDE_INT vf;
1447 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1448 return vf;
1449 return MAX_VECTORIZATION_FACTOR;
1450 }
1451
1452 /* Return the size of the value accessed by unvectorized data reference
1453 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1454 for the associated gimple statement, since that guarantees that DR_INFO
1455 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1456 here includes things like V1SI, which can be vectorized in the same way
1457 as a plain SI.) */
1458
1459 inline unsigned int
1460 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1461 {
1462 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1463 }
1464
1465 /* Source location + hotness information. */
1466 extern dump_user_location_t vect_location;
1467
1468 /* A macro for calling:
1469 dump_begin_scope (MSG, vect_location);
1470 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1471 and then calling
1472 dump_end_scope ();
1473 once the object goes out of scope, thus capturing the nesting of
1474 the scopes.
1475
1476 These scopes affect dump messages within them: dump messages at the
1477 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1478 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1479
1480 #define DUMP_VECT_SCOPE(MSG) \
1481 AUTO_DUMP_SCOPE (MSG, vect_location)
1482
1483 /* A sentinel class for ensuring that the "vect_location" global gets
1484 reset at the end of a scope.
1485
1486 The "vect_location" global is used during dumping and contains a
1487 location_t, which could contain references to a tree block via the
1488 ad-hoc data. This data is used for tracking inlining information,
1489 but it's not a GC root; it's simply assumed that such locations never
1490 get accessed if the blocks are optimized away.
1491
1492 Hence we need to ensure that such locations are purged at the end
1493 of any operations using them (e.g. via this class). */
1494
1495 class auto_purge_vect_location
1496 {
1497 public:
1498 ~auto_purge_vect_location ();
1499 };
1500
1501 /*-----------------------------------------------------------------*/
1502 /* Function prototypes. */
1503 /*-----------------------------------------------------------------*/
1504
1505 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1506 in tree-vect-loop-manip.c. */
1507 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1508 tree, tree, tree, bool);
1509 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1510 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1511 class loop *, edge);
1512 class loop *vect_loop_versioning (loop_vec_info);
1513 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1514 tree *, tree *, tree *, int, bool, bool);
1515 extern void vect_prepare_for_masked_peels (loop_vec_info);
1516 extern dump_user_location_t find_loop_location (class loop *);
1517 extern bool vect_can_advance_ivs_p (loop_vec_info);
1518
1519 /* In tree-vect-stmts.c. */
1520 extern poly_uint64 current_vector_size;
1521 extern tree get_vectype_for_scalar_type (tree);
1522 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1523 extern tree get_mask_type_for_scalar_type (tree);
1524 extern tree get_same_sized_vectype (tree, tree);
1525 extern bool vect_get_loop_mask_type (loop_vec_info);
1526 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1527 stmt_vec_info * = NULL, gimple ** = NULL);
1528 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1529 tree *, stmt_vec_info * = NULL,
1530 gimple ** = NULL);
1531 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1532 tree, tree, enum tree_code *,
1533 enum tree_code *, int *,
1534 vec<tree> *);
1535 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1536 enum tree_code *,
1537 int *, vec<tree> *);
1538 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1539 enum vect_cost_for_stmt, stmt_vec_info,
1540 int, enum vect_cost_model_location);
1541 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1542 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1543 gimple_stmt_iterator *);
1544 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1545 extern tree vect_get_store_rhs (stmt_vec_info);
1546 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1547 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1548 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1549 vec<tree> *, slp_tree);
1550 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1551 vec<tree> *, vec<tree> *);
1552 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1553 gimple_stmt_iterator *);
1554 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1555 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1556 slp_tree, slp_instance);
1557 extern void vect_remove_stores (stmt_vec_info);
1558 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1559 slp_instance, stmt_vector_for_cost *);
1560 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1561 unsigned int *, unsigned int *,
1562 stmt_vector_for_cost *,
1563 stmt_vector_for_cost *, bool);
1564 extern void vect_get_store_cost (stmt_vec_info, int,
1565 unsigned int *, stmt_vector_for_cost *);
1566 extern bool vect_supportable_shift (enum tree_code, tree);
1567 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1568 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1569 extern void optimize_mask_stores (class loop*);
1570 extern gcall *vect_gen_while (tree, tree, tree);
1571 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1572 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1573 tree *);
1574 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
1575
1576 /* In tree-vect-data-refs.c. */
1577 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1578 extern enum dr_alignment_support vect_supportable_dr_alignment
1579 (dr_vec_info *, bool);
1580 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1581 HOST_WIDE_INT *);
1582 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1583 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1584 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1585 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1586 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1587 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1588 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1589 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1590 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1591 signop, int, internal_fn *, tree *);
1592 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1593 gather_scatter_info *);
1594 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1595 vec<data_reference_p> *);
1596 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1597 extern void vect_record_base_alignments (vec_info *);
1598 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
1599 tree *, gimple_stmt_iterator *,
1600 gimple **, bool,
1601 tree = NULL_TREE, tree = NULL_TREE);
1602 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1603 stmt_vec_info, tree);
1604 extern void vect_copy_ref_info (tree, tree);
1605 extern tree vect_create_destination_var (tree, tree);
1606 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1607 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1608 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1609 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1610 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1611 gimple_stmt_iterator *, vec<tree> *);
1612 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1613 tree *, enum dr_alignment_support, tree,
1614 class loop **);
1615 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1616 gimple_stmt_iterator *);
1617 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1618 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1619 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1620 const char * = NULL);
1621 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1622 tree, tree = NULL_TREE);
1623
1624 /* In tree-vect-loop.c. */
1625 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1626 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1627 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1628 enum tree_code);
1629 extern bool needs_fold_left_reduction_p (tree, tree_code);
1630 /* Drive for loop analysis stage. */
1631 extern opt_loop_vec_info vect_analyze_loop (class loop *,
1632 loop_vec_info,
1633 vec_info_shared *);
1634 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1635 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1636 tree *, bool);
1637 extern tree vect_halve_mask_nunits (tree);
1638 extern tree vect_double_mask_nunits (tree);
1639 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1640 unsigned int, tree);
1641 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1642 unsigned int, tree, unsigned int);
1643 extern stmt_vec_info info_for_reduction (stmt_vec_info);
1644
1645 /* Drive for loop transformation stage. */
1646 extern class loop *vect_transform_loop (loop_vec_info);
1647 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1648 vec_info_shared *);
1649 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1650 slp_tree, slp_instance, int,
1651 bool, stmt_vector_for_cost *);
1652 extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
1653 stmt_vector_for_cost *);
1654 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1655 stmt_vec_info *, slp_tree,
1656 stmt_vector_for_cost *);
1657 extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
1658 stmt_vec_info *, slp_tree);
1659 extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
1660 slp_tree, slp_instance);
1661 extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
1662 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1663 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1664 stmt_vector_for_cost *,
1665 stmt_vector_for_cost *,
1666 stmt_vector_for_cost *);
1667 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1668
1669 /* In tree-vect-slp.c. */
1670 extern void vect_free_slp_instance (slp_instance, bool);
1671 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1672 gimple_stmt_iterator *, poly_uint64,
1673 slp_instance, bool, unsigned *);
1674 extern bool vect_slp_analyze_operations (vec_info *);
1675 extern void vect_schedule_slp (vec_info *);
1676 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1677 extern bool vect_make_slp_decision (loop_vec_info);
1678 extern void vect_detect_hybrid_slp (loop_vec_info);
1679 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1680 extern bool vect_slp_bb (basic_block);
1681 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1682 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1683 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1684 unsigned int * = NULL,
1685 tree * = NULL, tree * = NULL);
1686 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1687 unsigned int, vec<tree> &);
1688 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1689
1690 /* In tree-vect-patterns.c. */
1691 /* Pattern recognition functions.
1692 Additional pattern recognition functions can (and will) be added
1693 in the future. */
1694 void vect_pattern_recog (vec_info *);
1695
1696 /* In tree-vectorizer.c. */
1697 unsigned vectorize_loops (void);
1698 void vect_free_loop_info_assumptions (class loop *);
1699 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1700
1701
1702 #endif /* GCC_TREE_VECTORIZER_H */